diff options
author | dos-reis <gdr@axiomatics.org> | 2010-03-12 22:27:50 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-03-12 22:27:50 +0000 |
commit | ec25c03fa0342caa301d2a720a8c05962917a701 (patch) | |
tree | e225c87686a42e968a33849e384953a74b5b8c8c | |
parent | 6de2fad4dd5cad34f04eb7ccdb516df131ff0349 (diff) | |
download | open-axiom-ec25c03fa0342caa301d2a720a8c05962917a701.tar.gz |
* algebra/compiler.spad.pamphlet: New.
-rw-r--r-- | src/ChangeLog | 4 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 3 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 3 | ||||
-rw-r--r-- | src/algebra/compiler.spad.pamphlet | 96 | ||||
-rw-r--r-- | src/algebra/syntax.spad.pamphlet | 18 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3510 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6490 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 98 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10590 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 24251 |
10 files changed, 22578 insertions, 22485 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 2c8a4b0e..713d7648 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,9 @@ 2010-03-12 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/compiler.spad.pamphlet: New. + +2010-03-12 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/syntax.spad.pamphlet (InternalRepresentationForm): New. 2010-03-10 Gabriel Dos Reis <gdr@cs.tamu.edu> diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index dd691b5a..2a66efb9 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -939,7 +939,7 @@ axiom_algebra_layer_user = \ ASP73 ASP27 ASP28 ASP33 ASP49 ASP7 \ ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ - ASP74 ASP77 ASP80 ASP29 IRFORM + ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1014,6 +1014,7 @@ $(OUT)/INETCLTS.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) $(OUT)/ASP34.$(FASLEXT): $(OUT)/FMC.$(FASLEXT) $(OUT)/IRFORM.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) +$(OUT)/COMPILER.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) $(OUT)/ENV.$(FASLEXT) .PHONY: all all-algebra mkdir-output-directory diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 5833260b..60a96eca 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -1018,7 +1018,7 @@ axiom_algebra_layer_user = \ ASP73 ASP27 ASP28 ASP33 ASP49 ASP7 \ ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ - ASP74 ASP77 ASP80 ASP29 IRFORM + ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1093,6 +1093,7 @@ $(OUT)/INETCLTS.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) $(OUT)/ASP34.$(FASLEXT): $(OUT)/FMC.$(FASLEXT) $(OUT)/IRFORM.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) +$(OUT)/COMPILER.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) $(OUT)/ENV.$(FASLEXT) @ diff --git a/src/algebra/compiler.spad.pamphlet b/src/algebra/compiler.spad.pamphlet new file mode 100644 index 00000000..00da0a09 --- /dev/null +++ b/src/algebra/compiler.spad.pamphlet @@ -0,0 +1,96 @@ +\documentclass{article} +\usepackage{open-axiom} + +\author{Gabriel Dos~Reis} + +\begin{document} + +\begin{abstract} +\end{abstract} + +\tableofcontents +\eject + + +\section{Compiler Intermediate Form} + +<<domain IRFORM InternalRepresentationForm>>= +)abbrev domain IRFORM InternalRepresentationForm +++ Author: Gabriel Dos Reis +++ Date Created: March 12, 2010 +++ Date Last Modified: March 12, 2010 +++ Description: +++ This domain provides representations for the intermediate +++ form data structure used by the Spad elaborator. +InternalRepresentationForm(): Public == Private where + Public == CoercibleTo OutputForm + Private == add + coerce(x: %): OutputForm == + (x : Syntax)::OutputForm +@ + + +\section{A Package for the Spad Compiler} + +<<package COMPILER CompilerPackage>>= +)abbrev package COMPILER CompilerPackage +++ Author: Gabriel Dos Reis +++ Date Created: March 12, 2010 +++ Date Last Modified: March 12, 2010 +++ Description: +++ This package implements a Spad compiler. +CompilerPackage(): Public == Private where + Public == Type with + macroExpand: (Syntax, Environment) -> Syntax + ++ \spad{macroExpand(s,e)} traverses the syntax object \spad{s} + ++ replacing all (niladic) macro invokations with the + ++ corresponding substitution. + Private == add + macroExpand(s,e) == + -- FIXME: this is a short-term stopgap. + macroExpand(s,e)$Foreign(Builtin) +@ + + +\section{License} +<<license>>= +--Copyright (C) 2007-2010, Gabriel Dos Reis. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical Algorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ + + +<<*>>= +<<license>> + +<<domain IRFORM InternalRepresentationForm>> +<<package COMPILER CompilerPackage>> + +@ diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet index bca2f627..30de16df 100644 --- a/src/algebra/syntax.spad.pamphlet +++ b/src/algebra/syntax.spad.pamphlet @@ -298,23 +298,6 @@ ElaboratedExpression(): Public == Private where "failed" @ -\section{Compiler Intermediate Form} -<<domain IRFORM InternalRepresentationForm>>= -)abbrev domain IRFORM InternalRepresentationForm -++ Author: Gabriel Dos Reis -++ Date Created: March 12, 2010 -++ Date Last Modified: March 12, 2010 -++ Description: -++ This domain provides representations for the intermediate -++ form data structure used by the Spad elaborator. -InternalRepresentationForm(): Public == Private where - Public == CoercibleTo OutputForm - Private == add - coerce(x: %): OutputForm == - (x : Syntax)::OutputForm -@ - - \section{SpadAbstractSyntaxCategory} <<category ASTCAT AbstractSyntaxCategory>>= @@ -1920,7 +1903,6 @@ SpadAst(): SpadAstExports() == add <<domain QQUTAST QuasiquoteAst>> <<domain DEFAST DefinitionAst>> <<domain MACROAST MacroAst>> -<<domain IRFORM InternalRepresentationForm>> @ diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 3f31c23d..e000765e 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2263487 . 3477417265) +(2263909 . 3477420786) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4422 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4418 . T) (-4423 . T) (-4417 . T)) +((-4424 . T) (-4422 . T) (-4421 . T) ((-4429 "*") . T) (-4420 . T) (-4425 . T) (-4419 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3496) +(-32 R -3498) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) +((|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4425))) +((|HasAttribute| |#1| (QUOTE -4427))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3496 UP UPUP -3014) +(-40 -3498 UP UPUP -3016) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4418 |has| (-410 |#2|) (-365)) (-4423 |has| (-410 |#2|) (-365)) (-4417 |has| (-410 |#2|) (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-352))) (-3960 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-352))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) -(-41 R -3496) +((-4420 |has| (-411 |#2|) (-366)) (-4425 |has| (-411 |#2|) (-366)) (-4419 |has| (-411 |#2|) (-366)) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-411 |#2|) (QUOTE (-145))) (|HasCategory| (-411 |#2|) (QUOTE (-147))) (|HasCategory| (-411 |#2|) (QUOTE (-353))) (-3962 (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (QUOTE (-353)))) (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (QUOTE (-371))) (-3962 (-12 (|HasCategory| (-411 |#2|) (QUOTE (-234))) (|HasCategory| (-411 |#2|) (QUOTE (-366)))) (|HasCategory| (-411 |#2|) (QUOTE (-353)))) (-3962 (-12 (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| (-411 |#2|) (QUOTE (-353))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -904) (QUOTE (-1181)))))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -642) (QUOTE (-550)))) (-3962 (|HasCategory| (-411 |#2|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-411 |#2|) (QUOTE (-366)))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| (-411 |#2|) (QUOTE (-234))) (|HasCategory| (-411 |#2|) (QUOTE (-366))))) +(-41 R -3498) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -424) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-308)))) +((|HasCategory| |#1| (QUOTE (-309)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4422 |has| |#1| (-560)) (-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) +((-4424 |has| |#1| (-561)) (-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4425 . T) (-4426 . T)) -((-3960 (-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852)))) (-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))))) +((-4427 . T) (-4428 . T)) +((-3962 (-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-853)))) (-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-853))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-853))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| $ (QUOTE (-1053))) (|HasCategory| $ (LIST (QUOTE -1042) (QUOTE (-550))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4422 . T)) +((-4424 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3496) +(-54 |Base| R -3498) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,77 +158,77 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-61 -3973) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-61 -3975) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-62 -3973) +(-62 -3975) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3973) +(-63 -3975) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -3973) +(-64 -3975) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3973) +(-65 -3975) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3973) +(-66 -3975) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3973) +(-67 -3975) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3973) +(-68 -3975) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3973) +(-69 -3975) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3973) +(-70 -3975) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3973) +(-71 -3975) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3973) +(-72 -3975) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3973) +(-73 -3975) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3973) +(-74 -3975) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3973) +(-75 -3975) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -240,62 +240,62 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3973) +(-78 -3975) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3973) +(-79 -3975) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3973) +(-80 -3975) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3973) +(-81 -3975) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3973) +(-82 -3975) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3973) +(-83 -3975) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3973) +(-84 -3975) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3973) +(-85 -3975) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3973) +(-86 -3975) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3973) +(-87 -3975) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -3973) +(-88 -3975) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -3973) +(-89 -3975) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-365)))) +((|HasCategory| |#1| (QUOTE (-366)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4425 . T)) +((-4427 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4425 . T) ((-4427 "*") . T) (-4426 . T) (-4422 . T) (-4420 . T) (-4419 . T) (-4418 . T) (-4423 . T) (-4417 . T) (-4416 . T) (-4415 . T) (-4414 . T) (-4413 . T) (-4421 . T) (-4424 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4412 . T)) +((-4427 . T) ((-4429 "*") . T) (-4428 . T) (-4424 . T) (-4422 . T) (-4421 . T) (-4420 . T) (-4425 . T) (-4419 . T) (-4418 . T) (-4417 . T) (-4416 . T) (-4415 . T) (-4423 . T) (-4426 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4414 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4422 . T)) +((-4424 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4427 "*")))) +((|HasAttribute| |#1| (QUOTE (-4429 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4425 . T)) +((-4427 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4426 . T)) +((-4428 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-550) (QUOTE (-914))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-147))) (|HasCategory| (-550) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-550) (QUOTE (-1024))) (|HasCategory| (-550) (QUOTE (-823))) (-3962 (|HasCategory| (-550) (QUOTE (-823))) (|HasCategory| (-550) (QUOTE (-853)))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1155))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-234))) (|HasCategory| (-550) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-550) (LIST (QUOTE -518) (QUOTE (-1181)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -311) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -288) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-309))) (|HasCategory| (-550) (QUOTE (-549))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-550) (LIST (QUOTE -642) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (|HasCategory| (-550) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-865))))) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1105))) (|HasCategory| (-112) (LIST (QUOTE -311) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-112) (QUOTE (-1105))) (|HasCategory| (-112) (LIST (QUOTE -616) (QUOTE (-866))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -388,22 +388,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-115 -3496 UP) +(-115 -3498 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-913))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1023))) (|HasCategory| (-116 |#1|) (QUOTE (-822))) (-3960 (|HasCategory| (-116 |#1|) (QUOTE (-822))) (|HasCategory| (-116 |#1|) (QUOTE (-852)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-1154))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-852))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-913)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-914))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1024))) (|HasCategory| (-116 |#1|) (QUOTE (-823))) (-3962 (|HasCategory| (-116 |#1|) (QUOTE (-823))) (|HasCategory| (-116 |#1|) (QUOTE (-853)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (QUOTE (-1155))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -311) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-309))) (|HasCategory| (-116 |#1|) (QUOTE (-549))) (|HasCategory| (-116 |#1|) (QUOTE (-853))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-914)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) +((|HasAttribute| |#1| (QUOTE -4428))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,24 +430,24 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (-128) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| (-128) (QUOTE (-852))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128)))))) (-3960 (-12 (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-128) (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| (-128) (QUOTE (-852))) (|HasCategory| (-128) (QUOTE (-1104)))) (|HasCategory| (-128) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128)))))) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| (-128) (QUOTE (-853))) (|HasCategory| (-128) (LIST (QUOTE -311) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1105))) (|HasCategory| (-128) (LIST (QUOTE -311) (QUOTE (-128)))))) (-3962 (-12 (|HasCategory| (-128) (QUOTE (-1105))) (|HasCategory| (-128) (LIST (QUOTE -311) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| (-128) (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| (-128) (QUOTE (-853))) (|HasCategory| (-128) (QUOTE (-1105)))) (|HasCategory| (-128) (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-128) (QUOTE (-1105))) (|HasCategory| (-128) (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| (-128) (QUOTE (-1105))) (|HasCategory| (-128) (LIST (QUOTE -311) (QUOTE (-128)))))) (-130) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -466,13 +466,13 @@ NIL NIL (-134) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4427 "*") . T)) +(((-4429 "*") . T)) NIL -(-135 |minix| -3021 R) +(-135 |minix| -3023 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-136 |minix| -3021 S T$) +(-136 |minix| -3023 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -494,8 +494,8 @@ NIL NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) -((-3960 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-4427 . T) (-4417 . T) (-4428 . T)) +((-3962 (-12 (|HasCategory| (-144) (QUOTE (-371))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-371))) (|HasCategory| (-144) (QUOTE (-853))) (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -510,7 +510,7 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4422 . T)) +((-4424 . T)) NIL (-146 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -518,9 +518,9 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4422 . T)) +((-4424 . T)) NIL -(-148 -3496 UP UPUP) +(-148 -3498 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -531,14 +531,14 @@ NIL (-150 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasAttribute| |#1| (QUOTE -4425))) +((|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasAttribute| |#1| (QUOTE -4427))) (-151 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-152 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4420 . T) (-4419 . T) (-4422 . T)) +((-4422 . T) (-4421 . T) (-4424 . T)) NIL (-153) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -3496) +(-158 R -3498) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -591,4538 +591,4542 @@ NIL (-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1205))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasAttribute| |#2| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-560)))) +((|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| |#2| (QUOTE (-549))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1206))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-366))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasAttribute| |#2| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-561)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4418 -3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4421 |has| |#1| (-6 -4421)) (-4424 |has| |#1| (-6 -4424)) (-1463 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 -3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4423 |has| |#1| (-6 -4423)) (-4426 |has| |#1| (-6 -4426)) (-1464 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-168 R) +(-168) +((|constructor| (NIL "This package implements a Spad compiler.")) (|macroExpand| (((|Syntax|) (|Syntax|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) +NIL +NIL +(-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4418 -3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4421 |has| |#1| (-6 -4421)) (-4424 |has| |#1| (-6 -4424)) (-1463 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-352))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-1205)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-1023))))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-913))))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1205)))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1205)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasAttribute| |#1| (QUOTE -4424)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-352))))) -(-169 R S) +((-4420 -3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4423 |has| |#1| (-6 -4423)) (-4426 |has| |#1| (-6 -4426)) (-1464 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-371))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1206)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1024))))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-366)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-914))))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-366)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasAttribute| |#1| (QUOTE -4426)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-366)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-353))))) +(-170 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-170 R S CS) +(-171 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-171) +(-172) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-172) +(-173) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-173) +(-174) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-174 R) +(-175 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4427 "*") . T) (-4418 . T) (-4423 . T) (-4417 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") . T) (-4420 . T) (-4425 . T) (-4419 . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-175) +(-176) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-176 R) +(-177 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-177 R |PolR| E) +(-178 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-178 R S CS) +(-179 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-949 |#2|) (LIST (QUOTE -889) (|devaluate| |#1|)))) -(-179 R) +((|HasCategory| (-950 |#2|) (LIST (QUOTE -890) (|devaluate| |#1|)))) +(-180 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-180) +(-181) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-181 R UP) +(-182 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-182 S ST) +(-183 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-183) +(-184) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-184 C) +(-185 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-185 S) +(-186 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-186) +(-187) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-187) +(-188) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-188 R -3496) +(-189 R -3498) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-189 R) +(-190 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-190) +(-191) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-191) +(-192) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-192) +(-193) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-193) +(-194) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-194) +(-195) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-197) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-197) +(-198) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-198) +(-199) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-199) +(-200) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-200) +(-201) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-201) +(-202) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-202) +(-203) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-203) +(-204) NIL NIL NIL -(-204) +(-205) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-205) +(-206) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) NIL NIL -(-206) +(-207) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-207) +(-208) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-208) +(-209) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-209) +(-210) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-210) +(-211) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) NIL NIL -(-211) +(-212) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-212) +(-213) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-213 N T$) +(-214 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-214 S) +(-215 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -3496 UP UPUP R) +(-216 -3498 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -3496 FP) +(-217 -3498 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-217) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) (-218) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-550) (QUOTE (-914))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-147))) (|HasCategory| (-550) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-550) (QUOTE (-1024))) (|HasCategory| (-550) (QUOTE (-823))) (-3962 (|HasCategory| (-550) (QUOTE (-823))) (|HasCategory| (-550) (QUOTE (-853)))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1155))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-234))) (|HasCategory| (-550) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-550) (LIST (QUOTE -518) (QUOTE (-1181)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -311) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -288) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-309))) (|HasCategory| (-550) (QUOTE (-549))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-550) (LIST (QUOTE -642) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (|HasCategory| (-550) (QUOTE (-145))))) +(-219) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -3496) +(-220 R -3498) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-220 R) +(-221 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-221 R1 R2) +(-222 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-222 S) +(-223 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-223 |CoefRing| |listIndVar|) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-224 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-224 R -3496) +(-225 R -3498) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-225) +(-226) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4203 . T) (-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-226) +(-227) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-227 R) +(-228 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-228 A S) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4429 "*"))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-229 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-229 S) +(-230 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4426 . T)) +((-4428 . T)) NIL -(-230 S R) +(-231 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233)))) -(-231 R) +((|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-234)))) +(-232 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-232 S) +(-233 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-233) +(-234) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4422 . T)) +((-4424 . T)) NIL -(-234 A S) +(-235 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4425))) -(-235 S) +((|HasAttribute| |#1| (QUOTE -4427))) +(-236 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4426 . T)) +((-4428 . T)) NIL -(-236) +(-237) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -3021 R) +(-238 S -3023 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850))) (|HasAttribute| |#3| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-1104)))) -(-238 -3021 R) +((|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (QUOTE (-851))) (|HasAttribute| |#3| (QUOTE -4424)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (QUOTE (-1105)))) +(-239 -3023 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) +((-4421 |has| |#2| (-1053)) (-4422 |has| |#2| (-1053)) (-4424 |has| |#2| (-6 -4424)) ((-4429 "*") |has| |#2| (-173)) (-4427 . T)) NIL -(-239 -3021 R) +(-240 -3023 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-795))) (-3960 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-728))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-233))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) -(-240 -3021 A B) +((-4421 |has| |#2| (-1053)) (-4422 |has| |#2| (-1053)) (-4424 |has| |#2| (-6 -4424)) ((-4429 "*") |has| |#2| (-173)) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (QUOTE (-366))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053)))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-796))) (-3962 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-729))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1053)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (QUOTE (-234))) (-3962 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-853))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))))) +(-241 -3023 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-241) +(-242) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-242 S) +(-243 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-243) +(-244) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4418 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-244 S) +(-245 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-245 S) +(-246 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-246 M) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-247 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-247 |vl| R) +(-248 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-248) +(((-4429 "*") |has| |#2| (-173)) (-4420 |has| |#2| (-561)) (-4425 |has| |#2| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-914))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-914)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-366))) (|HasAttribute| |#2| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-456))) (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-249) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-249) +(-250) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-250) +(-251) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|elt| (((|Syntax|) $ (|NonNegativeInteger|)) "\\spad{x.i} yields the entry at slot \\spad{i} in \\spad{x}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-251 |n| R M S) +(-252 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4422 -3960 (-3256 (|has| |#4| (-1052)) (|has| |#4| (-233))) (-3256 (|has| |#4| (-1052)) (|has| |#4| (-903 (-1180)))) (|has| |#4| (-6 -4422)) (-3256 (|has| |#4| (-1052)) (|has| |#4| (-641 (-549))))) (-4419 |has| |#4| (-1052)) (-4420 |has| |#4| (-1052)) ((-4427 "*") |has| |#4| (-172)) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-365))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1052)))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-795))) (-3960 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (QUOTE (-850)))) (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (QUOTE (-728))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1052)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052)))) (|HasCategory| |#4| (QUOTE (-728)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1052)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasAttribute| |#4| (QUOTE -4422)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) -(-252 |n| R S) +((-4424 -3962 (-3258 (|has| |#4| (-1053)) (|has| |#4| (-234))) (-3258 (|has| |#4| (-1053)) (|has| |#4| (-904 (-1181)))) (|has| |#4| (-6 -4424)) (-3258 (|has| |#4| (-1053)) (|has| |#4| (-642 (-550))))) (-4421 |has| |#4| (-1053)) (-4422 |has| |#4| (-1053)) ((-4429 "*") |has| |#4| (-173)) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-366))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-796))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-851))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-366))) (-3962 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-366))) (|HasCategory| |#4| (QUOTE (-1053)))) (-3962 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-366)))) (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-796))) (-3962 (|HasCategory| |#4| (QUOTE (-796))) (|HasCategory| |#4| (QUOTE (-851)))) (|HasCategory| |#4| (QUOTE (-851))) (|HasCategory| |#4| (QUOTE (-729))) (-3962 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1053)))) (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-366))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-796))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-851))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (-3962 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-366))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-796))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-851))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-366))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-796))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-851))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-853))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1053)))) (|HasCategory| |#4| (QUOTE (-729)))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (-3962 (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#4| (QUOTE (-1053)))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#4| (QUOTE (-1053))) (|HasCategory| |#4| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasAttribute| |#4| (QUOTE -4424)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1053))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|))))) +(-253 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4422 -3960 (-3256 (|has| |#3| (-1052)) (|has| |#3| (-233))) (-3256 (|has| |#3| (-1052)) (|has| |#3| (-903 (-1180)))) (|has| |#3| (-6 -4422)) (-3256 (|has| |#3| (-1052)) (|has| |#3| (-641 (-549))))) (-4419 |has| |#3| (-1052)) (-4420 |has| |#3| (-1052)) ((-4427 "*") |has| |#3| (-172)) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-365))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-795))) (-3960 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850)))) (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (QUOTE (-728))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (QUOTE (-728)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasAttribute| |#3| (QUOTE -4422)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) -(-253 A R S V E) +((-4424 -3962 (-3258 (|has| |#3| (-1053)) (|has| |#3| (-234))) (-3258 (|has| |#3| (-1053)) (|has| |#3| (-904 (-1181)))) (|has| |#3| (-6 -4424)) (-3258 (|has| |#3| (-1053)) (|has| |#3| (-642 (-550))))) (-4421 |has| |#3| (-1053)) (-4422 |has| |#3| (-1053)) ((-4429 "*") |has| |#3| (-173)) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-366))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-1053)))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-366)))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-796))) (-3962 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (QUOTE (-851)))) (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (QUOTE (-729))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1053)))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-853))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053)))) (|HasCategory| |#3| (QUOTE (-729)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1053)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasAttribute| |#3| (QUOTE -4424)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))))) +(-254 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-233)))) -(-254 R S V E) +((|HasCategory| |#2| (QUOTE (-234)))) +(-255 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-255 S) +(-256 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL -(-256 |Ex|) +(-257 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-257) +(-258) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-258 R |Ex|) +(-259 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-259) +(-260) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-260 R) +(-261 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-261) +(-262) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-262) +(-263) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-263) +(-264) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-264 S) +(-265 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-265 R S V) +(-266 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#3| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#3| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-266 A S) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#3| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-267 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-267 S) +(-268 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-268) +(-269) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-269) +(-270) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-270) +(-271) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-271) +(-272) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-272) +(-273) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-273) +(-274) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-274) +(-275) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-275) +(-276) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-276) +(-277) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-277 R -3496) +(-278 R -3498) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-278 R -3496) +(-279 R -3498) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-279 |Coef| UTS ULS) +(-280 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-365)))) -(-280 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-366)))) +(-281 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-365)))) -(-281) +((|HasCategory| |#1| (QUOTE (-366)))) +(-282) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-282 A S) +(-283 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104)))) -(-283 S) +((|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105)))) +(-284 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4426 . T)) +((-4428 . T)) NIL -(-284 S) +(-285 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-285) +(-286) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-286 |Coef| UTS) +(-287 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-287 S |Index|) +(-288 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-288 S |Dom| |Im|) +(-289 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) -(-289 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4428))) +(-290 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-290 S R |Mod| -2215 -3941 |exactQuo|) +(-291 S R |Mod| -2217 -3943 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-291) +(-292) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4418 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-292) +(-293) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-293 R) +(-294 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-294 S) +(-295 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4422 -3960 (|has| |#1| (-1052)) (|has| |#1| (-476))) (-4419 |has| |#1| (-1052)) (-4420 |has| |#1| (-1052))) -((|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-728)))) (|HasCategory| |#1| (QUOTE (-476))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-299))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-728)))) -(-295 S R) +((-4424 -3962 (|has| |#1| (-1053)) (|has| |#1| (-477))) (-4421 |has| |#1| (-1053)) (-4422 |has| |#1| (-1053))) +((|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-1053)))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1053)))) (-3962 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-729)))) (|HasCategory| |#1| (QUOTE (-477))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-300))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-477)))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-729)))) (-3962 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-1053)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-729)))) +(-296 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-296 |Key| |Entry|) +(-297 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-297) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-298) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-298 S) +(-299 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1052)))) -(-299) +((|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1053)))) +(-300) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-300 -3496 S) +(-301 -3498 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-301 E -3496) +(-302 E -3498) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-302) +(-303) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-303 A B) +(-304 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-304) +(-305) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-305 R1) +(-306 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-306 R1 R2) +(-307 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-307 S) +(-308 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-308) +(-309) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-309 S R) +(-310 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-310 R) +(-311 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-311 -3496) +(-312 -3498) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-312) +(-313) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-313) +(-314) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-314 R FE |var| |cen|) +(-315 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-913))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-1023))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (-3960 (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-852)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-1154))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-913)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-145))))) -(-315 R) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-914))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-1024))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (-3962 (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-853)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-1155))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -311) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-309))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-549))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-853))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-914)))) (|HasCategory| (-1257 |#1| |#2| |#3| |#4|) (QUOTE (-145))))) +(-316 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4422 -3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (-12 (|has| |#1| (-560)) (-3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (|has| |#1| (-1052)) (|has| |#1| (-476)))) (|has| |#1| (-1052)) (|has| |#1| (-476))) (-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) ((-4427 "*") |has| |#1| (-560)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-560)) (-4417 |has| |#1| (-560))) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-21))) (-3960 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1115)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1115)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) -(-316 R S) +((-4424 -3962 (-3258 (|has| |#1| (-1053)) (|has| |#1| (-642 (-550)))) (-12 (|has| |#1| (-561)) (-3962 (-3258 (|has| |#1| (-1053)) (|has| |#1| (-642 (-550)))) (|has| |#1| (-1053)) (|has| |#1| (-477)))) (|has| |#1| (-1053)) (|has| |#1| (-477))) (-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) ((-4429 "*") |has| |#1| (-561)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-561)) (-4419 |has| |#1| (-561))) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-561))) (-3962 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1053)))) (|HasCategory| |#1| (QUOTE (-21))) (-3962 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1116)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1116)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3962 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| $ (QUOTE (-1053))) (|HasCategory| $ (LIST (QUOTE -1042) (QUOTE (-550))))) +(-317 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-317 R FE) +(-318 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-318 R -3496) +(-319 R -3498) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-319) +(-320) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-320 FE |var| |cen|) +(-321 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) -(-321 M) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-411 (-550)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|))))))) +(-322 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-322 E OV R P) +(-323 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-323 S) +(-324 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-794)))) -(-324 S E) +((-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-795)))) +(-325 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-325 S) +(-326 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-773) (QUOTE (-794)))) -(-326 S R E) +((|HasCategory| (-774) (QUOTE (-795)))) +(-327 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172)))) -(-327 R E) +((|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173)))) +(-328 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-328 S) +(-329 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-329 S -3496) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-330 S -3498) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-370)))) -(-330 -3496) +((|HasCategory| |#2| (QUOTE (-371)))) +(-331 -3498) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-331) +(-332) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-332 E) +(-333 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-333) +(-334) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-334) +(-335) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-335 -3496 UP UPUP R) +(-336 -3498 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-336 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-337 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-337 S -3496 UP UPUP R) +(-338 S -3498 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-338 -3496 UP UPUP R) +(-339 -3498 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-339 S R) +(-340 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-340 R) +((|HasCategory| |#2| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-341 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-341 |basicSymbols| |subscriptedSymbols| R) +(-342 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-380)))) (|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) -(-342 |p| |n|) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1053))) (|HasCategory| $ (LIST (QUOTE -1042) (QUOTE (-550))))) +(-343 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| (-909 |#1|) (QUOTE (-145))) (|HasCategory| (-909 |#1|) (QUOTE (-370)))) (|HasCategory| (-909 |#1|) (QUOTE (-147))) (|HasCategory| (-909 |#1|) (QUOTE (-370))) (|HasCategory| (-909 |#1|) (QUOTE (-145)))) -(-343 S -3496 UP UPUP) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-371)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-371))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +(-344 S -3498 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365)))) -(-344 -3496 UP UPUP) +((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-366)))) +(-345 -3498 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4418 |has| (-410 |#2|) (-365)) (-4423 |has| (-410 |#2|) (-365)) (-4417 |has| (-410 |#2|) (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 |has| (-411 |#2|) (-366)) (-4425 |has| (-411 |#2|) (-366)) (-4419 |has| (-411 |#2|) (-366)) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-345 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-346 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-346 |p| |extdeg|) +(-347 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| (-909 |#1|) (QUOTE (-145))) (|HasCategory| (-909 |#1|) (QUOTE (-370)))) (|HasCategory| (-909 |#1|) (QUOTE (-147))) (|HasCategory| (-909 |#1|) (QUOTE (-370))) (|HasCategory| (-909 |#1|) (QUOTE (-145)))) -(-347 GF |defpol|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-371)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-371))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +(-348 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-348 GF |extdeg|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-145)))) +(-349 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-349 GF) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-145)))) +(-350 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-350 F1 GF F2) +(-351 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-351 S) +(-352 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-352) +(-353) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-353 R UP -3496) +(-354 R UP -3498) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-354 |p| |extdeg|) +(-355 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| (-909 |#1|) (QUOTE (-145))) (|HasCategory| (-909 |#1|) (QUOTE (-370)))) (|HasCategory| (-909 |#1|) (QUOTE (-147))) (|HasCategory| (-909 |#1|) (QUOTE (-370))) (|HasCategory| (-909 |#1|) (QUOTE (-145)))) -(-355 GF |uni|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-371)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-371))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +(-356 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-356 GF |extdeg|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-145)))) +(-357 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-357 GF |defpol|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-145)))) +(-358 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-358 GF) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-145)))) +(-359 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-359 -3496 GF) +(-360 -3498 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-360 -3496 FP FPP) +(-361 -3498 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-361 GF |n|) +(-362 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-362 R |ls|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-145)))) +(-363 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-363 S) +(-364 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4422 . T)) +((-4424 . T)) NIL -(-364 S) +(-365 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-365) +(-366) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-366 S) +(-367 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-367 |Name| S) +(-368 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-368 S R) +(-369 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-560)))) -(-369 R) +((|HasCategory| |#2| (QUOTE (-561)))) +(-370 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4422 |has| |#1| (-560)) (-4420 . T) (-4419 . T)) +((-4424 |has| |#1| (-561)) (-4422 . T) (-4421 . T)) NIL -(-370) +(-371) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-371 S R UP) +(-372 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365)))) -(-372 R UP) +((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-366)))) +(-373 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-373 A S) +(-374 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104)))) -(-374 S) +((|HasAttribute| |#1| (QUOTE -4428)) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105)))) +(-375 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4425 . T)) +((-4427 . T)) NIL -(-375 S A R B) +(-376 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-376 |VarSet| R) +(-377 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4422 . T) (-4421 . T)) NIL -(-377 S V) +(-378 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-378 S R) +(-379 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) -(-379 R) +((|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) +(-380 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4422 . T)) +((-4424 . T)) NIL -(-380) +(-381) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4408 . T) (-4416 . T) (-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4410 . T) (-4418 . T) (-4203 . T) (-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-381 |Par|) +(-382 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-382 |Par|) +(-383 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-383 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172)))) (-384 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-173)))) +(-385 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172)))) -(-385) +((-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-173)))) +(-386) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-386 R |Basis|) +(-387 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL -(-387) +(-388) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-388 S) +(-389 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-389 S) +(-390 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-852)))) -(-390) +((|HasCategory| |#1| (QUOTE (-853)))) +(-391) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-391) +(-392) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-392) +(-393) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-393 |n| |class| R) +(-394 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL -(-394) +(-395) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-395 -3496 UP UPUP R) +(-396 -3498 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-396) +(-397) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-397 S) +(-398 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-398) +(-399) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-399) +(-400) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-400) +(-401) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-401 -3973 |returnType| -1507 |symbols|) +(-402 -3975 |returnType| -1509 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-402 -3496 UP) +(-403 -3498 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-403 R) +(-404 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-404 S) +(-405 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-405) +(-406) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-406 S) +(-407 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4416))) -(-407) +((|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4418))) +(-408) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4203 . T) (-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-408 R) +(-409 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1224))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455)))) -(-409 R S) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -311) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1225))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-1225)))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-456)))) +(-410 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-410 S) +(-411 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4412 -12 (|has| |#1| (-6 -4423)) (|has| |#1| (-455)) (|has| |#1| (-6 -4412))) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-822))) (-3960 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-852)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-411 A B) +((-4414 -12 (|has| |#1| (-6 -4425)) (|has| |#1| (-456)) (|has| |#1| (-6 -4414))) (-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-823))) (-3962 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-853)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1155))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-549))) (-12 (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-412 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-412 S R UP) +(-413 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-413 R UP) +(-414 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-414 A S) +(-415 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) -(-415 S) +((|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) +(-416 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-416 R -3496 UP A) +(-417 R -3498 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-417 R1 F1 U1 A1 R2 F2 U2 A2) +(-418 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-418 R -3496 UP A |ibasis|) +(-419 R -3498 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1041) (|devaluate| |#2|)))) -(-419 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1042) (|devaluate| |#2|)))) +(-420 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-420 S R) +(-421 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-365)))) -(-421 R) +((|HasCategory| |#2| (QUOTE (-366)))) +(-422 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4422 |has| |#1| (-560)) (-4420 . T) (-4419 . T)) +((-4424 |has| |#1| (-561)) (-4422 . T) (-4421 . T)) NIL -(-422 R) +(-423 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-423 S R) +(-424 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) -(-424 R) +((|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) +(-425 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4422 -3960 (|has| |#1| (-1052)) (|has| |#1| (-476))) (-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) ((-4427 "*") |has| |#1| (-560)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-560)) (-4417 |has| |#1| (-560))) +((-4424 -3962 (|has| |#1| (-1053)) (|has| |#1| (-477))) (-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) ((-4429 "*") |has| |#1| (-561)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-561)) (-4419 |has| |#1| (-561))) NIL -(-425 R A S B) +(-426 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-426 R FE |x| |cen|) +(-427 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-427 R FE |Expon| UPS TRAN |x|) +(-428 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-428 A S) +(-429 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-370)))) -(-429 S) +((|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-371)))) +(-430 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) +((-4427 . T) (-4417 . T) (-4428 . T)) NIL -(-430 S A R B) +(-431 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-431 R -3496) +(-432 R -3498) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-432 R E) +(-433 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4412 -12 (|has| |#1| (-6 -4412)) (|has| |#2| (-6 -4412))) (-4419 . T) (-4420 . T) (-4422 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#2| (QUOTE -4412)))) -(-433 R -3496) +((-4414 -12 (|has| |#1| (-6 -4414)) (|has| |#2| (-6 -4414))) (-4421 . T) (-4422 . T) (-4424 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#2| (QUOTE -4414)))) +(-434 R -3498) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-434 R -3496) +(-435 R -3498) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-435 R -3496) +(-436 R -3498) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-436 R -3496) +(-437 R -3498) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-437) +(-438) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-438 R -3496 UP) +(-439 R -3498 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-48))))) -(-439) +((|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-48))))) +(-440) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-440) +(-441) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-441 |f|) +(-442 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-442) +(-443) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-443) +(-444) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-444) +(-445) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-445 UP) +(-446 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-446 R UP -3496) +(-447 R UP -3498) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-447 R UP) +(-448 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-448 R) +(-449 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-407)))) -(-449) +((|HasCategory| |#1| (QUOTE (-408)))) +(-450) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-450 |Dom| |Expon| |VarSet| |Dpol|) +(-451 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-365)))) -(-451 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-366)))) +(-452 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-452 |Dom| |Expon| |VarSet| |Dpol|) +(-453 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-453 |Dom| |Expon| |VarSet| |Dpol|) +(-454 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-454 S) +(-455 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-455) +(-456) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-456 R |n| |ls| |gamma|) +(-457 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4422 |has| (-410 (-949 |#1|)) (-560)) (-4420 . T) (-4419 . T)) -((|HasCategory| (-410 (-949 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| (-410 (-949 |#1|)) (QUOTE (-560)))) -(-457 |vl| R E) +((-4424 |has| (-411 (-950 |#1|)) (-561)) (-4422 . T) (-4421 . T)) +((|HasCategory| (-411 (-950 |#1|)) (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-411 (-950 |#1|)) (QUOTE (-561)))) +(-458 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-458 R BP) +(((-4429 "*") |has| |#2| (-173)) (-4420 |has| |#2| (-561)) (-4425 |has| |#2| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-914))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-914)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-366))) (|HasAttribute| |#2| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-456))) (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-459 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-459 OV E S R P) +(-460 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-460 E OV R P) +(-461 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-461 R) +(-462 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-462 R FE) +(-463 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-463 RP TP) +(-464 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-464 |vl| R IS E |ff| P) +(-465 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL -(-465 E V R P Q) +(-466 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-466 R E |VarSet| P) +(-467 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) -(-467 S R E) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-866))))) +(-468 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-468 R E) +(-469 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-469) +(-470) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-470) +(-471) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-471) +(-472) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-472 S R E) +(-473 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-473 R E) +(-474 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-474 |lv| -3496 R) +(-475 |lv| -3498 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-475 S) +(-476 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-476) +(-477) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-477 |Coef| |var| |cen|) +(-478 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) -(-478 |Key| |Entry| |Tbl| |dent|) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-411 (-550)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|))))))) +(-479 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-852))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) -(-479 R E V P) +((-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-853))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) +(-480 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) -(-480) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-866))))) +(-481) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-481) +(-482) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-482 |Key| |Entry| |hashfn|) +(-483 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-483) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-484) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-484 |vl| R) +(-485 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-485 -3021 S) +(((-4429 "*") |has| |#2| (-173)) (-4420 |has| |#2| (-561)) (-4425 |has| |#2| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-914))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-914)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-366))) (|HasAttribute| |#2| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-456))) (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-486 -3023 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-795))) (-3960 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-728))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-233))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) -(-486) +((-4421 |has| |#2| (-1053)) (-4422 |has| |#2| (-1053)) (-4424 |has| |#2| (-6 -4424)) ((-4429 "*") |has| |#2| (-173)) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (QUOTE (-366))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053)))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-796))) (-3962 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-729))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1053)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (QUOTE (-234))) (-3962 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-853))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))))) +(-487) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-487 S) +(-488 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-488 -3496 UP UPUP R) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-489 -3498 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-489 BP) +(-490 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-490) +(-491) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) -(-491 A S) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-550) (QUOTE (-914))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-147))) (|HasCategory| (-550) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-550) (QUOTE (-1024))) (|HasCategory| (-550) (QUOTE (-823))) (-3962 (|HasCategory| (-550) (QUOTE (-823))) (|HasCategory| (-550) (QUOTE (-853)))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1155))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-234))) (|HasCategory| (-550) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-550) (LIST (QUOTE -518) (QUOTE (-1181)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -311) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -288) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-309))) (|HasCategory| (-550) (QUOTE (-549))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-550) (LIST (QUOTE -642) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (|HasCategory| (-550) (QUOTE (-145))))) +(-492 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4425)) (|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) -(-492 S) +((|HasAttribute| |#1| (QUOTE -4427)) (|HasAttribute| |#1| (QUOTE -4428)) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) +(-493 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-493 S) +(-494 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-494) +(-495) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-495 S) +(-496 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-496) +(-497) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-497 -3496 UP |AlExt| |AlPol|) +(-498 -3498 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-498) +(-499) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) -(-499 S |mn|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| $ (QUOTE (-1053))) (|HasCategory| $ (LIST (QUOTE -1042) (QUOTE (-550))))) +(-500 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-500 R |mnRow| |mnCol|) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-501 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-501 K R UP) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-502 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-502 R UP -3496) +(-503 R UP -3498) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-503 |mn|) +(-504 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-865))))) -(-504 K R UP L) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1105))) (|HasCategory| (-112) (LIST (QUOTE -311) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-112) (QUOTE (-1105))) (|HasCategory| (-112) (LIST (QUOTE -616) (QUOTE (-866))))) +(-505 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-505) +(-506) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-506 R Q A B) +(-507 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-507 -3496 |Expon| |VarSet| |DPoly|) +(-508 -3498 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-1180))))) -(-508 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-1181))))) +(-509 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-509) +(-510) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-510 A S) +(-511 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-511 A S) +(-512 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-512 A S) +(-513 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-513 A S) +(-514 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-514 A S) +(-515 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-515 A S) +(-516 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-516 S A B) +(-517 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-517 A B) +(-518 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-518 S E |un|) +(-519 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-794)))) -(-519 S |mn|) +((|HasCategory| |#2| (QUOTE (-795)))) +(-520 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-520) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-521) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-521 |p| |n|) +(-522 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145)))) -(-522 R |mnRow| |mnCol| |Row| |Col|) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (|HasCategory| (-585 |#1|) (QUOTE (-145))) (|HasCategory| (-585 |#1|) (QUOTE (-371)))) (|HasCategory| (-585 |#1|) (QUOTE (-147))) (|HasCategory| (-585 |#1|) (QUOTE (-371))) (|HasCategory| (-585 |#1|) (QUOTE (-145)))) +(-523 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-523 S |mn|) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-524 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-524 R |Row| |Col| M) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-525 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4426))) -(-525 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4428))) +(-526 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4426))) -(-526 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4428))) +(-527 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-527) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4429 "*"))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-528) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-528) +(-529) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-529 S) +(-530 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-530) +(-531) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-531 GF) +(-532 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-532) +(-533) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-533 R) +(-534 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-534 |Varset|) +(-535 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-535 K -3496 |Par|) +(-536 K -3498 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-536) +(-537) NIL NIL NIL -(-537) +(-538) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-538) +(-539) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-539 R) +(-540 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-540 |Coef| UTS) +(-541 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-541 K -3496 |Par|) +(-542 K -3498 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-542 R BP |pMod| |nextMod|) +(-543 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-543 OV E R P) +(-544 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-544 K UP |Coef| UTS) +(-545 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-545 |Coef| UTS) +(-546 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-546 R UP) +(-547 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-547 S) +(-548 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-548) +(-549) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4425 . T) (-4426 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-549) +(-550) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4407 . T) (-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4409 . T) (-4415 . T) (-4419 . T) (-4414 . T) (-4425 . T) (-4426 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-550) +(-551) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-551) +(-552) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-552) +(-553) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-553) +(-554) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-554 |Key| |Entry| |addDom|) +(-555 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-555 R -3496) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-556 R -3498) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-556 R0 -3496 UP UPUP R) +(-557 R0 -3498 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-557) +(-558) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-558 R) +(-559 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4201 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4203 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-559 S) +(-560 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-560) +(-561) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-561 R -3496) +(-562 R -3498) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-562 I) +(-563 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-563) +(-564) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-564 R -3496 L) +(-565 R -3498 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -660) (|devaluate| |#2|)))) -(-565) +((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|)))) +(-566) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-566 -3496 UP UPUP R) +(-567 -3498 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-567 -3496 UP) +(-568 -3498 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-568) +(-569) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-569 R -3496 L) +(-570 R -3498 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -660) (|devaluate| |#2|)))) -(-570 R -3496) +((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|)))) +(-571 R -3498) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1142)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-632))))) -(-571 -3496 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-633))))) +(-572 -3498 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-572 S) +(-573 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-573 -3496) +(-574 -3498) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-574 R) +(-575 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4201 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4203 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-575) +(-576) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-576 R -3496) +(-577 R -3498) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-632))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-560)))) -(-577 -3496 UP) +((-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-633))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-561)))) +(-578 -3498 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-578 R -3496) +(-579 R -3498) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-579) +(-580) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-580) +(-581) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-581) +(-582) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-582) +(-583) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-583 |p| |unBalanced?|) +(-584 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-584 |p|) +(-585 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) -(-585) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-371)))) +(-586) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-586 -3496) +(-587 -3498) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-1180))))) -(-587 E -3496) +((-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-1181))))) +(-588 E -3498) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-588 R -3496) +(-589 R -3498) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-589) -NIL +(-590) +((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator."))) NIL NIL -(-590 I) +(-591 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-591 GF) +(-592 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-592 R) +(-593 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) -(-593) +(-594) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-594 R E V P TS) +(-595 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-595) +(-596) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-596 |mn|) +(-597 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-3960 (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104)))) (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) -(-597 E V R P) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| (-144) (QUOTE (-853))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144)))))) (-3962 (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| (-144) (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| (-144) (QUOTE (-853))) (|HasCategory| (-144) (QUOTE (-1105)))) (|HasCategory| (-144) (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144)))))) +(-598 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-598 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))) (|HasCategory| (-549) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549)))))) (-599 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))) (|HasCategory| (-550) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-366))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550)))))) +(-600 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4427 "*") |has| |#1| (-560)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-560)))) -(-600 A B) +(((-4429 "*") |has| |#1| (-561)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-561)))) +(-601 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-601 A B C) +(-602 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-602 R -3496 FG) +(-603 R -3498 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-603 S) +(-604 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-604 R |mn|) +(-605 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-605 S |Index| |Entry|) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-1053)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-606 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-852))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#3| (QUOTE (-1104)))) -(-606 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4428)) (|HasCategory| |#2| (QUOTE (-853))) (|HasAttribute| |#1| (QUOTE -4427)) (|HasCategory| |#3| (QUOTE (-1105)))) +(-607 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-607) +(-608) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-608) +(-609) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-609 R A) +(-610 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4422 -3960 (-3256 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))) (-4420 . T) (-4419 . T)) -((-3960 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) -(-610 |Entry|) +((-4424 -3962 (-3258 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4422 . T) (-4421 . T)) +((-3962 (|HasCategory| |#2| (LIST (QUOTE -370) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -370) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -370) (|devaluate| |#1|)))) +(-611 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1162))) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| (-1162) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-611 S |Key| |Entry|) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| (-1163) (QUOTE (-853))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-612 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-612 |Key| |Entry|) +(-613 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4426 . T)) +((-4428 . T)) NIL -(-613 S) +(-614 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) -(-614 R S) +((|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) +(-615 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-615 S) +(-616 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-616 S) +(-617 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-617 -3496 UP) +(-618 -3498 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-618 S) +(-619 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-619) +(-620) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-620 S) +(-621 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-621 A R S) +(-622 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-850)))) -(-622 S R) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-851)))) +(-623 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-623 R) +(-624 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4422 . T)) +((-4424 . T)) NIL -(-624 R -3496) +(-625 R -3498) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-625 R UP) +(-626 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4418 . T) (-4422 . T)) -((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) -(-626 R E V P TS ST) +((-4422 . T) (-4421 . T) ((-4429 "*") . T) (-4420 . T) (-4424 . T)) +((|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) +(-627 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-627 OV E Z P) +(-628 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-628) +(-629) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-629 |VarSet| R |Order|) +(-630 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-630 R |ls|) +(-631 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-631 R -3496) +(-632 R -3498) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-632) +(-633) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-633 |lv| -3496) +(-634 |lv| -3498) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-634) +(-635) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1162))) (LIST (QUOTE |:|) (QUOTE -2254) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -310) (QUOTE (-51))))) (|HasCategory| (-1162) (QUOTE (-852))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) -(-635 R A) +((-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2256) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (QUOTE (-1105)))) (-3962 (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -311) (QUOTE (-51))))) (|HasCategory| (-1163) (QUOTE (-853))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (QUOTE (-1105)))) +(-636 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4422 -3960 (-3256 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))) (-4420 . T) (-4419 . T)) -((-3960 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) -(-636 S R) +((-4424 -3962 (-3258 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4422 . T) (-4421 . T)) +((-3962 (|HasCategory| |#2| (LIST (QUOTE -370) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -370) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -370) (|devaluate| |#1|)))) +(-637 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-365)))) -(-637 R) +((|HasCategory| |#2| (QUOTE (-366)))) +(-638 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4422 . T) (-4421 . T)) NIL -(-638 R FE) +(-639 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-639 R) +(-640 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-640 S R) +(-641 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3746 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) -(-641 R) +((-3748 (|HasCategory| |#1| (QUOTE (-366)))) (|HasCategory| |#1| (QUOTE (-366)))) +(-642 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-642 R) +(-643 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-643 S) +(-644 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-644 A B) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-645 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-645 A B) +(-646 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-646 A B C) +(-647 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-647 T$) +(-648 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-648 R) +(-649 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-649 S) +(-650 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-650 R) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-651 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-651 S E |un|) +(-652 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-652 A S) +(-653 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) -(-653 S) +((|HasAttribute| |#1| (QUOTE -4428))) +(-654 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-654 M R S) +(-655 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-793)))) -(-655 R -3496 L) +((-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-794)))) +(-656 R -3498 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-656 A -2820) +(-657 A -2822) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-657 A) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-366)))) +(-658 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-658 A M) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-366)))) +(-659 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-659 S A) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-366)))) +(-660 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-365)))) -(-660 A) +((|HasCategory| |#2| (QUOTE (-366)))) +(-661 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-661 -3496 UP) +(-662 -3498 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-662 A L) +(-663 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-663 S) +(-664 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-664) +(-665) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-665 R) +(-666 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-666 |VarSet| R) +(-667 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172)))) -(-667 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4422 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-173)))) +(-668 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-668 S) +(-669 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-669 -3496 |Row| |Col| M) +(-670 -3498 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-670 -3496) +(-671 -3498) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-671 R E OV P) +(-672 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-672 |n| R) +(-673 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4422 . T) (-4425 . T) (-4419 . T) (-4420 . T)) -((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4427 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-560))) (-3960 (|HasAttribute| |#2| (QUOTE (-4427 #1#))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-673) +((-4424 . T) (-4427 . T) (-4421 . T) (-4422 . T)) +((|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4429 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-561))) (-3962 (|HasAttribute| |#2| (QUOTE (-4429 #1#))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173)))) +(-674) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-674 |VarSet|) +(-675 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-675 A S) +(-676 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-676 S) +(-677 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-677 R) +(-678 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-678) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-679) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-679 |VarSet|) +(-680 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-680 A) +(-681 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-681 A C) +(-682 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-682 A B C) +(-683 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-683) +(-684) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-684 A) +(-685 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-685 A C) +(-686 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-686 A B C) +(-687 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-687 S R |Row| |Col|) +(-688 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-560)))) -(-688 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4429 "*"))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-561)))) +(-689 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL -(-689 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-690 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-690 R |Row| |Col| M) +(-691 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560)))) -(-691 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4425 . T) (-4426 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-561)))) (-692 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4427 . T) (-4428 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-309))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4429 "*"))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-693 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-693 T$) +(-694 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-694 S -3496 FLAF FLAS) +(-695 S -3498 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-695 R Q) +(-696 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-696) +(-697) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4418 . T) (-4423 |has| (-701) (-365)) (-4417 |has| (-701) (-365)) (-1463 . T) (-4424 |has| (-701) (-6 -4424)) (-4421 |has| (-701) (-6 -4421)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-701) (QUOTE (-147))) (|HasCategory| (-701) (QUOTE (-145))) (|HasCategory| (-701) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-701) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-701) (QUOTE (-370))) (|HasCategory| (-701) (QUOTE (-365))) (-3960 (|HasCategory| (-701) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-701) (QUOTE (-365)))) (|HasCategory| (-701) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-701) (QUOTE (-233))) (-3960 (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (QUOTE (-352)))) (|HasCategory| (-701) (QUOTE (-352))) (|HasCategory| (-701) (LIST (QUOTE -287) (QUOTE (-701)) (QUOTE (-701)))) (|HasCategory| (-701) (LIST (QUOTE -310) (QUOTE (-701)))) (|HasCategory| (-701) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-701)))) (|HasCategory| (-701) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-701) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-701) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-701) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (-3960 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (QUOTE (-352)))) (|HasCategory| (-701) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-701) (QUOTE (-1023))) (|HasCategory| (-701) (QUOTE (-1205))) (-12 (|HasCategory| (-701) (QUOTE (-1005))) (|HasCategory| (-701) (QUOTE (-1205)))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (-12 (|HasCategory| (-701) (QUOTE (-352))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-365)))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (-12 (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (QUOTE (-913)))) (-12 (|HasCategory| (-701) (QUOTE (-352))) (|HasCategory| (-701) (QUOTE (-913))))) (|HasCategory| (-701) (QUOTE (-548))) (-12 (|HasCategory| (-701) (QUOTE (-1063))) (|HasCategory| (-701) (QUOTE (-1205)))) (|HasCategory| (-701) (QUOTE (-1063))) (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-365)))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-560)))) (-12 (|HasCategory| (-701) (QUOTE (-233))) (|HasCategory| (-701) (QUOTE (-365)))) (-12 (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| (-701) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-701) (QUOTE (-560))) (|HasAttribute| (-701) (QUOTE -4424)) (|HasAttribute| (-701) (QUOTE -4421)) (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-145)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-352))))) -(-697 S) +((-4420 . T) (-4425 |has| (-702) (-366)) (-4419 |has| (-702) (-366)) (-1464 . T) (-4426 |has| (-702) (-6 -4426)) (-4423 |has| (-702) (-6 -4423)) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-702) (QUOTE (-147))) (|HasCategory| (-702) (QUOTE (-145))) (|HasCategory| (-702) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-702) (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| (-702) (QUOTE (-371))) (|HasCategory| (-702) (QUOTE (-366))) (-3962 (|HasCategory| (-702) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-702) (QUOTE (-366)))) (|HasCategory| (-702) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-702) (QUOTE (-234))) (-3962 (|HasCategory| (-702) (QUOTE (-366))) (|HasCategory| (-702) (QUOTE (-353)))) (|HasCategory| (-702) (QUOTE (-353))) (|HasCategory| (-702) (LIST (QUOTE -288) (QUOTE (-702)) (QUOTE (-702)))) (|HasCategory| (-702) (LIST (QUOTE -311) (QUOTE (-702)))) (|HasCategory| (-702) (LIST (QUOTE -518) (QUOTE (-1181)) (QUOTE (-702)))) (|HasCategory| (-702) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-702) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-702) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-702) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (-3962 (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-366))) (|HasCategory| (-702) (QUOTE (-353)))) (|HasCategory| (-702) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-702) (QUOTE (-1024))) (|HasCategory| (-702) (QUOTE (-1206))) (-12 (|HasCategory| (-702) (QUOTE (-1006))) (|HasCategory| (-702) (QUOTE (-1206)))) (-3962 (-12 (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (-12 (|HasCategory| (-702) (QUOTE (-353))) (|HasCategory| (-702) (QUOTE (-914)))) (|HasCategory| (-702) (QUOTE (-366)))) (-3962 (-12 (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (-12 (|HasCategory| (-702) (QUOTE (-366))) (|HasCategory| (-702) (QUOTE (-914)))) (-12 (|HasCategory| (-702) (QUOTE (-353))) (|HasCategory| (-702) (QUOTE (-914))))) (|HasCategory| (-702) (QUOTE (-549))) (-12 (|HasCategory| (-702) (QUOTE (-1064))) (|HasCategory| (-702) (QUOTE (-1206)))) (|HasCategory| (-702) (QUOTE (-1064))) (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914))) (-3962 (-12 (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (|HasCategory| (-702) (QUOTE (-366)))) (-3962 (-12 (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (|HasCategory| (-702) (QUOTE (-561)))) (-12 (|HasCategory| (-702) (QUOTE (-234))) (|HasCategory| (-702) (QUOTE (-366)))) (-12 (|HasCategory| (-702) (QUOTE (-366))) (|HasCategory| (-702) (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| (-702) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-702) (QUOTE (-561))) (|HasAttribute| (-702) (QUOTE -4426)) (|HasAttribute| (-702) (QUOTE -4423)) (-12 (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (|HasCategory| (-702) (QUOTE (-145)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-702) (QUOTE (-309))) (|HasCategory| (-702) (QUOTE (-914)))) (|HasCategory| (-702) (QUOTE (-353))))) +(-698 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4426 . T)) +((-4428 . T)) NIL -(-698 U) +(-699 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-699) +(-700) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-700 OV E -3496 PG) +(-701 OV E -3498 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-701) +(-702) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4203 . T) (-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-702 R) +(-703 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-703) +(-704) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4424 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4426 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-704 S D1 D2 I) +(-705 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-705 S) +(-706 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-706 S) +(-707 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-707 S T$) +(-708 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-708 S -3072 I) +(-709 S -3074 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-709 E OV R P) +(-710 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-710 R) +(-711 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-711 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-712 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-712) +(-713) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-713 R |Mod| -2215 -3941 |exactQuo|) +(-714 R |Mod| -2217 -3943 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-714 R |Rep|) +(-715 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-715 IS E |ff|) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4423 |has| |#1| (-366)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1086) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-1155))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-716 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-716 R M) +(-717 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-717 R |Mod| -2215 -3941 |exactQuo|) +((-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) +(-718 R |Mod| -2217 -3943 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4422 . T)) +((-4424 . T)) NIL -(-718 S R) +(-719 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-719 R) +(-720 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL -(-720 -3496) +(-721 -3498) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-721 S) +(-722 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-722) +(-723) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-723 S) +(-724 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-724) +(-725) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-725 S R UP) +(-726 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) -(-726 R UP) +((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-371)))) +(-727 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4418 |has| |#1| (-365)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 |has| |#1| (-366)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-727 S) +(-728 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-728) +(-729) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-729 -3496 UP) +(-730 -3498 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-730 |VarSet| E1 E2 R S PR PS) +(-731 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-731 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-732 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-732 E OV R PPR) +(-733 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-733 |vl| R) +(-734 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-734 E OV R PRF) +(((-4429 "*") |has| |#2| (-173)) (-4420 |has| |#2| (-561)) (-4425 |has| |#2| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-914))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-914)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-366))) (|HasAttribute| |#2| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-456))) (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-735 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-735 E OV R P) +(-736 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-736 R S M) +(-737 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-737 R M) +(-738 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-852)))) -(-738 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +((-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) (-4424 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-853)))) (-739 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4427 . T) (-4417 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-740 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4415 . T) (-4426 . T)) +((-4417 . T) (-4428 . T)) NIL -(-740) +(-741) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-741 S) +(-742 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-742 |Coef| |Var|) +(-743 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-743 OV E R P) +(-744 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-744 E OV R P) +(-745 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-745 S R) +(-746 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-746 R) +(-747 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL -(-747) +(-748) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-761) +(-762) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-762 S) +(-763 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-763) +(-764) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-764 S) +(-765 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-765) +(-766) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-766 |Par|) +(-767 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-767 -3496) +(-768 -3498) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-768 P -3496) +(-769 P -3498) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-769 T$) +(-770 T$) NIL NIL NIL -(-770 UP -3496) +(-771 UP -3498) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-771) +(-772) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-772 R) +(-773 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-773) +(-774) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4427 "*") . T)) +(((-4429 "*") . T)) NIL -(-774 R -3496) +(-775 R -3498) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-775) +(-776) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-776 S) +(-777 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-777 R |PolR| E |PolE|) +(-778 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-778 R E V P TS) +(-779 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-779 -3496 |ExtF| |SUEx| |ExtP| |n|) +(-780 -3498 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-780 BP E OV R P) +(-781 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-781 |Par|) +(-782 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-782 R |VarSet|) +(-783 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))))) (-3960 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (QUOTE (-548)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549))))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -994) (QUOTE (-549))))))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-783 R) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-366))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181))))) (-3962 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181)))) (-3748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181)))))) (-3962 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181)))) (-3748 (|HasCategory| |#1| (QUOTE (-549)))) (-3748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181)))) (-3748 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-550))))) (-3748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-1181)))) (-3748 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-550))))))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-784 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-784 R S) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4423 |has| |#1| (-366)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1086) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-1155))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-785 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-785 R) +(-786 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) -(-786 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) +(-787 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-787 S) +(-788 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-172)))) -(-788) +((-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-173)))) +(-789) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-789) +(-790) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-790) +(-791) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-791) +(-792) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-792 |Curve|) +(-793 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-793) +(-794) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-794) +(-795) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-795) +(-796) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-796) +(-797) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-797 S R) +(-798 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-370)))) -(-798 R) +((|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-549))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-371)))) +(-799 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-799) +(-800) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-800 R) +(-801 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-3960 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) -(-801 -3960 R OS S) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|) (|devaluate| |#1|))) (-3962 (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-549))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) +(-802 -3962 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-802) +(-803) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-803 R -3496 L) +(-804 R -3498 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-804 R -3496) +(-805 R -3498) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-805) +(-806) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-806 R -3496) +(-807 R -3498) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-807) +(-808) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-808 -3496 UP UPUP R) +(-809 -3498 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-809 -3496 UP L LQ) +(-810 -3498 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-810) +(-811) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-811 -3496 UP L LQ) +(-812 -3498 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-812 -3496 UP) +(-813 -3498 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-813 -3496 L UP A LO) +(-814 -3498 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-814 -3496 UP) +(-815 -3498 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-815 -3496 LO) +(-816 -3498 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-816 -3496 LODO) +(-817 -3498 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-817 -3021 S |f|) +(-818 -3023 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-795))) (-3960 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-728))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-233))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) -(-818 R) +((-4421 |has| |#2| (-1053)) (-4422 |has| |#2| (-1053)) (-4424 |has| |#2| (-6 -4424)) ((-4429 "*") |has| |#2| (-173)) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (QUOTE (-366))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053)))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-796))) (-3962 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-729))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1053)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (QUOTE (-234))) (-3962 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-853))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasAttribute| |#2| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))))) +(-819 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-819 |Kernels| R |var|) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-821 (-1181)) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-821 (-1181)) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-821 (-1181)) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-821 (-1181)) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-821 (-1181)) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-820 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4427 "*") |has| |#2| (-365)) (-4418 |has| |#2| (-365)) (-4423 |has| |#2| (-365)) (-4417 |has| |#2| (-365)) (-4422 . T) (-4420 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-365)))) -(-820 S) +(((-4429 "*") |has| |#2| (-366)) (-4420 |has| |#2| (-366)) (-4425 |has| |#2| (-366)) (-4419 |has| |#2| (-366)) (-4424 . T) (-4422 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-366)))) +(-821 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-821 S) +(-822 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-852)))) -(-822) +((|HasCategory| |#1| (QUOTE (-853)))) +(-823) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-823) +(-824) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-824) +(-825) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-825) +(-826) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-826) +(-827) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-827) +(-828) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-828) +(-829) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-829 R) +(-830 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-830 P R) +(-831 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) -(-831) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-234)))) +(-832) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-832 S) +(-833 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) +((-4427 . T) (-4417 . T) (-4428 . T)) NIL -(-833) +(-834) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-834 R) +(-835 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4422 |has| |#1| (-850))) -((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-21))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-548)))) -(-835 R S) +((-4424 |has| |#1| (-851))) +((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-21))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-549)))) +(-836 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-836 R) +(-837 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-837 A S) +((-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) +(-838 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-838 S) +(-839 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-839) +(-840) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-840) +(-841) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-841) +(-842) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-842) +(-843) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-843) +(-844) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-844 R) +(-845 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4422 |has| |#1| (-850))) -((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-21))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-548)))) -(-845 R S) +((-4424 |has| |#1| (-851))) +((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-21))) (-3962 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-549)))) +(-846 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-846) +(-847) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-847 -3021 S) +(-848 -3023 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-848) +(-849) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-849 S) +(-850 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-850) +(-851) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4422 . T)) +((-4424 . T)) NIL -(-851 S) +(-852 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-852) +(-853) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-853 S R) +(-854 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172)))) -(-854 R) +((|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173)))) +(-855 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-855 R C) +(-856 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) -(-856 R |sigma| -3665) +((|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) +(-857 R |sigma| -3667) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-857 |x| R |sigma| -3665) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-366)))) +(-858 |x| R |sigma| -3667) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365)))) -(-858 R) +((-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-366)))) +(-859 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) -(-859) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) +(-860) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-860) +(-861) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-861) +(-862) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-862 S) +(-863 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-863) +(-864) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-864) +(-865) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-865) +(-866) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-866 |VariableList|) +(-867 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-868 R |vl| |wl| |wtlevel|) +(-869 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) -(-869 R PS UP) +((-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366)))) +(-870 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-870 R |x| |pt|) +(-871 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-871 |p|) +(-872 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-872 |p|) +(-873 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-873 |p|) +(-874 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-871 |#1|) (QUOTE (-913))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-871 |#1|) (QUOTE (-1023))) (|HasCategory| (-871 |#1|) (QUOTE (-822))) (-3960 (|HasCategory| (-871 |#1|) (QUOTE (-822))) (|HasCategory| (-871 |#1|) (QUOTE (-852)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-871 |#1|) (QUOTE (-1154))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-852))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-913)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))))) -(-874 |p| PADIC) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-872 |#1|) (QUOTE (-914))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-872 |#1|) (QUOTE (-145))) (|HasCategory| (-872 |#1|) (QUOTE (-147))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-872 |#1|) (QUOTE (-1024))) (|HasCategory| (-872 |#1|) (QUOTE (-823))) (-3962 (|HasCategory| (-872 |#1|) (QUOTE (-823))) (|HasCategory| (-872 |#1|) (QUOTE (-853)))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-872 |#1|) (QUOTE (-1155))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| (-872 |#1|) (QUOTE (-234))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -872) (|devaluate| |#1|)))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -311) (LIST (QUOTE -872) (|devaluate| |#1|)))) (|HasCategory| (-872 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -872) (|devaluate| |#1|)) (LIST (QUOTE -872) (|devaluate| |#1|)))) (|HasCategory| (-872 |#1|) (QUOTE (-309))) (|HasCategory| (-872 |#1|) (QUOTE (-549))) (|HasCategory| (-872 |#1|) (QUOTE (-853))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-872 |#1|) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-872 |#1|) (QUOTE (-914)))) (|HasCategory| (-872 |#1|) (QUOTE (-145))))) +(-875 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-822))) (-3960 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-875 S T$) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-823))) (-3962 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1155))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-549))) (|HasCategory| |#2| (QUOTE (-853))) (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-876 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-1104)))) (-3960 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-1104))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))))) -(-876) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-1105)))) (-3962 (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-1105))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))))) +(-877) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-877) +(-878) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-878) +(-879) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-879 CF1 CF2) +(-880 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-880 |ComponentFunction|) +(-881 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-881 CF1 CF2) +(-882 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-882 |ComponentFunction|) +(-883 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-883) +(-884) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-884 CF1 CF2) +(-885 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-885 |ComponentFunction|) +(-886 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-886) +(-887) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-887 R) +(-888 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-888 R S L) +(-889 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-889 S) +(-890 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-890 |Base| |Subject| |Pat|) +(-891 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3746 (|HasCategory| |#2| (QUOTE (-1052)))) (-3746 (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (-3746 (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) -(-891 R S) +((-12 (-3748 (|HasCategory| |#2| (QUOTE (-1053)))) (-3748 (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181)))))) (-12 (|HasCategory| |#2| (QUOTE (-1053))) (-3748 (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181)))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181))))) +(-892 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-892 R A B) +(-893 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-893 R) +(-894 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-894 R -3072) +(-895 R -3074) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-895 R S) +(-896 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-896 |VarSet|) +(-897 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-897 UP R) +(-898 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-898) +(-899) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-899 UP -3496) +(-900 UP -3498) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-900) +(-901) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-901) +(-902) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-902 A S) +(-903 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-903 S) +(-904 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4422 . T)) +((-4424 . T)) NIL -(-904 S) +(-905 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-905 S) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-906 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4422 . T)) -((-3960 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-852)))) -(-906 |n| R) +((-4424 . T)) +((-3962 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-853)))) +(-907 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-907 S) +(-908 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4422 . T)) +((-4424 . T)) NIL -(-908 S) +(-909 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-909 |p|) +(-910 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) -(-910 R E |VarSet| S) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-371)))) +(-911 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-911 R S) +(-912 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-912 S) +(-913 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-913) +(-914) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-914 R0 -3496 UP UPUP R) +(-915 R0 -3498 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-915 UP UPUP R) +(-916 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-916 UP UPUP) +(-917 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-917 R) +(-918 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-918 R) +(-919 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-919 E OV R P) +(-920 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-920) +(-921) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-921 -3496) +(-922 -3498) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-922) +(-923) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4427 "*") . T)) +(((-4429 "*") . T)) NIL -(-923 R) +(-924 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-924) +(-925) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-925 |xx| -3496) +(-926 |xx| -3498) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-926 -3496 P) +(-927 -3498 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-927 R |Var| |Expon| GR) +(-928 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-928) +(-929) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-929 S) +(-930 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-930) +(-931) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-931) +(-932) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-932) +(-933) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-933 R -3496) +(-934 R -3498) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-934 S A B) +(-935 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-935 S R -3496) +(-936 S R -3498) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-936 I) +(-937 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-937 S E) +(-938 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-938 S R L) +(-939 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-939 S E V R P) +(-940 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -889) (|devaluate| |#1|)))) -(-940 -3072) +((|HasCategory| |#3| (LIST (QUOTE -890) (|devaluate| |#1|)))) +(-941 -3074) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-941 R -3496 -3072) +(-942 R -3498 -3074) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-942 S R Q) +(-943 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-943 S) +(-944 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-944 S R P) +(-945 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-945) +(-946) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-946 R) +(-947 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-947 |lv| R) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-1053)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-948 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-948 |TheField| |ThePols|) +(-949 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-850)))) -(-949 R) +((|HasCategory| |#1| (QUOTE (-851)))) +(-950 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1180) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1180) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1180) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1180) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1180) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-950 R S) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1181) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1181) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1181) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1181) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1181) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-366))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-951 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-951 |x| R) +(-952 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-952 S R E |VarSet|) +(-953 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-913))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#4| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#4| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) -(-953 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-914))) (|HasAttribute| |#2| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#4| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) +(-954 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-954 E V R P -3496) +(-955 E V R P -3498) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-955 E |Vars| R P S) +(-956 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-956 E V R P -3496) +(-957 E V R P -3498) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-455)))) -(-957) +((|HasCategory| |#3| (QUOTE (-456)))) +(-958) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-958) +(-959) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-959 R E) +(-960 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4423))) -(-960 R L) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4425))) +(-961 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-961 S) +(-962 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-962 A B) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-963 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-963) +(-964) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-964 -3496) +(-965 -3498) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-965 I) +(-966 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-966) +(-967) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-967 A B) +(-968 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4422 -12 (|has| |#2| (-476)) (|has| |#1| (-476)))) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-852))))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-852))))) -(-968) +((-4424 -12 (|has| |#2| (-477)) (|has| |#1| (-477)))) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-853))))) (-12 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-796)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-477)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-371)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-853))))) +(-969) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-969 T$) +(-970 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-970) +(-971) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-971 S) +(-972 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL -(-972 R |polR|) +(-973 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-455)))) -(-973) +((|HasCategory| |#1| (QUOTE (-456)))) +(-974) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-974) +(-975) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-975 S |Coef| |Expon| |Var|) +(-976 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-976 |Coef| |Expon| |Var|) +(-977 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-977) +(-978) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-978 S R E |VarSet| P) +(-979 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-560)))) -(-979 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-561)))) +(-980 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4425 . T)) +((-4427 . T)) NIL -(-980 R E V P) +(-981 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-455)))) -(-981 K) +((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-456)))) +(-982 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-982 |VarSet| E RC P) +(-983 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-983 R) +(-984 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-984 R1 R2) +(-985 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-985 R) +(-986 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-986 K) +(-987 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-987 R E OV PPR) +(-988 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-988 K R UP -3496) +(-989 K R UP -3498) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-989 R |Var| |Expon| |Dpoly|) +(-990 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308))))) -(-990 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-309))))) +(-991 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-991 R E V P TS) +(-992 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-992) +(-993) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-993 A S) +(-994 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1154)))) -(-994 S) +((|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| |#2| (QUOTE (-549))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1155)))) +(-995 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-995 A B R S) +(-996 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-996 |n| K) +(-997 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-997) +(-998) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-998 S) +(-999 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL -(-999 R) +(-1000 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4418 |has| |#1| (-291)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-548)))) -(-1000 S R) +((-4420 |has| |#1| (-292)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-366)))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-549)))) +(-1001 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-291)))) -(-1001 R) +((|HasCategory| |#2| (QUOTE (-549))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-292)))) +(-1002 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4418 |has| |#1| (-291)) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 |has| |#1| (-292)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1002 QR R QS S) +(-1003 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1003 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-1004 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1005 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1005) +(-1006) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1006 -3496 UP UPUP |radicnd| |n|) +(-1007 -3498 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4418 |has| (-410 |#2|) (-365)) (-4423 |has| (-410 |#2|) (-365)) (-4417 |has| (-410 |#2|) (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-352))) (-3960 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-352))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) -(-1007 |bb|) +((-4420 |has| (-411 |#2|) (-366)) (-4425 |has| (-411 |#2|) (-366)) (-4419 |has| (-411 |#2|) (-366)) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-411 |#2|) (QUOTE (-145))) (|HasCategory| (-411 |#2|) (QUOTE (-147))) (|HasCategory| (-411 |#2|) (QUOTE (-353))) (-3962 (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (QUOTE (-353)))) (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (QUOTE (-371))) (-3962 (-12 (|HasCategory| (-411 |#2|) (QUOTE (-234))) (|HasCategory| (-411 |#2|) (QUOTE (-366)))) (|HasCategory| (-411 |#2|) (QUOTE (-353)))) (-3962 (-12 (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| (-411 |#2|) (QUOTE (-353))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -904) (QUOTE (-1181)))))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -642) (QUOTE (-550)))) (-3962 (|HasCategory| (-411 |#2|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-411 |#2|) (QUOTE (-366)))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| (-411 |#2|) (QUOTE (-366))) (|HasCategory| (-411 |#2|) (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| (-411 |#2|) (QUOTE (-234))) (|HasCategory| (-411 |#2|) (QUOTE (-366))))) +(-1008 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) -(-1008) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-550) (QUOTE (-914))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-1181)))) (|HasCategory| (-550) (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-147))) (|HasCategory| (-550) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-550) (QUOTE (-1024))) (|HasCategory| (-550) (QUOTE (-823))) (-3962 (|HasCategory| (-550) (QUOTE (-823))) (|HasCategory| (-550) (QUOTE (-853)))) (|HasCategory| (-550) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-1155))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-550) (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-550) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-550) (QUOTE (-234))) (|HasCategory| (-550) (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| (-550) (LIST (QUOTE -518) (QUOTE (-1181)) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -311) (QUOTE (-550)))) (|HasCategory| (-550) (LIST (QUOTE -288) (QUOTE (-550)) (QUOTE (-550)))) (|HasCategory| (-550) (QUOTE (-309))) (|HasCategory| (-550) (QUOTE (-549))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-550) (LIST (QUOTE -642) (QUOTE (-550)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-550) (QUOTE (-914)))) (|HasCategory| (-550) (QUOTE (-145))))) +(-1009) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1009) +(-1010) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1010 RP) +(-1011 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1011 S) +(-1012 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1012 A S) +(-1013 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-1104)))) -(-1013 S) +((|HasAttribute| |#1| (QUOTE -4428)) (|HasCategory| |#2| (QUOTE (-1105)))) +(-1014 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1014 S) +(-1015 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1015) +(-1016) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4418 . T) (-4423 . T) (-4417 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4422 . T)) +((-4420 . T) (-4425 . T) (-4419 . T) (-4422 . T) (-4421 . T) ((-4429 "*") . T) (-4424 . T)) NIL -(-1016 R -3496) +(-1017 R -3498) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1017 R -3496) +(-1018 R -3498) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1018 -3496 UP) +(-1019 -3498 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1019 -3496 UP) +(-1020 -3498 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1020 S) +(-1021 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1021 F1 UP UPUP R F2) +(-1022 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1022) +(-1023) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1023) +(-1024) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1024 |Pol|) +(-1025 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1025 |Pol|) +(-1026 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1026) +(-1027) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1027 |TheField|) +(-1028 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4418 . T) (-4423 . T) (-4417 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4422 . T)) -((-3960 (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-410 (-549)) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-410 (-549)) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 (-549)) (LIST (QUOTE -1041) (QUOTE (-549))))) -(-1028 -3496 L) +((-4420 . T) (-4425 . T) (-4419 . T) (-4422 . T) (-4421 . T) ((-4429 "*") . T) (-4424 . T)) +((-3962 (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-411 (-550)) (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-411 (-550)) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-411 (-550)) (LIST (QUOTE -1042) (QUOTE (-550))))) +(-1029 -3498 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1029 S) +(-1030 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1104)))) -(-1030 R E V P) +((|HasCategory| |#1| (QUOTE (-1105)))) +(-1031 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) -(-1031) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1032) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1032 R) +(-1033 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4427 "*")))) -(-1033 R) +((|HasAttribute| |#1| (QUOTE (-4429 "*")))) +(-1034 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308)))) -(-1034 S) +((-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-309)))) +(-1035 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1035 S) +(-1036 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1036 S) +(-1037 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1037 -3496 |Expon| |VarSet| |FPol| |LFPol|) +(-1038 -3498 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1038) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -2254) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -310) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104))) (|HasCategory| (-1180) (QUOTE (-852))) (|HasCategory| (-51) (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865))))) (-1039) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (QUOTE (-1181))) (LIST (QUOTE |:|) (QUOTE -2256) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105)))) (-3962 (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -311) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105))) (|HasCategory| (-1181) (QUOTE (-853))) (|HasCategory| (-51) (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866))))) +(-1040) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1040 A S) +(-1041 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1041 S) +(-1042 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1042 Q R) +(-1043 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1043 R) +(-1044 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1044) +(-1045) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1045 UP) +(-1046 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1046 R) +(-1047 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1047 T$) +(-1048 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1048 T$) +(-1049 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1049 R |ls|) +(-1050 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| (-782 |#1| (-866 |#2|)) (QUOTE (-1104))) (|HasCategory| (-782 |#1| (-866 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -782) (|devaluate| |#1|) (LIST (QUOTE -866) (|devaluate| |#2|)))))) (|HasCategory| (-782 |#1| (-866 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-782 |#1| (-866 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| (-866 |#2|) (QUOTE (-370))) (|HasCategory| (-782 |#1| (-866 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-1050) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| (-783 |#1| (-867 |#2|)) (QUOTE (-1105))) (|HasCategory| (-783 |#1| (-867 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -783) (|devaluate| |#1|) (LIST (QUOTE -867) (|devaluate| |#2|)))))) (|HasCategory| (-783 |#1| (-867 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-783 |#1| (-867 |#2|)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-867 |#2|) (QUOTE (-371))) (|HasCategory| (-783 |#1| (-867 |#2|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-1051) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1051 S) +(-1052 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4422 . T)) +((-4424 . T)) NIL -(-1053 |xx| -3496) +(-1054 |xx| -3498) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1054 R) +(-1055 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1055 S |m| |n| R |Row| |Col|) +(-1056 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-560))) (|HasCategory| |#4| (QUOTE (-172)))) -(-1056 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-309))) (|HasCategory| |#4| (QUOTE (-366))) (|HasCategory| |#4| (QUOTE (-561))) (|HasCategory| |#4| (QUOTE (-173)))) +(-1057 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4425 . T) (-4420 . T) (-4419 . T)) +((-4427 . T) (-4422 . T) (-4421 . T)) NIL -(-1057 |m| |n| R) +(-1058 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4425 . T) (-4420 . T) (-4419 . T)) -((|HasCategory| |#3| (QUOTE (-172))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-560))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865))))) -(-1058 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4427 . T) (-4422 . T) (-4421 . T)) +((|HasCategory| |#3| (QUOTE (-173))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-366)))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (QUOTE (-309))) (|HasCategory| |#3| (QUOTE (-561))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1059 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1059 R) +(-1060 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1060) +(-1061) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1061 S T$) +(-1062 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1104)))) -(-1062 S) +((|HasCategory| |#1| (QUOTE (-1105)))) +(-1063 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1063) +(-1064) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1064 |TheField| |ThePolDom|) +(-1065 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1065) +(-1066) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4415 . T) (-4419 . T) (-4414 . T) (-4425 . T) (-4426 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1066) +(-1067) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -2254) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -310) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104))) (|HasCategory| (-1180) (QUOTE (-852))) (|HasCategory| (-51) (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865))))) -(-1067 S R E V) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (QUOTE (-1181))) (LIST (QUOTE |:|) (QUOTE -2256) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105)))) (-3962 (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| (-51) (QUOTE (-1105))) (|HasCategory| (-51) (LIST (QUOTE -311) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (QUOTE (-1105))) (|HasCategory| (-1181) (QUOTE (-853))) (|HasCategory| (-51) (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| (-51) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (LIST (QUOTE -616) (QUOTE (-866))))) +(-1068 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -994) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-1180))))) -(-1068 R E V) +((|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-549))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-1181))))) +(-1069 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-1069) +(-1070) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1070 S |TheField| |ThePols|) +(-1071 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1071 |TheField| |ThePols|) +(-1072 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1072 R E V P TS) +(-1073 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1073 S R E V P) +(-1074 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1074 R E V P) +(-1075 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1075 R E V P TS) +(-1076 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1076) +(-1077) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1077) +(-1078) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1078 |Base| R -3496) +(-1079 |Base| R -3498) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1079 |f|) +(-1080 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1080 |Base| R -3496) +(-1081 |Base| R -3498) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1081 R |ls|) +(-1082 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1082 R UP M) +(-1083 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4418 |has| |#1| (-365)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-352))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-352)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) -(-1083 UP SAE UPA) +((-4420 |has| |#1| (-366)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-371))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-366)))) (|HasCategory| |#1| (QUOTE (-353)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-366))))) +(-1084 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1084 UP SAE UPA) +(-1085 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1085) +(-1086) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1086) +(-1087) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1087 S) +(-1088 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1088) +(-1089) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1089 R) +(-1090 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1090 R) +(-1091 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1091 S) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1092 (-1181)) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1092 (-1181)) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1092 (-1181)) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1092 (-1181)) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1092 (-1181)) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1092 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1092 S) +(-1093 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1104)))) -(-1093 R S) +((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1105)))) +(-1094 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-850)))) -(-1094) +((|HasCategory| |#1| (QUOTE (-851)))) +(-1095) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1095 S) +(-1096 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1092 |#1|) (QUOTE (-1104)))) -(-1096 R S) +((|HasCategory| (-1093 |#1|) (QUOTE (-1105)))) +(-1097 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1097 S) +(-1098 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1098 S L) +(-1099 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1099) +(-1100) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1100 S) +(-1101 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4425 . T) (-4415 . T) (-4426 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-1101 A S) +((-4427 . T) (-4417 . T) (-4428 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-1102 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1102 S) +(-1103 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4415 . T)) +((-4417 . T)) NIL -(-1103 S) +(-1104 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1105 |m| |n|) +(-1106 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1106) +(-1107) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1107 |Str| |Sym| |Int| |Flt| |Expr|) +(-1108 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1108 |Str| |Sym| |Int| |Flt| |Expr|) +(-1109 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1109 R FS) +(-1110 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1110 R E V P TS) +(-1111 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1111 R E V P TS) +(-1112 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1112 R E V P) +(-1113 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1113) +(-1114) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1114 S) +(-1115 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1115) +(-1116) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1116 |dimtot| |dim1| S) +(-1117 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4419 |has| |#3| (-1052)) (-4420 |has| |#3| (-1052)) (-4422 |has| |#3| (-6 -4422)) ((-4427 "*") |has| |#3| (-172)) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#3| (QUOTE (-365))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-795))) (-3960 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850)))) (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (QUOTE (-728))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#3| (QUOTE (-233))) (-3960 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#3| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#3| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) -(-1117 R |x|) +((-4421 |has| |#3| (-1053)) (-4422 |has| |#3| (-1053)) (-4424 |has| |#3| (-6 -4424)) ((-4429 "*") |has| |#3| (-173)) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053)))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#3| (QUOTE (-366))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-1053)))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-366)))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-796))) (-3962 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (QUOTE (-851)))) (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (QUOTE (-729))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1053)))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (-3962 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#3| (QUOTE (-234))) (-3962 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#3| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1053)))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-366))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-796))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-851))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550)))))) (|HasCategory| (-550) (QUOTE (-853))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1053)))) (-12 (|HasCategory| |#3| (QUOTE (-1053))) (|HasCategory| |#3| (LIST (QUOTE -904) (QUOTE (-1181))))) (-3962 (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#3| (QUOTE (-1053)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasAttribute| |#3| (QUOTE -4424)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#3| (QUOTE (-1105))) (|HasCategory| |#3| (LIST (QUOTE -311) (|devaluate| |#3|))))) +(-1118 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-455)))) -(-1118) +((|HasCategory| |#1| (QUOTE (-456)))) +(-1119) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1119) +(-1120) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1120 R -3496) +(-1121 R -3498) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1121 R) +(-1122 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1122) +(-1123) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1123) +(-1124) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4415 . T) (-4419 . T) (-4414 . T) (-4425 . T) (-4426 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1124 S) +(-1125 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4425 . T) (-4426 . T)) +((-4427 . T) (-4428 . T)) NIL -(-1125 S |ndim| R |Row| |Col|) +(-1126 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4427 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) -(-1126 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-366))) (|HasAttribute| |#3| (QUOTE (-4429 "*"))) (|HasCategory| |#3| (QUOTE (-173)))) +(-1127 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4425 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4427 . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1127 R |Row| |Col| M) +(-1128 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1128 R |VarSet|) +(-1129 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1129 |Coef| |Var| SMP) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-366))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1130 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1130 R E V P) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-366)))) +(-1131 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1131 UP -3496) +(-1132 UP -3498) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1132 R) +(-1133 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1133 R) +(-1134 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1134 R) +(-1135 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1135 S A) +(-1136 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-852)))) -(-1136 R) +((|HasCategory| |#1| (QUOTE (-853)))) +(-1137 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1137 R) +(-1138 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1138) +(-1139) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1139) +(-1140) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1140) +(-1141) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1141) +(-1142) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1142) +(-1143) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1143 V C) +(-1144 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1144 V C) +(-1145 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1143 |#1| |#2|) (QUOTE (-1104)))) (|HasCategory| (-1143 |#1| |#2|) (QUOTE (-1104))) (-3960 (-12 (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1143 |#1| |#2|) (QUOTE (-1104)))) (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -615) (QUOTE (-865))))) -(-1145 |ndim| R) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-1144 |#1| |#2|) (LIST (QUOTE -311) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1144 |#1| |#2|) (QUOTE (-1105)))) (|HasCategory| (-1144 |#1| |#2|) (QUOTE (-1105))) (-3962 (-12 (|HasCategory| (-1144 |#1| |#2|) (LIST (QUOTE -311) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1144 |#1| |#2|) (QUOTE (-1105)))) (|HasCategory| (-1144 |#1| |#2|) (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| (-1144 |#1| |#2|) (LIST (QUOTE -616) (QUOTE (-866))))) +(-1146 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4422 . T) (-4414 |has| |#2| (-6 (-4427 "*"))) (-4425 . T) (-4419 . T) (-4420 . T)) -((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-1146 S) +((-4424 . T) (-4416 |has| |#2| (-6 (-4429 "*"))) (-4427 . T) (-4421 . T) (-4422 . T)) +((|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4429 "*"))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-309))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-366))) (-3962 (|HasAttribute| |#2| (QUOTE (-4429 "*"))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173)))) +(-1147 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1147) +(-1148) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1148 R E V P TS) +(-1149 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1149 R E V P) +(-1150 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) -(-1150 S) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1151 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-1151 A S) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1152 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1152 S) +(-1153 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1153 |Key| |Ent| |dent|) +(-1154 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-852))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) -(-1154) +((-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-853))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) +(-1155) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1155) +(-1156) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1156 |Coef|) +(-1157 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1157 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-1158 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4428 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1159 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1159 A B) +(-1160 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1160 A B C) +(-1161 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1161) +(-1162) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1162) +(-1163) NIL -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) -(-1163 |Entry|) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| (-144) (QUOTE (-853))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| (-144) (QUOTE (-1105))) (|HasCategory| (-144) (LIST (QUOTE -311) (QUOTE (-144)))))) +(-1164 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1162))) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104))) (|HasCategory| (-1162) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-1164 A) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (QUOTE (-1105))) (|HasCategory| (-1163) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-1165 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) -(-1165 |Coef|) +((|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) +(-1166 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1166 |Coef|) +(-1167 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1167 R UP) +(-1168 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-308)))) -(-1168 |n| R) +((|HasCategory| |#1| (QUOTE (-309)))) +(-1169 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1169 S1 S2) +(-1170 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1170) +(-1171) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1171 |Coef| |var| |cen|) +(-1172 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4427 "*") -3960 (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-822))) (|has| |#1| (-172)) (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-913)))) (-4418 -3960 (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-822))) (|has| |#1| (-560)) (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1115))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1023)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-852))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-308)))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-852)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1172 R -3496) +(((-4429 "*") -3962 (-3258 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-823))) (|has| |#1| (-173)) (-3258 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-914)))) (-4420 -3962 (-3258 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-823))) (|has| |#1| (-561)) (-3258 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-914)))) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -311) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1116))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-366))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-1024)))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-823)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-853))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-1155)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -311) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -1179) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-309)))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1179 |#1| |#2| |#3|) (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1173 R -3498) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1173 R) +(-1174 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1174 R) +(-1175 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1175 R S) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4423 |has| |#1| (-366)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1086) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-914)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-1155))) (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1176 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1176 E OV R P) +(-1177 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1177 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) (-1178 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-411 (-550)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|))))))) +(-1179 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|)))) (|HasCategory| (-773) (QUOTE (-1115))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) -(-1179) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-774)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-774)) (|devaluate| |#1|)))) (|HasCategory| (-774) (QUOTE (-1116))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-774))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-774))))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|))))))) +(-1180) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1180) +(-1181) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1181 R) +(-1182 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1182 R) +(-1183 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| (-974) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4423))) -(-1183) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-6 -4425)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3962 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-456))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-975) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4425))) +(-1184) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1184) +(-1185) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1185) +(-1186) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1186 N) +(-1187 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1187 N) +(-1188 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1188) +(-1189) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1189 R) +(-1190 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1190) +(-1191) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1191 S) +(-1192 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1192 |Key| |Entry|) +(-1193 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) -(-1193 S) +((-4427 . T) (-4428 . T)) +((-12 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -311) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4294) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2256) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -617) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1105))) (-3962 (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-866)))) (|HasCategory| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (LIST (QUOTE -616) (QUOTE (-866))))) +(-1194 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1194 R) +(-1195 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1195 S |Key| |Entry|) +(-1196 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1196 |Key| |Entry|) +(-1197 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4426 . T)) +((-4428 . T)) NIL -(-1197 |Key| |Entry|) +(-1198 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1198) +(-1199) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1199) +(-1200) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1200 S) +(-1201 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1201) +(-1202) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1202 R) +(-1203 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1203) +(-1204) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1204 S) +(-1205 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1205) +(-1206) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1206 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-1207 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1105))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1208 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1208) +(-1209) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1209 R -3496) +(-1210 R -3498) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1210 R |Row| |Col| M) +(-1211 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1211 R -3496) +(-1212 R -3498) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -889) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -889) (|devaluate| |#1|))))) -(-1212 |Coef|) +((-12 (|HasCategory| |#1| (LIST (QUOTE -617) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -890) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -890) (|devaluate| |#1|))))) +(-1213 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1213 S R E V P) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-366)))) +(-1214 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-370)))) -(-1214 R E V P) +((|HasCategory| |#4| (QUOTE (-371)))) +(-1215 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1215 |Curve|) +(-1216 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1216) +(-1217) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1217 S) +(-1218 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) -(-1218 -3496) +((|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1219 -3498) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1219) +(-1220) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1220) +(-1221) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1221 S) +(-1222 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-852)))) -(-1222) +((|HasCategory| |#1| (QUOTE (-853)))) +(-1223) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1223 S) +(-1224 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1224) +(-1225) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1225) +(-1226) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1226) +(-1227) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1227) +(-1228) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1228) +(-1229) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1229 |Coef| |var| |cen|) +(-1230 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4427 "*") -3960 (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-822))) (|has| |#1| (-172)) (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-913)))) (-4418 -3960 (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-822))) (|has| |#1| (-560)) (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1115))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1023)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-852))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-308)))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-852)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1230 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4429 "*") -3962 (-3258 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-823))) (|has| |#1| (-173)) (-3258 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-914)))) (-4420 -3962 (-3258 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-823))) (|has| |#1| (-561)) (-3258 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-914)))) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -311) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|))))) (|HasCategory| (-550) (QUOTE (-1116))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-366))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1024)))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-823)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-853))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1155)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -311) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -518) (QUOTE (-1181)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-309)))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1042) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-914)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1231 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1231 |Coef|) +(-1232 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1232 S |Coef| UTS) +(-1233 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-365)))) -(-1233 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-366)))) +(-1234 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1234 |Coef| UTS) +(-1235 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-3960 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-3960 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233))))) (|HasCategory| (-549) (QUOTE (-1115))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-913))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) -(-1235 ZP) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-145))))) (-3962 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-147))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))))) (-3962 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-550)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-234))))) (|HasCategory| (-550) (QUOTE (-1116))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-366))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1024)))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-823)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-853))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-914)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1155)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -311) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -518) (QUOTE (-1181)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-550))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-914))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-309)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-145)))))) +(-1236 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1236 S) +(-1237 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1104)))) -(-1237 R S) +((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1105)))) +(-1238 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-850)))) -(-1238 |x| R) +((|HasCategory| |#1| (QUOTE (-851)))) +(-1239 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4421 |has| |#2| (-365)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-1239 |x| R |y| S) +(((-4429 "*") |has| |#2| (-173)) (-4420 |has| |#2| (-561)) (-4423 |has| |#2| (-366)) (-4425 |has| |#2| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-381)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-381))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-550)))) (|HasCategory| (-1086) (LIST (QUOTE -890) (QUOTE (-550))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550))))) (|HasCategory| (-1086) (LIST (QUOTE -617) (LIST (QUOTE -894) (QUOTE (-550)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| (-1086) (LIST (QUOTE -617) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -642) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (QUOTE (-550)))) (-3962 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| |#2| (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (-3962 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-914)))) (-3962 (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-914)))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-1155))) (|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-456))) (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (-3962 (-12 (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-1240 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1240 R Q UP) +(-1241 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1241 R UP) +(-1242 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1242 R UP) +(-1243 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1243 R U) +(-1244 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1244 S R) +(-1245 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1154)))) -(-1245 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-366))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1155)))) +(-1246 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4423 |has| |#1| (-366)) (-4425 |has| |#1| (-6 -4425)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-1246 R PR S PS) +(-1247 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1247 S |Coef| |Expon|) +(-1248 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1115))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4378) (LIST (|devaluate| |#2|) (QUOTE (-1180)))))) -(-1248 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1116))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4380) (LIST (|devaluate| |#2|) (QUOTE (-1181)))))) +(-1249 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1249 RC P) +(-1250 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1250 |Coef| |var| |cen|) +(-1251 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) -(-1251 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-411 (-550)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|))))))) +(-1252 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1252 |Coef|) +(-1253 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1253 S |Coef| ULS) +(-1254 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1254 |Coef| ULS) +(-1255 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1255 |Coef| ULS) +(-1256 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) -(-1256 R FE |var| |cen|) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4425 |has| |#1| (-366)) (-4419 |has| |#1| (-366)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550))) (|devaluate| |#1|)))) (|HasCategory| (-411 (-550)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-3962 (|HasCategory| |#1| (QUOTE (-366))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -411) (QUOTE (-550)))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550)))))) +(-1257 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4427 "*") |has| (-1250 |#2| |#3| |#4|) (-172)) (-4418 |has| (-1250 |#2| |#3| |#4|) (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-172))) (-3960 (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-560)))) -(-1257 A S) +(((-4429 "*") |has| (-1251 |#2| |#3| |#4|) (-173)) (-4420 |has| (-1251 |#2| |#3| |#4|) (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-173))) (-3962 (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550)))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -1042) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -1042) (QUOTE (-550)))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-366))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-456))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-561)))) +(-1258 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) -(-1258 S) +((|HasAttribute| |#1| (QUOTE -4428))) +(-1259 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1259 |Coef| |var| |cen|) +(-1260 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|)))) (|HasCategory| (-773) (QUOTE (-1115))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) -(-1260 |Coef1| |Coef2| UTS1 UTS2) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-561))) (-3962 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -904) (QUOTE (-1181)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-774)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-774)) (|devaluate| |#1|)))) (|HasCategory| (-774) (QUOTE (-1116))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-774))))) (|HasSignature| |#1| (LIST (QUOTE -4380) (LIST (|devaluate| |#1|) (QUOTE (-1181)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-774))))) (|HasCategory| |#1| (QUOTE (-366))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1206))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasSignature| |#1| (LIST (QUOTE -4246) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1181))))) (|HasSignature| |#1| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#1|))))))) +(-1261 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1261 S |Coef|) +(-1262 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1205))) (|HasSignature| |#2| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4244) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365)))) -(-1262 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1206))) (|HasSignature| |#2| (LIST (QUOTE -3487) (LIST (LIST (QUOTE -644) (QUOTE (-1181))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4246) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1181))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasCategory| |#2| (QUOTE (-366)))) +(-1263 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") |has| |#1| (-173)) (-4420 |has| |#1| (-561)) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1263 |Coef| UTS) +(-1264 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1264 -3496 UP L UTS) +(-1265 -3498 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-560)))) -(-1265) +((|HasCategory| |#1| (QUOTE (-561)))) +(-1266) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1266 |sym|) +(-1267 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1267 S R) +(-1268 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1268 R) +((|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1269 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4426 . T) (-4425 . T)) +((-4428 . T) (-4427 . T)) NIL -(-1269 R) +(-1270 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4426 . T) (-4425 . T)) -((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-1270 A B) +((-4428 . T) (-4427 . T)) +((-3962 (-12 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) (-3962 (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-539)))) (-3962 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| (-550) (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-1053)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-866)))) (-12 (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -311) (|devaluate| |#1|))))) +(-1271 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1271) +(-1272) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1272) +(-1273) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1273) +(-1274) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1274) +(-1275) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1275) +(-1276) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1276 A S) +(-1277 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1277 S) +(-1278 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4420 . T) (-4419 . T)) +((-4422 . T) (-4421 . T)) NIL -(-1278 R) +(-1279 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1279 K R UP -3496) +(-1280 K R UP -3498) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1280) +(-1281) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1281) +(-1282) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1282 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1283 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1283 R E V P) +((-4422 |has| |#1| (-173)) (-4421 |has| |#1| (-173)) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366)))) +(-1284 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) -(-1284 R) +((-4428 . T) (-4427 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#4| (LIST (QUOTE -311) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-866))))) +(-1285 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1285 |vl| R) +(-1286 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4422 . T) (-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4418))) -(-1286 R |VarSet| XPOLY) +((-4424 . T) (-4420 |has| |#2| (-6 -4420)) (-4422 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4420))) +(-1287 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1287 S -3496) +(-1288 S -3498) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1288 -3496) +((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) +(-1289 -3498) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4419 . T) (-4425 . T) (-4420 . T) ((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL -(-1289 |vl| R) +(-1290 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((-4420 |has| |#2| (-6 -4420)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-1290 |VarSet| R) +(-1291 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -719) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasAttribute| |#2| (QUOTE -4418))) -(-1291 R) +((-4420 |has| |#2| (-6 -4420)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -720) (LIST (QUOTE -411) (QUOTE (-550))))) (|HasAttribute| |#2| (QUOTE -4420))) +(-1292 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4418 |has| |#1| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4418))) -(-1292 |vl| R) +((-4420 |has| |#1| (-6 -4420)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4420))) +(-1293 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((-4420 |has| |#2| (-6 -4420)) (-4422 . T) (-4421 . T) (-4424 . T)) NIL -(-1293 R E) +(-1294 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4422 . T) (-4423 |has| |#1| (-6 -4423)) (-4418 |has| |#1| (-6 -4418)) (-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasAttribute| |#1| (QUOTE -4418))) -(-1294 |VarSet| R) +((-4424 . T) (-4425 |has| |#1| (-6 -4425)) (-4420 |has| |#1| (-6 -4420)) (-4422 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-366))) (|HasAttribute| |#1| (QUOTE -4424)) (|HasAttribute| |#1| (QUOTE -4425)) (|HasAttribute| |#1| (QUOTE -4420))) +(-1295 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4418))) -(-1295 A) +((-4420 |has| |#2| (-6 -4420)) (-4422 . T) (-4421 . T) (-4424 . T)) +((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4420))) +(-1296 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1296 R |ls| |ls2|) +(-1297 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1297 R) +(-1298 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1298 |p|) +(-1299 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4429 "*") . T) (-4421 . T) (-4422 . T) (-4424 . T)) NIL NIL NIL @@ -5140,4 +5144,4 @@ NIL NIL NIL NIL -((-3 NIL 2263467 2263472 2263477 2263482) (-2 NIL 2263447 2263452 2263457 2263462) (-1 NIL 2263427 2263432 2263437 2263442) (0 NIL 2263407 2263412 2263417 2263422) (-1298 "ZMOD.spad" 2263216 2263229 2263345 2263402) (-1297 "ZLINDEP.spad" 2262282 2262293 2263206 2263211) (-1296 "ZDSOLVE.spad" 2252227 2252249 2262272 2262277) (-1295 "YSTREAM.spad" 2251722 2251733 2252217 2252222) (-1294 "XRPOLY.spad" 2250942 2250962 2251578 2251647) (-1293 "XPR.spad" 2248737 2248750 2250660 2250759) (-1292 "XPOLYC.spad" 2248056 2248072 2248663 2248732) (-1291 "XPOLY.spad" 2247611 2247622 2247912 2247981) (-1290 "XPBWPOLY.spad" 2246048 2246068 2247391 2247460) (-1289 "XFALG.spad" 2243096 2243112 2245974 2246043) (-1288 "XF.spad" 2241559 2241574 2242998 2243091) (-1287 "XF.spad" 2240002 2240019 2241443 2241448) (-1286 "XEXPPKG.spad" 2239253 2239279 2239992 2239997) (-1285 "XDPOLY.spad" 2238867 2238883 2239109 2239178) (-1284 "XALG.spad" 2238527 2238538 2238823 2238862) (-1283 "WUTSET.spad" 2234366 2234383 2238173 2238200) (-1282 "WP.spad" 2233565 2233609 2234224 2234291) (-1281 "WHILEAST.spad" 2233363 2233372 2233555 2233560) (-1280 "WHEREAST.spad" 2233034 2233043 2233353 2233358) (-1279 "WFFINTBS.spad" 2230697 2230719 2233024 2233029) (-1278 "WEIER.spad" 2228919 2228930 2230687 2230692) (-1277 "VSPACE.spad" 2228592 2228603 2228887 2228914) (-1276 "VSPACE.spad" 2228285 2228298 2228582 2228587) (-1275 "VOID.spad" 2227962 2227971 2228275 2228280) (-1274 "VIEWDEF.spad" 2223163 2223172 2227952 2227957) (-1273 "VIEW3D.spad" 2207124 2207133 2223153 2223158) (-1272 "VIEW2D.spad" 2195015 2195024 2207114 2207119) (-1271 "VIEW.spad" 2192695 2192704 2195005 2195010) (-1270 "VECTOR2.spad" 2191334 2191347 2192685 2192690) (-1269 "VECTOR.spad" 2190008 2190019 2190259 2190286) (-1268 "VECTCAT.spad" 2187912 2187923 2189976 2190003) (-1267 "VECTCAT.spad" 2185623 2185636 2187689 2187694) (-1266 "VARIABLE.spad" 2185403 2185418 2185613 2185618) (-1265 "UTYPE.spad" 2185047 2185056 2185393 2185398) (-1264 "UTSODETL.spad" 2184342 2184366 2185003 2185008) (-1263 "UTSODE.spad" 2182558 2182578 2184332 2184337) (-1262 "UTSCAT.spad" 2180037 2180053 2182456 2182553) (-1261 "UTSCAT.spad" 2177160 2177178 2179581 2179586) (-1260 "UTS2.spad" 2176755 2176790 2177150 2177155) (-1259 "UTS.spad" 2171559 2171587 2175222 2175319) (-1258 "URAGG.spad" 2166232 2166243 2171549 2171554) (-1257 "URAGG.spad" 2160869 2160882 2166188 2166193) (-1256 "UPXSSING.spad" 2158514 2158540 2159950 2160083) (-1255 "UPXSCONS.spad" 2156273 2156293 2156646 2156795) (-1254 "UPXSCCA.spad" 2154844 2154864 2156119 2156268) (-1253 "UPXSCCA.spad" 2153557 2153579 2154834 2154839) (-1252 "UPXSCAT.spad" 2152146 2152162 2153403 2153552) (-1251 "UPXS2.spad" 2151689 2151742 2152136 2152141) (-1250 "UPXS.spad" 2148843 2148871 2149821 2149970) (-1249 "UPSQFREE.spad" 2147258 2147272 2148833 2148838) (-1248 "UPSCAT.spad" 2144869 2144893 2147156 2147253) (-1247 "UPSCAT.spad" 2142186 2142212 2144475 2144480) (-1246 "UPOLYC2.spad" 2141657 2141676 2142176 2142181) (-1245 "UPOLYC.spad" 2136697 2136708 2141499 2141652) (-1244 "UPOLYC.spad" 2131629 2131642 2136433 2136438) (-1243 "UPMP.spad" 2130529 2130542 2131619 2131624) (-1242 "UPDIVP.spad" 2130094 2130108 2130519 2130524) (-1241 "UPDECOMP.spad" 2128339 2128353 2130084 2130089) (-1240 "UPCDEN.spad" 2127548 2127564 2128329 2128334) (-1239 "UP2.spad" 2126912 2126933 2127538 2127543) (-1238 "UP.spad" 2124111 2124126 2124498 2124651) (-1237 "UNISEG2.spad" 2123608 2123621 2124067 2124072) (-1236 "UNISEG.spad" 2122961 2122972 2123527 2123532) (-1235 "UNIFACT.spad" 2122064 2122076 2122951 2122956) (-1234 "ULSCONS.spad" 2114460 2114480 2114830 2114979) (-1233 "ULSCCAT.spad" 2112197 2112217 2114306 2114455) (-1232 "ULSCCAT.spad" 2110042 2110064 2112153 2112158) (-1231 "ULSCAT.spad" 2108274 2108290 2109888 2110037) (-1230 "ULS2.spad" 2107788 2107841 2108264 2108269) (-1229 "ULS.spad" 2098346 2098374 2099433 2099862) (-1228 "UINT8.spad" 2098223 2098232 2098336 2098341) (-1227 "UINT64.spad" 2098099 2098108 2098213 2098218) (-1226 "UINT32.spad" 2097975 2097984 2098089 2098094) (-1225 "UINT16.spad" 2097851 2097860 2097965 2097970) (-1224 "UFD.spad" 2096916 2096925 2097777 2097846) (-1223 "UFD.spad" 2096043 2096054 2096906 2096911) (-1222 "UDVO.spad" 2094924 2094933 2096033 2096038) (-1221 "UDPO.spad" 2092417 2092428 2094880 2094885) (-1220 "TYPEAST.spad" 2092336 2092345 2092407 2092412) (-1219 "TYPE.spad" 2092268 2092277 2092326 2092331) (-1218 "TWOFACT.spad" 2090920 2090935 2092258 2092263) (-1217 "TUPLE.spad" 2090406 2090417 2090819 2090824) (-1216 "TUBETOOL.spad" 2087273 2087282 2090396 2090401) (-1215 "TUBE.spad" 2085920 2085937 2087263 2087268) (-1214 "TSETCAT.spad" 2073047 2073064 2085888 2085915) (-1213 "TSETCAT.spad" 2060160 2060179 2073003 2073008) (-1212 "TS.spad" 2058759 2058775 2059725 2059822) (-1211 "TRMANIP.spad" 2053125 2053142 2058465 2058470) (-1210 "TRIMAT.spad" 2052088 2052113 2053115 2053120) (-1209 "TRIGMNIP.spad" 2050615 2050632 2052078 2052083) (-1208 "TRIGCAT.spad" 2050127 2050136 2050605 2050610) (-1207 "TRIGCAT.spad" 2049637 2049648 2050117 2050122) (-1206 "TREE.spad" 2048212 2048223 2049244 2049271) (-1205 "TRANFUN.spad" 2048051 2048060 2048202 2048207) (-1204 "TRANFUN.spad" 2047888 2047899 2048041 2048046) (-1203 "TOPSP.spad" 2047562 2047571 2047878 2047883) (-1202 "TOOLSIGN.spad" 2047225 2047236 2047552 2047557) (-1201 "TEXTFILE.spad" 2045786 2045795 2047215 2047220) (-1200 "TEX1.spad" 2045342 2045353 2045776 2045781) (-1199 "TEX.spad" 2042488 2042497 2045332 2045337) (-1198 "TEMUTL.spad" 2042043 2042052 2042478 2042483) (-1197 "TBCMPPK.spad" 2040136 2040159 2042033 2042038) (-1196 "TBAGG.spad" 2039186 2039209 2040116 2040131) (-1195 "TBAGG.spad" 2038244 2038269 2039176 2039181) (-1194 "TANEXP.spad" 2037652 2037663 2038234 2038239) (-1193 "TABLEAU.spad" 2037133 2037144 2037642 2037647) (-1192 "TABLE.spad" 2035544 2035567 2035814 2035841) (-1191 "TABLBUMP.spad" 2032347 2032358 2035534 2035539) (-1190 "SYSTEM.spad" 2031575 2031584 2032337 2032342) (-1189 "SYSSOLP.spad" 2029058 2029069 2031565 2031570) (-1188 "SYSPTR.spad" 2028957 2028966 2029048 2029053) (-1187 "SYSNNI.spad" 2028139 2028150 2028947 2028952) (-1186 "SYSINT.spad" 2027543 2027554 2028129 2028134) (-1185 "SYNTAX.spad" 2023749 2023758 2027533 2027538) (-1184 "SYMTAB.spad" 2021817 2021826 2023739 2023744) (-1183 "SYMS.spad" 2017846 2017855 2021807 2021812) (-1182 "SYMPOLY.spad" 2016853 2016864 2016935 2017062) (-1181 "SYMFUNC.spad" 2016354 2016365 2016843 2016848) (-1180 "SYMBOL.spad" 2013857 2013866 2016344 2016349) (-1179 "SWITCH.spad" 2010628 2010637 2013847 2013852) (-1178 "SUTS.spad" 2007533 2007561 2009095 2009192) (-1177 "SUPXS.spad" 2004674 2004702 2005665 2005814) (-1176 "SUPFRACF.spad" 2003779 2003797 2004664 2004669) (-1175 "SUP2.spad" 2003171 2003184 2003769 2003774) (-1174 "SUP.spad" 1999984 1999995 2000757 2000910) (-1173 "SUMRF.spad" 1998958 1998969 1999974 1999979) (-1172 "SUMFS.spad" 1998595 1998612 1998948 1998953) (-1171 "SULS.spad" 1989140 1989168 1990240 1990669) (-1170 "SUCHTAST.spad" 1988909 1988918 1989130 1989135) (-1169 "SUCH.spad" 1988591 1988606 1988899 1988904) (-1168 "SUBSPACE.spad" 1980706 1980721 1988581 1988586) (-1167 "SUBRESP.spad" 1979876 1979890 1980662 1980667) (-1166 "STTFNC.spad" 1976344 1976360 1979866 1979871) (-1165 "STTF.spad" 1972443 1972459 1976334 1976339) (-1164 "STTAYLOR.spad" 1965078 1965089 1972324 1972329) (-1163 "STRTBL.spad" 1963583 1963600 1963732 1963759) (-1162 "STRING.spad" 1962992 1963001 1963006 1963033) (-1161 "STRICAT.spad" 1962780 1962789 1962960 1962987) (-1160 "STREAM3.spad" 1962353 1962368 1962770 1962775) (-1159 "STREAM2.spad" 1961481 1961494 1962343 1962348) (-1158 "STREAM1.spad" 1961187 1961198 1961471 1961476) (-1157 "STREAM.spad" 1958105 1958116 1960712 1960727) (-1156 "STINPROD.spad" 1957041 1957057 1958095 1958100) (-1155 "STEPAST.spad" 1956275 1956284 1957031 1957036) (-1154 "STEP.spad" 1955476 1955485 1956265 1956270) (-1153 "STBL.spad" 1954002 1954030 1954169 1954184) (-1152 "STAGG.spad" 1953077 1953088 1953992 1953997) (-1151 "STAGG.spad" 1952150 1952163 1953067 1953072) (-1150 "STACK.spad" 1951507 1951518 1951757 1951784) (-1149 "SREGSET.spad" 1949211 1949228 1951153 1951180) (-1148 "SRDCMPK.spad" 1947772 1947792 1949201 1949206) (-1147 "SRAGG.spad" 1942915 1942924 1947740 1947767) (-1146 "SRAGG.spad" 1938078 1938089 1942905 1942910) (-1145 "SQMATRIX.spad" 1935694 1935712 1936610 1936697) (-1144 "SPLTREE.spad" 1930246 1930259 1935130 1935157) (-1143 "SPLNODE.spad" 1926834 1926847 1930236 1930241) (-1142 "SPFCAT.spad" 1925643 1925652 1926824 1926829) (-1141 "SPECOUT.spad" 1924195 1924204 1925633 1925638) (-1140 "SPADXPT.spad" 1915790 1915799 1924185 1924190) (-1139 "spad-parser.spad" 1915255 1915264 1915780 1915785) (-1138 "SPADAST.spad" 1914956 1914965 1915245 1915250) (-1137 "SPACEC.spad" 1899155 1899166 1914946 1914951) (-1136 "SPACE3.spad" 1898931 1898942 1899145 1899150) (-1135 "SORTPAK.spad" 1898480 1898493 1898887 1898892) (-1134 "SOLVETRA.spad" 1896243 1896254 1898470 1898475) (-1133 "SOLVESER.spad" 1894771 1894782 1896233 1896238) (-1132 "SOLVERAD.spad" 1890797 1890808 1894761 1894766) (-1131 "SOLVEFOR.spad" 1889259 1889277 1890787 1890792) (-1130 "SNTSCAT.spad" 1888859 1888876 1889227 1889254) (-1129 "SMTS.spad" 1887131 1887157 1888424 1888521) (-1128 "SMP.spad" 1884606 1884626 1884996 1885123) (-1127 "SMITH.spad" 1883451 1883476 1884596 1884601) (-1126 "SMATCAT.spad" 1881561 1881591 1883395 1883446) (-1125 "SMATCAT.spad" 1879603 1879635 1881439 1881444) (-1124 "SKAGG.spad" 1878566 1878577 1879571 1879598) (-1123 "SINT.spad" 1877398 1877407 1878432 1878561) (-1122 "SIMPAN.spad" 1877126 1877135 1877388 1877393) (-1121 "SIGNRF.spad" 1876251 1876262 1877116 1877121) (-1120 "SIGNEF.spad" 1875537 1875554 1876241 1876246) (-1119 "SIGAST.spad" 1874922 1874931 1875527 1875532) (-1118 "SIG.spad" 1874252 1874261 1874912 1874917) (-1117 "SHP.spad" 1872180 1872195 1874208 1874213) (-1116 "SHDP.spad" 1861891 1861918 1862400 1862531) (-1115 "SGROUP.spad" 1861499 1861508 1861881 1861886) (-1114 "SGROUP.spad" 1861105 1861116 1861489 1861494) (-1113 "SGCF.spad" 1854268 1854277 1861095 1861100) (-1112 "SFRTCAT.spad" 1853198 1853215 1854236 1854263) (-1111 "SFRGCD.spad" 1852261 1852281 1853188 1853193) (-1110 "SFQCMPK.spad" 1846898 1846918 1852251 1852256) (-1109 "SFORT.spad" 1846337 1846351 1846888 1846893) (-1108 "SEXOF.spad" 1846180 1846220 1846327 1846332) (-1107 "SEXCAT.spad" 1843781 1843821 1846170 1846175) (-1106 "SEX.spad" 1843673 1843682 1843771 1843776) (-1105 "SETMN.spad" 1842125 1842142 1843663 1843668) (-1104 "SETCAT.spad" 1841447 1841456 1842115 1842120) (-1103 "SETCAT.spad" 1840767 1840778 1841437 1841442) (-1102 "SETAGG.spad" 1837316 1837327 1840747 1840762) (-1101 "SETAGG.spad" 1833873 1833886 1837306 1837311) (-1100 "SET.spad" 1832197 1832208 1833294 1833333) (-1099 "SEQAST.spad" 1831900 1831909 1832187 1832192) (-1098 "SEGXCAT.spad" 1831056 1831069 1831890 1831895) (-1097 "SEGCAT.spad" 1829981 1829992 1831046 1831051) (-1096 "SEGBIND2.spad" 1829679 1829692 1829971 1829976) (-1095 "SEGBIND.spad" 1829437 1829448 1829626 1829631) (-1094 "SEGAST.spad" 1829151 1829160 1829427 1829432) (-1093 "SEG2.spad" 1828586 1828599 1829107 1829112) (-1092 "SEG.spad" 1828399 1828410 1828505 1828510) (-1091 "SDVAR.spad" 1827675 1827686 1828389 1828394) (-1090 "SDPOL.spad" 1825101 1825112 1825392 1825519) (-1089 "SCPKG.spad" 1823190 1823201 1825091 1825096) (-1088 "SCOPE.spad" 1822343 1822352 1823180 1823185) (-1087 "SCACHE.spad" 1821039 1821050 1822333 1822338) (-1086 "SASTCAT.spad" 1820948 1820957 1821029 1821034) (-1085 "SAOS.spad" 1820820 1820829 1820938 1820943) (-1084 "SAERFFC.spad" 1820533 1820553 1820810 1820815) (-1083 "SAEFACT.spad" 1820234 1820254 1820523 1820528) (-1082 "SAE.spad" 1818409 1818425 1819020 1819155) (-1081 "RURPK.spad" 1816068 1816084 1818399 1818404) (-1080 "RULESET.spad" 1815521 1815545 1816058 1816063) (-1079 "RULECOLD.spad" 1815373 1815386 1815511 1815516) (-1078 "RULE.spad" 1813613 1813637 1815363 1815368) (-1077 "RTVALUE.spad" 1813348 1813357 1813603 1813608) (-1076 "RSTRCAST.spad" 1813065 1813074 1813338 1813343) (-1075 "RSETGCD.spad" 1809443 1809463 1813055 1813060) (-1074 "RSETCAT.spad" 1799379 1799396 1809411 1809438) (-1073 "RSETCAT.spad" 1789335 1789354 1799369 1799374) (-1072 "RSDCMPK.spad" 1787787 1787807 1789325 1789330) (-1071 "RRCC.spad" 1786171 1786201 1787777 1787782) (-1070 "RRCC.spad" 1784553 1784585 1786161 1786166) (-1069 "RPTAST.spad" 1784255 1784264 1784543 1784548) (-1068 "RPOLCAT.spad" 1763615 1763630 1784123 1784250) (-1067 "RPOLCAT.spad" 1742689 1742706 1763199 1763204) (-1066 "ROUTINE.spad" 1738572 1738581 1741336 1741363) (-1065 "ROMAN.spad" 1737900 1737909 1738438 1738567) (-1064 "ROIRC.spad" 1736980 1737012 1737890 1737895) (-1063 "RNS.spad" 1735883 1735892 1736882 1736975) (-1062 "RNS.spad" 1734872 1734883 1735873 1735878) (-1061 "RNGBIND.spad" 1734032 1734046 1734827 1734832) (-1060 "RNG.spad" 1733767 1733776 1734022 1734027) (-1059 "RMODULE.spad" 1733532 1733543 1733757 1733762) (-1058 "RMCAT2.spad" 1732952 1733009 1733522 1733527) (-1057 "RMATRIX.spad" 1731776 1731795 1732119 1732158) (-1056 "RMATCAT.spad" 1727355 1727386 1731732 1731771) (-1055 "RMATCAT.spad" 1722824 1722857 1727203 1727208) (-1054 "RLINSET.spad" 1722218 1722229 1722814 1722819) (-1053 "RINTERP.spad" 1722106 1722126 1722208 1722213) (-1052 "RING.spad" 1721576 1721585 1722086 1722101) (-1051 "RING.spad" 1721054 1721065 1721566 1721571) (-1050 "RIDIST.spad" 1720446 1720455 1721044 1721049) (-1049 "RGCHAIN.spad" 1719029 1719045 1719931 1719958) (-1048 "RGBCSPC.spad" 1718810 1718822 1719019 1719024) (-1047 "RGBCMDL.spad" 1718340 1718352 1718800 1718805) (-1046 "RFFACTOR.spad" 1717802 1717813 1718330 1718335) (-1045 "RFFACT.spad" 1717537 1717549 1717792 1717797) (-1044 "RFDIST.spad" 1716533 1716542 1717527 1717532) (-1043 "RF.spad" 1714175 1714186 1716523 1716528) (-1042 "RETSOL.spad" 1713594 1713607 1714165 1714170) (-1041 "RETRACT.spad" 1713022 1713033 1713584 1713589) (-1040 "RETRACT.spad" 1712448 1712461 1713012 1713017) (-1039 "RETAST.spad" 1712260 1712269 1712438 1712443) (-1038 "RESULT.spad" 1710320 1710329 1710907 1710934) (-1037 "RESRING.spad" 1709667 1709714 1710258 1710315) (-1036 "RESLATC.spad" 1708991 1709002 1709657 1709662) (-1035 "REPSQ.spad" 1708722 1708733 1708981 1708986) (-1034 "REPDB.spad" 1708429 1708440 1708712 1708717) (-1033 "REP2.spad" 1698087 1698098 1708271 1708276) (-1032 "REP1.spad" 1692283 1692294 1698037 1698042) (-1031 "REP.spad" 1689837 1689846 1692273 1692278) (-1030 "REGSET.spad" 1687634 1687651 1689483 1689510) (-1029 "REF.spad" 1686969 1686980 1687589 1687594) (-1028 "REDORDER.spad" 1686175 1686192 1686959 1686964) (-1027 "RECLOS.spad" 1684958 1684978 1685662 1685755) (-1026 "REALSOLV.spad" 1684098 1684107 1684948 1684953) (-1025 "REAL0Q.spad" 1681396 1681411 1684088 1684093) (-1024 "REAL0.spad" 1678240 1678255 1681386 1681391) (-1023 "REAL.spad" 1678112 1678121 1678230 1678235) (-1022 "RDUCEAST.spad" 1677833 1677842 1678102 1678107) (-1021 "RDIV.spad" 1677488 1677513 1677823 1677828) (-1020 "RDIST.spad" 1677055 1677066 1677478 1677483) (-1019 "RDETRS.spad" 1675919 1675937 1677045 1677050) (-1018 "RDETR.spad" 1674058 1674076 1675909 1675914) (-1017 "RDEEFS.spad" 1673157 1673174 1674048 1674053) (-1016 "RDEEF.spad" 1672167 1672184 1673147 1673152) (-1015 "RCFIELD.spad" 1669353 1669362 1672069 1672162) (-1014 "RCFIELD.spad" 1666625 1666636 1669343 1669348) (-1013 "RCAGG.spad" 1664553 1664564 1666615 1666620) (-1012 "RCAGG.spad" 1662408 1662421 1664472 1664477) (-1011 "RATRET.spad" 1661768 1661779 1662398 1662403) (-1010 "RATFACT.spad" 1661460 1661472 1661758 1661763) (-1009 "RANDSRC.spad" 1660779 1660788 1661450 1661455) (-1008 "RADUTIL.spad" 1660535 1660544 1660769 1660774) (-1007 "RADIX.spad" 1657456 1657470 1659002 1659095) (-1006 "RADFF.spad" 1655869 1655906 1655988 1656144) (-1005 "RADCAT.spad" 1655464 1655473 1655859 1655864) (-1004 "RADCAT.spad" 1655057 1655068 1655454 1655459) (-1003 "QUEUE.spad" 1654405 1654416 1654664 1654691) (-1002 "QUATCT2.spad" 1654025 1654044 1654395 1654400) (-1001 "QUATCAT.spad" 1652195 1652206 1653955 1654020) (-1000 "QUATCAT.spad" 1650116 1650129 1651878 1651883) (-999 "QUAT.spad" 1648698 1648708 1649040 1649105) (-998 "QUAGG.spad" 1647526 1647536 1648666 1648693) (-997 "QQUTAST.spad" 1647295 1647303 1647516 1647521) (-996 "QFORM.spad" 1646760 1646774 1647285 1647290) (-995 "QFCAT2.spad" 1646453 1646469 1646750 1646755) (-994 "QFCAT.spad" 1645156 1645166 1646355 1646448) (-993 "QFCAT.spad" 1643450 1643462 1644651 1644656) (-992 "QEQUAT.spad" 1643009 1643017 1643440 1643445) (-991 "QCMPACK.spad" 1637756 1637775 1642999 1643004) (-990 "QALGSET2.spad" 1635752 1635770 1637746 1637751) (-989 "QALGSET.spad" 1631833 1631865 1635666 1635671) (-988 "PWFFINTB.spad" 1629249 1629270 1631823 1631828) (-987 "PUSHVAR.spad" 1628588 1628607 1629239 1629244) (-986 "PTRANFN.spad" 1624716 1624726 1628578 1628583) (-985 "PTPACK.spad" 1621804 1621814 1624706 1624711) (-984 "PTFUNC2.spad" 1621627 1621641 1621794 1621799) (-983 "PTCAT.spad" 1620882 1620892 1621595 1621622) (-982 "PSQFR.spad" 1620189 1620213 1620872 1620877) (-981 "PSEUDLIN.spad" 1619075 1619085 1620179 1620184) (-980 "PSETPK.spad" 1604508 1604524 1618953 1618958) (-979 "PSETCAT.spad" 1598428 1598451 1604488 1604503) (-978 "PSETCAT.spad" 1592322 1592347 1598384 1598389) (-977 "PSCURVE.spad" 1591305 1591313 1592312 1592317) (-976 "PSCAT.spad" 1590088 1590117 1591203 1591300) (-975 "PSCAT.spad" 1588961 1588992 1590078 1590083) (-974 "PRTITION.spad" 1587922 1587930 1588951 1588956) (-973 "PRTDAST.spad" 1587641 1587649 1587912 1587917) (-972 "PRS.spad" 1577203 1577220 1587597 1587602) (-971 "PRQAGG.spad" 1576638 1576648 1577171 1577198) (-970 "PROPLOG.spad" 1575937 1575945 1576628 1576633) (-969 "PROPFRML.spad" 1574505 1574516 1575927 1575932) (-968 "PROPERTY.spad" 1573993 1574001 1574495 1574500) (-967 "PRODUCT.spad" 1571675 1571687 1571959 1572014) (-966 "PRINT.spad" 1571427 1571435 1571665 1571670) (-965 "PRIMES.spad" 1569680 1569690 1571417 1571422) (-964 "PRIMELT.spad" 1567761 1567775 1569670 1569675) (-963 "PRIMCAT.spad" 1567388 1567396 1567751 1567756) (-962 "PRIMARR2.spad" 1566155 1566167 1567378 1567383) (-961 "PRIMARR.spad" 1565160 1565170 1565338 1565365) (-960 "PREASSOC.spad" 1564542 1564554 1565150 1565155) (-959 "PR.spad" 1562934 1562946 1563633 1563760) (-958 "PPCURVE.spad" 1562071 1562079 1562924 1562929) (-957 "PORTNUM.spad" 1561846 1561854 1562061 1562066) (-956 "POLYROOT.spad" 1560695 1560717 1561802 1561807) (-955 "POLYLIFT.spad" 1559960 1559983 1560685 1560690) (-954 "POLYCATQ.spad" 1558078 1558100 1559950 1559955) (-953 "POLYCAT.spad" 1551548 1551569 1557946 1558073) (-952 "POLYCAT.spad" 1544356 1544379 1550756 1550761) (-951 "POLY2UP.spad" 1543808 1543822 1544346 1544351) (-950 "POLY2.spad" 1543405 1543417 1543798 1543803) (-949 "POLY.spad" 1540740 1540750 1541255 1541382) (-948 "POLUTIL.spad" 1539681 1539710 1540696 1540701) (-947 "POLTOPOL.spad" 1538429 1538444 1539671 1539676) (-946 "POINT.spad" 1537267 1537277 1537354 1537381) (-945 "PNTHEORY.spad" 1533969 1533977 1537257 1537262) (-944 "PMTOOLS.spad" 1532744 1532758 1533959 1533964) (-943 "PMSYM.spad" 1532293 1532303 1532734 1532739) (-942 "PMQFCAT.spad" 1531884 1531898 1532283 1532288) (-941 "PMPREDFS.spad" 1531338 1531360 1531874 1531879) (-940 "PMPRED.spad" 1530817 1530831 1531328 1531333) (-939 "PMPLCAT.spad" 1529897 1529915 1530749 1530754) (-938 "PMLSAGG.spad" 1529482 1529496 1529887 1529892) (-937 "PMKERNEL.spad" 1529061 1529073 1529472 1529477) (-936 "PMINS.spad" 1528641 1528651 1529051 1529056) (-935 "PMFS.spad" 1528218 1528236 1528631 1528636) (-934 "PMDOWN.spad" 1527508 1527522 1528208 1528213) (-933 "PMASSFS.spad" 1526475 1526491 1527498 1527503) (-932 "PMASS.spad" 1525485 1525493 1526465 1526470) (-931 "PLOTTOOL.spad" 1525265 1525273 1525475 1525480) (-930 "PLOT3D.spad" 1521729 1521737 1525255 1525260) (-929 "PLOT1.spad" 1520886 1520896 1521719 1521724) (-928 "PLOT.spad" 1515809 1515817 1520876 1520881) (-927 "PLEQN.spad" 1503099 1503126 1515799 1515804) (-926 "PINTERPA.spad" 1502883 1502899 1503089 1503094) (-925 "PINTERP.spad" 1502505 1502524 1502873 1502878) (-924 "PID.spad" 1501475 1501483 1502431 1502500) (-923 "PICOERCE.spad" 1501132 1501142 1501465 1501470) (-922 "PI.spad" 1500741 1500749 1501106 1501127) (-921 "PGROEB.spad" 1499342 1499356 1500731 1500736) (-920 "PGE.spad" 1490959 1490967 1499332 1499337) (-919 "PGCD.spad" 1489849 1489866 1490949 1490954) (-918 "PFRPAC.spad" 1488998 1489008 1489839 1489844) (-917 "PFR.spad" 1485661 1485671 1488900 1488993) (-916 "PFOTOOLS.spad" 1484919 1484935 1485651 1485656) (-915 "PFOQ.spad" 1484289 1484307 1484909 1484914) (-914 "PFO.spad" 1483708 1483735 1484279 1484284) (-913 "PFECAT.spad" 1481390 1481398 1483634 1483703) (-912 "PFECAT.spad" 1479100 1479110 1481346 1481351) (-911 "PFBRU.spad" 1476988 1477000 1479090 1479095) (-910 "PFBR.spad" 1474548 1474571 1476978 1476983) (-909 "PF.spad" 1474122 1474134 1474353 1474446) (-908 "PERMGRP.spad" 1468884 1468894 1474112 1474117) (-907 "PERMCAT.spad" 1467442 1467452 1468864 1468879) (-906 "PERMAN.spad" 1465974 1465988 1467432 1467437) (-905 "PERM.spad" 1461659 1461669 1465804 1465819) (-904 "PENDTREE.spad" 1461000 1461010 1461288 1461293) (-903 "PDRING.spad" 1459551 1459561 1460980 1460995) (-902 "PDRING.spad" 1458110 1458122 1459541 1459546) (-901 "PDEPROB.spad" 1457125 1457133 1458100 1458105) (-900 "PDEPACK.spad" 1451165 1451173 1457115 1457120) (-899 "PDECOMP.spad" 1450635 1450652 1451155 1451160) (-898 "PDECAT.spad" 1448991 1448999 1450625 1450630) (-897 "PCOMP.spad" 1448844 1448857 1448981 1448986) (-896 "PBWLB.spad" 1447432 1447449 1448834 1448839) (-895 "PATTERN2.spad" 1447170 1447182 1447422 1447427) (-894 "PATTERN1.spad" 1445506 1445522 1447160 1447165) (-893 "PATTERN.spad" 1440045 1440055 1445496 1445501) (-892 "PATRES2.spad" 1439717 1439731 1440035 1440040) (-891 "PATRES.spad" 1437292 1437304 1439707 1439712) (-890 "PATMATCH.spad" 1435489 1435520 1437000 1437005) (-889 "PATMAB.spad" 1434918 1434928 1435479 1435484) (-888 "PATLRES.spad" 1434004 1434018 1434908 1434913) (-887 "PATAB.spad" 1433768 1433778 1433994 1433999) (-886 "PARTPERM.spad" 1431168 1431176 1433758 1433763) (-885 "PARSURF.spad" 1430602 1430630 1431158 1431163) (-884 "PARSU2.spad" 1430399 1430415 1430592 1430597) (-883 "script-parser.spad" 1429919 1429927 1430389 1430394) (-882 "PARSCURV.spad" 1429353 1429381 1429909 1429914) (-881 "PARSC2.spad" 1429144 1429160 1429343 1429348) (-880 "PARPCURV.spad" 1428606 1428634 1429134 1429139) (-879 "PARPC2.spad" 1428397 1428413 1428596 1428601) (-878 "PARAMAST.spad" 1427525 1427533 1428387 1428392) (-877 "PAN2EXPR.spad" 1426937 1426945 1427515 1427520) (-876 "PALETTE.spad" 1425907 1425915 1426927 1426932) (-875 "PAIR.spad" 1424894 1424907 1425495 1425500) (-874 "PADICRC.spad" 1422228 1422246 1423399 1423492) (-873 "PADICRAT.spad" 1420243 1420255 1420464 1420557) (-872 "PADICCT.spad" 1418792 1418804 1420169 1420238) (-871 "PADIC.spad" 1418487 1418499 1418718 1418787) (-870 "PADEPAC.spad" 1417176 1417195 1418477 1418482) (-869 "PADE.spad" 1415928 1415944 1417166 1417171) (-868 "OWP.spad" 1415168 1415198 1415786 1415853) (-867 "OVERSET.spad" 1414741 1414749 1415158 1415163) (-866 "OVAR.spad" 1414522 1414545 1414731 1414736) (-865 "OUTFORM.spad" 1403914 1403922 1414512 1414517) (-864 "OUTBFILE.spad" 1403332 1403340 1403904 1403909) (-863 "OUTBCON.spad" 1402338 1402346 1403322 1403327) (-862 "OUTBCON.spad" 1401342 1401352 1402328 1402333) (-861 "OUT.spad" 1400428 1400436 1401332 1401337) (-860 "OSI.spad" 1399903 1399911 1400418 1400423) (-859 "OSGROUP.spad" 1399821 1399829 1399893 1399898) (-858 "ORTHPOL.spad" 1398306 1398316 1399738 1399743) (-857 "OREUP.spad" 1397759 1397787 1397986 1398025) (-856 "ORESUP.spad" 1397060 1397084 1397439 1397478) (-855 "OREPCTO.spad" 1394917 1394929 1396980 1396985) (-854 "OREPCAT.spad" 1389064 1389074 1394873 1394912) (-853 "OREPCAT.spad" 1383101 1383113 1388912 1388917) (-852 "ORDSET.spad" 1382273 1382281 1383091 1383096) (-851 "ORDSET.spad" 1381443 1381453 1382263 1382268) (-850 "ORDRING.spad" 1380833 1380841 1381423 1381438) (-849 "ORDRING.spad" 1380231 1380241 1380823 1380828) (-848 "ORDMON.spad" 1380086 1380094 1380221 1380226) (-847 "ORDFUNS.spad" 1379218 1379234 1380076 1380081) (-846 "ORDFIN.spad" 1379038 1379046 1379208 1379213) (-845 "ORDCOMP2.spad" 1378331 1378343 1379028 1379033) (-844 "ORDCOMP.spad" 1376796 1376806 1377878 1377907) (-843 "OPTPROB.spad" 1375434 1375442 1376786 1376791) (-842 "OPTPACK.spad" 1367843 1367851 1375424 1375429) (-841 "OPTCAT.spad" 1365522 1365530 1367833 1367838) (-840 "OPSIG.spad" 1365176 1365184 1365512 1365517) (-839 "OPQUERY.spad" 1364725 1364733 1365166 1365171) (-838 "OPERCAT.spad" 1364191 1364201 1364715 1364720) (-837 "OPERCAT.spad" 1363655 1363667 1364181 1364186) (-836 "OP.spad" 1363397 1363407 1363477 1363544) (-835 "ONECOMP2.spad" 1362821 1362833 1363387 1363392) (-834 "ONECOMP.spad" 1361566 1361576 1362368 1362397) (-833 "OMSERVER.spad" 1360572 1360580 1361556 1361561) (-832 "OMSAGG.spad" 1360360 1360370 1360528 1360567) (-831 "OMPKG.spad" 1358976 1358984 1360350 1360355) (-830 "OMLO.spad" 1358401 1358413 1358862 1358901) (-829 "OMEXPR.spad" 1358235 1358245 1358391 1358396) (-828 "OMERRK.spad" 1357269 1357277 1358225 1358230) (-827 "OMERR.spad" 1356814 1356822 1357259 1357264) (-826 "OMENC.spad" 1356158 1356166 1356804 1356809) (-825 "OMDEV.spad" 1350467 1350475 1356148 1356153) (-824 "OMCONN.spad" 1349876 1349884 1350457 1350462) (-823 "OM.spad" 1348849 1348857 1349866 1349871) (-822 "OINTDOM.spad" 1348612 1348620 1348775 1348844) (-821 "OFMONOID.spad" 1346735 1346745 1348568 1348573) (-820 "ODVAR.spad" 1345996 1346006 1346725 1346730) (-819 "ODR.spad" 1345640 1345666 1345808 1345957) (-818 "ODPOL.spad" 1343022 1343032 1343362 1343489) (-817 "ODP.spad" 1332869 1332889 1333242 1333373) (-816 "ODETOOLS.spad" 1331518 1331537 1332859 1332864) (-815 "ODESYS.spad" 1329212 1329229 1331508 1331513) (-814 "ODERTRIC.spad" 1325221 1325238 1329169 1329174) (-813 "ODERED.spad" 1324620 1324644 1325211 1325216) (-812 "ODERAT.spad" 1322237 1322254 1324610 1324615) (-811 "ODEPRRIC.spad" 1319274 1319296 1322227 1322232) (-810 "ODEPROB.spad" 1318531 1318539 1319264 1319269) (-809 "ODEPRIM.spad" 1315865 1315887 1318521 1318526) (-808 "ODEPAL.spad" 1315251 1315275 1315855 1315860) (-807 "ODEPACK.spad" 1301917 1301925 1315241 1315246) (-806 "ODEINT.spad" 1301352 1301368 1301907 1301912) (-805 "ODEIFTBL.spad" 1298747 1298755 1301342 1301347) (-804 "ODEEF.spad" 1294242 1294258 1298737 1298742) (-803 "ODECONST.spad" 1293779 1293797 1294232 1294237) (-802 "ODECAT.spad" 1292377 1292385 1293769 1293774) (-801 "OCTCT2.spad" 1292023 1292044 1292367 1292372) (-800 "OCT.spad" 1290163 1290173 1290877 1290916) (-799 "OCAMON.spad" 1290011 1290019 1290153 1290158) (-798 "OC.spad" 1287807 1287817 1289967 1290006) (-797 "OC.spad" 1285328 1285340 1287490 1287495) (-796 "OASGP.spad" 1285143 1285151 1285318 1285323) (-795 "OAMONS.spad" 1284665 1284673 1285133 1285138) (-794 "OAMON.spad" 1284526 1284534 1284655 1284660) (-793 "OAGROUP.spad" 1284388 1284396 1284516 1284521) (-792 "NUMTUBE.spad" 1283979 1283995 1284378 1284383) (-791 "NUMQUAD.spad" 1271955 1271963 1283969 1283974) (-790 "NUMODE.spad" 1263309 1263317 1271945 1271950) (-789 "NUMINT.spad" 1260875 1260883 1263299 1263304) (-788 "NUMFMT.spad" 1259715 1259723 1260865 1260870) (-787 "NUMERIC.spad" 1251829 1251839 1259520 1259525) (-786 "NTSCAT.spad" 1250337 1250353 1251797 1251824) (-785 "NTPOLFN.spad" 1249888 1249898 1250254 1250259) (-784 "NSUP2.spad" 1249280 1249292 1249878 1249883) (-783 "NSUP.spad" 1242326 1242336 1246866 1247019) (-782 "NSMP.spad" 1238557 1238576 1238865 1238992) (-781 "NREP.spad" 1236935 1236949 1238547 1238552) (-780 "NPCOEF.spad" 1236181 1236201 1236925 1236930) (-779 "NORMRETR.spad" 1235779 1235818 1236171 1236176) (-778 "NORMPK.spad" 1233681 1233700 1235769 1235774) (-777 "NORMMA.spad" 1233369 1233395 1233671 1233676) (-776 "NONE1.spad" 1233045 1233055 1233359 1233364) (-775 "NONE.spad" 1232786 1232794 1233035 1233040) (-774 "NODE1.spad" 1232273 1232289 1232776 1232781) (-773 "NNI.spad" 1231168 1231176 1232247 1232268) (-772 "NLINSOL.spad" 1229794 1229804 1231158 1231163) (-771 "NIPROB.spad" 1228335 1228343 1229784 1229789) (-770 "NFINTBAS.spad" 1225895 1225912 1228325 1228330) (-769 "NETCLT.spad" 1225869 1225880 1225885 1225890) (-768 "NCODIV.spad" 1224085 1224101 1225859 1225864) (-767 "NCNTFRAC.spad" 1223727 1223741 1224075 1224080) (-766 "NCEP.spad" 1221893 1221907 1223717 1223722) (-765 "NASRING.spad" 1221489 1221497 1221883 1221888) (-764 "NASRING.spad" 1221083 1221093 1221479 1221484) (-763 "NARNG.spad" 1220435 1220443 1221073 1221078) (-762 "NARNG.spad" 1219785 1219795 1220425 1220430) (-761 "NAGSP.spad" 1218862 1218870 1219775 1219780) (-760 "NAGS.spad" 1208523 1208531 1218852 1218857) (-759 "NAGF07.spad" 1206954 1206962 1208513 1208518) (-758 "NAGF04.spad" 1201356 1201364 1206944 1206949) (-757 "NAGF02.spad" 1195425 1195433 1201346 1201351) (-756 "NAGF01.spad" 1191186 1191194 1195415 1195420) (-755 "NAGE04.spad" 1184886 1184894 1191176 1191181) (-754 "NAGE02.spad" 1175546 1175554 1184876 1184881) (-753 "NAGE01.spad" 1171548 1171556 1175536 1175541) (-752 "NAGD03.spad" 1169552 1169560 1171538 1171543) (-751 "NAGD02.spad" 1162299 1162307 1169542 1169547) (-750 "NAGD01.spad" 1156592 1156600 1162289 1162294) (-749 "NAGC06.spad" 1152467 1152475 1156582 1156587) (-748 "NAGC05.spad" 1150968 1150976 1152457 1152462) (-747 "NAGC02.spad" 1150235 1150243 1150958 1150963) (-746 "NAALG.spad" 1149776 1149786 1150203 1150230) (-745 "NAALG.spad" 1149337 1149349 1149766 1149771) (-744 "MULTSQFR.spad" 1146295 1146312 1149327 1149332) (-743 "MULTFACT.spad" 1145678 1145695 1146285 1146290) (-742 "MTSCAT.spad" 1143772 1143793 1145576 1145673) (-741 "MTHING.spad" 1143431 1143441 1143762 1143767) (-740 "MSYSCMD.spad" 1142865 1142873 1143421 1143426) (-739 "MSETAGG.spad" 1142710 1142720 1142833 1142860) (-738 "MSET.spad" 1140668 1140678 1142416 1142455) (-737 "MRING.spad" 1137645 1137657 1140376 1140443) (-736 "MRF2.spad" 1137215 1137229 1137635 1137640) (-735 "MRATFAC.spad" 1136761 1136778 1137205 1137210) (-734 "MPRFF.spad" 1134801 1134820 1136751 1136756) (-733 "MPOLY.spad" 1132272 1132287 1132631 1132758) (-732 "MPCPF.spad" 1131536 1131555 1132262 1132267) (-731 "MPC3.spad" 1131353 1131393 1131526 1131531) (-730 "MPC2.spad" 1130999 1131032 1131343 1131348) (-729 "MONOTOOL.spad" 1129350 1129367 1130989 1130994) (-728 "MONOID.spad" 1128669 1128677 1129340 1129345) (-727 "MONOID.spad" 1127986 1127996 1128659 1128664) (-726 "MONOGEN.spad" 1126734 1126747 1127846 1127981) (-725 "MONOGEN.spad" 1125504 1125519 1126618 1126623) (-724 "MONADWU.spad" 1123534 1123542 1125494 1125499) (-723 "MONADWU.spad" 1121562 1121572 1123524 1123529) (-722 "MONAD.spad" 1120722 1120730 1121552 1121557) (-721 "MONAD.spad" 1119880 1119890 1120712 1120717) (-720 "MOEBIUS.spad" 1118616 1118630 1119860 1119875) (-719 "MODULE.spad" 1118486 1118496 1118584 1118611) (-718 "MODULE.spad" 1118376 1118388 1118476 1118481) (-717 "MODRING.spad" 1117711 1117750 1118356 1118371) (-716 "MODOP.spad" 1116376 1116388 1117533 1117600) (-715 "MODMONOM.spad" 1116107 1116125 1116366 1116371) (-714 "MODMON.spad" 1112902 1112918 1113621 1113774) (-713 "MODFIELD.spad" 1112264 1112303 1112804 1112897) (-712 "MMLFORM.spad" 1111124 1111132 1112254 1112259) (-711 "MMAP.spad" 1110866 1110900 1111114 1111119) (-710 "MLO.spad" 1109325 1109335 1110822 1110861) (-709 "MLIFT.spad" 1107937 1107954 1109315 1109320) (-708 "MKUCFUNC.spad" 1107472 1107490 1107927 1107932) (-707 "MKRECORD.spad" 1107076 1107089 1107462 1107467) (-706 "MKFUNC.spad" 1106483 1106493 1107066 1107071) (-705 "MKFLCFN.spad" 1105451 1105461 1106473 1106478) (-704 "MKBCFUNC.spad" 1104946 1104964 1105441 1105446) (-703 "MINT.spad" 1104385 1104393 1104848 1104941) (-702 "MHROWRED.spad" 1102896 1102906 1104375 1104380) (-701 "MFLOAT.spad" 1101416 1101424 1102786 1102891) (-700 "MFINFACT.spad" 1100816 1100838 1101406 1101411) (-699 "MESH.spad" 1098603 1098611 1100806 1100811) (-698 "MDDFACT.spad" 1096814 1096824 1098593 1098598) (-697 "MDAGG.spad" 1096105 1096115 1096794 1096809) (-696 "MCMPLX.spad" 1092116 1092124 1092730 1092931) (-695 "MCDEN.spad" 1091326 1091338 1092106 1092111) (-694 "MCALCFN.spad" 1088448 1088474 1091316 1091321) (-693 "MAYBE.spad" 1087732 1087743 1088438 1088443) (-692 "MATSTOR.spad" 1085040 1085050 1087722 1087727) (-691 "MATRIX.spad" 1083744 1083754 1084228 1084255) (-690 "MATLIN.spad" 1081088 1081112 1083628 1083633) (-689 "MATCAT2.spad" 1080370 1080418 1081078 1081083) (-688 "MATCAT.spad" 1072099 1072121 1080338 1080365) (-687 "MATCAT.spad" 1063700 1063724 1071941 1071946) (-686 "MAPPKG3.spad" 1062615 1062629 1063690 1063695) (-685 "MAPPKG2.spad" 1061953 1061965 1062605 1062610) (-684 "MAPPKG1.spad" 1060781 1060791 1061943 1061948) (-683 "MAPPAST.spad" 1060096 1060104 1060771 1060776) (-682 "MAPHACK3.spad" 1059908 1059922 1060086 1060091) (-681 "MAPHACK2.spad" 1059677 1059689 1059898 1059903) (-680 "MAPHACK1.spad" 1059321 1059331 1059667 1059672) (-679 "MAGMA.spad" 1057111 1057128 1059311 1059316) (-678 "MACROAST.spad" 1056690 1056698 1057101 1057106) (-677 "M3D.spad" 1054410 1054420 1056068 1056073) (-676 "LZSTAGG.spad" 1051648 1051658 1054400 1054405) (-675 "LZSTAGG.spad" 1048884 1048896 1051638 1051643) (-674 "LWORD.spad" 1045589 1045606 1048874 1048879) (-673 "LSTAST.spad" 1045373 1045381 1045579 1045584) (-672 "LSQM.spad" 1043600 1043614 1043994 1044045) (-671 "LSPP.spad" 1043135 1043152 1043590 1043595) (-670 "LSMP1.spad" 1040970 1040984 1043125 1043130) (-669 "LSMP.spad" 1039827 1039855 1040960 1040965) (-668 "LSAGG.spad" 1039496 1039506 1039795 1039822) (-667 "LSAGG.spad" 1039185 1039197 1039486 1039491) (-666 "LPOLY.spad" 1038139 1038158 1039041 1039110) (-665 "LPEFRAC.spad" 1037410 1037420 1038129 1038134) (-664 "LOGIC.spad" 1037012 1037020 1037400 1037405) (-663 "LOGIC.spad" 1036612 1036622 1037002 1037007) (-662 "LODOOPS.spad" 1035542 1035554 1036602 1036607) (-661 "LODOF.spad" 1034588 1034605 1035499 1035504) (-660 "LODOCAT.spad" 1033254 1033264 1034544 1034583) (-659 "LODOCAT.spad" 1031918 1031930 1033210 1033215) (-658 "LODO2.spad" 1031191 1031203 1031598 1031637) (-657 "LODO1.spad" 1030591 1030601 1030871 1030910) (-656 "LODO.spad" 1029975 1029991 1030271 1030310) (-655 "LODEEF.spad" 1028777 1028795 1029965 1029970) (-654 "LO.spad" 1028178 1028192 1028711 1028738) (-653 "LNAGG.spad" 1024010 1024020 1028168 1028173) (-652 "LNAGG.spad" 1019806 1019818 1023966 1023971) (-651 "LMOPS.spad" 1016574 1016591 1019796 1019801) (-650 "LMODULE.spad" 1016342 1016352 1016564 1016569) (-649 "LMDICT.spad" 1015629 1015639 1015893 1015920) (-648 "LLINSET.spad" 1015026 1015036 1015619 1015624) (-647 "LITERAL.spad" 1014932 1014943 1015016 1015021) (-646 "LIST3.spad" 1014243 1014257 1014922 1014927) (-645 "LIST2MAP.spad" 1011146 1011158 1014233 1014238) (-644 "LIST2.spad" 1009848 1009860 1011136 1011141) (-643 "LIST.spad" 1007583 1007593 1008995 1009022) (-642 "LINSET.spad" 1007205 1007215 1007573 1007578) (-641 "LINEXP.spad" 1006639 1006649 1007185 1007200) (-640 "LINDEP.spad" 1005448 1005460 1006551 1006556) (-639 "LIMITRF.spad" 1003395 1003405 1005438 1005443) (-638 "LIMITPS.spad" 1002305 1002318 1003385 1003390) (-637 "LIECAT.spad" 1001781 1001791 1002231 1002300) (-636 "LIECAT.spad" 1001285 1001297 1001737 1001742) (-635 "LIE.spad" 999301 999313 1000575 1000720) (-634 "LIB.spad" 997351 997359 997960 997975) (-633 "LGROBP.spad" 994704 994723 997341 997346) (-632 "LFCAT.spad" 993763 993771 994694 994699) (-631 "LF.spad" 992718 992734 993753 993758) (-630 "LEXTRIPK.spad" 988221 988236 992708 992713) (-629 "LEXP.spad" 986224 986251 988201 988216) (-628 "LETAST.spad" 985923 985931 986214 986219) (-627 "LEADCDET.spad" 984321 984338 985913 985918) (-626 "LAZM3PK.spad" 983025 983047 984311 984316) (-625 "LAUPOL.spad" 981718 981731 982618 982687) (-624 "LAPLACE.spad" 981301 981317 981708 981713) (-623 "LALG.spad" 981077 981087 981281 981296) (-622 "LALG.spad" 980861 980873 981067 981072) (-621 "LA.spad" 980301 980315 980783 980822) (-620 "KVTFROM.spad" 980036 980046 980291 980296) (-619 "KTVLOGIC.spad" 979548 979556 980026 980031) (-618 "KRCFROM.spad" 979286 979296 979538 979543) (-617 "KOVACIC.spad" 978009 978026 979276 979281) (-616 "KONVERT.spad" 977731 977741 977999 978004) (-615 "KOERCE.spad" 977468 977478 977721 977726) (-614 "KERNEL2.spad" 977171 977183 977458 977463) (-613 "KERNEL.spad" 975826 975836 976955 976960) (-612 "KDAGG.spad" 974935 974957 975806 975821) (-611 "KDAGG.spad" 974052 974076 974925 974930) (-610 "KAFILE.spad" 973015 973031 973250 973277) (-609 "JORDAN.spad" 970844 970856 972305 972450) (-608 "JOINAST.spad" 970538 970546 970834 970839) (-607 "JAVACODE.spad" 970404 970412 970528 970533) (-606 "IXAGG.spad" 968537 968561 970394 970399) (-605 "IXAGG.spad" 966525 966551 968384 968389) (-604 "IVECTOR.spad" 965295 965310 965450 965477) (-603 "ITUPLE.spad" 964456 964466 965285 965290) (-602 "ITRIGMNP.spad" 963295 963314 964446 964451) (-601 "ITFUN3.spad" 962801 962815 963285 963290) (-600 "ITFUN2.spad" 962545 962557 962791 962796) (-599 "ITAYLOR.spad" 960539 960554 962409 962506) (-598 "ISUPS.spad" 952976 952991 959513 959610) (-597 "ISUMP.spad" 952477 952493 952966 952971) (-596 "ISTRING.spad" 951565 951578 951646 951673) (-595 "ISAST.spad" 951284 951292 951555 951560) (-594 "IRURPK.spad" 950001 950020 951274 951279) (-593 "IRSN.spad" 948005 948013 949991 949996) (-592 "IRRF2F.spad" 946490 946500 947961 947966) (-591 "IRREDFFX.spad" 946091 946102 946480 946485) (-590 "IROOT.spad" 944430 944440 946081 946086) (-589 "IRFORM.spad" 944407 944415 944420 944425) (-588 "IR2F.spad" 943613 943629 944397 944402) (-587 "IR2.spad" 942641 942657 943603 943608) (-586 "IR.spad" 940442 940456 942496 942523) (-585 "IPRNTPK.spad" 940202 940210 940432 940437) (-584 "IPF.spad" 939767 939779 940007 940100) (-583 "IPADIC.spad" 939528 939554 939693 939762) (-582 "IP4ADDR.spad" 939085 939093 939518 939523) (-581 "IOMODE.spad" 938706 938714 939075 939080) (-580 "IOBFILE.spad" 938067 938075 938696 938701) (-579 "IOBCON.spad" 937932 937940 938057 938062) (-578 "INVLAPLA.spad" 937581 937597 937922 937927) (-577 "INTTR.spad" 930975 930992 937571 937576) (-576 "INTTOOLS.spad" 928730 928746 930549 930554) (-575 "INTSLPE.spad" 928050 928058 928720 928725) (-574 "INTRVL.spad" 927616 927626 927964 928045) (-573 "INTRF.spad" 926040 926054 927606 927611) (-572 "INTRET.spad" 925472 925482 926030 926035) (-571 "INTRAT.spad" 924199 924216 925462 925467) (-570 "INTPM.spad" 922584 922600 923842 923847) (-569 "INTPAF.spad" 920455 920473 922516 922521) (-568 "INTPACK.spad" 910829 910837 920445 920450) (-567 "INTHERTR.spad" 910103 910120 910819 910824) (-566 "INTHERAL.spad" 909773 909797 910093 910098) (-565 "INTHEORY.spad" 906212 906220 909763 909768) (-564 "INTG0.spad" 899963 899981 906144 906149) (-563 "INTFTBL.spad" 895417 895425 899953 899958) (-562 "INTFACT.spad" 894476 894486 895407 895412) (-561 "INTEF.spad" 892863 892879 894466 894471) (-560 "INTDOM.spad" 891486 891494 892789 892858) (-559 "INTDOM.spad" 890171 890181 891476 891481) (-558 "INTCAT.spad" 888430 888440 890085 890166) (-557 "INTBIT.spad" 887937 887945 888420 888425) (-556 "INTALG.spad" 887125 887152 887927 887932) (-555 "INTAF.spad" 886625 886641 887115 887120) (-554 "INTABL.spad" 885143 885174 885306 885333) (-553 "INT8.spad" 885023 885031 885133 885138) (-552 "INT64.spad" 884902 884910 885013 885018) (-551 "INT32.spad" 884781 884789 884892 884897) (-550 "INT16.spad" 884660 884668 884771 884776) (-549 "INT.spad" 884108 884116 884514 884655) (-548 "INS.spad" 881611 881619 884010 884103) (-547 "INS.spad" 879200 879210 881601 881606) (-546 "INPSIGN.spad" 878670 878683 879190 879195) (-545 "INPRODPF.spad" 877766 877785 878660 878665) (-544 "INPRODFF.spad" 876854 876878 877756 877761) (-543 "INNMFACT.spad" 875829 875846 876844 876849) (-542 "INMODGCD.spad" 875317 875347 875819 875824) (-541 "INFSP.spad" 873614 873636 875307 875312) (-540 "INFPROD0.spad" 872694 872713 873604 873609) (-539 "INFORM1.spad" 872319 872329 872684 872689) (-538 "INFORM.spad" 869518 869526 872309 872314) (-537 "INFINITY.spad" 869070 869078 869508 869513) (-536 "INETCLTS.spad" 869047 869055 869060 869065) (-535 "INEP.spad" 867585 867607 869037 869042) (-534 "INDE.spad" 867314 867331 867575 867580) (-533 "INCRMAPS.spad" 866735 866745 867304 867309) (-532 "INBFILE.spad" 865807 865815 866725 866730) (-531 "INBFF.spad" 861601 861612 865797 865802) (-530 "INBCON.spad" 859891 859899 861591 861596) (-529 "INBCON.spad" 858179 858189 859881 859886) (-528 "INAST.spad" 857840 857848 858169 858174) (-527 "IMPTAST.spad" 857548 857556 857830 857835) (-526 "IMATRIX.spad" 856493 856519 857005 857032) (-525 "IMATQF.spad" 855587 855631 856449 856454) (-524 "IMATLIN.spad" 854192 854216 855543 855548) (-523 "ILIST.spad" 852850 852865 853375 853402) (-522 "IIARRAY2.spad" 852238 852276 852457 852484) (-521 "IFF.spad" 851648 851664 851919 852012) (-520 "IFAST.spad" 851262 851270 851638 851643) (-519 "IFARRAY.spad" 848755 848770 850445 850472) (-518 "IFAMON.spad" 848617 848634 848711 848716) (-517 "IEVALAB.spad" 848022 848034 848607 848612) (-516 "IEVALAB.spad" 847425 847439 848012 848017) (-515 "IDPOAMS.spad" 847181 847193 847415 847420) (-514 "IDPOAM.spad" 846901 846913 847171 847176) (-513 "IDPO.spad" 846699 846711 846891 846896) (-512 "IDPC.spad" 845637 845649 846689 846694) (-511 "IDPAM.spad" 845382 845394 845627 845632) (-510 "IDPAG.spad" 845129 845141 845372 845377) (-509 "IDENT.spad" 844779 844787 845119 845124) (-508 "IDECOMP.spad" 842018 842036 844769 844774) (-507 "IDEAL.spad" 836967 837006 841953 841958) (-506 "ICDEN.spad" 836156 836172 836957 836962) (-505 "ICARD.spad" 835347 835355 836146 836151) (-504 "IBPTOOLS.spad" 833954 833971 835337 835342) (-503 "IBITS.spad" 833157 833170 833590 833617) (-502 "IBATOOL.spad" 830134 830153 833147 833152) (-501 "IBACHIN.spad" 828641 828656 830124 830129) (-500 "IARRAY2.spad" 827629 827655 828248 828275) (-499 "IARRAY1.spad" 826674 826689 826812 826839) (-498 "IAN.spad" 824897 824905 826490 826583) (-497 "IALGFACT.spad" 824500 824533 824887 824892) (-496 "HYPCAT.spad" 823924 823932 824490 824495) (-495 "HYPCAT.spad" 823346 823356 823914 823919) (-494 "HOSTNAME.spad" 823154 823162 823336 823341) (-493 "HOMOTOP.spad" 822897 822907 823144 823149) (-492 "HOAGG.spad" 820179 820189 822887 822892) (-491 "HOAGG.spad" 817236 817248 819946 819951) (-490 "HEXADEC.spad" 815338 815346 815703 815796) (-489 "HEUGCD.spad" 814373 814384 815328 815333) (-488 "HELLFDIV.spad" 813963 813987 814363 814368) (-487 "HEAP.spad" 813355 813365 813570 813597) (-486 "HEADAST.spad" 812888 812896 813345 813350) (-485 "HDP.spad" 802731 802747 803108 803239) (-484 "HDMP.spad" 799945 799960 800561 800688) (-483 "HB.spad" 798196 798204 799935 799940) (-482 "HASHTBL.spad" 796666 796697 796877 796904) (-481 "HASAST.spad" 796382 796390 796656 796661) (-480 "HACKPI.spad" 795873 795881 796284 796377) (-479 "GTSET.spad" 794812 794828 795519 795546) (-478 "GSTBL.spad" 793331 793366 793505 793520) (-477 "GSERIES.spad" 790502 790529 791463 791612) (-476 "GROUP.spad" 789775 789783 790482 790497) (-475 "GROUP.spad" 789056 789066 789765 789770) (-474 "GROEBSOL.spad" 787550 787571 789046 789051) (-473 "GRMOD.spad" 786121 786133 787540 787545) (-472 "GRMOD.spad" 784690 784704 786111 786116) (-471 "GRIMAGE.spad" 777579 777587 784680 784685) (-470 "GRDEF.spad" 775958 775966 777569 777574) (-469 "GRAY.spad" 774421 774429 775948 775953) (-468 "GRALG.spad" 773498 773510 774411 774416) (-467 "GRALG.spad" 772573 772587 773488 773493) (-466 "GPOLSET.spad" 772027 772050 772255 772282) (-465 "GOSPER.spad" 771296 771314 772017 772022) (-464 "GMODPOL.spad" 770444 770471 771264 771291) (-463 "GHENSEL.spad" 769527 769541 770434 770439) (-462 "GENUPS.spad" 765820 765833 769517 769522) (-461 "GENUFACT.spad" 765397 765407 765810 765815) (-460 "GENPGCD.spad" 764983 765000 765387 765392) (-459 "GENMFACT.spad" 764435 764454 764973 764978) (-458 "GENEEZ.spad" 762386 762399 764425 764430) (-457 "GDMP.spad" 759442 759459 760216 760343) (-456 "GCNAALG.spad" 753365 753392 759236 759303) (-455 "GCDDOM.spad" 752541 752549 753291 753360) (-454 "GCDDOM.spad" 751779 751789 752531 752536) (-453 "GBINTERN.spad" 747799 747837 751769 751774) (-452 "GBF.spad" 743566 743604 747789 747794) (-451 "GBEUCLID.spad" 741448 741486 743556 743561) (-450 "GB.spad" 738974 739012 741404 741409) (-449 "GAUSSFAC.spad" 738287 738295 738964 738969) (-448 "GALUTIL.spad" 736613 736623 738243 738248) (-447 "GALPOLYU.spad" 735067 735080 736603 736608) (-446 "GALFACTU.spad" 733240 733259 735057 735062) (-445 "GALFACT.spad" 723429 723440 733230 733235) (-444 "FVFUN.spad" 720452 720460 723419 723424) (-443 "FVC.spad" 719504 719512 720442 720447) (-442 "FUNDESC.spad" 719182 719190 719494 719499) (-441 "FUNCTION.spad" 719031 719043 719172 719177) (-440 "FTEM.spad" 718196 718204 719021 719026) (-439 "FT.spad" 716496 716504 718186 718191) (-438 "FSUPFACT.spad" 715396 715415 716432 716437) (-437 "FST.spad" 713482 713490 715386 715391) (-436 "FSRED.spad" 712962 712978 713472 713477) (-435 "FSPRMELT.spad" 711844 711860 712919 712924) (-434 "FSPECF.spad" 709935 709951 711834 711839) (-433 "FSINT.spad" 709595 709611 709925 709930) (-432 "FSERIES.spad" 708786 708798 709415 709514) (-431 "FSCINT.spad" 708103 708119 708776 708781) (-430 "FSAGG2.spad" 706846 706862 708093 708098) (-429 "FSAGG.spad" 705963 705973 706802 706841) (-428 "FSAGG.spad" 705042 705054 705883 705888) (-427 "FS2UPS.spad" 699533 699567 705032 705037) (-426 "FS2EXPXP.spad" 698658 698681 699523 699528) (-425 "FS2.spad" 698305 698321 698648 698653) (-424 "FS.spad" 692573 692583 698080 698300) (-423 "FS.spad" 686619 686631 692128 692133) (-422 "FRUTIL.spad" 685573 685583 686609 686614) (-421 "FRNAALG.spad" 680692 680702 685515 685568) (-420 "FRNAALG.spad" 675823 675835 680648 680653) (-419 "FRNAAF2.spad" 675279 675297 675813 675818) (-418 "FRMOD.spad" 674689 674719 675210 675215) (-417 "FRIDEAL2.spad" 674293 674325 674679 674684) (-416 "FRIDEAL.spad" 673518 673539 674273 674288) (-415 "FRETRCT.spad" 673029 673039 673508 673513) (-414 "FRETRCT.spad" 672406 672418 672887 672892) (-413 "FRAMALG.spad" 670754 670767 672362 672401) (-412 "FRAMALG.spad" 669134 669149 670744 670749) (-411 "FRAC2.spad" 668739 668751 669124 669129) (-410 "FRAC.spad" 665838 665848 666241 666414) (-409 "FR2.spad" 665174 665186 665828 665833) (-408 "FR.spad" 658917 658927 664198 664267) (-407 "FPS.spad" 655732 655740 658807 658912) (-406 "FPS.spad" 652575 652585 655652 655657) (-405 "FPC.spad" 651621 651629 652477 652570) (-404 "FPC.spad" 650753 650763 651611 651616) (-403 "FPATMAB.spad" 650515 650525 650743 650748) (-402 "FPARFRAC.spad" 649002 649019 650505 650510) (-401 "FORTRAN.spad" 647508 647551 648992 648997) (-400 "FORTFN.spad" 644678 644686 647498 647503) (-399 "FORTCAT.spad" 644362 644370 644668 644673) (-398 "FORT.spad" 643311 643319 644352 644357) (-397 "FORMULA1.spad" 642790 642800 643301 643306) (-396 "FORMULA.spad" 640264 640272 642780 642785) (-395 "FORDER.spad" 639955 639979 640254 640259) (-394 "FOP.spad" 639156 639164 639945 639950) (-393 "FNLA.spad" 638580 638602 639124 639151) (-392 "FNCAT.spad" 637175 637183 638570 638575) (-391 "FNAME.spad" 637067 637075 637165 637170) (-390 "FMTC.spad" 636865 636873 636993 637062) (-389 "FMONOID.spad" 636530 636540 636821 636826) (-388 "FMONCAT.spad" 633683 633693 636520 636525) (-387 "FMFUN.spad" 630713 630721 633673 633678) (-386 "FMCAT.spad" 628381 628399 630681 630708) (-385 "FMC.spad" 627433 627441 628371 628376) (-384 "FM1.spad" 626790 626802 627367 627394) (-383 "FM.spad" 626485 626497 626724 626751) (-382 "FLOATRP.spad" 624220 624234 626475 626480) (-381 "FLOATCP.spad" 621651 621665 624210 624215) (-380 "FLOAT.spad" 614965 614973 621517 621646) (-379 "FLINEXP.spad" 614677 614687 614945 614960) (-378 "FLINEXP.spad" 614343 614355 614613 614618) (-377 "FLASORT.spad" 613669 613681 614333 614338) (-376 "FLALG.spad" 611315 611334 613595 613664) (-375 "FLAGG2.spad" 610040 610056 611305 611310) (-374 "FLAGG.spad" 607082 607092 610020 610035) (-373 "FLAGG.spad" 604025 604037 606965 606970) (-372 "FINRALG.spad" 602086 602099 603981 604020) (-371 "FINRALG.spad" 600073 600088 601970 601975) (-370 "FINITE.spad" 599225 599233 600063 600068) (-369 "FINAALG.spad" 588346 588356 599167 599220) (-368 "FINAALG.spad" 577479 577491 588302 588307) (-367 "FILECAT.spad" 576005 576022 577469 577474) (-366 "FILE.spad" 575588 575598 575995 576000) (-365 "FIELD.spad" 574994 575002 575490 575583) (-364 "FIELD.spad" 574486 574496 574984 574989) (-363 "FGROUP.spad" 573133 573143 574466 574481) (-362 "FGLMICPK.spad" 571920 571935 573123 573128) (-361 "FFX.spad" 571295 571310 571636 571729) (-360 "FFSLPE.spad" 570798 570819 571285 571290) (-359 "FFPOLY2.spad" 569858 569875 570788 570793) (-358 "FFPOLY.spad" 561120 561131 569848 569853) (-357 "FFP.spad" 560517 560537 560836 560929) (-356 "FFNBX.spad" 559029 559049 560233 560326) (-355 "FFNBP.spad" 557542 557559 558745 558838) (-354 "FFNB.spad" 556007 556028 557223 557316) (-353 "FFINTBAS.spad" 553521 553540 555997 556002) (-352 "FFIELDC.spad" 551098 551106 553423 553516) (-351 "FFIELDC.spad" 548761 548771 551088 551093) (-350 "FFHOM.spad" 547509 547526 548751 548756) (-349 "FFF.spad" 544944 544955 547499 547504) (-348 "FFCGX.spad" 543791 543811 544660 544753) (-347 "FFCGP.spad" 542680 542700 543507 543600) (-346 "FFCG.spad" 541472 541493 542361 542454) (-345 "FFCAT2.spad" 541219 541259 541462 541467) (-344 "FFCAT.spad" 534392 534414 541058 541214) (-343 "FFCAT.spad" 527644 527668 534312 534317) (-342 "FF.spad" 527092 527108 527325 527418) (-341 "FEXPR.spad" 518809 518855 526848 526887) (-340 "FEVALAB.spad" 518517 518527 518799 518804) (-339 "FEVALAB.spad" 518010 518022 518294 518299) (-338 "FDIVCAT.spad" 516074 516098 518000 518005) (-337 "FDIVCAT.spad" 514136 514162 516064 516069) (-336 "FDIV2.spad" 513792 513832 514126 514131) (-335 "FDIV.spad" 513234 513258 513782 513787) (-334 "FCTRDATA.spad" 512242 512250 513224 513229) (-333 "FCPAK1.spad" 510809 510817 512232 512237) (-332 "FCOMP.spad" 510188 510198 510799 510804) (-331 "FC.spad" 500195 500203 510178 510183) (-330 "FAXF.spad" 493166 493180 500097 500190) (-329 "FAXF.spad" 486189 486205 493122 493127) (-328 "FARRAY.spad" 484339 484349 485372 485399) (-327 "FAMR.spad" 482475 482487 484237 484334) (-326 "FAMR.spad" 480595 480609 482359 482364) (-325 "FAMONOID.spad" 480263 480273 480549 480554) (-324 "FAMONC.spad" 478559 478571 480253 480258) (-323 "FAGROUP.spad" 478183 478193 478455 478482) (-322 "FACUTIL.spad" 476387 476404 478173 478178) (-321 "FACTFUNC.spad" 475581 475591 476377 476382) (-320 "EXPUPXS.spad" 472414 472437 473713 473862) (-319 "EXPRTUBE.spad" 469702 469710 472404 472409) (-318 "EXPRODE.spad" 466862 466878 469692 469697) (-317 "EXPR2UPS.spad" 462984 462997 466852 466857) (-316 "EXPR2.spad" 462689 462701 462974 462979) (-315 "EXPR.spad" 457964 457974 458678 459085) (-314 "EXPEXPAN.spad" 454904 454929 455536 455629) (-313 "EXITAST.spad" 454640 454648 454894 454899) (-312 "EXIT.spad" 454311 454319 454630 454635) (-311 "EVALCYC.spad" 453771 453785 454301 454306) (-310 "EVALAB.spad" 453343 453353 453761 453766) (-309 "EVALAB.spad" 452913 452925 453333 453338) (-308 "EUCDOM.spad" 450487 450495 452839 452908) (-307 "EUCDOM.spad" 448123 448133 450477 450482) (-306 "ESTOOLS2.spad" 447726 447740 448113 448118) (-305 "ESTOOLS1.spad" 447411 447422 447716 447721) (-304 "ESTOOLS.spad" 439257 439265 447401 447406) (-303 "ESCONT1.spad" 439006 439018 439247 439252) (-302 "ESCONT.spad" 435799 435807 438996 439001) (-301 "ES2.spad" 435304 435320 435789 435794) (-300 "ES1.spad" 434874 434890 435294 435299) (-299 "ES.spad" 427689 427697 434864 434869) (-298 "ES.spad" 420410 420420 427587 427592) (-297 "ERROR.spad" 417737 417745 420400 420405) (-296 "EQTBL.spad" 416209 416231 416418 416445) (-295 "EQ2.spad" 415927 415939 416199 416204) (-294 "EQ.spad" 410732 410742 413519 413631) (-293 "EP.spad" 407058 407068 410722 410727) (-292 "ENV.spad" 405720 405728 407048 407053) (-291 "ENTIRER.spad" 405388 405396 405664 405715) (-290 "EMR.spad" 404595 404636 405314 405383) (-289 "ELTAGG.spad" 402849 402868 404585 404590) (-288 "ELTAGG.spad" 401067 401088 402805 402810) (-287 "ELTAB.spad" 400516 400534 401057 401062) (-286 "ELFUTS.spad" 399903 399922 400506 400511) (-285 "ELEMFUN.spad" 399592 399600 399893 399898) (-284 "ELEMFUN.spad" 399279 399289 399582 399587) (-283 "ELAGG.spad" 397250 397260 399259 399274) (-282 "ELAGG.spad" 395158 395170 397169 397174) (-281 "ELABEXPR.spad" 394090 394098 395148 395153) (-280 "EFUPXS.spad" 390866 390896 394046 394051) (-279 "EFULS.spad" 387702 387725 390822 390827) (-278 "EFSTRUC.spad" 385717 385733 387692 387697) (-277 "EF.spad" 380493 380509 385707 385712) (-276 "EAB.spad" 378769 378777 380483 380488) (-275 "E04UCFA.spad" 378305 378313 378759 378764) (-274 "E04NAFA.spad" 377882 377890 378295 378300) (-273 "E04MBFA.spad" 377462 377470 377872 377877) (-272 "E04JAFA.spad" 376998 377006 377452 377457) (-271 "E04GCFA.spad" 376534 376542 376988 376993) (-270 "E04FDFA.spad" 376070 376078 376524 376529) (-269 "E04DGFA.spad" 375606 375614 376060 376065) (-268 "E04AGNT.spad" 371456 371464 375596 375601) (-267 "DVARCAT.spad" 368145 368155 371446 371451) (-266 "DVARCAT.spad" 364832 364844 368135 368140) (-265 "DSMP.spad" 362299 362313 362604 362731) (-264 "DROPT1.spad" 361964 361974 362289 362294) (-263 "DROPT0.spad" 356821 356829 361954 361959) (-262 "DROPT.spad" 350780 350788 356811 356816) (-261 "DRAWPT.spad" 348953 348961 350770 350775) (-260 "DRAWHACK.spad" 348261 348271 348943 348948) (-259 "DRAWCX.spad" 345731 345739 348251 348256) (-258 "DRAWCURV.spad" 345278 345293 345721 345726) (-257 "DRAWCFUN.spad" 334810 334818 345268 345273) (-256 "DRAW.spad" 327686 327699 334800 334805) (-255 "DQAGG.spad" 325864 325874 327654 327681) (-254 "DPOLCAT.spad" 321213 321229 325732 325859) (-253 "DPOLCAT.spad" 316648 316666 321169 321174) (-252 "DPMO.spad" 308874 308890 309012 309313) (-251 "DPMM.spad" 301113 301131 301238 301539) (-250 "DOMTMPLT.spad" 300773 300781 301103 301108) (-249 "DOMCTOR.spad" 300528 300536 300763 300768) (-248 "DOMAIN.spad" 299615 299623 300518 300523) (-247 "DMP.spad" 296875 296890 297445 297572) (-246 "DLP.spad" 296227 296237 296865 296870) (-245 "DLIST.spad" 294806 294816 295410 295437) (-244 "DLAGG.spad" 293223 293233 294796 294801) (-243 "DIVRING.spad" 292765 292773 293167 293218) (-242 "DIVRING.spad" 292351 292361 292755 292760) (-241 "DISPLAY.spad" 290541 290549 292341 292346) (-240 "DIRPROD2.spad" 289359 289377 290531 290536) (-239 "DIRPROD.spad" 278939 278955 279579 279710) (-238 "DIRPCAT.spad" 277883 277899 278803 278934) (-237 "DIRPCAT.spad" 276556 276574 277478 277483) (-236 "DIOSP.spad" 275381 275389 276546 276551) (-235 "DIOPS.spad" 274377 274387 275361 275376) (-234 "DIOPS.spad" 273347 273359 274333 274338) (-233 "DIFRING.spad" 272643 272651 273327 273342) (-232 "DIFRING.spad" 271947 271957 272633 272638) (-231 "DIFEXT.spad" 271118 271128 271927 271942) (-230 "DIFEXT.spad" 270206 270218 271017 271022) (-229 "DIAGG.spad" 269836 269846 270186 270201) (-228 "DIAGG.spad" 269474 269486 269826 269831) (-227 "DHMATRIX.spad" 267786 267796 268931 268958) (-226 "DFSFUN.spad" 261426 261434 267776 267781) (-225 "DFLOAT.spad" 258157 258165 261316 261421) (-224 "DFINTTLS.spad" 256388 256404 258147 258152) (-223 "DERHAM.spad" 254302 254334 256368 256383) (-222 "DEQUEUE.spad" 253626 253636 253909 253936) (-221 "DEGRED.spad" 253243 253257 253616 253621) (-220 "DEFINTRF.spad" 250825 250835 253233 253238) (-219 "DEFINTEF.spad" 249363 249379 250815 250820) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTORKIND.spad" 217064 217072 217451 217456) (-186 "CTORCAT.spad" 216313 216321 217054 217059) (-185 "CTORCAT.spad" 215560 215570 216303 216308) (-184 "CTORCALL.spad" 215149 215159 215550 215555) (-183 "CTOR.spad" 214840 214848 215139 215144) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX2.spad" 194391 194403 194666 194671) (-168 "COMPLEX.spad" 188528 188538 188772 189033) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMMAAST.spad" 183046 183054 183273 183278) (-161 "COMM.spad" 182857 182865 183036 183041) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN2.spad" 152290 152317 152890 152895) (-135 "CARTEN.spad" 147577 147601 152280 152285) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTEBUF.spad" 141359 141367 142669 142696) (-128 "BYTE.spad" 140786 140794 141349 141354) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP1.spad" 125493 125503 128017 128022) (-113 "BOP.spad" 120675 120683 125483 125488) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP80.spad" 96764 96777 97432 97437) (-87 "ASP8.spad" 95807 95820 96754 96759) (-86 "ASP78.spad" 95258 95271 95797 95802) (-85 "ASP77.spad" 94627 94640 95248 95253) (-84 "ASP74.spad" 93719 93732 94617 94622) (-83 "ASP73.spad" 92990 93003 93709 93714) (-82 "ASP7.spad" 92150 92163 92980 92985) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP49.spad" 86342 86355 87333 87338) (-77 "ASP42.spad" 84749 84788 86332 86337) (-76 "ASP41.spad" 83328 83367 84739 84744) (-75 "ASP4.spad" 82623 82636 83318 83323) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP19.spad" 61377 61390 66681 66686) (-63 "ASP12.spad" 60791 60804 61367 61372) (-62 "ASP10.spad" 60062 60075 60781 60786) (-61 "ASP1.spad" 59443 59456 60052 60057) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY12.spad" 57516 57527 58793 58798) (-58 "ARRAY1.spad" 56353 56362 56699 56726) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY1.spad" 45243 45252 46162 46167) (-51 "ANY.spad" 44102 44109 45233 45238) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2263889 2263894 2263899 2263904) (-2 NIL 2263869 2263874 2263879 2263884) (-1 NIL 2263849 2263854 2263859 2263864) (0 NIL 2263829 2263834 2263839 2263844) (-1299 "ZMOD.spad" 2263638 2263651 2263767 2263824) (-1298 "ZLINDEP.spad" 2262704 2262715 2263628 2263633) (-1297 "ZDSOLVE.spad" 2252649 2252671 2262694 2262699) (-1296 "YSTREAM.spad" 2252144 2252155 2252639 2252644) (-1295 "XRPOLY.spad" 2251364 2251384 2252000 2252069) (-1294 "XPR.spad" 2249159 2249172 2251082 2251181) (-1293 "XPOLYC.spad" 2248478 2248494 2249085 2249154) (-1292 "XPOLY.spad" 2248033 2248044 2248334 2248403) (-1291 "XPBWPOLY.spad" 2246470 2246490 2247813 2247882) (-1290 "XFALG.spad" 2243518 2243534 2246396 2246465) (-1289 "XF.spad" 2241981 2241996 2243420 2243513) (-1288 "XF.spad" 2240424 2240441 2241865 2241870) (-1287 "XEXPPKG.spad" 2239675 2239701 2240414 2240419) (-1286 "XDPOLY.spad" 2239289 2239305 2239531 2239600) (-1285 "XALG.spad" 2238949 2238960 2239245 2239284) (-1284 "WUTSET.spad" 2234788 2234805 2238595 2238622) (-1283 "WP.spad" 2233987 2234031 2234646 2234713) (-1282 "WHILEAST.spad" 2233785 2233794 2233977 2233982) (-1281 "WHEREAST.spad" 2233456 2233465 2233775 2233780) (-1280 "WFFINTBS.spad" 2231119 2231141 2233446 2233451) (-1279 "WEIER.spad" 2229341 2229352 2231109 2231114) (-1278 "VSPACE.spad" 2229014 2229025 2229309 2229336) (-1277 "VSPACE.spad" 2228707 2228720 2229004 2229009) (-1276 "VOID.spad" 2228384 2228393 2228697 2228702) (-1275 "VIEWDEF.spad" 2223585 2223594 2228374 2228379) (-1274 "VIEW3D.spad" 2207546 2207555 2223575 2223580) (-1273 "VIEW2D.spad" 2195437 2195446 2207536 2207541) (-1272 "VIEW.spad" 2193117 2193126 2195427 2195432) (-1271 "VECTOR2.spad" 2191756 2191769 2193107 2193112) (-1270 "VECTOR.spad" 2190430 2190441 2190681 2190708) (-1269 "VECTCAT.spad" 2188334 2188345 2190398 2190425) (-1268 "VECTCAT.spad" 2186045 2186058 2188111 2188116) (-1267 "VARIABLE.spad" 2185825 2185840 2186035 2186040) (-1266 "UTYPE.spad" 2185469 2185478 2185815 2185820) (-1265 "UTSODETL.spad" 2184764 2184788 2185425 2185430) (-1264 "UTSODE.spad" 2182980 2183000 2184754 2184759) (-1263 "UTSCAT.spad" 2180459 2180475 2182878 2182975) (-1262 "UTSCAT.spad" 2177582 2177600 2180003 2180008) (-1261 "UTS2.spad" 2177177 2177212 2177572 2177577) (-1260 "UTS.spad" 2171981 2172009 2175644 2175741) (-1259 "URAGG.spad" 2166654 2166665 2171971 2171976) (-1258 "URAGG.spad" 2161291 2161304 2166610 2166615) (-1257 "UPXSSING.spad" 2158936 2158962 2160372 2160505) (-1256 "UPXSCONS.spad" 2156695 2156715 2157068 2157217) (-1255 "UPXSCCA.spad" 2155266 2155286 2156541 2156690) (-1254 "UPXSCCA.spad" 2153979 2154001 2155256 2155261) (-1253 "UPXSCAT.spad" 2152568 2152584 2153825 2153974) (-1252 "UPXS2.spad" 2152111 2152164 2152558 2152563) (-1251 "UPXS.spad" 2149265 2149293 2150243 2150392) (-1250 "UPSQFREE.spad" 2147680 2147694 2149255 2149260) (-1249 "UPSCAT.spad" 2145291 2145315 2147578 2147675) (-1248 "UPSCAT.spad" 2142608 2142634 2144897 2144902) (-1247 "UPOLYC2.spad" 2142079 2142098 2142598 2142603) (-1246 "UPOLYC.spad" 2137119 2137130 2141921 2142074) (-1245 "UPOLYC.spad" 2132051 2132064 2136855 2136860) (-1244 "UPMP.spad" 2130951 2130964 2132041 2132046) (-1243 "UPDIVP.spad" 2130516 2130530 2130941 2130946) (-1242 "UPDECOMP.spad" 2128761 2128775 2130506 2130511) (-1241 "UPCDEN.spad" 2127970 2127986 2128751 2128756) (-1240 "UP2.spad" 2127334 2127355 2127960 2127965) (-1239 "UP.spad" 2124533 2124548 2124920 2125073) (-1238 "UNISEG2.spad" 2124030 2124043 2124489 2124494) (-1237 "UNISEG.spad" 2123383 2123394 2123949 2123954) (-1236 "UNIFACT.spad" 2122486 2122498 2123373 2123378) (-1235 "ULSCONS.spad" 2114882 2114902 2115252 2115401) (-1234 "ULSCCAT.spad" 2112619 2112639 2114728 2114877) (-1233 "ULSCCAT.spad" 2110464 2110486 2112575 2112580) (-1232 "ULSCAT.spad" 2108696 2108712 2110310 2110459) (-1231 "ULS2.spad" 2108210 2108263 2108686 2108691) (-1230 "ULS.spad" 2098768 2098796 2099855 2100284) (-1229 "UINT8.spad" 2098645 2098654 2098758 2098763) (-1228 "UINT64.spad" 2098521 2098530 2098635 2098640) (-1227 "UINT32.spad" 2098397 2098406 2098511 2098516) (-1226 "UINT16.spad" 2098273 2098282 2098387 2098392) (-1225 "UFD.spad" 2097338 2097347 2098199 2098268) (-1224 "UFD.spad" 2096465 2096476 2097328 2097333) (-1223 "UDVO.spad" 2095346 2095355 2096455 2096460) (-1222 "UDPO.spad" 2092839 2092850 2095302 2095307) (-1221 "TYPEAST.spad" 2092758 2092767 2092829 2092834) (-1220 "TYPE.spad" 2092690 2092699 2092748 2092753) (-1219 "TWOFACT.spad" 2091342 2091357 2092680 2092685) (-1218 "TUPLE.spad" 2090828 2090839 2091241 2091246) (-1217 "TUBETOOL.spad" 2087695 2087704 2090818 2090823) (-1216 "TUBE.spad" 2086342 2086359 2087685 2087690) (-1215 "TSETCAT.spad" 2073469 2073486 2086310 2086337) (-1214 "TSETCAT.spad" 2060582 2060601 2073425 2073430) (-1213 "TS.spad" 2059181 2059197 2060147 2060244) (-1212 "TRMANIP.spad" 2053547 2053564 2058887 2058892) (-1211 "TRIMAT.spad" 2052510 2052535 2053537 2053542) (-1210 "TRIGMNIP.spad" 2051037 2051054 2052500 2052505) (-1209 "TRIGCAT.spad" 2050549 2050558 2051027 2051032) (-1208 "TRIGCAT.spad" 2050059 2050070 2050539 2050544) (-1207 "TREE.spad" 2048634 2048645 2049666 2049693) (-1206 "TRANFUN.spad" 2048473 2048482 2048624 2048629) (-1205 "TRANFUN.spad" 2048310 2048321 2048463 2048468) (-1204 "TOPSP.spad" 2047984 2047993 2048300 2048305) (-1203 "TOOLSIGN.spad" 2047647 2047658 2047974 2047979) (-1202 "TEXTFILE.spad" 2046208 2046217 2047637 2047642) (-1201 "TEX1.spad" 2045764 2045775 2046198 2046203) (-1200 "TEX.spad" 2042910 2042919 2045754 2045759) (-1199 "TEMUTL.spad" 2042465 2042474 2042900 2042905) (-1198 "TBCMPPK.spad" 2040558 2040581 2042455 2042460) (-1197 "TBAGG.spad" 2039608 2039631 2040538 2040553) (-1196 "TBAGG.spad" 2038666 2038691 2039598 2039603) (-1195 "TANEXP.spad" 2038074 2038085 2038656 2038661) (-1194 "TABLEAU.spad" 2037555 2037566 2038064 2038069) (-1193 "TABLE.spad" 2035966 2035989 2036236 2036263) (-1192 "TABLBUMP.spad" 2032769 2032780 2035956 2035961) (-1191 "SYSTEM.spad" 2031997 2032006 2032759 2032764) (-1190 "SYSSOLP.spad" 2029480 2029491 2031987 2031992) (-1189 "SYSPTR.spad" 2029379 2029388 2029470 2029475) (-1188 "SYSNNI.spad" 2028561 2028572 2029369 2029374) (-1187 "SYSINT.spad" 2027965 2027976 2028551 2028556) (-1186 "SYNTAX.spad" 2024171 2024180 2027955 2027960) (-1185 "SYMTAB.spad" 2022239 2022248 2024161 2024166) (-1184 "SYMS.spad" 2018268 2018277 2022229 2022234) (-1183 "SYMPOLY.spad" 2017275 2017286 2017357 2017484) (-1182 "SYMFUNC.spad" 2016776 2016787 2017265 2017270) (-1181 "SYMBOL.spad" 2014279 2014288 2016766 2016771) (-1180 "SWITCH.spad" 2011050 2011059 2014269 2014274) (-1179 "SUTS.spad" 2007955 2007983 2009517 2009614) (-1178 "SUPXS.spad" 2005096 2005124 2006087 2006236) (-1177 "SUPFRACF.spad" 2004201 2004219 2005086 2005091) (-1176 "SUP2.spad" 2003593 2003606 2004191 2004196) (-1175 "SUP.spad" 2000406 2000417 2001179 2001332) (-1174 "SUMRF.spad" 1999380 1999391 2000396 2000401) (-1173 "SUMFS.spad" 1999017 1999034 1999370 1999375) (-1172 "SULS.spad" 1989562 1989590 1990662 1991091) (-1171 "SUCHTAST.spad" 1989331 1989340 1989552 1989557) (-1170 "SUCH.spad" 1989013 1989028 1989321 1989326) (-1169 "SUBSPACE.spad" 1981128 1981143 1989003 1989008) (-1168 "SUBRESP.spad" 1980298 1980312 1981084 1981089) (-1167 "STTFNC.spad" 1976766 1976782 1980288 1980293) (-1166 "STTF.spad" 1972865 1972881 1976756 1976761) (-1165 "STTAYLOR.spad" 1965500 1965511 1972746 1972751) (-1164 "STRTBL.spad" 1964005 1964022 1964154 1964181) (-1163 "STRING.spad" 1963414 1963423 1963428 1963455) (-1162 "STRICAT.spad" 1963202 1963211 1963382 1963409) (-1161 "STREAM3.spad" 1962775 1962790 1963192 1963197) (-1160 "STREAM2.spad" 1961903 1961916 1962765 1962770) (-1159 "STREAM1.spad" 1961609 1961620 1961893 1961898) (-1158 "STREAM.spad" 1958527 1958538 1961134 1961149) (-1157 "STINPROD.spad" 1957463 1957479 1958517 1958522) (-1156 "STEPAST.spad" 1956697 1956706 1957453 1957458) (-1155 "STEP.spad" 1955898 1955907 1956687 1956692) (-1154 "STBL.spad" 1954424 1954452 1954591 1954606) (-1153 "STAGG.spad" 1953499 1953510 1954414 1954419) (-1152 "STAGG.spad" 1952572 1952585 1953489 1953494) (-1151 "STACK.spad" 1951929 1951940 1952179 1952206) (-1150 "SREGSET.spad" 1949633 1949650 1951575 1951602) (-1149 "SRDCMPK.spad" 1948194 1948214 1949623 1949628) (-1148 "SRAGG.spad" 1943337 1943346 1948162 1948189) (-1147 "SRAGG.spad" 1938500 1938511 1943327 1943332) (-1146 "SQMATRIX.spad" 1936116 1936134 1937032 1937119) (-1145 "SPLTREE.spad" 1930668 1930681 1935552 1935579) (-1144 "SPLNODE.spad" 1927256 1927269 1930658 1930663) (-1143 "SPFCAT.spad" 1926065 1926074 1927246 1927251) (-1142 "SPECOUT.spad" 1924617 1924626 1926055 1926060) (-1141 "SPADXPT.spad" 1916212 1916221 1924607 1924612) (-1140 "spad-parser.spad" 1915677 1915686 1916202 1916207) (-1139 "SPADAST.spad" 1915378 1915387 1915667 1915672) (-1138 "SPACEC.spad" 1899577 1899588 1915368 1915373) (-1137 "SPACE3.spad" 1899353 1899364 1899567 1899572) (-1136 "SORTPAK.spad" 1898902 1898915 1899309 1899314) (-1135 "SOLVETRA.spad" 1896665 1896676 1898892 1898897) (-1134 "SOLVESER.spad" 1895193 1895204 1896655 1896660) (-1133 "SOLVERAD.spad" 1891219 1891230 1895183 1895188) (-1132 "SOLVEFOR.spad" 1889681 1889699 1891209 1891214) (-1131 "SNTSCAT.spad" 1889281 1889298 1889649 1889676) (-1130 "SMTS.spad" 1887553 1887579 1888846 1888943) (-1129 "SMP.spad" 1885028 1885048 1885418 1885545) (-1128 "SMITH.spad" 1883873 1883898 1885018 1885023) (-1127 "SMATCAT.spad" 1881983 1882013 1883817 1883868) (-1126 "SMATCAT.spad" 1880025 1880057 1881861 1881866) (-1125 "SKAGG.spad" 1878988 1878999 1879993 1880020) (-1124 "SINT.spad" 1877820 1877829 1878854 1878983) (-1123 "SIMPAN.spad" 1877548 1877557 1877810 1877815) (-1122 "SIGNRF.spad" 1876673 1876684 1877538 1877543) (-1121 "SIGNEF.spad" 1875959 1875976 1876663 1876668) (-1120 "SIGAST.spad" 1875344 1875353 1875949 1875954) (-1119 "SIG.spad" 1874674 1874683 1875334 1875339) (-1118 "SHP.spad" 1872602 1872617 1874630 1874635) (-1117 "SHDP.spad" 1862313 1862340 1862822 1862953) (-1116 "SGROUP.spad" 1861921 1861930 1862303 1862308) (-1115 "SGROUP.spad" 1861527 1861538 1861911 1861916) (-1114 "SGCF.spad" 1854690 1854699 1861517 1861522) (-1113 "SFRTCAT.spad" 1853620 1853637 1854658 1854685) (-1112 "SFRGCD.spad" 1852683 1852703 1853610 1853615) (-1111 "SFQCMPK.spad" 1847320 1847340 1852673 1852678) (-1110 "SFORT.spad" 1846759 1846773 1847310 1847315) (-1109 "SEXOF.spad" 1846602 1846642 1846749 1846754) (-1108 "SEXCAT.spad" 1844203 1844243 1846592 1846597) (-1107 "SEX.spad" 1844095 1844104 1844193 1844198) (-1106 "SETMN.spad" 1842547 1842564 1844085 1844090) (-1105 "SETCAT.spad" 1841869 1841878 1842537 1842542) (-1104 "SETCAT.spad" 1841189 1841200 1841859 1841864) (-1103 "SETAGG.spad" 1837738 1837749 1841169 1841184) (-1102 "SETAGG.spad" 1834295 1834308 1837728 1837733) (-1101 "SET.spad" 1832619 1832630 1833716 1833755) (-1100 "SEQAST.spad" 1832322 1832331 1832609 1832614) (-1099 "SEGXCAT.spad" 1831478 1831491 1832312 1832317) (-1098 "SEGCAT.spad" 1830403 1830414 1831468 1831473) (-1097 "SEGBIND2.spad" 1830101 1830114 1830393 1830398) (-1096 "SEGBIND.spad" 1829859 1829870 1830048 1830053) (-1095 "SEGAST.spad" 1829573 1829582 1829849 1829854) (-1094 "SEG2.spad" 1829008 1829021 1829529 1829534) (-1093 "SEG.spad" 1828821 1828832 1828927 1828932) (-1092 "SDVAR.spad" 1828097 1828108 1828811 1828816) (-1091 "SDPOL.spad" 1825523 1825534 1825814 1825941) (-1090 "SCPKG.spad" 1823612 1823623 1825513 1825518) (-1089 "SCOPE.spad" 1822765 1822774 1823602 1823607) (-1088 "SCACHE.spad" 1821461 1821472 1822755 1822760) (-1087 "SASTCAT.spad" 1821370 1821379 1821451 1821456) (-1086 "SAOS.spad" 1821242 1821251 1821360 1821365) (-1085 "SAERFFC.spad" 1820955 1820975 1821232 1821237) (-1084 "SAEFACT.spad" 1820656 1820676 1820945 1820950) (-1083 "SAE.spad" 1818831 1818847 1819442 1819577) (-1082 "RURPK.spad" 1816490 1816506 1818821 1818826) (-1081 "RULESET.spad" 1815943 1815967 1816480 1816485) (-1080 "RULECOLD.spad" 1815795 1815808 1815933 1815938) (-1079 "RULE.spad" 1814035 1814059 1815785 1815790) (-1078 "RTVALUE.spad" 1813770 1813779 1814025 1814030) (-1077 "RSTRCAST.spad" 1813487 1813496 1813760 1813765) (-1076 "RSETGCD.spad" 1809865 1809885 1813477 1813482) (-1075 "RSETCAT.spad" 1799801 1799818 1809833 1809860) (-1074 "RSETCAT.spad" 1789757 1789776 1799791 1799796) (-1073 "RSDCMPK.spad" 1788209 1788229 1789747 1789752) (-1072 "RRCC.spad" 1786593 1786623 1788199 1788204) (-1071 "RRCC.spad" 1784975 1785007 1786583 1786588) (-1070 "RPTAST.spad" 1784677 1784686 1784965 1784970) (-1069 "RPOLCAT.spad" 1764037 1764052 1784545 1784672) (-1068 "RPOLCAT.spad" 1743111 1743128 1763621 1763626) (-1067 "ROUTINE.spad" 1738994 1739003 1741758 1741785) (-1066 "ROMAN.spad" 1738322 1738331 1738860 1738989) (-1065 "ROIRC.spad" 1737402 1737434 1738312 1738317) (-1064 "RNS.spad" 1736305 1736314 1737304 1737397) (-1063 "RNS.spad" 1735294 1735305 1736295 1736300) (-1062 "RNGBIND.spad" 1734454 1734468 1735249 1735254) (-1061 "RNG.spad" 1734189 1734198 1734444 1734449) (-1060 "RMODULE.spad" 1733954 1733965 1734179 1734184) (-1059 "RMCAT2.spad" 1733374 1733431 1733944 1733949) (-1058 "RMATRIX.spad" 1732198 1732217 1732541 1732580) (-1057 "RMATCAT.spad" 1727777 1727808 1732154 1732193) (-1056 "RMATCAT.spad" 1723246 1723279 1727625 1727630) (-1055 "RLINSET.spad" 1722640 1722651 1723236 1723241) (-1054 "RINTERP.spad" 1722528 1722548 1722630 1722635) (-1053 "RING.spad" 1721998 1722007 1722508 1722523) (-1052 "RING.spad" 1721476 1721487 1721988 1721993) (-1051 "RIDIST.spad" 1720868 1720877 1721466 1721471) (-1050 "RGCHAIN.spad" 1719451 1719467 1720353 1720380) (-1049 "RGBCSPC.spad" 1719232 1719244 1719441 1719446) (-1048 "RGBCMDL.spad" 1718762 1718774 1719222 1719227) (-1047 "RFFACTOR.spad" 1718224 1718235 1718752 1718757) (-1046 "RFFACT.spad" 1717959 1717971 1718214 1718219) (-1045 "RFDIST.spad" 1716955 1716964 1717949 1717954) (-1044 "RF.spad" 1714597 1714608 1716945 1716950) (-1043 "RETSOL.spad" 1714016 1714029 1714587 1714592) (-1042 "RETRACT.spad" 1713444 1713455 1714006 1714011) (-1041 "RETRACT.spad" 1712870 1712883 1713434 1713439) (-1040 "RETAST.spad" 1712682 1712691 1712860 1712865) (-1039 "RESULT.spad" 1710742 1710751 1711329 1711356) (-1038 "RESRING.spad" 1710089 1710136 1710680 1710737) (-1037 "RESLATC.spad" 1709413 1709424 1710079 1710084) (-1036 "REPSQ.spad" 1709144 1709155 1709403 1709408) (-1035 "REPDB.spad" 1708851 1708862 1709134 1709139) (-1034 "REP2.spad" 1698509 1698520 1708693 1708698) (-1033 "REP1.spad" 1692705 1692716 1698459 1698464) (-1032 "REP.spad" 1690259 1690268 1692695 1692700) (-1031 "REGSET.spad" 1688056 1688073 1689905 1689932) (-1030 "REF.spad" 1687391 1687402 1688011 1688016) (-1029 "REDORDER.spad" 1686597 1686614 1687381 1687386) (-1028 "RECLOS.spad" 1685380 1685400 1686084 1686177) (-1027 "REALSOLV.spad" 1684520 1684529 1685370 1685375) (-1026 "REAL0Q.spad" 1681818 1681833 1684510 1684515) (-1025 "REAL0.spad" 1678662 1678677 1681808 1681813) (-1024 "REAL.spad" 1678534 1678543 1678652 1678657) (-1023 "RDUCEAST.spad" 1678255 1678264 1678524 1678529) (-1022 "RDIV.spad" 1677910 1677935 1678245 1678250) (-1021 "RDIST.spad" 1677477 1677488 1677900 1677905) (-1020 "RDETRS.spad" 1676341 1676359 1677467 1677472) (-1019 "RDETR.spad" 1674480 1674498 1676331 1676336) (-1018 "RDEEFS.spad" 1673579 1673596 1674470 1674475) (-1017 "RDEEF.spad" 1672589 1672606 1673569 1673574) (-1016 "RCFIELD.spad" 1669775 1669784 1672491 1672584) (-1015 "RCFIELD.spad" 1667047 1667058 1669765 1669770) (-1014 "RCAGG.spad" 1664975 1664986 1667037 1667042) (-1013 "RCAGG.spad" 1662830 1662843 1664894 1664899) (-1012 "RATRET.spad" 1662190 1662201 1662820 1662825) (-1011 "RATFACT.spad" 1661882 1661894 1662180 1662185) (-1010 "RANDSRC.spad" 1661201 1661210 1661872 1661877) (-1009 "RADUTIL.spad" 1660957 1660966 1661191 1661196) (-1008 "RADIX.spad" 1657878 1657892 1659424 1659517) (-1007 "RADFF.spad" 1656291 1656328 1656410 1656566) (-1006 "RADCAT.spad" 1655886 1655895 1656281 1656286) (-1005 "RADCAT.spad" 1655479 1655490 1655876 1655881) (-1004 "QUEUE.spad" 1654827 1654838 1655086 1655113) (-1003 "QUATCT2.spad" 1654447 1654466 1654817 1654822) (-1002 "QUATCAT.spad" 1652617 1652628 1654377 1654442) (-1001 "QUATCAT.spad" 1650538 1650551 1652300 1652305) (-1000 "QUAT.spad" 1649119 1649130 1649462 1649527) (-999 "QUAGG.spad" 1647947 1647957 1649087 1649114) (-998 "QQUTAST.spad" 1647716 1647724 1647937 1647942) (-997 "QFORM.spad" 1647181 1647195 1647706 1647711) (-996 "QFCAT2.spad" 1646874 1646890 1647171 1647176) (-995 "QFCAT.spad" 1645577 1645587 1646776 1646869) (-994 "QFCAT.spad" 1643871 1643883 1645072 1645077) (-993 "QEQUAT.spad" 1643430 1643438 1643861 1643866) (-992 "QCMPACK.spad" 1638177 1638196 1643420 1643425) (-991 "QALGSET2.spad" 1636173 1636191 1638167 1638172) (-990 "QALGSET.spad" 1632254 1632286 1636087 1636092) (-989 "PWFFINTB.spad" 1629670 1629691 1632244 1632249) (-988 "PUSHVAR.spad" 1629009 1629028 1629660 1629665) (-987 "PTRANFN.spad" 1625137 1625147 1628999 1629004) (-986 "PTPACK.spad" 1622225 1622235 1625127 1625132) (-985 "PTFUNC2.spad" 1622048 1622062 1622215 1622220) (-984 "PTCAT.spad" 1621303 1621313 1622016 1622043) (-983 "PSQFR.spad" 1620610 1620634 1621293 1621298) (-982 "PSEUDLIN.spad" 1619496 1619506 1620600 1620605) (-981 "PSETPK.spad" 1604929 1604945 1619374 1619379) (-980 "PSETCAT.spad" 1598849 1598872 1604909 1604924) (-979 "PSETCAT.spad" 1592743 1592768 1598805 1598810) (-978 "PSCURVE.spad" 1591726 1591734 1592733 1592738) (-977 "PSCAT.spad" 1590509 1590538 1591624 1591721) (-976 "PSCAT.spad" 1589382 1589413 1590499 1590504) (-975 "PRTITION.spad" 1588343 1588351 1589372 1589377) (-974 "PRTDAST.spad" 1588062 1588070 1588333 1588338) (-973 "PRS.spad" 1577624 1577641 1588018 1588023) (-972 "PRQAGG.spad" 1577059 1577069 1577592 1577619) (-971 "PROPLOG.spad" 1576358 1576366 1577049 1577054) (-970 "PROPFRML.spad" 1574926 1574937 1576348 1576353) (-969 "PROPERTY.spad" 1574414 1574422 1574916 1574921) (-968 "PRODUCT.spad" 1572096 1572108 1572380 1572435) (-967 "PRINT.spad" 1571848 1571856 1572086 1572091) (-966 "PRIMES.spad" 1570101 1570111 1571838 1571843) (-965 "PRIMELT.spad" 1568182 1568196 1570091 1570096) (-964 "PRIMCAT.spad" 1567809 1567817 1568172 1568177) (-963 "PRIMARR2.spad" 1566576 1566588 1567799 1567804) (-962 "PRIMARR.spad" 1565581 1565591 1565759 1565786) (-961 "PREASSOC.spad" 1564963 1564975 1565571 1565576) (-960 "PR.spad" 1563355 1563367 1564054 1564181) (-959 "PPCURVE.spad" 1562492 1562500 1563345 1563350) (-958 "PORTNUM.spad" 1562267 1562275 1562482 1562487) (-957 "POLYROOT.spad" 1561116 1561138 1562223 1562228) (-956 "POLYLIFT.spad" 1560381 1560404 1561106 1561111) (-955 "POLYCATQ.spad" 1558499 1558521 1560371 1560376) (-954 "POLYCAT.spad" 1551969 1551990 1558367 1558494) (-953 "POLYCAT.spad" 1544777 1544800 1551177 1551182) (-952 "POLY2UP.spad" 1544229 1544243 1544767 1544772) (-951 "POLY2.spad" 1543826 1543838 1544219 1544224) (-950 "POLY.spad" 1541161 1541171 1541676 1541803) (-949 "POLUTIL.spad" 1540102 1540131 1541117 1541122) (-948 "POLTOPOL.spad" 1538850 1538865 1540092 1540097) (-947 "POINT.spad" 1537688 1537698 1537775 1537802) (-946 "PNTHEORY.spad" 1534390 1534398 1537678 1537683) (-945 "PMTOOLS.spad" 1533165 1533179 1534380 1534385) (-944 "PMSYM.spad" 1532714 1532724 1533155 1533160) (-943 "PMQFCAT.spad" 1532305 1532319 1532704 1532709) (-942 "PMPREDFS.spad" 1531759 1531781 1532295 1532300) (-941 "PMPRED.spad" 1531238 1531252 1531749 1531754) (-940 "PMPLCAT.spad" 1530318 1530336 1531170 1531175) (-939 "PMLSAGG.spad" 1529903 1529917 1530308 1530313) (-938 "PMKERNEL.spad" 1529482 1529494 1529893 1529898) (-937 "PMINS.spad" 1529062 1529072 1529472 1529477) (-936 "PMFS.spad" 1528639 1528657 1529052 1529057) (-935 "PMDOWN.spad" 1527929 1527943 1528629 1528634) (-934 "PMASSFS.spad" 1526896 1526912 1527919 1527924) (-933 "PMASS.spad" 1525906 1525914 1526886 1526891) (-932 "PLOTTOOL.spad" 1525686 1525694 1525896 1525901) (-931 "PLOT3D.spad" 1522150 1522158 1525676 1525681) (-930 "PLOT1.spad" 1521307 1521317 1522140 1522145) (-929 "PLOT.spad" 1516230 1516238 1521297 1521302) (-928 "PLEQN.spad" 1503520 1503547 1516220 1516225) (-927 "PINTERPA.spad" 1503304 1503320 1503510 1503515) (-926 "PINTERP.spad" 1502926 1502945 1503294 1503299) (-925 "PID.spad" 1501896 1501904 1502852 1502921) (-924 "PICOERCE.spad" 1501553 1501563 1501886 1501891) (-923 "PI.spad" 1501162 1501170 1501527 1501548) (-922 "PGROEB.spad" 1499763 1499777 1501152 1501157) (-921 "PGE.spad" 1491380 1491388 1499753 1499758) (-920 "PGCD.spad" 1490270 1490287 1491370 1491375) (-919 "PFRPAC.spad" 1489419 1489429 1490260 1490265) (-918 "PFR.spad" 1486082 1486092 1489321 1489414) (-917 "PFOTOOLS.spad" 1485340 1485356 1486072 1486077) (-916 "PFOQ.spad" 1484710 1484728 1485330 1485335) (-915 "PFO.spad" 1484129 1484156 1484700 1484705) (-914 "PFECAT.spad" 1481811 1481819 1484055 1484124) (-913 "PFECAT.spad" 1479521 1479531 1481767 1481772) (-912 "PFBRU.spad" 1477409 1477421 1479511 1479516) (-911 "PFBR.spad" 1474969 1474992 1477399 1477404) (-910 "PF.spad" 1474543 1474555 1474774 1474867) (-909 "PERMGRP.spad" 1469305 1469315 1474533 1474538) (-908 "PERMCAT.spad" 1467863 1467873 1469285 1469300) (-907 "PERMAN.spad" 1466395 1466409 1467853 1467858) (-906 "PERM.spad" 1462080 1462090 1466225 1466240) (-905 "PENDTREE.spad" 1461421 1461431 1461709 1461714) (-904 "PDRING.spad" 1459972 1459982 1461401 1461416) (-903 "PDRING.spad" 1458531 1458543 1459962 1459967) (-902 "PDEPROB.spad" 1457546 1457554 1458521 1458526) (-901 "PDEPACK.spad" 1451586 1451594 1457536 1457541) (-900 "PDECOMP.spad" 1451056 1451073 1451576 1451581) (-899 "PDECAT.spad" 1449412 1449420 1451046 1451051) (-898 "PCOMP.spad" 1449265 1449278 1449402 1449407) (-897 "PBWLB.spad" 1447853 1447870 1449255 1449260) (-896 "PATTERN2.spad" 1447591 1447603 1447843 1447848) (-895 "PATTERN1.spad" 1445927 1445943 1447581 1447586) (-894 "PATTERN.spad" 1440466 1440476 1445917 1445922) (-893 "PATRES2.spad" 1440138 1440152 1440456 1440461) (-892 "PATRES.spad" 1437713 1437725 1440128 1440133) (-891 "PATMATCH.spad" 1435910 1435941 1437421 1437426) (-890 "PATMAB.spad" 1435339 1435349 1435900 1435905) (-889 "PATLRES.spad" 1434425 1434439 1435329 1435334) (-888 "PATAB.spad" 1434189 1434199 1434415 1434420) (-887 "PARTPERM.spad" 1431589 1431597 1434179 1434184) (-886 "PARSURF.spad" 1431023 1431051 1431579 1431584) (-885 "PARSU2.spad" 1430820 1430836 1431013 1431018) (-884 "script-parser.spad" 1430340 1430348 1430810 1430815) (-883 "PARSCURV.spad" 1429774 1429802 1430330 1430335) (-882 "PARSC2.spad" 1429565 1429581 1429764 1429769) (-881 "PARPCURV.spad" 1429027 1429055 1429555 1429560) (-880 "PARPC2.spad" 1428818 1428834 1429017 1429022) (-879 "PARAMAST.spad" 1427946 1427954 1428808 1428813) (-878 "PAN2EXPR.spad" 1427358 1427366 1427936 1427941) (-877 "PALETTE.spad" 1426328 1426336 1427348 1427353) (-876 "PAIR.spad" 1425315 1425328 1425916 1425921) (-875 "PADICRC.spad" 1422649 1422667 1423820 1423913) (-874 "PADICRAT.spad" 1420664 1420676 1420885 1420978) (-873 "PADICCT.spad" 1419213 1419225 1420590 1420659) (-872 "PADIC.spad" 1418908 1418920 1419139 1419208) (-871 "PADEPAC.spad" 1417597 1417616 1418898 1418903) (-870 "PADE.spad" 1416349 1416365 1417587 1417592) (-869 "OWP.spad" 1415589 1415619 1416207 1416274) (-868 "OVERSET.spad" 1415162 1415170 1415579 1415584) (-867 "OVAR.spad" 1414943 1414966 1415152 1415157) (-866 "OUTFORM.spad" 1404335 1404343 1414933 1414938) (-865 "OUTBFILE.spad" 1403753 1403761 1404325 1404330) (-864 "OUTBCON.spad" 1402759 1402767 1403743 1403748) (-863 "OUTBCON.spad" 1401763 1401773 1402749 1402754) (-862 "OUT.spad" 1400849 1400857 1401753 1401758) (-861 "OSI.spad" 1400324 1400332 1400839 1400844) (-860 "OSGROUP.spad" 1400242 1400250 1400314 1400319) (-859 "ORTHPOL.spad" 1398727 1398737 1400159 1400164) (-858 "OREUP.spad" 1398180 1398208 1398407 1398446) (-857 "ORESUP.spad" 1397481 1397505 1397860 1397899) (-856 "OREPCTO.spad" 1395338 1395350 1397401 1397406) (-855 "OREPCAT.spad" 1389485 1389495 1395294 1395333) (-854 "OREPCAT.spad" 1383522 1383534 1389333 1389338) (-853 "ORDSET.spad" 1382694 1382702 1383512 1383517) (-852 "ORDSET.spad" 1381864 1381874 1382684 1382689) (-851 "ORDRING.spad" 1381254 1381262 1381844 1381859) (-850 "ORDRING.spad" 1380652 1380662 1381244 1381249) (-849 "ORDMON.spad" 1380507 1380515 1380642 1380647) (-848 "ORDFUNS.spad" 1379639 1379655 1380497 1380502) (-847 "ORDFIN.spad" 1379459 1379467 1379629 1379634) (-846 "ORDCOMP2.spad" 1378752 1378764 1379449 1379454) (-845 "ORDCOMP.spad" 1377217 1377227 1378299 1378328) (-844 "OPTPROB.spad" 1375855 1375863 1377207 1377212) (-843 "OPTPACK.spad" 1368264 1368272 1375845 1375850) (-842 "OPTCAT.spad" 1365943 1365951 1368254 1368259) (-841 "OPSIG.spad" 1365597 1365605 1365933 1365938) (-840 "OPQUERY.spad" 1365146 1365154 1365587 1365592) (-839 "OPERCAT.spad" 1364612 1364622 1365136 1365141) (-838 "OPERCAT.spad" 1364076 1364088 1364602 1364607) (-837 "OP.spad" 1363818 1363828 1363898 1363965) (-836 "ONECOMP2.spad" 1363242 1363254 1363808 1363813) (-835 "ONECOMP.spad" 1361987 1361997 1362789 1362818) (-834 "OMSERVER.spad" 1360993 1361001 1361977 1361982) (-833 "OMSAGG.spad" 1360781 1360791 1360949 1360988) (-832 "OMPKG.spad" 1359397 1359405 1360771 1360776) (-831 "OMLO.spad" 1358822 1358834 1359283 1359322) (-830 "OMEXPR.spad" 1358656 1358666 1358812 1358817) (-829 "OMERRK.spad" 1357690 1357698 1358646 1358651) (-828 "OMERR.spad" 1357235 1357243 1357680 1357685) (-827 "OMENC.spad" 1356579 1356587 1357225 1357230) (-826 "OMDEV.spad" 1350888 1350896 1356569 1356574) (-825 "OMCONN.spad" 1350297 1350305 1350878 1350883) (-824 "OM.spad" 1349270 1349278 1350287 1350292) (-823 "OINTDOM.spad" 1349033 1349041 1349196 1349265) (-822 "OFMONOID.spad" 1347156 1347166 1348989 1348994) (-821 "ODVAR.spad" 1346417 1346427 1347146 1347151) (-820 "ODR.spad" 1346061 1346087 1346229 1346378) (-819 "ODPOL.spad" 1343443 1343453 1343783 1343910) (-818 "ODP.spad" 1333290 1333310 1333663 1333794) (-817 "ODETOOLS.spad" 1331939 1331958 1333280 1333285) (-816 "ODESYS.spad" 1329633 1329650 1331929 1331934) (-815 "ODERTRIC.spad" 1325642 1325659 1329590 1329595) (-814 "ODERED.spad" 1325041 1325065 1325632 1325637) (-813 "ODERAT.spad" 1322658 1322675 1325031 1325036) (-812 "ODEPRRIC.spad" 1319695 1319717 1322648 1322653) (-811 "ODEPROB.spad" 1318952 1318960 1319685 1319690) (-810 "ODEPRIM.spad" 1316286 1316308 1318942 1318947) (-809 "ODEPAL.spad" 1315672 1315696 1316276 1316281) (-808 "ODEPACK.spad" 1302338 1302346 1315662 1315667) (-807 "ODEINT.spad" 1301773 1301789 1302328 1302333) (-806 "ODEIFTBL.spad" 1299168 1299176 1301763 1301768) (-805 "ODEEF.spad" 1294663 1294679 1299158 1299163) (-804 "ODECONST.spad" 1294200 1294218 1294653 1294658) (-803 "ODECAT.spad" 1292798 1292806 1294190 1294195) (-802 "OCTCT2.spad" 1292444 1292465 1292788 1292793) (-801 "OCT.spad" 1290580 1290590 1291294 1291333) (-800 "OCAMON.spad" 1290428 1290436 1290570 1290575) (-799 "OC.spad" 1288224 1288234 1290384 1290423) (-798 "OC.spad" 1285745 1285757 1287907 1287912) (-797 "OASGP.spad" 1285560 1285568 1285735 1285740) (-796 "OAMONS.spad" 1285082 1285090 1285550 1285555) (-795 "OAMON.spad" 1284943 1284951 1285072 1285077) (-794 "OAGROUP.spad" 1284805 1284813 1284933 1284938) (-793 "NUMTUBE.spad" 1284396 1284412 1284795 1284800) (-792 "NUMQUAD.spad" 1272372 1272380 1284386 1284391) (-791 "NUMODE.spad" 1263726 1263734 1272362 1272367) (-790 "NUMINT.spad" 1261292 1261300 1263716 1263721) (-789 "NUMFMT.spad" 1260132 1260140 1261282 1261287) (-788 "NUMERIC.spad" 1252246 1252256 1259937 1259942) (-787 "NTSCAT.spad" 1250754 1250770 1252214 1252241) (-786 "NTPOLFN.spad" 1250305 1250315 1250671 1250676) (-785 "NSUP2.spad" 1249697 1249709 1250295 1250300) (-784 "NSUP.spad" 1242743 1242753 1247283 1247436) (-783 "NSMP.spad" 1238974 1238993 1239282 1239409) (-782 "NREP.spad" 1237352 1237366 1238964 1238969) (-781 "NPCOEF.spad" 1236598 1236618 1237342 1237347) (-780 "NORMRETR.spad" 1236196 1236235 1236588 1236593) (-779 "NORMPK.spad" 1234098 1234117 1236186 1236191) (-778 "NORMMA.spad" 1233786 1233812 1234088 1234093) (-777 "NONE1.spad" 1233462 1233472 1233776 1233781) (-776 "NONE.spad" 1233203 1233211 1233452 1233457) (-775 "NODE1.spad" 1232690 1232706 1233193 1233198) (-774 "NNI.spad" 1231585 1231593 1232664 1232685) (-773 "NLINSOL.spad" 1230211 1230221 1231575 1231580) (-772 "NIPROB.spad" 1228752 1228760 1230201 1230206) (-771 "NFINTBAS.spad" 1226312 1226329 1228742 1228747) (-770 "NETCLT.spad" 1226286 1226297 1226302 1226307) (-769 "NCODIV.spad" 1224502 1224518 1226276 1226281) (-768 "NCNTFRAC.spad" 1224144 1224158 1224492 1224497) (-767 "NCEP.spad" 1222310 1222324 1224134 1224139) (-766 "NASRING.spad" 1221906 1221914 1222300 1222305) (-765 "NASRING.spad" 1221500 1221510 1221896 1221901) (-764 "NARNG.spad" 1220852 1220860 1221490 1221495) (-763 "NARNG.spad" 1220202 1220212 1220842 1220847) (-762 "NAGSP.spad" 1219279 1219287 1220192 1220197) (-761 "NAGS.spad" 1208940 1208948 1219269 1219274) (-760 "NAGF07.spad" 1207371 1207379 1208930 1208935) (-759 "NAGF04.spad" 1201773 1201781 1207361 1207366) (-758 "NAGF02.spad" 1195842 1195850 1201763 1201768) (-757 "NAGF01.spad" 1191603 1191611 1195832 1195837) (-756 "NAGE04.spad" 1185303 1185311 1191593 1191598) (-755 "NAGE02.spad" 1175963 1175971 1185293 1185298) (-754 "NAGE01.spad" 1171965 1171973 1175953 1175958) (-753 "NAGD03.spad" 1169969 1169977 1171955 1171960) (-752 "NAGD02.spad" 1162716 1162724 1169959 1169964) (-751 "NAGD01.spad" 1157009 1157017 1162706 1162711) (-750 "NAGC06.spad" 1152884 1152892 1156999 1157004) (-749 "NAGC05.spad" 1151385 1151393 1152874 1152879) (-748 "NAGC02.spad" 1150652 1150660 1151375 1151380) (-747 "NAALG.spad" 1150193 1150203 1150620 1150647) (-746 "NAALG.spad" 1149754 1149766 1150183 1150188) (-745 "MULTSQFR.spad" 1146712 1146729 1149744 1149749) (-744 "MULTFACT.spad" 1146095 1146112 1146702 1146707) (-743 "MTSCAT.spad" 1144189 1144210 1145993 1146090) (-742 "MTHING.spad" 1143848 1143858 1144179 1144184) (-741 "MSYSCMD.spad" 1143282 1143290 1143838 1143843) (-740 "MSETAGG.spad" 1143127 1143137 1143250 1143277) (-739 "MSET.spad" 1141085 1141095 1142833 1142872) (-738 "MRING.spad" 1138062 1138074 1140793 1140860) (-737 "MRF2.spad" 1137632 1137646 1138052 1138057) (-736 "MRATFAC.spad" 1137178 1137195 1137622 1137627) (-735 "MPRFF.spad" 1135218 1135237 1137168 1137173) (-734 "MPOLY.spad" 1132689 1132704 1133048 1133175) (-733 "MPCPF.spad" 1131953 1131972 1132679 1132684) (-732 "MPC3.spad" 1131770 1131810 1131943 1131948) (-731 "MPC2.spad" 1131416 1131449 1131760 1131765) (-730 "MONOTOOL.spad" 1129767 1129784 1131406 1131411) (-729 "MONOID.spad" 1129086 1129094 1129757 1129762) (-728 "MONOID.spad" 1128403 1128413 1129076 1129081) (-727 "MONOGEN.spad" 1127151 1127164 1128263 1128398) (-726 "MONOGEN.spad" 1125921 1125936 1127035 1127040) (-725 "MONADWU.spad" 1123951 1123959 1125911 1125916) (-724 "MONADWU.spad" 1121979 1121989 1123941 1123946) (-723 "MONAD.spad" 1121139 1121147 1121969 1121974) (-722 "MONAD.spad" 1120297 1120307 1121129 1121134) (-721 "MOEBIUS.spad" 1119033 1119047 1120277 1120292) (-720 "MODULE.spad" 1118903 1118913 1119001 1119028) (-719 "MODULE.spad" 1118793 1118805 1118893 1118898) (-718 "MODRING.spad" 1118128 1118167 1118773 1118788) (-717 "MODOP.spad" 1116793 1116805 1117950 1118017) (-716 "MODMONOM.spad" 1116524 1116542 1116783 1116788) (-715 "MODMON.spad" 1113319 1113335 1114038 1114191) (-714 "MODFIELD.spad" 1112681 1112720 1113221 1113314) (-713 "MMLFORM.spad" 1111541 1111549 1112671 1112676) (-712 "MMAP.spad" 1111283 1111317 1111531 1111536) (-711 "MLO.spad" 1109742 1109752 1111239 1111278) (-710 "MLIFT.spad" 1108354 1108371 1109732 1109737) (-709 "MKUCFUNC.spad" 1107889 1107907 1108344 1108349) (-708 "MKRECORD.spad" 1107493 1107506 1107879 1107884) (-707 "MKFUNC.spad" 1106900 1106910 1107483 1107488) (-706 "MKFLCFN.spad" 1105868 1105878 1106890 1106895) (-705 "MKBCFUNC.spad" 1105363 1105381 1105858 1105863) (-704 "MINT.spad" 1104802 1104810 1105265 1105358) (-703 "MHROWRED.spad" 1103313 1103323 1104792 1104797) (-702 "MFLOAT.spad" 1101833 1101841 1103203 1103308) (-701 "MFINFACT.spad" 1101233 1101255 1101823 1101828) (-700 "MESH.spad" 1099020 1099028 1101223 1101228) (-699 "MDDFACT.spad" 1097231 1097241 1099010 1099015) (-698 "MDAGG.spad" 1096522 1096532 1097211 1097226) (-697 "MCMPLX.spad" 1092533 1092541 1093147 1093348) (-696 "MCDEN.spad" 1091743 1091755 1092523 1092528) (-695 "MCALCFN.spad" 1088865 1088891 1091733 1091738) (-694 "MAYBE.spad" 1088149 1088160 1088855 1088860) (-693 "MATSTOR.spad" 1085457 1085467 1088139 1088144) (-692 "MATRIX.spad" 1084161 1084171 1084645 1084672) (-691 "MATLIN.spad" 1081505 1081529 1084045 1084050) (-690 "MATCAT2.spad" 1080787 1080835 1081495 1081500) (-689 "MATCAT.spad" 1072516 1072538 1080755 1080782) (-688 "MATCAT.spad" 1064117 1064141 1072358 1072363) (-687 "MAPPKG3.spad" 1063032 1063046 1064107 1064112) (-686 "MAPPKG2.spad" 1062370 1062382 1063022 1063027) (-685 "MAPPKG1.spad" 1061198 1061208 1062360 1062365) (-684 "MAPPAST.spad" 1060513 1060521 1061188 1061193) (-683 "MAPHACK3.spad" 1060325 1060339 1060503 1060508) (-682 "MAPHACK2.spad" 1060094 1060106 1060315 1060320) (-681 "MAPHACK1.spad" 1059738 1059748 1060084 1060089) (-680 "MAGMA.spad" 1057528 1057545 1059728 1059733) (-679 "MACROAST.spad" 1057107 1057115 1057518 1057523) (-678 "M3D.spad" 1054827 1054837 1056485 1056490) (-677 "LZSTAGG.spad" 1052065 1052075 1054817 1054822) (-676 "LZSTAGG.spad" 1049301 1049313 1052055 1052060) (-675 "LWORD.spad" 1046006 1046023 1049291 1049296) (-674 "LSTAST.spad" 1045790 1045798 1045996 1046001) (-673 "LSQM.spad" 1044017 1044031 1044411 1044462) (-672 "LSPP.spad" 1043552 1043569 1044007 1044012) (-671 "LSMP1.spad" 1041387 1041401 1043542 1043547) (-670 "LSMP.spad" 1040244 1040272 1041377 1041382) (-669 "LSAGG.spad" 1039913 1039923 1040212 1040239) (-668 "LSAGG.spad" 1039602 1039614 1039903 1039908) (-667 "LPOLY.spad" 1038556 1038575 1039458 1039527) (-666 "LPEFRAC.spad" 1037827 1037837 1038546 1038551) (-665 "LOGIC.spad" 1037429 1037437 1037817 1037822) (-664 "LOGIC.spad" 1037029 1037039 1037419 1037424) (-663 "LODOOPS.spad" 1035959 1035971 1037019 1037024) (-662 "LODOF.spad" 1035005 1035022 1035916 1035921) (-661 "LODOCAT.spad" 1033671 1033681 1034961 1035000) (-660 "LODOCAT.spad" 1032335 1032347 1033627 1033632) (-659 "LODO2.spad" 1031608 1031620 1032015 1032054) (-658 "LODO1.spad" 1031008 1031018 1031288 1031327) (-657 "LODO.spad" 1030392 1030408 1030688 1030727) (-656 "LODEEF.spad" 1029194 1029212 1030382 1030387) (-655 "LO.spad" 1028595 1028609 1029128 1029155) (-654 "LNAGG.spad" 1024427 1024437 1028585 1028590) (-653 "LNAGG.spad" 1020223 1020235 1024383 1024388) (-652 "LMOPS.spad" 1016991 1017008 1020213 1020218) (-651 "LMODULE.spad" 1016759 1016769 1016981 1016986) (-650 "LMDICT.spad" 1016046 1016056 1016310 1016337) (-649 "LLINSET.spad" 1015443 1015453 1016036 1016041) (-648 "LITERAL.spad" 1015349 1015360 1015433 1015438) (-647 "LIST3.spad" 1014660 1014674 1015339 1015344) (-646 "LIST2MAP.spad" 1011563 1011575 1014650 1014655) (-645 "LIST2.spad" 1010265 1010277 1011553 1011558) (-644 "LIST.spad" 1008000 1008010 1009412 1009439) (-643 "LINSET.spad" 1007622 1007632 1007990 1007995) (-642 "LINEXP.spad" 1007056 1007066 1007602 1007617) (-641 "LINDEP.spad" 1005865 1005877 1006968 1006973) (-640 "LIMITRF.spad" 1003812 1003822 1005855 1005860) (-639 "LIMITPS.spad" 1002722 1002735 1003802 1003807) (-638 "LIECAT.spad" 1002198 1002208 1002648 1002717) (-637 "LIECAT.spad" 1001702 1001714 1002154 1002159) (-636 "LIE.spad" 999718 999730 1000992 1001137) (-635 "LIB.spad" 997768 997776 998377 998392) (-634 "LGROBP.spad" 995121 995140 997758 997763) (-633 "LFCAT.spad" 994180 994188 995111 995116) (-632 "LF.spad" 993135 993151 994170 994175) (-631 "LEXTRIPK.spad" 988638 988653 993125 993130) (-630 "LEXP.spad" 986641 986668 988618 988633) (-629 "LETAST.spad" 986340 986348 986631 986636) (-628 "LEADCDET.spad" 984738 984755 986330 986335) (-627 "LAZM3PK.spad" 983442 983464 984728 984733) (-626 "LAUPOL.spad" 982135 982148 983035 983104) (-625 "LAPLACE.spad" 981718 981734 982125 982130) (-624 "LALG.spad" 981494 981504 981698 981713) (-623 "LALG.spad" 981278 981290 981484 981489) (-622 "LA.spad" 980718 980732 981200 981239) (-621 "KVTFROM.spad" 980453 980463 980708 980713) (-620 "KTVLOGIC.spad" 979965 979973 980443 980448) (-619 "KRCFROM.spad" 979703 979713 979955 979960) (-618 "KOVACIC.spad" 978426 978443 979693 979698) (-617 "KONVERT.spad" 978148 978158 978416 978421) (-616 "KOERCE.spad" 977885 977895 978138 978143) (-615 "KERNEL2.spad" 977588 977600 977875 977880) (-614 "KERNEL.spad" 976243 976253 977372 977377) (-613 "KDAGG.spad" 975352 975374 976223 976238) (-612 "KDAGG.spad" 974469 974493 975342 975347) (-611 "KAFILE.spad" 973432 973448 973667 973694) (-610 "JORDAN.spad" 971261 971273 972722 972867) (-609 "JOINAST.spad" 970955 970963 971251 971256) (-608 "JAVACODE.spad" 970821 970829 970945 970950) (-607 "IXAGG.spad" 968954 968978 970811 970816) (-606 "IXAGG.spad" 966942 966968 968801 968806) (-605 "IVECTOR.spad" 965712 965727 965867 965894) (-604 "ITUPLE.spad" 964873 964883 965702 965707) (-603 "ITRIGMNP.spad" 963712 963731 964863 964868) (-602 "ITFUN3.spad" 963218 963232 963702 963707) (-601 "ITFUN2.spad" 962962 962974 963208 963213) (-600 "ITAYLOR.spad" 960956 960971 962826 962923) (-599 "ISUPS.spad" 953393 953408 959930 960027) (-598 "ISUMP.spad" 952894 952910 953383 953388) (-597 "ISTRING.spad" 951982 951995 952063 952090) (-596 "ISAST.spad" 951701 951709 951972 951977) (-595 "IRURPK.spad" 950418 950437 951691 951696) (-594 "IRSN.spad" 948422 948430 950408 950413) (-593 "IRRF2F.spad" 946907 946917 948378 948383) (-592 "IRREDFFX.spad" 946508 946519 946897 946902) (-591 "IROOT.spad" 944847 944857 946498 946503) (-590 "IRFORM.spad" 944695 944703 944837 944842) (-589 "IR2F.spad" 943901 943917 944685 944690) (-588 "IR2.spad" 942929 942945 943891 943896) (-587 "IR.spad" 940730 940744 942784 942811) (-586 "IPRNTPK.spad" 940490 940498 940720 940725) (-585 "IPF.spad" 940055 940067 940295 940388) (-584 "IPADIC.spad" 939816 939842 939981 940050) (-583 "IP4ADDR.spad" 939373 939381 939806 939811) (-582 "IOMODE.spad" 938994 939002 939363 939368) (-581 "IOBFILE.spad" 938355 938363 938984 938989) (-580 "IOBCON.spad" 938220 938228 938345 938350) (-579 "INVLAPLA.spad" 937869 937885 938210 938215) (-578 "INTTR.spad" 931263 931280 937859 937864) (-577 "INTTOOLS.spad" 929018 929034 930837 930842) (-576 "INTSLPE.spad" 928338 928346 929008 929013) (-575 "INTRVL.spad" 927904 927914 928252 928333) (-574 "INTRF.spad" 926328 926342 927894 927899) (-573 "INTRET.spad" 925760 925770 926318 926323) (-572 "INTRAT.spad" 924487 924504 925750 925755) (-571 "INTPM.spad" 922872 922888 924130 924135) (-570 "INTPAF.spad" 920743 920761 922804 922809) (-569 "INTPACK.spad" 911117 911125 920733 920738) (-568 "INTHERTR.spad" 910391 910408 911107 911112) (-567 "INTHERAL.spad" 910061 910085 910381 910386) (-566 "INTHEORY.spad" 906500 906508 910051 910056) (-565 "INTG0.spad" 900251 900269 906432 906437) (-564 "INTFTBL.spad" 895705 895713 900241 900246) (-563 "INTFACT.spad" 894764 894774 895695 895700) (-562 "INTEF.spad" 893151 893167 894754 894759) (-561 "INTDOM.spad" 891774 891782 893077 893146) (-560 "INTDOM.spad" 890459 890469 891764 891769) (-559 "INTCAT.spad" 888718 888728 890373 890454) (-558 "INTBIT.spad" 888225 888233 888708 888713) (-557 "INTALG.spad" 887413 887440 888215 888220) (-556 "INTAF.spad" 886913 886929 887403 887408) (-555 "INTABL.spad" 885431 885462 885594 885621) (-554 "INT8.spad" 885311 885319 885421 885426) (-553 "INT64.spad" 885190 885198 885301 885306) (-552 "INT32.spad" 885069 885077 885180 885185) (-551 "INT16.spad" 884948 884956 885059 885064) (-550 "INT.spad" 884396 884404 884802 884943) (-549 "INS.spad" 881899 881907 884298 884391) (-548 "INS.spad" 879488 879498 881889 881894) (-547 "INPSIGN.spad" 878958 878971 879478 879483) (-546 "INPRODPF.spad" 878054 878073 878948 878953) (-545 "INPRODFF.spad" 877142 877166 878044 878049) (-544 "INNMFACT.spad" 876117 876134 877132 877137) (-543 "INMODGCD.spad" 875605 875635 876107 876112) (-542 "INFSP.spad" 873902 873924 875595 875600) (-541 "INFPROD0.spad" 872982 873001 873892 873897) (-540 "INFORM1.spad" 872607 872617 872972 872977) (-539 "INFORM.spad" 869806 869814 872597 872602) (-538 "INFINITY.spad" 869358 869366 869796 869801) (-537 "INETCLTS.spad" 869335 869343 869348 869353) (-536 "INEP.spad" 867873 867895 869325 869330) (-535 "INDE.spad" 867602 867619 867863 867868) (-534 "INCRMAPS.spad" 867023 867033 867592 867597) (-533 "INBFILE.spad" 866095 866103 867013 867018) (-532 "INBFF.spad" 861889 861900 866085 866090) (-531 "INBCON.spad" 860179 860187 861879 861884) (-530 "INBCON.spad" 858467 858477 860169 860174) (-529 "INAST.spad" 858128 858136 858457 858462) (-528 "IMPTAST.spad" 857836 857844 858118 858123) (-527 "IMATRIX.spad" 856781 856807 857293 857320) (-526 "IMATQF.spad" 855875 855919 856737 856742) (-525 "IMATLIN.spad" 854480 854504 855831 855836) (-524 "ILIST.spad" 853138 853153 853663 853690) (-523 "IIARRAY2.spad" 852526 852564 852745 852772) (-522 "IFF.spad" 851936 851952 852207 852300) (-521 "IFAST.spad" 851550 851558 851926 851931) (-520 "IFARRAY.spad" 849043 849058 850733 850760) (-519 "IFAMON.spad" 848905 848922 848999 849004) (-518 "IEVALAB.spad" 848310 848322 848895 848900) (-517 "IEVALAB.spad" 847713 847727 848300 848305) (-516 "IDPOAMS.spad" 847469 847481 847703 847708) (-515 "IDPOAM.spad" 847189 847201 847459 847464) (-514 "IDPO.spad" 846987 846999 847179 847184) (-513 "IDPC.spad" 845925 845937 846977 846982) (-512 "IDPAM.spad" 845670 845682 845915 845920) (-511 "IDPAG.spad" 845417 845429 845660 845665) (-510 "IDENT.spad" 845067 845075 845407 845412) (-509 "IDECOMP.spad" 842306 842324 845057 845062) (-508 "IDEAL.spad" 837255 837294 842241 842246) (-507 "ICDEN.spad" 836444 836460 837245 837250) (-506 "ICARD.spad" 835635 835643 836434 836439) (-505 "IBPTOOLS.spad" 834242 834259 835625 835630) (-504 "IBITS.spad" 833445 833458 833878 833905) (-503 "IBATOOL.spad" 830422 830441 833435 833440) (-502 "IBACHIN.spad" 828929 828944 830412 830417) (-501 "IARRAY2.spad" 827917 827943 828536 828563) (-500 "IARRAY1.spad" 826962 826977 827100 827127) (-499 "IAN.spad" 825185 825193 826778 826871) (-498 "IALGFACT.spad" 824788 824821 825175 825180) (-497 "HYPCAT.spad" 824212 824220 824778 824783) (-496 "HYPCAT.spad" 823634 823644 824202 824207) (-495 "HOSTNAME.spad" 823442 823450 823624 823629) (-494 "HOMOTOP.spad" 823185 823195 823432 823437) (-493 "HOAGG.spad" 820467 820477 823175 823180) (-492 "HOAGG.spad" 817524 817536 820234 820239) (-491 "HEXADEC.spad" 815626 815634 815991 816084) (-490 "HEUGCD.spad" 814661 814672 815616 815621) (-489 "HELLFDIV.spad" 814251 814275 814651 814656) (-488 "HEAP.spad" 813643 813653 813858 813885) (-487 "HEADAST.spad" 813176 813184 813633 813638) (-486 "HDP.spad" 803019 803035 803396 803527) (-485 "HDMP.spad" 800233 800248 800849 800976) (-484 "HB.spad" 798484 798492 800223 800228) (-483 "HASHTBL.spad" 796954 796985 797165 797192) (-482 "HASAST.spad" 796670 796678 796944 796949) (-481 "HACKPI.spad" 796161 796169 796572 796665) (-480 "GTSET.spad" 795100 795116 795807 795834) (-479 "GSTBL.spad" 793619 793654 793793 793808) (-478 "GSERIES.spad" 790790 790817 791751 791900) (-477 "GROUP.spad" 790063 790071 790770 790785) (-476 "GROUP.spad" 789344 789354 790053 790058) (-475 "GROEBSOL.spad" 787838 787859 789334 789339) (-474 "GRMOD.spad" 786409 786421 787828 787833) (-473 "GRMOD.spad" 784978 784992 786399 786404) (-472 "GRIMAGE.spad" 777867 777875 784968 784973) (-471 "GRDEF.spad" 776246 776254 777857 777862) (-470 "GRAY.spad" 774709 774717 776236 776241) (-469 "GRALG.spad" 773786 773798 774699 774704) (-468 "GRALG.spad" 772861 772875 773776 773781) (-467 "GPOLSET.spad" 772315 772338 772543 772570) (-466 "GOSPER.spad" 771584 771602 772305 772310) (-465 "GMODPOL.spad" 770732 770759 771552 771579) (-464 "GHENSEL.spad" 769815 769829 770722 770727) (-463 "GENUPS.spad" 766108 766121 769805 769810) (-462 "GENUFACT.spad" 765685 765695 766098 766103) (-461 "GENPGCD.spad" 765271 765288 765675 765680) (-460 "GENMFACT.spad" 764723 764742 765261 765266) (-459 "GENEEZ.spad" 762674 762687 764713 764718) (-458 "GDMP.spad" 759730 759747 760504 760631) (-457 "GCNAALG.spad" 753653 753680 759524 759591) (-456 "GCDDOM.spad" 752829 752837 753579 753648) (-455 "GCDDOM.spad" 752067 752077 752819 752824) (-454 "GBINTERN.spad" 748087 748125 752057 752062) (-453 "GBF.spad" 743854 743892 748077 748082) (-452 "GBEUCLID.spad" 741736 741774 743844 743849) (-451 "GB.spad" 739262 739300 741692 741697) (-450 "GAUSSFAC.spad" 738575 738583 739252 739257) (-449 "GALUTIL.spad" 736901 736911 738531 738536) (-448 "GALPOLYU.spad" 735355 735368 736891 736896) (-447 "GALFACTU.spad" 733528 733547 735345 735350) (-446 "GALFACT.spad" 723717 723728 733518 733523) (-445 "FVFUN.spad" 720740 720748 723707 723712) (-444 "FVC.spad" 719792 719800 720730 720735) (-443 "FUNDESC.spad" 719470 719478 719782 719787) (-442 "FUNCTION.spad" 719319 719331 719460 719465) (-441 "FTEM.spad" 718484 718492 719309 719314) (-440 "FT.spad" 716784 716792 718474 718479) (-439 "FSUPFACT.spad" 715684 715703 716720 716725) (-438 "FST.spad" 713770 713778 715674 715679) (-437 "FSRED.spad" 713250 713266 713760 713765) (-436 "FSPRMELT.spad" 712132 712148 713207 713212) (-435 "FSPECF.spad" 710223 710239 712122 712127) (-434 "FSINT.spad" 709883 709899 710213 710218) (-433 "FSERIES.spad" 709074 709086 709703 709802) (-432 "FSCINT.spad" 708391 708407 709064 709069) (-431 "FSAGG2.spad" 707134 707150 708381 708386) (-430 "FSAGG.spad" 706251 706261 707090 707129) (-429 "FSAGG.spad" 705330 705342 706171 706176) (-428 "FS2UPS.spad" 699821 699855 705320 705325) (-427 "FS2EXPXP.spad" 698946 698969 699811 699816) (-426 "FS2.spad" 698593 698609 698936 698941) (-425 "FS.spad" 692861 692871 698368 698588) (-424 "FS.spad" 686907 686919 692416 692421) (-423 "FRUTIL.spad" 685861 685871 686897 686902) (-422 "FRNAALG.spad" 680980 680990 685803 685856) (-421 "FRNAALG.spad" 676111 676123 680936 680941) (-420 "FRNAAF2.spad" 675567 675585 676101 676106) (-419 "FRMOD.spad" 674977 675007 675498 675503) (-418 "FRIDEAL2.spad" 674581 674613 674967 674972) (-417 "FRIDEAL.spad" 673806 673827 674561 674576) (-416 "FRETRCT.spad" 673317 673327 673796 673801) (-415 "FRETRCT.spad" 672694 672706 673175 673180) (-414 "FRAMALG.spad" 671042 671055 672650 672689) (-413 "FRAMALG.spad" 669422 669437 671032 671037) (-412 "FRAC2.spad" 669027 669039 669412 669417) (-411 "FRAC.spad" 666126 666136 666529 666702) (-410 "FR2.spad" 665462 665474 666116 666121) (-409 "FR.spad" 659205 659215 664486 664555) (-408 "FPS.spad" 656020 656028 659095 659200) (-407 "FPS.spad" 652863 652873 655940 655945) (-406 "FPC.spad" 651909 651917 652765 652858) (-405 "FPC.spad" 651041 651051 651899 651904) (-404 "FPATMAB.spad" 650803 650813 651031 651036) (-403 "FPARFRAC.spad" 649290 649307 650793 650798) (-402 "FORTRAN.spad" 647796 647839 649280 649285) (-401 "FORTFN.spad" 644966 644974 647786 647791) (-400 "FORTCAT.spad" 644650 644658 644956 644961) (-399 "FORT.spad" 643599 643607 644640 644645) (-398 "FORMULA1.spad" 643078 643088 643589 643594) (-397 "FORMULA.spad" 640552 640560 643068 643073) (-396 "FORDER.spad" 640243 640267 640542 640547) (-395 "FOP.spad" 639444 639452 640233 640238) (-394 "FNLA.spad" 638868 638890 639412 639439) (-393 "FNCAT.spad" 637463 637471 638858 638863) (-392 "FNAME.spad" 637355 637363 637453 637458) (-391 "FMTC.spad" 637153 637161 637281 637350) (-390 "FMONOID.spad" 636818 636828 637109 637114) (-389 "FMONCAT.spad" 633971 633981 636808 636813) (-388 "FMFUN.spad" 631001 631009 633961 633966) (-387 "FMCAT.spad" 628669 628687 630969 630996) (-386 "FMC.spad" 627721 627729 628659 628664) (-385 "FM1.spad" 627078 627090 627655 627682) (-384 "FM.spad" 626773 626785 627012 627039) (-383 "FLOATRP.spad" 624508 624522 626763 626768) (-382 "FLOATCP.spad" 621939 621953 624498 624503) (-381 "FLOAT.spad" 615253 615261 621805 621934) (-380 "FLINEXP.spad" 614965 614975 615233 615248) (-379 "FLINEXP.spad" 614631 614643 614901 614906) (-378 "FLASORT.spad" 613957 613969 614621 614626) (-377 "FLALG.spad" 611603 611622 613883 613952) (-376 "FLAGG2.spad" 610328 610344 611593 611598) (-375 "FLAGG.spad" 607370 607380 610308 610323) (-374 "FLAGG.spad" 604313 604325 607253 607258) (-373 "FINRALG.spad" 602374 602387 604269 604308) (-372 "FINRALG.spad" 600361 600376 602258 602263) (-371 "FINITE.spad" 599513 599521 600351 600356) (-370 "FINAALG.spad" 588634 588644 599455 599508) (-369 "FINAALG.spad" 577767 577779 588590 588595) (-368 "FILECAT.spad" 576293 576310 577757 577762) (-367 "FILE.spad" 575876 575886 576283 576288) (-366 "FIELD.spad" 575282 575290 575778 575871) (-365 "FIELD.spad" 574774 574784 575272 575277) (-364 "FGROUP.spad" 573421 573431 574754 574769) (-363 "FGLMICPK.spad" 572208 572223 573411 573416) (-362 "FFX.spad" 571583 571598 571924 572017) (-361 "FFSLPE.spad" 571086 571107 571573 571578) (-360 "FFPOLY2.spad" 570146 570163 571076 571081) (-359 "FFPOLY.spad" 561408 561419 570136 570141) (-358 "FFP.spad" 560805 560825 561124 561217) (-357 "FFNBX.spad" 559317 559337 560521 560614) (-356 "FFNBP.spad" 557830 557847 559033 559126) (-355 "FFNB.spad" 556295 556316 557511 557604) (-354 "FFINTBAS.spad" 553809 553828 556285 556290) (-353 "FFIELDC.spad" 551386 551394 553711 553804) (-352 "FFIELDC.spad" 549049 549059 551376 551381) (-351 "FFHOM.spad" 547797 547814 549039 549044) (-350 "FFF.spad" 545232 545243 547787 547792) (-349 "FFCGX.spad" 544079 544099 544948 545041) (-348 "FFCGP.spad" 542968 542988 543795 543888) (-347 "FFCG.spad" 541760 541781 542649 542742) (-346 "FFCAT2.spad" 541507 541547 541750 541755) (-345 "FFCAT.spad" 534680 534702 541346 541502) (-344 "FFCAT.spad" 527932 527956 534600 534605) (-343 "FF.spad" 527380 527396 527613 527706) (-342 "FEXPR.spad" 519097 519143 527136 527175) (-341 "FEVALAB.spad" 518805 518815 519087 519092) (-340 "FEVALAB.spad" 518298 518310 518582 518587) (-339 "FDIVCAT.spad" 516362 516386 518288 518293) (-338 "FDIVCAT.spad" 514424 514450 516352 516357) (-337 "FDIV2.spad" 514080 514120 514414 514419) (-336 "FDIV.spad" 513522 513546 514070 514075) (-335 "FCTRDATA.spad" 512530 512538 513512 513517) (-334 "FCPAK1.spad" 511097 511105 512520 512525) (-333 "FCOMP.spad" 510476 510486 511087 511092) (-332 "FC.spad" 500483 500491 510466 510471) (-331 "FAXF.spad" 493454 493468 500385 500478) (-330 "FAXF.spad" 486477 486493 493410 493415) (-329 "FARRAY.spad" 484627 484637 485660 485687) (-328 "FAMR.spad" 482763 482775 484525 484622) (-327 "FAMR.spad" 480883 480897 482647 482652) (-326 "FAMONOID.spad" 480551 480561 480837 480842) (-325 "FAMONC.spad" 478847 478859 480541 480546) (-324 "FAGROUP.spad" 478471 478481 478743 478770) (-323 "FACUTIL.spad" 476675 476692 478461 478466) (-322 "FACTFUNC.spad" 475869 475879 476665 476670) (-321 "EXPUPXS.spad" 472702 472725 474001 474150) (-320 "EXPRTUBE.spad" 469990 469998 472692 472697) (-319 "EXPRODE.spad" 467150 467166 469980 469985) (-318 "EXPR2UPS.spad" 463272 463285 467140 467145) (-317 "EXPR2.spad" 462977 462989 463262 463267) (-316 "EXPR.spad" 458252 458262 458966 459373) (-315 "EXPEXPAN.spad" 455192 455217 455824 455917) (-314 "EXITAST.spad" 454928 454936 455182 455187) (-313 "EXIT.spad" 454599 454607 454918 454923) (-312 "EVALCYC.spad" 454059 454073 454589 454594) (-311 "EVALAB.spad" 453631 453641 454049 454054) (-310 "EVALAB.spad" 453201 453213 453621 453626) (-309 "EUCDOM.spad" 450775 450783 453127 453196) (-308 "EUCDOM.spad" 448411 448421 450765 450770) (-307 "ESTOOLS2.spad" 448014 448028 448401 448406) (-306 "ESTOOLS1.spad" 447699 447710 448004 448009) (-305 "ESTOOLS.spad" 439545 439553 447689 447694) (-304 "ESCONT1.spad" 439294 439306 439535 439540) (-303 "ESCONT.spad" 436087 436095 439284 439289) (-302 "ES2.spad" 435592 435608 436077 436082) (-301 "ES1.spad" 435162 435178 435582 435587) (-300 "ES.spad" 427977 427985 435152 435157) (-299 "ES.spad" 420698 420708 427875 427880) (-298 "ERROR.spad" 418025 418033 420688 420693) (-297 "EQTBL.spad" 416497 416519 416706 416733) (-296 "EQ2.spad" 416215 416227 416487 416492) (-295 "EQ.spad" 411020 411030 413807 413919) (-294 "EP.spad" 407346 407356 411010 411015) (-293 "ENV.spad" 406008 406016 407336 407341) (-292 "ENTIRER.spad" 405676 405684 405952 406003) (-291 "EMR.spad" 404883 404924 405602 405671) (-290 "ELTAGG.spad" 403137 403156 404873 404878) (-289 "ELTAGG.spad" 401355 401376 403093 403098) (-288 "ELTAB.spad" 400804 400822 401345 401350) (-287 "ELFUTS.spad" 400191 400210 400794 400799) (-286 "ELEMFUN.spad" 399880 399888 400181 400186) (-285 "ELEMFUN.spad" 399567 399577 399870 399875) (-284 "ELAGG.spad" 397538 397548 399547 399562) (-283 "ELAGG.spad" 395446 395458 397457 397462) (-282 "ELABEXPR.spad" 394378 394386 395436 395441) (-281 "EFUPXS.spad" 391154 391184 394334 394339) (-280 "EFULS.spad" 387990 388013 391110 391115) (-279 "EFSTRUC.spad" 386005 386021 387980 387985) (-278 "EF.spad" 380781 380797 385995 386000) (-277 "EAB.spad" 379057 379065 380771 380776) (-276 "E04UCFA.spad" 378593 378601 379047 379052) (-275 "E04NAFA.spad" 378170 378178 378583 378588) (-274 "E04MBFA.spad" 377750 377758 378160 378165) (-273 "E04JAFA.spad" 377286 377294 377740 377745) (-272 "E04GCFA.spad" 376822 376830 377276 377281) (-271 "E04FDFA.spad" 376358 376366 376812 376817) (-270 "E04DGFA.spad" 375894 375902 376348 376353) (-269 "E04AGNT.spad" 371744 371752 375884 375889) (-268 "DVARCAT.spad" 368433 368443 371734 371739) (-267 "DVARCAT.spad" 365120 365132 368423 368428) (-266 "DSMP.spad" 362587 362601 362892 363019) (-265 "DROPT1.spad" 362252 362262 362577 362582) (-264 "DROPT0.spad" 357109 357117 362242 362247) (-263 "DROPT.spad" 351068 351076 357099 357104) (-262 "DRAWPT.spad" 349241 349249 351058 351063) (-261 "DRAWHACK.spad" 348549 348559 349231 349236) (-260 "DRAWCX.spad" 346019 346027 348539 348544) (-259 "DRAWCURV.spad" 345566 345581 346009 346014) (-258 "DRAWCFUN.spad" 335098 335106 345556 345561) (-257 "DRAW.spad" 327974 327987 335088 335093) (-256 "DQAGG.spad" 326152 326162 327942 327969) (-255 "DPOLCAT.spad" 321501 321517 326020 326147) (-254 "DPOLCAT.spad" 316936 316954 321457 321462) (-253 "DPMO.spad" 309162 309178 309300 309601) (-252 "DPMM.spad" 301401 301419 301526 301827) (-251 "DOMTMPLT.spad" 301061 301069 301391 301396) (-250 "DOMCTOR.spad" 300816 300824 301051 301056) (-249 "DOMAIN.spad" 299903 299911 300806 300811) (-248 "DMP.spad" 297163 297178 297733 297860) (-247 "DLP.spad" 296515 296525 297153 297158) (-246 "DLIST.spad" 295094 295104 295698 295725) (-245 "DLAGG.spad" 293511 293521 295084 295089) (-244 "DIVRING.spad" 293053 293061 293455 293506) (-243 "DIVRING.spad" 292639 292649 293043 293048) (-242 "DISPLAY.spad" 290829 290837 292629 292634) (-241 "DIRPROD2.spad" 289647 289665 290819 290824) (-240 "DIRPROD.spad" 279227 279243 279867 279998) (-239 "DIRPCAT.spad" 278171 278187 279091 279222) (-238 "DIRPCAT.spad" 276844 276862 277766 277771) (-237 "DIOSP.spad" 275669 275677 276834 276839) (-236 "DIOPS.spad" 274665 274675 275649 275664) (-235 "DIOPS.spad" 273635 273647 274621 274626) (-234 "DIFRING.spad" 272931 272939 273615 273630) (-233 "DIFRING.spad" 272235 272245 272921 272926) (-232 "DIFEXT.spad" 271406 271416 272215 272230) (-231 "DIFEXT.spad" 270494 270506 271305 271310) (-230 "DIAGG.spad" 270124 270134 270474 270489) (-229 "DIAGG.spad" 269762 269774 270114 270119) (-228 "DHMATRIX.spad" 268074 268084 269219 269246) (-227 "DFSFUN.spad" 261714 261722 268064 268069) (-226 "DFLOAT.spad" 258445 258453 261604 261709) (-225 "DFINTTLS.spad" 256676 256692 258435 258440) (-224 "DERHAM.spad" 254590 254622 256656 256671) (-223 "DEQUEUE.spad" 253914 253924 254197 254224) (-222 "DEGRED.spad" 253531 253545 253904 253909) (-221 "DEFINTRF.spad" 251113 251123 253521 253526) (-220 "DEFINTEF.spad" 249651 249667 251103 251108) (-219 "DEFAST.spad" 249019 249027 249641 249646) (-218 "DECIMAL.spad" 247125 247133 247486 247579) (-217 "DDFACT.spad" 244938 244955 247115 247120) (-216 "DBLRESP.spad" 244538 244562 244928 244933) (-215 "DBASE.spad" 243202 243212 244528 244533) (-214 "DATAARY.spad" 242664 242677 243192 243197) (-213 "D03FAFA.spad" 242492 242500 242654 242659) (-212 "D03EEFA.spad" 242312 242320 242482 242487) (-211 "D03AGNT.spad" 241398 241406 242302 242307) (-210 "D02EJFA.spad" 240860 240868 241388 241393) (-209 "D02CJFA.spad" 240338 240346 240850 240855) (-208 "D02BHFA.spad" 239828 239836 240328 240333) (-207 "D02BBFA.spad" 239318 239326 239818 239823) (-206 "D02AGNT.spad" 234132 234140 239308 239313) (-205 "D01WGTS.spad" 232451 232459 234122 234127) (-204 "D01TRNS.spad" 232428 232436 232441 232446) (-203 "D01GBFA.spad" 231950 231958 232418 232423) (-202 "D01FCFA.spad" 231472 231480 231940 231945) (-201 "D01ASFA.spad" 230940 230948 231462 231467) (-200 "D01AQFA.spad" 230386 230394 230930 230935) (-199 "D01APFA.spad" 229810 229818 230376 230381) (-198 "D01ANFA.spad" 229304 229312 229800 229805) (-197 "D01AMFA.spad" 228814 228822 229294 229299) (-196 "D01ALFA.spad" 228354 228362 228804 228809) (-195 "D01AKFA.spad" 227880 227888 228344 228349) (-194 "D01AJFA.spad" 227403 227411 227870 227875) (-193 "D01AGNT.spad" 223470 223478 227393 227398) (-192 "CYCLOTOM.spad" 222976 222984 223460 223465) (-191 "CYCLES.spad" 219832 219840 222966 222971) (-190 "CVMP.spad" 219249 219259 219822 219827) (-189 "CTRIGMNP.spad" 217749 217765 219239 219244) (-188 "CTORKIND.spad" 217352 217360 217739 217744) (-187 "CTORCAT.spad" 216601 216609 217342 217347) (-186 "CTORCAT.spad" 215848 215858 216591 216596) (-185 "CTORCALL.spad" 215437 215447 215838 215843) (-184 "CTOR.spad" 215128 215136 215427 215432) (-183 "CSTTOOLS.spad" 214373 214386 215118 215123) (-182 "CRFP.spad" 208097 208110 214363 214368) (-181 "CRCEAST.spad" 207817 207825 208087 208092) (-180 "CRAPACK.spad" 206868 206878 207807 207812) (-179 "CPMATCH.spad" 206372 206387 206793 206798) (-178 "CPIMA.spad" 206077 206096 206362 206367) (-177 "COORDSYS.spad" 201086 201096 206067 206072) (-176 "CONTOUR.spad" 200497 200505 201076 201081) (-175 "CONTFRAC.spad" 196247 196257 200399 200492) (-174 "CONDUIT.spad" 196005 196013 196237 196242) (-173 "COMRING.spad" 195679 195687 195943 196000) (-172 "COMPPROP.spad" 195197 195205 195669 195674) (-171 "COMPLPAT.spad" 194964 194979 195187 195192) (-170 "COMPLEX2.spad" 194679 194691 194954 194959) (-169 "COMPLEX.spad" 188816 188826 189060 189321) (-168 "COMPILER.spad" 188528 188536 188806 188811) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMMAAST.spad" 183046 183054 183273 183278) (-161 "COMM.spad" 182857 182865 183036 183041) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN2.spad" 152290 152317 152890 152895) (-135 "CARTEN.spad" 147577 147601 152280 152285) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTEBUF.spad" 141359 141367 142669 142696) (-128 "BYTE.spad" 140786 140794 141349 141354) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP1.spad" 125493 125503 128017 128022) (-113 "BOP.spad" 120675 120683 125483 125488) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP80.spad" 96764 96777 97432 97437) (-87 "ASP8.spad" 95807 95820 96754 96759) (-86 "ASP78.spad" 95258 95271 95797 95802) (-85 "ASP77.spad" 94627 94640 95248 95253) (-84 "ASP74.spad" 93719 93732 94617 94622) (-83 "ASP73.spad" 92990 93003 93709 93714) (-82 "ASP7.spad" 92150 92163 92980 92985) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP49.spad" 86342 86355 87333 87338) (-77 "ASP42.spad" 84749 84788 86332 86337) (-76 "ASP41.spad" 83328 83367 84739 84744) (-75 "ASP4.spad" 82623 82636 83318 83323) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP19.spad" 61377 61390 66681 66686) (-63 "ASP12.spad" 60791 60804 61367 61372) (-62 "ASP10.spad" 60062 60075 60781 60786) (-61 "ASP1.spad" 59443 59456 60052 60057) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY12.spad" 57516 57527 58793 58798) (-58 "ARRAY1.spad" 56353 56362 56699 56726) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY1.spad" 45243 45252 46162 46167) (-51 "ANY.spad" 44102 44109 45233 45238) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index ea8c04cc..b07536d8 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,299 +1,299 @@ -(188431 . 3477417272) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-410 |#2|) |#3|) . T)) -((((-410 (-549))) |has| #1=(-410 |#2|) (-1041 (-410 (-549)))) (((-549)) |has| #1# (-1041 (-549))) ((#1#) . T)) -((((-410 |#2|)) . T)) -((((-549)) |has| #1=(-410 |#2|) (-641 (-549))) ((#1#) . T)) -((((-410 |#2|)) . T)) -((((-410 |#2|) |#3|) . T)) -(|has| (-410 |#2|) (-147)) -((((-410 |#2|) |#3|) . T)) -(|has| (-410 |#2|) (-145)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -(|has| (-410 |#2|) (-233)) -((((-1180)) |has| (-410 |#2|) (-903 (-1180)))) -((((-410 |#2|)) . T)) +(188437 . 3477420792) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-411 |#2|) |#3|) . T)) +((((-411 (-550))) |has| #1=(-411 |#2|) (-1042 (-411 (-550)))) (((-550)) |has| #1# (-1042 (-550))) ((#1#) . T)) +((((-411 |#2|)) . T)) +((((-550)) |has| #1=(-411 |#2|) (-642 (-550))) ((#1#) . T)) +((((-411 |#2|)) . T)) +((((-411 |#2|) |#3|) . T)) +(|has| (-411 |#2|) (-147)) +((((-411 |#2|) |#3|) . T)) +(|has| (-411 |#2|) (-145)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +(|has| (-411 |#2|) (-234)) +((((-1181)) |has| (-411 |#2|) (-904 (-1181)))) +((((-411 |#2|)) . T)) (((|#3|) . T)) -(((#1=(-410 |#2|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(((#1=(-411 |#2|) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (((|#1| |#2| |#3|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1145 |#2| |#1|)) . T) ((|#1|) . T)) -((((-865)) . T)) -((((-1145 |#2| |#1|)) . T) ((|#1|) . T) (((-549)) . T)) +((((-1146 |#2| |#1|)) . T) ((|#1|) . T)) +((((-866)) . T)) +((((-1146 |#2| |#1|)) . T) ((|#1|) . T) (((-550)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-865)) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-866)) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#1| |#2|) . T)) -((((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#2|) . T)) -(((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -((((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#1| |#2|) . T)) +((((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((|#1| |#2|) . T)) +((((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((|#2|) . T)) +(((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) ((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +((((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-168 (-380))) . T) (((-225)) . T) (((-380)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -(((#1=(-410 (-549)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-613 $) $) . T)) -((((-410 (-549))) . T) (((-549)) . T) (((-613 $)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T) (((-613 $)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +((((-169 (-381))) . T) (((-226)) . T) (((-381)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +(((#1=(-411 (-550)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-614 $) $) . T)) +((((-411 (-550))) . T) (((-550)) . T) (((-614 $)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T) (((-614 $)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-549)) . T)) +(((|#1|) . T) (((-550)) . T)) (((|#1|) . T)) -((((-865)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-866)) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701)))) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-692 (-342 (-3955) (-3955 (QUOTE X) (QUOTE HESS)) (-702)))) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702)))) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) (((|#1| |#1|) . T)) -((((-865)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-1007 2)) . T) (((-410 (-549))) . T) (((-865)) . T)) -((((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T)) -((((-865)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-1008 2)) . T) (((-411 (-550))) . T) (((-866)) . T)) +((((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-550) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T)) +((((-866)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-549) (-112)) . T)) -((((-549) (-112)) . T)) -((((-549) (-112)) . T)) -((((-538)) . T)) +((((-550) (-112)) . T)) +((((-550) (-112)) . T)) +((((-550) (-112)) . T)) +((((-539)) . T)) ((((-112)) . T)) -((((-865)) . T)) +((((-866)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-538)) . T)) -((((-865)) . T)) -((((-1180)) . T)) -((((-865)) . T)) +((((-539)) . T)) +((((-866)) . T)) +((((-1181)) . T)) +((((-866)) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) +((((-550)) . T) (($) . T)) (((|#1|) . T)) -((((-865)) . T)) +((((-866)) . T)) ((((-116 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-116 |#1|)) . T) (((-410 (-549))) . T)) -((($) . T) (((-116 |#1|)) . T) (((-410 (-549))) . T)) -((((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-116 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-116 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-116 |#1|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-116 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-116 |#1|)) . T) (((-411 (-550))) . T)) +((($) . T) (((-116 |#1|)) . T) (((-411 (-550))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-116 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-116 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-116 |#1|) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) ((((-116 |#1|)) . T)) -((((-1180) #1=(-116 |#1|)) |has| #1# (-517 (-1180) #1#)) ((#1# #1#) |has| #1# (-310 #1#))) -(((#1=(-116 |#1|)) |has| #1# (-310 #1#))) -(((#1=(-116 |#1|) $) |has| #1# (-287 #1# #1#))) +((((-1181) #1=(-116 |#1|)) |has| #1# (-518 (-1181) #1#)) ((#1# #1#) |has| #1# (-311 #1#))) +(((#1=(-116 |#1|)) |has| #1# (-311 #1#))) +(((#1=(-116 |#1|) $) |has| #1# (-288 #1# #1#))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) -((((-549)) . T) (((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-550)) . T) (((-116 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) (((|#1|) . T)) (((|#1|) . T)) ((((-144)) . T)) ((((-144)) . T)) -((((-144)) . T) (((-865)) . T)) +((((-144)) . T) (((-866)) . T)) ((((-128)) . T)) ((((-128)) . T)) -((((-1162)) . T) (((-961 (-128))) . T) (((-865)) . T)) +((((-1163)) . T) (((-962 (-128))) . T) (((-866)) . T)) ((((-128)) . T)) -((((-549) (-128)) . T)) -((((-549) (-128)) . T)) -((((-549) (-128)) . T)) +((((-550) (-128)) . T)) +((((-550) (-128)) . T)) +((((-550) (-128)) . T)) ((((-128)) . T)) ((((-128)) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-865)) . T)) -((((-549) (-773)) . T) ((|#3| (-773)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-866)) . T)) +((((-550) (-774)) . T) ((|#3| (-774)) . T)) +((((-866)) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| (-773)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-509)) . T)) -((((-183)) . T) (((-865)) . T)) -((((-865)) . T)) +(((|#3| (-774)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-510)) . T)) +((((-184)) . T) (((-866)) . T)) +((((-866)) . T)) ((((-144)) . T)) ((((-144)) . T)) ((((-144)) . T)) @@ -301,9 +301,9 @@ ((((-144)) . T)) ((((-144)) . T)) ((((-144)) . T)) -((((-643 (-144))) . T) (((-1162)) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-644 (-144))) . T) (((-1163)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -311,1666 +311,1666 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-549)) . T)) +(((|#2|) . T) (((-550)) . T)) (((|#2|) . T) (($) . T)) -((((-865)) . T)) -(((|#2|) . T) (($) . T) (((-549)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(|has| |#1| (-823)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-352))) -((((-865)) . T)) +((((-866)) . T)) +(((|#2|) . T) (($) . T) (((-550)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(|has| |#1| (-824)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-353))) +((((-866)) . T)) (|has| |#1| (-147)) (((|#1|) . T)) -((((-1180)) |has| |#1| (-903 (-1180)))) -(-3960 (|has| |#1| (-233)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(((|#1|) . T)) -((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) |has| |#1| (-310 |#1|))) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-889 (-549))) (((-380)) |has| |#1| (-889 (-380)))) -(((|#1|) . T)) -((((-549)) . T) (($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1| (-1174 |#1|)) . T)) -(((|#1| (-1174 |#1|)) . T)) -((($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1| |#1|) . T)) -((($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -(((|#1| (-1174 |#1|)) . T)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(-3960 (|has| |#1| (-370)) (|has| |#1| (-352))) -(((|#1|) . T)) -((((-168 (-225))) |has| |#1| . #1=((-1023))) (((-168 (-380))) |has| |#1| . #1#) (((-538)) |has| |#1| (-616 (-538))) (((-1174 |#1|)) . T) (((-893 (-549))) |has| |#1| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380))))) -(-12 (|has| |#1| (-308)) (|has| |#1| (-913))) -(-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))) -(|has| |#1| (-1205)) -(|has| |#1| (-1205)) -(|has| |#1| (-1205)) -(|has| |#1| (-1205)) -(|has| |#1| (-1205)) -(|has| |#1| (-1205)) -(((|#1|) . T)) -((((-865)) . T)) -((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-865)) . T)) -((($) . T) (((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T) ((#2=(-410 |#1|) #2#) . T) ((|#1| |#1|) . T)) -((((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-549)) . T) (($) . T)) -((((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-549)) . T)) -((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-509)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-643 |#1|)) . T)) -((((-865)) . T)) -((((-1007 10)) . T) (((-410 (-549))) . T) (((-865)) . T)) -((((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-315 |#1|)) . T)) -((((-865)) . T)) -((((-315 |#1|)) . T) (((-549)) . T) (($) . T)) -((((-315 |#1|)) . T) (($) . T)) -((((-315 |#1|)) . T) (((-549)) . T)) -((((-315 |#1|)) . T)) -((((-549)) . T) (((-410 (-549))) . T)) -((((-380)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-538)) . T) (((-225)) . T) (((-380)) . T) (((-893 (-380))) . T)) -((((-865)) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T) (((-549)) . T)) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1|) . T)) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) -(((|#2|) |has| |#2| (-172))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) (((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-865)) -3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-615 (-865))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((-1269 |#2|)) . T)) -(|has| |#2| (-172)) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) -(((|#2| |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($ $) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-1052))) -((((-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1052))) -(|has| |#2| (-370)) -(((|#2|) |has| |#2| (-1052))) -(((|#2|) |has| |#2| (-1052)) (((-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) -(((|#2|) |has| |#2| (-1104))) -((((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) -(((|#2|) |has| |#2| (-1104)) (((-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) -((((-549) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2|) . T)) -((((-549) |#2|) . T)) -((((-549) |#2|) . T)) -(|has| |#2| (-795)) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(|has| |#2| (-850)) -(|has| |#2| (-850)) -(((|#2|) |has| |#2| (-365))) +((((-1181)) |has| |#1| (-904 (-1181)))) +(-3962 (|has| |#1| (-234)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(((|#1|) . T)) +((((-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((|#1| |#1|) |has| |#1| (-311 |#1|))) +(((|#1|) |has| |#1| (-311 |#1|))) +(((|#1| $) |has| |#1| (-288 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-642 (-550)))) +(((|#1|) . T)) +((((-550)) |has| |#1| (-890 (-550))) (((-381)) |has| |#1| (-890 (-381)))) +(((|#1|) . T)) +((((-550)) . T) (($) -3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-1042 (-411 (-550))))) ((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1| (-1175 |#1|)) . T)) +(((|#1| (-1175 |#1|)) . T)) +((($) -3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1| |#1|) . T)) +((($) -3962 (|has| |#1| (-309)) (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +(((|#1| (-1175 |#1|)) . T)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(-3962 (|has| |#1| (-371)) (|has| |#1| (-353))) +(((|#1|) . T)) +((((-169 (-226))) |has| |#1| . #1=((-1024))) (((-169 (-381))) |has| |#1| . #1#) (((-539)) |has| |#1| (-617 (-539))) (((-1175 |#1|)) . T) (((-894 (-550))) |has| |#1| (-617 (-894 (-550)))) (((-894 (-381))) |has| |#1| (-617 (-894 (-381))))) +(-12 (|has| |#1| (-309)) (|has| |#1| (-914))) +(-12 (|has| |#1| (-1006)) (|has| |#1| (-1206))) +(|has| |#1| (-1206)) +(|has| |#1| (-1206)) +(|has| |#1| (-1206)) +(|has| |#1| (-1206)) +(|has| |#1| (-1206)) +(|has| |#1| (-1206)) +(((|#1|) . T)) +((((-866)) . T)) +((((-411 (-550))) . T) (($) . T) (((-411 |#1|)) . T) ((|#1|) . T)) +((((-411 (-550))) . T) (($) . T) (((-411 |#1|)) . T) ((|#1|) . T)) +((((-866)) . T)) +((($) . T) (((-411 (-550))) . T) (((-411 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-411 (-550))) . T) (((-411 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T) ((#2=(-411 |#1|) #2#) . T) ((|#1| |#1|) . T)) +((((-411 (-550))) . T) (((-411 |#1|)) . T) ((|#1|) . T) (((-550)) . T) (($) . T)) +((((-411 (-550))) . T) (((-411 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T) (((-411 |#1|)) . T) ((|#1|) . T) (((-550)) . T)) +((((-411 (-550))) . T) (($) . T) (((-411 |#1|)) . T) ((|#1|) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-510)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-644 |#1|)) . T)) +((((-866)) . T)) +((((-1008 10)) . T) (((-411 (-550))) . T) (((-866)) . T)) +((((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-550) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-316 |#1|)) . T)) +((((-866)) . T)) +((((-316 |#1|)) . T) (((-550)) . T) (($) . T)) +((((-316 |#1|)) . T) (($) . T)) +((((-316 |#1|)) . T) (((-550)) . T)) +((((-316 |#1|)) . T)) +((((-550)) . T) (((-411 (-550))) . T)) +((((-381)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-539)) . T) (((-226)) . T) (((-381)) . T) (((-894 (-381))) . T)) +((((-866)) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T) (((-550)) . T)) +(((|#1| (-1270 |#1|) (-1270 |#1|)) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +(((|#1| (-1270 |#1|) (-1270 |#1|)) . T)) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) +(((|#2|) |has| |#2| (-173))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-729)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-729)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) (((-550)) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-851)) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053)))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053)))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)))) +((((-866)) -3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-616 (-866))) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) (((-1270 |#2|)) . T)) +(|has| |#2| (-173)) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($) |has| |#2| (-173))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($) |has| |#2| (-173))) +(((|#2| |#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($ $) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-1053))) +((((-1181)) -12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) +(-12 (|has| |#2| (-234)) (|has| |#2| (-1053))) +(|has| |#2| (-371)) +(((|#2|) |has| |#2| (-1053))) +(((|#2|) |has| |#2| (-1053)) (((-550)) -12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) +(((|#2|) |has| |#2| (-1105))) +((((-550)) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-1105))) (((-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) +(((|#2|) |has| |#2| (-1105)) (((-550)) -12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (((-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) +((((-550) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2|) . T)) +((((-550) |#2|) . T)) +((((-550) |#2|) . T)) +(|has| |#2| (-796)) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(|has| |#2| (-851)) +(|has| |#2| (-851)) +(((|#2|) |has| |#2| (-366))) (((|#1| |#2|) . T)) -((((-643 |#1|)) . T)) -((((-643 |#1|)) . T)) +((((-644 |#1|)) . T)) +((((-644 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-643 |#1|)) . T) (((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +((((-644 |#1|)) . T) (((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) +((((-539)) |has| |#2| (-617 (-539))) (((-894 (-381))) |has| |#2| (-617 (-894 (-381)))) (((-894 (-550))) |has| |#2| (-617 (-894 (-550))))) ((($) . T)) -(((|#2| (-239 (-4389 |#1|) (-773))) . T)) +(((|#2| (-240 (-4391 |#1|) (-774))) . T)) (((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) -((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) +((($) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((|#2| (-239 (-4389 |#1|) (-773))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) -((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) -((((-866 |#1|)) . T)) -(|has| |#2| (-913)) -(|has| |#2| (-913)) -((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) -((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) -(((|#2| (-239 (-4389 |#1|) (-773)) (-866 |#1|)) . T)) -((((-865)) . T)) -((((-509)) . T)) -((((-183)) . T) (((-865)) . T)) -((((-865)) . T)) -(((|#4|) |has| |#4| (-172))) -(-3960 (|has| |#4| (-172)) (|has| |#4| (-728)) (|has| |#4| (-850)) (|has| |#4| (-1052))) -(-3960 (|has| |#4| (-172)) (|has| |#4| (-728)) (|has| |#4| (-850)) (|has| |#4| (-1052))) -(-3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) -(-3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) -(((|#3|) . T) ((|#2|) . T) (($) -3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) (((-549)) . T) ((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052)))) -(((|#3|) . T) ((|#2|) . T) (($) -3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) ((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052)))) -(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)))) -((((-865)) . T) (((-1269 |#4|)) . T)) -(|has| |#4| (-172)) -(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052))) (($) |has| |#4| (-172))) -(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052))) (($) |has| |#4| (-172))) -(((|#4| |#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052))) (($ $) |has| |#4| (-172))) -(((|#4|) |has| |#4| (-1052))) -((((-1180)) -12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) -(-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) -(|has| |#4| (-370)) -(((|#4|) |has| |#4| (-1052))) -(((|#4|) |has| |#4| (-1052)) (((-549)) -12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052)))) -(((|#4|) |has| |#4| (-1104))) -((((-549)) -3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104))) (|has| |#4| (-1052))) ((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-1104))) (((-410 (-549))) -12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104)))) -(((|#4|) |has| |#4| (-1104)) (((-549)) -12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104))) (((-410 (-549))) -12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104)))) -((((-549) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((#1=(-411 (-550)) #1#) |has| |#2| (-38 (-411 (-550)))) ((|#2| |#2|) . T) (($ $) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((|#2| (-240 (-4391 |#1|) (-774))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-914))) +((($ $) . T) ((#1=(-867 |#1|) $) . T) ((#1# |#2|) . T)) +((((-867 |#1|)) . T)) +(|has| |#2| (-914)) +(|has| |#2| (-914)) +((((-411 (-550))) |has| |#2| (-1042 (-411 (-550)))) (((-550)) |has| |#2| (-1042 (-550))) ((|#2|) . T) (((-867 |#1|)) . T)) +((((-550)) . T) (((-411 (-550))) -3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550))))) ((|#2|) . T) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) (((-867 |#1|)) . T)) +(((|#2| (-240 (-4391 |#1|) (-774)) (-867 |#1|)) . T)) +((((-866)) . T)) +((((-510)) . T)) +((((-184)) . T) (((-866)) . T)) +((((-866)) . T)) +(((|#4|) |has| |#4| (-173))) +(-3962 (|has| |#4| (-173)) (|has| |#4| (-729)) (|has| |#4| (-851)) (|has| |#4| (-1053))) +(-3962 (|has| |#4| (-173)) (|has| |#4| (-729)) (|has| |#4| (-851)) (|has| |#4| (-1053))) +(-3962 (|has| |#4| (-173)) (|has| |#4| (-851)) (|has| |#4| (-1053))) +(-3962 (|has| |#4| (-173)) (|has| |#4| (-851)) (|has| |#4| (-1053))) +(((|#3|) . T) ((|#2|) . T) (($) -3962 (|has| |#4| (-173)) (|has| |#4| (-851)) (|has| |#4| (-1053))) (((-550)) . T) ((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)) (|has| |#4| (-1053)))) +(((|#3|) . T) ((|#2|) . T) (($) -3962 (|has| |#4| (-173)) (|has| |#4| (-851)) (|has| |#4| (-1053))) ((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)) (|has| |#4| (-1053)))) +(((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)))) +(((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)))) +((((-866)) . T) (((-1270 |#4|)) . T)) +(|has| |#4| (-173)) +(((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)) (|has| |#4| (-1053))) (($) |has| |#4| (-173))) +(((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)) (|has| |#4| (-1053))) (($) |has| |#4| (-173))) +(((|#4| |#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-366)) (|has| |#4| (-1053))) (($ $) |has| |#4| (-173))) +(((|#4|) |has| |#4| (-1053))) +((((-1181)) -12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) +(-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) +(|has| |#4| (-371)) +(((|#4|) |has| |#4| (-1053))) +(((|#4|) |has| |#4| (-1053)) (((-550)) -12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053)))) +(((|#4|) |has| |#4| (-1105))) +((((-550)) -3962 (|has| |#4| (-173)) (|has| |#4| (-851)) (-12 (|has| |#4| (-1042 (-550))) (|has| |#4| (-1105))) (|has| |#4| (-1053))) ((|#4|) -3962 (|has| |#4| (-173)) (|has| |#4| (-1105))) (((-411 (-550))) -12 (|has| |#4| (-1042 (-411 (-550)))) (|has| |#4| (-1105)))) +(((|#4|) |has| |#4| (-1105)) (((-550)) -12 (|has| |#4| (-1042 (-550))) (|has| |#4| (-1105))) (((-411 (-550))) -12 (|has| |#4| (-1042 (-411 (-550)))) (|has| |#4| (-1105)))) +((((-550) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) +(((|#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (((|#4|) . T)) -((((-549) |#4|) . T)) -((((-549) |#4|) . T)) -(|has| |#4| (-795)) -(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) -(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) -(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) -(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) -(|has| |#4| (-850)) -(|has| |#4| (-850)) -(((|#4|) |has| |#4| (-365))) +((((-550) |#4|) . T)) +((((-550) |#4|) . T)) +(|has| |#4| (-796)) +(-3962 (|has| |#4| (-796)) (|has| |#4| (-851))) +(-3962 (|has| |#4| (-796)) (|has| |#4| (-851))) +(-3962 (|has| |#4| (-796)) (|has| |#4| (-851))) +(-3962 (|has| |#4| (-796)) (|has| |#4| (-851))) +(|has| |#4| (-851)) +(|has| |#4| (-851)) +(((|#4|) |has| |#4| (-366))) (((|#1| |#4|) . T)) -(((|#3|) |has| |#3| (-172))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(((|#2|) . T) (($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) (((-549)) . T) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) -(((|#2|) . T) (($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((((-865)) . T) (((-1269 |#3|)) . T)) -(|has| |#3| (-172)) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) -(((|#3| |#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($ $) |has| |#3| (-172))) -(((|#3|) |has| |#3| (-1052))) -((((-1180)) -12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) -(|has| |#3| (-370)) -(((|#3|) |has| |#3| (-1052))) -(((|#3|) |has| |#3| (-1052)) (((-549)) -12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) -(((|#3|) |has| |#3| (-1104))) -((((-549)) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) -(((|#3|) |has| |#3| (-1104)) (((-549)) -12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) -((((-549) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +(((|#3|) |has| |#3| (-173))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-729)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-729)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(((|#2|) . T) (($) -3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) (((-550)) . T) ((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053)))) +(((|#2|) . T) (($) -3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) ((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053)))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)))) +((((-866)) . T) (((-1270 |#3|)) . T)) +(|has| |#3| (-173)) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053))) (($) |has| |#3| (-173))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053))) (($) |has| |#3| (-173))) +(((|#3| |#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053))) (($ $) |has| |#3| (-173))) +(((|#3|) |has| |#3| (-1053))) +((((-1181)) -12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) +(-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) +(|has| |#3| (-371)) +(((|#3|) |has| |#3| (-1053))) +(((|#3|) |has| |#3| (-1053)) (((-550)) -12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053)))) +(((|#3|) |has| |#3| (-1105))) +((((-550)) -3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105))) (|has| |#3| (-1053))) ((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-1105))) (((-411 (-550))) -12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) +(((|#3|) |has| |#3| (-1105)) (((-550)) -12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105))) (((-411 (-550))) -12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) +((((-550) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) +(((|#3| |#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (((|#3|) . T)) -((((-549) |#3|) . T)) -((((-549) |#3|) . T)) -(|has| |#3| (-795)) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(|has| |#3| (-850)) -(|has| |#3| (-850)) -(((|#3|) |has| |#3| (-365))) +((((-550) |#3|) . T)) +((((-550) |#3|) . T)) +(|has| |#3| (-796)) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(|has| |#3| (-851)) +(|has| |#3| (-851)) +(((|#3|) |has| |#3| (-366))) (((|#1| |#3|) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(|has| |#1| (-233)) -((($) . T)) -(((|#1| (-534 |#3|) |#3|) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) (((-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380))))) -((((-1180)) |has| |#1| (-903 (-1180))) ((|#3|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| . #1=((-233))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-534 |#3|)) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-866)) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(|has| |#1| (-234)) +((($) . T)) +(((|#1| (-535 |#3|) |#3|) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-550)) -12 (|has| |#1| (-890 (-550))) (|has| |#3| (-890 (-550)))) (((-381)) -12 (|has| |#1| (-890 (-381))) (|has| |#3| (-890 (-381))))) +((((-1181)) |has| |#1| (-904 (-1181))) ((|#3|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| . #1=((-234))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-914))) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-535 |#3|)) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T)) -(((|#1| (-534 |#3|)) . T)) -((((-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) (((-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) (((-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538))))) -((((-1128 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#2|) . T)) -((((-1128 |#1| |#2|)) . T) (((-549)) . T) ((|#3|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-534 |#3|)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T)) +(((|#1| (-535 |#3|)) . T)) +((((-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#3| (-617 (-894 (-550))))) (((-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#3| (-617 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-617 (-539))) (|has| |#3| (-617 (-539))))) +((((-1129 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((|#2|) . T)) +((((-1129 |#1| |#2|)) . T) (((-550)) . T) ((|#3|) . T) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-535 |#3|)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-865)) . T)) +((((-866)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-549)) . T)) -((($) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-365))) -((((-1180)) |has| |#1| (-903 (-1180)))) -(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)))) -(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)))) -(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052)))) -(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052)))) -(((|#1| |#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052)))) -((((-549)) -3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)))) -(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052))) (($) -3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)))) -(-3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(|has| |#1| (-476)) -(-3960 (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052))) (($) -3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) (((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115)) (|has| |#1| (-1104))) -((((-112)) |has| |#1| (-1104)) (((-865)) -3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115)) (|has| |#1| (-1104))) -((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|))) +((($) . T) (((-550)) . T)) +((($) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-366))) +((((-1181)) |has| |#1| (-904 (-1181)))) +(((|#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)))) +(((|#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)))) +(((|#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-1053)))) +(((|#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-1053)))) +(((|#1| |#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-1053)))) +((((-550)) -3962 (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)))) +(((|#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-1053))) (($) -3962 (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)))) +(-3962 (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(|has| |#1| (-477)) +(-3962 (|has| |#1| (-477)) (|has| |#1| (-729)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-477)) (|has| |#1| (-729)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)) (|has| |#1| (-1116))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(((|#1|) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-1053))) (($) -3962 (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) (((-550)) -3962 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-477)) (|has| |#1| (-729)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)) (|has| |#1| (-1116)) (|has| |#1| (-1105))) +((((-112)) |has| |#1| (-1105)) (((-866)) -3962 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-477)) (|has| |#1| (-729)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)) (|has| |#1| (-1116)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-477)) (|has| |#1| (-729)) (|has| |#1| (-904 (-1181))) (|has| |#1| (-1053)) (|has| |#1| (-1116)) (|has| |#1| (-1105))) +((((-1181) |#1|) |has| |#1| (-518 (-1181) |#1|))) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -(|has| (-1256 |#1| |#2| |#3| |#4|) (-145)) -(|has| (-1256 |#1| |#2| |#3| |#4|) (-147)) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T)) -((($) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-1256 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1180) #1=(-1256 |#1| |#2| |#3| |#4|)) |has| #1# (-517 (-1180) #1#)) ((#1# #1#) |has| #1# (-310 #1#))) -(((#1=(-1256 |#1| |#2| |#3| |#4|)) |has| #1# (-310 #1#))) -(((#1=(-1256 |#1| |#2| |#3| |#4|) $) |has| #1# (-287 #1# #1#))) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1250 |#2| |#3| |#4|)) . T) (((-549)) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-1250 |#2| |#3| |#4|)) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T)) -((((-1256 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(((|#1|) |has| |#1| (-560))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) -((((-865)) . T)) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-560)) (|has| |#1| (-1052)) (|has| |#1| (-1115))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-560)) (|has| |#1| (-1052)) (|has| |#1| (-1115))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +(|has| (-1257 |#1| |#2| |#3| |#4|) (-145)) +(|has| (-1257 |#1| |#2| |#3| |#4|) (-147)) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-1257 |#1| |#2| |#3| |#4|)) . T) (((-411 (-550))) . T)) +((($) . T) (((-1257 |#1| |#2| |#3| |#4|)) . T) (((-411 (-550))) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-1257 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1181) #1=(-1257 |#1| |#2| |#3| |#4|)) |has| #1# (-518 (-1181) #1#)) ((#1# #1#) |has| #1# (-311 #1#))) +(((#1=(-1257 |#1| |#2| |#3| |#4|)) |has| #1# (-311 #1#))) +(((#1=(-1257 |#1| |#2| |#3| |#4|) $) |has| #1# (-288 #1# #1#))) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1251 |#2| |#3| |#4|)) . T) (((-550)) . T) (((-1257 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-1251 |#2| |#3| |#4|)) . T) (((-1257 |#1| |#2| |#3| |#4|)) . T)) +((((-1257 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(((|#1|) |has| |#1| (-561))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) +((((-866)) . T)) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-477)) (|has| |#1| (-561)) (|has| |#1| (-1053)) (|has| |#1| (-1116))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-477)) (|has| |#1| (-561)) (|has| |#1| (-1053)) (|has| |#1| (-1116))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-613 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560)) (((-410 (-549))) |has| |#1| (-560))) -((((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) (($) -3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560))) -((($) -3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560))) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560)) (((-410 (-549))) |has| |#1| (-560))) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560)) (((-410 (-549))) |has| |#1| (-560))) -(|has| |#1| (-560)) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560)) (($) |has| |#1| (-560))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560)) (($) |has| |#1| (-560))) -(((|#1| |#1|) |has| |#1| (-172)) ((#1=(-410 (-549)) #1#) |has| |#1| (-560)) (($ $) |has| |#1| (-560))) -(|has| |#1| (-560)) -(((|#1|) |has| |#1| (-1052))) -(((|#1|) |has| |#1| (-1052)) (((-549)) -12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-889 (-549))) (((-380)) |has| |#1| (-889 (-380)))) -(((|#1|) . T)) -(|has| |#1| (-476)) -((((-1180)) |has| |#1| (-1052))) -(((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380))))) -((((-48)) -12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (((-613 $)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) -3960 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-410 (-949 |#1|))) |has| |#1| (-560)) (((-949 |#1|)) |has| |#1| (-1052)) (((-1180)) . T)) -((((-48)) -12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (((-549)) -3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))) (|has| |#1| (-1052))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-560)) (((-410 (-549))) -3960 (|has| |#1| (-560)) (|has| |#1| (-1041 (-410 (-549))))) (((-410 (-949 |#1|))) |has| |#1| (-560)) (((-949 |#1|)) |has| |#1| (-1052)) (((-1180)) . T)) -(((|#1|) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -((((-865)) . T)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-410 (-549))) . T)) -(((|#1| (-410 (-549))) . T)) +((((-614 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-411 (-550))) |has| |#1| (-561))) +((((-550)) -3962 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) (($) -3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-561))) +((($) -3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1053))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-561))) +(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-411 (-550))) |has| |#1| (-561))) +(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-411 (-550))) |has| |#1| (-561))) +(|has| |#1| (-561)) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-561)) (($) |has| |#1| (-561))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-561)) (($) |has| |#1| (-561))) +(((|#1| |#1|) |has| |#1| (-173)) ((#1=(-411 (-550)) #1#) |has| |#1| (-561)) (($ $) |has| |#1| (-561))) +(|has| |#1| (-561)) +(((|#1|) |has| |#1| (-1053))) +(((|#1|) |has| |#1| (-1053)) (((-550)) -12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))) +(((|#1|) . T)) +((((-550)) |has| |#1| (-890 (-550))) (((-381)) |has| |#1| (-890 (-381)))) +(((|#1|) . T)) +(|has| |#1| (-477)) +((((-1181)) |has| |#1| (-1053))) +(((|#1|) . T)) +((((-539)) |has| |#1| (-617 (-539))) (((-894 (-550))) |has| |#1| (-617 (-894 (-550)))) (((-894 (-381))) |has| |#1| (-617 (-894 (-381))))) +((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550)))) (((-614 $)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) -3962 (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) (((-411 (-950 |#1|))) |has| |#1| (-561)) (((-950 |#1|)) |has| |#1| (-1053)) (((-1181)) . T)) +((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550)))) (((-550)) -3962 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1042 (-550))) (|has| |#1| (-1053))) ((|#1|) . T) (((-614 $)) . T) (($) |has| |#1| (-561)) (((-411 (-550))) -3962 (|has| |#1| (-561)) (|has| |#1| (-1042 (-411 (-550))))) (((-411 (-950 |#1|))) |has| |#1| (-561)) (((-950 |#1|)) |has| |#1| (-1053)) (((-1181)) . T)) +(((|#1|) . T)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +((((-866)) . T)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-411 (-550))) . T)) +(((|#1| (-411 (-550))) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) -(((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1| |#1|) . T)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1| (-410 (-549)) (-1085)) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#1|) . T)) +(((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#1| |#1|) . T)) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +(((|#1| (-411 (-550)) (-1086)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) ((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +(|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-549)) . T)) -(((#1=(-549) #1#) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-865)) . T)) -((((-549)) . T)) -((((-865)) . T)) +(((|#1| (-550)) . T)) +(((#1=(-550) #1#) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-866)) . T)) +((((-550)) . T)) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-773)) . T)) +(((|#1| (-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-549)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-550)) . T)) +((((-866)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1180)) . T)) +((((-1181)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) -(((|#3|) . T) (((-549)) . T) (($) . T)) +(((|#3|) . T) (((-550)) . T) (($) . T)) (((|#3|) . T) (($) . T)) (((|#3|) . T)) ((($) . T)) -((($ $) . T) (((-613 $) $) . T)) -(((|#3|) . T) (((-613 $)) . T)) -(((|#3|) . T) (((-549)) . T) (((-613 $)) . T)) -((((-865)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -(((#1=(-909 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +((($ $) . T) (((-614 $) $) . T)) +(((|#3|) . T) (((-614 $)) . T)) +(((|#3|) . T) (((-550)) . T) (((-614 $)) . T)) +((((-866)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-910 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +(((#1=(-910 |#1|) #1#) . T) (($ $) . T) ((#2=(-411 (-550)) #2#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| $ (-147)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -(((#1=(-909 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-910 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +(((#1=(-910 |#1|) #1#) . T) (($ $) . T) ((#2=(-411 (-550)) #2#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| $ (-147)) -((((-909 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +((((-910 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T)) -((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -(((#1=(-909 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(((|#1|) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T)) +((((-910 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-910 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +(((#1=(-910 |#1|) #1#) . T) (($ $) . T) ((#2=(-411 (-550)) #2#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-910 |#1|)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| $ (-147)) -((((-909 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +((((-910 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-371))) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-391) |#1|) . T)) -((((-225)) . T)) -((((-549)) . T) (((-410 (-549))) . T)) -((((-380)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-538)) . T) (((-1162)) . T) (((-225)) . T) (((-380)) . T) (((-893 (-380))) . T)) -((((-225)) . T) (((-865)) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-392) |#1|) . T)) +((((-226)) . T)) +((((-550)) . T) (((-411 (-550))) . T)) +((((-381)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-539)) . T) (((-1163)) . T) (((-226)) . T) (((-381)) . T) (((-894 (-381))) . T)) +((((-226)) . T) (((-866)) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-549)) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-550)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -((((-549)) . T) ((|#1|) . T)) +((((-866)) . T)) +((((-550)) . T) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) -(|has| |#1| (-852)) +((((-866)) . T)) +(|has| |#1| (-853)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1162)) . T)) -((((-1162)) . T)) -((((-1162)) . T) (((-865)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T) (((-866)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-865)) . T)) -(((|#3|) . T) (((-549)) . T)) +((((-866)) . T)) +(((|#3|) . T) (((-550)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-410 |#2|)) . T)) -((((-865)) . T)) -(|has| |#1| (-1224)) -((((-538)) |has| |#1| (-616 (-538))) (((-225)) . #1=(|has| |#1| (-1023))) (((-380)) . #1#)) -(|has| |#1| (-1023)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-1224))) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((($) |has| |#1| (-310 $)) ((|#1|) |has| |#1| (-310 |#1|))) -((((-1180) $) |has| |#1| (-517 (-1180) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-233)) -((((-1180)) |has| |#1| (-903 (-1180)))) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-411 |#2|)) . T)) +((((-866)) . T)) +(|has| |#1| (-1225)) +((((-539)) |has| |#1| (-617 (-539))) (((-226)) . #1=(|has| |#1| (-1024))) (((-381)) . #1#)) +(|has| |#1| (-1024)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-1225))) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +((($ $) |has| |#1| (-288 $ $)) ((|#1| $) |has| |#1| (-288 |#1| |#1|))) +((($) |has| |#1| (-311 $)) ((|#1|) |has| |#1| (-311 |#1|))) +((((-1181) $) |has| |#1| (-518 (-1181) $)) (($ $) |has| |#1| (-311 $)) ((|#1| |#1|) |has| |#1| (-311 |#1|)) (((-1181) |#1|) |has| |#1| (-518 (-1181) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-234)) +((((-1181)) |has| |#1| (-904 (-1181)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T) (($) . T)) -(-12 (|has| |#1| (-548)) (|has| |#1| (-823))) -((((-865)) . T)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((|#1|) . T) (((-550)) . T) (($) . T)) +(-12 (|has| |#1| (-549)) (|has| |#1| (-824))) +((((-866)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1|) . T)) -((((-1180)) |has| |#1| (-903 (-1180)))) -(|has| |#1| (-233)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) ((|#1|) . T) (((-410 (-549))) . T)) -((($) . T) ((|#1|) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) . T) (($ $) . T)) +((((-1181)) |has| |#1| (-904 (-1181)))) +(|has| |#1| (-234)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) ((|#1|) . T) (((-411 (-550))) . T)) +((($) . T) ((|#1|) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) |has| |#1| (-310 |#1|))) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((((-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((|#1| |#1|) |has| |#1| (-311 |#1|))) +(((|#1|) |has| |#1| (-311 |#1|))) +(((|#1| $) |has| |#1| (-288 |#1| |#1|))) (((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) +(((|#1|) . T) (((-550)) |has| |#1| (-642 (-550)))) (((|#1|) . T)) -((((-549)) |has| |#1| (-889 (-549))) (((-380)) |has| |#1| (-889 (-380)))) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -(-3960 (|has| |#1| (-822)) (|has| |#1| (-852))) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) +((((-550)) |has| |#1| (-890 (-550))) (((-381)) |has| |#1| (-890 (-381)))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(-3962 (|has| |#1| (-823)) (|has| |#1| (-853))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) (((|#1|) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-1023)) -((((-538)) |has| |#1| (-616 (-538))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380)))) (((-380)) . #1=(|has| |#1| (-1023))) (((-225)) . #1#)) -((((-549)) . T) ((|#1|) . T) (($) . T) (((-410 (-549))) . T) (((-1180)) |has| |#1| (-1041 (-1180)))) -((((-410 (-549))) |has| |#1| . #1=((-1041 (-549)))) (((-549)) |has| |#1| . #1#) (((-1180)) |has| |#1| (-1041 (-1180))) ((|#1|) . T)) -(|has| |#1| (-1154)) +(|has| |#1| (-914)) +(|has| |#1| (-1024)) +((((-539)) |has| |#1| (-617 (-539))) (((-894 (-550))) |has| |#1| (-617 (-894 (-550)))) (((-894 (-381))) |has| |#1| (-617 (-894 (-381)))) (((-381)) . #1=(|has| |#1| (-1024))) (((-226)) . #1#)) +((((-550)) . T) ((|#1|) . T) (($) . T) (((-411 (-550))) . T) (((-1181)) |has| |#1| (-1042 (-1181)))) +((((-411 (-550))) |has| |#1| . #1=((-1042 (-550)))) (((-550)) |has| |#1| . #1#) (((-1181)) |has| |#1| (-1042 (-1181))) ((|#1|) . T)) +(|has| |#1| (-1155)) (((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-549)) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-391) (-1162)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-410 (-949 |#1|))) . T)) -((((-410 (-949 |#1|))) . T)) -((((-410 (-949 |#1|))) . T)) -((((-1145 |#2| (-410 (-949 |#1|)))) . T) (((-410 (-949 |#1|))) . T)) -((((-865)) . T)) -((((-1145 |#2| (-410 (-949 |#1|)))) . T) (((-410 (-949 |#1|))) . T) (((-549)) . T)) -((((-410 (-949 |#1|))) . T)) -((((-410 (-949 |#1|))) . T)) -(((#1=(-410 (-949 |#1|)) #1#) . T)) -((((-410 (-949 |#1|))) . T)) -((((-410 (-949 |#1|))) . T)) -((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) +(((|#1|) . T) (((-550)) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-392) (-1163)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-411 (-950 |#1|))) . T)) +((((-411 (-950 |#1|))) . T)) +((((-411 (-950 |#1|))) . T)) +((((-1146 |#2| (-411 (-950 |#1|)))) . T) (((-411 (-950 |#1|))) . T)) +((((-866)) . T)) +((((-1146 |#2| (-411 (-950 |#1|)))) . T) (((-411 (-950 |#1|))) . T) (((-550)) . T)) +((((-411 (-950 |#1|))) . T)) +((((-411 (-950 |#1|))) . T)) +(((#1=(-411 (-950 |#1|)) #1#) . T)) +((((-411 (-950 |#1|))) . T)) +((((-411 (-950 |#1|))) . T)) +((((-539)) |has| |#2| (-617 (-539))) (((-894 (-381))) |has| |#2| (-617 (-894 (-381)))) (((-894 (-550))) |has| |#2| (-617 (-894 (-550))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) -((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) +((($) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((#1=(-411 (-550)) #1#) |has| |#2| (-38 (-411 (-550)))) ((|#2| |#2|) . T) (($ $) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) -((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) -((((-866 |#1|)) . T)) -(|has| |#2| (-913)) -(|has| |#2| (-913)) -((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) -((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) -(((|#2| |#3| (-866 |#1|)) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-914))) +((($ $) . T) ((#1=(-867 |#1|) $) . T) ((#1# |#2|) . T)) +((((-867 |#1|)) . T)) +(|has| |#2| (-914)) +(|has| |#2| (-914)) +((((-411 (-550))) |has| |#2| (-1042 (-411 (-550)))) (((-550)) |has| |#2| (-1042 (-550))) ((|#2|) . T) (((-867 |#1|)) . T)) +((((-550)) . T) (((-411 (-550))) -3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550))))) ((|#2|) . T) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) (((-867 |#1|)) . T)) +(((|#2| |#3| (-867 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-865)) . T)) -(((|#2|) . T) (((-549)) . T) ((|#6|) . T)) +((((-866)) . T)) +(((|#2|) . T) (((-550)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-643 |#4|)) . T) (((-865)) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +((((-644 |#4|)) . T) (((-866)) . T)) +(((|#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) +(((|#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (((|#4|) . T)) -((((-538)) |has| |#4| (-616 (-538)))) +((((-539)) |has| |#4| (-617 (-539)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-865)) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -((((-865)) . T)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-410 (-549))) . T)) -(((|#1| (-410 (-549))) . T)) +((((-866)) . T)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +((((-866)) . T)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-411 (-550))) . T)) +(((|#1| (-411 (-550))) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) -(((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1| |#1|) . T)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1| (-410 (-549)) (-1085)) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#1|) . T)) +(((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#1| |#1|) . T)) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#1|) |has| |#1| (-173))) +(((|#1| (-411 (-550)) (-1086)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) ((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +(|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-538)) |has| |#4| (-616 (-538)))) +((((-539)) |has| |#4| (-617 (-539)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) +(((|#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (((|#4|) . T)) -((((-865)) . T) (((-643 |#4|)) . T)) +((((-866)) . T) (((-644 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-538)) . T) (((-410 (-1174 (-549)))) . T) (((-225)) . T) (((-380)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((((-380)) . T) (((-225)) . T) (((-865)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) +((((-539)) . T) (((-411 (-1175 (-550)))) . T) (((-226)) . T) (((-381)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((((-381)) . T) (((-226)) . T) (((-866)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) +((((-539)) |has| |#2| (-617 (-539))) (((-894 (-381))) |has| |#2| (-617 (-894 (-381)))) (((-894 (-550))) |has| |#2| (-617 (-894 (-550))))) ((($) . T)) -(((|#2| (-485 (-4389 |#1|) (-773))) . T)) +(((|#2| (-486 (-4391 |#1|) (-774))) . T)) (((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) -((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) +((($) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((|#2| (-485 (-4389 |#1|) (-773))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) -((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) -((((-866 |#1|)) . T)) -(|has| |#2| (-913)) -(|has| |#2| (-913)) -((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) -((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) -(((|#2| (-485 (-4389 |#1|) (-773)) (-866 |#1|)) . T)) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) -(((|#2|) |has| |#2| (-172))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) (((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-865)) -3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-615 (-865))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((-1269 |#2|)) . T)) -(|has| |#2| (-172)) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) -(((|#2| |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($ $) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-1052))) -((((-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1052))) -(|has| |#2| (-370)) -(((|#2|) |has| |#2| (-1052))) -(((|#2|) |has| |#2| (-1052)) (((-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) -(((|#2|) |has| |#2| (-1104))) -((((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) -(((|#2|) |has| |#2| (-1104)) (((-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) -((((-549) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2|) . T)) -((((-549) |#2|) . T)) -((((-549) |#2|) . T)) -(|has| |#2| (-795)) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(|has| |#2| (-850)) -(|has| |#2| (-850)) -(((|#2|) |has| |#2| (-365))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((#1=(-411 (-550)) #1#) |has| |#2| (-38 (-411 (-550)))) ((|#2| |#2|) . T) (($ $) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((|#2| (-486 (-4391 |#1|) (-774))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-914))) +((($ $) . T) ((#1=(-867 |#1|) $) . T) ((#1# |#2|) . T)) +((((-867 |#1|)) . T)) +(|has| |#2| (-914)) +(|has| |#2| (-914)) +((((-411 (-550))) |has| |#2| (-1042 (-411 (-550)))) (((-550)) |has| |#2| (-1042 (-550))) ((|#2|) . T) (((-867 |#1|)) . T)) +((((-550)) . T) (((-411 (-550))) -3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550))))) ((|#2|) . T) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) (((-867 |#1|)) . T)) +(((|#2| (-486 (-4391 |#1|) (-774)) (-867 |#1|)) . T)) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) +(((|#2|) |has| |#2| (-173))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-729)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-729)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) (((-550)) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-851)) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053)))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053)))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)))) +((((-866)) -3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-616 (-866))) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) (((-1270 |#2|)) . T)) +(|has| |#2| (-173)) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($) |has| |#2| (-173))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($) |has| |#2| (-173))) +(((|#2| |#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($ $) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-1053))) +((((-1181)) -12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) +(-12 (|has| |#2| (-234)) (|has| |#2| (-1053))) +(|has| |#2| (-371)) +(((|#2|) |has| |#2| (-1053))) +(((|#2|) |has| |#2| (-1053)) (((-550)) -12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) +(((|#2|) |has| |#2| (-1105))) +((((-550)) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-1105))) (((-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) +(((|#2|) |has| |#2| (-1105)) (((-550)) -12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (((-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) +((((-550) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2|) . T)) +((((-550) |#2|) . T)) +((((-550) |#2|) . T)) +(|has| |#2| (-796)) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(|has| |#2| (-851)) +(|has| |#2| (-851)) +(((|#2|) |has| |#2| (-366))) (((|#1| |#2|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) (((|#1|) . T)) (((|#1|) . T)) -((((-549)) . T)) -((((-865)) . T)) +((((-550)) . T)) +((((-866)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1007 16)) . T) (((-410 (-549))) . T) (((-865)) . T)) -((((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T)) -((((-1162)) . T) (((-865)) . T)) -((((-168 (-380))) . T) (((-225)) . T) (((-380)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -(((#1=(-410 (-549)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-613 $) $) . T)) -((((-410 (-549))) . T) (((-549)) . T) (((-613 $)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T) (((-613 $)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -(|has| |#1| (-852)) -(((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) . T)) +((((-1008 16)) . T) (((-411 (-550))) . T) (((-866)) . T)) +((((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-550) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T)) +((((-1163)) . T) (((-866)) . T)) +((((-169 (-381))) . T) (((-226)) . T) (((-381)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +(((#1=(-411 (-550)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-614 $) $) . T)) +((((-411 (-550))) . T) (((-550)) . T) (((-614 $)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T) (((-614 $)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +(|has| |#1| (-853)) +(((|#1|) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(((|#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1| (-500 |#1| |#3|) (-500 |#1| |#2|)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-549) (-112)) . T)) -((((-549) (-112)) . T)) -((((-549) (-112)) . T)) -((((-538)) . T)) +((((-550) (-112)) . T)) +((((-550) (-112)) . T)) +((((-550) (-112)) . T)) +((((-539)) . T)) ((((-112)) . T)) -((((-865)) . T)) +((((-866)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1180)) . T) (((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1181)) . T) (((-866)) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) -((((-549)) . T)) +((((-866)) . T)) +((((-550)) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) -(((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-584 |#1|)) . T)) -((((-584 |#1|)) . T)) -((((-584 |#1|)) . T)) -((((-584 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-584 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -(((#1=(-584 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -((((-584 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-853)) +(((|#1|) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(((|#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-585 |#1|)) . T)) +((((-585 |#1|)) . T)) +((((-585 |#1|)) . T)) +((((-585 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-585 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +(((#1=(-585 |#1|) #1#) . T) (($ $) . T) ((#2=(-411 (-550)) #2#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-585 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-585 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +((((-585 |#1|)) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-585 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-585 |#1|)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (|has| $ (-147)) -((((-584 |#1|)) . T)) +((((-585 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) (((|#1| |#4| |#5|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) +(((|#1| (-605 |#1| |#3|) (-605 |#1| |#2|)) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) (((|#1|) . T)) -(((|#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -((((-773) |#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-582)) . T)) -((((-1106)) . T)) -((((-643 $)) . T) (((-1162)) . T) (((-1180)) . T) (((-549)) . T) (((-225)) . T) (((-865)) . T)) -((((-865)) . T)) -((((-1162) (-1180) (-549) (-225) (-865)) . T)) +(((|#1| (-605 |#1| |#3|) (-605 |#1| |#2|)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +((((-774) |#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-583)) . T)) +((((-1107)) . T)) +((((-644 $)) . T) (((-1163)) . T) (((-1181)) . T) (((-550)) . T) (((-226)) . T) (((-866)) . T)) +((((-866)) . T)) +((((-1163) (-1181) (-550) (-226) (-866)) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-1162)) . T) (((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-549)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-550)) . T) (($) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-1163)) . T) (((-539)) . T) (((-550)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-550)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-865)) . T)) -((((-549)) . T) (($) . T)) +((((-866)) . T)) +((((-550)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) -((((-549)) . T)) +((((-550)) . T) (($) . T)) +((((-550)) . T)) (((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) +((((-550)) . T) (($) . T)) (((|#1|) . T)) -((((-549)) . T)) +((((-550)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-147)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T)) -((((-410 (-549))) . T)) -((((-865)) . T)) -((((-549)) . T) (((-410 (-549))) . T)) -((((-410 (-549))) . T)) -((((-410 (-549))) . T)) -((((-410 (-549))) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) +((((-866)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T)) +((((-411 (-550))) . T)) +((((-866)) . T)) +((((-550)) . T) (((-411 (-550))) . T)) +((((-411 (-550))) . T)) +((((-411 (-550))) . T)) +((((-411 (-550))) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) ((((-144)) . T)) ((((-144)) . T)) -((((-549) (-144)) . T)) -((((-549) (-144)) . T)) -((((-549) (-144)) . T)) +((((-550) (-144)) . T)) +((((-550) (-144)) . T)) +((((-550) (-144)) . T)) ((((-144)) . T)) -((((-865)) . T)) +((((-866)) . T)) ((((-144)) . T)) ((((-144)) . T)) -(|has| |#1| (-15 * (|#1| (-549) |#1|))) -((((-865)) . T)) +(|has| |#1| (-15 * (|#1| (-550) |#1|))) +((((-866)) . T)) ((($ $) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) -(((|#1| (-549) (-1085)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) +(((|#1| (-550) (-1086)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -((((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -(((|#1| (-549)) . T)) -(((|#1| (-549)) . T)) -((($) |has| |#1| (-560))) -((($) |has| |#1| (-560))) -((($) |has| |#1| (-560))) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -((($) |has| |#1| (-560)) ((|#1|) . T)) -((($) |has| |#1| (-560)) ((|#1|) . T)) -((($ $) |has| |#1| (-560)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-560)) (((-549)) . T)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +(((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550)))) ((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +((((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +(((|#1| (-550)) . T)) +(((|#1| (-550)) . T)) +((($) |has| |#1| (-561))) +((($) |has| |#1| (-561))) +((($) |has| |#1| (-561))) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +((($) |has| |#1| (-561)) ((|#1|) . T)) +((($) |has| |#1| (-561)) ((|#1|) . T)) +((($ $) |has| |#1| (-561)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-561)) (((-550)) . T)) (((|#1|) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (($) . T) (((-549)) . T)) -((((-865)) . T)) +((((-866)) . T)) +(((|#1|) . T) (($) . T) (((-550)) . T)) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) (((|#1|) . T)) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) (((|#1|) . T)) ((((-128)) . T)) ((((-128)) . T)) -((((-128)) . T) (((-865)) . T)) -((((-1185)) . T)) -((((-1220)) . T) (((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(((|#1|) -3960 (|has| |#2| (-369 |#1|)) (|has| |#2| (-421 |#1|)))) -(((|#1|) |has| |#2| (-421 |#1|))) +((((-128)) . T) (((-866)) . T)) +((((-1186)) . T)) +((((-1221)) . T) (((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(((|#1|) -3962 (|has| |#2| (-370 |#1|)) (|has| |#2| (-422 |#1|)))) +(((|#1|) |has| |#2| (-422 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-865)) . T)) -(((|#1|) . T) (((-549)) . T)) +(((|#2|) . T) (((-866)) . T)) +(((|#1|) . T) (((-550)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-1162) |#1|) . T)) -((((-1162) |#1|) . T)) -((((-1162) |#1|) . T)) -((((-1162) |#1|) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((#1=(-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) #1#) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-1162) |#1|) . T)) -((((-865)) . T)) -((((-391) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-538)) |has| |#1| (-616 (-538))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549))))) -(((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-865)) . T)) +((((-1163) |#1|) . T)) +((((-1163) |#1|) . T)) +((((-1163) |#1|) . T)) +((((-1163) |#1|) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((#1=(-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) #1#) |has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) |has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))))) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-1163) |#1|) . T)) +((((-866)) . T)) +((((-392) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-539)) |has| |#1| (-617 (-539))) (((-894 (-381))) |has| |#1| (-617 (-894 (-381)))) (((-894 (-550))) |has| |#1| (-617 (-894 (-550))))) +(((|#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-866)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-549)) . T) (($) . T)) +(((|#2|) . T) (((-550)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-549)) . T)) +(((|#2|) . T) (((-550)) . T)) (((|#2|) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(((|#2|) . T) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +(((|#2|) . T) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) (((|#1|) . T)) -((((-410 |#2|)) . T)) +((((-411 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -(|has| |#2| (-233)) -(((|#2|) . T) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (($) . T) (((-549)) . T)) +(|has| |#2| (-234)) +(((|#2|) . T) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((|#1|) . T) (($) . T) (((-550)) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) -((((-1180)) |has| |#2| (-903 (-1180)))) +((((-866)) . T)) +((($) . T) (((-550)) . T)) +((((-1181)) |has| |#2| (-904 (-1181)))) (((|#2|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -((((-1162) (-51)) . T)) -((((-865)) . T)) -((((-1162) (-51)) . T)) -((((-1162) (-51)) . T)) -((((-1162) (-51)) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4292 (-1162)) (|:| -2254 #1#))) . T)) -(((#1=(-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) #1#) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))))) -((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))))) -((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) -((((-1162) (-51)) . T)) -(((|#1|) -3960 (|has| |#2| (-369 |#1|)) (|has| |#2| (-421 |#1|)))) -(((|#1|) |has| |#2| (-421 |#1|))) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +((((-1163) (-51)) . T)) +((((-866)) . T)) +((((-1163) (-51)) . T)) +((((-1163) (-51)) . T)) +((((-1163) (-51)) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4294 (-1163)) (|:| -2256 #1#))) . T)) +(((#1=(-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) #1#) |has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))))) +((((-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) |has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))))) +((((-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) . T)) +((((-1163) (-51)) . T)) +(((|#1|) -3962 (|has| |#2| (-370 |#1|)) (|has| |#2| (-422 |#1|)))) +(((|#1|) |has| |#2| (-422 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-865)) . T)) -(((|#1|) . T) (((-549)) . T)) +(((|#2|) . T) (((-866)) . T)) +(((|#1|) . T) (((-550)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-823)) +(|has| |#1| (-824)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1185)) . T)) -(((|#1|) . T) (((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) +((((-1186)) . T)) +(((|#1|) . T) (((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) +((((-539)) |has| |#1| (-617 (-539)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -(|has| |#1| (-793)) -(|has| |#1| (-793)) -(|has| |#1| (-793)) -(|has| |#1| (-793)) -(|has| |#1| (-793)) +((((-866)) . T)) +(|has| |#1| (-794)) +(|has| |#1| (-794)) +(|has| |#1| (-794)) +(|has| |#1| (-794)) +(|has| |#1| (-794)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-865)) . T)) -((((-549)) . T) ((|#2|) . T)) +((((-866)) . T)) +((((-550)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -((((-865)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172))) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((|#1|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -((((-865)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172))) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((|#1|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -((((-865)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172))) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((|#1|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173))) (((|#1|) . T)) -((((-674 |#1|)) . T)) -((((-674 |#1|)) . T)) -(((|#2| (-674 |#1|)) . T)) +((((-675 |#1|)) . T)) +((((-675 |#1|)) . T)) +(((|#2| (-675 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-865)) . T)) -((((-549)) . T) ((|#2|) . T)) +((((-866)) . T)) +((((-550)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -1978,887 +1978,887 @@ (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4427 "*")))) +(((|#2|) |has| |#2| (-6 (-4429 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-691 |#2|)) . T) (((-865)) . T)) -((($) . T) (((-549)) . T) ((|#2|) . T)) +((((-692 |#2|)) . T) (((-866)) . T)) +((($) . T) (((-550)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1180)) |has| |#2| (-903 (-1180)))) -(|has| |#2| (-233)) -(((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) -(((|#2|) . T)) -((((-549)) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2|) . T)) -(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-1220)) . T) (((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1|) . T)) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-701)) . T)) -((((-701)) . T)) -((((-701)) . T)) -((((-701)) . T)) -((((-701)) . T)) -((((-380)) . T)) -((((-701)) . T)) -(((#1=(-701) (-1174 #1#)) . T)) -(((#1=(-701) (-1174 #1#)) . T)) -(((#1=(-701) (-1174 #1#)) . T)) -((((-701)) . T)) -((((-168 (-225))) . T) (((-168 (-380))) . T) (((-1174 (-701))) . T) (((-893 (-380))) . T)) -((((-701)) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T)) -((((-865)) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T) (((-549)) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T)) -(((#1=(-410 (-549)) #1#) . T) ((#2=(-701) #2#) . T) (($ $) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T) (((-549)) . T)) -((((-410 (-549))) . T) (((-701)) . T) (($) . T)) -((((-701)) . T) (((-410 (-549))) . T) (((-549)) . T)) -((((-380)) . T) (((-549)) . T) (((-410 (-549))) . T)) -((((-380)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-225)) . T) (((-380)) . T) (((-893 (-380))) . T)) -((((-865)) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-380)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-1181)) |has| |#2| (-904 (-1181)))) +(|has| |#2| (-234)) +(((|#2|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) +(((|#2|) . T)) +((((-550)) . T) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#2|) . T) (((-550)) |has| |#2| (-1042 (-550))) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2|) . T)) +(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-1221)) . T) (((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +(((|#1| (-1270 |#1|) (-1270 |#1|)) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +(((|#1| (-1270 |#1|) (-1270 |#1|)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-702)) . T)) +((((-702)) . T)) +((((-702)) . T)) +((((-702)) . T)) +((((-702)) . T)) +((((-381)) . T)) +((((-702)) . T)) +(((#1=(-702) (-1175 #1#)) . T)) +(((#1=(-702) (-1175 #1#)) . T)) +(((#1=(-702) (-1175 #1#)) . T)) +((((-702)) . T)) +((((-169 (-226))) . T) (((-169 (-381))) . T) (((-1175 (-702))) . T) (((-894 (-381))) . T)) +((((-702)) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T)) +((((-866)) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T) (((-550)) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T)) +(((#1=(-411 (-550)) #1#) . T) ((#2=(-702) #2#) . T) (($ $) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T) (((-550)) . T)) +((((-411 (-550))) . T) (((-702)) . T) (($) . T)) +((((-702)) . T) (((-411 (-550))) . T) (((-550)) . T)) +((((-381)) . T) (((-550)) . T) (((-411 (-550))) . T)) +((((-381)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-226)) . T) (((-381)) . T) (((-894 (-381))) . T)) +((((-866)) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-381)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-550)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-549)) . T)) -((($) . T)) -((((-549)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(|has| |#1| (-370)) -(((|#1|) . T)) -((((-865)) . T)) -((((-410 $) (-410 $)) |has| |#1| (-560)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(|has| |#1| (-365)) -(((|#1| (-773) (-1085)) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-1180)) |has| |#1| (-903 (-1180))) (((-1085)) . T)) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-773)) . T)) +((($) . T) (((-550)) . T)) +((($) . T)) +((((-550)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(|has| |#1| (-371)) +(((|#1|) . T)) +((((-866)) . T)) +((((-411 $) (-411 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(|has| |#1| (-366)) +(((|#1| (-774) (-1086)) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-1181)) |has| |#1| (-904 (-1181))) (((-1086)) . T)) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-774)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(((|#2|) . T) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1085)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T)) -((((-1085)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1| (-773)) . T)) -(((#1=(-1085) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1154)) -(((|#1|) . T)) -((((-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) . T)) -((((-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) . T)) -((((-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) . T) (((-865)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(((|#2|) . T) (((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (((-1086)) . T) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T)) +((((-1086)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1| (-774)) . T)) +(((#1=(-1086) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1155)) +(((|#1|) . T)) +((((-2 (|:| -2565 |#1|) (|:| -2566 |#2|))) . T)) +((((-2 (|:| -2565 |#1|) (|:| -2566 |#2|))) . T)) +((((-2 (|:| -2565 |#1|) (|:| -2566 |#2|))) . T) (((-866)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1| |#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#2| |#2|) . T)) ((((-113)) . T) ((|#1|) . T)) -((((-113)) . T) ((|#1|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) -((((-549)) . T)) -((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) -((((-865)) . T)) -((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) -((($) . T)) -(((|#2| (-534 (-866 |#1|))) . T)) -(((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) -((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((((-113)) . T) ((|#1|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T) (((-550)) . T)) +((((-550)) . T)) +((($) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) +((((-866)) . T)) +((((-539)) |has| |#2| (-617 (-539))) (((-894 (-381))) |has| |#2| (-617 (-894 (-381)))) (((-894 (-550))) |has| |#2| (-617 (-894 (-550))))) +((($) . T)) +(((|#2| (-535 (-867 |#1|))) . T)) +(((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) +((($) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) -(((|#2| (-534 (-866 |#1|))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) -(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) -((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) -((((-866 |#1|)) . T)) -(|has| |#2| (-913)) -(|has| |#2| (-913)) -((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) -((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) -(((|#2| (-534 (-866 |#1|)) (-866 |#1|)) . T)) -(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) . T) (($) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((#1=(-411 (-550)) #1#) |has| |#2| (-38 (-411 (-550)))) ((|#2| |#2|) . T) (($ $) -3962 (|has| |#2| (-173)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +((((-411 (-550))) |has| |#2| (-38 (-411 (-550)))) ((|#2|) |has| |#2| (-173)) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914)))) +(((|#2| (-535 (-867 |#1|))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) +(-3962 (|has| |#2| (-456)) (|has| |#2| (-914))) +((($ $) . T) ((#1=(-867 |#1|) $) . T) ((#1# |#2|) . T)) +((((-867 |#1|)) . T)) +(|has| |#2| (-914)) +(|has| |#2| (-914)) +((((-411 (-550))) |has| |#2| (-1042 (-411 (-550)))) (((-550)) |has| |#2| (-1042 (-550))) ((|#2|) . T) (((-867 |#1|)) . T)) +((((-550)) . T) (((-411 (-550))) -3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550))))) ((|#2|) . T) (($) -3962 (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) (((-867 |#1|)) . T)) +(((|#2| (-535 (-867 |#1|)) (-867 |#1|)) . T)) +(-12 (|has| |#1| (-371)) (|has| |#2| (-371))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1| |#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T) (((-550)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-866)) . T)) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (((|#1|) . T)) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) +((((-539)) |has| |#1| (-617 (-539)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549)))) (((-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380))))) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(((|#1| (-535 |#2|) |#2|) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-550)) -12 (|has| |#1| (-890 (-550))) (|has| |#2| (-890 (-550)))) (((-381)) -12 (|has| |#1| (-890 (-381))) (|has| |#2| (-890 (-381))))) (((|#2|) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-914))) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-534 |#2|)) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(((|#1| (-535 |#2|)) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-1128 |#1| |#2|)) . T) (((-949 |#1|)) |has| |#2| (-616 (-1180))) (((-865)) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) -((((-1128 |#1| |#2|)) . T) ((|#2|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-549)) . T)) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T)) -((((-1128 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1| (-534 |#2|)) . T)) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-1129 |#1| |#2|)) . T) (((-950 |#1|)) |has| |#2| (-617 (-1181))) (((-866)) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (($) . T)) +((((-1129 |#1| |#2|)) . T) ((|#2|) . T) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) (((-550)) . T)) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T)) +((((-1129 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1| (-535 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-949 |#1|)) |has| |#2| (-616 (-1180))) (((-1162)) -12 (|has| |#1| (-1041 (-549))) (|has| |#2| (-616 (-1180)))) (((-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549))))) (((-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380))))) (((-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538))))) -(((|#1| (-534 |#2|) |#2|) . T)) -(((|#1|) . T)) -((((-1174 |#1|)) . T) (((-865)) . T)) -((((-410 $) (-410 $)) |has| |#1| (-560)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(|has| |#1| (-365)) -(((|#1| (-773) (-1085)) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-1180)) |has| |#1| (-903 (-1180))) (((-1085)) . T)) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-773)) . T)) +((((-950 |#1|)) |has| |#2| (-617 (-1181))) (((-1163)) -12 (|has| |#1| (-1042 (-550))) (|has| |#2| (-617 (-1181)))) (((-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550))))) (((-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-617 (-539))) (|has| |#2| (-617 (-539))))) +(((|#1| (-535 |#2|) |#2|) . T)) +(((|#1|) . T)) +((((-1175 |#1|)) . T) (((-866)) . T)) +((((-411 $) (-411 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(|has| |#1| (-366)) +(((|#1| (-774) (-1086)) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-1181)) |has| |#1| (-904 (-1181))) (((-1086)) . T)) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-774)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-1174 |#1|)) . T) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1085)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-1175 |#1|)) . T) (((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (((-1086)) . T) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) (((|#1|) . T)) -((((-1174 |#1|)) . T) (((-1085)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1| (-773)) . T)) -(((#1=(-1085) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-1175 |#1|)) . T) (((-1086)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1| (-774)) . T)) +(((#1=(-1086) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1154)) +(|has| |#1| (-1155)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) ((|#1|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-538)) |has| |#1| (-616 (-538)))) -(|has| |#1| (-370)) -(((|#1|) . T)) -((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) |has| |#1| (-310 |#1|))) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((((-999 |#1|)) . T) ((|#1|) . T)) -((((-999 |#1|)) . T) (((-549)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| (-999 |#1|) (-1041 (-410 (-549)))))) -((((-999 |#1|)) . T) ((|#1|) . T) (((-549)) -3960 (|has| |#1| (-1041 (-549))) (|has| (-999 |#1|) (-1041 (-549)))) (((-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| (-999 |#1|) (-1041 (-410 (-549)))))) -(|has| |#1| (-852)) -(((|#1|) . T)) -((((-865)) . T)) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) -(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) -(((|#2|) |has| |#2| (-172))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) (((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-865)) -3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-615 (-865))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((-1269 |#2|)) . T)) -(|has| |#2| (-172)) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) -(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) -(((|#2| |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($ $) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-1052))) -((((-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1052))) -(|has| |#2| (-370)) -(((|#2|) |has| |#2| (-1052))) -(((|#2|) |has| |#2| (-1052)) (((-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) -(((|#2|) |has| |#2| (-1104))) -((((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) -(((|#2|) |has| |#2| (-1104)) (((-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) -((((-549) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2|) . T)) -((((-549) |#2|) . T)) -((((-549) |#2|) . T)) -(|has| |#2| (-795)) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) -(|has| |#2| (-850)) -(|has| |#2| (-850)) -(((|#2|) |has| |#2| (-365))) +((((-539)) |has| |#1| (-617 (-539)))) +(|has| |#1| (-371)) +(((|#1|) . T)) +((((-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((|#1| |#1|) |has| |#1| (-311 |#1|))) +(((|#1|) |has| |#1| (-311 |#1|))) +(((|#1| $) |has| |#1| (-288 |#1| |#1|))) +((((-1000 |#1|)) . T) ((|#1|) . T)) +((((-1000 |#1|)) . T) (((-550)) . T) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| (-1000 |#1|) (-1042 (-411 (-550)))))) +((((-1000 |#1|)) . T) ((|#1|) . T) (((-550)) -3962 (|has| |#1| (-1042 (-550))) (|has| (-1000 |#1|) (-1042 (-550)))) (((-411 (-550))) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| (-1000 |#1|) (-1042 (-411 (-550)))))) +(|has| |#1| (-853)) +(((|#1|) . T)) +((((-866)) . T)) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) +(-3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) +(((|#2|) |has| |#2| (-173))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-729)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-729)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +(-3962 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) (((-550)) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-851)) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053)))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053)))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)))) +((((-866)) -3962 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-616 (-866))) (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-371)) (|has| |#2| (-729)) (|has| |#2| (-796)) (|has| |#2| (-851)) (|has| |#2| (-1053)) (|has| |#2| (-1105))) (((-1270 |#2|)) . T)) +(|has| |#2| (-173)) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($) |has| |#2| (-173))) +(((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($) |has| |#2| (-173))) +(((|#2| |#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-1053))) (($ $) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-1053))) +((((-1181)) -12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) +(-12 (|has| |#2| (-234)) (|has| |#2| (-1053))) +(|has| |#2| (-371)) +(((|#2|) |has| |#2| (-1053))) +(((|#2|) |has| |#2| (-1053)) (((-550)) -12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) +(((|#2|) |has| |#2| (-1105))) +((((-550)) -3962 (|has| |#2| (-173)) (|has| |#2| (-851)) (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053))) ((|#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-1105))) (((-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) +(((|#2|) |has| |#2| (-1105)) (((-550)) -12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (((-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) +((((-550) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2|) . T)) +((((-550) |#2|) . T)) +((((-550) |#2|) . T)) +(|has| |#2| (-796)) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(-3962 (|has| |#2| (-796)) (|has| |#2| (-851))) +(|has| |#2| (-851)) +(|has| |#2| (-851)) +(((|#2|) |has| |#2| (-366))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-865)) . T)) -(|has| |#1| (-233)) -((($) . T)) -(((|#1| (-534 (-820 (-1180))) (-820 (-1180))) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-1180)) |has| |#1| (-903 (-1180))) (((-820 (-1180))) . T)) -((($ $) . T) ((#1=(-1180) $) |has| |#1| . #2=((-233))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-820 (-1180)) |#1|) . T) ((#3# $) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-534 (-820 (-1180)))) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-866)) . T)) +(|has| |#1| (-234)) +((($) . T)) +(((|#1| (-535 (-821 (-1181))) (-821 (-1181))) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-1181)) |has| |#1| (-904 (-1181))) (((-821 (-1181))) . T)) +((($ $) . T) ((#1=(-1181) $) |has| |#1| . #2=((-234))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-821 (-1181)) |#1|) . T) ((#3# $) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-914))) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-535 (-821 (-1181)))) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T)) -(((|#1| (-534 (-820 (-1180)))) . T)) -((((-1128 |#1| (-1180))) . T) (((-820 (-1180))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-1180)) . T)) -((((-1128 |#1| (-1180))) . T) (((-549)) . T) (((-820 (-1180))) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-1180)) . T)) -(((|#1| (-1180) (-820 (-1180)) (-534 (-820 (-1180)))) . T)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#)) -((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#)) -((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -(|has| |#2| (-365)) -(((|#2|) . T)) -((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#) ((|#2|) . T) (((-549)) . T)) -((((-410 (-549))) |has| |#2| (-365)) (($) . T)) -(((|#2|) . T) (((-865)) . T)) -((((-410 (-549))) |has| |#2| (-365)) (($) . T) (((-549)) . T)) -((((-410 (-549))) |has| |#2| (-365)) (($) . T)) -((((-410 (-549))) |has| |#2| (-365)) (($) . T)) -(((#1=(-410 (-549)) #1#) |has| |#2| (-365)) (($ $) . T)) -((((-865)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(|has| |#1| (-233)) -(((|#2|) |has| |#2| (-172))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T)) +(((|#1| (-535 (-821 (-1181)))) . T)) +((((-1129 |#1| (-1181))) . T) (((-821 (-1181))) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-1181)) . T)) +((((-1129 |#1| (-1181))) . T) (((-550)) . T) (((-821 (-1181))) . T) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) (((-1181)) . T)) +(((|#1| (-1181) (-821 (-1181)) (-535 (-821 (-1181)))) . T)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +((((-411 (-550))) . #1=(|has| |#2| (-366))) (($) . #1#)) +((((-411 (-550))) . #1=(|has| |#2| (-366))) (($) . #1#)) +((((-411 (-550))) . #1=(|has| |#2| (-366))) (($) . #1#)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +(|has| |#2| (-366)) +(((|#2|) . T)) +((((-411 (-550))) . #1=(|has| |#2| (-366))) (($) . #1#) ((|#2|) . T) (((-550)) . T)) +((((-411 (-550))) |has| |#2| (-366)) (($) . T)) +(((|#2|) . T) (((-866)) . T)) +((((-411 (-550))) |has| |#2| (-366)) (($) . T) (((-550)) . T)) +((((-411 (-550))) |has| |#2| (-366)) (($) . T)) +((((-411 (-550))) |has| |#2| (-366)) (($) . T)) +(((#1=(-411 (-550)) #1#) |has| |#2| (-366)) (($ $) . T)) +((((-866)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(|has| |#1| (-234)) +(((|#2|) |has| |#2| (-173))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) ((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-172))) -((((-549)) . T) ((|#2|) |has| |#2| (-172))) -(((|#2|) . T)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -((($) |has| |#1| (-850))) -(|has| |#1| (-850)) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -((($) |has| |#1| (-850)) (((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-850)))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) -3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(((|#2|) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-173))) +((((-550)) . T) ((|#2|) |has| |#2| (-173))) +(((|#2|) . T)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +((($) |has| |#1| (-851))) +(|has| |#1| (-851)) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +((($) |has| |#1| (-851)) (((-550)) -3962 (|has| |#1| (-21)) (|has| |#1| (-851)))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) -3962 (|has| |#1| (-851)) (|has| |#1| (-1042 (-550)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1| |#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1| |#1|) . T)) ((((-113)) . T) ((|#1|) . T)) -((((-113)) . T) ((|#1|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) -((((-865)) . T)) -((((-509)) . T)) -((((-865)) . T)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -(|has| |#1| (-850)) -((($) |has| |#1| (-850))) -(|has| |#1| (-850)) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -((($) |has| |#1| (-850)) (((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-850)))) -(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) -3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-172))) +((((-113)) . T) ((|#1|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T) (((-550)) . T)) +((((-866)) . T)) +((((-510)) . T)) +((((-866)) . T)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +(|has| |#1| (-851)) +((($) |has| |#1| (-851))) +(|has| |#1| (-851)) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +((($) |has| |#1| (-851)) (((-550)) -3962 (|has| |#1| (-21)) (|has| |#1| (-851)))) +(-3962 (|has| |#1| (-21)) (|has| |#1| (-851))) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) -3962 (|has| |#1| (-851)) (|has| |#1| (-1042 (-550)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-173))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) ((|#1|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (((|#1|) . T)) -((((-549)) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +((((-550)) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-173))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) ((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-172))) -(((|#2|) . T)) -((((-1266 |#1|)) . T) (((-549)) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#2|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-893 (-549))) . T) (((-893 (-380))) . T) (((-538)) . T) (((-1180)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -((((-949 |#1|)) . T)) -(((|#1|) |has| |#1| (-172)) (((-949 |#1|)) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -((((-949 |#1|)) . T) (((-865)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) -((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +(((|#2|) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-173))) +(((|#2|) . T)) +((((-1267 |#1|)) . T) (((-550)) . T) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#2|) . T) (((-550)) |has| |#2| (-1042 (-550))) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#2|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-894 (-550))) . T) (((-894 (-381))) . T) (((-539)) . T) (((-1181)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1| |#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +((((-950 |#1|)) . T)) +(((|#1|) |has| |#1| (-173)) (((-950 |#1|)) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T)) +((((-950 |#1|)) . T) (((-866)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T) (((-550)) . T)) +((($) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-871 |#1|)) . T)) -((((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-871 |#1|)) . T) (((-410 (-549))) . T)) -((($) . T) (((-871 |#1|)) . T) (((-410 (-549))) . T)) -((((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-871 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-871 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-871 |#1|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-871 |#1|)) . T)) -((((-1180) #1=(-871 |#1|)) |has| #1# (-517 (-1180) #1#)) ((#1# #1#) |has| #1# (-310 #1#))) -(((#1=(-871 |#1|)) |has| #1# (-310 #1#))) -(((#1=(-871 |#1|) $) |has| #1# (-287 #1# #1#))) -((((-871 |#1|)) . T)) -((((-871 |#1|)) . T)) -((((-871 |#1|)) . T)) -((((-871 |#1|)) . T)) -((((-549)) . T) (((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) -((((-871 |#1|)) . T)) -((((-871 |#1|)) . T)) -((((-865)) . T)) +((((-550)) . T) (($) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-872 |#1|)) . T)) +((((-872 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-872 |#1|)) . T) (((-411 (-550))) . T)) +((($) . T) (((-872 |#1|)) . T) (((-411 (-550))) . T)) +((((-872 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-872 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-872 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-872 |#1|)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-872 |#1|) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-872 |#1|)) . T)) +((((-1181) #1=(-872 |#1|)) |has| #1# (-518 (-1181) #1#)) ((#1# #1#) |has| #1# (-311 #1#))) +(((#1=(-872 |#1|)) |has| #1# (-311 #1#))) +(((#1=(-872 |#1|) $) |has| #1# (-288 #1# #1#))) +((((-872 |#1|)) . T)) +((((-872 |#1|)) . T)) +((((-872 |#1|)) . T)) +((((-872 |#1|)) . T)) +((((-550)) . T) (((-872 |#1|)) . T) (($) . T) (((-411 (-550))) . T)) +((((-872 |#1|)) . T)) +((((-872 |#1|)) . T)) +((((-866)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T)) -((((-1180)) |has| |#2| (-903 (-1180)))) -(|has| |#2| (-233)) -(((|#2|) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) ((|#2|) . T) (((-410 (-549))) . T)) -((($) . T) ((|#2|) . T) (((-410 (-549))) . T)) -(((|#2|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#2|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#2|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#2|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#2| |#2|) . T) ((#1=(-410 (-549)) #1#) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1180) |#2|) |has| |#2| (-517 (-1180) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) -(((|#2|) |has| |#2| (-310 |#2|))) -(((|#2| $) |has| |#2| (-287 |#2| |#2|))) -(((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) -(((|#2|) . T)) -((((-549)) |has| |#2| (-889 (-549))) (((-380)) |has| |#2| (-889 (-380)))) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -(-3960 (|has| |#2| (-822)) (|has| |#2| (-852))) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -(((|#2|) . T)) -(|has| |#2| (-913)) -(|has| |#2| (-1023)) -((((-538)) |has| |#2| (-616 (-538))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-380)) . #1=(|has| |#2| (-1023))) (((-225)) . #1#)) -((((-549)) . T) ((|#2|) . T) (($) . T) (((-410 (-549))) . T) (((-1180)) |has| |#2| (-1041 (-1180)))) -((((-410 (-549))) |has| |#2| . #1=((-1041 (-549)))) (((-549)) |has| |#2| . #1#) (((-1180)) |has| |#2| (-1041 (-1180))) ((|#2|) . T)) -(|has| |#2| (-1154)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))) -(-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))) -((((-865)) -3960 (-12 (|has| |#1| (-615 (-865))) (|has| |#2| (-615 (-865)))) (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1180)) . T) ((|#1|) . T)) -((((-1180)) . T) ((|#1|) . T)) -((((-865)) . T)) -((((-674 |#1|)) . T)) -((((-674 |#1|)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-1206 |#1|)) . T) (((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(-3960 (|has| |#1| (-370)) (|has| |#1| (-852))) -(((|#1|) . T)) -((((-865)) . T)) -((((-549)) . T)) +((((-1181)) |has| |#2| (-904 (-1181)))) +(|has| |#2| (-234)) +(((|#2|) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) ((|#2|) . T) (((-411 (-550))) . T)) +((($) . T) ((|#2|) . T) (((-411 (-550))) . T)) +(((|#2|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#2|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#2|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#2|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#2| |#2|) . T) ((#1=(-411 (-550)) #1#) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1181) |#2|) |has| |#2| (-518 (-1181) |#2|)) ((|#2| |#2|) |has| |#2| (-311 |#2|))) +(((|#2|) |has| |#2| (-311 |#2|))) +(((|#2| $) |has| |#2| (-288 |#2| |#2|))) +(((|#2|) . T)) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) +(((|#2|) . T)) +((((-550)) |has| |#2| (-890 (-550))) (((-381)) |has| |#2| (-890 (-381)))) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(-3962 (|has| |#2| (-823)) (|has| |#2| (-853))) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +(((|#2|) . T)) +(|has| |#2| (-914)) +(|has| |#2| (-1024)) +((((-539)) |has| |#2| (-617 (-539))) (((-894 (-550))) |has| |#2| (-617 (-894 (-550)))) (((-894 (-381))) |has| |#2| (-617 (-894 (-381)))) (((-381)) . #1=(|has| |#2| (-1024))) (((-226)) . #1#)) +((((-550)) . T) ((|#2|) . T) (($) . T) (((-411 (-550))) . T) (((-1181)) |has| |#2| (-1042 (-1181)))) +((((-411 (-550))) |has| |#2| . #1=((-1042 (-550)))) (((-550)) |has| |#2| . #1#) (((-1181)) |has| |#2| (-1042 (-1181))) ((|#2|) . T)) +(|has| |#2| (-1155)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))) +(-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))) +((((-866)) -3962 (-12 (|has| |#1| (-616 (-866))) (|has| |#2| (-616 (-866)))) (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))))) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1181)) . T) ((|#1|) . T)) +((((-1181)) . T) ((|#1|) . T)) +((((-866)) . T)) +((((-675 |#1|)) . T)) +((((-675 |#1|)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +((((-1207 |#1|)) . T) (((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(-3962 (|has| |#1| (-371)) (|has| |#1| (-853))) +(((|#1|) . T)) +((((-866)) . T)) +((((-550)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-147)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($) . T) (((-410 (-549))) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-410 (-549))) . T) (($) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-643 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-852)) -(((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549))))) -((($) . T)) -(((|#1| (-534 (-1180))) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((((-866)) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($) . T) (((-411 (-550))) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-411 (-550))) . T) (($) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-411 (-550)) #1#) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-644 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-853)) +(((|#1|) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(((|#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-539)) |has| |#1| (-617 (-539))) (((-894 (-381))) |has| |#1| (-617 (-894 (-381)))) (((-894 (-550))) |has| |#1| (-617 (-894 (-550))))) +((($) . T)) +(((|#1| (-535 (-1181))) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -(((|#1| (-534 (-1180))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) -((($ $) . T) ((#1=(-1180) $) . T) ((#1# |#1|) . T)) -((((-1180)) . T)) -((((-380)) |has| |#1| (-889 (-380))) (((-549)) |has| |#1| (-889 (-549)))) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T) (((-1180)) . T)) -((((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1180)) . T)) -(((|#1| (-534 (-1180)) (-1180)) . T)) -((((-1123)) . T) (((-865)) . T)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +(((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550)))) ((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +(((|#1| (-535 (-1181))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-642 (-550)))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-914))) +((($ $) . T) ((#1=(-1181) $) . T) ((#1# |#1|) . T)) +((((-1181)) . T)) +((((-381)) |has| |#1| (-890 (-381))) (((-550)) |has| |#1| (-890 (-550)))) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T) (((-1181)) . T)) +((((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) ((|#1|) . T) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (((-1181)) . T)) +(((|#1| (-535 (-1181)) (-1181)) . T)) +((((-1124)) . T) (((-866)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-865)) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) -((($) |has| |#1| (-560)) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-549)) . T)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-866)) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (($) . T)) +((($) |has| |#1| (-561)) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) (((-550)) . T)) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-852)) +(|has| |#1| (-853)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) -(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) -(-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))) -(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) -(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) -((((-549)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-796)) (|has| |#2| (-796))) +(-12 (|has| |#1| (-796)) (|has| |#2| (-796))) +(-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))) +(-12 (|has| |#1| (-796)) (|has| |#2| (-796))) +(-12 (|has| |#1| (-796)) (|has| |#2| (-796))) +((((-550)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-476)) (|has| |#2| (-476))) -(-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) -(-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) -(-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) -(-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) -(-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) -(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) -((((-865)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-643 (-549))) . T)) -((((-643 (-549))) . T) (((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-549)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) +(-12 (|has| |#1| (-477)) (|has| |#2| (-477))) +(-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))) +(-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))) +(-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))) +(-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) +(-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) +(-12 (|has| |#1| (-371)) (|has| |#2| (-371))) +((((-866)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-644 (-550))) . T)) +((((-644 (-550))) . T) (((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-550)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-538)) |has| |#1| (-616 (-538)))) -(((|#1|) . T)) -((((-1180)) |has| |#1| (-903 (-1180)))) -(|has| |#1| (-233)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-291)) (|has| |#1| (-365))) -((((-549)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549)))))) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) -((($) . T) (((-549)) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) -(((|#1|) . T) (($) -3960 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-549))) |has| |#1| (-365))) -(((|#1|) . T) (($) -3960 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-549))) |has| |#1| (-365))) -(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#1=(-410 (-549)) #1#) |has| |#1| (-365))) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) -(((|#1|) . T)) -((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) |has| |#1| (-310 |#1|))) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(|has| |#1| (-852)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-410 |#2|) |#3|) . T)) -((((-410 (-549))) |has| #1=(-410 |#2|) (-1041 (-410 (-549)))) (((-549)) |has| #1# (-1041 (-549))) ((#1#) . T)) -((((-410 |#2|)) . T)) -((((-549)) |has| #1=(-410 |#2|) (-641 (-549))) ((#1#) . T)) -((((-410 |#2|)) . T)) -((((-410 |#2|) |#3|) . T)) -(|has| (-410 |#2|) (-147)) -((((-410 |#2|) |#3|) . T)) -(|has| (-410 |#2|) (-145)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -(|has| (-410 |#2|) (-233)) -((((-1180)) |has| (-410 |#2|) (-903 (-1180)))) -((((-410 |#2|)) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +(((|#1|) . T)) +((((-1181)) |has| |#1| (-904 (-1181)))) +(|has| |#1| (-234)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-292)) (|has| |#1| (-366))) +((((-550)) . T) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550)))))) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-366))) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-366))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-366))) +((($) . T) (((-550)) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-366))) +(((|#1|) . T) (($) -3962 (|has| |#1| (-292)) (|has| |#1| (-366))) (((-411 (-550))) |has| |#1| (-366))) +(((|#1|) . T) (($) -3962 (|has| |#1| (-292)) (|has| |#1| (-366))) (((-411 (-550))) |has| |#1| (-366))) +(((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-292)) (|has| |#1| (-366))) ((#1=(-411 (-550)) #1#) |has| |#1| (-366))) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-366))) +(((|#1|) . T)) +((((-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((|#1| |#1|) |has| |#1| (-311 |#1|))) +(((|#1|) |has| |#1| (-311 |#1|))) +(((|#1| $) |has| |#1| (-288 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-642 (-550)))) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(|has| |#1| (-853)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-411 |#2|) |#3|) . T)) +((((-411 (-550))) |has| #1=(-411 |#2|) (-1042 (-411 (-550)))) (((-550)) |has| #1# (-1042 (-550))) ((#1#) . T)) +((((-411 |#2|)) . T)) +((((-550)) |has| #1=(-411 |#2|) (-642 (-550))) ((#1#) . T)) +((((-411 |#2|)) . T)) +((((-411 |#2|) |#3|) . T)) +(|has| (-411 |#2|) (-147)) +((((-411 |#2|) |#3|) . T)) +(|has| (-411 |#2|) (-145)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +(|has| (-411 |#2|) (-234)) +((((-1181)) |has| (-411 |#2|) (-904 (-1181)))) +((((-411 |#2|)) . T)) (((|#3|) . T)) -(((#1=(-410 |#2|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-865)) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(((#1=(-411 |#2|) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-866)) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T)) +((((-411 |#2|)) . T) (((-411 (-550))) . T) (($) . T) (((-550)) . T)) (((|#1| |#2| |#3|) . T)) -((((-410 (-549))) . T) (((-865)) . T)) -((((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -((((-549)) . T) (((-410 (-549))) . T) (($) . T)) -(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-410 (-549))) . T) (((-549)) . T)) -((((-549)) . T) (($) . T) (((-410 (-549))) . T)) -((((-549)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -(((|#1|) . T) (($) . T) (((-549)) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-549))) . T) (((-549)) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) . T) ((#2=(-549) #2#) . T) (($ $) . T)) -(((|#1|) . T) (((-549)) . T) (((-410 (-549))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) . T)) -(((|#1|) . T) (((-549)) -3960 (|has| |#1| (-1041 (-549))) (|has| (-410 (-549)) (-1041 (-549)))) (((-410 (-549))) . T)) -(|has| |#1| (-1104)) -((((-865)) |has| |#1| (-1104))) -(|has| |#1| (-1104)) +((((-411 (-550))) . T) (((-866)) . T)) +((((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +((((-550)) . T) (((-411 (-550))) . T) (($) . T)) +(((#1=(-550) #1#) . T) ((#2=(-411 (-550)) #2#) . T) (($ $) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-411 (-550))) . T) (((-550)) . T)) +((((-550)) . T) (($) . T) (((-411 (-550))) . T)) +((((-550)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +(((|#1|) . T) (($) . T) (((-550)) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (($) . T) (((-411 (-550))) . T) (((-550)) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) . T) ((#2=(-550) #2#) . T) (($ $) . T)) +(((|#1|) . T) (((-550)) . T) (((-411 (-550))) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) . T)) +(((|#1|) . T) (((-550)) -3962 (|has| |#1| (-1042 (-550))) (|has| (-411 (-550)) (-1042 (-550)))) (((-411 (-550))) . T)) +(|has| |#1| (-1105)) +((((-866)) |has| |#1| (-1105))) +(|has| |#1| (-1105)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-643 |#4|)) . T) (((-865)) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +((((-644 |#4|)) . T) (((-866)) . T)) +(((|#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) +(((|#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (((|#4|) . T)) -((((-538)) |has| |#4| (-616 (-538)))) +((((-539)) |has| |#4| (-617 (-539)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -2867,1065 +2867,1065 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-549)) . T) (($) . T)) +((((-866)) . T)) +(((|#1|) . T) (((-550)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-549)) . T)) -((((-1180) (-51)) . T)) -((((-865)) . T)) -((((-1180) (-51)) . T)) -((((-1180) (-51)) . T)) -((((-1180) (-51)) . T)) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4292 (-1180)) (|:| -2254 #1#))) . T)) -(((#1=(-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) #1#) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -((((-1180) (-51)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(((|#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) . T)) -((((-782 |#1| (-866 |#2|))) . T)) -((((-643 (-782 |#1| (-866 |#2|)))) . T) (((-865)) . T)) -((((-782 |#1| (-866 |#2|))) |has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|))))) -(((#1=(-782 |#1| (-866 |#2|)) #1#) |has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|))))) -((((-782 |#1| (-866 |#2|))) . T)) -((((-538)) |has| (-782 |#1| (-866 |#2|)) (-616 (-538)))) -(((|#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) . T)) -(((|#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) . T)) -((((-538)) |has| |#3| (-616 (-538)))) -(((|#3|) |has| |#3| (-365))) +(((|#1|) . T) (((-550)) . T)) +((((-1181) (-51)) . T)) +((((-866)) . T)) +((((-1181) (-51)) . T)) +((((-1181) (-51)) . T)) +((((-1181) (-51)) . T)) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4294 (-1181)) (|:| -2256 #1#))) . T)) +(((#1=(-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) #1#) |has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))))) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) |has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))))) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +((((-1181) (-51)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(((|#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|))) . T)) +((((-783 |#1| (-867 |#2|))) . T)) +((((-644 (-783 |#1| (-867 |#2|)))) . T) (((-866)) . T)) +((((-783 |#1| (-867 |#2|))) |has| (-783 |#1| (-867 |#2|)) (-311 (-783 |#1| (-867 |#2|))))) +(((#1=(-783 |#1| (-867 |#2|)) #1#) |has| (-783 |#1| (-867 |#2|)) (-311 (-783 |#1| (-867 |#2|))))) +((((-783 |#1| (-867 |#2|))) . T)) +((((-539)) |has| (-783 |#1| (-867 |#2|)) (-617 (-539)))) +(((|#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|))) . T)) +(((|#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|))) . T)) +((((-539)) |has| |#3| (-617 (-539)))) +(((|#3|) |has| |#3| (-366))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-691 |#3|)) . T) (((-865)) . T)) -((((-549)) . T) ((|#3|) . T)) +((((-692 |#3|)) . T) (((-866)) . T)) +((((-550)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T)) -(|has| |#1| (-1104)) -((((-865)) |has| |#1| (-1104))) -(|has| |#1| (-1104)) -((((-865)) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) +(((|#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)))) +(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T)) +(|has| |#1| (-1105)) +((((-866)) |has| |#1| (-1105))) +(|has| |#1| (-1105)) +((((-866)) . T)) (((|#1| |#2|) . T)) -((((-1180)) . T)) +((((-1181)) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-549)) . T)) -((((-1180) (-51)) . T)) -((((-865)) . T)) -((((-1180) (-51)) . T)) -((((-1180) (-51)) . T)) -((((-1180) (-51)) . T)) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4292 (-1180)) (|:| -2254 #1#))) . T)) -(((#1=(-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) #1#) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) -((((-1180) (-51)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-294 |#3|)) . T)) -((((-294 |#3|)) . T)) +((((-550)) . T) (($) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-550)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-550)) . T)) +((((-1181) (-51)) . T)) +((((-866)) . T)) +((((-1181) (-51)) . T)) +((((-1181) (-51)) . T)) +((((-1181) (-51)) . T)) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4294 (-1181)) (|:| -2256 #1#))) . T)) +(((#1=(-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) #1#) |has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))))) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) |has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))))) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +((((-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) . T)) +((((-1181) (-51)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-295 |#3|)) . T)) +((((-295 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-865)) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#3| |#3|) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-365))) -((((-1180)) -12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) -(-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) -(-3960 (|has| |#1| (-370)) (|has| |#1| (-352))) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(-3960 (|has| |#1| (-145)) (|has| |#1| (-352))) -(|has| |#1| (-352)) +((((-866)) . T)) +((((-866)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-366))) +((((-1181)) -12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) +(-3962 (-12 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-353))) +(-3962 (|has| |#1| (-371)) (|has| |#1| (-353))) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(-3962 (|has| |#1| (-145)) (|has| |#1| (-353))) +(|has| |#1| (-353)) (((|#1| |#2|) . T)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($ $) . T) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1| |#1|) . T)) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) -((((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($ $) . T) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1| |#1|) . T)) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) ((|#1|) . T)) +((((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-353))) (((-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-353)) (|has| |#1| (-1042 (-411 (-550))))) ((|#1|) . T)) (|has| |#1| (-147)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) +(((|#1|) . T) (((-550)) |has| |#1| (-642 (-550)))) (((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) (((|#1| |#2|) . T)) -((((-1180)) . T)) -((((-865)) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-865)) . T)) -(|has| |#1| (-233)) -((($) . T)) -(((|#1| (-534 (-1091 (-1180))) (-1091 (-1180))) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-1180)) |has| |#1| (-903 (-1180))) (((-1091 (-1180))) . T)) -((($ $) . T) ((#1=(-1180) $) |has| |#1| . #2=((-233))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1091 (-1180)) |#1|) . T) ((#3# $) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-534 (-1091 (-1180)))) . T)) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-1181)) . T)) +((((-866)) . T)) +((((-866)) . T)) +(((|#1|) . T)) +((((-866)) . T)) +(|has| |#1| (-234)) +((($) . T)) +(((|#1| (-535 (-1092 (-1181))) (-1092 (-1181))) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-1181)) |has| |#1| (-904 (-1181))) (((-1092 (-1181))) . T)) +((($ $) . T) ((#1=(-1181) $) |has| |#1| . #2=((-234))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1092 (-1181)) |#1|) . T) ((#3# $) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-914))) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-535 (-1092 (-1181)))) . T)) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) (((|#1|) . T)) -(((|#1| (-534 (-1091 (-1180)))) . T)) -((((-1128 |#1| (-1180))) . T) (((-1091 (-1180))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-1180)) . T)) -((((-1128 |#1| (-1180))) . T) (((-549)) . T) (((-1091 (-1180))) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-1180)) . T)) -(((|#1| (-1180) (-1091 (-1180)) (-534 (-1091 (-1180)))) . T)) -((((-865)) . T)) +(((|#1| (-535 (-1092 (-1181)))) . T)) +((((-1129 |#1| (-1181))) . T) (((-1092 (-1181))) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-1181)) . T)) +((((-1129 |#1| (-1181))) . T) (((-550)) . T) (((-1092 (-1181))) . T) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) (((-1181)) . T)) +(((|#1| (-1181) (-1092 (-1181)) (-535 (-1092 (-1181)))) . T)) +((((-866)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-643 |#1|)) |has| |#1| (-850))) -(|has| |#1| (-1104)) -((((-865)) |has| |#1| (-1104))) -(|has| |#1| (-1104)) +(((|#1| (-644 |#1|)) |has| |#1| (-851))) +(|has| |#1| (-1105)) +((((-866)) |has| |#1| (-1105))) +(|has| |#1| (-1105)) (((|#1|) . T)) (((|#1|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(|has| (-1092 |#1|) (-1104)) -((((-865)) |has| (-1092 |#1|) (-1104))) -(|has| (-1092 |#1|) (-1104)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(|has| (-1093 |#1|) (-1105)) +((((-866)) |has| (-1093 |#1|) (-1105))) +(|has| (-1093 |#1|) (-1105)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-866)) . T)) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (((|#1|) . T)) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) +((((-539)) |has| |#1| (-617 (-539)))) (((|#1|) . T)) -(|has| |#1| (-370)) +(|has| |#1| (-371)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) -((((-643 $)) . T) (((-1162)) . T) (((-1180)) . T) (((-549)) . T) (((-225)) . T) (((-865)) . T)) -((((-865)) . T)) -((((-1162) (-1180) (-549) (-225) (-865)) . T)) -((((-643 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-865)) . T)) +((((-866)) . T)) +((((-644 $)) . T) (((-1163)) . T) (((-1181)) . T) (((-550)) . T) (((-226)) . T) (((-866)) . T)) +((((-866)) . T)) +((((-1163) (-1181) (-550) (-226) (-866)) . T)) +((((-644 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-866)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-865)) . T)) -(-3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-728)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052)) (|has| |#3| (-1104))) -(-3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-728)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052)) (|has| |#3| (-1104))) -(((|#3|) |has| |#3| (-172))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -(-3960 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052))) -((($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) (((-549)) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-850)) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) -((($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((((-865)) -3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-615 (-865))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-728)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052)) (|has| |#3| (-1104))) (((-1269 |#3|)) . T)) -(|has| |#3| (-172)) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) -(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) -(((|#3| |#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($ $) |has| |#3| (-172))) -(((|#3|) |has| |#3| (-1052))) -((((-1180)) -12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) -(|has| |#3| (-370)) -(((|#3|) |has| |#3| (-1052))) -(((|#3|) |has| |#3| (-1052)) (((-549)) -12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) -(((|#3|) |has| |#3| (-1104))) -((((-549)) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) -(((|#3|) |has| |#3| (-1104)) (((-549)) -12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) -((((-549) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +((((-866)) . T)) +(-3962 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-796)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-371)) (|has| |#3| (-729)) (|has| |#3| (-796)) (|has| |#3| (-851)) (|has| |#3| (-1053)) (|has| |#3| (-1105))) +(-3962 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-371)) (|has| |#3| (-729)) (|has| |#3| (-796)) (|has| |#3| (-851)) (|has| |#3| (-1053)) (|has| |#3| (-1105))) +(((|#3|) |has| |#3| (-173))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-729)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-729)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-796)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +(-3962 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-796)) (|has| |#3| (-851)) (|has| |#3| (-1053))) +((($) -3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) (((-550)) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-851)) (|has| |#3| (-1053))) ((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053)))) +((($) -3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (|has| |#3| (-1053))) ((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053)))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)))) +((((-866)) -3962 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-616 (-866))) (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-371)) (|has| |#3| (-729)) (|has| |#3| (-796)) (|has| |#3| (-851)) (|has| |#3| (-1053)) (|has| |#3| (-1105))) (((-1270 |#3|)) . T)) +(|has| |#3| (-173)) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053))) (($) |has| |#3| (-173))) +(((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053))) (($) |has| |#3| (-173))) +(((|#3| |#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-366)) (|has| |#3| (-1053))) (($ $) |has| |#3| (-173))) +(((|#3|) |has| |#3| (-1053))) +((((-1181)) -12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) +(-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) +(|has| |#3| (-371)) +(((|#3|) |has| |#3| (-1053))) +(((|#3|) |has| |#3| (-1053)) (((-550)) -12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053)))) +(((|#3|) |has| |#3| (-1105))) +((((-550)) -3962 (|has| |#3| (-173)) (|has| |#3| (-851)) (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105))) (|has| |#3| (-1053))) ((|#3|) -3962 (|has| |#3| (-173)) (|has| |#3| (-1105))) (((-411 (-550))) -12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) +(((|#3|) |has| |#3| (-1105)) (((-550)) -12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105))) (((-411 (-550))) -12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) +((((-550) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) +(((|#3| |#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (((|#3|) . T)) -((((-549) |#3|) . T)) -((((-549) |#3|) . T)) -(|has| |#3| (-795)) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) -(|has| |#3| (-850)) -(|has| |#3| (-850)) -(((|#3|) |has| |#3| (-365))) +((((-550) |#3|) . T)) +((((-550) |#3|) . T)) +(|has| |#3| (-796)) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(-3962 (|has| |#3| (-796)) (|has| |#3| (-851))) +(|has| |#3| (-851)) +(|has| |#3| (-851)) +(((|#3|) |has| |#3| (-366))) (((|#1| |#3|) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) ((($) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-549)) . T) (($) . T)) -((((-549)) . T)) -((((-549)) . T)) -((((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) -((((-549)) . T)) -((((-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538)))) (((-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380))))) (((-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) +((((-550)) . T) (($) . T)) +((((-550)) . T)) +((((-550)) . T)) +((((-539)) . T) (((-550)) . T) (((-894 (-550))) . T) (((-381)) . T) (((-226)) . T)) +((((-550)) . T)) +((((-539)) -12 (|has| |#1| (-617 (-539))) (|has| |#2| (-617 (-539)))) (((-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381))))) (((-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) ((($) . T)) -(((|#1| (-534 |#2|)) . T)) +(((|#1| (-535 |#2|)) . T)) (((|#1|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) -(((|#1| (-534 |#2|)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) -(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +(((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550)))) ((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914)))) +(((|#1| (-535 |#2|)) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-642 (-550)))) +(-3962 (|has| |#1| (-456)) (|has| |#1| (-914))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) -((((-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380)))) (((-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549))))) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T) ((|#2|) . T)) -((((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#2|) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) +((((-381)) -12 (|has| |#1| (-890 (-381))) (|has| |#2| (-890 (-381)))) (((-550)) -12 (|has| |#1| (-890 (-550))) (|has| |#2| (-890 (-550))))) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) (((-550)) |has| |#1| (-1042 (-550))) ((|#1|) . T) ((|#2|) . T)) +((((-550)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) ((|#1|) . T) (($) -3962 (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#2|) . T)) +(((|#1| (-535 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-865)) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((((-866)) . T)) +(((|#1| (-535 |#2|) |#2|) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -((((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -(((|#1| (-534 |#2|)) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +(((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550)))) ((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +((((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +(((|#1| (-535 |#2|)) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) (((|#1| |#2|) . T)) -((((-865)) . T)) -(((|#1|) . T)) -((((-1185)) . T)) -((((-1185)) . T)) -((((-1185)) . T) (((-865)) . T)) -((((-865)) . T)) -((((-1143 |#1| |#2|)) . T)) -(((#1=(-1143 |#1| |#2|) #1#) |has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|)))) -((((-1143 |#1| |#2|)) |has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|)))) -((((-865)) . T)) -((((-1143 |#1| |#2|)) . T)) -((((-538)) |has| |#2| (-616 (-538)))) -(((|#2|) |has| |#2| (-6 (-4427 "*")))) +((((-866)) . T)) +(((|#1|) . T)) +((((-1186)) . T)) +((((-1186)) . T)) +((((-1186)) . T) (((-866)) . T)) +((((-866)) . T)) +((((-1144 |#1| |#2|)) . T)) +(((#1=(-1144 |#1| |#2|) #1#) |has| (-1144 |#1| |#2|) (-311 (-1144 |#1| |#2|)))) +((((-1144 |#1| |#2|)) |has| (-1144 |#1| |#2|) (-311 (-1144 |#1| |#2|)))) +((((-866)) . T)) +((((-1144 |#1| |#2|)) . T)) +((((-539)) |has| |#2| (-617 (-539)))) +(((|#2|) |has| |#2| (-6 (-4429 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-691 |#2|)) . T) (((-865)) . T)) -((($) . T) (((-549)) . T) ((|#2|) . T)) +((((-692 |#2|)) . T) (((-866)) . T)) +((($) . T) (((-550)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) -3960 (|has| |#2| (-6 (-4427 "*"))) (|has| |#2| (-172)))) -(((|#2|) -3960 (|has| |#2| (-6 (-4427 "*"))) (|has| |#2| (-172)))) +(((|#2|) -3962 (|has| |#2| (-6 (-4429 "*"))) (|has| |#2| (-173)))) +(((|#2|) -3962 (|has| |#2| (-6 (-4429 "*"))) (|has| |#2| (-173)))) (((|#2|) . T)) -((((-1180)) |has| |#2| (-903 (-1180)))) -(|has| |#2| (-233)) +((((-1181)) |has| |#2| (-904 (-1181)))) +(|has| |#2| (-234)) (((|#2|) . T)) -(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(((|#2|) . T) (((-550)) |has| |#2| (-642 (-550)))) (((|#2|) . T)) -((((-549)) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +((((-550)) . T) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#2|) . T) (((-550)) |has| |#2| (-1042 (-550))) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (((|#2|) . T)) -(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-538)) |has| |#4| (-616 (-538)))) +((((-539)) |has| |#4| (-617 (-539)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) +(((|#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (((|#4|) . T)) -((((-865)) . T) (((-643 |#4|)) . T)) +((((-866)) . T) (((-644 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-643 |#1|)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-644 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) (((|#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-865)) . T)) +((((-866)) . T)) ((((-144)) . T)) ((((-144)) . T)) ((((-144)) . T)) -((((-549) (-144)) . T)) -((((-549) (-144)) . T)) -((((-549) (-144)) . T)) +((((-550) (-144)) . T)) +((((-550) (-144)) . T)) +((((-550) (-144)) . T)) ((((-144)) . T)) ((((-144)) . T)) -((((-1162) |#1|) . T)) -((((-865)) . T)) -((((-1162) |#1|) . T)) -((((-1162) |#1|) . T)) -((((-1162) |#1|) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((#1=(-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) #1#) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) -((((-1162) |#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1178 |#1| |#2| |#3|)) . T)) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-365)) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1178 |#1| |#2| |#3|)) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))))) -(((#1=(-1178 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|)))) (((-1180) #1#) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-517 (-1180) (-1178 |#1| |#2| |#3|))))) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) -((((-1180)) -3960 (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180)))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) -((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) -(-3960 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-147)))) -(-3960 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-145)))) -((((-865)) . T)) -(((|#1|) . T)) -((((-1178 |#1| |#2| |#3|) $) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-287 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-549) (-1085)) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((#2=(-1178 |#1| |#2| |#3|) #2#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-549)) . T) (($) . T) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((((-1178 |#1| |#2| |#3|)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) ((|#1|) |has| |#1| (-172))) -(((|#1| (-549)) . T)) -(((|#1| (-549)) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-1178 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-410 $) (-410 $)) |has| |#1| (-560)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) -(|has| |#1| (-365)) -(((|#1| (-773) (-1085)) . T)) -(|has| |#1| (-913)) -(|has| |#1| (-913)) -((((-1180)) |has| |#1| (-903 (-1180))) (((-1085)) . T)) -((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-773)) . T)) +((((-1163) |#1|) . T)) +((((-866)) . T)) +((((-1163) |#1|) . T)) +((((-1163) |#1|) . T)) +((((-1163) |#1|) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((#1=(-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) #1#) |has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) |has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))))) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) . T)) +((((-1163) |#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1179 |#1| |#2| |#3|)) . T)) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +(|has| |#1| (-366)) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1179 |#1| |#2| |#3|)) -12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-311 (-1179 |#1| |#2| |#3|))))) +(((#1=(-1179 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-311 (-1179 |#1| |#2| |#3|)))) (((-1181) #1#) -12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-518 (-1181) (-1179 |#1| |#2| |#3|))))) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (-12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) +((((-1181)) -3962 (-12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181)))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) +((((-1179 |#1| |#2| |#3|)) |has| |#1| (-366))) +(-3962 (|has| |#1| (-147)) (-12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-147)))) +(-3962 (|has| |#1| (-145)) (-12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-145)))) +((((-866)) . T)) +(((|#1|) . T)) +((((-1179 |#1| |#2| |#3|) $) -12 (|has| |#1| (-366)) (|has| (-1179 |#1| |#2| |#3|) (-288 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-550) (-1086)) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((#2=(-1179 |#1| |#2| |#3|) #2#) |has| |#1| (-366)) ((|#1| |#1|) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) (((-550)) . T) (($) . T) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) (($) . T) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-1179 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((((-1179 |#1| |#2| |#3|)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-550)) . T) ((|#1|) |has| |#1| (-173))) +(((|#1| (-550)) . T)) +(((|#1| (-550)) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-1179 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-411 $) (-411 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) +(|has| |#1| (-366)) +(((|#1| (-774) (-1086)) . T)) +(|has| |#1| (-914)) +(|has| |#1| (-914)) +((((-1181)) |has| |#1| (-904 (-1181))) (((-1086)) . T)) +((((-550)) |has| |#1| (-642 (-550))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-774)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1085)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) (((-1086)) . T) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-366)) (|has| |#1| (-456)) (|has| |#1| (-561)) (|has| |#1| (-914))) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) (((|#1|) . T)) -((((-1085)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1| (-773)) . T)) -(((#1=(-1085) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-1086)) . T) ((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1| (-774)) . T)) +(((#1=(-1086) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1154)) +(|has| |#1| (-1155)) (((|#1|) . T)) -((((-1178 |#1| |#2| |#3|)) . T) (((-1171 |#1| |#2| |#3|)) . T)) +((((-1179 |#1| |#2| |#3|)) . T) (((-1172 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +(|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) ((($ $) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) -(((|#1| (-410 (-549)) (-1085)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) +(((|#1| (-411 (-550)) (-1086)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(((|#1| (-410 (-549))) . T)) -(((|#1| (-410 (-549))) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -((((-865)) . T)) -(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -((((-1266 |#2|)) . T) (((-1178 |#1| |#2| |#3|)) . T) (((-1171 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(((|#1| (-1171 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-773)) . T)) -(((|#1| (-773)) . T)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +(((|#1| (-411 (-550))) . T)) +(((|#1| (-411 (-550))) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +((((-866)) . T)) +(((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) . T)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +((((-1267 |#2|)) . T) (((-1179 |#1| |#2| |#3|)) . T) (((-1172 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(((|#1| (-1172 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-774)) . T)) +(((|#1| (-774)) . T)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1| (-773) (-1085)) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1| (-774) (-1086)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) ((($ $) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T)) -(|has| |#1| (-15 * (|#1| (-773) |#1|))) -(((|#1|) . T)) -((((-865)) . T)) -((((-380)) . T) (((-549)) . T)) -((((-1162)) . T)) -((((-893 (-380))) . T) (((-893 (-549))) . T) (((-1180)) . T) (((-538)) . T)) -((((-865)) . T)) -(((|#1| (-974)) . T)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (($) . T)) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T)) +(|has| |#1| (-15 * (|#1| (-774) |#1|))) +(((|#1|) . T)) +((((-866)) . T)) +((((-381)) . T) (((-550)) . T)) +((((-1163)) . T)) +((((-894 (-381))) . T) (((-894 (-550))) . T) (((-1181)) . T) (((-539)) . T)) +((((-866)) . T)) +(((|#1| (-975)) . T)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((((-865)) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) -((($) |has| |#1| (-560)) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-549)) . T)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1|) . T)) -(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) -(((|#1| (-974)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1162)) . T) (((-509)) . T) (((-225)) . T) (((-549)) . T)) -((((-1162)) . T) (((-509)) . T) (((-225)) . T) (((-549)) . T)) -((((-538)) . T) (((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((((-866)) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (($) . T)) +((($) |has| |#1| (-561)) ((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))) (((-550)) . T)) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1|) . T)) +(((|#1|) . T) (((-550)) |has| |#1| (-1042 (-550))) (((-411 (-550))) |has| |#1| (-1042 (-411 (-550))))) +(((|#1| (-975)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1163)) . T) (((-510)) . T) (((-226)) . T) (((-550)) . T)) +((((-1163)) . T) (((-510)) . T) (((-226)) . T) (((-550)) . T)) +((((-539)) . T) (((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) +((((-866)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) -((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((#1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #1#) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +(((|#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) +((((-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-391) (-1162)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1180) $) . T)) -((((-1180)) . T)) -((((-865)) . T)) -(((|#1| (-534 #1=(-1180)) #1#) . T)) -((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) -((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-392) (-1163)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105)))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1181) $) . T)) +((((-1181)) . T)) +((((-866)) . T)) +(((|#1| (-535 #1=(-1181)) #1#) . T)) +((($) . T) (((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) +((($) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -((((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) -(((|#1| (-534 (-1180))) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-1180)) . T)) -(|has| |#1| (-1104)) -(|has| |#1| (-1104)) -((((-961 |#1|)) . T)) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104))) (((-961 |#1|)) . T)) -((((-961 |#1|)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1259 |#1| |#2| |#3|)) . T)) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-365)) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1259 |#1| |#2| |#3|)) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))))) -(((#1=(-1259 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|)))) (((-1180) #1#) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-517 (-1180) (-1259 |#1| |#2| |#3|))))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) -((((-1180)) -3960 (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180)))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) -((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) -(-3960 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-147)))) -(-3960 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-145)))) -((((-865)) . T)) -(((|#1|) . T)) -((((-1259 |#1| |#2| |#3|) $) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-287 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-549) (-1085)) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((#2=(-1259 |#1| |#2| |#3|) #2#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-549)) . T) (($) . T) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((((-1259 |#1| |#2| |#3|)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) ((|#1|) |has| |#1| (-172))) -(((|#1| (-549)) . T)) -(((|#1| (-549)) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-1259 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-365))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-1154))) -(((|#2|) . T) (((-1180)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) (((-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549)))) (((-410 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-1023))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-913))) -(((|#2|) |has| |#1| (-365))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) -(-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-822))) (-12 (|has| |#1| (-365)) (|has| |#2| (-852)))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) -((((-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-380)))) (((-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-549))))) -(|has| |#1| (-365)) -(((|#2|) |has| |#1| (-365))) -((((-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549)))) ((|#2|) |has| |#1| (-365))) -(((|#2|) |has| |#1| (-365))) -(((|#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1180) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|)))) -(((|#2|) |has| |#1| (-365))) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) -((((-1180)) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) -(((|#2|) |has| |#1| (-365))) -((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-893 (-380))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-380))))) (((-893 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-549))))) (((-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-538))))) -(-3960 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) -(-3960 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) -((((-865)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T)) -(((|#1| (-549) (-1085)) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-549)) . T) (($) . T) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) (((-1180)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) ((|#1|) |has| |#1| (-172))) -(((|#1| (-549)) . T)) -(((|#1| (-549)) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +(((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550)))) ((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561)))) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +((((-550)) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +((((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +(((|#1| (-535 (-1181))) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-1181)) . T)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +((((-962 |#1|)) . T)) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-1105))) (((-962 |#1|)) . T)) +((((-962 |#1|)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1260 |#1| |#2| |#3|)) . T)) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +(|has| |#1| (-366)) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +((((-1260 |#1| |#2| |#3|)) -12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-311 (-1260 |#1| |#2| |#3|))))) +(((#1=(-1260 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-311 (-1260 |#1| |#2| |#3|)))) (((-1181) #1#) -12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-518 (-1181) (-1260 |#1| |#2| |#3|))))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (-12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) +((((-1181)) -3962 (-12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181)))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) +((((-1260 |#1| |#2| |#3|)) |has| |#1| (-366))) +(-3962 (|has| |#1| (-147)) (-12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-147)))) +(-3962 (|has| |#1| (-145)) (-12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-145)))) +((((-866)) . T)) +(((|#1|) . T)) +((((-1260 |#1| |#2| |#3|) $) -12 (|has| |#1| (-366)) (|has| (-1260 |#1| |#2| |#3|) (-288 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-550) (-1086)) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((#2=(-1260 |#1| |#2| |#3|) #2#) |has| |#1| (-366)) ((|#1| |#1|) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) (((-550)) . T) (($) . T) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) (($) . T) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((((-1260 |#1| |#2| |#3|)) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-550)) . T) ((|#1|) |has| |#1| (-173))) +(((|#1| (-550)) . T)) +(((|#1| (-550)) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-1260 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-366))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-1155))) +(((|#2|) . T) (((-1181)) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181)))) (((-550)) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550)))) (((-411 (-550))) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550))))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-1024))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-914))) +(((|#2|) |has| |#1| (-366))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-823))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-823))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-823))) +(-3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-823))) (-12 (|has| |#1| (-366)) (|has| |#2| (-853)))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-823))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-823))) +(-12 (|has| |#1| (-366)) (|has| |#2| (-823))) +((((-381)) -12 (|has| |#1| (-366)) (|has| |#2| (-890 (-381)))) (((-550)) -12 (|has| |#1| (-366)) (|has| |#2| (-890 (-550))))) +(|has| |#1| (-366)) +(((|#2|) |has| |#1| (-366))) +((((-550)) -12 (|has| |#1| (-366)) (|has| |#2| (-642 (-550)))) ((|#2|) |has| |#1| (-366))) +(((|#2|) |has| |#1| (-366))) +(((|#2|) -12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|))) (((-1181) |#2|) -12 (|has| |#1| (-366)) (|has| |#2| (-518 (-1181) |#2|)))) +(((|#2|) |has| |#1| (-366))) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(-3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) +((((-1181)) -3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) +(((|#2|) |has| |#1| (-366))) +((((-226)) -12 (|has| |#1| (-366)) (|has| |#2| (-1024))) (((-381)) -12 (|has| |#1| (-366)) (|has| |#2| (-1024))) (((-894 (-381))) -12 (|has| |#1| (-366)) (|has| |#2| (-617 (-894 (-381))))) (((-894 (-550))) -12 (|has| |#1| (-366)) (|has| |#2| (-617 (-894 (-550))))) (((-539)) -12 (|has| |#1| (-366)) (|has| |#2| (-617 (-539))))) +(-3962 (|has| |#1| (-147)) (-12 (|has| |#1| (-366)) (|has| |#2| (-147)))) +(-3962 (|has| |#1| (-145)) (-12 (|has| |#1| (-366)) (|has| |#2| (-145)))) +((((-866)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-366)) (|has| |#2| (-288 |#2| |#2|))) (($ $) . T)) +(((|#1| (-550) (-1086)) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#2| |#2|) |has| |#1| (-366)) ((|#1| |#1|) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#2|) |has| |#1| (-366)) ((|#1|) . T)) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#2|) |has| |#1| (-366)) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#2|) |has| |#1| (-366)) (((-550)) . T) (($) . T) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) ((|#2|) |has| |#1| (-366)) (($) . T) ((|#1|) . T)) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +((((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-366)) ((|#1|) |has| |#1| (-173))) +(((|#2|) . T) (((-1181)) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181)))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561))) (((-550)) . T) ((|#1|) |has| |#1| (-173))) +(((|#1| (-550)) . T)) +(((|#1| (-550)) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) (((|#1| |#2|) . T)) -(((|#1| (-1157 |#1|)) |has| |#1| (-850))) -(|has| |#1| (-1104)) -((((-865)) |has| |#1| (-1104))) -(|has| |#1| (-1104)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-865)) . T)) -((((-410 $) (-410 $)) |has| |#2| (-560)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-365)) -(-3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(-3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) -(|has| |#2| (-365)) -(((|#2| (-773) (-1085)) . T)) -(|has| |#2| (-913)) -(|has| |#2| (-913)) -((((-1180)) |has| |#2| (-903 (-1180))) (((-1085)) . T)) -((((-549)) |has| |#2| (-641 (-549))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-773)) . T)) +(((|#1| (-1158 |#1|)) |has| |#1| (-851))) +(|has| |#1| (-1105)) +((((-866)) |has| |#1| (-1105))) +(|has| |#1| (-1105)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-866)) . T)) +((((-411 $) (-411 $)) |has| |#2| (-561)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-366)) +(-3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(-3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) +(|has| |#2| (-366)) +(((|#2| (-774) (-1086)) . T)) +(|has| |#2| (-914)) +(|has| |#2| (-914)) +((((-1181)) |has| |#2| (-904 (-1181))) (((-1086)) . T)) +((((-550)) |has| |#2| (-642 (-550))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-774)) . T)) (|has| |#2| (-147)) (|has| |#2| (-145)) -((((-1266 |#1|)) . T) (((-549)) . T) (($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-1085)) . T) ((|#2|) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) -((($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) |has| |#2| (-172)) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) -((($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) |has| |#2| (-172)) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) -((($) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) -((((-549)) . T) (($) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) -((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2| |#2|) . T) ((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549))))) -((($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) |has| |#2| (-172)) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((((-1267 |#1|)) . T) (((-550)) . T) (($) -3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) (((-1086)) . T) ((|#2|) . T) (((-411 (-550))) -3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550)))))) +((($) -3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) ((|#2|) |has| |#2| (-173)) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) +((($) -3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) ((|#2|) |has| |#2| (-173)) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) +((($) . T) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) +((((-550)) . T) (($) . T) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) +((($) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) ((|#2|) . T) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#2| (-173)) (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) ((|#2| |#2|) . T) ((#1=(-411 (-550)) #1#) |has| |#2| (-38 (-411 (-550))))) +((($) -3962 (|has| |#2| (-366)) (|has| |#2| (-456)) (|has| |#2| (-561)) (|has| |#2| (-914))) ((|#2|) |has| |#2| (-173)) (((-411 (-550))) |has| |#2| (-38 (-411 (-550))))) (((|#2|) . T)) -((((-1085)) . T) ((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) -(((|#2| (-773)) . T)) -(((#1=(-1085) |#2|) . T) ((#1# $) . T) (($ $) . T)) +((((-1086)) . T) ((|#2|) . T) (((-550)) |has| |#2| (-1042 (-550))) (((-411 (-550))) |has| |#2| (-1042 (-411 (-550))))) +(((|#2| (-774)) . T)) +(((#1=(-1086) |#2|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1154)) +(|has| |#2| (-1155)) (((|#2|) . T)) -((((-1259 |#1| |#2| |#3|)) . T) (((-1229 |#1| |#2| |#3|)) . T)) +((((-1260 |#1| |#2| |#3|)) . T) (((-1230 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +(|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) ((($ $) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) -(((|#1| (-410 (-549)) (-1085)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) +(((|#1| (-411 (-550)) (-1086)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(((|#1| (-410 (-549))) . T)) -(((|#1| (-410 (-549))) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -((((-865)) . T)) -(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -((((-1266 |#2|)) . T) (((-1259 |#1| |#2| |#3|)) . T) (((-1229 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(((|#1| (-1229 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +(((|#1| (-411 (-550))) . T)) +(((|#1| (-411 (-550))) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +((((-866)) . T)) +(((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) . T)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +((((-1267 |#2|)) . T) (((-1260 |#1| |#2| |#3|)) . T) (((-1230 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(((|#1| (-1230 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) ((($ $) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) -(((|#1| (-410 (-549)) (-1085)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) +(((|#1| (-411 (-550)) (-1086)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(((|#1| (-410 (-549))) . T)) -(((|#1| (-410 (-549))) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-365)) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -((((-865)) . T)) -(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) -(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) -(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) +(((|#1| (-411 (-550))) . T)) +(((|#1| (-411 (-550))) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-366)) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +((((-866)) . T)) +(((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1|) . T) (($) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1| |#1|) . T) (($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) ((#1=(-411 (-550)) #1#) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366)))) +(((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) . T)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) -3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-366))) (((-550)) . T) (($) -3962 (|has| |#1| (-366)) (|has| |#1| (-561)))) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-366)) (|has| |#1| (-561))) +(-3962 (|has| |#1| (-366)) (|has| |#1| (-561))) +(|has| |#1| (-366)) +(|has| |#1| (-366)) +(|has| |#1| (-366)) (((|#1| |#2|) . T)) -((((-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) -(|has| (-1250 |#2| |#3| |#4|) (-147)) -(|has| (-1250 |#2| |#3| |#4|) (-145)) -((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) |has| #1# (-172)) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) -((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) |has| #1# (-172)) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) -((((-865)) . T)) -((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) -((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) -((($ $) . T) ((#1=(-1250 |#2| |#3| |#4|) #1#) . T) ((#2=(-410 (-549)) #2#) |has| #1# (-38 (-410 (-549))))) -(((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) -(((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549)))) (($) . T)) -((($) . T) (((-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549)))) (((-549)) . T)) -((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) |has| #1# (-172)) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) -((((-1250 |#2| |#3| |#4|)) . T)) -((((-1250 |#2| |#3| |#4|)) . T)) -((((-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(|has| |#1| (-38 (-410 (-549)))) -(((|#1| (-773)) . T)) -(((|#1| (-773)) . T)) -(|has| |#1| (-560)) -(|has| |#1| (-560)) -(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +((((-1251 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|)) . T)) +(|has| (-1251 |#2| |#3| |#4|) (-147)) +(|has| (-1251 |#2| |#3| |#4|) (-145)) +((($) . T) ((#1=(-1251 |#2| |#3| |#4|)) |has| #1# (-173)) (((-411 (-550))) |has| #1# (-38 (-411 (-550))))) +((($) . T) ((#1=(-1251 |#2| |#3| |#4|)) |has| #1# (-173)) (((-411 (-550))) |has| #1# (-38 (-411 (-550))))) +((((-866)) . T)) +((($) . T) ((#1=(-1251 |#2| |#3| |#4|)) . T) (((-411 (-550))) |has| #1# (-38 (-411 (-550))))) +((($) . T) ((#1=(-1251 |#2| |#3| |#4|)) . T) (((-411 (-550))) |has| #1# (-38 (-411 (-550))))) +((($ $) . T) ((#1=(-1251 |#2| |#3| |#4|) #1#) . T) ((#2=(-411 (-550)) #2#) |has| #1# (-38 (-411 (-550))))) +(((#1=(-1251 |#2| |#3| |#4|)) . T) (((-411 (-550))) |has| #1# (-38 (-411 (-550)))) (((-550)) . T) (($) . T)) +(((#1=(-1251 |#2| |#3| |#4|)) . T) (((-411 (-550))) |has| #1# (-38 (-411 (-550)))) (($) . T)) +((($) . T) (((-1251 |#2| |#3| |#4|)) . T) (((-411 (-550))) |has| (-1251 |#2| |#3| |#4|) (-38 (-411 (-550)))) (((-550)) . T)) +((($) . T) ((#1=(-1251 |#2| |#3| |#4|)) |has| #1# (-173)) (((-411 (-550))) |has| #1# (-38 (-411 (-550))))) +((((-1251 |#2| |#3| |#4|)) . T)) +((((-1251 |#2| |#3| |#4|)) . T)) +((((-1251 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(|has| |#1| (-38 (-411 (-550)))) +(((|#1| (-774)) . T)) +(((|#1| (-774)) . T)) +(|has| |#1| (-561)) +(|has| |#1| (-561)) +(-3962 (|has| |#1| (-173)) (|has| |#1| (-561))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) -(((|#1| (-773) (-1085)) . T)) -((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +((($ $) -3962 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#1=(-411 (-550)) #1#) |has| |#1| (-38 (-411 (-550))))) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550))))) +(((|#1| (-774) (-1086)) . T)) +((((-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) ((($ $) . T)) -((((-865)) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) -((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T)) -(|has| |#1| (-15 * (|#1| (-773) |#1|))) -(((|#1|) . T)) -((((-1180)) . T) (((-865)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-549) |#1|) . T)) -((((-538)) |has| |#1| (-616 (-538)))) -(((|#1|) . T)) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) -((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) -(((|#1|) . T)) -(|has| |#1| (-852)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-865)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -((((-1185)) . T)) -((((-865)) . T) (((-1185)) . T)) -((((-1185)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +((((-866)) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T) (($) . T)) +(((|#1|) . T) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (($) . T)) +((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-411 (-550))) |has| |#1| (-38 (-411 (-550)))) (((-550)) . T)) +(|has| |#1| (-15 * (|#1| (-774) |#1|))) +(((|#1|) . T)) +((((-1181)) . T) (((-866)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-550) |#1|) . T)) +((((-539)) |has| |#1| (-617 (-539)))) +(((|#1|) . T)) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(-3962 (|has| |#1| (-853)) (|has| |#1| (-1105))) +(((|#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +(((|#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) +((((-866)) -3962 (|has| |#1| (-616 (-866))) (|has| |#1| (-853)) (|has| |#1| (-1105)))) +(((|#1|) . T)) +(|has| |#1| (-853)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-866)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +((((-1186)) . T)) +((((-866)) . T) (((-1186)) . T)) +((((-1186)) . T)) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) +(((|#1| |#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-549)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -(((|#4|) . T) (((-865)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-173)) ((|#4|) . T) (((-550)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T)) +(((|#4|) . T) (((-866)) . T)) +(((|#1|) |has| |#1| (-173)) (($) . T) (((-550)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-538)) |has| |#4| (-616 (-538)))) +((((-539)) |has| |#4| (-617 (-539)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) +(((|#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (((|#4|) . T)) -((((-865)) . T) (((-643 |#4|)) . T)) +((((-866)) . T) (((-644 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-173))) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-865)) . T)) -((($) . T) (((-549)) . T) ((|#2|) . T)) +((((-866)) . T)) +((($) . T) (((-550)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-172))) -((((-821 |#1|)) . T)) -(((|#2|) . T) (((-549)) . T) (((-821 |#1|)) . T)) -(((|#2| (-821 |#1|)) . T)) -(((|#2| (-896 |#1|)) . T)) +(((|#2|) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-173))) +((((-822 |#1|)) . T)) +(((|#2|) . T) (((-550)) . T) (((-822 |#1|)) . T)) +(((|#2| (-822 |#1|)) . T)) +(((|#2| (-897 |#1|)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-173))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-173))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-865)) . T)) -(((|#2|) . T) (($) . T) (((-549)) . T)) -((((-896 |#1|)) . T) ((|#2|) . T) (((-549)) . T) (((-821 |#1|)) . T)) -((((-896 |#1|)) . T) (((-821 |#1|)) . T)) +((((-866)) . T)) +(((|#2|) . T) (($) . T) (((-550)) . T)) +((((-897 |#1|)) . T) ((|#2|) . T) (((-550)) . T) (((-822 |#1|)) . T)) +((((-897 |#1|)) . T) (((-822 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1180) |#1|) . T)) -(((|#1|) |has| |#1| (-172))) +((((-1181) |#1|) . T)) +(((|#1|) |has| |#1| (-173))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (($) . T) (((-549)) . T)) -(((|#1|) . T) (((-549)) . T) (((-821 (-1180))) . T)) -((((-821 (-1180))) . T)) -((((-1180) |#1|) . T)) +((((-866)) . T)) +(((|#1|) . T) (($) . T) (((-550)) . T)) +(((|#1|) . T) (((-550)) . T) (((-822 (-1181))) . T)) +((((-822 (-1181))) . T)) +((((-1181) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-173))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-173))) +(((|#1|) |has| |#1| (-173))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-549)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-550)) . T)) (((|#1|) . T) (($) . T)) -((((-865)) . T)) -(((|#1|) . T) (($) . T) (((-549)) . T)) +((((-866)) . T)) +(((|#1|) . T) (($) . T) (((-550)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-173))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-173))) +(((|#2|) |has| |#2| (-173))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-865)) . T)) -(((|#2|) . T) (($) . T) (((-549)) . T)) -(((|#2|) . T) (((-549)) . T) (((-821 |#1|)) . T)) -((((-821 |#1|)) . T)) +((((-866)) . T)) +(((|#2|) . T) (($) . T) (((-550)) . T)) +(((|#2|) . T) (((-550)) . T) (((-822 |#1|)) . T)) +((((-822 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-549)) . T)) +((((-550)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-865)) . T)) -((((-549)) . T) (($) . T)) +((((-866)) . T)) +((((-550)) . T) (($) . T)) ((($) . T)) -((((-549)) . T)) -(((-1298 . -172) T) ((-1298 . -618) 188413) ((-1298 . -728) T) ((-1298 . -1115) T) ((-1298 . -1060) T) ((-1298 . -1052) T) ((-1298 . -650) 188400) ((-1298 . -648) 188372) ((-1298 . -131) T) ((-1298 . -25) T) ((-1298 . -102) T) ((-1298 . -615) 188354) ((-1298 . -1104) T) ((-1298 . -23) T) ((-1298 . -21) T) ((-1298 . -1059) 188341) ((-1298 . -1054) 188328) ((-1298 . -111) 188313) ((-1298 . -370) T) ((-1298 . -616) 188295) ((-1298 . -1154) T) ((-1294 . -1292) 188274) ((-1294 . -1041) 188251) ((-1294 . -618) 188200) ((-1294 . -1052) T) ((-1294 . -1060) T) ((-1294 . -1115) T) ((-1294 . -728) T) ((-1294 . -21) T) ((-1294 . -648) 188159) ((-1294 . -23) T) ((-1294 . -1104) T) ((-1294 . -615) 188141) ((-1294 . -102) T) ((-1294 . -25) T) ((-1294 . -131) T) ((-1294 . -650) 188115) ((-1294 . -1284) 188099) ((-1294 . -719) 188069) ((-1294 . -642) 188039) ((-1294 . -1059) 188023) ((-1294 . -1054) 188007) ((-1294 . -111) 187986) ((-1294 . -38) 187956) ((-1294 . -1289) 187935) ((-1293 . -1052) T) ((-1293 . -1060) T) ((-1293 . -1115) T) ((-1293 . -728) T) ((-1293 . -21) T) ((-1293 . -648) 187894) ((-1293 . -23) T) ((-1293 . -1104) T) ((-1293 . -615) 187876) ((-1293 . -102) T) ((-1293 . -25) T) ((-1293 . -131) T) ((-1293 . -650) 187850) ((-1293 . -618) 187806) ((-1293 . -1284) 187790) ((-1293 . -719) 187760) ((-1293 . -642) 187730) ((-1293 . -1059) 187714) ((-1293 . -1054) 187698) ((-1293 . -111) 187677) ((-1293 . -38) 187647) ((-1293 . -386) 187626) ((-1293 . -1041) 187610) ((-1291 . -1292) 187586) ((-1291 . -1041) 187560) ((-1291 . -618) 187506) ((-1291 . -1052) T) ((-1291 . -1060) T) ((-1291 . -1115) T) ((-1291 . -728) T) ((-1291 . -21) T) ((-1291 . -648) 187465) ((-1291 . -23) T) ((-1291 . -1104) T) ((-1291 . -615) 187447) ((-1291 . -102) T) ((-1291 . -25) T) ((-1291 . -131) T) ((-1291 . -650) 187421) ((-1291 . -1284) 187405) ((-1291 . -719) 187375) ((-1291 . -642) 187345) ((-1291 . -1059) 187329) ((-1291 . -1054) 187313) ((-1291 . -111) 187292) ((-1291 . -38) 187262) ((-1291 . -1289) 187238) ((-1290 . -1292) 187217) ((-1290 . -1041) 187174) ((-1290 . -618) 187103) ((-1290 . -1052) T) ((-1290 . -1060) T) ((-1290 . -1115) T) ((-1290 . -728) T) ((-1290 . -21) T) ((-1290 . -648) 187062) ((-1290 . -23) T) ((-1290 . -1104) T) ((-1290 . -615) 187044) ((-1290 . -102) T) ((-1290 . -25) T) ((-1290 . -131) T) ((-1290 . -650) 187018) ((-1290 . -1284) 187002) ((-1290 . -719) 186972) ((-1290 . -642) 186942) ((-1290 . -1059) 186926) ((-1290 . -1054) 186910) ((-1290 . -111) 186889) ((-1290 . -38) 186859) ((-1290 . -1289) 186838) ((-1290 . -386) 186810) ((-1285 . -386) 186782) ((-1285 . -618) 186731) ((-1285 . -1041) 186708) ((-1285 . -642) 186678) ((-1285 . -719) 186648) ((-1285 . -650) 186622) ((-1285 . -648) 186581) ((-1285 . -131) T) ((-1285 . -25) T) ((-1285 . -102) T) ((-1285 . -615) 186563) ((-1285 . -1104) T) ((-1285 . -23) T) ((-1285 . -21) T) ((-1285 . -1059) 186547) ((-1285 . -1054) 186531) ((-1285 . -111) 186510) ((-1285 . -1292) 186489) ((-1285 . -1052) T) ((-1285 . -1060) T) ((-1285 . -1115) T) ((-1285 . -728) T) ((-1285 . -1284) 186473) ((-1285 . -38) 186443) ((-1285 . -1289) 186422) ((-1283 . -1214) 186391) ((-1283 . -615) 186353) ((-1283 . -151) 186337) ((-1283 . -34) T) ((-1283 . -1219) T) ((-1283 . -310) 186275) ((-1283 . -517) 186208) ((-1283 . -1104) T) ((-1283 . -102) T) ((-1283 . -492) 186192) ((-1283 . -616) 186153) ((-1283 . -979) 186122) ((-1282 . -1052) T) ((-1282 . -1060) T) ((-1282 . -1115) T) ((-1282 . -728) T) ((-1282 . -21) T) ((-1282 . -648) 186067) ((-1282 . -23) T) ((-1282 . -1104) T) ((-1282 . -615) 186036) ((-1282 . -102) T) ((-1282 . -25) T) ((-1282 . -131) T) ((-1282 . -650) 185996) ((-1282 . -618) 185938) ((-1282 . -493) 185922) ((-1282 . -38) 185892) ((-1282 . -111) 185857) ((-1282 . -1054) 185827) ((-1282 . -1059) 185797) ((-1282 . -642) 185767) ((-1282 . -719) 185737) ((-1281 . -1086) T) ((-1281 . -493) 185718) ((-1281 . -615) 185684) ((-1281 . -618) 185665) ((-1281 . -1104) T) ((-1281 . -102) T) ((-1281 . -93) T) ((-1280 . -1086) T) ((-1280 . -493) 185646) ((-1280 . -615) 185612) ((-1280 . -618) 185593) ((-1280 . -1104) T) ((-1280 . -102) T) ((-1280 . -93) T) ((-1275 . -615) 185575) ((-1273 . -1104) T) ((-1273 . -615) 185557) ((-1273 . -102) T) ((-1272 . -1104) T) ((-1272 . -615) 185539) ((-1272 . -102) T) ((-1269 . -1268) 185523) ((-1269 . -374) 185507) ((-1269 . -852) 185486) ((-1269 . -151) 185470) ((-1269 . -34) T) ((-1269 . -1219) T) ((-1269 . -615) 185382) ((-1269 . -310) 185320) ((-1269 . -517) 185253) ((-1269 . -1104) 185203) ((-1269 . -102) 185153) ((-1269 . -492) 185137) ((-1269 . -616) 185098) ((-1269 . -606) 185075) ((-1269 . -287) 185052) ((-1269 . -289) 185029) ((-1269 . -653) 185013) ((-1269 . -19) 184997) ((-1266 . -1104) T) ((-1266 . -615) 184963) ((-1266 . -102) T) ((-1259 . -1262) 184947) ((-1259 . -233) 184906) ((-1259 . -618) 184788) ((-1259 . -650) 184713) ((-1259 . -648) 184623) ((-1259 . -131) T) ((-1259 . -25) T) ((-1259 . -102) T) ((-1259 . -615) 184605) ((-1259 . -1104) T) ((-1259 . -23) T) ((-1259 . -21) T) ((-1259 . -728) T) ((-1259 . -1115) T) ((-1259 . -1060) T) ((-1259 . -1052) T) ((-1259 . -287) 184590) ((-1259 . -903) 184503) ((-1259 . -976) 184472) ((-1259 . -38) 184369) ((-1259 . -111) 184238) ((-1259 . -1054) 184121) ((-1259 . -1059) 184004) ((-1259 . -642) 183901) ((-1259 . -719) 183798) ((-1259 . -145) 183777) ((-1259 . -147) 183756) ((-1259 . -172) 183707) ((-1259 . -560) 183686) ((-1259 . -291) 183665) ((-1259 . -47) 183642) ((-1259 . -1248) 183619) ((-1259 . -35) 183585) ((-1259 . -95) 183551) ((-1259 . -285) 183517) ((-1259 . -496) 183483) ((-1259 . -1208) 183449) ((-1259 . -1205) 183415) ((-1259 . -1005) 183381) ((-1256 . -327) 183325) ((-1256 . -1041) 183291) ((-1256 . -415) 183257) ((-1256 . -38) 183149) ((-1256 . -618) 183023) ((-1256 . -650) 182928) ((-1256 . -648) 182818) ((-1256 . -728) T) ((-1256 . -1115) T) ((-1256 . -1060) T) ((-1256 . -1052) T) ((-1256 . -111) 182710) ((-1256 . -1054) 182615) ((-1256 . -1059) 182520) ((-1256 . -21) T) ((-1256 . -23) T) ((-1256 . -1104) T) ((-1256 . -615) 182502) ((-1256 . -102) T) ((-1256 . -25) T) ((-1256 . -131) T) ((-1256 . -642) 182394) ((-1256 . -719) 182286) ((-1256 . -145) 182247) ((-1256 . -147) 182208) ((-1256 . -172) T) ((-1256 . -560) T) ((-1256 . -291) T) ((-1256 . -47) 182152) ((-1255 . -1254) 182131) ((-1255 . -365) 182110) ((-1255 . -1224) 182089) ((-1255 . -924) 182068) ((-1255 . -560) 182019) ((-1255 . -172) 181950) ((-1255 . -618) 181763) ((-1255 . -719) 181604) ((-1255 . -642) 181445) ((-1255 . -38) 181286) ((-1255 . -455) 181265) ((-1255 . -308) 181244) ((-1255 . -650) 181141) ((-1255 . -648) 181023) ((-1255 . -728) T) ((-1255 . -1115) T) ((-1255 . -1060) T) ((-1255 . -1052) T) ((-1255 . -111) 180844) ((-1255 . -1054) 180679) ((-1255 . -1059) 180514) ((-1255 . -21) T) ((-1255 . -23) T) ((-1255 . -1104) T) ((-1255 . -615) 180496) ((-1255 . -102) T) ((-1255 . -25) T) ((-1255 . -131) T) ((-1255 . -291) 180447) ((-1255 . -243) 180426) ((-1255 . -1005) 180392) ((-1255 . -1205) 180358) ((-1255 . -1208) 180324) ((-1255 . -496) 180290) ((-1255 . -285) 180256) ((-1255 . -95) 180222) ((-1255 . -35) 180188) ((-1255 . -1248) 180158) ((-1255 . -47) 180128) ((-1255 . -147) 180107) ((-1255 . -145) 180086) ((-1255 . -976) 180048) ((-1255 . -903) 179954) ((-1255 . -287) 179939) ((-1255 . -233) 179891) ((-1255 . -1252) 179875) ((-1255 . -1041) 179859) ((-1250 . -1254) 179820) ((-1250 . -365) 179799) ((-1250 . -1224) 179778) ((-1250 . -924) 179757) ((-1250 . -560) 179708) ((-1250 . -172) 179639) ((-1250 . -618) 179382) ((-1250 . -719) 179223) ((-1250 . -642) 179064) ((-1250 . -38) 178905) ((-1250 . -455) 178884) ((-1250 . -308) 178863) ((-1250 . -650) 178760) ((-1250 . -648) 178642) ((-1250 . -728) T) ((-1250 . -1115) T) ((-1250 . -1060) T) ((-1250 . -1052) T) ((-1250 . -111) 178463) ((-1250 . -1054) 178298) ((-1250 . -1059) 178133) ((-1250 . -21) T) ((-1250 . -23) T) ((-1250 . -1104) T) ((-1250 . -615) 178115) ((-1250 . -102) T) ((-1250 . -25) T) ((-1250 . -131) T) ((-1250 . -291) 178066) ((-1250 . -243) 178045) ((-1250 . -1005) 178011) ((-1250 . -1205) 177977) ((-1250 . -1208) 177943) ((-1250 . -496) 177909) ((-1250 . -285) 177875) ((-1250 . -95) 177841) ((-1250 . -35) 177807) ((-1250 . -1248) 177777) ((-1250 . -47) 177747) ((-1250 . -147) 177726) ((-1250 . -145) 177705) ((-1250 . -976) 177667) ((-1250 . -903) 177573) ((-1250 . -287) 177558) ((-1250 . -233) 177510) ((-1250 . -1252) 177494) ((-1250 . -1041) 177429) ((-1238 . -1245) 177413) ((-1238 . -1154) 177391) ((-1238 . -616) NIL) ((-1238 . -310) 177378) ((-1238 . -517) 177325) ((-1238 . -327) 177302) ((-1238 . -1041) 177182) ((-1238 . -415) 177166) ((-1238 . -38) 176995) ((-1238 . -111) 176804) ((-1238 . -1054) 176627) ((-1238 . -1059) 176450) ((-1238 . -648) 176360) ((-1238 . -650) 176285) ((-1238 . -642) 176114) ((-1238 . -719) 175943) ((-1238 . -618) 175691) ((-1238 . -145) 175670) ((-1238 . -147) 175649) ((-1238 . -47) 175626) ((-1238 . -379) 175610) ((-1238 . -641) 175558) ((-1238 . -903) 175501) ((-1238 . -889) NIL) ((-1238 . -913) 175480) ((-1238 . -1224) 175459) ((-1238 . -953) 175428) ((-1238 . -924) 175407) ((-1238 . -560) 175318) ((-1238 . -291) 175229) ((-1238 . -172) 175120) ((-1238 . -455) 175051) ((-1238 . -308) 175030) ((-1238 . -287) 174957) ((-1238 . -233) T) ((-1238 . -131) T) ((-1238 . -25) T) ((-1238 . -102) T) ((-1238 . -615) 174939) ((-1238 . -1104) T) ((-1238 . -23) T) ((-1238 . -21) T) ((-1238 . -728) T) ((-1238 . -1115) T) ((-1238 . -1060) T) ((-1238 . -1052) T) ((-1238 . -231) 174923) ((-1236 . -1097) 174907) ((-1236 . -620) 174891) ((-1236 . -1104) 174869) ((-1236 . -615) 174836) ((-1236 . -102) 174814) ((-1236 . -1098) 174771) ((-1234 . -1233) 174750) ((-1234 . -1005) 174716) ((-1234 . -1205) 174682) ((-1234 . -1208) 174648) ((-1234 . -496) 174614) ((-1234 . -285) 174580) ((-1234 . -95) 174546) ((-1234 . -35) 174512) ((-1234 . -1248) 174489) ((-1234 . -47) 174466) ((-1234 . -618) 174214) ((-1234 . -719) 174028) ((-1234 . -642) 173842) ((-1234 . -650) 173712) ((-1234 . -648) 173567) ((-1234 . -1059) 173375) ((-1234 . -1054) 173183) ((-1234 . -111) 172972) ((-1234 . -38) 172786) ((-1234 . -976) 172755) ((-1234 . -287) 172675) ((-1234 . -1231) 172659) ((-1234 . -728) T) ((-1234 . -1115) T) ((-1234 . -1060) T) ((-1234 . -1052) T) ((-1234 . -21) T) ((-1234 . -23) T) ((-1234 . -1104) T) ((-1234 . -615) 172641) ((-1234 . -102) T) ((-1234 . -25) T) ((-1234 . -131) T) ((-1234 . -145) 172566) ((-1234 . -147) 172491) ((-1234 . -616) 172162) ((-1234 . -231) 172132) ((-1234 . -903) 171983) ((-1234 . -233) 171888) ((-1234 . -365) 171867) ((-1234 . -1224) 171846) ((-1234 . -924) 171825) ((-1234 . -560) 171776) ((-1234 . -172) 171707) ((-1234 . -455) 171686) ((-1234 . -308) 171665) ((-1234 . -291) 171616) ((-1234 . -243) 171595) ((-1234 . -340) 171565) ((-1234 . -517) 171425) ((-1234 . -310) 171364) ((-1234 . -379) 171334) ((-1234 . -641) 171242) ((-1234 . -403) 171212) ((-1234 . -1219) 171191) ((-1234 . -889) 171064) ((-1234 . -822) 171017) ((-1234 . -793) 170970) ((-1234 . -794) 170923) ((-1234 . -852) 170822) ((-1234 . -796) 170775) ((-1234 . -799) 170728) ((-1234 . -850) 170681) ((-1234 . -887) 170651) ((-1234 . -913) 170604) ((-1234 . -1023) 170556) ((-1234 . -1041) 170342) ((-1234 . -1154) 170294) ((-1234 . -994) 170264) ((-1229 . -1233) 170225) ((-1229 . -1005) 170191) ((-1229 . -1205) 170157) ((-1229 . -1208) 170123) ((-1229 . -496) 170089) ((-1229 . -285) 170055) ((-1229 . -95) 170021) ((-1229 . -35) 169987) ((-1229 . -1248) 169964) ((-1229 . -47) 169941) ((-1229 . -618) 169736) ((-1229 . -719) 169532) ((-1229 . -642) 169328) ((-1229 . -650) 169180) ((-1229 . -648) 169017) ((-1229 . -1059) 168807) ((-1229 . -1054) 168597) ((-1229 . -111) 168366) ((-1229 . -38) 168162) ((-1229 . -976) 168131) ((-1229 . -287) 167979) ((-1229 . -1231) 167963) ((-1229 . -728) T) ((-1229 . -1115) T) ((-1229 . -1060) T) ((-1229 . -1052) T) ((-1229 . -21) T) ((-1229 . -23) T) ((-1229 . -1104) T) ((-1229 . -615) 167945) ((-1229 . -102) T) ((-1229 . -25) T) ((-1229 . -131) T) ((-1229 . -145) 167852) ((-1229 . -147) 167759) ((-1229 . -616) NIL) ((-1229 . -231) 167711) ((-1229 . -903) 167544) ((-1229 . -233) 167431) ((-1229 . -365) 167410) ((-1229 . -1224) 167389) ((-1229 . -924) 167368) ((-1229 . -560) 167319) ((-1229 . -172) 167250) ((-1229 . -455) 167229) ((-1229 . -308) 167208) ((-1229 . -291) 167159) ((-1229 . -243) 167138) ((-1229 . -340) 167090) ((-1229 . -517) 166859) ((-1229 . -310) 166744) ((-1229 . -379) 166696) ((-1229 . -641) 166648) ((-1229 . -403) 166600) ((-1229 . -1219) 166579) ((-1229 . -889) NIL) ((-1229 . -822) NIL) ((-1229 . -793) NIL) ((-1229 . -794) NIL) ((-1229 . -852) NIL) ((-1229 . -796) NIL) ((-1229 . -799) NIL) ((-1229 . -850) NIL) ((-1229 . -887) 166531) ((-1229 . -913) NIL) ((-1229 . -1023) NIL) ((-1229 . -1041) 166497) ((-1229 . -1154) NIL) ((-1229 . -994) 166449) ((-1228 . -846) T) ((-1228 . -852) T) ((-1228 . -1104) T) ((-1228 . -615) 166431) ((-1228 . -102) T) ((-1228 . -370) T) ((-1227 . -846) T) ((-1227 . -852) T) ((-1227 . -1104) T) ((-1227 . -615) 166413) ((-1227 . -102) T) ((-1227 . -370) T) ((-1226 . -846) T) ((-1226 . -852) T) ((-1226 . -1104) T) ((-1226 . -615) 166395) ((-1226 . -102) T) ((-1226 . -370) T) ((-1225 . -846) T) ((-1225 . -852) T) ((-1225 . -1104) T) ((-1225 . -615) 166377) ((-1225 . -102) T) ((-1225 . -370) T) ((-1220 . -1086) T) ((-1220 . -493) 166358) ((-1220 . -615) 166324) ((-1220 . -618) 166305) ((-1220 . -1104) T) ((-1220 . -102) T) ((-1220 . -93) T) ((-1217 . -493) 166282) ((-1217 . -615) 166194) ((-1217 . -618) 166171) ((-1217 . -1104) 166149) ((-1217 . -102) 166127) ((-1212 . -742) 166103) ((-1212 . -35) 166069) ((-1212 . -95) 166035) ((-1212 . -285) 166001) ((-1212 . -496) 165967) ((-1212 . -1208) 165933) ((-1212 . -1205) 165899) ((-1212 . -1005) 165865) ((-1212 . -47) 165834) ((-1212 . -38) 165731) ((-1212 . -642) 165628) ((-1212 . -719) 165525) ((-1212 . -618) 165407) ((-1212 . -291) 165386) ((-1212 . -560) 165365) ((-1212 . -111) 165234) ((-1212 . -1054) 165117) ((-1212 . -1059) 165000) ((-1212 . -172) 164951) ((-1212 . -147) 164930) ((-1212 . -145) 164909) ((-1212 . -650) 164834) ((-1212 . -648) 164744) ((-1212 . -976) 164706) ((-1212 . -1052) T) ((-1212 . -1060) T) ((-1212 . -1115) T) ((-1212 . -728) T) ((-1212 . -21) T) ((-1212 . -23) T) ((-1212 . -1104) T) ((-1212 . -615) 164688) ((-1212 . -102) T) ((-1212 . -25) T) ((-1212 . -131) T) ((-1212 . -903) 164669) ((-1212 . -517) 164636) ((-1212 . -310) 164623) ((-1206 . -1013) 164607) ((-1206 . -34) T) ((-1206 . -1219) T) ((-1206 . -615) 164539) ((-1206 . -310) 164477) ((-1206 . -517) 164410) ((-1206 . -1104) 164388) ((-1206 . -102) 164366) ((-1206 . -492) 164350) ((-1201 . -367) 164324) ((-1201 . -102) T) ((-1201 . -615) 164306) ((-1201 . -1104) T) ((-1199 . -1104) T) ((-1199 . -615) 164288) ((-1199 . -102) T) ((-1199 . -618) 164270) ((-1192 . -1196) 164249) ((-1192 . -229) 164199) ((-1192 . -107) 164149) ((-1192 . -310) 163953) ((-1192 . -517) 163745) ((-1192 . -492) 163682) ((-1192 . -151) 163632) ((-1192 . -616) NIL) ((-1192 . -235) 163582) ((-1192 . -612) 163561) ((-1192 . -289) 163540) ((-1192 . -287) 163519) ((-1192 . -102) T) ((-1192 . -1104) T) ((-1192 . -615) 163501) ((-1192 . -1219) T) ((-1192 . -34) T) ((-1192 . -606) 163480) ((-1190 . -1219) T) ((-1188 . -1104) T) ((-1188 . -615) 163462) ((-1188 . -102) T) ((-1187 . -846) T) ((-1187 . -852) T) ((-1187 . -1104) T) ((-1187 . -615) 163444) ((-1187 . -102) T) ((-1187 . -370) T) ((-1186 . -846) T) ((-1186 . -852) T) ((-1186 . -1104) T) ((-1186 . -615) 163426) ((-1186 . -102) T) ((-1186 . -370) T) ((-1185 . -1265) T) ((-1185 . -1104) T) ((-1185 . -615) 163393) ((-1185 . -102) T) ((-1185 . -1041) 163329) ((-1185 . -618) 163265) ((-1184 . -615) 163247) ((-1183 . -615) 163229) ((-1182 . -327) 163206) ((-1182 . -1041) 163102) ((-1182 . -415) 163086) ((-1182 . -38) 162983) ((-1182 . -618) 162836) ((-1182 . -650) 162761) ((-1182 . -648) 162671) ((-1182 . -728) T) ((-1182 . -1115) T) ((-1182 . -1060) T) ((-1182 . -1052) T) ((-1182 . -111) 162540) ((-1182 . -1054) 162423) ((-1182 . -1059) 162306) ((-1182 . -21) T) ((-1182 . -23) T) ((-1182 . -1104) T) ((-1182 . -615) 162288) ((-1182 . -102) T) ((-1182 . -25) T) ((-1182 . -131) T) ((-1182 . -642) 162185) ((-1182 . -719) 162082) ((-1182 . -145) 162061) ((-1182 . -147) 162040) ((-1182 . -172) 161991) ((-1182 . -560) 161970) ((-1182 . -291) 161949) ((-1182 . -47) 161926) ((-1180 . -852) T) ((-1180 . -102) T) ((-1180 . -615) 161908) ((-1180 . -1104) T) ((-1180 . -616) 161830) ((-1180 . -823) T) ((-1180 . -618) 161811) ((-1180 . -889) 161778) ((-1179 . -615) 161760) ((-1178 . -1262) 161744) ((-1178 . -233) 161703) ((-1178 . -618) 161585) ((-1178 . -650) 161510) ((-1178 . -648) 161420) ((-1178 . -131) T) ((-1178 . -25) T) ((-1178 . -102) T) ((-1178 . -615) 161402) ((-1178 . -1104) T) ((-1178 . -23) T) ((-1178 . -21) T) ((-1178 . -728) T) ((-1178 . -1115) T) ((-1178 . -1060) T) ((-1178 . -1052) T) ((-1178 . -287) 161387) ((-1178 . -903) 161300) ((-1178 . -976) 161269) ((-1178 . -38) 161166) ((-1178 . -111) 161035) ((-1178 . -1054) 160918) ((-1178 . -1059) 160801) ((-1178 . -642) 160698) ((-1178 . -719) 160595) ((-1178 . -145) 160574) ((-1178 . -147) 160553) ((-1178 . -172) 160504) ((-1178 . -560) 160483) ((-1178 . -291) 160462) ((-1178 . -47) 160439) ((-1178 . -1248) 160416) ((-1178 . -35) 160382) ((-1178 . -95) 160348) ((-1178 . -285) 160314) ((-1178 . -496) 160280) ((-1178 . -1208) 160246) ((-1178 . -1205) 160212) ((-1178 . -1005) 160178) ((-1177 . -1254) 160139) ((-1177 . -365) 160118) ((-1177 . -1224) 160097) ((-1177 . -924) 160076) ((-1177 . -560) 160027) ((-1177 . -172) 159958) ((-1177 . -618) 159701) ((-1177 . -719) 159542) ((-1177 . -642) 159383) ((-1177 . -38) 159224) ((-1177 . -455) 159203) ((-1177 . -308) 159182) ((-1177 . -650) 159079) ((-1177 . -648) 158961) ((-1177 . -728) T) ((-1177 . -1115) T) ((-1177 . -1060) T) ((-1177 . -1052) T) ((-1177 . -111) 158782) ((-1177 . -1054) 158617) ((-1177 . -1059) 158452) ((-1177 . -21) T) ((-1177 . -23) T) ((-1177 . -1104) T) ((-1177 . -615) 158434) ((-1177 . -102) T) ((-1177 . -25) T) ((-1177 . -131) T) ((-1177 . -291) 158385) ((-1177 . -243) 158364) ((-1177 . -1005) 158330) ((-1177 . -1205) 158296) ((-1177 . -1208) 158262) ((-1177 . -496) 158228) ((-1177 . -285) 158194) ((-1177 . -95) 158160) ((-1177 . -35) 158126) ((-1177 . -1248) 158096) ((-1177 . -47) 158066) ((-1177 . -147) 158045) ((-1177 . -145) 158024) ((-1177 . -976) 157986) ((-1177 . -903) 157892) ((-1177 . -287) 157877) ((-1177 . -233) 157829) ((-1177 . -1252) 157813) ((-1177 . -1041) 157748) ((-1174 . -1245) 157732) ((-1174 . -1154) 157710) ((-1174 . -616) NIL) ((-1174 . -310) 157697) ((-1174 . -517) 157644) ((-1174 . -327) 157621) ((-1174 . -1041) 157501) ((-1174 . -415) 157485) ((-1174 . -38) 157314) ((-1174 . -111) 157123) ((-1174 . -1054) 156946) ((-1174 . -1059) 156769) ((-1174 . -648) 156679) ((-1174 . -650) 156604) ((-1174 . -642) 156433) ((-1174 . -719) 156262) ((-1174 . -618) 156031) ((-1174 . -145) 156010) ((-1174 . -147) 155989) ((-1174 . -47) 155966) ((-1174 . -379) 155950) ((-1174 . -641) 155898) ((-1174 . -903) 155841) ((-1174 . -889) NIL) ((-1174 . -913) 155820) ((-1174 . -1224) 155799) ((-1174 . -953) 155768) ((-1174 . -924) 155747) ((-1174 . -560) 155658) ((-1174 . -291) 155569) ((-1174 . -172) 155460) ((-1174 . -455) 155391) ((-1174 . -308) 155370) ((-1174 . -287) 155297) ((-1174 . -233) T) ((-1174 . -131) T) ((-1174 . -25) T) ((-1174 . -102) T) ((-1174 . -615) 155279) ((-1174 . -1104) T) ((-1174 . -23) T) ((-1174 . -21) T) ((-1174 . -728) T) ((-1174 . -1115) T) ((-1174 . -1060) T) ((-1174 . -1052) T) ((-1174 . -231) 155263) ((-1171 . -1233) 155224) ((-1171 . -1005) 155190) ((-1171 . -1205) 155156) ((-1171 . -1208) 155122) ((-1171 . -496) 155088) ((-1171 . -285) 155054) ((-1171 . -95) 155020) ((-1171 . -35) 154986) ((-1171 . -1248) 154963) ((-1171 . -47) 154940) ((-1171 . -618) 154735) ((-1171 . -719) 154531) ((-1171 . -642) 154327) ((-1171 . -650) 154179) ((-1171 . -648) 154016) ((-1171 . -1059) 153806) ((-1171 . -1054) 153596) ((-1171 . -111) 153365) ((-1171 . -38) 153161) ((-1171 . -976) 153130) ((-1171 . -287) 152978) ((-1171 . -1231) 152962) ((-1171 . -728) T) ((-1171 . -1115) T) ((-1171 . -1060) T) ((-1171 . -1052) T) ((-1171 . -21) T) ((-1171 . -23) T) ((-1171 . -1104) T) ((-1171 . -615) 152944) ((-1171 . -102) T) ((-1171 . -25) T) ((-1171 . -131) T) ((-1171 . -145) 152851) ((-1171 . -147) 152758) ((-1171 . -616) NIL) ((-1171 . -231) 152710) ((-1171 . -903) 152543) ((-1171 . -233) 152430) ((-1171 . -365) 152409) ((-1171 . -1224) 152388) ((-1171 . -924) 152367) ((-1171 . -560) 152318) ((-1171 . -172) 152249) ((-1171 . -455) 152228) ((-1171 . -308) 152207) ((-1171 . -291) 152158) ((-1171 . -243) 152137) ((-1171 . -340) 152089) ((-1171 . -517) 151858) ((-1171 . -310) 151743) ((-1171 . -379) 151695) ((-1171 . -641) 151647) ((-1171 . -403) 151599) ((-1171 . -1219) 151578) ((-1171 . -889) NIL) ((-1171 . -822) NIL) ((-1171 . -793) NIL) ((-1171 . -794) NIL) ((-1171 . -852) NIL) ((-1171 . -796) NIL) ((-1171 . -799) NIL) ((-1171 . -850) NIL) ((-1171 . -887) 151530) ((-1171 . -913) NIL) ((-1171 . -1023) NIL) ((-1171 . -1041) 151496) ((-1171 . -1154) NIL) ((-1171 . -994) 151448) ((-1170 . -1086) T) ((-1170 . -493) 151429) ((-1170 . -615) 151395) ((-1170 . -618) 151376) ((-1170 . -1104) T) ((-1170 . -102) T) ((-1170 . -93) T) ((-1169 . -1104) T) ((-1169 . -615) 151358) ((-1169 . -102) T) ((-1168 . -1104) T) ((-1168 . -615) 151340) ((-1168 . -102) T) ((-1163 . -1196) 151316) ((-1163 . -229) 151263) ((-1163 . -107) 151210) ((-1163 . -310) 151005) ((-1163 . -517) 150788) ((-1163 . -492) 150722) ((-1163 . -151) 150669) ((-1163 . -616) NIL) ((-1163 . -235) 150616) ((-1163 . -612) 150592) ((-1163 . -289) 150568) ((-1163 . -287) 150544) ((-1163 . -102) T) ((-1163 . -1104) T) ((-1163 . -615) 150526) ((-1163 . -1219) T) ((-1163 . -34) T) ((-1163 . -606) 150502) ((-1162 . -1161) T) ((-1162 . -19) 150484) ((-1162 . -653) 150466) ((-1162 . -289) 150441) ((-1162 . -287) 150416) ((-1162 . -606) 150391) ((-1162 . -616) NIL) ((-1162 . -492) 150373) ((-1162 . -517) NIL) ((-1162 . -310) NIL) ((-1162 . -1219) T) ((-1162 . -34) T) ((-1162 . -151) 150355) ((-1162 . -852) T) ((-1162 . -374) 150337) ((-1162 . -1147) T) ((-1162 . -102) T) ((-1162 . -615) 150319) ((-1162 . -1104) T) ((-1162 . -823) T) ((-1157 . -676) 150303) ((-1157 . -653) 150287) ((-1157 . -289) 150264) ((-1157 . -287) 150241) ((-1157 . -606) 150218) ((-1157 . -616) 150179) ((-1157 . -492) 150163) ((-1157 . -102) 150141) ((-1157 . -1104) 150119) ((-1157 . -517) 150052) ((-1157 . -310) 149990) ((-1157 . -615) 149922) ((-1157 . -1219) T) ((-1157 . -34) T) ((-1157 . -151) 149906) ((-1157 . -1258) 149890) ((-1157 . -1013) 149874) ((-1157 . -1152) 149858) ((-1157 . -618) 149835) ((-1155 . -1086) T) ((-1155 . -493) 149816) ((-1155 . -615) 149782) ((-1155 . -618) 149763) ((-1155 . -1104) T) ((-1155 . -102) T) ((-1155 . -93) T) ((-1153 . -1196) 149742) ((-1153 . -229) 149692) ((-1153 . -107) 149642) ((-1153 . -310) 149446) ((-1153 . -517) 149238) ((-1153 . -492) 149175) ((-1153 . -151) 149125) ((-1153 . -616) NIL) ((-1153 . -235) 149075) ((-1153 . -612) 149054) ((-1153 . -289) 149033) ((-1153 . -287) 149012) ((-1153 . -102) T) ((-1153 . -1104) T) ((-1153 . -615) 148994) ((-1153 . -1219) T) ((-1153 . -34) T) ((-1153 . -606) 148973) ((-1150 . -1124) 148957) ((-1150 . -492) 148941) ((-1150 . -102) 148919) ((-1150 . -1104) 148897) ((-1150 . -517) 148830) ((-1150 . -310) 148768) ((-1150 . -615) 148700) ((-1150 . -1219) T) ((-1150 . -34) T) ((-1150 . -107) 148684) ((-1149 . -1112) 148653) ((-1149 . -1214) 148622) ((-1149 . -615) 148584) ((-1149 . -151) 148568) ((-1149 . -34) T) ((-1149 . -1219) T) ((-1149 . -310) 148506) ((-1149 . -517) 148439) ((-1149 . -1104) T) ((-1149 . -102) T) ((-1149 . -492) 148423) ((-1149 . -616) 148384) ((-1149 . -979) 148353) ((-1149 . -1074) 148322) ((-1145 . -1126) 148267) ((-1145 . -492) 148251) ((-1145 . -517) 148184) ((-1145 . -310) 148122) ((-1145 . -1219) T) ((-1145 . -34) T) ((-1145 . -1056) 148062) ((-1145 . -1041) 147958) ((-1145 . -618) 147876) ((-1145 . -415) 147860) ((-1145 . -641) 147808) ((-1145 . -379) 147792) ((-1145 . -233) 147771) ((-1145 . -903) 147730) ((-1145 . -231) 147714) ((-1145 . -719) 147646) ((-1145 . -642) 147578) ((-1145 . -650) 147552) ((-1145 . -648) 147511) ((-1145 . -131) T) ((-1145 . -25) T) ((-1145 . -102) T) ((-1145 . -615) 147473) ((-1145 . -1104) T) ((-1145 . -23) T) ((-1145 . -21) T) ((-1145 . -1059) 147457) ((-1145 . -1054) 147441) ((-1145 . -111) 147420) ((-1145 . -1052) T) ((-1145 . -1060) T) ((-1145 . -1115) T) ((-1145 . -728) T) ((-1145 . -38) 147380) ((-1145 . -616) 147341) ((-1144 . -1013) 147312) ((-1144 . -34) T) ((-1144 . -1219) T) ((-1144 . -615) 147294) ((-1144 . -310) 147220) ((-1144 . -517) 147139) ((-1144 . -1104) T) ((-1144 . -102) T) ((-1144 . -492) 147110) ((-1143 . -1104) T) ((-1143 . -615) 147092) ((-1143 . -102) T) ((-1138 . -1140) T) ((-1138 . -1265) T) ((-1138 . -93) T) ((-1138 . -102) T) ((-1138 . -615) 147058) ((-1138 . -1104) T) ((-1138 . -618) 147039) ((-1138 . -493) 147020) ((-1138 . -1086) T) ((-1136 . -1137) 147004) ((-1136 . -102) T) ((-1136 . -615) 146986) ((-1136 . -1104) T) ((-1129 . -742) 146965) ((-1129 . -35) 146931) ((-1129 . -95) 146897) ((-1129 . -285) 146863) ((-1129 . -496) 146829) ((-1129 . -1208) 146795) ((-1129 . -1205) 146761) ((-1129 . -1005) 146727) ((-1129 . -47) 146699) ((-1129 . -38) 146596) ((-1129 . -642) 146493) ((-1129 . -719) 146390) ((-1129 . -618) 146272) ((-1129 . -291) 146251) ((-1129 . -560) 146230) ((-1129 . -111) 146099) ((-1129 . -1054) 145982) ((-1129 . -1059) 145865) ((-1129 . -172) 145816) ((-1129 . -147) 145795) ((-1129 . -145) 145774) ((-1129 . -650) 145699) ((-1129 . -648) 145609) ((-1129 . -976) 145576) ((-1129 . -1052) T) ((-1129 . -1060) T) ((-1129 . -1115) T) ((-1129 . -728) T) ((-1129 . -21) T) ((-1129 . -23) T) ((-1129 . -1104) T) ((-1129 . -615) 145558) ((-1129 . -102) T) ((-1129 . -25) T) ((-1129 . -131) T) ((-1129 . -903) 145542) ((-1129 . -517) 145512) ((-1129 . -310) 145499) ((-1128 . -953) 145466) ((-1128 . -618) 145258) ((-1128 . -1041) 145141) ((-1128 . -1224) 145120) ((-1128 . -913) 145099) ((-1128 . -889) 144958) ((-1128 . -903) 144942) ((-1128 . -517) 144894) ((-1128 . -455) 144845) ((-1128 . -641) 144793) ((-1128 . -379) 144777) ((-1128 . -47) 144749) ((-1128 . -38) 144598) ((-1128 . -642) 144447) ((-1128 . -719) 144296) ((-1128 . -291) 144227) ((-1128 . -560) 144158) ((-1128 . -111) 143987) ((-1128 . -1054) 143830) ((-1128 . -1059) 143673) ((-1128 . -172) 143584) ((-1128 . -147) 143563) ((-1128 . -145) 143542) ((-1128 . -650) 143467) ((-1128 . -648) 143377) ((-1128 . -131) T) ((-1128 . -25) T) ((-1128 . -102) T) ((-1128 . -615) 143359) ((-1128 . -1104) T) ((-1128 . -23) T) ((-1128 . -21) T) ((-1128 . -1052) T) ((-1128 . -1060) T) ((-1128 . -1115) T) ((-1128 . -728) T) ((-1128 . -415) 143343) ((-1128 . -327) 143315) ((-1128 . -310) 143302) ((-1128 . -616) 143050) ((-1123 . -548) T) ((-1123 . -1224) T) ((-1123 . -1154) T) ((-1123 . -1041) 143032) ((-1123 . -616) 142947) ((-1123 . -1023) T) ((-1123 . -889) 142929) ((-1123 . -850) T) ((-1123 . -799) T) ((-1123 . -796) T) ((-1123 . -852) T) ((-1123 . -794) T) ((-1123 . -793) T) ((-1123 . -822) T) ((-1123 . -641) 142911) ((-1123 . -924) T) ((-1123 . -560) T) ((-1123 . -291) T) ((-1123 . -172) T) ((-1123 . -618) 142883) ((-1123 . -719) 142870) ((-1123 . -642) 142857) ((-1123 . -1059) 142844) ((-1123 . -1054) 142831) ((-1123 . -111) 142816) ((-1123 . -38) 142803) ((-1123 . -455) T) ((-1123 . -308) T) ((-1123 . -233) T) ((-1123 . -143) T) ((-1123 . -1052) T) ((-1123 . -1060) T) ((-1123 . -1115) T) ((-1123 . -728) T) ((-1123 . -21) T) ((-1123 . -648) 142775) ((-1123 . -23) T) ((-1123 . -1104) T) ((-1123 . -615) 142757) ((-1123 . -102) T) ((-1123 . -25) T) ((-1123 . -131) T) ((-1123 . -650) 142744) ((-1123 . -147) T) ((-1123 . -846) T) ((-1123 . -370) T) ((-1123 . -664) T) ((-1123 . -823) T) ((-1119 . -1086) T) ((-1119 . -493) 142725) ((-1119 . -615) 142691) ((-1119 . -618) 142672) ((-1119 . -1104) T) ((-1119 . -102) T) ((-1119 . -93) T) ((-1118 . -1104) T) ((-1118 . -615) 142654) ((-1118 . -102) T) ((-1116 . -238) 142633) ((-1116 . -1277) 142603) ((-1116 . -793) 142582) ((-1116 . -850) 142561) ((-1116 . -799) 142512) ((-1116 . -796) 142463) ((-1116 . -852) 142414) ((-1116 . -794) 142365) ((-1116 . -795) 142344) ((-1116 . -289) 142321) ((-1116 . -287) 142298) ((-1116 . -492) 142282) ((-1116 . -517) 142215) ((-1116 . -310) 142153) ((-1116 . -1219) T) ((-1116 . -34) T) ((-1116 . -606) 142130) ((-1116 . -1041) 141957) ((-1116 . -618) 141687) ((-1116 . -415) 141656) ((-1116 . -641) 141562) ((-1116 . -379) 141531) ((-1116 . -370) 141510) ((-1116 . -233) 141462) ((-1116 . -903) 141394) ((-1116 . -231) 141363) ((-1116 . -111) 141253) ((-1116 . -1054) 141150) ((-1116 . -1059) 141047) ((-1116 . -172) 141026) ((-1116 . -615) 140757) ((-1116 . -719) 140699) ((-1116 . -642) 140641) ((-1116 . -650) 140489) ((-1116 . -648) 140239) ((-1116 . -131) 140109) ((-1116 . -23) 139979) ((-1116 . -21) 139889) ((-1116 . -1052) 139819) ((-1116 . -1060) 139749) ((-1116 . -1115) 139659) ((-1116 . -728) 139569) ((-1116 . -38) 139539) ((-1116 . -1104) 139329) ((-1116 . -102) 139119) ((-1116 . -25) 138970) ((-1109 . -399) T) ((-1109 . -1219) T) ((-1109 . -615) 138952) ((-1108 . -1107) 138916) ((-1108 . -102) T) ((-1108 . -615) 138898) ((-1108 . -1104) T) ((-1108 . -620) 138813) ((-1106 . -1107) 138765) ((-1106 . -102) T) ((-1106 . -615) 138747) ((-1106 . -1104) T) ((-1106 . -620) 138650) ((-1105 . -370) T) ((-1105 . -102) T) ((-1105 . -615) 138632) ((-1105 . -1104) T) ((-1100 . -429) 138616) ((-1100 . -1102) 138600) ((-1100 . -370) 138579) ((-1100 . -235) 138563) ((-1100 . -616) 138524) ((-1100 . -151) 138508) ((-1100 . -492) 138492) ((-1100 . -102) T) ((-1100 . -1104) T) ((-1100 . -517) 138425) ((-1100 . -310) 138363) ((-1100 . -615) 138345) ((-1100 . -1219) T) ((-1100 . -34) T) ((-1100 . -107) 138329) ((-1100 . -229) 138313) ((-1099 . -1086) T) ((-1099 . -493) 138294) ((-1099 . -615) 138260) ((-1099 . -618) 138241) ((-1099 . -1104) T) ((-1099 . -102) T) ((-1099 . -93) T) ((-1095 . -1219) T) ((-1095 . -1104) 138211) ((-1095 . -615) 138170) ((-1095 . -102) 138140) ((-1094 . -1086) T) ((-1094 . -493) 138121) ((-1094 . -615) 138087) ((-1094 . -618) 138068) ((-1094 . -1104) T) ((-1094 . -102) T) ((-1094 . -93) T) ((-1092 . -1097) 138052) ((-1092 . -620) 138036) ((-1092 . -1104) 138014) ((-1092 . -615) 137981) ((-1092 . -102) 137959) ((-1092 . -1098) 137917) ((-1091 . -267) 137901) ((-1091 . -618) 137885) ((-1091 . -1041) 137869) ((-1091 . -1104) T) ((-1091 . -615) 137851) ((-1091 . -102) T) ((-1091 . -852) T) ((-1090 . -254) 137788) ((-1090 . -618) 137524) ((-1090 . -1041) 137351) ((-1090 . -616) NIL) ((-1090 . -327) 137312) ((-1090 . -415) 137296) ((-1090 . -38) 137145) ((-1090 . -111) 136974) ((-1090 . -1054) 136817) ((-1090 . -1059) 136660) ((-1090 . -648) 136570) ((-1090 . -650) 136495) ((-1090 . -642) 136344) ((-1090 . -719) 136193) ((-1090 . -145) 136172) ((-1090 . -147) 136151) ((-1090 . -172) 136062) ((-1090 . -560) 135993) ((-1090 . -291) 135924) ((-1090 . -47) 135885) ((-1090 . -379) 135869) ((-1090 . -641) 135817) ((-1090 . -455) 135768) ((-1090 . -517) 135635) ((-1090 . -903) 135570) ((-1090 . -889) NIL) ((-1090 . -913) 135549) ((-1090 . -1224) 135528) ((-1090 . -953) 135473) ((-1090 . -310) 135460) ((-1090 . -233) 135439) ((-1090 . -131) T) ((-1090 . -25) T) ((-1090 . -102) T) ((-1090 . -615) 135421) ((-1090 . -1104) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -728) T) ((-1090 . -1115) T) ((-1090 . -1060) T) ((-1090 . -1052) T) ((-1090 . -231) 135405) ((-1088 . -615) 135387) ((-1085 . -852) T) ((-1085 . -102) T) ((-1085 . -615) 135369) ((-1085 . -1104) T) ((-1085 . -616) 135350) ((-1082 . -726) 135329) ((-1082 . -1041) 135225) ((-1082 . -415) 135209) ((-1082 . -641) 135157) ((-1082 . -379) 135141) ((-1082 . -372) 135120) ((-1082 . -147) 135099) ((-1082 . -618) 134917) ((-1082 . -719) 134785) ((-1082 . -642) 134653) ((-1082 . -650) 134563) ((-1082 . -648) 134458) ((-1082 . -1059) 134368) ((-1082 . -1054) 134278) ((-1082 . -111) 134174) ((-1082 . -38) 134042) ((-1082 . -413) 134021) ((-1082 . -405) 134000) ((-1082 . -145) 133951) ((-1082 . -1154) 133930) ((-1082 . -352) 133909) ((-1082 . -370) 133860) ((-1082 . -243) 133811) ((-1082 . -291) 133762) ((-1082 . -308) 133713) ((-1082 . -455) 133664) ((-1082 . -560) 133615) ((-1082 . -924) 133566) ((-1082 . -1224) 133517) ((-1082 . -365) 133468) ((-1082 . -233) 133393) ((-1082 . -903) 133326) ((-1082 . -231) 133296) ((-1082 . -616) 133280) ((-1082 . -21) T) ((-1082 . -23) T) ((-1082 . -1104) T) ((-1082 . -615) 133262) ((-1082 . -102) T) ((-1082 . -25) T) ((-1082 . -131) T) ((-1082 . -1052) T) ((-1082 . -1060) T) ((-1082 . -1115) T) ((-1082 . -728) T) ((-1082 . -172) T) ((-1080 . -1104) T) ((-1080 . -615) 133244) ((-1080 . -102) T) ((-1080 . -287) 133223) ((-1079 . -1104) T) ((-1079 . -615) 133205) ((-1079 . -102) T) ((-1078 . -1104) T) ((-1078 . -615) 133187) ((-1078 . -102) T) ((-1078 . -287) 133166) ((-1078 . -1041) 133143) ((-1078 . -618) 133120) ((-1077 . -1219) T) ((-1076 . -1086) T) ((-1076 . -493) 133101) ((-1076 . -615) 133067) ((-1076 . -618) 133048) ((-1076 . -1104) T) ((-1076 . -102) T) ((-1076 . -93) T) ((-1069 . -1086) T) ((-1069 . -493) 133029) ((-1069 . -615) 132995) ((-1069 . -618) 132976) ((-1069 . -1104) T) ((-1069 . -102) T) ((-1069 . -93) T) ((-1066 . -1196) 132951) ((-1066 . -229) 132897) ((-1066 . -107) 132843) ((-1066 . -310) 132694) ((-1066 . -517) 132538) ((-1066 . -492) 132469) ((-1066 . -151) 132415) ((-1066 . -616) NIL) ((-1066 . -235) 132361) ((-1066 . -612) 132336) ((-1066 . -289) 132311) ((-1066 . -287) 132286) ((-1066 . -102) T) ((-1066 . -1104) T) ((-1066 . -615) 132268) ((-1066 . -1219) T) ((-1066 . -34) T) ((-1066 . -606) 132243) ((-1065 . -548) T) ((-1065 . -1224) T) ((-1065 . -1154) T) ((-1065 . -1041) 132225) ((-1065 . -616) 132140) ((-1065 . -1023) T) ((-1065 . -889) 132122) ((-1065 . -850) T) ((-1065 . -799) T) ((-1065 . -796) T) ((-1065 . -852) T) ((-1065 . -794) T) ((-1065 . -793) T) ((-1065 . -822) T) ((-1065 . -641) 132104) ((-1065 . -924) T) ((-1065 . -560) T) ((-1065 . -291) T) ((-1065 . -172) T) ((-1065 . -618) 132076) ((-1065 . -719) 132063) ((-1065 . -642) 132050) ((-1065 . -1059) 132037) ((-1065 . -1054) 132024) ((-1065 . -111) 132009) ((-1065 . -38) 131996) ((-1065 . -455) T) ((-1065 . -308) T) ((-1065 . -233) T) ((-1065 . -143) T) ((-1065 . -1052) T) ((-1065 . -1060) T) ((-1065 . -1115) T) ((-1065 . -728) T) ((-1065 . -21) T) ((-1065 . -648) 131968) ((-1065 . -23) T) ((-1065 . -1104) T) ((-1065 . -615) 131950) ((-1065 . -102) T) ((-1065 . -25) T) ((-1065 . -131) T) ((-1065 . -650) 131937) ((-1065 . -147) T) ((-1065 . -620) 131918) ((-1064 . -1071) 131897) ((-1064 . -102) T) ((-1064 . -615) 131879) ((-1064 . -1104) T) ((-1061 . -1219) T) ((-1061 . -1104) 131857) ((-1061 . -615) 131824) ((-1061 . -102) 131802) ((-1057 . -1056) 131742) ((-1057 . -642) 131684) ((-1057 . -719) 131626) ((-1057 . -34) T) ((-1057 . -1219) T) ((-1057 . -310) 131564) ((-1057 . -517) 131497) ((-1057 . -492) 131481) ((-1057 . -650) 131465) ((-1057 . -648) 131434) ((-1057 . -131) T) ((-1057 . -25) T) ((-1057 . -102) T) ((-1057 . -615) 131396) ((-1057 . -1104) T) ((-1057 . -23) T) ((-1057 . -21) T) ((-1057 . -1059) 131380) ((-1057 . -1054) 131364) ((-1057 . -111) 131343) ((-1057 . -1277) 131313) ((-1057 . -616) 131274) ((-1049 . -1074) 131203) ((-1049 . -979) 131132) ((-1049 . -616) 131074) ((-1049 . -492) 131039) ((-1049 . -102) T) ((-1049 . -1104) T) ((-1049 . -517) 130940) ((-1049 . -310) 130848) ((-1049 . -615) 130791) ((-1049 . -1219) T) ((-1049 . -34) T) ((-1049 . -151) 130756) ((-1049 . -1214) 130685) ((-1039 . -1086) T) ((-1039 . -493) 130666) ((-1039 . -615) 130632) ((-1039 . -618) 130613) ((-1039 . -1104) T) ((-1039 . -102) T) ((-1039 . -93) T) ((-1038 . -1196) 130588) ((-1038 . -229) 130534) ((-1038 . -107) 130480) ((-1038 . -310) 130331) ((-1038 . -517) 130175) ((-1038 . -492) 130106) ((-1038 . -151) 130052) ((-1038 . -616) NIL) ((-1038 . -235) 129998) ((-1038 . -612) 129973) ((-1038 . -289) 129948) ((-1038 . -287) 129923) ((-1038 . -102) T) ((-1038 . -1104) T) ((-1038 . -615) 129905) ((-1038 . -1219) T) ((-1038 . -34) T) ((-1038 . -606) 129880) ((-1037 . -172) T) ((-1037 . -618) 129849) ((-1037 . -728) T) ((-1037 . -1115) T) ((-1037 . -1060) T) ((-1037 . -1052) T) ((-1037 . -650) 129823) ((-1037 . -648) 129782) ((-1037 . -131) T) ((-1037 . -25) T) ((-1037 . -102) T) ((-1037 . -615) 129764) ((-1037 . -1104) T) ((-1037 . -23) T) ((-1037 . -21) T) ((-1037 . -1059) 129738) ((-1037 . -1054) 129712) ((-1037 . -111) 129679) ((-1037 . -38) 129663) ((-1037 . -642) 129647) ((-1037 . -719) 129631) ((-1030 . -1074) 129600) ((-1030 . -979) 129569) ((-1030 . -616) 129530) ((-1030 . -492) 129514) ((-1030 . -102) T) ((-1030 . -1104) T) ((-1030 . -517) 129447) ((-1030 . -310) 129385) ((-1030 . -615) 129347) ((-1030 . -1219) T) ((-1030 . -34) T) ((-1030 . -151) 129331) ((-1030 . -1214) 129300) ((-1029 . -1219) T) ((-1029 . -1104) 129278) ((-1029 . -615) 129245) ((-1029 . -102) 129223) ((-1027 . -1015) T) ((-1027 . -1005) T) ((-1027 . -793) T) ((-1027 . -794) T) ((-1027 . -852) T) ((-1027 . -796) T) ((-1027 . -799) T) ((-1027 . -850) T) ((-1027 . -1041) 129103) ((-1027 . -415) 129065) ((-1027 . -243) T) ((-1027 . -291) T) ((-1027 . -308) T) ((-1027 . -455) T) ((-1027 . -38) 129002) ((-1027 . -642) 128939) ((-1027 . -719) 128876) ((-1027 . -618) 128813) ((-1027 . -560) T) ((-1027 . -924) T) ((-1027 . -1224) T) ((-1027 . -365) T) ((-1027 . -111) 128729) ((-1027 . -1054) 128666) ((-1027 . -1059) 128603) ((-1027 . -172) T) ((-1027 . -147) T) ((-1027 . -650) 128540) ((-1027 . -648) 128477) ((-1027 . -131) T) ((-1027 . -25) T) ((-1027 . -102) T) ((-1027 . -615) 128459) ((-1027 . -1104) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -1052) T) ((-1027 . -1060) T) ((-1027 . -1115) T) ((-1027 . -728) T) ((-1022 . -1086) T) ((-1022 . -493) 128440) ((-1022 . -615) 128406) ((-1022 . -618) 128387) ((-1022 . -1104) T) ((-1022 . -102) T) ((-1022 . -93) T) ((-1007 . -994) 128369) ((-1007 . -1154) T) ((-1007 . -618) 128319) ((-1007 . -1041) 128279) ((-1007 . -616) 128209) ((-1007 . -1023) T) ((-1007 . -913) NIL) ((-1007 . -887) 128191) ((-1007 . -850) T) ((-1007 . -799) T) ((-1007 . -796) T) ((-1007 . -852) T) ((-1007 . -794) T) ((-1007 . -793) T) ((-1007 . -822) T) ((-1007 . -889) 128173) ((-1007 . -1219) T) ((-1007 . -403) 128155) ((-1007 . -641) 128137) ((-1007 . -379) 128119) ((-1007 . -287) NIL) ((-1007 . -310) NIL) ((-1007 . -517) NIL) ((-1007 . -340) 128101) ((-1007 . -243) T) ((-1007 . -111) 128035) ((-1007 . -1054) 127985) ((-1007 . -1059) 127935) ((-1007 . -291) T) ((-1007 . -719) 127885) ((-1007 . -642) 127835) ((-1007 . -650) 127785) ((-1007 . -648) 127735) ((-1007 . -38) 127685) ((-1007 . -308) T) ((-1007 . -455) T) ((-1007 . -172) T) ((-1007 . -560) T) ((-1007 . -924) T) ((-1007 . -1224) T) ((-1007 . -365) T) ((-1007 . -233) T) ((-1007 . -903) NIL) ((-1007 . -231) 127667) ((-1007 . -147) T) ((-1007 . -145) NIL) ((-1007 . -131) T) ((-1007 . -25) T) ((-1007 . -102) T) ((-1007 . -615) 127627) ((-1007 . -1104) T) ((-1007 . -23) T) ((-1007 . -21) T) ((-1007 . -1052) T) ((-1007 . -1060) T) ((-1007 . -1115) T) ((-1007 . -728) T) ((-1006 . -344) 127601) ((-1006 . -172) T) ((-1006 . -618) 127531) ((-1006 . -728) T) ((-1006 . -1115) T) ((-1006 . -1060) T) ((-1006 . -1052) T) ((-1006 . -650) 127476) ((-1006 . -648) 127406) ((-1006 . -131) T) ((-1006 . -25) T) ((-1006 . -102) T) ((-1006 . -615) 127388) ((-1006 . -1104) T) ((-1006 . -23) T) ((-1006 . -21) T) ((-1006 . -1059) 127333) ((-1006 . -1054) 127278) ((-1006 . -111) 127207) ((-1006 . -616) 127191) ((-1006 . -231) 127168) ((-1006 . -903) 127120) ((-1006 . -233) 127092) ((-1006 . -365) T) ((-1006 . -1224) T) ((-1006 . -924) T) ((-1006 . -560) T) ((-1006 . -719) 127037) ((-1006 . -642) 126982) ((-1006 . -38) 126927) ((-1006 . -455) T) ((-1006 . -308) T) ((-1006 . -291) T) ((-1006 . -243) T) ((-1006 . -370) NIL) ((-1006 . -352) NIL) ((-1006 . -1154) NIL) ((-1006 . -145) 126899) ((-1006 . -405) NIL) ((-1006 . -413) 126871) ((-1006 . -147) 126843) ((-1006 . -372) 126815) ((-1006 . -379) 126792) ((-1006 . -641) 126731) ((-1006 . -415) 126708) ((-1006 . -1041) 126596) ((-1006 . -726) 126568) ((-1003 . -998) 126552) ((-1003 . -492) 126536) ((-1003 . -102) 126514) ((-1003 . -1104) 126492) ((-1003 . -517) 126425) ((-1003 . -310) 126363) ((-1003 . -615) 126295) ((-1003 . -1219) T) ((-1003 . -34) T) ((-1003 . -107) 126279) ((-999 . -1001) 126263) ((-999 . -852) 126242) ((-999 . -1041) 126138) ((-999 . -415) 126122) ((-999 . -641) 126070) ((-999 . -379) 126054) ((-999 . -287) 126012) ((-999 . -310) 125977) ((-999 . -517) 125889) ((-999 . -340) 125873) ((-999 . -38) 125821) ((-999 . -111) 125703) ((-999 . -1054) 125599) ((-999 . -1059) 125495) ((-999 . -648) 125418) ((-999 . -650) 125356) ((-999 . -642) 125304) ((-999 . -719) 125252) ((-999 . -618) 125142) ((-999 . -291) 125093) ((-999 . -243) 125072) ((-999 . -233) 125051) ((-999 . -903) 125010) ((-999 . -231) 124994) ((-999 . -616) 124955) ((-999 . -147) 124934) ((-999 . -145) 124913) ((-999 . -131) T) ((-999 . -25) T) ((-999 . -102) T) ((-999 . -615) 124895) ((-999 . -1104) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -1052) T) ((-999 . -1060) T) ((-999 . -1115) T) ((-999 . -728) T) ((-997 . -1086) T) ((-997 . -493) 124876) ((-997 . -615) 124842) ((-997 . -618) 124823) ((-997 . -1104) T) ((-997 . -102) T) ((-997 . -93) T) ((-996 . -21) T) ((-996 . -648) 124805) ((-996 . -23) T) ((-996 . -1104) T) ((-996 . -615) 124787) ((-996 . -102) T) ((-996 . -25) T) ((-996 . -131) T) ((-992 . -615) 124769) ((-989 . -1104) T) ((-989 . -615) 124751) ((-989 . -102) T) ((-974 . -799) T) ((-974 . -796) T) ((-974 . -852) T) ((-974 . -794) T) ((-974 . -23) T) ((-974 . -1104) T) ((-974 . -615) 124711) ((-974 . -102) T) ((-974 . -25) T) ((-974 . -131) T) ((-974 . -616) 124686) ((-973 . -1086) T) ((-973 . -493) 124667) ((-973 . -615) 124633) ((-973 . -618) 124614) ((-973 . -1104) T) ((-973 . -102) T) ((-973 . -93) T) ((-969 . -970) T) ((-969 . -102) T) ((-969 . -615) 124596) ((-969 . -1104) T) ((-969 . -618) 124580) ((-968 . -615) 124562) ((-967 . -1104) T) ((-967 . -615) 124544) ((-967 . -102) T) ((-967 . -370) 124497) ((-967 . -728) 124396) ((-967 . -1115) 124295) ((-967 . -23) 124106) ((-967 . -25) 123917) ((-967 . -131) 123772) ((-967 . -476) 123725) ((-967 . -21) 123680) ((-967 . -648) 123624) ((-967 . -795) 123577) ((-967 . -794) 123530) ((-967 . -852) 123429) ((-967 . -796) 123382) ((-967 . -799) 123335) ((-961 . -19) 123319) ((-961 . -653) 123303) ((-961 . -289) 123280) ((-961 . -287) 123257) ((-961 . -606) 123234) ((-961 . -616) 123195) ((-961 . -492) 123179) ((-961 . -102) 123129) ((-961 . -1104) 123079) ((-961 . -517) 123012) ((-961 . -310) 122950) ((-961 . -615) 122862) ((-961 . -1219) T) ((-961 . -34) T) ((-961 . -151) 122846) ((-961 . -852) 122825) ((-961 . -374) 122809) ((-959 . -327) 122788) ((-959 . -1041) 122684) ((-959 . -415) 122668) ((-959 . -38) 122565) ((-959 . -618) 122418) ((-959 . -650) 122343) ((-959 . -648) 122253) ((-959 . -728) T) ((-959 . -1115) T) ((-959 . -1060) T) ((-959 . -1052) T) ((-959 . -111) 122122) ((-959 . -1054) 122005) ((-959 . -1059) 121888) ((-959 . -21) T) ((-959 . -23) T) ((-959 . -1104) T) ((-959 . -615) 121870) ((-959 . -102) T) ((-959 . -25) T) ((-959 . -131) T) ((-959 . -642) 121767) ((-959 . -719) 121664) ((-959 . -145) 121643) ((-959 . -147) 121622) ((-959 . -172) 121573) ((-959 . -560) 121552) ((-959 . -291) 121531) ((-959 . -47) 121510) ((-957 . -1104) T) ((-957 . -615) 121476) ((-957 . -102) T) ((-949 . -953) 121437) ((-949 . -618) 121226) ((-949 . -1041) 121106) ((-949 . -1224) 121085) ((-949 . -913) 121064) ((-949 . -889) 120989) ((-949 . -903) 120970) ((-949 . -517) 120917) ((-949 . -455) 120868) ((-949 . -641) 120816) ((-949 . -379) 120800) ((-949 . -47) 120769) ((-949 . -38) 120618) ((-949 . -642) 120467) ((-949 . -719) 120316) ((-949 . -291) 120247) ((-949 . -560) 120178) ((-949 . -111) 120007) ((-949 . -1054) 119850) ((-949 . -1059) 119693) ((-949 . -172) 119604) ((-949 . -147) 119583) ((-949 . -145) 119562) ((-949 . -650) 119487) ((-949 . -648) 119397) ((-949 . -131) T) ((-949 . -25) T) ((-949 . -102) T) ((-949 . -615) 119379) ((-949 . -1104) T) ((-949 . -23) T) ((-949 . -21) T) ((-949 . -1052) T) ((-949 . -1060) T) ((-949 . -1115) T) ((-949 . -728) T) ((-949 . -415) 119363) ((-949 . -327) 119332) ((-949 . -310) 119319) ((-949 . -616) 119180) ((-946 . -983) 119164) ((-946 . -19) 119148) ((-946 . -653) 119132) ((-946 . -289) 119109) ((-946 . -287) 119086) ((-946 . -606) 119063) ((-946 . -616) 119024) ((-946 . -492) 119008) ((-946 . -102) 118958) ((-946 . -1104) 118908) ((-946 . -517) 118841) ((-946 . -310) 118779) ((-946 . -615) 118691) ((-946 . -1219) T) ((-946 . -34) T) ((-946 . -151) 118675) ((-946 . -852) 118654) ((-946 . -374) 118638) ((-946 . -1268) 118622) ((-946 . -620) 118599) ((-930 . -977) T) ((-930 . -615) 118581) ((-928 . -958) T) ((-928 . -615) 118563) ((-922 . -796) T) ((-922 . -852) T) ((-922 . -1104) T) ((-922 . -615) 118545) ((-922 . -102) T) ((-922 . -25) T) ((-922 . -728) T) ((-922 . -1115) T) ((-917 . -365) T) ((-917 . -1224) T) ((-917 . -924) T) ((-917 . -560) T) ((-917 . -172) T) ((-917 . -618) 118482) ((-917 . -719) 118434) ((-917 . -642) 118386) ((-917 . -38) 118338) ((-917 . -455) T) ((-917 . -308) T) ((-917 . -650) 118290) ((-917 . -648) 118227) ((-917 . -728) T) ((-917 . -1115) T) ((-917 . -1060) T) ((-917 . -1052) T) ((-917 . -111) 118165) ((-917 . -1054) 118117) ((-917 . -1059) 118069) ((-917 . -21) T) ((-917 . -23) T) ((-917 . -1104) T) ((-917 . -615) 118051) ((-917 . -102) T) ((-917 . -25) T) ((-917 . -131) T) ((-917 . -291) T) ((-917 . -243) T) ((-909 . -352) T) ((-909 . -1154) T) ((-909 . -370) T) ((-909 . -145) T) ((-909 . -365) T) ((-909 . -1224) T) ((-909 . -924) T) ((-909 . -560) T) ((-909 . -172) T) ((-909 . -618) 118001) ((-909 . -719) 117966) ((-909 . -642) 117931) ((-909 . -38) 117896) ((-909 . -455) T) ((-909 . -308) T) ((-909 . -111) 117852) ((-909 . -1054) 117817) ((-909 . -1059) 117782) ((-909 . -648) 117732) ((-909 . -650) 117697) ((-909 . -291) T) ((-909 . -243) T) ((-909 . -405) T) ((-909 . -1052) T) ((-909 . -1060) T) ((-909 . -1115) T) ((-909 . -728) T) ((-909 . -21) T) ((-909 . -23) T) ((-909 . -1104) T) ((-909 . -615) 117679) ((-909 . -102) T) ((-909 . -25) T) ((-909 . -131) T) ((-909 . -233) T) ((-909 . -330) 117666) ((-909 . -147) 117648) ((-909 . -1041) 117635) ((-909 . -1277) 117622) ((-909 . -1288) 117609) ((-909 . -616) 117591) ((-908 . -1104) T) ((-908 . -615) 117573) ((-908 . -102) T) ((-905 . -907) 117557) ((-905 . -852) 117508) ((-905 . -728) T) ((-905 . -1104) T) ((-905 . -615) 117490) ((-905 . -102) T) ((-905 . -1115) T) ((-905 . -476) T) ((-904 . -119) 117474) ((-904 . -492) 117458) ((-904 . -102) 117436) ((-904 . -1104) 117414) ((-904 . -517) 117347) ((-904 . -310) 117285) ((-904 . -615) 117196) ((-904 . -1219) T) ((-904 . -34) T) ((-904 . -1013) 117180) ((-901 . -1104) T) ((-901 . -615) 117162) ((-901 . -102) T) ((-896 . -852) T) ((-896 . -102) T) ((-896 . -615) 117144) ((-896 . -1104) T) ((-896 . -1041) 117121) ((-896 . -618) 117098) ((-893 . -1104) T) ((-893 . -615) 117080) ((-893 . -102) T) ((-893 . -1041) 117048) ((-893 . -618) 117016) ((-891 . -1104) T) ((-891 . -615) 116998) ((-891 . -102) T) ((-888 . -1104) T) ((-888 . -615) 116980) ((-888 . -102) T) ((-878 . -1086) T) ((-878 . -493) 116961) ((-878 . -615) 116927) ((-878 . -618) 116908) ((-878 . -1104) T) ((-878 . -102) T) ((-878 . -93) T) ((-878 . -1265) T) ((-876 . -1104) T) ((-876 . -615) 116890) ((-876 . -102) T) ((-875 . -1219) T) ((-875 . -615) 116762) ((-875 . -1104) 116713) ((-875 . -102) 116664) ((-874 . -994) 116648) ((-874 . -1154) 116626) ((-874 . -1041) 116492) ((-874 . -618) 116390) ((-874 . -616) 116197) ((-874 . -1023) 116175) ((-874 . -913) 116154) ((-874 . -887) 116138) ((-874 . -850) 116117) ((-874 . -799) 116096) ((-874 . -796) 116075) ((-874 . -852) 116026) ((-874 . -794) 116005) ((-874 . -793) 115984) ((-874 . -822) 115963) ((-874 . -889) 115888) ((-874 . -1219) T) ((-874 . -403) 115872) ((-874 . -641) 115820) ((-874 . -379) 115804) ((-874 . -287) 115762) ((-874 . -310) 115727) ((-874 . -517) 115639) ((-874 . -340) 115623) ((-874 . -243) T) ((-874 . -111) 115561) ((-874 . -1054) 115513) ((-874 . -1059) 115465) ((-874 . -291) T) ((-874 . -719) 115417) ((-874 . -642) 115369) ((-874 . -650) 115321) ((-874 . -648) 115258) ((-874 . -38) 115210) ((-874 . -308) T) ((-874 . -455) T) ((-874 . -172) T) ((-874 . -560) T) ((-874 . -924) T) ((-874 . -1224) T) ((-874 . -365) T) ((-874 . -233) 115189) ((-874 . -903) 115148) ((-874 . -231) 115132) ((-874 . -147) 115111) ((-874 . -145) 115090) ((-874 . -131) T) ((-874 . -25) T) ((-874 . -102) T) ((-874 . -615) 115072) ((-874 . -1104) T) ((-874 . -23) T) ((-874 . -21) T) ((-874 . -1052) T) ((-874 . -1060) T) ((-874 . -1115) T) ((-874 . -728) T) ((-873 . -994) 115049) ((-873 . -1154) NIL) ((-873 . -1041) 115026) ((-873 . -618) 114956) ((-873 . -616) NIL) ((-873 . -1023) NIL) ((-873 . -913) NIL) ((-873 . -887) 114933) ((-873 . -850) NIL) ((-873 . -799) NIL) ((-873 . -796) NIL) ((-873 . -852) NIL) ((-873 . -794) NIL) ((-873 . -793) NIL) ((-873 . -822) NIL) ((-873 . -889) NIL) ((-873 . -1219) T) ((-873 . -403) 114910) ((-873 . -641) 114887) ((-873 . -379) 114864) ((-873 . -287) 114815) ((-873 . -310) 114772) ((-873 . -517) 114680) ((-873 . -340) 114657) ((-873 . -243) T) ((-873 . -111) 114586) ((-873 . -1054) 114531) ((-873 . -1059) 114476) ((-873 . -291) T) ((-873 . -719) 114421) ((-873 . -642) 114366) ((-873 . -650) 114311) ((-873 . -648) 114241) ((-873 . -38) 114186) ((-873 . -308) T) ((-873 . -455) T) ((-873 . -172) T) ((-873 . -560) T) ((-873 . -924) T) ((-873 . -1224) T) ((-873 . -365) T) ((-873 . -233) NIL) ((-873 . -903) NIL) ((-873 . -231) 114163) ((-873 . -147) T) ((-873 . -145) NIL) ((-873 . -131) T) ((-873 . -25) T) ((-873 . -102) T) ((-873 . -615) 114145) ((-873 . -1104) T) ((-873 . -23) T) ((-873 . -21) T) ((-873 . -1052) T) ((-873 . -1060) T) ((-873 . -1115) T) ((-873 . -728) T) ((-871 . -872) 114129) ((-871 . -924) T) ((-871 . -560) T) ((-871 . -291) T) ((-871 . -172) T) ((-871 . -618) 114101) ((-871 . -719) 114088) ((-871 . -642) 114075) ((-871 . -1059) 114062) ((-871 . -1054) 114049) ((-871 . -111) 114034) ((-871 . -38) 114021) ((-871 . -455) T) ((-871 . -308) T) ((-871 . -1052) T) ((-871 . -1060) T) ((-871 . -1115) T) ((-871 . -728) T) ((-871 . -21) T) ((-871 . -648) 113993) ((-871 . -23) T) ((-871 . -1104) T) ((-871 . -615) 113975) ((-871 . -102) T) ((-871 . -25) T) ((-871 . -131) T) ((-871 . -650) 113962) ((-871 . -147) T) ((-868 . -1052) T) ((-868 . -1060) T) ((-868 . -1115) T) ((-868 . -728) T) ((-868 . -21) T) ((-868 . -648) 113907) ((-868 . -23) T) ((-868 . -1104) T) ((-868 . -615) 113869) ((-868 . -102) T) ((-868 . -25) T) ((-868 . -131) T) ((-868 . -650) 113829) ((-868 . -618) 113764) ((-868 . -493) 113741) ((-868 . -38) 113711) ((-868 . -111) 113676) ((-868 . -1054) 113646) ((-868 . -1059) 113616) ((-868 . -642) 113586) ((-868 . -719) 113556) ((-867 . -1104) T) ((-867 . -615) 113538) ((-867 . -102) T) ((-866 . -846) T) ((-866 . -852) T) ((-866 . -1104) T) ((-866 . -615) 113520) ((-866 . -102) T) ((-866 . -370) T) ((-866 . -616) 113442) ((-865 . -1104) T) ((-865 . -615) 113424) ((-865 . -102) T) ((-864 . -863) T) ((-864 . -173) T) ((-864 . -615) 113406) ((-860 . -852) T) ((-860 . -102) T) ((-860 . -615) 113388) ((-860 . -1104) T) ((-857 . -854) 113372) ((-857 . -1041) 113268) ((-857 . -618) 113165) ((-857 . -415) 113149) ((-857 . -719) 113119) ((-857 . -642) 113089) ((-857 . -650) 113063) ((-857 . -648) 113022) ((-857 . -131) T) ((-857 . -25) T) ((-857 . -102) T) ((-857 . -615) 113004) ((-857 . -1104) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -1059) 112988) ((-857 . -1054) 112972) ((-857 . -111) 112951) ((-857 . -1052) T) ((-857 . -1060) T) ((-857 . -1115) T) ((-857 . -728) T) ((-857 . -38) 112921) ((-856 . -854) 112905) ((-856 . -1041) 112801) ((-856 . -618) 112719) ((-856 . -415) 112703) ((-856 . -719) 112673) ((-856 . -642) 112643) ((-856 . -650) 112617) ((-856 . -648) 112576) ((-856 . -131) T) ((-856 . -25) T) ((-856 . -102) T) ((-856 . -615) 112558) ((-856 . -1104) T) ((-856 . -23) T) ((-856 . -21) T) ((-856 . -1059) 112542) ((-856 . -1054) 112526) ((-856 . -111) 112505) ((-856 . -1052) T) ((-856 . -1060) T) ((-856 . -1115) T) ((-856 . -728) T) ((-856 . -38) 112475) ((-844 . -1104) T) ((-844 . -615) 112457) ((-844 . -102) T) ((-844 . -415) 112441) ((-844 . -618) 112309) ((-844 . -1041) 112205) ((-844 . -21) 112157) ((-844 . -648) 112074) ((-844 . -23) 112026) ((-844 . -25) 111978) ((-844 . -131) 111930) ((-844 . -850) 111909) ((-844 . -650) 111882) ((-844 . -1060) 111861) ((-844 . -1052) 111840) ((-844 . -799) 111819) ((-844 . -796) 111798) ((-844 . -852) 111777) ((-844 . -794) 111756) ((-844 . -793) 111735) ((-844 . -1115) 111714) ((-844 . -728) 111693) ((-843 . -1104) T) ((-843 . -615) 111675) ((-843 . -102) T) ((-840 . -838) 111657) ((-840 . -102) T) ((-840 . -615) 111639) ((-840 . -1104) T) ((-836 . -1052) T) ((-836 . -1060) T) ((-836 . -1115) T) ((-836 . -728) T) ((-836 . -21) T) ((-836 . -648) 111584) ((-836 . -23) T) ((-836 . -1104) T) ((-836 . -615) 111566) ((-836 . -102) T) ((-836 . -25) T) ((-836 . -131) T) ((-836 . -650) 111526) ((-836 . -618) 111480) ((-836 . -1041) 111449) ((-836 . -287) 111428) ((-836 . -147) 111407) ((-836 . -145) 111386) ((-836 . -38) 111356) ((-836 . -111) 111321) ((-836 . -1054) 111291) ((-836 . -1059) 111261) ((-836 . -642) 111231) ((-836 . -719) 111201) ((-834 . -1104) T) ((-834 . -615) 111183) ((-834 . -102) T) ((-834 . -415) 111167) ((-834 . -618) 111035) ((-834 . -1041) 110931) ((-834 . -21) 110883) ((-834 . -648) 110800) ((-834 . -23) 110752) ((-834 . -25) 110704) ((-834 . -131) 110656) ((-834 . -850) 110635) ((-834 . -650) 110608) ((-834 . -1060) 110587) ((-834 . -1052) 110566) ((-834 . -799) 110545) ((-834 . -796) 110524) ((-834 . -852) 110503) ((-834 . -794) 110482) ((-834 . -793) 110461) ((-834 . -1115) 110440) ((-834 . -728) 110419) ((-830 . -710) 110403) ((-830 . -618) 110358) ((-830 . -719) 110328) ((-830 . -642) 110298) ((-830 . -650) 110272) ((-830 . -648) 110231) ((-830 . -131) T) ((-830 . -25) T) ((-830 . -102) T) ((-830 . -615) 110213) ((-830 . -1104) T) ((-830 . -23) T) ((-830 . -21) T) ((-830 . -1059) 110197) ((-830 . -1054) 110181) ((-830 . -111) 110160) ((-830 . -1052) T) ((-830 . -1060) T) ((-830 . -1115) T) ((-830 . -728) T) ((-830 . -38) 110130) ((-830 . -233) 110109) ((-828 . -1104) T) ((-828 . -615) 110091) ((-828 . -102) T) ((-827 . -1104) T) ((-827 . -615) 110073) ((-827 . -102) T) ((-826 . -1104) T) ((-826 . -615) 110055) ((-826 . -102) T) ((-821 . -388) 110039) ((-821 . -618) 110023) ((-821 . -1041) 110007) ((-821 . -852) T) ((-821 . -1115) T) ((-821 . -102) T) ((-821 . -615) 109989) ((-821 . -1104) T) ((-821 . -728) T) ((-821 . -848) T) ((-821 . -859) T) ((-820 . -267) 109973) ((-820 . -618) 109957) ((-820 . -1041) 109941) ((-820 . -1104) T) ((-820 . -615) 109923) ((-820 . -102) T) ((-820 . -852) T) ((-819 . -111) 109865) ((-819 . -1054) 109816) ((-819 . -1059) 109767) ((-819 . -21) T) ((-819 . -648) 109703) ((-819 . -23) T) ((-819 . -1104) T) ((-819 . -615) 109672) ((-819 . -102) T) ((-819 . -25) T) ((-819 . -131) T) ((-819 . -650) 109623) ((-819 . -233) T) ((-819 . -618) 109537) ((-819 . -728) T) ((-819 . -1115) T) ((-819 . -1060) T) ((-819 . -1052) T) ((-819 . -493) 109521) ((-819 . -365) 109500) ((-819 . -1224) 109479) ((-819 . -924) 109458) ((-819 . -560) 109437) ((-819 . -172) 109416) ((-819 . -719) 109358) ((-819 . -642) 109300) ((-819 . -38) 109242) ((-819 . -455) 109221) ((-819 . -308) 109200) ((-819 . -291) 109179) ((-819 . -243) 109158) ((-818 . -254) 109097) ((-818 . -618) 108834) ((-818 . -1041) 108662) ((-818 . -616) NIL) ((-818 . -327) 108624) ((-818 . -415) 108608) ((-818 . -38) 108457) ((-818 . -111) 108286) ((-818 . -1054) 108129) ((-818 . -1059) 107972) ((-818 . -648) 107882) ((-818 . -650) 107807) ((-818 . -642) 107656) ((-818 . -719) 107505) ((-818 . -145) 107484) ((-818 . -147) 107463) ((-818 . -172) 107374) ((-818 . -560) 107305) ((-818 . -291) 107236) ((-818 . -47) 107198) ((-818 . -379) 107182) ((-818 . -641) 107130) ((-818 . -455) 107081) ((-818 . -517) 106949) ((-818 . -903) 106885) ((-818 . -889) NIL) ((-818 . -913) 106864) ((-818 . -1224) 106843) ((-818 . -953) 106790) ((-818 . -310) 106777) ((-818 . -233) 106756) ((-818 . -131) T) ((-818 . -25) T) ((-818 . -102) T) ((-818 . -615) 106738) ((-818 . -1104) T) ((-818 . -23) T) ((-818 . -21) T) ((-818 . -728) T) ((-818 . -1115) T) ((-818 . -1060) T) ((-818 . -1052) T) ((-818 . -231) 106722) ((-817 . -238) 106701) ((-817 . -1277) 106671) ((-817 . -793) 106650) ((-817 . -850) 106629) ((-817 . -799) 106580) ((-817 . -796) 106531) ((-817 . -852) 106482) ((-817 . -794) 106433) ((-817 . -795) 106412) ((-817 . -289) 106389) ((-817 . -287) 106366) ((-817 . -492) 106350) ((-817 . -517) 106283) ((-817 . -310) 106221) ((-817 . -1219) T) ((-817 . -34) T) ((-817 . -606) 106198) ((-817 . -1041) 106025) ((-817 . -618) 105755) ((-817 . -415) 105724) ((-817 . -641) 105630) ((-817 . -379) 105599) ((-817 . -370) 105578) ((-817 . -233) 105530) ((-817 . -903) 105462) ((-817 . -231) 105431) ((-817 . -111) 105321) ((-817 . -1054) 105218) ((-817 . -1059) 105115) ((-817 . -172) 105094) ((-817 . -615) 104825) ((-817 . -719) 104767) ((-817 . -642) 104709) ((-817 . -650) 104557) ((-817 . -648) 104307) ((-817 . -131) 104177) ((-817 . -23) 104047) ((-817 . -21) 103957) ((-817 . -1052) 103887) ((-817 . -1060) 103817) ((-817 . -1115) 103727) ((-817 . -728) 103637) ((-817 . -38) 103607) ((-817 . -1104) 103397) ((-817 . -102) 103187) ((-817 . -25) 103038) ((-810 . -1104) T) ((-810 . -615) 103020) ((-810 . -102) T) ((-800 . -798) 103004) ((-800 . -852) 102983) ((-800 . -1041) 102766) ((-800 . -618) 102614) ((-800 . -415) 102578) ((-800 . -287) 102536) ((-800 . -310) 102501) ((-800 . -517) 102413) ((-800 . -340) 102397) ((-800 . -370) 102376) ((-800 . -616) 102337) ((-800 . -147) 102316) ((-800 . -145) 102295) ((-800 . -719) 102279) ((-800 . -642) 102263) ((-800 . -650) 102237) ((-800 . -648) 102196) ((-800 . -131) T) ((-800 . -25) T) ((-800 . -102) T) ((-800 . -615) 102178) ((-800 . -1104) T) ((-800 . -23) T) ((-800 . -21) T) ((-800 . -1059) 102162) ((-800 . -1054) 102146) ((-800 . -111) 102125) ((-800 . -1052) T) ((-800 . -1060) T) ((-800 . -1115) T) ((-800 . -728) T) ((-800 . -38) 102109) ((-783 . -1245) 102093) ((-783 . -1154) 102071) ((-783 . -616) NIL) ((-783 . -310) 102058) ((-783 . -517) 102005) ((-783 . -327) 101982) ((-783 . -1041) 101841) ((-783 . -415) 101825) ((-783 . -38) 101654) ((-783 . -111) 101463) ((-783 . -1054) 101286) ((-783 . -1059) 101109) ((-783 . -648) 101019) ((-783 . -650) 100944) ((-783 . -642) 100773) ((-783 . -719) 100602) ((-783 . -618) 100350) ((-783 . -145) 100329) ((-783 . -147) 100308) ((-783 . -47) 100285) ((-783 . -379) 100269) ((-783 . -641) 100217) ((-783 . -903) 100160) ((-783 . -889) NIL) ((-783 . -913) 100139) ((-783 . -1224) 100118) ((-783 . -953) 100087) ((-783 . -924) 100066) ((-783 . -560) 99977) ((-783 . -291) 99888) ((-783 . -172) 99779) ((-783 . -455) 99710) ((-783 . -308) 99689) ((-783 . -287) 99616) ((-783 . -233) T) ((-783 . -131) T) ((-783 . -25) T) ((-783 . -102) T) ((-783 . -615) 99577) ((-783 . -1104) T) ((-783 . -23) T) ((-783 . -21) T) ((-783 . -728) T) ((-783 . -1115) T) ((-783 . -1060) T) ((-783 . -1052) T) ((-783 . -231) 99561) ((-782 . -1068) 99528) ((-782 . -616) 99162) ((-782 . -310) 99149) ((-782 . -517) 99101) ((-782 . -327) 99073) ((-782 . -1041) 98930) ((-782 . -415) 98914) ((-782 . -38) 98763) ((-782 . -618) 98529) ((-782 . -650) 98454) ((-782 . -648) 98364) ((-782 . -728) T) ((-782 . -1115) T) ((-782 . -1060) T) ((-782 . -1052) T) ((-782 . -111) 98193) ((-782 . -1054) 98036) ((-782 . -1059) 97879) ((-782 . -21) T) ((-782 . -23) T) ((-782 . -1104) T) ((-782 . -615) 97793) ((-782 . -102) T) ((-782 . -25) T) ((-782 . -131) T) ((-782 . -642) 97642) ((-782 . -719) 97491) ((-782 . -145) 97470) ((-782 . -147) 97449) ((-782 . -172) 97360) ((-782 . -560) 97291) ((-782 . -291) 97222) ((-782 . -47) 97194) ((-782 . -379) 97178) ((-782 . -641) 97126) ((-782 . -455) 97077) ((-782 . -903) 97061) ((-782 . -889) 96920) ((-782 . -913) 96899) ((-782 . -1224) 96878) ((-782 . -953) 96845) ((-775 . -1104) T) ((-775 . -615) 96827) ((-775 . -102) T) ((-773 . -795) T) ((-773 . -131) T) ((-773 . -25) T) ((-773 . -102) T) ((-773 . -615) 96809) ((-773 . -1104) T) ((-773 . -23) T) ((-773 . -794) T) ((-773 . -852) T) ((-773 . -796) T) ((-773 . -799) T) ((-773 . -728) T) ((-773 . -1115) T) ((-771 . -1104) T) ((-771 . -615) 96791) ((-771 . -102) T) ((-738 . -739) 96775) ((-738 . -1102) 96759) ((-738 . -235) 96743) ((-738 . -616) 96704) ((-738 . -151) 96688) ((-738 . -492) 96672) ((-738 . -102) T) ((-738 . -1104) T) ((-738 . -517) 96605) ((-738 . -310) 96543) ((-738 . -615) 96525) ((-738 . -1219) T) ((-738 . -34) T) ((-738 . -107) 96509) ((-738 . -697) 96493) ((-737 . -1052) T) ((-737 . -1060) T) ((-737 . -1115) T) ((-737 . -728) T) ((-737 . -21) T) ((-737 . -648) 96438) ((-737 . -23) T) ((-737 . -1104) T) ((-737 . -615) 96420) ((-737 . -102) T) ((-737 . -25) T) ((-737 . -131) T) ((-737 . -650) 96380) ((-737 . -618) 96336) ((-737 . -1041) 96307) ((-737 . -147) 96286) ((-737 . -145) 96265) ((-737 . -38) 96235) ((-737 . -111) 96200) ((-737 . -1054) 96170) ((-737 . -1059) 96140) ((-737 . -642) 96110) ((-737 . -719) 96080) ((-737 . -370) 96033) ((-733 . -953) 95986) ((-733 . -618) 95771) ((-733 . -1041) 95647) ((-733 . -1224) 95626) ((-733 . -913) 95605) ((-733 . -889) NIL) ((-733 . -903) 95582) ((-733 . -517) 95525) ((-733 . -455) 95476) ((-733 . -641) 95424) ((-733 . -379) 95408) ((-733 . -47) 95373) ((-733 . -38) 95222) ((-733 . -642) 95071) ((-733 . -719) 94920) ((-733 . -291) 94851) ((-733 . -560) 94782) ((-733 . -111) 94611) ((-733 . -1054) 94454) ((-733 . -1059) 94297) ((-733 . -172) 94208) ((-733 . -147) 94187) ((-733 . -145) 94166) ((-733 . -650) 94091) ((-733 . -648) 94001) ((-733 . -131) T) ((-733 . -25) T) ((-733 . -102) T) ((-733 . -615) 93983) ((-733 . -1104) T) ((-733 . -23) T) ((-733 . -21) T) ((-733 . -1052) T) ((-733 . -1060) T) ((-733 . -1115) T) ((-733 . -728) T) ((-733 . -415) 93967) ((-733 . -327) 93932) ((-733 . -310) 93919) ((-733 . -616) 93780) ((-720 . -476) T) ((-720 . -1115) T) ((-720 . -102) T) ((-720 . -615) 93762) ((-720 . -1104) T) ((-720 . -728) T) ((-717 . -1052) T) ((-717 . -1060) T) ((-717 . -1115) T) ((-717 . -728) T) ((-717 . -21) T) ((-717 . -648) 93734) ((-717 . -23) T) ((-717 . -1104) T) ((-717 . -615) 93716) ((-717 . -102) T) ((-717 . -25) T) ((-717 . -131) T) ((-717 . -650) 93703) ((-717 . -618) 93685) ((-716 . -1052) T) ((-716 . -1060) T) ((-716 . -1115) T) ((-716 . -728) T) ((-716 . -21) T) ((-716 . -648) 93630) ((-716 . -23) T) ((-716 . -1104) T) ((-716 . -615) 93612) ((-716 . -102) T) ((-716 . -25) T) ((-716 . -131) T) ((-716 . -650) 93572) ((-716 . -618) 93526) ((-716 . -1041) 93495) ((-716 . -287) 93474) ((-716 . -147) 93453) ((-716 . -145) 93432) ((-716 . -38) 93402) ((-716 . -111) 93367) ((-716 . -1054) 93337) ((-716 . -1059) 93307) ((-716 . -642) 93277) ((-716 . -719) 93247) ((-715 . -852) T) ((-715 . -102) T) ((-715 . -615) 93182) ((-715 . -1104) T) ((-715 . -493) 93132) ((-715 . -618) 93082) ((-714 . -1245) 93066) ((-714 . -1154) 93044) ((-714 . -616) NIL) ((-714 . -310) 93031) ((-714 . -517) 92978) ((-714 . -327) 92955) ((-714 . -1041) 92835) ((-714 . -415) 92819) ((-714 . -38) 92648) ((-714 . -111) 92457) ((-714 . -1054) 92280) ((-714 . -1059) 92103) ((-714 . -648) 92013) ((-714 . -650) 91938) ((-714 . -642) 91767) ((-714 . -719) 91596) ((-714 . -618) 91352) ((-714 . -145) 91331) ((-714 . -147) 91310) ((-714 . -47) 91287) ((-714 . -379) 91271) ((-714 . -641) 91219) ((-714 . -903) 91162) ((-714 . -889) NIL) ((-714 . -913) 91141) ((-714 . -1224) 91120) ((-714 . -953) 91089) ((-714 . -924) 91068) ((-714 . -560) 90979) ((-714 . -291) 90890) ((-714 . -172) 90781) ((-714 . -455) 90712) ((-714 . -308) 90691) ((-714 . -287) 90618) ((-714 . -233) T) ((-714 . -131) T) ((-714 . -25) T) ((-714 . -102) T) ((-714 . -615) 90600) ((-714 . -1104) T) ((-714 . -23) T) ((-714 . -21) T) ((-714 . -728) T) ((-714 . -1115) T) ((-714 . -1060) T) ((-714 . -1052) T) ((-714 . -231) 90584) ((-714 . -370) 90563) ((-713 . -365) T) ((-713 . -1224) T) ((-713 . -924) T) ((-713 . -560) T) ((-713 . -172) T) ((-713 . -618) 90513) ((-713 . -719) 90478) ((-713 . -642) 90443) ((-713 . -38) 90408) ((-713 . -455) T) ((-713 . -308) T) ((-713 . -650) 90373) ((-713 . -648) 90323) ((-713 . -728) T) ((-713 . -1115) T) ((-713 . -1060) T) ((-713 . -1052) T) ((-713 . -111) 90279) ((-713 . -1054) 90244) ((-713 . -1059) 90209) ((-713 . -21) T) ((-713 . -23) T) ((-713 . -1104) T) ((-713 . -615) 90191) ((-713 . -102) T) ((-713 . -25) T) ((-713 . -131) T) ((-713 . -291) T) ((-713 . -243) T) ((-712 . -1104) T) ((-712 . -615) 90173) ((-712 . -102) T) ((-703 . -390) T) ((-703 . -1041) 90155) ((-703 . -852) T) ((-703 . -38) 90142) ((-703 . -618) 90114) ((-703 . -728) T) ((-703 . -1115) T) ((-703 . -1060) T) ((-703 . -1052) T) ((-703 . -111) 90099) ((-703 . -1054) 90086) ((-703 . -1059) 90073) ((-703 . -21) T) ((-703 . -648) 90045) ((-703 . -23) T) ((-703 . -1104) T) ((-703 . -615) 90027) ((-703 . -102) T) ((-703 . -25) T) ((-703 . -131) T) ((-703 . -650) 90014) ((-703 . -642) 90001) ((-703 . -719) 89988) ((-703 . -172) T) ((-703 . -291) T) ((-703 . -560) T) ((-703 . -548) T) ((-703 . -1224) T) ((-703 . -1154) T) ((-703 . -616) 89903) ((-703 . -1023) T) ((-703 . -889) 89885) ((-703 . -850) T) ((-703 . -799) T) ((-703 . -796) T) ((-703 . -794) T) ((-703 . -793) T) ((-703 . -822) T) ((-703 . -641) 89867) ((-703 . -924) T) ((-703 . -455) T) ((-703 . -308) T) ((-703 . -233) T) ((-703 . -143) T) ((-703 . -147) T) ((-701 . -407) T) ((-701 . -147) T) ((-701 . -618) 89802) ((-701 . -650) 89767) ((-701 . -648) 89717) ((-701 . -131) T) ((-701 . -25) T) ((-701 . -102) T) ((-701 . -615) 89699) ((-701 . -1104) T) ((-701 . -23) T) ((-701 . -21) T) ((-701 . -728) T) ((-701 . -1115) T) ((-701 . -1060) T) ((-701 . -1052) T) ((-701 . -616) 89644) ((-701 . -365) T) ((-701 . -1224) T) ((-701 . -924) T) ((-701 . -560) T) ((-701 . -172) T) ((-701 . -719) 89609) ((-701 . -642) 89574) ((-701 . -38) 89539) ((-701 . -455) T) ((-701 . -308) T) ((-701 . -111) 89495) ((-701 . -1054) 89460) ((-701 . -1059) 89425) ((-701 . -291) T) ((-701 . -243) T) ((-701 . -850) T) ((-701 . -799) T) ((-701 . -796) T) ((-701 . -852) T) ((-701 . -794) T) ((-701 . -793) T) ((-701 . -889) 89407) ((-701 . -1005) T) ((-701 . -1023) T) ((-701 . -1041) 89352) ((-701 . -1063) T) ((-701 . -390) T) ((-696 . -390) T) ((-696 . -1041) 89297) ((-696 . -852) T) ((-696 . -38) 89247) ((-696 . -618) 89182) ((-696 . -728) T) ((-696 . -1115) T) ((-696 . -1060) T) ((-696 . -1052) T) ((-696 . -111) 89116) ((-696 . -1054) 89066) ((-696 . -1059) 89016) ((-696 . -21) T) ((-696 . -648) 88951) ((-696 . -23) T) ((-696 . -1104) T) ((-696 . -615) 88933) ((-696 . -102) T) ((-696 . -25) T) ((-696 . -131) T) ((-696 . -650) 88883) ((-696 . -642) 88833) ((-696 . -719) 88783) ((-696 . -172) T) ((-696 . -291) T) ((-696 . -560) T) ((-696 . -166) 88765) ((-696 . -35) NIL) ((-696 . -95) NIL) ((-696 . -285) NIL) ((-696 . -496) NIL) ((-696 . -1208) NIL) ((-696 . -1205) NIL) ((-696 . -1005) NIL) ((-696 . -913) NIL) ((-696 . -616) 88673) ((-696 . -887) 88655) ((-696 . -370) NIL) ((-696 . -352) NIL) ((-696 . -1154) NIL) ((-696 . -405) NIL) ((-696 . -413) 88622) ((-696 . -372) 88589) ((-696 . -726) 88556) ((-696 . -415) 88538) ((-696 . -889) 88520) ((-696 . -1219) T) ((-696 . -403) 88502) ((-696 . -641) 88484) ((-696 . -379) 88466) ((-696 . -287) NIL) ((-696 . -310) NIL) ((-696 . -517) NIL) ((-696 . -340) 88448) ((-696 . -243) T) ((-696 . -1224) T) ((-696 . -365) T) ((-696 . -924) T) ((-696 . -455) T) ((-696 . -308) T) ((-696 . -233) NIL) ((-696 . -903) NIL) ((-696 . -231) 88430) ((-696 . -147) T) ((-696 . -145) NIL) ((-693 . -1265) T) ((-693 . -1041) 88414) ((-693 . -618) 88398) ((-693 . -615) 88380) ((-691 . -688) 88338) ((-691 . -492) 88322) ((-691 . -102) 88300) ((-691 . -1104) 88278) ((-691 . -517) 88211) ((-691 . -310) 88149) ((-691 . -615) 88081) ((-691 . -1219) T) ((-691 . -34) T) ((-691 . -57) 88039) ((-691 . -616) 88000) ((-683 . -1086) T) ((-683 . -493) 87981) ((-683 . -615) 87931) ((-683 . -618) 87912) ((-683 . -1104) T) ((-683 . -102) T) ((-683 . -93) T) ((-679 . -852) T) ((-679 . -102) T) ((-679 . -615) 87894) ((-679 . -1104) T) ((-679 . -1041) 87878) ((-679 . -618) 87862) ((-678 . -1086) T) ((-678 . -493) 87843) ((-678 . -615) 87809) ((-678 . -618) 87790) ((-678 . -1104) T) ((-678 . -102) T) ((-678 . -93) T) ((-677 . -492) 87774) ((-677 . -102) 87752) ((-677 . -1104) 87730) ((-677 . -517) 87663) ((-677 . -310) 87601) ((-677 . -615) 87533) ((-677 . -1219) T) ((-677 . -34) T) ((-674 . -852) T) ((-674 . -102) T) ((-674 . -615) 87515) ((-674 . -1104) T) ((-674 . -1041) 87499) ((-674 . -618) 87483) ((-673 . -1086) T) ((-673 . -493) 87464) ((-673 . -615) 87430) ((-673 . -618) 87411) ((-673 . -1104) T) ((-673 . -102) T) ((-673 . -93) T) ((-672 . -1126) 87356) ((-672 . -492) 87340) ((-672 . -517) 87273) ((-672 . -310) 87211) ((-672 . -1219) T) ((-672 . -34) T) ((-672 . -1056) 87151) ((-672 . -1041) 87047) ((-672 . -618) 86965) ((-672 . -415) 86949) ((-672 . -641) 86897) ((-672 . -379) 86881) ((-672 . -233) 86860) ((-672 . -903) 86819) ((-672 . -231) 86803) ((-672 . -719) 86787) ((-672 . -642) 86771) ((-672 . -650) 86745) ((-672 . -648) 86704) ((-672 . -131) T) ((-672 . -25) T) ((-672 . -102) T) ((-672 . -615) 86666) ((-672 . -1104) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -1059) 86650) ((-672 . -1054) 86634) ((-672 . -111) 86613) ((-672 . -1052) T) ((-672 . -1060) T) ((-672 . -1115) T) ((-672 . -728) T) ((-672 . -38) 86573) ((-672 . -421) 86557) ((-672 . -746) 86541) ((-672 . -722) T) ((-672 . -763) T) ((-672 . -369) 86525) ((-666 . -376) 86504) ((-666 . -719) 86488) ((-666 . -642) 86472) ((-666 . -650) 86456) ((-666 . -648) 86425) ((-666 . -131) T) ((-666 . -25) T) ((-666 . -102) T) ((-666 . -615) 86407) ((-666 . -1104) T) ((-666 . -23) T) ((-666 . -21) T) ((-666 . -1059) 86391) ((-666 . -1054) 86375) ((-666 . -111) 86354) ((-666 . -637) 86338) ((-666 . -386) 86310) ((-666 . -618) 86287) ((-666 . -1041) 86264) ((-658 . -660) 86248) ((-658 . -38) 86218) ((-658 . -618) 86136) ((-658 . -650) 86110) ((-658 . -648) 86069) ((-658 . -728) T) ((-658 . -1115) T) ((-658 . -1060) T) ((-658 . -1052) T) ((-658 . -111) 86048) ((-658 . -1054) 86032) ((-658 . -1059) 86016) ((-658 . -21) T) ((-658 . -23) T) ((-658 . -1104) T) ((-658 . -615) 85998) ((-658 . -102) T) ((-658 . -25) T) ((-658 . -131) T) ((-658 . -642) 85968) ((-658 . -719) 85938) ((-658 . -415) 85922) ((-658 . -1041) 85818) ((-658 . -854) 85802) ((-658 . -287) 85763) ((-657 . -660) 85747) ((-657 . -38) 85717) ((-657 . -618) 85635) ((-657 . -650) 85609) ((-657 . -648) 85568) ((-657 . -728) T) ((-657 . -1115) T) ((-657 . -1060) T) ((-657 . -1052) T) ((-657 . -111) 85547) ((-657 . -1054) 85531) ((-657 . -1059) 85515) ((-657 . -21) T) ((-657 . -23) T) ((-657 . -1104) T) ((-657 . -615) 85497) ((-657 . -102) T) ((-657 . -25) T) ((-657 . -131) T) ((-657 . -642) 85467) ((-657 . -719) 85437) ((-657 . -415) 85421) ((-657 . -1041) 85317) ((-657 . -854) 85301) ((-657 . -287) 85280) ((-656 . -660) 85264) ((-656 . -38) 85234) ((-656 . -618) 85152) ((-656 . -650) 85126) ((-656 . -648) 85085) ((-656 . -728) T) ((-656 . -1115) T) ((-656 . -1060) T) ((-656 . -1052) T) ((-656 . -111) 85064) ((-656 . -1054) 85048) ((-656 . -1059) 85032) ((-656 . -21) T) ((-656 . -23) T) ((-656 . -1104) T) ((-656 . -615) 85014) ((-656 . -102) T) ((-656 . -25) T) ((-656 . -131) T) ((-656 . -642) 84984) ((-656 . -719) 84954) ((-656 . -415) 84938) ((-656 . -1041) 84834) ((-656 . -854) 84818) ((-656 . -287) 84797) ((-654 . -719) 84781) ((-654 . -642) 84765) ((-654 . -650) 84749) ((-654 . -648) 84718) ((-654 . -131) T) ((-654 . -25) T) ((-654 . -102) T) ((-654 . -615) 84700) ((-654 . -1104) T) ((-654 . -23) T) ((-654 . -21) T) ((-654 . -1059) 84684) ((-654 . -1054) 84668) ((-654 . -111) 84647) ((-654 . -793) 84626) ((-654 . -794) 84605) ((-654 . -852) 84584) ((-654 . -796) 84563) ((-654 . -799) 84542) ((-651 . -1104) T) ((-651 . -615) 84524) ((-651 . -102) T) ((-651 . -1041) 84508) ((-651 . -618) 84492) ((-649 . -697) 84476) ((-649 . -107) 84460) ((-649 . -34) T) ((-649 . -1219) T) ((-649 . -615) 84392) ((-649 . -310) 84330) ((-649 . -517) 84263) ((-649 . -1104) 84241) ((-649 . -102) 84219) ((-649 . -492) 84203) ((-649 . -151) 84187) ((-649 . -616) 84148) ((-649 . -235) 84132) ((-647 . -1086) T) ((-647 . -493) 84113) ((-647 . -615) 84066) ((-647 . -618) 84047) ((-647 . -1104) T) ((-647 . -102) T) ((-647 . -93) T) ((-643 . -668) 84031) ((-643 . -1258) 84015) ((-643 . -1013) 83999) ((-643 . -1152) 83983) ((-643 . -852) 83962) ((-643 . -374) 83946) ((-643 . -653) 83930) ((-643 . -289) 83907) ((-643 . -287) 83884) ((-643 . -606) 83861) ((-643 . -616) 83822) ((-643 . -492) 83806) ((-643 . -102) 83756) ((-643 . -1104) 83706) ((-643 . -517) 83639) ((-643 . -310) 83577) ((-643 . -615) 83489) ((-643 . -1219) T) ((-643 . -34) T) ((-643 . -151) 83473) ((-643 . -283) 83457) ((-643 . -823) 83436) ((-635 . -746) 83420) ((-635 . -722) T) ((-635 . -763) T) ((-635 . -111) 83399) ((-635 . -1054) 83383) ((-635 . -1059) 83367) ((-635 . -21) T) ((-635 . -648) 83336) ((-635 . -23) T) ((-635 . -1104) T) ((-635 . -615) 83305) ((-635 . -102) T) ((-635 . -25) T) ((-635 . -131) T) ((-635 . -650) 83289) ((-635 . -642) 83273) ((-635 . -719) 83257) ((-635 . -421) 83222) ((-635 . -369) 83154) ((-634 . -1196) 83129) ((-634 . -229) 83075) ((-634 . -107) 83021) ((-634 . -310) 82872) ((-634 . -517) 82716) ((-634 . -492) 82647) ((-634 . -151) 82593) ((-634 . -616) NIL) ((-634 . -235) 82539) ((-634 . -612) 82514) ((-634 . -289) 82489) ((-634 . -287) 82464) ((-634 . -102) T) ((-634 . -1104) T) ((-634 . -615) 82446) ((-634 . -1219) T) ((-634 . -34) T) ((-634 . -606) 82421) ((-629 . -476) T) ((-629 . -1115) T) ((-629 . -102) T) ((-629 . -615) 82403) ((-629 . -1104) T) ((-629 . -728) T) ((-628 . -1086) T) ((-628 . -493) 82384) ((-628 . -615) 82350) ((-628 . -618) 82331) ((-628 . -1104) T) ((-628 . -102) T) ((-628 . -93) T) ((-625 . -231) 82315) ((-625 . -903) 82274) ((-625 . -1052) T) ((-625 . -1060) T) ((-625 . -1115) T) ((-625 . -728) T) ((-625 . -21) T) ((-625 . -648) 82246) ((-625 . -23) T) ((-625 . -1104) T) ((-625 . -615) 82228) ((-625 . -102) T) ((-625 . -25) T) ((-625 . -131) T) ((-625 . -650) 82215) ((-625 . -618) 82110) ((-625 . -233) 82089) ((-625 . -560) T) ((-625 . -291) T) ((-625 . -172) T) ((-625 . -719) 82076) ((-625 . -642) 82063) ((-625 . -1059) 82050) ((-625 . -1054) 82037) ((-625 . -111) 82022) ((-625 . -38) 82009) ((-625 . -616) 81986) ((-625 . -415) 81970) ((-625 . -1041) 81853) ((-625 . -147) 81832) ((-625 . -145) 81811) ((-625 . -308) 81790) ((-625 . -455) 81769) ((-625 . -924) 81748) ((-621 . -38) 81732) ((-621 . -618) 81701) ((-621 . -650) 81675) ((-621 . -648) 81634) ((-621 . -728) T) ((-621 . -1115) T) ((-621 . -1060) T) ((-621 . -1052) T) ((-621 . -111) 81613) ((-621 . -1054) 81597) ((-621 . -1059) 81581) ((-621 . -21) T) ((-621 . -23) T) ((-621 . -1104) T) ((-621 . -615) 81563) ((-621 . -102) T) ((-621 . -25) T) ((-621 . -131) T) ((-621 . -642) 81547) ((-621 . -719) 81531) ((-621 . -850) 81510) ((-621 . -799) 81489) ((-621 . -796) 81468) ((-621 . -852) 81447) ((-621 . -794) 81426) ((-621 . -793) 81405) ((-619 . -970) T) ((-619 . -102) T) ((-619 . -615) 81387) ((-619 . -1104) T) ((-613 . -132) T) ((-613 . -102) T) ((-613 . -615) 81369) ((-613 . -1104) T) ((-613 . -852) T) ((-613 . -887) 81353) ((-613 . -616) 81214) ((-610 . -367) 81154) ((-610 . -102) T) ((-610 . -615) 81136) ((-610 . -1104) T) ((-610 . -1196) 81112) ((-610 . -229) 81059) ((-610 . -107) 81006) ((-610 . -310) 80801) ((-610 . -517) 80584) ((-610 . -492) 80518) ((-610 . -151) 80465) ((-610 . -616) NIL) ((-610 . -235) 80412) ((-610 . -612) 80388) ((-610 . -289) 80364) ((-610 . -287) 80340) ((-610 . -1219) T) ((-610 . -34) T) ((-610 . -606) 80316) ((-609 . -746) 80300) ((-609 . -722) T) ((-609 . -763) T) ((-609 . -111) 80279) ((-609 . -1054) 80263) ((-609 . -1059) 80247) ((-609 . -21) T) ((-609 . -648) 80216) ((-609 . -23) T) ((-609 . -1104) T) ((-609 . -615) 80185) ((-609 . -102) T) ((-609 . -25) T) ((-609 . -131) T) ((-609 . -650) 80169) ((-609 . -642) 80153) ((-609 . -719) 80137) ((-609 . -421) 80102) ((-609 . -369) 80034) ((-608 . -1086) T) ((-608 . -493) 80015) ((-608 . -615) 79965) ((-608 . -618) 79946) ((-608 . -1104) T) ((-608 . -102) T) ((-608 . -93) T) ((-607 . -615) 79913) ((-607 . -493) 79895) ((-607 . -618) 79877) ((-604 . -1268) 79861) ((-604 . -374) 79845) ((-604 . -852) 79824) ((-604 . -151) 79808) ((-604 . -34) T) ((-604 . -1219) T) ((-604 . -615) 79720) ((-604 . -310) 79658) ((-604 . -517) 79591) ((-604 . -1104) 79541) ((-604 . -102) 79491) ((-604 . -492) 79475) ((-604 . -616) 79436) ((-604 . -606) 79413) ((-604 . -287) 79390) ((-604 . -289) 79367) ((-604 . -653) 79351) ((-604 . -19) 79335) ((-603 . -615) 79317) ((-599 . -1052) T) ((-599 . -1060) T) ((-599 . -1115) T) ((-599 . -728) T) ((-599 . -21) T) ((-599 . -648) 79276) ((-599 . -23) T) ((-599 . -1104) T) ((-599 . -615) 79258) ((-599 . -102) T) ((-599 . -25) T) ((-599 . -131) T) ((-599 . -650) 79232) ((-599 . -618) 79190) ((-599 . -111) 79143) ((-599 . -1054) 79103) ((-599 . -1059) 79063) ((-599 . -560) 79042) ((-599 . -291) 79021) ((-599 . -172) 79000) ((-599 . -719) 78973) ((-599 . -642) 78946) ((-599 . -38) 78919) ((-598 . -1248) 78896) ((-598 . -47) 78873) ((-598 . -38) 78770) ((-598 . -642) 78667) ((-598 . -719) 78564) ((-598 . -618) 78446) ((-598 . -291) 78425) ((-598 . -560) 78404) ((-598 . -111) 78273) ((-598 . -1054) 78156) ((-598 . -1059) 78039) ((-598 . -172) 77990) ((-598 . -147) 77969) ((-598 . -145) 77948) ((-598 . -650) 77873) ((-598 . -648) 77783) ((-598 . -976) 77752) ((-598 . -903) 77665) ((-598 . -287) 77650) ((-598 . -1052) T) ((-598 . -1060) T) ((-598 . -1115) T) ((-598 . -728) T) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1104) T) ((-598 . -615) 77632) ((-598 . -102) T) ((-598 . -25) T) ((-598 . -131) T) ((-598 . -233) 77591) ((-596 . -1147) T) ((-596 . -374) 77573) ((-596 . -852) T) ((-596 . -151) 77555) ((-596 . -34) T) ((-596 . -1219) T) ((-596 . -615) 77537) ((-596 . -310) NIL) ((-596 . -517) NIL) ((-596 . -1104) T) ((-596 . -102) T) ((-596 . -492) 77519) ((-596 . -616) NIL) ((-596 . -606) 77494) ((-596 . -287) 77469) ((-596 . -289) 77444) ((-596 . -653) 77426) ((-596 . -19) 77408) ((-595 . -1086) T) ((-595 . -493) 77389) ((-595 . -615) 77355) ((-595 . -618) 77336) ((-595 . -1104) T) ((-595 . -102) T) ((-595 . -93) T) ((-589 . -615) 77318) ((-586 . -719) 77293) ((-586 . -642) 77268) ((-586 . -650) 77243) ((-586 . -648) 77203) ((-586 . -131) T) ((-586 . -25) T) ((-586 . -102) T) ((-586 . -615) 77185) ((-586 . -1104) T) ((-586 . -23) T) ((-586 . -21) T) ((-586 . -1059) 77160) ((-586 . -1054) 77135) ((-586 . -111) 77103) ((-586 . -1041) 77087) ((-586 . -618) 77071) ((-584 . -352) T) ((-584 . -1154) T) ((-584 . -370) T) ((-584 . -145) T) ((-584 . -365) T) ((-584 . -1224) T) ((-584 . -924) T) ((-584 . -560) T) ((-584 . -172) T) ((-584 . -618) 77021) ((-584 . -719) 76986) ((-584 . -642) 76951) ((-584 . -38) 76916) ((-584 . -455) T) ((-584 . -308) T) ((-584 . -111) 76872) ((-584 . -1054) 76837) ((-584 . -1059) 76802) ((-584 . -648) 76752) ((-584 . -650) 76717) ((-584 . -291) T) ((-584 . -243) T) ((-584 . -405) T) ((-584 . -1052) T) ((-584 . -1060) T) ((-584 . -1115) T) ((-584 . -728) T) ((-584 . -21) T) ((-584 . -23) T) ((-584 . -1104) T) ((-584 . -615) 76699) ((-584 . -102) T) ((-584 . -25) T) ((-584 . -131) T) ((-584 . -233) T) ((-584 . -330) 76686) ((-584 . -147) 76668) ((-584 . -1041) 76655) ((-584 . -1277) 76642) ((-584 . -1288) 76629) ((-584 . -616) 76611) ((-583 . -872) 76595) ((-583 . -924) T) ((-583 . -560) T) ((-583 . -291) T) ((-583 . -172) T) ((-583 . -618) 76567) ((-583 . -719) 76554) ((-583 . -642) 76541) ((-583 . -1059) 76528) ((-583 . -1054) 76515) ((-583 . -111) 76500) ((-583 . -38) 76487) ((-583 . -455) T) ((-583 . -308) T) ((-583 . -1052) T) ((-583 . -1060) T) ((-583 . -1115) T) ((-583 . -728) T) ((-583 . -21) T) ((-583 . -648) 76459) ((-583 . -23) T) ((-583 . -1104) T) ((-583 . -615) 76441) ((-583 . -102) T) ((-583 . -25) T) ((-583 . -131) T) ((-583 . -650) 76428) ((-583 . -147) T) ((-582 . -1104) T) ((-582 . -615) 76410) ((-582 . -102) T) ((-581 . -1104) T) ((-581 . -615) 76392) ((-581 . -102) T) ((-580 . -579) T) ((-580 . -863) T) ((-580 . -173) T) ((-580 . -530) T) ((-580 . -615) 76374) ((-574 . -558) 76358) ((-574 . -35) T) ((-574 . -95) T) ((-574 . -285) T) ((-574 . -496) T) ((-574 . -1208) T) ((-574 . -1205) T) ((-574 . -1041) 76340) ((-574 . -1005) T) ((-574 . -852) T) ((-574 . -560) T) ((-574 . -291) T) ((-574 . -172) T) ((-574 . -618) 76312) ((-574 . -719) 76299) ((-574 . -642) 76286) ((-574 . -650) 76273) ((-574 . -648) 76245) ((-574 . -131) T) ((-574 . -25) T) ((-574 . -102) T) ((-574 . -615) 76227) ((-574 . -1104) T) ((-574 . -23) T) ((-574 . -21) T) ((-574 . -1059) 76214) ((-574 . -1054) 76201) ((-574 . -111) 76186) ((-574 . -1052) T) ((-574 . -1060) T) ((-574 . -1115) T) ((-574 . -728) T) ((-574 . -38) 76173) ((-574 . -455) T) ((-554 . -1196) 76152) ((-554 . -229) 76102) ((-554 . -107) 76052) ((-554 . -310) 75856) ((-554 . -517) 75648) ((-554 . -492) 75585) ((-554 . -151) 75535) ((-554 . -616) NIL) ((-554 . -235) 75485) ((-554 . -612) 75464) ((-554 . -289) 75443) ((-554 . -287) 75422) ((-554 . -102) T) ((-554 . -1104) T) ((-554 . -615) 75404) ((-554 . -1219) T) ((-554 . -34) T) ((-554 . -606) 75383) ((-553 . -846) T) ((-553 . -852) T) ((-553 . -1104) T) ((-553 . -615) 75365) ((-553 . -102) T) ((-553 . -370) T) ((-552 . -846) T) ((-552 . -852) T) ((-552 . -1104) T) ((-552 . -615) 75347) ((-552 . -102) T) ((-552 . -370) T) ((-551 . -846) T) ((-551 . -852) T) ((-551 . -1104) T) ((-551 . -615) 75329) ((-551 . -102) T) ((-551 . -370) T) ((-550 . -846) T) ((-550 . -852) T) ((-550 . -1104) T) ((-550 . -615) 75311) ((-550 . -102) T) ((-550 . -370) T) ((-549 . -548) T) ((-549 . -1224) T) ((-549 . -1154) T) ((-549 . -1041) 75293) ((-549 . -616) 75192) ((-549 . -1023) T) ((-549 . -889) 75174) ((-549 . -850) T) ((-549 . -799) T) ((-549 . -796) T) ((-549 . -852) T) ((-549 . -794) T) ((-549 . -793) T) ((-549 . -822) T) ((-549 . -641) 75156) ((-549 . -924) T) ((-549 . -560) T) ((-549 . -291) T) ((-549 . -172) T) ((-549 . -618) 75128) ((-549 . -719) 75115) ((-549 . -642) 75102) ((-549 . -1059) 75089) ((-549 . -1054) 75076) ((-549 . -111) 75061) ((-549 . -38) 75048) ((-549 . -455) T) ((-549 . -308) T) ((-549 . -233) T) ((-549 . -143) T) ((-549 . -1052) T) ((-549 . -1060) T) ((-549 . -1115) T) ((-549 . -728) T) ((-549 . -21) T) ((-549 . -648) 75020) ((-549 . -23) T) ((-549 . -1104) T) ((-549 . -615) 75002) ((-549 . -102) T) ((-549 . -25) T) ((-549 . -131) T) ((-549 . -650) 74989) ((-549 . -147) T) ((-549 . -823) T) ((-538 . -1107) 74941) ((-538 . -102) T) ((-538 . -615) 74923) ((-538 . -1104) T) ((-538 . -620) 74826) ((-538 . -616) 74807) ((-536 . -769) 74789) ((-536 . -530) T) ((-536 . -173) T) ((-536 . -863) T) ((-536 . -579) T) ((-536 . -615) 74771) ((-534 . -795) T) ((-534 . -131) T) ((-534 . -25) T) ((-534 . -102) T) ((-534 . -615) 74753) ((-534 . -1104) T) ((-534 . -23) T) ((-534 . -794) T) ((-534 . -852) T) ((-534 . -796) T) ((-534 . -799) T) ((-534 . -512) 74730) ((-532 . -530) T) ((-532 . -173) T) ((-532 . -615) 74712) ((-528 . -1086) T) ((-528 . -493) 74693) ((-528 . -615) 74659) ((-528 . -618) 74640) ((-528 . -1104) T) ((-528 . -102) T) ((-528 . -93) T) ((-527 . -1086) T) ((-527 . -493) 74621) ((-527 . -615) 74587) ((-527 . -618) 74568) ((-527 . -1104) T) ((-527 . -102) T) ((-527 . -93) T) ((-526 . -688) 74518) ((-526 . -492) 74502) ((-526 . -102) 74480) ((-526 . -1104) 74458) ((-526 . -517) 74391) ((-526 . -310) 74329) ((-526 . -615) 74261) ((-526 . -1219) T) ((-526 . -34) T) ((-526 . -57) 74211) ((-523 . -668) 74195) ((-523 . -1258) 74179) ((-523 . -1013) 74163) ((-523 . -1152) 74147) ((-523 . -852) 74126) ((-523 . -374) 74110) ((-523 . -653) 74094) ((-523 . -289) 74071) ((-523 . -287) 74048) ((-523 . -606) 74025) ((-523 . -616) 73986) ((-523 . -492) 73970) ((-523 . -102) 73920) ((-523 . -1104) 73870) ((-523 . -517) 73803) ((-523 . -310) 73741) ((-523 . -615) 73653) ((-523 . -1219) T) ((-523 . -34) T) ((-523 . -151) 73637) ((-523 . -283) 73621) ((-522 . -57) 73595) ((-522 . -34) T) ((-522 . -1219) T) ((-522 . -615) 73527) ((-522 . -310) 73465) ((-522 . -517) 73398) ((-522 . -1104) 73376) ((-522 . -102) 73354) ((-522 . -492) 73338) ((-521 . -330) 73315) ((-521 . -233) T) ((-521 . -370) T) ((-521 . -1154) T) ((-521 . -352) T) ((-521 . -147) 73297) ((-521 . -618) 73227) ((-521 . -650) 73172) ((-521 . -648) 73102) ((-521 . -131) T) ((-521 . -25) T) ((-521 . -102) T) ((-521 . -615) 73084) ((-521 . -1104) T) ((-521 . -23) T) ((-521 . -21) T) ((-521 . -728) T) ((-521 . -1115) T) ((-521 . -1060) T) ((-521 . -1052) T) ((-521 . -365) T) ((-521 . -1224) T) ((-521 . -924) T) ((-521 . -560) T) ((-521 . -172) T) ((-521 . -719) 73029) ((-521 . -642) 72974) ((-521 . -38) 72939) ((-521 . -455) T) ((-521 . -308) T) ((-521 . -111) 72868) ((-521 . -1054) 72813) ((-521 . -1059) 72758) ((-521 . -291) T) ((-521 . -243) T) ((-521 . -405) T) ((-521 . -145) T) ((-521 . -1041) 72735) ((-521 . -1277) 72712) ((-521 . -1288) 72689) ((-520 . -1086) T) ((-520 . -493) 72670) ((-520 . -615) 72636) ((-520 . -618) 72617) ((-520 . -1104) T) ((-520 . -102) T) ((-520 . -93) T) ((-519 . -19) 72601) ((-519 . -653) 72585) ((-519 . -289) 72562) ((-519 . -287) 72539) ((-519 . -606) 72516) ((-519 . -616) 72477) ((-519 . -492) 72461) ((-519 . -102) 72411) ((-519 . -1104) 72361) ((-519 . -517) 72294) ((-519 . -310) 72232) ((-519 . -615) 72144) ((-519 . -1219) T) ((-519 . -34) T) ((-519 . -151) 72128) ((-519 . -852) 72107) ((-519 . -374) 72091) ((-519 . -283) 72075) ((-518 . -324) 72054) ((-518 . -618) 72038) ((-518 . -1041) 72022) ((-518 . -23) T) ((-518 . -1104) T) ((-518 . -615) 72004) ((-518 . -102) T) ((-518 . -25) T) ((-518 . -131) T) ((-515 . -795) T) ((-515 . -131) T) ((-515 . -25) T) ((-515 . -102) T) ((-515 . -615) 71986) ((-515 . -1104) T) ((-515 . -23) T) ((-515 . -794) T) ((-515 . -852) T) ((-515 . -796) T) ((-515 . -799) T) ((-515 . -512) 71965) ((-514 . -794) T) ((-514 . -852) T) ((-514 . -796) T) ((-514 . -25) T) ((-514 . -102) T) ((-514 . -615) 71947) ((-514 . -1104) T) ((-514 . -23) T) ((-514 . -512) 71926) ((-513 . -512) 71905) ((-513 . -102) T) ((-513 . -615) 71887) ((-513 . -1104) T) ((-511 . -23) T) ((-511 . -1104) T) ((-511 . -615) 71869) ((-511 . -102) T) ((-511 . -25) T) ((-511 . -512) 71848) ((-510 . -21) T) ((-510 . -648) 71830) ((-510 . -23) T) ((-510 . -1104) T) ((-510 . -615) 71812) ((-510 . -102) T) ((-510 . -25) T) ((-510 . -131) T) ((-510 . -512) 71791) ((-509 . -1104) T) ((-509 . -615) 71757) ((-509 . -102) T) ((-507 . -1104) T) ((-507 . -615) 71739) ((-507 . -102) T) ((-505 . -852) T) ((-505 . -102) T) ((-505 . -615) 71721) ((-505 . -1104) T) ((-503 . -123) T) ((-503 . -374) 71703) ((-503 . -852) T) ((-503 . -151) 71685) ((-503 . -34) T) ((-503 . -1219) T) ((-503 . -615) 71667) ((-503 . -310) NIL) ((-503 . -517) NIL) ((-503 . -1104) T) ((-503 . -492) 71649) ((-503 . -616) 71631) ((-503 . -606) 71606) ((-503 . -287) 71581) ((-503 . -289) 71556) ((-503 . -653) 71538) ((-503 . -19) 71520) ((-503 . -102) T) ((-503 . -664) T) ((-500 . -57) 71470) ((-500 . -34) T) ((-500 . -1219) T) ((-500 . -615) 71402) ((-500 . -310) 71340) ((-500 . -517) 71273) ((-500 . -1104) 71251) ((-500 . -102) 71229) ((-500 . -492) 71213) ((-499 . -19) 71197) ((-499 . -653) 71181) ((-499 . -289) 71158) ((-499 . -287) 71135) ((-499 . -606) 71112) ((-499 . -616) 71073) ((-499 . -492) 71057) ((-499 . -102) 71007) ((-499 . -1104) 70957) ((-499 . -517) 70890) ((-499 . -310) 70828) ((-499 . -615) 70740) ((-499 . -1219) T) ((-499 . -34) T) ((-499 . -151) 70724) ((-499 . -852) 70703) ((-499 . -374) 70687) ((-498 . -299) T) ((-498 . -102) T) ((-498 . -615) 70669) ((-498 . -1104) T) ((-498 . -618) 70602) ((-498 . -1041) 70545) ((-498 . -517) 70511) ((-498 . -310) 70498) ((-498 . -27) T) ((-498 . -1005) T) ((-498 . -243) T) ((-498 . -111) 70454) ((-498 . -1054) 70419) ((-498 . -1059) 70384) ((-498 . -291) T) ((-498 . -719) 70349) ((-498 . -642) 70314) ((-498 . -650) 70279) ((-498 . -648) 70229) ((-498 . -131) T) ((-498 . -25) T) ((-498 . -23) T) ((-498 . -21) T) ((-498 . -1052) T) ((-498 . -1060) T) ((-498 . -1115) T) ((-498 . -728) T) ((-498 . -38) 70194) ((-498 . -308) T) ((-498 . -455) T) ((-498 . -172) T) ((-498 . -560) T) ((-498 . -924) T) ((-498 . -1224) T) ((-498 . -365) T) ((-498 . -641) 70154) ((-498 . -1023) T) ((-498 . -616) 70099) ((-498 . -147) T) ((-498 . -233) T) ((-494 . -1104) T) ((-494 . -615) 70065) ((-494 . -102) T) ((-490 . -994) 70047) ((-490 . -1154) T) ((-490 . -618) 69997) ((-490 . -1041) 69957) ((-490 . -616) 69887) ((-490 . -1023) T) ((-490 . -913) NIL) ((-490 . -887) 69869) ((-490 . -850) T) ((-490 . -799) T) ((-490 . -796) T) ((-490 . -852) T) ((-490 . -794) T) ((-490 . -793) T) ((-490 . -822) T) ((-490 . -889) 69851) ((-490 . -1219) T) ((-490 . -403) 69833) ((-490 . -641) 69815) ((-490 . -379) 69797) ((-490 . -287) NIL) ((-490 . -310) NIL) ((-490 . -517) NIL) ((-490 . -340) 69779) ((-490 . -243) T) ((-490 . -111) 69713) ((-490 . -1054) 69663) ((-490 . -1059) 69613) ((-490 . -291) T) ((-490 . -719) 69563) ((-490 . -642) 69513) ((-490 . -650) 69463) ((-490 . -648) 69413) ((-490 . -38) 69363) ((-490 . -308) T) ((-490 . -455) T) ((-490 . -172) T) ((-490 . -560) T) ((-490 . -924) T) ((-490 . -1224) T) ((-490 . -365) T) ((-490 . -233) T) ((-490 . -903) NIL) ((-490 . -231) 69345) ((-490 . -147) T) ((-490 . -145) NIL) ((-490 . -131) T) ((-490 . -25) T) ((-490 . -102) T) ((-490 . -615) 69286) ((-490 . -1104) T) ((-490 . -23) T) ((-490 . -21) T) ((-490 . -1052) T) ((-490 . -1060) T) ((-490 . -1115) T) ((-490 . -728) T) ((-488 . -338) 69255) ((-488 . -131) T) ((-488 . -25) T) ((-488 . -102) T) ((-488 . -615) 69237) ((-488 . -1104) T) ((-488 . -23) T) ((-488 . -648) 69219) ((-488 . -21) T) ((-487 . -971) 69203) ((-487 . -492) 69187) ((-487 . -102) 69165) ((-487 . -1104) 69143) ((-487 . -517) 69076) ((-487 . -310) 69014) ((-487 . -615) 68946) ((-487 . -1219) T) ((-487 . -34) T) ((-487 . -107) 68930) ((-486 . -1086) T) ((-486 . -493) 68911) ((-486 . -615) 68877) ((-486 . -618) 68858) ((-486 . -1104) T) ((-486 . -102) T) ((-486 . -93) T) ((-485 . -238) 68837) ((-485 . -1277) 68807) ((-485 . -793) 68786) ((-485 . -850) 68765) ((-485 . -799) 68716) ((-485 . -796) 68667) ((-485 . -852) 68618) ((-485 . -794) 68569) ((-485 . -795) 68548) ((-485 . -289) 68525) ((-485 . -287) 68502) ((-485 . -492) 68486) ((-485 . -517) 68419) ((-485 . -310) 68357) ((-485 . -1219) T) ((-485 . -34) T) ((-485 . -606) 68334) ((-485 . -1041) 68161) ((-485 . -618) 67891) ((-485 . -415) 67860) ((-485 . -641) 67766) ((-485 . -379) 67735) ((-485 . -370) 67714) ((-485 . -233) 67666) ((-485 . -903) 67598) ((-485 . -231) 67567) ((-485 . -111) 67457) ((-485 . -1054) 67354) ((-485 . -1059) 67251) ((-485 . -172) 67230) ((-485 . -615) 66961) ((-485 . -719) 66903) ((-485 . -642) 66845) ((-485 . -650) 66693) ((-485 . -648) 66443) ((-485 . -131) 66313) ((-485 . -23) 66183) ((-485 . -21) 66093) ((-485 . -1052) 66023) ((-485 . -1060) 65953) ((-485 . -1115) 65863) ((-485 . -728) 65773) ((-485 . -38) 65743) ((-485 . -1104) 65533) ((-485 . -102) 65323) ((-485 . -25) 65174) ((-484 . -953) 65119) ((-484 . -618) 64904) ((-484 . -1041) 64780) ((-484 . -1224) 64759) ((-484 . -913) 64738) ((-484 . -889) NIL) ((-484 . -903) 64715) ((-484 . -517) 64658) ((-484 . -455) 64609) ((-484 . -641) 64557) ((-484 . -379) 64541) ((-484 . -47) 64498) ((-484 . -38) 64347) ((-484 . -642) 64196) ((-484 . -719) 64045) ((-484 . -291) 63976) ((-484 . -560) 63907) ((-484 . -111) 63736) ((-484 . -1054) 63579) ((-484 . -1059) 63422) ((-484 . -172) 63333) ((-484 . -147) 63312) ((-484 . -145) 63291) ((-484 . -650) 63216) ((-484 . -648) 63126) ((-484 . -131) T) ((-484 . -25) T) ((-484 . -102) T) ((-484 . -615) 63108) ((-484 . -1104) T) ((-484 . -23) T) ((-484 . -21) T) ((-484 . -1052) T) ((-484 . -1060) T) ((-484 . -1115) T) ((-484 . -728) T) ((-484 . -415) 63092) ((-484 . -327) 63049) ((-484 . -310) 63036) ((-484 . -616) 62897) ((-482 . -1196) 62876) ((-482 . -229) 62826) ((-482 . -107) 62776) ((-482 . -310) 62580) ((-482 . -517) 62372) ((-482 . -492) 62309) ((-482 . -151) 62259) ((-482 . -616) NIL) ((-482 . -235) 62209) ((-482 . -612) 62188) ((-482 . -289) 62167) ((-482 . -287) 62146) ((-482 . -102) T) ((-482 . -1104) T) ((-482 . -615) 62128) ((-482 . -1219) T) ((-482 . -34) T) ((-482 . -606) 62107) ((-481 . -1086) T) ((-481 . -493) 62088) ((-481 . -615) 62054) ((-481 . -618) 62035) ((-481 . -1104) T) ((-481 . -102) T) ((-481 . -93) T) ((-480 . -365) T) ((-480 . -1224) T) ((-480 . -924) T) ((-480 . -560) T) ((-480 . -172) T) ((-480 . -618) 61985) ((-480 . -719) 61950) ((-480 . -642) 61915) ((-480 . -38) 61880) ((-480 . -455) T) ((-480 . -308) T) ((-480 . -650) 61845) ((-480 . -648) 61795) ((-480 . -728) T) ((-480 . -1115) T) ((-480 . -1060) T) ((-480 . -1052) T) ((-480 . -111) 61751) ((-480 . -1054) 61716) ((-480 . -1059) 61681) ((-480 . -21) T) ((-480 . -23) T) ((-480 . -1104) T) ((-480 . -615) 61633) ((-480 . -102) T) ((-480 . -25) T) ((-480 . -131) T) ((-480 . -291) T) ((-480 . -243) T) ((-480 . -147) T) ((-480 . -1041) 61593) ((-480 . -1023) T) ((-480 . -616) 61515) ((-479 . -1214) 61484) ((-479 . -615) 61446) ((-479 . -151) 61430) ((-479 . -34) T) ((-479 . -1219) T) ((-479 . -310) 61368) ((-479 . -517) 61301) ((-479 . -1104) T) ((-479 . -102) T) ((-479 . -492) 61285) ((-479 . -616) 61246) ((-479 . -979) 61215) ((-478 . -1196) 61194) ((-478 . -229) 61144) ((-478 . -107) 61094) ((-478 . -310) 60898) ((-478 . -517) 60690) ((-478 . -492) 60627) ((-478 . -151) 60577) ((-478 . -616) NIL) ((-478 . -235) 60527) ((-478 . -612) 60506) ((-478 . -289) 60485) ((-478 . -287) 60464) ((-478 . -102) T) ((-478 . -1104) T) ((-478 . -615) 60446) ((-478 . -1219) T) ((-478 . -34) T) ((-478 . -606) 60425) ((-477 . -1252) 60409) ((-477 . -233) 60361) ((-477 . -287) 60346) ((-477 . -903) 60252) ((-477 . -976) 60214) ((-477 . -38) 60055) ((-477 . -111) 59876) ((-477 . -1054) 59711) ((-477 . -1059) 59546) ((-477 . -648) 59428) ((-477 . -650) 59325) ((-477 . -642) 59166) ((-477 . -719) 59007) ((-477 . -618) 58833) ((-477 . -145) 58812) ((-477 . -147) 58791) ((-477 . -47) 58761) ((-477 . -1248) 58731) ((-477 . -35) 58697) ((-477 . -95) 58663) ((-477 . -285) 58629) ((-477 . -496) 58595) ((-477 . -1208) 58561) ((-477 . -1205) 58527) ((-477 . -1005) 58493) ((-477 . -243) 58472) ((-477 . -291) 58423) ((-477 . -131) T) ((-477 . -25) T) ((-477 . -102) T) ((-477 . -615) 58405) ((-477 . -1104) T) ((-477 . -23) T) ((-477 . -21) T) ((-477 . -1052) T) ((-477 . -1060) T) ((-477 . -1115) T) ((-477 . -728) T) ((-477 . -308) 58384) ((-477 . -455) 58363) ((-477 . -172) 58294) ((-477 . -560) 58245) ((-477 . -924) 58224) ((-477 . -1224) 58203) ((-477 . -365) 58182) ((-471 . -1104) T) ((-471 . -615) 58164) ((-471 . -102) T) ((-466 . -979) 58133) ((-466 . -616) 58094) ((-466 . -492) 58078) ((-466 . -102) T) ((-466 . -1104) T) ((-466 . -517) 58011) ((-466 . -310) 57949) ((-466 . -615) 57911) ((-466 . -1219) T) ((-466 . -34) T) ((-466 . -151) 57895) ((-464 . -719) 57866) ((-464 . -642) 57837) ((-464 . -650) 57808) ((-464 . -648) 57764) ((-464 . -131) T) ((-464 . -25) T) ((-464 . -102) T) ((-464 . -615) 57746) ((-464 . -1104) T) ((-464 . -23) T) ((-464 . -21) T) ((-464 . -1059) 57717) ((-464 . -1054) 57688) ((-464 . -111) 57649) ((-457 . -953) 57616) ((-457 . -618) 57401) ((-457 . -1041) 57277) ((-457 . -1224) 57256) ((-457 . -913) 57235) ((-457 . -889) NIL) ((-457 . -903) 57212) ((-457 . -517) 57155) ((-457 . -455) 57106) ((-457 . -641) 57054) ((-457 . -379) 57038) ((-457 . -47) 57017) ((-457 . -38) 56866) ((-457 . -642) 56715) ((-457 . -719) 56564) ((-457 . -291) 56495) ((-457 . -560) 56426) ((-457 . -111) 56255) ((-457 . -1054) 56098) ((-457 . -1059) 55941) ((-457 . -172) 55852) ((-457 . -147) 55831) ((-457 . -145) 55810) ((-457 . -650) 55735) ((-457 . -648) 55645) ((-457 . -131) T) ((-457 . -25) T) ((-457 . -102) T) ((-457 . -615) 55627) ((-457 . -1104) T) ((-457 . -23) T) ((-457 . -21) T) ((-457 . -1052) T) ((-457 . -1060) T) ((-457 . -1115) T) ((-457 . -728) T) ((-457 . -415) 55611) ((-457 . -327) 55590) ((-457 . -310) 55577) ((-457 . -616) 55438) ((-456 . -421) 55408) ((-456 . -746) 55378) ((-456 . -722) T) ((-456 . -763) T) ((-456 . -111) 55341) ((-456 . -1054) 55311) ((-456 . -1059) 55281) ((-456 . -21) T) ((-456 . -648) 55196) ((-456 . -23) T) ((-456 . -1104) T) ((-456 . -615) 55178) ((-456 . -102) T) ((-456 . -25) T) ((-456 . -131) T) ((-456 . -650) 55108) ((-456 . -642) 55078) ((-456 . -719) 55048) ((-456 . -369) 55018) ((-442 . -1104) T) ((-442 . -615) 55000) ((-442 . -102) T) ((-441 . -1104) T) ((-441 . -615) 54982) ((-441 . -102) T) ((-440 . -367) 54956) ((-440 . -102) T) ((-440 . -615) 54938) ((-440 . -1104) T) ((-439 . -1104) T) ((-439 . -615) 54920) ((-439 . -102) T) ((-437 . -615) 54902) ((-432 . -38) 54886) ((-432 . -618) 54855) ((-432 . -650) 54829) ((-432 . -648) 54788) ((-432 . -728) T) ((-432 . -1115) T) ((-432 . -1060) T) ((-432 . -1052) T) ((-432 . -111) 54767) ((-432 . -1054) 54751) ((-432 . -1059) 54735) ((-432 . -21) T) ((-432 . -23) T) ((-432 . -1104) T) ((-432 . -615) 54717) ((-432 . -102) T) ((-432 . -25) T) ((-432 . -131) T) ((-432 . -642) 54701) ((-432 . -719) 54685) ((-418 . -728) T) ((-418 . -1104) T) ((-418 . -615) 54667) ((-418 . -102) T) ((-418 . -1115) T) ((-416 . -476) T) ((-416 . -1115) T) ((-416 . -102) T) ((-416 . -615) 54649) ((-416 . -1104) T) ((-416 . -728) T) ((-410 . -994) 54633) ((-410 . -1154) 54611) ((-410 . -1041) 54477) ((-410 . -618) 54375) ((-410 . -616) 54182) ((-410 . -1023) 54160) ((-410 . -913) 54139) ((-410 . -887) 54123) ((-410 . -850) 54102) ((-410 . -799) 54081) ((-410 . -796) 54060) ((-410 . -852) 54011) ((-410 . -794) 53990) ((-410 . -793) 53969) ((-410 . -822) 53948) ((-410 . -889) 53873) ((-410 . -1219) T) ((-410 . -403) 53857) ((-410 . -641) 53805) ((-410 . -379) 53789) ((-410 . -287) 53747) ((-410 . -310) 53712) ((-410 . -517) 53624) ((-410 . -340) 53608) ((-410 . -243) T) ((-410 . -111) 53546) ((-410 . -1054) 53498) ((-410 . -1059) 53450) ((-410 . -291) T) ((-410 . -719) 53402) ((-410 . -642) 53354) ((-410 . -650) 53306) ((-410 . -648) 53243) ((-410 . -38) 53195) ((-410 . -308) T) ((-410 . -455) T) ((-410 . -172) T) ((-410 . -560) T) ((-410 . -924) T) ((-410 . -1224) T) ((-410 . -365) T) ((-410 . -233) 53174) ((-410 . -903) 53133) ((-410 . -231) 53117) ((-410 . -147) 53096) ((-410 . -145) 53075) ((-410 . -131) T) ((-410 . -25) T) ((-410 . -102) T) ((-410 . -615) 53057) ((-410 . -1104) T) ((-410 . -23) T) ((-410 . -21) T) ((-410 . -1052) T) ((-410 . -1060) T) ((-410 . -1115) T) ((-410 . -728) T) ((-410 . -823) 53010) ((-408 . -560) T) ((-408 . -291) T) ((-408 . -172) T) ((-408 . -618) 52918) ((-408 . -719) 52892) ((-408 . -642) 52866) ((-408 . -650) 52840) ((-408 . -648) 52799) ((-408 . -131) T) ((-408 . -25) T) ((-408 . -102) T) ((-408 . -615) 52781) ((-408 . -1104) T) ((-408 . -23) T) ((-408 . -21) T) ((-408 . -1059) 52755) ((-408 . -1054) 52729) ((-408 . -111) 52696) ((-408 . -1052) T) ((-408 . -1060) T) ((-408 . -1115) T) ((-408 . -728) T) ((-408 . -38) 52670) ((-408 . -231) 52654) ((-408 . -903) 52613) ((-408 . -233) 52592) ((-408 . -340) 52576) ((-408 . -517) 52418) ((-408 . -310) 52357) ((-408 . -287) 52285) ((-408 . -415) 52269) ((-408 . -1041) 52165) ((-408 . -455) 52115) ((-408 . -1023) 52093) ((-408 . -616) 52000) ((-408 . -1224) 51978) ((-402 . -1104) T) ((-402 . -615) 51960) ((-402 . -102) T) ((-402 . -616) 51937) ((-401 . -399) T) ((-401 . -1219) T) ((-401 . -615) 51919) ((-396 . -1104) T) ((-396 . -615) 51901) ((-396 . -102) T) ((-396 . -618) 51883) ((-393 . -746) 51867) ((-393 . -722) T) ((-393 . -763) T) ((-393 . -111) 51846) ((-393 . -1054) 51830) ((-393 . -1059) 51814) ((-393 . -21) T) ((-393 . -648) 51783) ((-393 . -23) T) ((-393 . -1104) T) ((-393 . -615) 51765) ((-393 . -102) T) ((-393 . -25) T) ((-393 . -131) T) ((-393 . -650) 51749) ((-393 . -642) 51733) ((-393 . -719) 51717) ((-391 . -392) T) ((-391 . -102) T) ((-391 . -615) 51683) ((-391 . -1104) T) ((-391 . -618) 51664) ((-391 . -493) 51645) ((-389 . -388) 51629) ((-389 . -618) 51613) ((-389 . -1041) 51597) ((-389 . -852) 51576) ((-389 . -1115) T) ((-389 . -102) T) ((-389 . -615) 51558) ((-389 . -1104) T) ((-389 . -728) T) ((-384 . -386) 51537) ((-384 . -618) 51521) ((-384 . -1041) 51505) ((-384 . -642) 51475) ((-384 . -719) 51445) ((-384 . -650) 51429) ((-384 . -648) 51398) ((-384 . -131) T) ((-384 . -25) T) ((-384 . -102) T) ((-384 . -615) 51380) ((-384 . -1104) T) ((-384 . -23) T) ((-384 . -21) T) ((-384 . -1059) 51364) ((-384 . -1054) 51348) ((-384 . -111) 51327) ((-383 . -111) 51306) ((-383 . -1054) 51290) ((-383 . -1059) 51274) ((-383 . -21) T) ((-383 . -648) 51243) ((-383 . -23) T) ((-383 . -1104) T) ((-383 . -615) 51225) ((-383 . -102) T) ((-383 . -25) T) ((-383 . -131) T) ((-383 . -650) 51209) ((-383 . -512) 51188) ((-383 . -719) 51158) ((-383 . -642) 51128) ((-380 . -407) T) ((-380 . -147) T) ((-380 . -618) 51078) ((-380 . -650) 51043) ((-380 . -648) 50993) ((-380 . -131) T) ((-380 . -25) T) ((-380 . -102) T) ((-380 . -615) 50960) ((-380 . -1104) T) ((-380 . -23) T) ((-380 . -21) T) ((-380 . -728) T) ((-380 . -1115) T) ((-380 . -1060) T) ((-380 . -1052) T) ((-380 . -616) 50874) ((-380 . -365) T) ((-380 . -1224) T) ((-380 . -924) T) ((-380 . -560) T) ((-380 . -172) T) ((-380 . -719) 50839) ((-380 . -642) 50804) ((-380 . -38) 50769) ((-380 . -455) T) ((-380 . -308) T) ((-380 . -111) 50725) ((-380 . -1054) 50690) ((-380 . -1059) 50655) ((-380 . -291) T) ((-380 . -243) T) ((-380 . -850) T) ((-380 . -799) T) ((-380 . -796) T) ((-380 . -852) T) ((-380 . -794) T) ((-380 . -793) T) ((-380 . -889) 50637) ((-380 . -1005) T) ((-380 . -1023) T) ((-380 . -1041) 50597) ((-380 . -1063) T) ((-380 . -233) T) ((-380 . -823) T) ((-380 . -1205) T) ((-380 . -1208) T) ((-380 . -496) T) ((-380 . -285) T) ((-380 . -95) T) ((-380 . -35) T) ((-380 . -620) 50579) ((-366 . -367) 50556) ((-366 . -102) T) ((-366 . -615) 50538) ((-366 . -1104) T) ((-363 . -476) T) ((-363 . -1115) T) ((-363 . -102) T) ((-363 . -615) 50520) ((-363 . -1104) T) ((-363 . -728) T) ((-363 . -1041) 50504) ((-363 . -618) 50488) ((-361 . -330) 50472) ((-361 . -233) 50451) ((-361 . -370) 50430) ((-361 . -1154) 50409) ((-361 . -352) 50388) ((-361 . -147) 50367) ((-361 . -618) 50304) ((-361 . -650) 50256) ((-361 . -648) 50193) ((-361 . -131) T) ((-361 . -25) T) ((-361 . -102) T) ((-361 . -615) 50175) ((-361 . -1104) T) ((-361 . -23) T) ((-361 . -21) T) ((-361 . -728) T) ((-361 . -1115) T) ((-361 . -1060) T) ((-361 . -1052) T) ((-361 . -365) T) ((-361 . -1224) T) ((-361 . -924) T) ((-361 . -560) T) ((-361 . -172) T) ((-361 . -719) 50127) ((-361 . -642) 50079) ((-361 . -38) 50044) ((-361 . -455) T) ((-361 . -308) T) ((-361 . -111) 49982) ((-361 . -1054) 49934) ((-361 . -1059) 49886) ((-361 . -291) T) ((-361 . -243) T) ((-361 . -405) 49837) ((-361 . -145) 49788) ((-361 . -1041) 49772) ((-361 . -1277) 49756) ((-361 . -1288) 49740) ((-357 . -330) 49724) ((-357 . -233) 49703) ((-357 . -370) 49682) ((-357 . -1154) 49661) ((-357 . -352) 49640) ((-357 . -147) 49619) ((-357 . -618) 49556) ((-357 . -650) 49508) ((-357 . -648) 49445) ((-357 . -131) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -615) 49427) ((-357 . -1104) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -728) T) ((-357 . -1115) T) ((-357 . -1060) T) ((-357 . -1052) T) ((-357 . -365) T) ((-357 . -1224) T) ((-357 . -924) T) ((-357 . -560) T) ((-357 . -172) T) ((-357 . -719) 49379) ((-357 . -642) 49331) ((-357 . -38) 49296) ((-357 . -455) T) ((-357 . -308) T) ((-357 . -111) 49234) ((-357 . -1054) 49186) ((-357 . -1059) 49138) ((-357 . -291) T) ((-357 . -243) T) ((-357 . -405) 49089) ((-357 . -145) 49040) ((-357 . -1041) 49024) ((-357 . -1277) 49008) ((-357 . -1288) 48992) ((-356 . -330) 48976) ((-356 . -233) 48955) ((-356 . -370) 48934) ((-356 . -1154) 48913) ((-356 . -352) 48892) ((-356 . -147) 48871) ((-356 . -618) 48808) ((-356 . -650) 48760) ((-356 . -648) 48697) ((-356 . -131) T) ((-356 . -25) T) ((-356 . -102) T) ((-356 . -615) 48679) ((-356 . -1104) T) ((-356 . -23) T) ((-356 . -21) T) ((-356 . -728) T) ((-356 . -1115) T) ((-356 . -1060) T) ((-356 . -1052) T) ((-356 . -365) T) ((-356 . -1224) T) ((-356 . -924) T) ((-356 . -560) T) ((-356 . -172) T) ((-356 . -719) 48631) ((-356 . -642) 48583) ((-356 . -38) 48548) ((-356 . -455) T) ((-356 . -308) T) ((-356 . -111) 48486) ((-356 . -1054) 48438) ((-356 . -1059) 48390) ((-356 . -291) T) ((-356 . -243) T) ((-356 . -405) 48341) ((-356 . -145) 48292) ((-356 . -1041) 48276) ((-356 . -1277) 48260) ((-356 . -1288) 48244) ((-355 . -330) 48228) ((-355 . -233) 48207) ((-355 . -370) 48186) ((-355 . -1154) 48165) ((-355 . -352) 48144) ((-355 . -147) 48123) ((-355 . -618) 48060) ((-355 . -650) 48012) ((-355 . -648) 47949) ((-355 . -131) T) ((-355 . -25) T) ((-355 . -102) T) ((-355 . -615) 47931) ((-355 . -1104) T) ((-355 . -23) T) ((-355 . -21) T) ((-355 . -728) T) ((-355 . -1115) T) ((-355 . -1060) T) ((-355 . -1052) T) ((-355 . -365) T) ((-355 . -1224) T) ((-355 . -924) T) ((-355 . -560) T) ((-355 . -172) T) ((-355 . -719) 47883) ((-355 . -642) 47835) ((-355 . -38) 47800) ((-355 . -455) T) ((-355 . -308) T) ((-355 . -111) 47738) ((-355 . -1054) 47690) ((-355 . -1059) 47642) ((-355 . -291) T) ((-355 . -243) T) ((-355 . -405) 47593) ((-355 . -145) 47544) ((-355 . -1041) 47528) ((-355 . -1277) 47512) ((-355 . -1288) 47496) ((-354 . -330) 47473) ((-354 . -233) T) ((-354 . -370) T) ((-354 . -1154) T) ((-354 . -352) T) ((-354 . -147) 47455) ((-354 . -618) 47385) ((-354 . -650) 47330) ((-354 . -648) 47260) ((-354 . -131) T) ((-354 . -25) T) ((-354 . -102) T) ((-354 . -615) 47242) ((-354 . -1104) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -728) T) ((-354 . -1115) T) ((-354 . -1060) T) ((-354 . -1052) T) ((-354 . -365) T) ((-354 . -1224) T) ((-354 . -924) T) ((-354 . -560) T) ((-354 . -172) T) ((-354 . -719) 47187) ((-354 . -642) 47132) ((-354 . -38) 47097) ((-354 . -455) T) ((-354 . -308) T) ((-354 . -111) 47026) ((-354 . -1054) 46971) ((-354 . -1059) 46916) ((-354 . -291) T) ((-354 . -243) T) ((-354 . -405) T) ((-354 . -145) T) ((-354 . -1041) 46893) ((-354 . -1277) 46870) ((-354 . -1288) 46847) ((-348 . -330) 46831) ((-348 . -233) 46810) ((-348 . -370) 46789) ((-348 . -1154) 46768) ((-348 . -352) 46747) ((-348 . -147) 46726) ((-348 . -618) 46663) ((-348 . -650) 46615) ((-348 . -648) 46552) ((-348 . -131) T) ((-348 . -25) T) ((-348 . -102) T) ((-348 . -615) 46534) ((-348 . -1104) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -728) T) ((-348 . -1115) T) ((-348 . -1060) T) ((-348 . -1052) T) ((-348 . -365) T) ((-348 . -1224) T) ((-348 . -924) T) ((-348 . -560) T) ((-348 . -172) T) ((-348 . -719) 46486) ((-348 . -642) 46438) ((-348 . -38) 46403) ((-348 . -455) T) ((-348 . -308) T) ((-348 . -111) 46341) ((-348 . -1054) 46293) ((-348 . -1059) 46245) ((-348 . -291) T) ((-348 . -243) T) ((-348 . -405) 46196) ((-348 . -145) 46147) ((-348 . -1041) 46131) ((-348 . -1277) 46115) ((-348 . -1288) 46099) ((-347 . -330) 46083) ((-347 . -233) 46062) ((-347 . -370) 46041) ((-347 . -1154) 46020) ((-347 . -352) 45999) ((-347 . -147) 45978) ((-347 . -618) 45915) ((-347 . -650) 45867) ((-347 . -648) 45804) ((-347 . -131) T) ((-347 . -25) T) ((-347 . -102) T) ((-347 . -615) 45786) ((-347 . -1104) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -728) T) ((-347 . -1115) T) ((-347 . -1060) T) ((-347 . -1052) T) ((-347 . -365) T) ((-347 . -1224) T) ((-347 . -924) T) ((-347 . -560) T) ((-347 . -172) T) ((-347 . -719) 45738) ((-347 . -642) 45690) ((-347 . -38) 45655) ((-347 . -455) T) ((-347 . -308) T) ((-347 . -111) 45593) ((-347 . -1054) 45545) ((-347 . -1059) 45497) ((-347 . -291) T) ((-347 . -243) T) ((-347 . -405) 45448) ((-347 . -145) 45399) ((-347 . -1041) 45383) ((-347 . -1277) 45367) ((-347 . -1288) 45351) ((-346 . -330) 45328) ((-346 . -233) T) ((-346 . -370) T) ((-346 . -1154) T) ((-346 . -352) T) ((-346 . -147) 45310) ((-346 . -618) 45240) ((-346 . -650) 45185) ((-346 . -648) 45115) ((-346 . -131) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -615) 45097) ((-346 . -1104) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -728) T) ((-346 . -1115) T) ((-346 . -1060) T) ((-346 . -1052) T) ((-346 . -365) T) ((-346 . -1224) T) ((-346 . -924) T) ((-346 . -560) T) ((-346 . -172) T) ((-346 . -719) 45042) ((-346 . -642) 44987) ((-346 . -38) 44952) ((-346 . -455) T) ((-346 . -308) T) ((-346 . -111) 44881) ((-346 . -1054) 44826) ((-346 . -1059) 44771) ((-346 . -291) T) ((-346 . -243) T) ((-346 . -405) T) ((-346 . -145) T) ((-346 . -1041) 44748) ((-346 . -1277) 44725) ((-346 . -1288) 44702) ((-342 . -330) 44679) ((-342 . -233) T) ((-342 . -370) T) ((-342 . -1154) T) ((-342 . -352) T) ((-342 . -147) 44661) ((-342 . -618) 44591) ((-342 . -650) 44536) ((-342 . -648) 44466) ((-342 . -131) T) ((-342 . -25) T) ((-342 . -102) T) ((-342 . -615) 44448) ((-342 . -1104) T) ((-342 . -23) T) ((-342 . -21) T) ((-342 . -728) T) ((-342 . -1115) T) ((-342 . -1060) T) ((-342 . -1052) T) ((-342 . -365) T) ((-342 . -1224) T) ((-342 . -924) T) ((-342 . -560) T) ((-342 . -172) T) ((-342 . -719) 44393) ((-342 . -642) 44338) ((-342 . -38) 44303) ((-342 . -455) T) ((-342 . -308) T) ((-342 . -111) 44232) ((-342 . -1054) 44177) ((-342 . -1059) 44122) ((-342 . -291) T) ((-342 . -243) T) ((-342 . -405) T) ((-342 . -145) T) ((-342 . -1041) 44099) ((-342 . -1277) 44076) ((-342 . -1288) 44053) ((-341 . -299) T) ((-341 . -102) T) ((-341 . -615) 44035) ((-341 . -1104) T) ((-341 . -618) 43987) ((-341 . -1041) 43954) ((-341 . -517) 43920) ((-341 . -310) 43907) ((-341 . -38) 43891) ((-341 . -650) 43865) ((-341 . -648) 43824) ((-341 . -728) T) ((-341 . -1115) T) ((-341 . -1060) T) ((-341 . -1052) T) ((-341 . -111) 43803) ((-341 . -1054) 43787) ((-341 . -1059) 43771) ((-341 . -21) T) ((-341 . -23) T) ((-341 . -25) T) ((-341 . -131) T) ((-341 . -642) 43755) ((-341 . -719) 43739) ((-341 . -903) 43720) ((-335 . -338) 43689) ((-335 . -131) T) ((-335 . -25) T) ((-335 . -102) T) ((-335 . -615) 43671) ((-335 . -1104) T) ((-335 . -23) T) ((-335 . -648) 43653) ((-335 . -21) T) ((-334 . -1104) T) ((-334 . -615) 43635) ((-334 . -102) T) ((-332 . -852) T) ((-332 . -102) T) ((-332 . -615) 43617) ((-332 . -1104) T) ((-331 . -1104) T) ((-331 . -615) 43599) ((-331 . -102) T) ((-328 . -19) 43583) ((-328 . -653) 43567) ((-328 . -289) 43544) ((-328 . -287) 43521) ((-328 . -606) 43498) ((-328 . -616) 43459) ((-328 . -492) 43443) ((-328 . -102) 43393) ((-328 . -1104) 43343) ((-328 . -517) 43276) ((-328 . -310) 43214) ((-328 . -615) 43126) ((-328 . -1219) T) ((-328 . -34) T) ((-328 . -151) 43110) ((-328 . -852) 43089) ((-328 . -374) 43073) ((-328 . -283) 43057) ((-325 . -324) 43034) ((-325 . -618) 43018) ((-325 . -1041) 43002) ((-325 . -23) T) ((-325 . -1104) T) ((-325 . -615) 42984) ((-325 . -102) T) ((-325 . -25) T) ((-325 . -131) T) ((-323 . -21) T) ((-323 . -648) 42966) ((-323 . -23) T) ((-323 . -1104) T) ((-323 . -615) 42948) ((-323 . -102) T) ((-323 . -25) T) ((-323 . -131) T) ((-323 . -719) 42930) ((-323 . -642) 42912) ((-323 . -650) 42894) ((-323 . -1059) 42876) ((-323 . -1054) 42858) ((-323 . -111) 42833) ((-323 . -324) 42810) ((-323 . -618) 42794) ((-323 . -1041) 42778) ((-323 . -852) 42757) ((-320 . -1252) 42741) ((-320 . -233) 42693) ((-320 . -287) 42678) ((-320 . -903) 42584) ((-320 . -976) 42546) ((-320 . -38) 42387) ((-320 . -111) 42208) ((-320 . -1054) 42043) ((-320 . -1059) 41878) ((-320 . -648) 41760) ((-320 . -650) 41657) ((-320 . -642) 41498) ((-320 . -719) 41339) ((-320 . -618) 41165) ((-320 . -145) 41144) ((-320 . -147) 41123) ((-320 . -47) 41093) ((-320 . -1248) 41063) ((-320 . -35) 41029) ((-320 . -95) 40995) ((-320 . -285) 40961) ((-320 . -496) 40927) ((-320 . -1208) 40893) ((-320 . -1205) 40859) ((-320 . -1005) 40825) ((-320 . -243) 40804) ((-320 . -291) 40755) ((-320 . -131) T) ((-320 . -25) T) ((-320 . -102) T) ((-320 . -615) 40737) ((-320 . -1104) T) ((-320 . -23) T) ((-320 . -21) T) ((-320 . -1052) T) ((-320 . -1060) T) ((-320 . -1115) T) ((-320 . -728) T) ((-320 . -308) 40716) ((-320 . -455) 40695) ((-320 . -172) 40626) ((-320 . -560) 40577) ((-320 . -924) 40556) ((-320 . -1224) 40535) ((-320 . -365) 40514) ((-320 . -794) T) ((-320 . -852) T) ((-320 . -796) T) ((-315 . -424) 40498) ((-315 . -618) 40062) ((-315 . -1041) 39725) ((-315 . -616) 39586) ((-315 . -887) 39570) ((-315 . -903) 39536) ((-315 . -476) 39515) ((-315 . -415) 39499) ((-315 . -889) 39424) ((-315 . -1219) T) ((-315 . -403) 39408) ((-315 . -641) 39314) ((-315 . -379) 39283) ((-315 . -243) 39262) ((-315 . -111) 39158) ((-315 . -1054) 39068) ((-315 . -1059) 38978) ((-315 . -291) 38957) ((-315 . -719) 38867) ((-315 . -642) 38777) ((-315 . -650) 38598) ((-315 . -648) 38282) ((-315 . -38) 38192) ((-315 . -308) 38171) ((-315 . -455) 38150) ((-315 . -172) 38129) ((-315 . -560) 38108) ((-315 . -924) 38087) ((-315 . -1224) 38066) ((-315 . -365) 38045) ((-315 . -310) 38032) ((-315 . -517) 37998) ((-315 . -299) T) ((-315 . -147) 37977) ((-315 . -145) 37956) ((-315 . -1052) 37846) ((-315 . -1060) 37736) ((-315 . -1115) 37585) ((-315 . -728) 37434) ((-315 . -131) 37305) ((-315 . -25) 37157) ((-315 . -102) T) ((-315 . -615) 37139) ((-315 . -1104) T) ((-315 . -23) 36991) ((-315 . -21) 36862) ((-315 . -29) 36832) ((-315 . -1005) 36811) ((-315 . -27) 36790) ((-315 . -1205) 36769) ((-315 . -1208) 36748) ((-315 . -496) 36727) ((-315 . -285) 36706) ((-315 . -95) 36685) ((-315 . -35) 36664) ((-315 . -160) 36643) ((-315 . -143) 36622) ((-315 . -632) 36601) ((-315 . -963) 36580) ((-315 . -1142) 36559) ((-314 . -994) 36520) ((-314 . -1154) NIL) ((-314 . -1041) 36450) ((-314 . -618) 36333) ((-314 . -616) NIL) ((-314 . -1023) NIL) ((-314 . -913) NIL) ((-314 . -887) 36294) ((-314 . -850) NIL) ((-314 . -799) NIL) ((-314 . -796) NIL) ((-314 . -852) NIL) ((-314 . -794) NIL) ((-314 . -793) NIL) ((-314 . -822) NIL) ((-314 . -889) NIL) ((-314 . -1219) T) ((-314 . -403) 36255) ((-314 . -641) 36216) ((-314 . -379) 36177) ((-314 . -287) 36112) ((-314 . -310) 36053) ((-314 . -517) 35945) ((-314 . -340) 35906) ((-314 . -243) T) ((-314 . -111) 35819) ((-314 . -1054) 35748) ((-314 . -1059) 35677) ((-314 . -291) T) ((-314 . -719) 35606) ((-314 . -642) 35535) ((-314 . -650) 35464) ((-314 . -648) 35378) ((-314 . -38) 35307) ((-314 . -308) T) ((-314 . -455) T) ((-314 . -172) T) ((-314 . -560) T) ((-314 . -924) T) ((-314 . -1224) T) ((-314 . -365) T) ((-314 . -233) NIL) ((-314 . -903) NIL) ((-314 . -231) 35268) ((-314 . -147) 35224) ((-314 . -145) 35180) ((-314 . -131) T) ((-314 . -25) T) ((-314 . -102) T) ((-314 . -615) 35162) ((-314 . -1104) T) ((-314 . -23) T) ((-314 . -21) T) ((-314 . -1052) T) ((-314 . -1060) T) ((-314 . -1115) T) ((-314 . -728) T) ((-313 . -1086) T) ((-313 . -493) 35143) ((-313 . -615) 35109) ((-313 . -618) 35090) ((-313 . -1104) T) ((-313 . -102) T) ((-313 . -93) T) ((-312 . -1104) T) ((-312 . -615) 35072) ((-312 . -102) T) ((-296 . -1196) 35051) ((-296 . -229) 35001) ((-296 . -107) 34951) ((-296 . -310) 34755) ((-296 . -517) 34547) ((-296 . -492) 34484) ((-296 . -151) 34434) ((-296 . -616) NIL) ((-296 . -235) 34384) ((-296 . -612) 34363) ((-296 . -289) 34342) ((-296 . -287) 34321) ((-296 . -102) T) ((-296 . -1104) T) ((-296 . -615) 34303) ((-296 . -1219) T) ((-296 . -34) T) ((-296 . -606) 34282) ((-294 . -1219) T) ((-294 . -517) 34231) ((-294 . -1104) 34013) ((-294 . -615) 33754) ((-294 . -102) 33536) ((-294 . -25) 33400) ((-294 . -21) 33283) ((-294 . -648) 33018) ((-294 . -23) 32901) ((-294 . -131) 32784) ((-294 . -1115) 32665) ((-294 . -728) 32567) ((-294 . -476) 32546) ((-294 . -1052) 32488) ((-294 . -1060) 32430) ((-294 . -650) 32290) ((-294 . -618) 32221) ((-294 . -111) 32137) ((-294 . -1054) 32058) ((-294 . -1059) 31979) ((-294 . -719) 31921) ((-294 . -642) 31863) ((-294 . -903) 31822) ((-294 . -1277) 31792) ((-292 . -615) 31774) ((-290 . -308) T) ((-290 . -455) T) ((-290 . -38) 31761) ((-290 . -618) 31733) ((-290 . -728) T) ((-290 . -1115) T) ((-290 . -1060) T) ((-290 . -1052) T) ((-290 . -111) 31718) ((-290 . -1054) 31705) ((-290 . -1059) 31692) ((-290 . -21) T) ((-290 . -648) 31664) ((-290 . -23) T) ((-290 . -1104) T) ((-290 . -615) 31646) ((-290 . -102) T) ((-290 . -25) T) ((-290 . -131) T) ((-290 . -650) 31633) ((-290 . -642) 31620) ((-290 . -719) 31607) ((-290 . -172) T) ((-290 . -291) T) ((-290 . -560) T) ((-290 . -924) T) ((-281 . -615) 31589) ((-280 . -986) 31573) ((-279 . -986) 31557) ((-276 . -852) T) ((-276 . -102) T) ((-276 . -615) 31539) ((-276 . -1104) T) ((-275 . -841) T) ((-275 . -102) T) ((-275 . -615) 31521) ((-275 . -1104) T) ((-274 . -841) T) ((-274 . -102) T) ((-274 . -615) 31503) ((-274 . -1104) T) ((-273 . -841) T) ((-273 . -102) T) ((-273 . -615) 31485) ((-273 . -1104) T) ((-272 . -841) T) ((-272 . -102) T) ((-272 . -615) 31467) ((-272 . -1104) T) ((-271 . -841) T) ((-271 . -102) T) ((-271 . -615) 31449) ((-271 . -1104) T) ((-270 . -841) T) ((-270 . -102) T) ((-270 . -615) 31431) ((-270 . -1104) T) ((-269 . -841) T) ((-269 . -102) T) ((-269 . -615) 31413) ((-269 . -1104) T) ((-265 . -254) 31375) ((-265 . -618) 31128) ((-265 . -1041) 30972) ((-265 . -616) 30720) ((-265 . -327) 30692) ((-265 . -415) 30676) ((-265 . -38) 30525) ((-265 . -111) 30354) ((-265 . -1054) 30197) ((-265 . -1059) 30040) ((-265 . -648) 29950) ((-265 . -650) 29875) ((-265 . -642) 29724) ((-265 . -719) 29573) ((-265 . -145) 29552) ((-265 . -147) 29531) ((-265 . -172) 29442) ((-265 . -560) 29373) ((-265 . -291) 29304) ((-265 . -47) 29276) ((-265 . -379) 29260) ((-265 . -641) 29208) ((-265 . -455) 29159) ((-265 . -517) 29044) ((-265 . -903) 28990) ((-265 . -889) 28849) ((-265 . -913) 28828) ((-265 . -1224) 28807) ((-265 . -953) 28774) ((-265 . -310) 28761) ((-265 . -233) 28740) ((-265 . -131) T) ((-265 . -25) T) ((-265 . -102) T) ((-265 . -615) 28722) ((-265 . -1104) T) ((-265 . -23) T) ((-265 . -21) T) ((-265 . -728) T) ((-265 . -1115) T) ((-265 . -1060) T) ((-265 . -1052) T) ((-265 . -231) 28706) ((-262 . -1104) T) ((-262 . -615) 28688) ((-262 . -102) T) ((-252 . -238) 28667) ((-252 . -1277) 28637) ((-252 . -793) 28616) ((-252 . -850) 28595) ((-252 . -799) 28546) ((-252 . -796) 28497) ((-252 . -852) 28448) ((-252 . -794) 28399) ((-252 . -795) 28378) ((-252 . -289) 28355) ((-252 . -287) 28332) ((-252 . -492) 28316) ((-252 . -517) 28249) ((-252 . -310) 28187) ((-252 . -1219) T) ((-252 . -34) T) ((-252 . -606) 28164) ((-252 . -1041) 27991) ((-252 . -618) 27721) ((-252 . -415) 27690) ((-252 . -641) 27596) ((-252 . -379) 27565) ((-252 . -370) 27544) ((-252 . -233) 27496) ((-252 . -903) 27428) ((-252 . -231) 27397) ((-252 . -111) 27287) ((-252 . -1054) 27184) ((-252 . -1059) 27081) ((-252 . -172) 27060) ((-252 . -615) 27021) ((-252 . -719) 26963) ((-252 . -642) 26905) ((-252 . -650) 26740) ((-252 . -648) 26560) ((-252 . -131) T) ((-252 . -23) T) ((-252 . -21) T) ((-252 . -1052) 26490) ((-252 . -1060) 26420) ((-252 . -1115) 26330) ((-252 . -728) 26240) ((-252 . -38) 26210) ((-252 . -1104) T) ((-252 . -102) T) ((-252 . -25) T) ((-251 . -238) 26189) ((-251 . -1277) 26159) ((-251 . -793) 26138) ((-251 . -850) 26117) ((-251 . -799) 26068) ((-251 . -796) 26019) ((-251 . -852) 25970) ((-251 . -794) 25921) ((-251 . -795) 25900) ((-251 . -289) 25877) ((-251 . -287) 25854) ((-251 . -492) 25838) ((-251 . -517) 25771) ((-251 . -310) 25709) ((-251 . -1219) T) ((-251 . -34) T) ((-251 . -606) 25686) ((-251 . -1041) 25513) ((-251 . -618) 25243) ((-251 . -415) 25212) ((-251 . -641) 25118) ((-251 . -379) 25087) ((-251 . -370) 25066) ((-251 . -233) 25018) ((-251 . -903) 24950) ((-251 . -231) 24919) ((-251 . -111) 24809) ((-251 . -1054) 24706) ((-251 . -1059) 24603) ((-251 . -172) 24582) ((-251 . -615) 24543) ((-251 . -719) 24485) ((-251 . -642) 24427) ((-251 . -650) 24249) ((-251 . -648) 24056) ((-251 . -131) T) ((-251 . -23) T) ((-251 . -21) T) ((-251 . -1052) 23986) ((-251 . -1060) 23916) ((-251 . -1115) 23826) ((-251 . -728) 23736) ((-251 . -38) 23706) ((-251 . -1104) T) ((-251 . -102) T) ((-251 . -25) T) ((-250 . -1104) T) ((-250 . -615) 23688) ((-250 . -102) T) ((-249 . -186) T) ((-249 . -1104) T) ((-249 . -615) 23655) ((-249 . -102) T) ((-249 . -838) 23637) ((-248 . -1104) T) ((-248 . -615) 23619) ((-248 . -102) T) ((-247 . -953) 23564) ((-247 . -618) 23349) ((-247 . -1041) 23225) ((-247 . -1224) 23204) ((-247 . -913) 23183) ((-247 . -889) NIL) ((-247 . -903) 23160) ((-247 . -517) 23103) ((-247 . -455) 23054) ((-247 . -641) 23002) ((-247 . -379) 22986) ((-247 . -47) 22943) ((-247 . -38) 22792) ((-247 . -642) 22641) ((-247 . -719) 22490) ((-247 . -291) 22421) ((-247 . -560) 22352) ((-247 . -111) 22181) ((-247 . -1054) 22024) ((-247 . -1059) 21867) ((-247 . -172) 21778) ((-247 . -147) 21757) ((-247 . -145) 21736) ((-247 . -650) 21661) ((-247 . -648) 21571) ((-247 . -131) T) ((-247 . -25) T) ((-247 . -102) T) ((-247 . -615) 21553) ((-247 . -1104) T) ((-247 . -23) T) ((-247 . -21) T) ((-247 . -1052) T) ((-247 . -1060) T) ((-247 . -1115) T) ((-247 . -728) T) ((-247 . -415) 21537) ((-247 . -327) 21494) ((-247 . -310) 21481) ((-247 . -616) 21342) ((-245 . -668) 21326) ((-245 . -1258) 21310) ((-245 . -1013) 21294) ((-245 . -1152) 21278) ((-245 . -852) 21257) ((-245 . -374) 21241) ((-245 . -653) 21225) ((-245 . -289) 21202) ((-245 . -287) 21179) ((-245 . -606) 21156) ((-245 . -616) 21117) ((-245 . -492) 21101) ((-245 . -102) 21051) ((-245 . -1104) 21001) ((-245 . -517) 20934) ((-245 . -310) 20872) ((-245 . -615) 20764) ((-245 . -1219) T) ((-245 . -34) T) ((-245 . -151) 20748) ((-245 . -283) 20732) ((-245 . -493) 20709) ((-245 . -618) 20686) ((-239 . -238) 20665) ((-239 . -1277) 20635) ((-239 . -793) 20614) ((-239 . -850) 20593) ((-239 . -799) 20544) ((-239 . -796) 20495) ((-239 . -852) 20446) ((-239 . -794) 20397) ((-239 . -795) 20376) ((-239 . -289) 20353) ((-239 . -287) 20330) ((-239 . -492) 20314) ((-239 . -517) 20247) ((-239 . -310) 20185) ((-239 . -1219) T) ((-239 . -34) T) ((-239 . -606) 20162) ((-239 . -1041) 19989) ((-239 . -618) 19719) ((-239 . -415) 19688) ((-239 . -641) 19594) ((-239 . -379) 19563) ((-239 . -370) 19542) ((-239 . -233) 19494) ((-239 . -903) 19426) ((-239 . -231) 19395) ((-239 . -111) 19285) ((-239 . -1054) 19182) ((-239 . -1059) 19079) ((-239 . -172) 19058) ((-239 . -615) 18789) ((-239 . -719) 18731) ((-239 . -642) 18673) ((-239 . -650) 18521) ((-239 . -648) 18271) ((-239 . -131) 18141) ((-239 . -23) 18011) ((-239 . -21) 17921) ((-239 . -1052) 17851) ((-239 . -1060) 17781) ((-239 . -1115) 17691) ((-239 . -728) 17601) ((-239 . -38) 17571) ((-239 . -1104) 17361) ((-239 . -102) 17151) ((-239 . -25) 17002) ((-227 . -688) 16960) ((-227 . -492) 16944) ((-227 . -102) 16922) ((-227 . -1104) 16900) ((-227 . -517) 16833) ((-227 . -310) 16771) ((-227 . -615) 16703) ((-227 . -1219) T) ((-227 . -34) T) ((-227 . -57) 16661) ((-225 . -407) T) ((-225 . -147) T) ((-225 . -618) 16611) ((-225 . -650) 16576) ((-225 . -648) 16526) ((-225 . -131) T) ((-225 . -25) T) ((-225 . -102) T) ((-225 . -615) 16508) ((-225 . -1104) T) ((-225 . -23) T) ((-225 . -21) T) ((-225 . -728) T) ((-225 . -1115) T) ((-225 . -1060) T) ((-225 . -1052) T) ((-225 . -616) 16438) ((-225 . -365) T) ((-225 . -1224) T) ((-225 . -924) T) ((-225 . -560) T) ((-225 . -172) T) ((-225 . -719) 16403) ((-225 . -642) 16368) ((-225 . -38) 16333) ((-225 . -455) T) ((-225 . -308) T) ((-225 . -111) 16289) ((-225 . -1054) 16254) ((-225 . -1059) 16219) ((-225 . -291) T) ((-225 . -243) T) ((-225 . -850) T) ((-225 . -799) T) ((-225 . -796) T) ((-225 . -852) T) ((-225 . -794) T) ((-225 . -793) T) ((-225 . -889) 16201) ((-225 . -1005) T) ((-225 . -1023) T) ((-225 . -1041) 16161) ((-225 . -1063) T) ((-225 . -233) T) ((-225 . -823) T) ((-225 . -1205) T) ((-225 . -1208) T) ((-225 . -496) T) ((-225 . -285) T) ((-225 . -95) T) ((-225 . -35) T) ((-223 . -623) 16138) ((-223 . -618) 16100) ((-223 . -650) 16067) ((-223 . -648) 16019) ((-223 . -728) T) ((-223 . -1115) T) ((-223 . -1060) T) ((-223 . -1052) T) ((-223 . -21) T) ((-223 . -23) T) ((-223 . -1104) T) ((-223 . -615) 16001) ((-223 . -102) T) ((-223 . -25) T) ((-223 . -131) T) ((-223 . -1041) 15978) ((-222 . -255) 15962) ((-222 . -1124) 15946) ((-222 . -107) 15930) ((-222 . -34) T) ((-222 . -1219) T) ((-222 . -615) 15862) ((-222 . -310) 15800) ((-222 . -517) 15733) ((-222 . -1104) 15711) ((-222 . -102) 15689) ((-222 . -492) 15673) ((-222 . -998) 15657) ((-218 . -1086) T) ((-218 . -493) 15638) ((-218 . -615) 15604) ((-218 . -618) 15585) ((-218 . -1104) T) ((-218 . -102) T) ((-218 . -93) T) ((-217 . -994) 15567) ((-217 . -1154) T) ((-217 . -618) 15517) ((-217 . -1041) 15477) ((-217 . -616) 15407) ((-217 . -1023) T) ((-217 . -913) NIL) ((-217 . -887) 15389) ((-217 . -850) T) ((-217 . -799) T) ((-217 . -796) T) ((-217 . -852) T) ((-217 . -794) T) ((-217 . -793) T) ((-217 . -822) T) ((-217 . -889) 15371) ((-217 . -1219) T) ((-217 . -403) 15353) ((-217 . -641) 15335) ((-217 . -379) 15317) ((-217 . -287) NIL) ((-217 . -310) NIL) ((-217 . -517) NIL) ((-217 . -340) 15299) ((-217 . -243) T) ((-217 . -111) 15233) ((-217 . -1054) 15183) ((-217 . -1059) 15133) ((-217 . -291) T) ((-217 . -719) 15083) ((-217 . -642) 15033) ((-217 . -650) 14983) ((-217 . -648) 14933) ((-217 . -38) 14883) ((-217 . -308) T) ((-217 . -455) T) ((-217 . -172) T) ((-217 . -560) T) ((-217 . -924) T) ((-217 . -1224) T) ((-217 . -365) T) ((-217 . -233) T) ((-217 . -903) NIL) ((-217 . -231) 14865) ((-217 . -147) T) ((-217 . -145) NIL) ((-217 . -131) T) ((-217 . -25) T) ((-217 . -102) T) ((-217 . -615) 14806) ((-217 . -1104) T) ((-217 . -23) T) ((-217 . -21) T) ((-217 . -1052) T) ((-217 . -1060) T) ((-217 . -1115) T) ((-217 . -728) T) ((-214 . -1104) T) ((-214 . -615) 14788) ((-214 . -102) T) ((-214 . -618) 14765) ((-213 . -1104) T) ((-213 . -615) 14747) ((-213 . -102) T) ((-212 . -898) T) ((-212 . -102) T) ((-212 . -615) 14729) ((-212 . -1104) T) ((-211 . -898) T) ((-211 . -102) T) ((-211 . -615) 14711) ((-211 . -1104) T) ((-209 . -802) T) ((-209 . -102) T) ((-209 . -615) 14693) ((-209 . -1104) T) ((-208 . -802) T) ((-208 . -102) T) ((-208 . -615) 14675) ((-208 . -1104) T) ((-207 . -802) T) ((-207 . -102) T) ((-207 . -615) 14657) ((-207 . -1104) T) ((-206 . -802) T) ((-206 . -102) T) ((-206 . -615) 14639) ((-206 . -1104) T) ((-203 . -789) T) ((-203 . -102) T) ((-203 . -615) 14621) ((-203 . -1104) T) ((-202 . -789) T) ((-202 . -102) T) ((-202 . -615) 14603) ((-202 . -1104) T) ((-201 . -789) T) ((-201 . -102) T) ((-201 . -615) 14585) ((-201 . -1104) T) ((-200 . -789) T) ((-200 . -102) T) ((-200 . -615) 14567) ((-200 . -1104) T) ((-199 . -789) T) ((-199 . -102) T) ((-199 . -615) 14549) ((-199 . -1104) T) ((-198 . -789) T) ((-198 . -102) T) ((-198 . -615) 14531) ((-198 . -1104) T) ((-197 . -789) T) ((-197 . -102) T) ((-197 . -615) 14513) ((-197 . -1104) T) ((-196 . -789) T) ((-196 . -102) T) ((-196 . -615) 14495) ((-196 . -1104) T) ((-195 . -789) T) ((-195 . -102) T) ((-195 . -615) 14477) ((-195 . -1104) T) ((-194 . -789) T) ((-194 . -102) T) ((-194 . -615) 14459) ((-194 . -1104) T) ((-193 . -789) T) ((-193 . -102) T) ((-193 . -615) 14441) ((-193 . -1104) T) ((-187 . -1104) T) ((-187 . -615) 14423) ((-187 . -102) T) ((-184 . -1104) T) ((-184 . -615) 14405) ((-184 . -102) T) ((-183 . -186) T) ((-183 . -1104) T) ((-183 . -615) 14387) ((-183 . -102) T) ((-183 . -838) 14369) ((-180 . -1086) T) ((-180 . -493) 14350) ((-180 . -615) 14316) ((-180 . -618) 14297) ((-180 . -1104) T) ((-180 . -102) T) ((-180 . -93) T) ((-175 . -615) 14279) ((-174 . -38) 14211) ((-174 . -618) 14128) ((-174 . -650) 14060) ((-174 . -648) 13977) ((-174 . -728) T) ((-174 . -1115) T) ((-174 . -1060) T) ((-174 . -1052) T) ((-174 . -111) 13888) ((-174 . -1054) 13820) ((-174 . -1059) 13752) ((-174 . -21) T) ((-174 . -23) T) ((-174 . -1104) T) ((-174 . -615) 13734) ((-174 . -102) T) ((-174 . -25) T) ((-174 . -131) T) ((-174 . -642) 13666) ((-174 . -719) 13598) ((-174 . -365) T) ((-174 . -1224) T) ((-174 . -924) T) ((-174 . -560) T) ((-174 . -172) T) ((-174 . -455) T) ((-174 . -308) T) ((-174 . -291) T) ((-174 . -243) T) ((-171 . -1104) T) ((-171 . -615) 13580) ((-171 . -102) T) ((-168 . -166) 13564) ((-168 . -35) 13542) ((-168 . -95) 13520) ((-168 . -285) 13498) ((-168 . -496) 13476) ((-168 . -1208) 13454) ((-168 . -1205) 13432) ((-168 . -1005) 13383) ((-168 . -913) 13336) ((-168 . -616) 13097) ((-168 . -887) 13081) ((-168 . -370) 13032) ((-168 . -352) 13011) ((-168 . -1154) 12990) ((-168 . -405) 12969) ((-168 . -413) 12940) ((-168 . -38) 12768) ((-168 . -111) 12664) ((-168 . -1054) 12574) ((-168 . -1059) 12484) ((-168 . -648) 12379) ((-168 . -650) 12289) ((-168 . -642) 12117) ((-168 . -719) 11945) ((-168 . -372) 11916) ((-168 . -726) 11887) ((-168 . -1041) 11783) ((-168 . -618) 11561) ((-168 . -415) 11545) ((-168 . -889) 11470) ((-168 . -1219) T) ((-168 . -403) 11454) ((-168 . -641) 11402) ((-168 . -379) 11386) ((-168 . -287) 11344) ((-168 . -310) 11309) ((-168 . -517) 11221) ((-168 . -340) 11205) ((-168 . -243) 11156) ((-168 . -1224) 11061) ((-168 . -365) 11012) ((-168 . -924) 10943) ((-168 . -560) 10854) ((-168 . -291) 10765) ((-168 . -455) 10696) ((-168 . -308) 10627) ((-168 . -233) 10578) ((-168 . -903) 10537) ((-168 . -231) 10521) ((-168 . -172) T) ((-168 . -147) 10500) ((-168 . -1052) T) ((-168 . -1060) T) ((-168 . -1115) T) ((-168 . -728) T) ((-168 . -21) T) ((-168 . -23) T) ((-168 . -1104) T) ((-168 . -615) 10482) ((-168 . -102) T) ((-168 . -25) T) ((-168 . -131) T) ((-168 . -145) 10433) ((-168 . -823) 10412) ((-162 . -1086) T) ((-162 . -493) 10393) ((-162 . -615) 10359) ((-162 . -618) 10340) ((-162 . -1104) T) ((-162 . -102) T) ((-162 . -93) T) ((-161 . -1104) T) ((-161 . -615) 10322) ((-161 . -102) T) ((-157 . -25) T) ((-157 . -102) T) ((-157 . -615) 10304) ((-157 . -1104) T) ((-156 . -1086) T) ((-156 . -493) 10285) ((-156 . -615) 10251) ((-156 . -618) 10232) ((-156 . -1104) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1086) T) ((-154 . -493) 10213) ((-154 . -615) 10179) ((-154 . -618) 10160) ((-154 . -1104) T) ((-154 . -102) T) ((-154 . -93) T) ((-152 . -1052) T) ((-152 . -1060) T) ((-152 . -1115) T) ((-152 . -728) T) ((-152 . -21) T) ((-152 . -648) 10119) ((-152 . -23) T) ((-152 . -1104) T) ((-152 . -615) 10101) ((-152 . -102) T) ((-152 . -25) T) ((-152 . -131) T) ((-152 . -650) 10075) ((-152 . -618) 10044) ((-152 . -38) 10028) ((-152 . -111) 10007) ((-152 . -1054) 9991) ((-152 . -1059) 9975) ((-152 . -642) 9959) ((-152 . -719) 9943) ((-152 . -1277) 9927) ((-144 . -846) T) ((-144 . -852) T) ((-144 . -1104) T) ((-144 . -615) 9909) ((-144 . -102) T) ((-144 . -370) T) ((-141 . -1104) T) ((-141 . -615) 9891) ((-141 . -102) T) ((-141 . -616) 9850) ((-141 . -429) 9832) ((-141 . -1102) 9814) ((-141 . -370) T) ((-141 . -235) 9796) ((-141 . -151) 9778) ((-141 . -492) 9760) ((-141 . -517) NIL) ((-141 . -310) NIL) ((-141 . -1219) T) ((-141 . -34) T) ((-141 . -107) 9742) ((-141 . -229) 9724) ((-140 . -615) 9706) ((-139 . -186) T) ((-139 . -1104) T) ((-139 . -615) 9673) ((-139 . -102) T) ((-139 . -838) 9655) ((-138 . -1086) T) ((-138 . -493) 9636) ((-138 . -615) 9602) ((-138 . -618) 9583) ((-138 . -1104) T) ((-138 . -102) T) ((-138 . -93) T) ((-137 . -1086) T) ((-137 . -493) 9564) ((-137 . -615) 9530) ((-137 . -618) 9511) ((-137 . -1104) T) ((-137 . -102) T) ((-137 . -93) T) ((-135 . -468) 9488) ((-135 . -618) 9472) ((-135 . -1041) 9456) ((-135 . -1104) T) ((-135 . -615) 9438) ((-135 . -102) T) ((-135 . -473) 9393) ((-134 . -852) T) ((-134 . -102) T) ((-134 . -615) 9375) ((-134 . -1104) T) ((-134 . -23) T) ((-134 . -25) T) ((-134 . -728) T) ((-134 . -1115) T) ((-134 . -1041) 9357) ((-134 . -618) 9339) ((-133 . -1086) T) ((-133 . -493) 9320) ((-133 . -615) 9286) ((-133 . -618) 9267) ((-133 . -1104) T) ((-133 . -102) T) ((-133 . -93) T) ((-130 . -1104) T) ((-130 . -615) 9249) ((-130 . -102) T) ((-129 . -19) 9231) ((-129 . -653) 9213) ((-129 . -289) 9188) ((-129 . -287) 9163) ((-129 . -606) 9138) ((-129 . -616) NIL) ((-129 . -492) 9120) ((-129 . -102) T) ((-129 . -1104) T) ((-129 . -517) NIL) ((-129 . -310) NIL) ((-129 . -615) 9064) ((-129 . -1219) T) ((-129 . -34) T) ((-129 . -151) 9046) ((-129 . -852) T) ((-129 . -374) 9028) ((-128 . -846) T) ((-128 . -852) T) ((-128 . -1104) T) ((-128 . -615) 8995) ((-128 . -102) T) ((-128 . -370) T) ((-128 . -493) 8977) ((-128 . -618) 8959) ((-127 . -125) 8943) ((-127 . -1013) 8927) ((-127 . -34) T) ((-127 . -1219) T) ((-127 . -615) 8859) ((-127 . -310) 8797) ((-127 . -517) 8730) ((-127 . -1104) 8708) ((-127 . -102) 8686) ((-127 . -492) 8670) ((-127 . -119) 8654) ((-126 . -125) 8638) ((-126 . -1013) 8622) ((-126 . -34) T) ((-126 . -1219) T) ((-126 . -615) 8554) ((-126 . -310) 8492) ((-126 . -517) 8425) ((-126 . -1104) 8403) ((-126 . -102) 8381) ((-126 . -492) 8365) ((-126 . -119) 8349) ((-121 . -125) 8333) ((-121 . -1013) 8317) ((-121 . -34) T) ((-121 . -1219) T) ((-121 . -615) 8249) ((-121 . -310) 8187) ((-121 . -517) 8120) ((-121 . -1104) 8098) ((-121 . -102) 8076) ((-121 . -492) 8060) ((-121 . -119) 8044) ((-117 . -994) 8021) ((-117 . -1154) NIL) ((-117 . -1041) 7998) ((-117 . -618) 7928) ((-117 . -616) NIL) ((-117 . -1023) NIL) ((-117 . -913) NIL) ((-117 . -887) 7905) ((-117 . -850) NIL) ((-117 . -799) NIL) ((-117 . -796) NIL) ((-117 . -852) NIL) ((-117 . -794) NIL) ((-117 . -793) NIL) ((-117 . -822) NIL) ((-117 . -889) NIL) ((-117 . -1219) T) ((-117 . -403) 7882) ((-117 . -641) 7859) ((-117 . -379) 7836) ((-117 . -287) 7787) ((-117 . -310) 7744) ((-117 . -517) 7652) ((-117 . -340) 7629) ((-117 . -243) T) ((-117 . -111) 7558) ((-117 . -1054) 7503) ((-117 . -1059) 7448) ((-117 . -291) T) ((-117 . -719) 7393) ((-117 . -642) 7338) ((-117 . -650) 7283) ((-117 . -648) 7213) ((-117 . -38) 7158) ((-117 . -308) T) ((-117 . -455) T) ((-117 . -172) T) ((-117 . -560) T) ((-117 . -924) T) ((-117 . -1224) T) ((-117 . -365) T) ((-117 . -233) NIL) ((-117 . -903) NIL) ((-117 . -231) 7135) ((-117 . -147) T) ((-117 . -145) NIL) ((-117 . -131) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -615) 7117) ((-117 . -1104) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1052) T) ((-117 . -1060) T) ((-117 . -1115) T) ((-117 . -728) T) ((-116 . -872) 7101) ((-116 . -924) T) ((-116 . -560) T) ((-116 . -291) T) ((-116 . -172) T) ((-116 . -618) 7073) ((-116 . -719) 7060) ((-116 . -642) 7047) ((-116 . -1059) 7034) ((-116 . -1054) 7021) ((-116 . -111) 7006) ((-116 . -38) 6993) ((-116 . -455) T) ((-116 . -308) T) ((-116 . -1052) T) ((-116 . -1060) T) ((-116 . -1115) T) ((-116 . -728) T) ((-116 . -21) T) ((-116 . -648) 6965) ((-116 . -23) T) ((-116 . -1104) T) ((-116 . -615) 6947) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -131) T) ((-116 . -650) 6934) ((-116 . -147) T) ((-113 . -852) T) ((-113 . -102) T) ((-113 . -615) 6916) ((-113 . -1104) T) ((-113 . -838) 6897) ((-112 . -846) T) ((-112 . -852) T) ((-112 . -1104) T) ((-112 . -615) 6879) ((-112 . -102) T) ((-112 . -370) T) ((-112 . -664) T) ((-112 . -970) T) ((-112 . -616) 6861) ((-110 . -123) T) ((-110 . -374) 6843) ((-110 . -852) T) ((-110 . -151) 6825) ((-110 . -34) T) ((-110 . -1219) T) ((-110 . -615) 6807) ((-110 . -310) NIL) ((-110 . -517) NIL) ((-110 . -1104) T) ((-110 . -492) 6789) ((-110 . -616) 6771) ((-110 . -606) 6746) ((-110 . -287) 6721) ((-110 . -289) 6696) ((-110 . -653) 6678) ((-110 . -19) 6660) ((-110 . -102) T) ((-110 . -664) T) ((-109 . -615) 6642) ((-108 . -994) 6624) ((-108 . -1154) T) ((-108 . -618) 6574) ((-108 . -1041) 6534) ((-108 . -616) 6464) ((-108 . -1023) T) ((-108 . -913) NIL) ((-108 . -887) 6446) ((-108 . -850) T) ((-108 . -799) T) ((-108 . -796) T) ((-108 . -852) T) ((-108 . -794) T) ((-108 . -793) T) ((-108 . -822) T) ((-108 . -889) 6428) ((-108 . -1219) T) ((-108 . -403) 6410) ((-108 . -641) 6392) ((-108 . -379) 6374) ((-108 . -287) NIL) ((-108 . -310) NIL) ((-108 . -517) NIL) ((-108 . -340) 6356) ((-108 . -243) T) ((-108 . -111) 6290) ((-108 . -1054) 6240) ((-108 . -1059) 6190) ((-108 . -291) T) ((-108 . -719) 6140) ((-108 . -642) 6090) ((-108 . -650) 6040) ((-108 . -648) 5990) ((-108 . -38) 5940) ((-108 . -308) T) ((-108 . -455) T) ((-108 . -172) T) ((-108 . -560) T) ((-108 . -924) T) ((-108 . -1224) T) ((-108 . -365) T) ((-108 . -233) T) ((-108 . -903) NIL) ((-108 . -231) 5922) ((-108 . -147) T) ((-108 . -145) NIL) ((-108 . -131) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -615) 5864) ((-108 . -1104) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1052) T) ((-108 . -1060) T) ((-108 . -1115) T) ((-108 . -728) T) ((-105 . -1104) T) ((-105 . -615) 5846) ((-105 . -102) T) ((-103 . -125) 5830) ((-103 . -1013) 5814) ((-103 . -34) T) ((-103 . -1219) T) ((-103 . -615) 5746) ((-103 . -310) 5684) ((-103 . -517) 5617) ((-103 . -1104) 5595) ((-103 . -102) 5573) ((-103 . -492) 5557) ((-103 . -119) 5541) ((-99 . -476) T) ((-99 . -1115) T) ((-99 . -102) T) ((-99 . -615) 5523) ((-99 . -1104) T) ((-99 . -728) T) ((-99 . -287) 5502) ((-97 . -1104) T) ((-97 . -615) 5484) ((-97 . -102) T) ((-96 . -1086) T) ((-96 . -493) 5465) ((-96 . -615) 5431) ((-96 . -618) 5412) ((-96 . -1104) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1124) 5396) ((-91 . -492) 5380) ((-91 . -102) 5358) ((-91 . -1104) 5336) ((-91 . -517) 5269) ((-91 . -310) 5207) ((-91 . -615) 5139) ((-91 . -1219) T) ((-91 . -34) T) ((-91 . -107) 5123) ((-89 . -400) T) ((-89 . -615) 5105) ((-89 . -1219) T) ((-89 . -399) T) ((-88 . -387) T) ((-88 . -615) 5087) ((-88 . -1219) T) ((-88 . -399) T) ((-87 . -443) T) ((-87 . -615) 5069) ((-87 . -1219) T) ((-87 . -399) T) ((-86 . -444) T) ((-86 . -615) 5051) ((-86 . -1219) T) ((-86 . -399) T) ((-85 . -387) T) ((-85 . -615) 5033) ((-85 . -1219) T) ((-85 . -399) T) ((-84 . -387) T) ((-84 . -615) 5015) ((-84 . -1219) T) ((-84 . -399) T) ((-83 . -444) T) ((-83 . -615) 4997) ((-83 . -1219) T) ((-83 . -399) T) ((-82 . -444) T) ((-82 . -615) 4979) ((-82 . -1219) T) ((-82 . -399) T) ((-81 . -444) T) ((-81 . -615) 4961) ((-81 . -1219) T) ((-81 . -399) T) ((-81 . -618) 4902) ((-80 . -444) T) ((-80 . -615) 4884) ((-80 . -1219) T) ((-80 . -399) T) ((-79 . -444) T) ((-79 . -615) 4866) ((-79 . -1219) T) ((-79 . -399) T) ((-78 . -400) T) ((-78 . -615) 4848) ((-78 . -1219) T) ((-78 . -399) T) ((-77 . -444) T) ((-77 . -615) 4830) ((-77 . -1219) T) ((-77 . -399) T) ((-76 . -444) T) ((-76 . -615) 4812) ((-76 . -1219) T) ((-76 . -399) T) ((-75 . -400) T) ((-75 . -615) 4794) ((-75 . -1219) T) ((-75 . -399) T) ((-74 . -444) T) ((-74 . -615) 4776) ((-74 . -1219) T) ((-74 . -399) T) ((-73 . -385) T) ((-73 . -615) 4758) ((-73 . -1219) T) ((-73 . -399) T) ((-72 . -399) T) ((-72 . -1219) T) ((-72 . -615) 4740) ((-71 . -444) T) ((-71 . -615) 4722) ((-71 . -1219) T) ((-71 . -399) T) ((-70 . -385) T) ((-70 . -615) 4704) ((-70 . -1219) T) ((-70 . -399) T) ((-69 . -399) T) ((-69 . -1219) T) ((-69 . -615) 4686) ((-68 . -385) T) ((-68 . -615) 4668) ((-68 . -1219) T) ((-68 . -399) T) ((-67 . -385) T) ((-67 . -615) 4650) ((-67 . -1219) T) ((-67 . -399) T) ((-66 . -400) T) ((-66 . -615) 4632) ((-66 . -1219) T) ((-66 . -399) T) ((-65 . -387) T) ((-65 . -615) 4614) ((-65 . -1219) T) ((-65 . -399) T) ((-65 . -618) 4543) ((-64 . -444) T) ((-64 . -615) 4525) ((-64 . -1219) T) ((-64 . -399) T) ((-63 . -399) T) ((-63 . -1219) T) ((-63 . -615) 4507) ((-62 . -444) T) ((-62 . -615) 4489) ((-62 . -1219) T) ((-62 . -399) T) ((-61 . -400) T) ((-61 . -615) 4471) ((-61 . -1219) T) ((-61 . -399) T) ((-60 . -57) 4433) ((-60 . -34) T) ((-60 . -1219) T) ((-60 . -615) 4365) ((-60 . -310) 4303) ((-60 . -517) 4236) ((-60 . -1104) 4214) ((-60 . -102) 4192) ((-60 . -492) 4176) ((-58 . -19) 4160) ((-58 . -653) 4144) ((-58 . -289) 4121) ((-58 . -287) 4098) ((-58 . -606) 4075) ((-58 . -616) 4036) ((-58 . -492) 4020) ((-58 . -102) 3970) ((-58 . -1104) 3920) ((-58 . -517) 3853) ((-58 . -310) 3791) ((-58 . -615) 3703) ((-58 . -1219) T) ((-58 . -34) T) ((-58 . -151) 3687) ((-58 . -852) 3666) ((-58 . -374) 3650) ((-55 . -1104) T) ((-55 . -615) 3632) ((-55 . -102) T) ((-55 . -1041) 3614) ((-55 . -618) 3596) ((-51 . -1104) T) ((-51 . -615) 3578) ((-51 . -102) T) ((-50 . -623) 3562) ((-50 . -618) 3531) ((-50 . -650) 3505) ((-50 . -648) 3464) ((-50 . -728) T) ((-50 . -1115) T) ((-50 . -1060) T) ((-50 . -1052) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1104) T) ((-50 . -615) 3446) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -131) T) ((-50 . -1041) 3430) ((-49 . -1104) T) ((-49 . -615) 3412) ((-49 . -102) T) ((-48 . -299) T) ((-48 . -102) T) ((-48 . -615) 3394) ((-48 . -1104) T) ((-48 . -618) 3327) ((-48 . -1041) 3270) ((-48 . -517) 3236) ((-48 . -310) 3223) ((-48 . -27) T) ((-48 . -1005) T) ((-48 . -243) T) ((-48 . -111) 3179) ((-48 . -1054) 3144) ((-48 . -1059) 3109) ((-48 . -291) T) ((-48 . -719) 3074) ((-48 . -642) 3039) ((-48 . -650) 3004) ((-48 . -648) 2954) ((-48 . -131) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1052) T) ((-48 . -1060) T) ((-48 . -1115) T) ((-48 . -728) T) ((-48 . -38) 2919) ((-48 . -308) T) ((-48 . -455) T) ((-48 . -172) T) ((-48 . -560) T) ((-48 . -924) T) ((-48 . -1224) T) ((-48 . -365) T) ((-48 . -641) 2879) ((-48 . -1023) T) ((-48 . -616) 2824) ((-48 . -147) T) ((-48 . -233) T) ((-45 . -36) 2803) ((-45 . -606) 2728) ((-45 . -310) 2532) ((-45 . -517) 2324) ((-45 . -492) 2261) ((-45 . -287) 2186) ((-45 . -289) 2111) ((-45 . -612) 2090) ((-45 . -235) 2040) ((-45 . -107) 1990) ((-45 . -229) 1940) ((-45 . -1196) 1919) ((-45 . -283) 1869) ((-45 . -151) 1819) ((-45 . -34) T) ((-45 . -1219) T) ((-45 . -615) 1801) ((-45 . -1104) T) ((-45 . -102) T) ((-45 . -616) NIL) ((-45 . -653) 1751) ((-45 . -374) 1701) ((-45 . -852) NIL) ((-45 . -1152) 1651) ((-45 . -1013) 1601) ((-45 . -1258) 1551) ((-45 . -668) 1501) ((-44 . -421) 1485) ((-44 . -746) 1469) ((-44 . -722) T) ((-44 . -763) T) ((-44 . -111) 1448) ((-44 . -1054) 1432) ((-44 . -1059) 1416) ((-44 . -21) T) ((-44 . -648) 1359) ((-44 . -23) T) ((-44 . -1104) T) ((-44 . -615) 1341) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -131) T) ((-44 . -650) 1299) ((-44 . -642) 1283) ((-44 . -719) 1267) ((-44 . -369) 1251) ((-40 . -344) 1225) ((-40 . -172) T) ((-40 . -618) 1155) ((-40 . -728) T) ((-40 . -1115) T) ((-40 . -1060) T) ((-40 . -1052) T) ((-40 . -650) 1100) ((-40 . -648) 1030) ((-40 . -131) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -615) 1012) ((-40 . -1104) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1059) 957) ((-40 . -1054) 902) ((-40 . -111) 831) ((-40 . -616) 815) ((-40 . -231) 792) ((-40 . -903) 744) ((-40 . -233) 716) ((-40 . -365) T) ((-40 . -1224) T) ((-40 . -924) T) ((-40 . -560) T) ((-40 . -719) 661) ((-40 . -642) 606) ((-40 . -38) 551) ((-40 . -455) T) ((-40 . -308) T) ((-40 . -291) T) ((-40 . -243) T) ((-40 . -370) NIL) ((-40 . -352) NIL) ((-40 . -1154) NIL) ((-40 . -145) 523) ((-40 . -405) NIL) ((-40 . -413) 495) ((-40 . -147) 467) ((-40 . -372) 439) ((-40 . -379) 416) ((-40 . -641) 355) ((-40 . -415) 332) ((-40 . -1041) 220) ((-40 . -726) 192) ((-31 . -1086) T) ((-31 . -493) 173) ((-31 . -615) 139) ((-31 . -618) 120) ((-31 . -1104) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -958) T) ((-30 . -615) 102) ((0 . |EnumerationCategory|) T) ((0 . -615) 84) ((0 . -1104) T) ((0 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -615) 66) ((-2 . -1104) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -615) 48) ((-3 . -1104) T) ((-3 . -102) T) ((-1 . -1104) T) ((-1 . -615) 30) ((-1 . -102) T))
\ No newline at end of file +((((-550)) . T)) +(((-1299 . -173) T) ((-1299 . -619) 188419) ((-1299 . -729) T) ((-1299 . -1116) T) ((-1299 . -1061) T) ((-1299 . -1053) T) ((-1299 . -651) 188406) ((-1299 . -649) 188378) ((-1299 . -131) T) ((-1299 . -25) T) ((-1299 . -102) T) ((-1299 . -616) 188360) ((-1299 . -1105) T) ((-1299 . -23) T) ((-1299 . -21) T) ((-1299 . -1060) 188347) ((-1299 . -1055) 188334) ((-1299 . -111) 188319) ((-1299 . -371) T) ((-1299 . -617) 188301) ((-1299 . -1155) T) ((-1295 . -1293) 188280) ((-1295 . -1042) 188257) ((-1295 . -619) 188206) ((-1295 . -1053) T) ((-1295 . -1061) T) ((-1295 . -1116) T) ((-1295 . -729) T) ((-1295 . -21) T) ((-1295 . -649) 188165) ((-1295 . -23) T) ((-1295 . -1105) T) ((-1295 . -616) 188147) ((-1295 . -102) T) ((-1295 . -25) T) ((-1295 . -131) T) ((-1295 . -651) 188121) ((-1295 . -1285) 188105) ((-1295 . -720) 188075) ((-1295 . -643) 188045) ((-1295 . -1060) 188029) ((-1295 . -1055) 188013) ((-1295 . -111) 187992) ((-1295 . -38) 187962) ((-1295 . -1290) 187941) ((-1294 . -1053) T) ((-1294 . -1061) T) ((-1294 . -1116) T) ((-1294 . -729) T) ((-1294 . -21) T) ((-1294 . -649) 187900) ((-1294 . -23) T) ((-1294 . -1105) T) ((-1294 . -616) 187882) ((-1294 . -102) T) ((-1294 . -25) T) ((-1294 . -131) T) ((-1294 . -651) 187856) ((-1294 . -619) 187812) ((-1294 . -1285) 187796) ((-1294 . -720) 187766) ((-1294 . -643) 187736) ((-1294 . -1060) 187720) ((-1294 . -1055) 187704) ((-1294 . -111) 187683) ((-1294 . -38) 187653) ((-1294 . -387) 187632) ((-1294 . -1042) 187616) ((-1292 . -1293) 187592) ((-1292 . -1042) 187566) ((-1292 . -619) 187512) ((-1292 . -1053) T) ((-1292 . -1061) T) ((-1292 . -1116) T) ((-1292 . -729) T) ((-1292 . -21) T) ((-1292 . -649) 187471) ((-1292 . -23) T) ((-1292 . -1105) T) ((-1292 . -616) 187453) ((-1292 . -102) T) ((-1292 . -25) T) ((-1292 . -131) T) ((-1292 . -651) 187427) ((-1292 . -1285) 187411) ((-1292 . -720) 187381) ((-1292 . -643) 187351) ((-1292 . -1060) 187335) ((-1292 . -1055) 187319) ((-1292 . -111) 187298) ((-1292 . -38) 187268) ((-1292 . -1290) 187244) ((-1291 . -1293) 187223) ((-1291 . -1042) 187180) ((-1291 . -619) 187109) ((-1291 . -1053) T) ((-1291 . -1061) T) ((-1291 . -1116) T) ((-1291 . -729) T) ((-1291 . -21) T) ((-1291 . -649) 187068) ((-1291 . -23) T) ((-1291 . -1105) T) ((-1291 . -616) 187050) ((-1291 . -102) T) ((-1291 . -25) T) ((-1291 . -131) T) ((-1291 . -651) 187024) ((-1291 . -1285) 187008) ((-1291 . -720) 186978) ((-1291 . -643) 186948) ((-1291 . -1060) 186932) ((-1291 . -1055) 186916) ((-1291 . -111) 186895) ((-1291 . -38) 186865) ((-1291 . -1290) 186844) ((-1291 . -387) 186816) ((-1286 . -387) 186788) ((-1286 . -619) 186737) ((-1286 . -1042) 186714) ((-1286 . -643) 186684) ((-1286 . -720) 186654) ((-1286 . -651) 186628) ((-1286 . -649) 186587) ((-1286 . -131) T) ((-1286 . -25) T) ((-1286 . -102) T) ((-1286 . -616) 186569) ((-1286 . -1105) T) ((-1286 . -23) T) ((-1286 . -21) T) ((-1286 . -1060) 186553) ((-1286 . -1055) 186537) ((-1286 . -111) 186516) ((-1286 . -1293) 186495) ((-1286 . -1053) T) ((-1286 . -1061) T) ((-1286 . -1116) T) ((-1286 . -729) T) ((-1286 . -1285) 186479) ((-1286 . -38) 186449) ((-1286 . -1290) 186428) ((-1284 . -1215) 186397) ((-1284 . -616) 186359) ((-1284 . -151) 186343) ((-1284 . -34) T) ((-1284 . -1220) T) ((-1284 . -311) 186281) ((-1284 . -518) 186214) ((-1284 . -1105) T) ((-1284 . -102) T) ((-1284 . -493) 186198) ((-1284 . -617) 186159) ((-1284 . -980) 186128) ((-1283 . -1053) T) ((-1283 . -1061) T) ((-1283 . -1116) T) ((-1283 . -729) T) ((-1283 . -21) T) ((-1283 . -649) 186073) ((-1283 . -23) T) ((-1283 . -1105) T) ((-1283 . -616) 186042) ((-1283 . -102) T) ((-1283 . -25) T) ((-1283 . -131) T) ((-1283 . -651) 186002) ((-1283 . -619) 185944) ((-1283 . -494) 185928) ((-1283 . -38) 185898) ((-1283 . -111) 185863) ((-1283 . -1055) 185833) ((-1283 . -1060) 185803) ((-1283 . -643) 185773) ((-1283 . -720) 185743) ((-1282 . -1087) T) ((-1282 . -494) 185724) ((-1282 . -616) 185690) ((-1282 . -619) 185671) ((-1282 . -1105) T) ((-1282 . -102) T) ((-1282 . -93) T) ((-1281 . -1087) T) ((-1281 . -494) 185652) ((-1281 . -616) 185618) ((-1281 . -619) 185599) ((-1281 . -1105) T) ((-1281 . -102) T) ((-1281 . -93) T) ((-1276 . -616) 185581) ((-1274 . -1105) T) ((-1274 . -616) 185563) ((-1274 . -102) T) ((-1273 . -1105) T) ((-1273 . -616) 185545) ((-1273 . -102) T) ((-1270 . -1269) 185529) ((-1270 . -375) 185513) ((-1270 . -853) 185492) ((-1270 . -151) 185476) ((-1270 . -34) T) ((-1270 . -1220) T) ((-1270 . -616) 185388) ((-1270 . -311) 185326) ((-1270 . -518) 185259) ((-1270 . -1105) 185209) ((-1270 . -102) 185159) ((-1270 . -493) 185143) ((-1270 . -617) 185104) ((-1270 . -607) 185081) ((-1270 . -288) 185058) ((-1270 . -290) 185035) ((-1270 . -654) 185019) ((-1270 . -19) 185003) ((-1267 . -1105) T) ((-1267 . -616) 184969) ((-1267 . -102) T) ((-1260 . -1263) 184953) ((-1260 . -234) 184912) ((-1260 . -619) 184794) ((-1260 . -651) 184719) ((-1260 . -649) 184629) ((-1260 . -131) T) ((-1260 . -25) T) ((-1260 . -102) T) ((-1260 . -616) 184611) ((-1260 . -1105) T) ((-1260 . -23) T) ((-1260 . -21) T) ((-1260 . -729) T) ((-1260 . -1116) T) ((-1260 . -1061) T) ((-1260 . -1053) T) ((-1260 . -288) 184596) ((-1260 . -904) 184509) ((-1260 . -977) 184478) ((-1260 . -38) 184375) ((-1260 . -111) 184244) ((-1260 . -1055) 184127) ((-1260 . -1060) 184010) ((-1260 . -643) 183907) ((-1260 . -720) 183804) ((-1260 . -145) 183783) ((-1260 . -147) 183762) ((-1260 . -173) 183713) ((-1260 . -561) 183692) ((-1260 . -292) 183671) ((-1260 . -47) 183648) ((-1260 . -1249) 183625) ((-1260 . -35) 183591) ((-1260 . -95) 183557) ((-1260 . -286) 183523) ((-1260 . -497) 183489) ((-1260 . -1209) 183455) ((-1260 . -1206) 183421) ((-1260 . -1006) 183387) ((-1257 . -328) 183331) ((-1257 . -1042) 183297) ((-1257 . -416) 183263) ((-1257 . -38) 183155) ((-1257 . -619) 183029) ((-1257 . -651) 182934) ((-1257 . -649) 182824) ((-1257 . -729) T) ((-1257 . -1116) T) ((-1257 . -1061) T) ((-1257 . -1053) T) ((-1257 . -111) 182716) ((-1257 . -1055) 182621) ((-1257 . -1060) 182526) ((-1257 . -21) T) ((-1257 . -23) T) ((-1257 . -1105) T) ((-1257 . -616) 182508) ((-1257 . -102) T) ((-1257 . -25) T) ((-1257 . -131) T) ((-1257 . -643) 182400) ((-1257 . -720) 182292) ((-1257 . -145) 182253) ((-1257 . -147) 182214) ((-1257 . -173) T) ((-1257 . -561) T) ((-1257 . -292) T) ((-1257 . -47) 182158) ((-1256 . -1255) 182137) ((-1256 . -366) 182116) ((-1256 . -1225) 182095) ((-1256 . -925) 182074) ((-1256 . -561) 182025) ((-1256 . -173) 181956) ((-1256 . -619) 181769) ((-1256 . -720) 181610) ((-1256 . -643) 181451) ((-1256 . -38) 181292) ((-1256 . -456) 181271) ((-1256 . -309) 181250) ((-1256 . -651) 181147) ((-1256 . -649) 181029) ((-1256 . -729) T) ((-1256 . -1116) T) ((-1256 . -1061) T) ((-1256 . -1053) T) ((-1256 . -111) 180850) ((-1256 . -1055) 180685) ((-1256 . -1060) 180520) ((-1256 . -21) T) ((-1256 . -23) T) ((-1256 . -1105) T) ((-1256 . -616) 180502) ((-1256 . -102) T) ((-1256 . -25) T) ((-1256 . -131) T) ((-1256 . -292) 180453) ((-1256 . -244) 180432) ((-1256 . -1006) 180398) ((-1256 . -1206) 180364) ((-1256 . -1209) 180330) ((-1256 . -497) 180296) ((-1256 . -286) 180262) ((-1256 . -95) 180228) ((-1256 . -35) 180194) ((-1256 . -1249) 180164) ((-1256 . -47) 180134) ((-1256 . -147) 180113) ((-1256 . -145) 180092) ((-1256 . -977) 180054) ((-1256 . -904) 179960) ((-1256 . -288) 179945) ((-1256 . -234) 179897) ((-1256 . -1253) 179881) ((-1256 . -1042) 179865) ((-1251 . -1255) 179826) ((-1251 . -366) 179805) ((-1251 . -1225) 179784) ((-1251 . -925) 179763) ((-1251 . -561) 179714) ((-1251 . -173) 179645) ((-1251 . -619) 179388) ((-1251 . -720) 179229) ((-1251 . -643) 179070) ((-1251 . -38) 178911) ((-1251 . -456) 178890) ((-1251 . -309) 178869) ((-1251 . -651) 178766) ((-1251 . -649) 178648) ((-1251 . -729) T) ((-1251 . -1116) T) ((-1251 . -1061) T) ((-1251 . -1053) T) ((-1251 . -111) 178469) ((-1251 . -1055) 178304) ((-1251 . -1060) 178139) ((-1251 . -21) T) ((-1251 . -23) T) ((-1251 . -1105) T) ((-1251 . -616) 178121) ((-1251 . -102) T) ((-1251 . -25) T) ((-1251 . -131) T) ((-1251 . -292) 178072) ((-1251 . -244) 178051) ((-1251 . -1006) 178017) ((-1251 . -1206) 177983) ((-1251 . -1209) 177949) ((-1251 . -497) 177915) ((-1251 . -286) 177881) ((-1251 . -95) 177847) ((-1251 . -35) 177813) ((-1251 . -1249) 177783) ((-1251 . -47) 177753) ((-1251 . -147) 177732) ((-1251 . -145) 177711) ((-1251 . -977) 177673) ((-1251 . -904) 177579) ((-1251 . -288) 177564) ((-1251 . -234) 177516) ((-1251 . -1253) 177500) ((-1251 . -1042) 177435) ((-1239 . -1246) 177419) ((-1239 . -1155) 177397) ((-1239 . -617) NIL) ((-1239 . -311) 177384) ((-1239 . -518) 177331) ((-1239 . -328) 177308) ((-1239 . -1042) 177188) ((-1239 . -416) 177172) ((-1239 . -38) 177001) ((-1239 . -111) 176810) ((-1239 . -1055) 176633) ((-1239 . -1060) 176456) ((-1239 . -649) 176366) ((-1239 . -651) 176291) ((-1239 . -643) 176120) ((-1239 . -720) 175949) ((-1239 . -619) 175697) ((-1239 . -145) 175676) ((-1239 . -147) 175655) ((-1239 . -47) 175632) ((-1239 . -380) 175616) ((-1239 . -642) 175564) ((-1239 . -904) 175507) ((-1239 . -890) NIL) ((-1239 . -914) 175486) ((-1239 . -1225) 175465) ((-1239 . -954) 175434) ((-1239 . -925) 175413) ((-1239 . -561) 175324) ((-1239 . -292) 175235) ((-1239 . -173) 175126) ((-1239 . -456) 175057) ((-1239 . -309) 175036) ((-1239 . -288) 174963) ((-1239 . -234) T) ((-1239 . -131) T) ((-1239 . -25) T) ((-1239 . -102) T) ((-1239 . -616) 174945) ((-1239 . -1105) T) ((-1239 . -23) T) ((-1239 . -21) T) ((-1239 . -729) T) ((-1239 . -1116) T) ((-1239 . -1061) T) ((-1239 . -1053) T) ((-1239 . -232) 174929) ((-1237 . -1098) 174913) ((-1237 . -621) 174897) ((-1237 . -1105) 174875) ((-1237 . -616) 174842) ((-1237 . -102) 174820) ((-1237 . -1099) 174777) ((-1235 . -1234) 174756) ((-1235 . -1006) 174722) ((-1235 . -1206) 174688) ((-1235 . -1209) 174654) ((-1235 . -497) 174620) ((-1235 . -286) 174586) ((-1235 . -95) 174552) ((-1235 . -35) 174518) ((-1235 . -1249) 174495) ((-1235 . -47) 174472) ((-1235 . -619) 174220) ((-1235 . -720) 174034) ((-1235 . -643) 173848) ((-1235 . -651) 173718) ((-1235 . -649) 173573) ((-1235 . -1060) 173381) ((-1235 . -1055) 173189) ((-1235 . -111) 172978) ((-1235 . -38) 172792) ((-1235 . -977) 172761) ((-1235 . -288) 172681) ((-1235 . -1232) 172665) ((-1235 . -729) T) ((-1235 . -1116) T) ((-1235 . -1061) T) ((-1235 . -1053) T) ((-1235 . -21) T) ((-1235 . -23) T) ((-1235 . -1105) T) ((-1235 . -616) 172647) ((-1235 . -102) T) ((-1235 . -25) T) ((-1235 . -131) T) ((-1235 . -145) 172572) ((-1235 . -147) 172497) ((-1235 . -617) 172168) ((-1235 . -232) 172138) ((-1235 . -904) 171989) ((-1235 . -234) 171894) ((-1235 . -366) 171873) ((-1235 . -1225) 171852) ((-1235 . -925) 171831) ((-1235 . -561) 171782) ((-1235 . -173) 171713) ((-1235 . -456) 171692) ((-1235 . -309) 171671) ((-1235 . -292) 171622) ((-1235 . -244) 171601) ((-1235 . -341) 171571) ((-1235 . -518) 171431) ((-1235 . -311) 171370) ((-1235 . -380) 171340) ((-1235 . -642) 171248) ((-1235 . -404) 171218) ((-1235 . -1220) 171197) ((-1235 . -890) 171070) ((-1235 . -823) 171023) ((-1235 . -794) 170976) ((-1235 . -795) 170929) ((-1235 . -853) 170828) ((-1235 . -797) 170781) ((-1235 . -800) 170734) ((-1235 . -851) 170687) ((-1235 . -888) 170657) ((-1235 . -914) 170610) ((-1235 . -1024) 170562) ((-1235 . -1042) 170348) ((-1235 . -1155) 170300) ((-1235 . -995) 170270) ((-1230 . -1234) 170231) ((-1230 . -1006) 170197) ((-1230 . -1206) 170163) ((-1230 . -1209) 170129) ((-1230 . -497) 170095) ((-1230 . -286) 170061) ((-1230 . -95) 170027) ((-1230 . -35) 169993) ((-1230 . -1249) 169970) ((-1230 . -47) 169947) ((-1230 . -619) 169742) ((-1230 . -720) 169538) ((-1230 . -643) 169334) ((-1230 . -651) 169186) ((-1230 . -649) 169023) ((-1230 . -1060) 168813) ((-1230 . -1055) 168603) ((-1230 . -111) 168372) ((-1230 . -38) 168168) ((-1230 . -977) 168137) ((-1230 . -288) 167985) ((-1230 . -1232) 167969) ((-1230 . -729) T) ((-1230 . -1116) T) ((-1230 . -1061) T) ((-1230 . -1053) T) ((-1230 . -21) T) ((-1230 . -23) T) ((-1230 . -1105) T) ((-1230 . -616) 167951) ((-1230 . -102) T) ((-1230 . -25) T) ((-1230 . -131) T) ((-1230 . -145) 167858) ((-1230 . -147) 167765) ((-1230 . -617) NIL) ((-1230 . -232) 167717) ((-1230 . -904) 167550) ((-1230 . -234) 167437) ((-1230 . -366) 167416) ((-1230 . -1225) 167395) ((-1230 . -925) 167374) ((-1230 . -561) 167325) ((-1230 . -173) 167256) ((-1230 . -456) 167235) ((-1230 . -309) 167214) ((-1230 . -292) 167165) ((-1230 . -244) 167144) ((-1230 . -341) 167096) ((-1230 . -518) 166865) ((-1230 . -311) 166750) ((-1230 . -380) 166702) ((-1230 . -642) 166654) ((-1230 . -404) 166606) ((-1230 . -1220) 166585) ((-1230 . -890) NIL) ((-1230 . -823) NIL) ((-1230 . -794) NIL) ((-1230 . -795) NIL) ((-1230 . -853) NIL) ((-1230 . -797) NIL) ((-1230 . -800) NIL) ((-1230 . -851) NIL) ((-1230 . -888) 166537) ((-1230 . -914) NIL) ((-1230 . -1024) NIL) ((-1230 . -1042) 166503) ((-1230 . -1155) NIL) ((-1230 . -995) 166455) ((-1229 . -847) T) ((-1229 . -853) T) ((-1229 . -1105) T) ((-1229 . -616) 166437) ((-1229 . -102) T) ((-1229 . -371) T) ((-1228 . -847) T) ((-1228 . -853) T) ((-1228 . -1105) T) ((-1228 . -616) 166419) ((-1228 . -102) T) ((-1228 . -371) T) ((-1227 . -847) T) ((-1227 . -853) T) ((-1227 . -1105) T) ((-1227 . -616) 166401) ((-1227 . -102) T) ((-1227 . -371) T) ((-1226 . -847) T) ((-1226 . -853) T) ((-1226 . -1105) T) ((-1226 . -616) 166383) ((-1226 . -102) T) ((-1226 . -371) T) ((-1221 . -1087) T) ((-1221 . -494) 166364) ((-1221 . -616) 166330) ((-1221 . -619) 166311) ((-1221 . -1105) T) ((-1221 . -102) T) ((-1221 . -93) T) ((-1218 . -494) 166288) ((-1218 . -616) 166200) ((-1218 . -619) 166177) ((-1218 . -1105) 166155) ((-1218 . -102) 166133) ((-1213 . -743) 166109) ((-1213 . -35) 166075) ((-1213 . -95) 166041) ((-1213 . -286) 166007) ((-1213 . -497) 165973) ((-1213 . -1209) 165939) ((-1213 . -1206) 165905) ((-1213 . -1006) 165871) ((-1213 . -47) 165840) ((-1213 . -38) 165737) ((-1213 . -643) 165634) ((-1213 . -720) 165531) ((-1213 . -619) 165413) ((-1213 . -292) 165392) ((-1213 . -561) 165371) ((-1213 . -111) 165240) ((-1213 . -1055) 165123) ((-1213 . -1060) 165006) ((-1213 . -173) 164957) ((-1213 . -147) 164936) ((-1213 . -145) 164915) ((-1213 . -651) 164840) ((-1213 . -649) 164750) ((-1213 . -977) 164712) ((-1213 . -1053) T) ((-1213 . -1061) T) ((-1213 . -1116) T) ((-1213 . -729) T) ((-1213 . -21) T) ((-1213 . -23) T) ((-1213 . -1105) T) ((-1213 . -616) 164694) ((-1213 . -102) T) ((-1213 . -25) T) ((-1213 . -131) T) ((-1213 . -904) 164675) ((-1213 . -518) 164642) ((-1213 . -311) 164629) ((-1207 . -1014) 164613) ((-1207 . -34) T) ((-1207 . -1220) T) ((-1207 . -616) 164545) ((-1207 . -311) 164483) ((-1207 . -518) 164416) ((-1207 . -1105) 164394) ((-1207 . -102) 164372) ((-1207 . -493) 164356) ((-1202 . -368) 164330) ((-1202 . -102) T) ((-1202 . -616) 164312) ((-1202 . -1105) T) ((-1200 . -1105) T) ((-1200 . -616) 164294) ((-1200 . -102) T) ((-1200 . -619) 164276) ((-1193 . -1197) 164255) ((-1193 . -230) 164205) ((-1193 . -107) 164155) ((-1193 . -311) 163959) ((-1193 . -518) 163751) ((-1193 . -493) 163688) ((-1193 . -151) 163638) ((-1193 . -617) NIL) ((-1193 . -236) 163588) ((-1193 . -613) 163567) ((-1193 . -290) 163546) ((-1193 . -288) 163525) ((-1193 . -102) T) ((-1193 . -1105) T) ((-1193 . -616) 163507) ((-1193 . -1220) T) ((-1193 . -34) T) ((-1193 . -607) 163486) ((-1191 . -1220) T) ((-1189 . -1105) T) ((-1189 . -616) 163468) ((-1189 . -102) T) ((-1188 . -847) T) ((-1188 . -853) T) ((-1188 . -1105) T) ((-1188 . -616) 163450) ((-1188 . -102) T) ((-1188 . -371) T) ((-1187 . -847) T) ((-1187 . -853) T) ((-1187 . -1105) T) ((-1187 . -616) 163432) ((-1187 . -102) T) ((-1187 . -371) T) ((-1186 . -1266) T) ((-1186 . -1105) T) ((-1186 . -616) 163399) ((-1186 . -102) T) ((-1186 . -1042) 163335) ((-1186 . -619) 163271) ((-1185 . -616) 163253) ((-1184 . -616) 163235) ((-1183 . -328) 163212) ((-1183 . -1042) 163108) ((-1183 . -416) 163092) ((-1183 . -38) 162989) ((-1183 . -619) 162842) ((-1183 . -651) 162767) ((-1183 . -649) 162677) ((-1183 . -729) T) ((-1183 . -1116) T) ((-1183 . -1061) T) ((-1183 . -1053) T) ((-1183 . -111) 162546) ((-1183 . -1055) 162429) ((-1183 . -1060) 162312) ((-1183 . -21) T) ((-1183 . -23) T) ((-1183 . -1105) T) ((-1183 . -616) 162294) ((-1183 . -102) T) ((-1183 . -25) T) ((-1183 . -131) T) ((-1183 . -643) 162191) ((-1183 . -720) 162088) ((-1183 . -145) 162067) ((-1183 . -147) 162046) ((-1183 . -173) 161997) ((-1183 . -561) 161976) ((-1183 . -292) 161955) ((-1183 . -47) 161932) ((-1181 . -853) T) ((-1181 . -102) T) ((-1181 . -616) 161914) ((-1181 . -1105) T) ((-1181 . -617) 161836) ((-1181 . -824) T) ((-1181 . -619) 161817) ((-1181 . -890) 161784) ((-1180 . -616) 161766) ((-1179 . -1263) 161750) ((-1179 . -234) 161709) ((-1179 . -619) 161591) ((-1179 . -651) 161516) ((-1179 . -649) 161426) ((-1179 . -131) T) ((-1179 . -25) T) ((-1179 . -102) T) ((-1179 . -616) 161408) ((-1179 . -1105) T) ((-1179 . -23) T) ((-1179 . -21) T) ((-1179 . -729) T) ((-1179 . -1116) T) ((-1179 . -1061) T) ((-1179 . -1053) T) ((-1179 . -288) 161393) ((-1179 . -904) 161306) ((-1179 . -977) 161275) ((-1179 . -38) 161172) ((-1179 . -111) 161041) ((-1179 . -1055) 160924) ((-1179 . -1060) 160807) ((-1179 . -643) 160704) ((-1179 . -720) 160601) ((-1179 . -145) 160580) ((-1179 . -147) 160559) ((-1179 . -173) 160510) ((-1179 . -561) 160489) ((-1179 . -292) 160468) ((-1179 . -47) 160445) ((-1179 . -1249) 160422) ((-1179 . -35) 160388) ((-1179 . -95) 160354) ((-1179 . -286) 160320) ((-1179 . -497) 160286) ((-1179 . -1209) 160252) ((-1179 . -1206) 160218) ((-1179 . -1006) 160184) ((-1178 . -1255) 160145) ((-1178 . -366) 160124) ((-1178 . -1225) 160103) ((-1178 . -925) 160082) ((-1178 . -561) 160033) ((-1178 . -173) 159964) ((-1178 . -619) 159707) ((-1178 . -720) 159548) ((-1178 . -643) 159389) ((-1178 . -38) 159230) ((-1178 . -456) 159209) ((-1178 . -309) 159188) ((-1178 . -651) 159085) ((-1178 . -649) 158967) ((-1178 . -729) T) ((-1178 . -1116) T) ((-1178 . -1061) T) ((-1178 . -1053) T) ((-1178 . -111) 158788) ((-1178 . -1055) 158623) ((-1178 . -1060) 158458) ((-1178 . -21) T) ((-1178 . -23) T) ((-1178 . -1105) T) ((-1178 . -616) 158440) ((-1178 . -102) T) ((-1178 . -25) T) ((-1178 . -131) T) ((-1178 . -292) 158391) ((-1178 . -244) 158370) ((-1178 . -1006) 158336) ((-1178 . -1206) 158302) ((-1178 . -1209) 158268) ((-1178 . -497) 158234) ((-1178 . -286) 158200) ((-1178 . -95) 158166) ((-1178 . -35) 158132) ((-1178 . -1249) 158102) ((-1178 . -47) 158072) ((-1178 . -147) 158051) ((-1178 . -145) 158030) ((-1178 . -977) 157992) ((-1178 . -904) 157898) ((-1178 . -288) 157883) ((-1178 . -234) 157835) ((-1178 . -1253) 157819) ((-1178 . -1042) 157754) ((-1175 . -1246) 157738) ((-1175 . -1155) 157716) ((-1175 . -617) NIL) ((-1175 . -311) 157703) ((-1175 . -518) 157650) ((-1175 . -328) 157627) ((-1175 . -1042) 157507) ((-1175 . -416) 157491) ((-1175 . -38) 157320) ((-1175 . -111) 157129) ((-1175 . -1055) 156952) ((-1175 . -1060) 156775) ((-1175 . -649) 156685) ((-1175 . -651) 156610) ((-1175 . -643) 156439) ((-1175 . -720) 156268) ((-1175 . -619) 156037) ((-1175 . -145) 156016) ((-1175 . -147) 155995) ((-1175 . -47) 155972) ((-1175 . -380) 155956) ((-1175 . -642) 155904) ((-1175 . -904) 155847) ((-1175 . -890) NIL) ((-1175 . -914) 155826) ((-1175 . -1225) 155805) ((-1175 . -954) 155774) ((-1175 . -925) 155753) ((-1175 . -561) 155664) ((-1175 . -292) 155575) ((-1175 . -173) 155466) ((-1175 . -456) 155397) ((-1175 . -309) 155376) ((-1175 . -288) 155303) ((-1175 . -234) T) ((-1175 . -131) T) ((-1175 . -25) T) ((-1175 . -102) T) ((-1175 . -616) 155285) ((-1175 . -1105) T) ((-1175 . -23) T) ((-1175 . -21) T) ((-1175 . -729) T) ((-1175 . -1116) T) ((-1175 . -1061) T) ((-1175 . -1053) T) ((-1175 . -232) 155269) ((-1172 . -1234) 155230) ((-1172 . -1006) 155196) ((-1172 . -1206) 155162) ((-1172 . -1209) 155128) ((-1172 . -497) 155094) ((-1172 . -286) 155060) ((-1172 . -95) 155026) ((-1172 . -35) 154992) ((-1172 . -1249) 154969) ((-1172 . -47) 154946) ((-1172 . -619) 154741) ((-1172 . -720) 154537) ((-1172 . -643) 154333) ((-1172 . -651) 154185) ((-1172 . -649) 154022) ((-1172 . -1060) 153812) ((-1172 . -1055) 153602) ((-1172 . -111) 153371) ((-1172 . -38) 153167) ((-1172 . -977) 153136) ((-1172 . -288) 152984) ((-1172 . -1232) 152968) ((-1172 . -729) T) ((-1172 . -1116) T) ((-1172 . -1061) T) ((-1172 . -1053) T) ((-1172 . -21) T) ((-1172 . -23) T) ((-1172 . -1105) T) ((-1172 . -616) 152950) ((-1172 . -102) T) ((-1172 . -25) T) ((-1172 . -131) T) ((-1172 . -145) 152857) ((-1172 . -147) 152764) ((-1172 . -617) NIL) ((-1172 . -232) 152716) ((-1172 . -904) 152549) ((-1172 . -234) 152436) ((-1172 . -366) 152415) ((-1172 . -1225) 152394) ((-1172 . -925) 152373) ((-1172 . -561) 152324) ((-1172 . -173) 152255) ((-1172 . -456) 152234) ((-1172 . -309) 152213) ((-1172 . -292) 152164) ((-1172 . -244) 152143) ((-1172 . -341) 152095) ((-1172 . -518) 151864) ((-1172 . -311) 151749) ((-1172 . -380) 151701) ((-1172 . -642) 151653) ((-1172 . -404) 151605) ((-1172 . -1220) 151584) ((-1172 . -890) NIL) ((-1172 . -823) NIL) ((-1172 . -794) NIL) ((-1172 . -795) NIL) ((-1172 . -853) NIL) ((-1172 . -797) NIL) ((-1172 . -800) NIL) ((-1172 . -851) NIL) ((-1172 . -888) 151536) ((-1172 . -914) NIL) ((-1172 . -1024) NIL) ((-1172 . -1042) 151502) ((-1172 . -1155) NIL) ((-1172 . -995) 151454) ((-1171 . -1087) T) ((-1171 . -494) 151435) ((-1171 . -616) 151401) ((-1171 . -619) 151382) ((-1171 . -1105) T) ((-1171 . -102) T) ((-1171 . -93) T) ((-1170 . -1105) T) ((-1170 . -616) 151364) ((-1170 . -102) T) ((-1169 . -1105) T) ((-1169 . -616) 151346) ((-1169 . -102) T) ((-1164 . -1197) 151322) ((-1164 . -230) 151269) ((-1164 . -107) 151216) ((-1164 . -311) 151011) ((-1164 . -518) 150794) ((-1164 . -493) 150728) ((-1164 . -151) 150675) ((-1164 . -617) NIL) ((-1164 . -236) 150622) ((-1164 . -613) 150598) ((-1164 . -290) 150574) ((-1164 . -288) 150550) ((-1164 . -102) T) ((-1164 . -1105) T) ((-1164 . -616) 150532) ((-1164 . -1220) T) ((-1164 . -34) T) ((-1164 . -607) 150508) ((-1163 . -1162) T) ((-1163 . -19) 150490) ((-1163 . -654) 150472) ((-1163 . -290) 150447) ((-1163 . -288) 150422) ((-1163 . -607) 150397) ((-1163 . -617) NIL) ((-1163 . -493) 150379) ((-1163 . -518) NIL) ((-1163 . -311) NIL) ((-1163 . -1220) T) ((-1163 . -34) T) ((-1163 . -151) 150361) ((-1163 . -853) T) ((-1163 . -375) 150343) ((-1163 . -1148) T) ((-1163 . -102) T) ((-1163 . -616) 150325) ((-1163 . -1105) T) ((-1163 . -824) T) ((-1158 . -677) 150309) ((-1158 . -654) 150293) ((-1158 . -290) 150270) ((-1158 . -288) 150247) ((-1158 . -607) 150224) ((-1158 . -617) 150185) ((-1158 . -493) 150169) ((-1158 . -102) 150147) ((-1158 . -1105) 150125) ((-1158 . -518) 150058) ((-1158 . -311) 149996) ((-1158 . -616) 149928) ((-1158 . -1220) T) ((-1158 . -34) T) ((-1158 . -151) 149912) ((-1158 . -1259) 149896) ((-1158 . -1014) 149880) ((-1158 . -1153) 149864) ((-1158 . -619) 149841) ((-1156 . -1087) T) ((-1156 . -494) 149822) ((-1156 . -616) 149788) ((-1156 . -619) 149769) ((-1156 . -1105) T) ((-1156 . -102) T) ((-1156 . -93) T) ((-1154 . -1197) 149748) ((-1154 . -230) 149698) ((-1154 . -107) 149648) ((-1154 . -311) 149452) ((-1154 . -518) 149244) ((-1154 . -493) 149181) ((-1154 . -151) 149131) ((-1154 . -617) NIL) ((-1154 . -236) 149081) ((-1154 . -613) 149060) ((-1154 . -290) 149039) ((-1154 . -288) 149018) ((-1154 . -102) T) ((-1154 . -1105) T) ((-1154 . -616) 149000) ((-1154 . -1220) T) ((-1154 . -34) T) ((-1154 . -607) 148979) ((-1151 . -1125) 148963) ((-1151 . -493) 148947) ((-1151 . -102) 148925) ((-1151 . -1105) 148903) ((-1151 . -518) 148836) ((-1151 . -311) 148774) ((-1151 . -616) 148706) ((-1151 . -1220) T) ((-1151 . -34) T) ((-1151 . -107) 148690) ((-1150 . -1113) 148659) ((-1150 . -1215) 148628) ((-1150 . -616) 148590) ((-1150 . -151) 148574) ((-1150 . -34) T) ((-1150 . -1220) T) ((-1150 . -311) 148512) ((-1150 . -518) 148445) ((-1150 . -1105) T) ((-1150 . -102) T) ((-1150 . -493) 148429) ((-1150 . -617) 148390) ((-1150 . -980) 148359) ((-1150 . -1075) 148328) ((-1146 . -1127) 148273) ((-1146 . -493) 148257) ((-1146 . -518) 148190) ((-1146 . -311) 148128) ((-1146 . -1220) T) ((-1146 . -34) T) ((-1146 . -1057) 148068) ((-1146 . -1042) 147964) ((-1146 . -619) 147882) ((-1146 . -416) 147866) ((-1146 . -642) 147814) ((-1146 . -380) 147798) ((-1146 . -234) 147777) ((-1146 . -904) 147736) ((-1146 . -232) 147720) ((-1146 . -720) 147652) ((-1146 . -643) 147584) ((-1146 . -651) 147558) ((-1146 . -649) 147517) ((-1146 . -131) T) ((-1146 . -25) T) ((-1146 . -102) T) ((-1146 . -616) 147479) ((-1146 . -1105) T) ((-1146 . -23) T) ((-1146 . -21) T) ((-1146 . -1060) 147463) ((-1146 . -1055) 147447) ((-1146 . -111) 147426) ((-1146 . -1053) T) ((-1146 . -1061) T) ((-1146 . -1116) T) ((-1146 . -729) T) ((-1146 . -38) 147386) ((-1146 . -617) 147347) ((-1145 . -1014) 147318) ((-1145 . -34) T) ((-1145 . -1220) T) ((-1145 . -616) 147300) ((-1145 . -311) 147226) ((-1145 . -518) 147145) ((-1145 . -1105) T) ((-1145 . -102) T) ((-1145 . -493) 147116) ((-1144 . -1105) T) ((-1144 . -616) 147098) ((-1144 . -102) T) ((-1139 . -1141) T) ((-1139 . -1266) T) ((-1139 . -93) T) ((-1139 . -102) T) ((-1139 . -616) 147064) ((-1139 . -1105) T) ((-1139 . -619) 147045) ((-1139 . -494) 147026) ((-1139 . -1087) T) ((-1137 . -1138) 147010) ((-1137 . -102) T) ((-1137 . -616) 146992) ((-1137 . -1105) T) ((-1130 . -743) 146971) ((-1130 . -35) 146937) ((-1130 . -95) 146903) ((-1130 . -286) 146869) ((-1130 . -497) 146835) ((-1130 . -1209) 146801) ((-1130 . -1206) 146767) ((-1130 . -1006) 146733) ((-1130 . -47) 146705) ((-1130 . -38) 146602) ((-1130 . -643) 146499) ((-1130 . -720) 146396) ((-1130 . -619) 146278) ((-1130 . -292) 146257) ((-1130 . -561) 146236) ((-1130 . -111) 146105) ((-1130 . -1055) 145988) ((-1130 . -1060) 145871) ((-1130 . -173) 145822) ((-1130 . -147) 145801) ((-1130 . -145) 145780) ((-1130 . -651) 145705) ((-1130 . -649) 145615) ((-1130 . -977) 145582) ((-1130 . -1053) T) ((-1130 . -1061) T) ((-1130 . -1116) T) ((-1130 . -729) T) ((-1130 . -21) T) ((-1130 . -23) T) ((-1130 . -1105) T) ((-1130 . -616) 145564) ((-1130 . -102) T) ((-1130 . -25) T) ((-1130 . -131) T) ((-1130 . -904) 145548) ((-1130 . -518) 145518) ((-1130 . -311) 145505) ((-1129 . -954) 145472) ((-1129 . -619) 145264) ((-1129 . -1042) 145147) ((-1129 . -1225) 145126) ((-1129 . -914) 145105) ((-1129 . -890) 144964) ((-1129 . -904) 144948) ((-1129 . -518) 144900) ((-1129 . -456) 144851) ((-1129 . -642) 144799) ((-1129 . -380) 144783) ((-1129 . -47) 144755) ((-1129 . -38) 144604) ((-1129 . -643) 144453) ((-1129 . -720) 144302) ((-1129 . -292) 144233) ((-1129 . -561) 144164) ((-1129 . -111) 143993) ((-1129 . -1055) 143836) ((-1129 . -1060) 143679) ((-1129 . -173) 143590) ((-1129 . -147) 143569) ((-1129 . -145) 143548) ((-1129 . -651) 143473) ((-1129 . -649) 143383) ((-1129 . -131) T) ((-1129 . -25) T) ((-1129 . -102) T) ((-1129 . -616) 143365) ((-1129 . -1105) T) ((-1129 . -23) T) ((-1129 . -21) T) ((-1129 . -1053) T) ((-1129 . -1061) T) ((-1129 . -1116) T) ((-1129 . -729) T) ((-1129 . -416) 143349) ((-1129 . -328) 143321) ((-1129 . -311) 143308) ((-1129 . -617) 143056) ((-1124 . -549) T) ((-1124 . -1225) T) ((-1124 . -1155) T) ((-1124 . -1042) 143038) ((-1124 . -617) 142953) ((-1124 . -1024) T) ((-1124 . -890) 142935) ((-1124 . -851) T) ((-1124 . -800) T) ((-1124 . -797) T) ((-1124 . -853) T) ((-1124 . -795) T) ((-1124 . -794) T) ((-1124 . -823) T) ((-1124 . -642) 142917) ((-1124 . -925) T) ((-1124 . -561) T) ((-1124 . -292) T) ((-1124 . -173) T) ((-1124 . -619) 142889) ((-1124 . -720) 142876) ((-1124 . -643) 142863) ((-1124 . -1060) 142850) ((-1124 . -1055) 142837) ((-1124 . -111) 142822) ((-1124 . -38) 142809) ((-1124 . -456) T) ((-1124 . -309) T) ((-1124 . -234) T) ((-1124 . -143) T) ((-1124 . -1053) T) ((-1124 . -1061) T) ((-1124 . -1116) T) ((-1124 . -729) T) ((-1124 . -21) T) ((-1124 . -649) 142781) ((-1124 . -23) T) ((-1124 . -1105) T) ((-1124 . -616) 142763) ((-1124 . -102) T) ((-1124 . -25) T) ((-1124 . -131) T) ((-1124 . -651) 142750) ((-1124 . -147) T) ((-1124 . -847) T) ((-1124 . -371) T) ((-1124 . -665) T) ((-1124 . -824) T) ((-1120 . -1087) T) ((-1120 . -494) 142731) ((-1120 . -616) 142697) ((-1120 . -619) 142678) ((-1120 . -1105) T) ((-1120 . -102) T) ((-1120 . -93) T) ((-1119 . -1105) T) ((-1119 . -616) 142660) ((-1119 . -102) T) ((-1117 . -239) 142639) ((-1117 . -1278) 142609) ((-1117 . -794) 142588) ((-1117 . -851) 142567) ((-1117 . -800) 142518) ((-1117 . -797) 142469) ((-1117 . -853) 142420) ((-1117 . -795) 142371) ((-1117 . -796) 142350) ((-1117 . -290) 142327) ((-1117 . -288) 142304) ((-1117 . -493) 142288) ((-1117 . -518) 142221) ((-1117 . -311) 142159) ((-1117 . -1220) T) ((-1117 . -34) T) ((-1117 . -607) 142136) ((-1117 . -1042) 141963) ((-1117 . -619) 141693) ((-1117 . -416) 141662) ((-1117 . -642) 141568) ((-1117 . -380) 141537) ((-1117 . -371) 141516) ((-1117 . -234) 141468) ((-1117 . -904) 141400) ((-1117 . -232) 141369) ((-1117 . -111) 141259) ((-1117 . -1055) 141156) ((-1117 . -1060) 141053) ((-1117 . -173) 141032) ((-1117 . -616) 140763) ((-1117 . -720) 140705) ((-1117 . -643) 140647) ((-1117 . -651) 140495) ((-1117 . -649) 140245) ((-1117 . -131) 140115) ((-1117 . -23) 139985) ((-1117 . -21) 139895) ((-1117 . -1053) 139825) ((-1117 . -1061) 139755) ((-1117 . -1116) 139665) ((-1117 . -729) 139575) ((-1117 . -38) 139545) ((-1117 . -1105) 139335) ((-1117 . -102) 139125) ((-1117 . -25) 138976) ((-1110 . -400) T) ((-1110 . -1220) T) ((-1110 . -616) 138958) ((-1109 . -1108) 138922) ((-1109 . -102) T) ((-1109 . -616) 138904) ((-1109 . -1105) T) ((-1109 . -621) 138819) ((-1107 . -1108) 138771) ((-1107 . -102) T) ((-1107 . -616) 138753) ((-1107 . -1105) T) ((-1107 . -621) 138656) ((-1106 . -371) T) ((-1106 . -102) T) ((-1106 . -616) 138638) ((-1106 . -1105) T) ((-1101 . -430) 138622) ((-1101 . -1103) 138606) ((-1101 . -371) 138585) ((-1101 . -236) 138569) ((-1101 . -617) 138530) ((-1101 . -151) 138514) ((-1101 . -493) 138498) ((-1101 . -102) T) ((-1101 . -1105) T) ((-1101 . -518) 138431) ((-1101 . -311) 138369) ((-1101 . -616) 138351) ((-1101 . -1220) T) ((-1101 . -34) T) ((-1101 . -107) 138335) ((-1101 . -230) 138319) ((-1100 . -1087) T) ((-1100 . -494) 138300) ((-1100 . -616) 138266) ((-1100 . -619) 138247) ((-1100 . -1105) T) ((-1100 . -102) T) ((-1100 . -93) T) ((-1096 . -1220) T) ((-1096 . -1105) 138217) ((-1096 . -616) 138176) ((-1096 . -102) 138146) ((-1095 . -1087) T) ((-1095 . -494) 138127) ((-1095 . -616) 138093) ((-1095 . -619) 138074) ((-1095 . -1105) T) ((-1095 . -102) T) ((-1095 . -93) T) ((-1093 . -1098) 138058) ((-1093 . -621) 138042) ((-1093 . -1105) 138020) ((-1093 . -616) 137987) ((-1093 . -102) 137965) ((-1093 . -1099) 137923) ((-1092 . -268) 137907) ((-1092 . -619) 137891) ((-1092 . -1042) 137875) ((-1092 . -1105) T) ((-1092 . -616) 137857) ((-1092 . -102) T) ((-1092 . -853) T) ((-1091 . -255) 137794) ((-1091 . -619) 137530) ((-1091 . -1042) 137357) ((-1091 . -617) NIL) ((-1091 . -328) 137318) ((-1091 . -416) 137302) ((-1091 . -38) 137151) ((-1091 . -111) 136980) ((-1091 . -1055) 136823) ((-1091 . -1060) 136666) ((-1091 . -649) 136576) ((-1091 . -651) 136501) ((-1091 . -643) 136350) ((-1091 . -720) 136199) ((-1091 . -145) 136178) ((-1091 . -147) 136157) ((-1091 . -173) 136068) ((-1091 . -561) 135999) ((-1091 . -292) 135930) ((-1091 . -47) 135891) ((-1091 . -380) 135875) ((-1091 . -642) 135823) ((-1091 . -456) 135774) ((-1091 . -518) 135641) ((-1091 . -904) 135576) ((-1091 . -890) NIL) ((-1091 . -914) 135555) ((-1091 . -1225) 135534) ((-1091 . -954) 135479) ((-1091 . -311) 135466) ((-1091 . -234) 135445) ((-1091 . -131) T) ((-1091 . -25) T) ((-1091 . -102) T) ((-1091 . -616) 135427) ((-1091 . -1105) T) ((-1091 . -23) T) ((-1091 . -21) T) ((-1091 . -729) T) ((-1091 . -1116) T) ((-1091 . -1061) T) ((-1091 . -1053) T) ((-1091 . -232) 135411) ((-1089 . -616) 135393) ((-1086 . -853) T) ((-1086 . -102) T) ((-1086 . -616) 135375) ((-1086 . -1105) T) ((-1086 . -617) 135356) ((-1083 . -727) 135335) ((-1083 . -1042) 135231) ((-1083 . -416) 135215) ((-1083 . -642) 135163) ((-1083 . -380) 135147) ((-1083 . -373) 135126) ((-1083 . -147) 135105) ((-1083 . -619) 134923) ((-1083 . -720) 134791) ((-1083 . -643) 134659) ((-1083 . -651) 134569) ((-1083 . -649) 134464) ((-1083 . -1060) 134374) ((-1083 . -1055) 134284) ((-1083 . -111) 134180) ((-1083 . -38) 134048) ((-1083 . -414) 134027) ((-1083 . -406) 134006) ((-1083 . -145) 133957) ((-1083 . -1155) 133936) ((-1083 . -353) 133915) ((-1083 . -371) 133866) ((-1083 . -244) 133817) ((-1083 . -292) 133768) ((-1083 . -309) 133719) ((-1083 . -456) 133670) ((-1083 . -561) 133621) ((-1083 . -925) 133572) ((-1083 . -1225) 133523) ((-1083 . -366) 133474) ((-1083 . -234) 133399) ((-1083 . -904) 133332) ((-1083 . -232) 133302) ((-1083 . -617) 133286) ((-1083 . -21) T) ((-1083 . -23) T) ((-1083 . -1105) T) ((-1083 . -616) 133268) ((-1083 . -102) T) ((-1083 . -25) T) ((-1083 . -131) T) ((-1083 . -1053) T) ((-1083 . -1061) T) ((-1083 . -1116) T) ((-1083 . -729) T) ((-1083 . -173) T) ((-1081 . -1105) T) ((-1081 . -616) 133250) ((-1081 . -102) T) ((-1081 . -288) 133229) ((-1080 . -1105) T) ((-1080 . -616) 133211) ((-1080 . -102) T) ((-1079 . -1105) T) ((-1079 . -616) 133193) ((-1079 . -102) T) ((-1079 . -288) 133172) ((-1079 . -1042) 133149) ((-1079 . -619) 133126) ((-1078 . -1220) T) ((-1077 . -1087) T) ((-1077 . -494) 133107) ((-1077 . -616) 133073) ((-1077 . -619) 133054) ((-1077 . -1105) T) ((-1077 . -102) T) ((-1077 . -93) T) ((-1070 . -1087) T) ((-1070 . -494) 133035) ((-1070 . -616) 133001) ((-1070 . -619) 132982) ((-1070 . -1105) T) ((-1070 . -102) T) ((-1070 . -93) T) ((-1067 . -1197) 132957) ((-1067 . -230) 132903) ((-1067 . -107) 132849) ((-1067 . -311) 132700) ((-1067 . -518) 132544) ((-1067 . -493) 132475) ((-1067 . -151) 132421) ((-1067 . -617) NIL) ((-1067 . -236) 132367) ((-1067 . -613) 132342) ((-1067 . -290) 132317) ((-1067 . -288) 132292) ((-1067 . -102) T) ((-1067 . -1105) T) ((-1067 . -616) 132274) ((-1067 . -1220) T) ((-1067 . -34) T) ((-1067 . -607) 132249) ((-1066 . -549) T) ((-1066 . -1225) T) ((-1066 . -1155) T) ((-1066 . -1042) 132231) ((-1066 . -617) 132146) ((-1066 . -1024) T) ((-1066 . -890) 132128) ((-1066 . -851) T) ((-1066 . -800) T) ((-1066 . -797) T) ((-1066 . -853) T) ((-1066 . -795) T) ((-1066 . -794) T) ((-1066 . -823) T) ((-1066 . -642) 132110) ((-1066 . -925) T) ((-1066 . -561) T) ((-1066 . -292) T) ((-1066 . -173) T) ((-1066 . -619) 132082) ((-1066 . -720) 132069) ((-1066 . -643) 132056) ((-1066 . -1060) 132043) ((-1066 . -1055) 132030) ((-1066 . -111) 132015) ((-1066 . -38) 132002) ((-1066 . -456) T) ((-1066 . -309) T) ((-1066 . -234) T) ((-1066 . -143) T) ((-1066 . -1053) T) ((-1066 . -1061) T) ((-1066 . -1116) T) ((-1066 . -729) T) ((-1066 . -21) T) ((-1066 . -649) 131974) ((-1066 . -23) T) ((-1066 . -1105) T) ((-1066 . -616) 131956) ((-1066 . -102) T) ((-1066 . -25) T) ((-1066 . -131) T) ((-1066 . -651) 131943) ((-1066 . -147) T) ((-1066 . -621) 131924) ((-1065 . -1072) 131903) ((-1065 . -102) T) ((-1065 . -616) 131885) ((-1065 . -1105) T) ((-1062 . -1220) T) ((-1062 . -1105) 131863) ((-1062 . -616) 131830) ((-1062 . -102) 131808) ((-1058 . -1057) 131748) ((-1058 . -643) 131690) ((-1058 . -720) 131632) ((-1058 . -34) T) ((-1058 . -1220) T) ((-1058 . -311) 131570) ((-1058 . -518) 131503) ((-1058 . -493) 131487) ((-1058 . -651) 131471) ((-1058 . -649) 131440) ((-1058 . -131) T) ((-1058 . -25) T) ((-1058 . -102) T) ((-1058 . -616) 131402) ((-1058 . -1105) T) ((-1058 . -23) T) ((-1058 . -21) T) ((-1058 . -1060) 131386) ((-1058 . -1055) 131370) ((-1058 . -111) 131349) ((-1058 . -1278) 131319) ((-1058 . -617) 131280) ((-1050 . -1075) 131209) ((-1050 . -980) 131138) ((-1050 . -617) 131080) ((-1050 . -493) 131045) ((-1050 . -102) T) ((-1050 . -1105) T) ((-1050 . -518) 130946) ((-1050 . -311) 130854) ((-1050 . -616) 130797) ((-1050 . -1220) T) ((-1050 . -34) T) ((-1050 . -151) 130762) ((-1050 . -1215) 130691) ((-1040 . -1087) T) ((-1040 . -494) 130672) ((-1040 . -616) 130638) ((-1040 . -619) 130619) ((-1040 . -1105) T) ((-1040 . -102) T) ((-1040 . -93) T) ((-1039 . -1197) 130594) ((-1039 . -230) 130540) ((-1039 . -107) 130486) ((-1039 . -311) 130337) ((-1039 . -518) 130181) ((-1039 . -493) 130112) ((-1039 . -151) 130058) ((-1039 . -617) NIL) ((-1039 . -236) 130004) ((-1039 . -613) 129979) ((-1039 . -290) 129954) ((-1039 . -288) 129929) ((-1039 . -102) T) ((-1039 . -1105) T) ((-1039 . -616) 129911) ((-1039 . -1220) T) ((-1039 . -34) T) ((-1039 . -607) 129886) ((-1038 . -173) T) ((-1038 . -619) 129855) ((-1038 . -729) T) ((-1038 . -1116) T) ((-1038 . -1061) T) ((-1038 . -1053) T) ((-1038 . -651) 129829) ((-1038 . -649) 129788) ((-1038 . -131) T) ((-1038 . -25) T) ((-1038 . -102) T) ((-1038 . -616) 129770) ((-1038 . -1105) T) ((-1038 . -23) T) ((-1038 . -21) T) ((-1038 . -1060) 129744) ((-1038 . -1055) 129718) ((-1038 . -111) 129685) ((-1038 . -38) 129669) ((-1038 . -643) 129653) ((-1038 . -720) 129637) ((-1031 . -1075) 129606) ((-1031 . -980) 129575) ((-1031 . -617) 129536) ((-1031 . -493) 129520) ((-1031 . -102) T) ((-1031 . -1105) T) ((-1031 . -518) 129453) ((-1031 . -311) 129391) ((-1031 . -616) 129353) ((-1031 . -1220) T) ((-1031 . -34) T) ((-1031 . -151) 129337) ((-1031 . -1215) 129306) ((-1030 . -1220) T) ((-1030 . -1105) 129284) ((-1030 . -616) 129251) ((-1030 . -102) 129229) ((-1028 . -1016) T) ((-1028 . -1006) T) ((-1028 . -794) T) ((-1028 . -795) T) ((-1028 . -853) T) ((-1028 . -797) T) ((-1028 . -800) T) ((-1028 . -851) T) ((-1028 . -1042) 129109) ((-1028 . -416) 129071) ((-1028 . -244) T) ((-1028 . -292) T) ((-1028 . -309) T) ((-1028 . -456) T) ((-1028 . -38) 129008) ((-1028 . -643) 128945) ((-1028 . -720) 128882) ((-1028 . -619) 128819) ((-1028 . -561) T) ((-1028 . -925) T) ((-1028 . -1225) T) ((-1028 . -366) T) ((-1028 . -111) 128735) ((-1028 . -1055) 128672) ((-1028 . -1060) 128609) ((-1028 . -173) T) ((-1028 . -147) T) ((-1028 . -651) 128546) ((-1028 . -649) 128483) ((-1028 . -131) T) ((-1028 . -25) T) ((-1028 . -102) T) ((-1028 . -616) 128465) ((-1028 . -1105) T) ((-1028 . -23) T) ((-1028 . -21) T) ((-1028 . -1053) T) ((-1028 . -1061) T) ((-1028 . -1116) T) ((-1028 . -729) T) ((-1023 . -1087) T) ((-1023 . -494) 128446) ((-1023 . -616) 128412) ((-1023 . -619) 128393) ((-1023 . -1105) T) ((-1023 . -102) T) ((-1023 . -93) T) ((-1008 . -995) 128375) ((-1008 . -1155) T) ((-1008 . -619) 128325) ((-1008 . -1042) 128285) ((-1008 . -617) 128215) ((-1008 . -1024) T) ((-1008 . -914) NIL) ((-1008 . -888) 128197) ((-1008 . -851) T) ((-1008 . -800) T) ((-1008 . -797) T) ((-1008 . -853) T) ((-1008 . -795) T) ((-1008 . -794) T) ((-1008 . -823) T) ((-1008 . -890) 128179) ((-1008 . -1220) T) ((-1008 . -404) 128161) ((-1008 . -642) 128143) ((-1008 . -380) 128125) ((-1008 . -288) NIL) ((-1008 . -311) NIL) ((-1008 . -518) NIL) ((-1008 . -341) 128107) ((-1008 . -244) T) ((-1008 . -111) 128041) ((-1008 . -1055) 127991) ((-1008 . -1060) 127941) ((-1008 . -292) T) ((-1008 . -720) 127891) ((-1008 . -643) 127841) ((-1008 . -651) 127791) ((-1008 . -649) 127741) ((-1008 . -38) 127691) ((-1008 . -309) T) ((-1008 . -456) T) ((-1008 . -173) T) ((-1008 . -561) T) ((-1008 . -925) T) ((-1008 . -1225) T) ((-1008 . -366) T) ((-1008 . -234) T) ((-1008 . -904) NIL) ((-1008 . -232) 127673) ((-1008 . -147) T) ((-1008 . -145) NIL) ((-1008 . -131) T) ((-1008 . -25) T) ((-1008 . -102) T) ((-1008 . -616) 127633) ((-1008 . -1105) T) ((-1008 . -23) T) ((-1008 . -21) T) ((-1008 . -1053) T) ((-1008 . -1061) T) ((-1008 . -1116) T) ((-1008 . -729) T) ((-1007 . -345) 127607) ((-1007 . -173) T) ((-1007 . -619) 127537) ((-1007 . -729) T) ((-1007 . -1116) T) ((-1007 . -1061) T) ((-1007 . -1053) T) ((-1007 . -651) 127482) ((-1007 . -649) 127412) ((-1007 . -131) T) ((-1007 . -25) T) ((-1007 . -102) T) ((-1007 . -616) 127394) ((-1007 . -1105) T) ((-1007 . -23) T) ((-1007 . -21) T) ((-1007 . -1060) 127339) ((-1007 . -1055) 127284) ((-1007 . -111) 127213) ((-1007 . -617) 127197) ((-1007 . -232) 127174) ((-1007 . -904) 127126) ((-1007 . -234) 127098) ((-1007 . -366) T) ((-1007 . -1225) T) ((-1007 . -925) T) ((-1007 . -561) T) ((-1007 . -720) 127043) ((-1007 . -643) 126988) ((-1007 . -38) 126933) ((-1007 . -456) T) ((-1007 . -309) T) ((-1007 . -292) T) ((-1007 . -244) T) ((-1007 . -371) NIL) ((-1007 . -353) NIL) ((-1007 . -1155) NIL) ((-1007 . -145) 126905) ((-1007 . -406) NIL) ((-1007 . -414) 126877) ((-1007 . -147) 126849) ((-1007 . -373) 126821) ((-1007 . -380) 126798) ((-1007 . -642) 126737) ((-1007 . -416) 126714) ((-1007 . -1042) 126602) ((-1007 . -727) 126574) ((-1004 . -999) 126558) ((-1004 . -493) 126542) ((-1004 . -102) 126520) ((-1004 . -1105) 126498) ((-1004 . -518) 126431) ((-1004 . -311) 126369) ((-1004 . -616) 126301) ((-1004 . -1220) T) ((-1004 . -34) T) ((-1004 . -107) 126285) ((-1000 . -1002) 126269) ((-1000 . -853) 126248) ((-1000 . -1042) 126144) ((-1000 . -416) 126128) ((-1000 . -642) 126076) ((-1000 . -380) 126060) ((-1000 . -288) 126018) ((-1000 . -311) 125983) ((-1000 . -518) 125895) ((-1000 . -341) 125879) ((-1000 . -38) 125827) ((-1000 . -111) 125709) ((-1000 . -1055) 125605) ((-1000 . -1060) 125501) ((-1000 . -649) 125424) ((-1000 . -651) 125362) ((-1000 . -643) 125310) ((-1000 . -720) 125258) ((-1000 . -619) 125148) ((-1000 . -292) 125099) ((-1000 . -244) 125078) ((-1000 . -234) 125057) ((-1000 . -904) 125016) ((-1000 . -232) 125000) ((-1000 . -617) 124961) ((-1000 . -147) 124940) ((-1000 . -145) 124919) ((-1000 . -131) T) ((-1000 . -25) T) ((-1000 . -102) T) ((-1000 . -616) 124901) ((-1000 . -1105) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -1053) T) ((-1000 . -1061) T) ((-1000 . -1116) T) ((-1000 . -729) T) ((-998 . -1087) T) ((-998 . -494) 124882) ((-998 . -616) 124848) ((-998 . -619) 124829) ((-998 . -1105) T) ((-998 . -102) T) ((-998 . -93) T) ((-997 . -21) T) ((-997 . -649) 124811) ((-997 . -23) T) ((-997 . -1105) T) ((-997 . -616) 124793) ((-997 . -102) T) ((-997 . -25) T) ((-997 . -131) T) ((-993 . -616) 124775) ((-990 . -1105) T) ((-990 . -616) 124757) ((-990 . -102) T) ((-975 . -800) T) ((-975 . -797) T) ((-975 . -853) T) ((-975 . -795) T) ((-975 . -23) T) ((-975 . -1105) T) ((-975 . -616) 124717) ((-975 . -102) T) ((-975 . -25) T) ((-975 . -131) T) ((-975 . -617) 124692) ((-974 . -1087) T) ((-974 . -494) 124673) ((-974 . -616) 124639) ((-974 . -619) 124620) ((-974 . -1105) T) ((-974 . -102) T) ((-974 . -93) T) ((-970 . -971) T) ((-970 . -102) T) ((-970 . -616) 124602) ((-970 . -1105) T) ((-970 . -619) 124586) ((-969 . -616) 124568) ((-968 . -1105) T) ((-968 . -616) 124550) ((-968 . -102) T) ((-968 . -371) 124503) ((-968 . -729) 124402) ((-968 . -1116) 124301) ((-968 . -23) 124112) ((-968 . -25) 123923) ((-968 . -131) 123778) ((-968 . -477) 123731) ((-968 . -21) 123686) ((-968 . -649) 123630) ((-968 . -796) 123583) ((-968 . -795) 123536) ((-968 . -853) 123435) ((-968 . -797) 123388) ((-968 . -800) 123341) ((-962 . -19) 123325) ((-962 . -654) 123309) ((-962 . -290) 123286) ((-962 . -288) 123263) ((-962 . -607) 123240) ((-962 . -617) 123201) ((-962 . -493) 123185) ((-962 . -102) 123135) ((-962 . -1105) 123085) ((-962 . -518) 123018) ((-962 . -311) 122956) ((-962 . -616) 122868) ((-962 . -1220) T) ((-962 . -34) T) ((-962 . -151) 122852) ((-962 . -853) 122831) ((-962 . -375) 122815) ((-960 . -328) 122794) ((-960 . -1042) 122690) ((-960 . -416) 122674) ((-960 . -38) 122571) ((-960 . -619) 122424) ((-960 . -651) 122349) ((-960 . -649) 122259) ((-960 . -729) T) ((-960 . -1116) T) ((-960 . -1061) T) ((-960 . -1053) T) ((-960 . -111) 122128) ((-960 . -1055) 122011) ((-960 . -1060) 121894) ((-960 . -21) T) ((-960 . -23) T) ((-960 . -1105) T) ((-960 . -616) 121876) ((-960 . -102) T) ((-960 . -25) T) ((-960 . -131) T) ((-960 . -643) 121773) ((-960 . -720) 121670) ((-960 . -145) 121649) ((-960 . -147) 121628) ((-960 . -173) 121579) ((-960 . -561) 121558) ((-960 . -292) 121537) ((-960 . -47) 121516) ((-958 . -1105) T) ((-958 . -616) 121482) ((-958 . -102) T) ((-950 . -954) 121443) ((-950 . -619) 121232) ((-950 . -1042) 121112) ((-950 . -1225) 121091) ((-950 . -914) 121070) ((-950 . -890) 120995) ((-950 . -904) 120976) ((-950 . -518) 120923) ((-950 . -456) 120874) ((-950 . -642) 120822) ((-950 . -380) 120806) ((-950 . -47) 120775) ((-950 . -38) 120624) ((-950 . -643) 120473) ((-950 . -720) 120322) ((-950 . -292) 120253) ((-950 . -561) 120184) ((-950 . -111) 120013) ((-950 . -1055) 119856) ((-950 . -1060) 119699) ((-950 . -173) 119610) ((-950 . -147) 119589) ((-950 . -145) 119568) ((-950 . -651) 119493) ((-950 . -649) 119403) ((-950 . -131) T) ((-950 . -25) T) ((-950 . -102) T) ((-950 . -616) 119385) ((-950 . -1105) T) ((-950 . -23) T) ((-950 . -21) T) ((-950 . -1053) T) ((-950 . -1061) T) ((-950 . -1116) T) ((-950 . -729) T) ((-950 . -416) 119369) ((-950 . -328) 119338) ((-950 . -311) 119325) ((-950 . -617) 119186) ((-947 . -984) 119170) ((-947 . -19) 119154) ((-947 . -654) 119138) ((-947 . -290) 119115) ((-947 . -288) 119092) ((-947 . -607) 119069) ((-947 . -617) 119030) ((-947 . -493) 119014) ((-947 . -102) 118964) ((-947 . -1105) 118914) ((-947 . -518) 118847) ((-947 . -311) 118785) ((-947 . -616) 118697) ((-947 . -1220) T) ((-947 . -34) T) ((-947 . -151) 118681) ((-947 . -853) 118660) ((-947 . -375) 118644) ((-947 . -1269) 118628) ((-947 . -621) 118605) ((-931 . -978) T) ((-931 . -616) 118587) ((-929 . -959) T) ((-929 . -616) 118569) ((-923 . -797) T) ((-923 . -853) T) ((-923 . -1105) T) ((-923 . -616) 118551) ((-923 . -102) T) ((-923 . -25) T) ((-923 . -729) T) ((-923 . -1116) T) ((-918 . -366) T) ((-918 . -1225) T) ((-918 . -925) T) ((-918 . -561) T) ((-918 . -173) T) ((-918 . -619) 118488) ((-918 . -720) 118440) ((-918 . -643) 118392) ((-918 . -38) 118344) ((-918 . -456) T) ((-918 . -309) T) ((-918 . -651) 118296) ((-918 . -649) 118233) ((-918 . -729) T) ((-918 . -1116) T) ((-918 . -1061) T) ((-918 . -1053) T) ((-918 . -111) 118171) ((-918 . -1055) 118123) ((-918 . -1060) 118075) ((-918 . -21) T) ((-918 . -23) T) ((-918 . -1105) T) ((-918 . -616) 118057) ((-918 . -102) T) ((-918 . -25) T) ((-918 . -131) T) ((-918 . -292) T) ((-918 . -244) T) ((-910 . -353) T) ((-910 . -1155) T) ((-910 . -371) T) ((-910 . -145) T) ((-910 . -366) T) ((-910 . -1225) T) ((-910 . -925) T) ((-910 . -561) T) ((-910 . -173) T) ((-910 . -619) 118007) ((-910 . -720) 117972) ((-910 . -643) 117937) ((-910 . -38) 117902) ((-910 . -456) T) ((-910 . -309) T) ((-910 . -111) 117858) ((-910 . -1055) 117823) ((-910 . -1060) 117788) ((-910 . -649) 117738) ((-910 . -651) 117703) ((-910 . -292) T) ((-910 . -244) T) ((-910 . -406) T) ((-910 . -1053) T) ((-910 . -1061) T) ((-910 . -1116) T) ((-910 . -729) T) ((-910 . -21) T) ((-910 . -23) T) ((-910 . -1105) T) ((-910 . -616) 117685) ((-910 . -102) T) ((-910 . -25) T) ((-910 . -131) T) ((-910 . -234) T) ((-910 . -331) 117672) ((-910 . -147) 117654) ((-910 . -1042) 117641) ((-910 . -1278) 117628) ((-910 . -1289) 117615) ((-910 . -617) 117597) ((-909 . -1105) T) ((-909 . -616) 117579) ((-909 . -102) T) ((-906 . -908) 117563) ((-906 . -853) 117514) ((-906 . -729) T) ((-906 . -1105) T) ((-906 . -616) 117496) ((-906 . -102) T) ((-906 . -1116) T) ((-906 . -477) T) ((-905 . -119) 117480) ((-905 . -493) 117464) ((-905 . -102) 117442) ((-905 . -1105) 117420) ((-905 . -518) 117353) ((-905 . -311) 117291) ((-905 . -616) 117202) ((-905 . -1220) T) ((-905 . -34) T) ((-905 . -1014) 117186) ((-902 . -1105) T) ((-902 . -616) 117168) ((-902 . -102) T) ((-897 . -853) T) ((-897 . -102) T) ((-897 . -616) 117150) ((-897 . -1105) T) ((-897 . -1042) 117127) ((-897 . -619) 117104) ((-894 . -1105) T) ((-894 . -616) 117086) ((-894 . -102) T) ((-894 . -1042) 117054) ((-894 . -619) 117022) ((-892 . -1105) T) ((-892 . -616) 117004) ((-892 . -102) T) ((-889 . -1105) T) ((-889 . -616) 116986) ((-889 . -102) T) ((-879 . -1087) T) ((-879 . -494) 116967) ((-879 . -616) 116933) ((-879 . -619) 116914) ((-879 . -1105) T) ((-879 . -102) T) ((-879 . -93) T) ((-879 . -1266) T) ((-877 . -1105) T) ((-877 . -616) 116896) ((-877 . -102) T) ((-876 . -1220) T) ((-876 . -616) 116768) ((-876 . -1105) 116719) ((-876 . -102) 116670) ((-875 . -995) 116654) ((-875 . -1155) 116632) ((-875 . -1042) 116498) ((-875 . -619) 116396) ((-875 . -617) 116203) ((-875 . -1024) 116181) ((-875 . -914) 116160) ((-875 . -888) 116144) ((-875 . -851) 116123) ((-875 . -800) 116102) ((-875 . -797) 116081) ((-875 . -853) 116032) ((-875 . -795) 116011) ((-875 . -794) 115990) ((-875 . -823) 115969) ((-875 . -890) 115894) ((-875 . -1220) T) ((-875 . -404) 115878) ((-875 . -642) 115826) ((-875 . -380) 115810) ((-875 . -288) 115768) ((-875 . -311) 115733) ((-875 . -518) 115645) ((-875 . -341) 115629) ((-875 . -244) T) ((-875 . -111) 115567) ((-875 . -1055) 115519) ((-875 . -1060) 115471) ((-875 . -292) T) ((-875 . -720) 115423) ((-875 . -643) 115375) ((-875 . -651) 115327) ((-875 . -649) 115264) ((-875 . -38) 115216) ((-875 . -309) T) ((-875 . -456) T) ((-875 . -173) T) ((-875 . -561) T) ((-875 . -925) T) ((-875 . -1225) T) ((-875 . -366) T) ((-875 . -234) 115195) ((-875 . -904) 115154) ((-875 . -232) 115138) ((-875 . -147) 115117) ((-875 . -145) 115096) ((-875 . -131) T) ((-875 . -25) T) ((-875 . -102) T) ((-875 . -616) 115078) ((-875 . -1105) T) ((-875 . -23) T) ((-875 . -21) T) ((-875 . -1053) T) ((-875 . -1061) T) ((-875 . -1116) T) ((-875 . -729) T) ((-874 . -995) 115055) ((-874 . -1155) NIL) ((-874 . -1042) 115032) ((-874 . -619) 114962) ((-874 . -617) NIL) ((-874 . -1024) NIL) ((-874 . -914) NIL) ((-874 . -888) 114939) ((-874 . -851) NIL) ((-874 . -800) NIL) ((-874 . -797) NIL) ((-874 . -853) NIL) ((-874 . -795) NIL) ((-874 . -794) NIL) ((-874 . -823) NIL) ((-874 . -890) NIL) ((-874 . -1220) T) ((-874 . -404) 114916) ((-874 . -642) 114893) ((-874 . -380) 114870) ((-874 . -288) 114821) ((-874 . -311) 114778) ((-874 . -518) 114686) ((-874 . -341) 114663) ((-874 . -244) T) ((-874 . -111) 114592) ((-874 . -1055) 114537) ((-874 . -1060) 114482) ((-874 . -292) T) ((-874 . -720) 114427) ((-874 . -643) 114372) ((-874 . -651) 114317) ((-874 . -649) 114247) ((-874 . -38) 114192) ((-874 . -309) T) ((-874 . -456) T) ((-874 . -173) T) ((-874 . -561) T) ((-874 . -925) T) ((-874 . -1225) T) ((-874 . -366) T) ((-874 . -234) NIL) ((-874 . -904) NIL) ((-874 . -232) 114169) ((-874 . -147) T) ((-874 . -145) NIL) ((-874 . -131) T) ((-874 . -25) T) ((-874 . -102) T) ((-874 . -616) 114151) ((-874 . -1105) T) ((-874 . -23) T) ((-874 . -21) T) ((-874 . -1053) T) ((-874 . -1061) T) ((-874 . -1116) T) ((-874 . -729) T) ((-872 . -873) 114135) ((-872 . -925) T) ((-872 . -561) T) ((-872 . -292) T) ((-872 . -173) T) ((-872 . -619) 114107) ((-872 . -720) 114094) ((-872 . -643) 114081) ((-872 . -1060) 114068) ((-872 . -1055) 114055) ((-872 . -111) 114040) ((-872 . -38) 114027) ((-872 . -456) T) ((-872 . -309) T) ((-872 . -1053) T) ((-872 . -1061) T) ((-872 . -1116) T) ((-872 . -729) T) ((-872 . -21) T) ((-872 . -649) 113999) ((-872 . -23) T) ((-872 . -1105) T) ((-872 . -616) 113981) ((-872 . -102) T) ((-872 . -25) T) ((-872 . -131) T) ((-872 . -651) 113968) ((-872 . -147) T) ((-869 . -1053) T) ((-869 . -1061) T) ((-869 . -1116) T) ((-869 . -729) T) ((-869 . -21) T) ((-869 . -649) 113913) ((-869 . -23) T) ((-869 . -1105) T) ((-869 . -616) 113875) ((-869 . -102) T) ((-869 . -25) T) ((-869 . -131) T) ((-869 . -651) 113835) ((-869 . -619) 113770) ((-869 . -494) 113747) ((-869 . -38) 113717) ((-869 . -111) 113682) ((-869 . -1055) 113652) ((-869 . -1060) 113622) ((-869 . -643) 113592) ((-869 . -720) 113562) ((-868 . -1105) T) ((-868 . -616) 113544) ((-868 . -102) T) ((-867 . -847) T) ((-867 . -853) T) ((-867 . -1105) T) ((-867 . -616) 113526) ((-867 . -102) T) ((-867 . -371) T) ((-867 . -617) 113448) ((-866 . -1105) T) ((-866 . -616) 113430) ((-866 . -102) T) ((-865 . -864) T) ((-865 . -174) T) ((-865 . -616) 113412) ((-861 . -853) T) ((-861 . -102) T) ((-861 . -616) 113394) ((-861 . -1105) T) ((-858 . -855) 113378) ((-858 . -1042) 113274) ((-858 . -619) 113171) ((-858 . -416) 113155) ((-858 . -720) 113125) ((-858 . -643) 113095) ((-858 . -651) 113069) ((-858 . -649) 113028) ((-858 . -131) T) ((-858 . -25) T) ((-858 . -102) T) ((-858 . -616) 113010) ((-858 . -1105) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -1060) 112994) ((-858 . -1055) 112978) ((-858 . -111) 112957) ((-858 . -1053) T) ((-858 . -1061) T) ((-858 . -1116) T) ((-858 . -729) T) ((-858 . -38) 112927) ((-857 . -855) 112911) ((-857 . -1042) 112807) ((-857 . -619) 112725) ((-857 . -416) 112709) ((-857 . -720) 112679) ((-857 . -643) 112649) ((-857 . -651) 112623) ((-857 . -649) 112582) ((-857 . -131) T) ((-857 . -25) T) ((-857 . -102) T) ((-857 . -616) 112564) ((-857 . -1105) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -1060) 112548) ((-857 . -1055) 112532) ((-857 . -111) 112511) ((-857 . -1053) T) ((-857 . -1061) T) ((-857 . -1116) T) ((-857 . -729) T) ((-857 . -38) 112481) ((-845 . -1105) T) ((-845 . -616) 112463) ((-845 . -102) T) ((-845 . -416) 112447) ((-845 . -619) 112315) ((-845 . -1042) 112211) ((-845 . -21) 112163) ((-845 . -649) 112080) ((-845 . -23) 112032) ((-845 . -25) 111984) ((-845 . -131) 111936) ((-845 . -851) 111915) ((-845 . -651) 111888) ((-845 . -1061) 111867) ((-845 . -1053) 111846) ((-845 . -800) 111825) ((-845 . -797) 111804) ((-845 . -853) 111783) ((-845 . -795) 111762) ((-845 . -794) 111741) ((-845 . -1116) 111720) ((-845 . -729) 111699) ((-844 . -1105) T) ((-844 . -616) 111681) ((-844 . -102) T) ((-841 . -839) 111663) ((-841 . -102) T) ((-841 . -616) 111645) ((-841 . -1105) T) ((-837 . -1053) T) ((-837 . -1061) T) ((-837 . -1116) T) ((-837 . -729) T) ((-837 . -21) T) ((-837 . -649) 111590) ((-837 . -23) T) ((-837 . -1105) T) ((-837 . -616) 111572) ((-837 . -102) T) ((-837 . -25) T) ((-837 . -131) T) ((-837 . -651) 111532) ((-837 . -619) 111486) ((-837 . -1042) 111455) ((-837 . -288) 111434) ((-837 . -147) 111413) ((-837 . -145) 111392) ((-837 . -38) 111362) ((-837 . -111) 111327) ((-837 . -1055) 111297) ((-837 . -1060) 111267) ((-837 . -643) 111237) ((-837 . -720) 111207) ((-835 . -1105) T) ((-835 . -616) 111189) ((-835 . -102) T) ((-835 . -416) 111173) ((-835 . -619) 111041) ((-835 . -1042) 110937) ((-835 . -21) 110889) ((-835 . -649) 110806) ((-835 . -23) 110758) ((-835 . -25) 110710) ((-835 . -131) 110662) ((-835 . -851) 110641) ((-835 . -651) 110614) ((-835 . -1061) 110593) ((-835 . -1053) 110572) ((-835 . -800) 110551) ((-835 . -797) 110530) ((-835 . -853) 110509) ((-835 . -795) 110488) ((-835 . -794) 110467) ((-835 . -1116) 110446) ((-835 . -729) 110425) ((-831 . -711) 110409) ((-831 . -619) 110364) ((-831 . -720) 110334) ((-831 . -643) 110304) ((-831 . -651) 110278) ((-831 . -649) 110237) ((-831 . -131) T) ((-831 . -25) T) ((-831 . -102) T) ((-831 . -616) 110219) ((-831 . -1105) T) ((-831 . -23) T) ((-831 . -21) T) ((-831 . -1060) 110203) ((-831 . -1055) 110187) ((-831 . -111) 110166) ((-831 . -1053) T) ((-831 . -1061) T) ((-831 . -1116) T) ((-831 . -729) T) ((-831 . -38) 110136) ((-831 . -234) 110115) ((-829 . -1105) T) ((-829 . -616) 110097) ((-829 . -102) T) ((-828 . -1105) T) ((-828 . -616) 110079) ((-828 . -102) T) ((-827 . -1105) T) ((-827 . -616) 110061) ((-827 . -102) T) ((-822 . -389) 110045) ((-822 . -619) 110029) ((-822 . -1042) 110013) ((-822 . -853) T) ((-822 . -1116) T) ((-822 . -102) T) ((-822 . -616) 109995) ((-822 . -1105) T) ((-822 . -729) T) ((-822 . -849) T) ((-822 . -860) T) ((-821 . -268) 109979) ((-821 . -619) 109963) ((-821 . -1042) 109947) ((-821 . -1105) T) ((-821 . -616) 109929) ((-821 . -102) T) ((-821 . -853) T) ((-820 . -111) 109871) ((-820 . -1055) 109822) ((-820 . -1060) 109773) ((-820 . -21) T) ((-820 . -649) 109709) ((-820 . -23) T) ((-820 . -1105) T) ((-820 . -616) 109678) ((-820 . -102) T) ((-820 . -25) T) ((-820 . -131) T) ((-820 . -651) 109629) ((-820 . -234) T) ((-820 . -619) 109543) ((-820 . -729) T) ((-820 . -1116) T) ((-820 . -1061) T) ((-820 . -1053) T) ((-820 . -494) 109527) ((-820 . -366) 109506) ((-820 . -1225) 109485) ((-820 . -925) 109464) ((-820 . -561) 109443) ((-820 . -173) 109422) ((-820 . -720) 109364) ((-820 . -643) 109306) ((-820 . -38) 109248) ((-820 . -456) 109227) ((-820 . -309) 109206) ((-820 . -292) 109185) ((-820 . -244) 109164) ((-819 . -255) 109103) ((-819 . -619) 108840) ((-819 . -1042) 108668) ((-819 . -617) NIL) ((-819 . -328) 108630) ((-819 . -416) 108614) ((-819 . -38) 108463) ((-819 . -111) 108292) ((-819 . -1055) 108135) ((-819 . -1060) 107978) ((-819 . -649) 107888) ((-819 . -651) 107813) ((-819 . -643) 107662) ((-819 . -720) 107511) ((-819 . -145) 107490) ((-819 . -147) 107469) ((-819 . -173) 107380) ((-819 . -561) 107311) ((-819 . -292) 107242) ((-819 . -47) 107204) ((-819 . -380) 107188) ((-819 . -642) 107136) ((-819 . -456) 107087) ((-819 . -518) 106955) ((-819 . -904) 106891) ((-819 . -890) NIL) ((-819 . -914) 106870) ((-819 . -1225) 106849) ((-819 . -954) 106796) ((-819 . -311) 106783) ((-819 . -234) 106762) ((-819 . -131) T) ((-819 . -25) T) ((-819 . -102) T) ((-819 . -616) 106744) ((-819 . -1105) T) ((-819 . -23) T) ((-819 . -21) T) ((-819 . -729) T) ((-819 . -1116) T) ((-819 . -1061) T) ((-819 . -1053) T) ((-819 . -232) 106728) ((-818 . -239) 106707) ((-818 . -1278) 106677) ((-818 . -794) 106656) ((-818 . -851) 106635) ((-818 . -800) 106586) ((-818 . -797) 106537) ((-818 . -853) 106488) ((-818 . -795) 106439) ((-818 . -796) 106418) ((-818 . -290) 106395) ((-818 . -288) 106372) ((-818 . -493) 106356) ((-818 . -518) 106289) ((-818 . -311) 106227) ((-818 . -1220) T) ((-818 . -34) T) ((-818 . -607) 106204) ((-818 . -1042) 106031) ((-818 . -619) 105761) ((-818 . -416) 105730) ((-818 . -642) 105636) ((-818 . -380) 105605) ((-818 . -371) 105584) ((-818 . -234) 105536) ((-818 . -904) 105468) ((-818 . -232) 105437) ((-818 . -111) 105327) ((-818 . -1055) 105224) ((-818 . -1060) 105121) ((-818 . -173) 105100) ((-818 . -616) 104831) ((-818 . -720) 104773) ((-818 . -643) 104715) ((-818 . -651) 104563) ((-818 . -649) 104313) ((-818 . -131) 104183) ((-818 . -23) 104053) ((-818 . -21) 103963) ((-818 . -1053) 103893) ((-818 . -1061) 103823) ((-818 . -1116) 103733) ((-818 . -729) 103643) ((-818 . -38) 103613) ((-818 . -1105) 103403) ((-818 . -102) 103193) ((-818 . -25) 103044) ((-811 . -1105) T) ((-811 . -616) 103026) ((-811 . -102) T) ((-801 . -799) 103010) ((-801 . -853) 102989) ((-801 . -1042) 102769) ((-801 . -619) 102615) ((-801 . -416) 102578) ((-801 . -288) 102536) ((-801 . -311) 102501) ((-801 . -518) 102413) ((-801 . -341) 102397) ((-801 . -371) 102376) ((-801 . -617) 102337) ((-801 . -147) 102316) ((-801 . -145) 102295) ((-801 . -720) 102279) ((-801 . -643) 102263) ((-801 . -651) 102237) ((-801 . -649) 102196) ((-801 . -131) T) ((-801 . -25) T) ((-801 . -102) T) ((-801 . -616) 102178) ((-801 . -1105) T) ((-801 . -23) T) ((-801 . -21) T) ((-801 . -1060) 102162) ((-801 . -1055) 102146) ((-801 . -111) 102125) ((-801 . -1053) T) ((-801 . -1061) T) ((-801 . -1116) T) ((-801 . -729) T) ((-801 . -38) 102109) ((-784 . -1246) 102093) ((-784 . -1155) 102071) ((-784 . -617) NIL) ((-784 . -311) 102058) ((-784 . -518) 102005) ((-784 . -328) 101982) ((-784 . -1042) 101841) ((-784 . -416) 101825) ((-784 . -38) 101654) ((-784 . -111) 101463) ((-784 . -1055) 101286) ((-784 . -1060) 101109) ((-784 . -649) 101019) ((-784 . -651) 100944) ((-784 . -643) 100773) ((-784 . -720) 100602) ((-784 . -619) 100350) ((-784 . -145) 100329) ((-784 . -147) 100308) ((-784 . -47) 100285) ((-784 . -380) 100269) ((-784 . -642) 100217) ((-784 . -904) 100160) ((-784 . -890) NIL) ((-784 . -914) 100139) ((-784 . -1225) 100118) ((-784 . -954) 100087) ((-784 . -925) 100066) ((-784 . -561) 99977) ((-784 . -292) 99888) ((-784 . -173) 99779) ((-784 . -456) 99710) ((-784 . -309) 99689) ((-784 . -288) 99616) ((-784 . -234) T) ((-784 . -131) T) ((-784 . -25) T) ((-784 . -102) T) ((-784 . -616) 99577) ((-784 . -1105) T) ((-784 . -23) T) ((-784 . -21) T) ((-784 . -729) T) ((-784 . -1116) T) ((-784 . -1061) T) ((-784 . -1053) T) ((-784 . -232) 99561) ((-783 . -1069) 99528) ((-783 . -617) 99162) ((-783 . -311) 99149) ((-783 . -518) 99101) ((-783 . -328) 99073) ((-783 . -1042) 98930) ((-783 . -416) 98914) ((-783 . -38) 98763) ((-783 . -619) 98529) ((-783 . -651) 98454) ((-783 . -649) 98364) ((-783 . -729) T) ((-783 . -1116) T) ((-783 . -1061) T) ((-783 . -1053) T) ((-783 . -111) 98193) ((-783 . -1055) 98036) ((-783 . -1060) 97879) ((-783 . -21) T) ((-783 . -23) T) ((-783 . -1105) T) ((-783 . -616) 97793) ((-783 . -102) T) ((-783 . -25) T) ((-783 . -131) T) ((-783 . -643) 97642) ((-783 . -720) 97491) ((-783 . -145) 97470) ((-783 . -147) 97449) ((-783 . -173) 97360) ((-783 . -561) 97291) ((-783 . -292) 97222) ((-783 . -47) 97194) ((-783 . -380) 97178) ((-783 . -642) 97126) ((-783 . -456) 97077) ((-783 . -904) 97061) ((-783 . -890) 96920) ((-783 . -914) 96899) ((-783 . -1225) 96878) ((-783 . -954) 96845) ((-776 . -1105) T) ((-776 . -616) 96827) ((-776 . -102) T) ((-774 . -796) T) ((-774 . -131) T) ((-774 . -25) T) ((-774 . -102) T) ((-774 . -616) 96809) ((-774 . -1105) T) ((-774 . -23) T) ((-774 . -795) T) ((-774 . -853) T) ((-774 . -797) T) ((-774 . -800) T) ((-774 . -729) T) ((-774 . -1116) T) ((-772 . -1105) T) ((-772 . -616) 96791) ((-772 . -102) T) ((-739 . -740) 96775) ((-739 . -1103) 96759) ((-739 . -236) 96743) ((-739 . -617) 96704) ((-739 . -151) 96688) ((-739 . -493) 96672) ((-739 . -102) T) ((-739 . -1105) T) ((-739 . -518) 96605) ((-739 . -311) 96543) ((-739 . -616) 96525) ((-739 . -1220) T) ((-739 . -34) T) ((-739 . -107) 96509) ((-739 . -698) 96493) ((-738 . -1053) T) ((-738 . -1061) T) ((-738 . -1116) T) ((-738 . -729) T) ((-738 . -21) T) ((-738 . -649) 96438) ((-738 . -23) T) ((-738 . -1105) T) ((-738 . -616) 96420) ((-738 . -102) T) ((-738 . -25) T) ((-738 . -131) T) ((-738 . -651) 96380) ((-738 . -619) 96336) ((-738 . -1042) 96307) ((-738 . -147) 96286) ((-738 . -145) 96265) ((-738 . -38) 96235) ((-738 . -111) 96200) ((-738 . -1055) 96170) ((-738 . -1060) 96140) ((-738 . -643) 96110) ((-738 . -720) 96080) ((-738 . -371) 96033) ((-734 . -954) 95986) ((-734 . -619) 95771) ((-734 . -1042) 95647) ((-734 . -1225) 95626) ((-734 . -914) 95605) ((-734 . -890) NIL) ((-734 . -904) 95582) ((-734 . -518) 95525) ((-734 . -456) 95476) ((-734 . -642) 95424) ((-734 . -380) 95408) ((-734 . -47) 95373) ((-734 . -38) 95222) ((-734 . -643) 95071) ((-734 . -720) 94920) ((-734 . -292) 94851) ((-734 . -561) 94782) ((-734 . -111) 94611) ((-734 . -1055) 94454) ((-734 . -1060) 94297) ((-734 . -173) 94208) ((-734 . -147) 94187) ((-734 . -145) 94166) ((-734 . -651) 94091) ((-734 . -649) 94001) ((-734 . -131) T) ((-734 . -25) T) ((-734 . -102) T) ((-734 . -616) 93983) ((-734 . -1105) T) ((-734 . -23) T) ((-734 . -21) T) ((-734 . -1053) T) ((-734 . -1061) T) ((-734 . -1116) T) ((-734 . -729) T) ((-734 . -416) 93967) ((-734 . -328) 93932) ((-734 . -311) 93919) ((-734 . -617) 93780) ((-721 . -477) T) ((-721 . -1116) T) ((-721 . -102) T) ((-721 . -616) 93762) ((-721 . -1105) T) ((-721 . -729) T) ((-718 . -1053) T) ((-718 . -1061) T) ((-718 . -1116) T) ((-718 . -729) T) ((-718 . -21) T) ((-718 . -649) 93734) ((-718 . -23) T) ((-718 . -1105) T) ((-718 . -616) 93716) ((-718 . -102) T) ((-718 . -25) T) ((-718 . -131) T) ((-718 . -651) 93703) ((-718 . -619) 93685) ((-717 . -1053) T) ((-717 . -1061) T) ((-717 . -1116) T) ((-717 . -729) T) ((-717 . -21) T) ((-717 . -649) 93630) ((-717 . -23) T) ((-717 . -1105) T) ((-717 . -616) 93612) ((-717 . -102) T) ((-717 . -25) T) ((-717 . -131) T) ((-717 . -651) 93572) ((-717 . -619) 93526) ((-717 . -1042) 93495) ((-717 . -288) 93474) ((-717 . -147) 93453) ((-717 . -145) 93432) ((-717 . -38) 93402) ((-717 . -111) 93367) ((-717 . -1055) 93337) ((-717 . -1060) 93307) ((-717 . -643) 93277) ((-717 . -720) 93247) ((-716 . -853) T) ((-716 . -102) T) ((-716 . -616) 93182) ((-716 . -1105) T) ((-716 . -494) 93132) ((-716 . -619) 93082) ((-715 . -1246) 93066) ((-715 . -1155) 93044) ((-715 . -617) NIL) ((-715 . -311) 93031) ((-715 . -518) 92978) ((-715 . -328) 92955) ((-715 . -1042) 92835) ((-715 . -416) 92819) ((-715 . -38) 92648) ((-715 . -111) 92457) ((-715 . -1055) 92280) ((-715 . -1060) 92103) ((-715 . -649) 92013) ((-715 . -651) 91938) ((-715 . -643) 91767) ((-715 . -720) 91596) ((-715 . -619) 91352) ((-715 . -145) 91331) ((-715 . -147) 91310) ((-715 . -47) 91287) ((-715 . -380) 91271) ((-715 . -642) 91219) ((-715 . -904) 91162) ((-715 . -890) NIL) ((-715 . -914) 91141) ((-715 . -1225) 91120) ((-715 . -954) 91089) ((-715 . -925) 91068) ((-715 . -561) 90979) ((-715 . -292) 90890) ((-715 . -173) 90781) ((-715 . -456) 90712) ((-715 . -309) 90691) ((-715 . -288) 90618) ((-715 . -234) T) ((-715 . -131) T) ((-715 . -25) T) ((-715 . -102) T) ((-715 . -616) 90600) ((-715 . -1105) T) ((-715 . -23) T) ((-715 . -21) T) ((-715 . -729) T) ((-715 . -1116) T) ((-715 . -1061) T) ((-715 . -1053) T) ((-715 . -232) 90584) ((-715 . -371) 90563) ((-714 . -366) T) ((-714 . -1225) T) ((-714 . -925) T) ((-714 . -561) T) ((-714 . -173) T) ((-714 . -619) 90513) ((-714 . -720) 90478) ((-714 . -643) 90443) ((-714 . -38) 90408) ((-714 . -456) T) ((-714 . -309) T) ((-714 . -651) 90373) ((-714 . -649) 90323) ((-714 . -729) T) ((-714 . -1116) T) ((-714 . -1061) T) ((-714 . -1053) T) ((-714 . -111) 90279) ((-714 . -1055) 90244) ((-714 . -1060) 90209) ((-714 . -21) T) ((-714 . -23) T) ((-714 . -1105) T) ((-714 . -616) 90191) ((-714 . -102) T) ((-714 . -25) T) ((-714 . -131) T) ((-714 . -292) T) ((-714 . -244) T) ((-713 . -1105) T) ((-713 . -616) 90173) ((-713 . -102) T) ((-704 . -391) T) ((-704 . -1042) 90155) ((-704 . -853) T) ((-704 . -38) 90142) ((-704 . -619) 90114) ((-704 . -729) T) ((-704 . -1116) T) ((-704 . -1061) T) ((-704 . -1053) T) ((-704 . -111) 90099) ((-704 . -1055) 90086) ((-704 . -1060) 90073) ((-704 . -21) T) ((-704 . -649) 90045) ((-704 . -23) T) ((-704 . -1105) T) ((-704 . -616) 90027) ((-704 . -102) T) ((-704 . -25) T) ((-704 . -131) T) ((-704 . -651) 90014) ((-704 . -643) 90001) ((-704 . -720) 89988) ((-704 . -173) T) ((-704 . -292) T) ((-704 . -561) T) ((-704 . -549) T) ((-704 . -1225) T) ((-704 . -1155) T) ((-704 . -617) 89903) ((-704 . -1024) T) ((-704 . -890) 89885) ((-704 . -851) T) ((-704 . -800) T) ((-704 . -797) T) ((-704 . -795) T) ((-704 . -794) T) ((-704 . -823) T) ((-704 . -642) 89867) ((-704 . -925) T) ((-704 . -456) T) ((-704 . -309) T) ((-704 . -234) T) ((-704 . -143) T) ((-704 . -147) T) ((-702 . -408) T) ((-702 . -147) T) ((-702 . -619) 89802) ((-702 . -651) 89767) ((-702 . -649) 89717) ((-702 . -131) T) ((-702 . -25) T) ((-702 . -102) T) ((-702 . -616) 89699) ((-702 . -1105) T) ((-702 . -23) T) ((-702 . -21) T) ((-702 . -729) T) ((-702 . -1116) T) ((-702 . -1061) T) ((-702 . -1053) T) ((-702 . -617) 89644) ((-702 . -366) T) ((-702 . -1225) T) ((-702 . -925) T) ((-702 . -561) T) ((-702 . -173) T) ((-702 . -720) 89609) ((-702 . -643) 89574) ((-702 . -38) 89539) ((-702 . -456) T) ((-702 . -309) T) ((-702 . -111) 89495) ((-702 . -1055) 89460) ((-702 . -1060) 89425) ((-702 . -292) T) ((-702 . -244) T) ((-702 . -851) T) ((-702 . -800) T) ((-702 . -797) T) ((-702 . -853) T) ((-702 . -795) T) ((-702 . -794) T) ((-702 . -890) 89407) ((-702 . -1006) T) ((-702 . -1024) T) ((-702 . -1042) 89352) ((-702 . -1064) T) ((-702 . -391) T) ((-697 . -391) T) ((-697 . -1042) 89297) ((-697 . -853) T) ((-697 . -38) 89247) ((-697 . -619) 89182) ((-697 . -729) T) ((-697 . -1116) T) ((-697 . -1061) T) ((-697 . -1053) T) ((-697 . -111) 89116) ((-697 . -1055) 89066) ((-697 . -1060) 89016) ((-697 . -21) T) ((-697 . -649) 88951) ((-697 . -23) T) ((-697 . -1105) T) ((-697 . -616) 88933) ((-697 . -102) T) ((-697 . -25) T) ((-697 . -131) T) ((-697 . -651) 88883) ((-697 . -643) 88833) ((-697 . -720) 88783) ((-697 . -173) T) ((-697 . -292) T) ((-697 . -561) T) ((-697 . -166) 88765) ((-697 . -35) NIL) ((-697 . -95) NIL) ((-697 . -286) NIL) ((-697 . -497) NIL) ((-697 . -1209) NIL) ((-697 . -1206) NIL) ((-697 . -1006) NIL) ((-697 . -914) NIL) ((-697 . -617) 88673) ((-697 . -888) 88655) ((-697 . -371) NIL) ((-697 . -353) NIL) ((-697 . -1155) NIL) ((-697 . -406) NIL) ((-697 . -414) 88622) ((-697 . -373) 88589) ((-697 . -727) 88556) ((-697 . -416) 88538) ((-697 . -890) 88520) ((-697 . -1220) T) ((-697 . -404) 88502) ((-697 . -642) 88484) ((-697 . -380) 88466) ((-697 . -288) NIL) ((-697 . -311) NIL) ((-697 . -518) NIL) ((-697 . -341) 88448) ((-697 . -244) T) ((-697 . -1225) T) ((-697 . -366) T) ((-697 . -925) T) ((-697 . -456) T) ((-697 . -309) T) ((-697 . -234) NIL) ((-697 . -904) NIL) ((-697 . -232) 88430) ((-697 . -147) T) ((-697 . -145) NIL) ((-694 . -1266) T) ((-694 . -1042) 88414) ((-694 . -619) 88398) ((-694 . -616) 88380) ((-692 . -689) 88338) ((-692 . -493) 88322) ((-692 . -102) 88300) ((-692 . -1105) 88278) ((-692 . -518) 88211) ((-692 . -311) 88149) ((-692 . -616) 88081) ((-692 . -1220) T) ((-692 . -34) T) ((-692 . -57) 88039) ((-692 . -617) 88000) ((-684 . -1087) T) ((-684 . -494) 87981) ((-684 . -616) 87931) ((-684 . -619) 87912) ((-684 . -1105) T) ((-684 . -102) T) ((-684 . -93) T) ((-680 . -853) T) ((-680 . -102) T) ((-680 . -616) 87894) ((-680 . -1105) T) ((-680 . -1042) 87878) ((-680 . -619) 87862) ((-679 . -1087) T) ((-679 . -494) 87843) ((-679 . -616) 87809) ((-679 . -619) 87790) ((-679 . -1105) T) ((-679 . -102) T) ((-679 . -93) T) ((-678 . -493) 87774) ((-678 . -102) 87752) ((-678 . -1105) 87730) ((-678 . -518) 87663) ((-678 . -311) 87601) ((-678 . -616) 87533) ((-678 . -1220) T) ((-678 . -34) T) ((-675 . -853) T) ((-675 . -102) T) ((-675 . -616) 87515) ((-675 . -1105) T) ((-675 . -1042) 87499) ((-675 . -619) 87483) ((-674 . -1087) T) ((-674 . -494) 87464) ((-674 . -616) 87430) ((-674 . -619) 87411) ((-674 . -1105) T) ((-674 . -102) T) ((-674 . -93) T) ((-673 . -1127) 87356) ((-673 . -493) 87340) ((-673 . -518) 87273) ((-673 . -311) 87211) ((-673 . -1220) T) ((-673 . -34) T) ((-673 . -1057) 87151) ((-673 . -1042) 87047) ((-673 . -619) 86965) ((-673 . -416) 86949) ((-673 . -642) 86897) ((-673 . -380) 86881) ((-673 . -234) 86860) ((-673 . -904) 86819) ((-673 . -232) 86803) ((-673 . -720) 86787) ((-673 . -643) 86771) ((-673 . -651) 86745) ((-673 . -649) 86704) ((-673 . -131) T) ((-673 . -25) T) ((-673 . -102) T) ((-673 . -616) 86666) ((-673 . -1105) T) ((-673 . -23) T) ((-673 . -21) T) ((-673 . -1060) 86650) ((-673 . -1055) 86634) ((-673 . -111) 86613) ((-673 . -1053) T) ((-673 . -1061) T) ((-673 . -1116) T) ((-673 . -729) T) ((-673 . -38) 86573) ((-673 . -422) 86557) ((-673 . -747) 86541) ((-673 . -723) T) ((-673 . -764) T) ((-673 . -370) 86525) ((-667 . -377) 86504) ((-667 . -720) 86488) ((-667 . -643) 86472) ((-667 . -651) 86456) ((-667 . -649) 86425) ((-667 . -131) T) ((-667 . -25) T) ((-667 . -102) T) ((-667 . -616) 86407) ((-667 . -1105) T) ((-667 . -23) T) ((-667 . -21) T) ((-667 . -1060) 86391) ((-667 . -1055) 86375) ((-667 . -111) 86354) ((-667 . -638) 86338) ((-667 . -387) 86310) ((-667 . -619) 86287) ((-667 . -1042) 86264) ((-659 . -661) 86248) ((-659 . -38) 86218) ((-659 . -619) 86136) ((-659 . -651) 86110) ((-659 . -649) 86069) ((-659 . -729) T) ((-659 . -1116) T) ((-659 . -1061) T) ((-659 . -1053) T) ((-659 . -111) 86048) ((-659 . -1055) 86032) ((-659 . -1060) 86016) ((-659 . -21) T) ((-659 . -23) T) ((-659 . -1105) T) ((-659 . -616) 85998) ((-659 . -102) T) ((-659 . -25) T) ((-659 . -131) T) ((-659 . -643) 85968) ((-659 . -720) 85938) ((-659 . -416) 85922) ((-659 . -1042) 85818) ((-659 . -855) 85802) ((-659 . -288) 85763) ((-658 . -661) 85747) ((-658 . -38) 85717) ((-658 . -619) 85635) ((-658 . -651) 85609) ((-658 . -649) 85568) ((-658 . -729) T) ((-658 . -1116) T) ((-658 . -1061) T) ((-658 . -1053) T) ((-658 . -111) 85547) ((-658 . -1055) 85531) ((-658 . -1060) 85515) ((-658 . -21) T) ((-658 . -23) T) ((-658 . -1105) T) ((-658 . -616) 85497) ((-658 . -102) T) ((-658 . -25) T) ((-658 . -131) T) ((-658 . -643) 85467) ((-658 . -720) 85437) ((-658 . -416) 85421) ((-658 . -1042) 85317) ((-658 . -855) 85301) ((-658 . -288) 85280) ((-657 . -661) 85264) ((-657 . -38) 85234) ((-657 . -619) 85152) ((-657 . -651) 85126) ((-657 . -649) 85085) ((-657 . -729) T) ((-657 . -1116) T) ((-657 . -1061) T) ((-657 . -1053) T) ((-657 . -111) 85064) ((-657 . -1055) 85048) ((-657 . -1060) 85032) ((-657 . -21) T) ((-657 . -23) T) ((-657 . -1105) T) ((-657 . -616) 85014) ((-657 . -102) T) ((-657 . -25) T) ((-657 . -131) T) ((-657 . -643) 84984) ((-657 . -720) 84954) ((-657 . -416) 84938) ((-657 . -1042) 84834) ((-657 . -855) 84818) ((-657 . -288) 84797) ((-655 . -720) 84781) ((-655 . -643) 84765) ((-655 . -651) 84749) ((-655 . -649) 84718) ((-655 . -131) T) ((-655 . -25) T) ((-655 . -102) T) ((-655 . -616) 84700) ((-655 . -1105) T) ((-655 . -23) T) ((-655 . -21) T) ((-655 . -1060) 84684) ((-655 . -1055) 84668) ((-655 . -111) 84647) ((-655 . -794) 84626) ((-655 . -795) 84605) ((-655 . -853) 84584) ((-655 . -797) 84563) ((-655 . -800) 84542) ((-652 . -1105) T) ((-652 . -616) 84524) ((-652 . -102) T) ((-652 . -1042) 84508) ((-652 . -619) 84492) ((-650 . -698) 84476) ((-650 . -107) 84460) ((-650 . -34) T) ((-650 . -1220) T) ((-650 . -616) 84392) ((-650 . -311) 84330) ((-650 . -518) 84263) ((-650 . -1105) 84241) ((-650 . -102) 84219) ((-650 . -493) 84203) ((-650 . -151) 84187) ((-650 . -617) 84148) ((-650 . -236) 84132) ((-648 . -1087) T) ((-648 . -494) 84113) ((-648 . -616) 84066) ((-648 . -619) 84047) ((-648 . -1105) T) ((-648 . -102) T) ((-648 . -93) T) ((-644 . -669) 84031) ((-644 . -1259) 84015) ((-644 . -1014) 83999) ((-644 . -1153) 83983) ((-644 . -853) 83962) ((-644 . -375) 83946) ((-644 . -654) 83930) ((-644 . -290) 83907) ((-644 . -288) 83884) ((-644 . -607) 83861) ((-644 . -617) 83822) ((-644 . -493) 83806) ((-644 . -102) 83756) ((-644 . -1105) 83706) ((-644 . -518) 83639) ((-644 . -311) 83577) ((-644 . -616) 83489) ((-644 . -1220) T) ((-644 . -34) T) ((-644 . -151) 83473) ((-644 . -284) 83457) ((-644 . -824) 83436) ((-636 . -747) 83420) ((-636 . -723) T) ((-636 . -764) T) ((-636 . -111) 83399) ((-636 . -1055) 83383) ((-636 . -1060) 83367) ((-636 . -21) T) ((-636 . -649) 83336) ((-636 . -23) T) ((-636 . -1105) T) ((-636 . -616) 83305) ((-636 . -102) T) ((-636 . -25) T) ((-636 . -131) T) ((-636 . -651) 83289) ((-636 . -643) 83273) ((-636 . -720) 83257) ((-636 . -422) 83222) ((-636 . -370) 83154) ((-635 . -1197) 83129) ((-635 . -230) 83075) ((-635 . -107) 83021) ((-635 . -311) 82872) ((-635 . -518) 82716) ((-635 . -493) 82647) ((-635 . -151) 82593) ((-635 . -617) NIL) ((-635 . -236) 82539) ((-635 . -613) 82514) ((-635 . -290) 82489) ((-635 . -288) 82464) ((-635 . -102) T) ((-635 . -1105) T) ((-635 . -616) 82446) ((-635 . -1220) T) ((-635 . -34) T) ((-635 . -607) 82421) ((-630 . -477) T) ((-630 . -1116) T) ((-630 . -102) T) ((-630 . -616) 82403) ((-630 . -1105) T) ((-630 . -729) T) ((-629 . -1087) T) ((-629 . -494) 82384) ((-629 . -616) 82350) ((-629 . -619) 82331) ((-629 . -1105) T) ((-629 . -102) T) ((-629 . -93) T) ((-626 . -232) 82315) ((-626 . -904) 82274) ((-626 . -1053) T) ((-626 . -1061) T) ((-626 . -1116) T) ((-626 . -729) T) ((-626 . -21) T) ((-626 . -649) 82246) ((-626 . -23) T) ((-626 . -1105) T) ((-626 . -616) 82228) ((-626 . -102) T) ((-626 . -25) T) ((-626 . -131) T) ((-626 . -651) 82215) ((-626 . -619) 82110) ((-626 . -234) 82089) ((-626 . -561) T) ((-626 . -292) T) ((-626 . -173) T) ((-626 . -720) 82076) ((-626 . -643) 82063) ((-626 . -1060) 82050) ((-626 . -1055) 82037) ((-626 . -111) 82022) ((-626 . -38) 82009) ((-626 . -617) 81986) ((-626 . -416) 81970) ((-626 . -1042) 81853) ((-626 . -147) 81832) ((-626 . -145) 81811) ((-626 . -309) 81790) ((-626 . -456) 81769) ((-626 . -925) 81748) ((-622 . -38) 81732) ((-622 . -619) 81701) ((-622 . -651) 81675) ((-622 . -649) 81634) ((-622 . -729) T) ((-622 . -1116) T) ((-622 . -1061) T) ((-622 . -1053) T) ((-622 . -111) 81613) ((-622 . -1055) 81597) ((-622 . -1060) 81581) ((-622 . -21) T) ((-622 . -23) T) ((-622 . -1105) T) ((-622 . -616) 81563) ((-622 . -102) T) ((-622 . -25) T) ((-622 . -131) T) ((-622 . -643) 81547) ((-622 . -720) 81531) ((-622 . -851) 81510) ((-622 . -800) 81489) ((-622 . -797) 81468) ((-622 . -853) 81447) ((-622 . -795) 81426) ((-622 . -794) 81405) ((-620 . -971) T) ((-620 . -102) T) ((-620 . -616) 81387) ((-620 . -1105) T) ((-614 . -132) T) ((-614 . -102) T) ((-614 . -616) 81369) ((-614 . -1105) T) ((-614 . -853) T) ((-614 . -888) 81353) ((-614 . -617) 81214) ((-611 . -368) 81154) ((-611 . -102) T) ((-611 . -616) 81136) ((-611 . -1105) T) ((-611 . -1197) 81112) ((-611 . -230) 81059) ((-611 . -107) 81006) ((-611 . -311) 80801) ((-611 . -518) 80584) ((-611 . -493) 80518) ((-611 . -151) 80465) ((-611 . -617) NIL) ((-611 . -236) 80412) ((-611 . -613) 80388) ((-611 . -290) 80364) ((-611 . -288) 80340) ((-611 . -1220) T) ((-611 . -34) T) ((-611 . -607) 80316) ((-610 . -747) 80300) ((-610 . -723) T) ((-610 . -764) T) ((-610 . -111) 80279) ((-610 . -1055) 80263) ((-610 . -1060) 80247) ((-610 . -21) T) ((-610 . -649) 80216) ((-610 . -23) T) ((-610 . -1105) T) ((-610 . -616) 80185) ((-610 . -102) T) ((-610 . -25) T) ((-610 . -131) T) ((-610 . -651) 80169) ((-610 . -643) 80153) ((-610 . -720) 80137) ((-610 . -422) 80102) ((-610 . -370) 80034) ((-609 . -1087) T) ((-609 . -494) 80015) ((-609 . -616) 79965) ((-609 . -619) 79946) ((-609 . -1105) T) ((-609 . -102) T) ((-609 . -93) T) ((-608 . -616) 79913) ((-608 . -494) 79895) ((-608 . -619) 79877) ((-605 . -1269) 79861) ((-605 . -375) 79845) ((-605 . -853) 79824) ((-605 . -151) 79808) ((-605 . -34) T) ((-605 . -1220) T) ((-605 . -616) 79720) ((-605 . -311) 79658) ((-605 . -518) 79591) ((-605 . -1105) 79541) ((-605 . -102) 79491) ((-605 . -493) 79475) ((-605 . -617) 79436) ((-605 . -607) 79413) ((-605 . -288) 79390) ((-605 . -290) 79367) ((-605 . -654) 79351) ((-605 . -19) 79335) ((-604 . -616) 79317) ((-600 . -1053) T) ((-600 . -1061) T) ((-600 . -1116) T) ((-600 . -729) T) ((-600 . -21) T) ((-600 . -649) 79276) ((-600 . -23) T) ((-600 . -1105) T) ((-600 . -616) 79258) ((-600 . -102) T) ((-600 . -25) T) ((-600 . -131) T) ((-600 . -651) 79232) ((-600 . -619) 79190) ((-600 . -111) 79143) ((-600 . -1055) 79103) ((-600 . -1060) 79063) ((-600 . -561) 79042) ((-600 . -292) 79021) ((-600 . -173) 79000) ((-600 . -720) 78973) ((-600 . -643) 78946) ((-600 . -38) 78919) ((-599 . -1249) 78896) ((-599 . -47) 78873) ((-599 . -38) 78770) ((-599 . -643) 78667) ((-599 . -720) 78564) ((-599 . -619) 78446) ((-599 . -292) 78425) ((-599 . -561) 78404) ((-599 . -111) 78273) ((-599 . -1055) 78156) ((-599 . -1060) 78039) ((-599 . -173) 77990) ((-599 . -147) 77969) ((-599 . -145) 77948) ((-599 . -651) 77873) ((-599 . -649) 77783) ((-599 . -977) 77752) ((-599 . -904) 77665) ((-599 . -288) 77650) ((-599 . -1053) T) ((-599 . -1061) T) ((-599 . -1116) T) ((-599 . -729) T) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1105) T) ((-599 . -616) 77632) ((-599 . -102) T) ((-599 . -25) T) ((-599 . -131) T) ((-599 . -234) 77591) ((-597 . -1148) T) ((-597 . -375) 77573) ((-597 . -853) T) ((-597 . -151) 77555) ((-597 . -34) T) ((-597 . -1220) T) ((-597 . -616) 77537) ((-597 . -311) NIL) ((-597 . -518) NIL) ((-597 . -1105) T) ((-597 . -102) T) ((-597 . -493) 77519) ((-597 . -617) NIL) ((-597 . -607) 77494) ((-597 . -288) 77469) ((-597 . -290) 77444) ((-597 . -654) 77426) ((-597 . -19) 77408) ((-596 . -1087) T) ((-596 . -494) 77389) ((-596 . -616) 77355) ((-596 . -619) 77336) ((-596 . -1105) T) ((-596 . -102) T) ((-596 . -93) T) ((-590 . -616) 77318) ((-587 . -720) 77293) ((-587 . -643) 77268) ((-587 . -651) 77243) ((-587 . -649) 77203) ((-587 . -131) T) ((-587 . -25) T) ((-587 . -102) T) ((-587 . -616) 77185) ((-587 . -1105) T) ((-587 . -23) T) ((-587 . -21) T) ((-587 . -1060) 77160) ((-587 . -1055) 77135) ((-587 . -111) 77103) ((-587 . -1042) 77087) ((-587 . -619) 77071) ((-585 . -353) T) ((-585 . -1155) T) ((-585 . -371) T) ((-585 . -145) T) ((-585 . -366) T) ((-585 . -1225) T) ((-585 . -925) T) ((-585 . -561) T) ((-585 . -173) T) ((-585 . -619) 77021) ((-585 . -720) 76986) ((-585 . -643) 76951) ((-585 . -38) 76916) ((-585 . -456) T) ((-585 . -309) T) ((-585 . -111) 76872) ((-585 . -1055) 76837) ((-585 . -1060) 76802) ((-585 . -649) 76752) ((-585 . -651) 76717) ((-585 . -292) T) ((-585 . -244) T) ((-585 . -406) T) ((-585 . -1053) T) ((-585 . -1061) T) ((-585 . -1116) T) ((-585 . -729) T) ((-585 . -21) T) ((-585 . -23) T) ((-585 . -1105) T) ((-585 . -616) 76699) ((-585 . -102) T) ((-585 . -25) T) ((-585 . -131) T) ((-585 . -234) T) ((-585 . -331) 76686) ((-585 . -147) 76668) ((-585 . -1042) 76655) ((-585 . -1278) 76642) ((-585 . -1289) 76629) ((-585 . -617) 76611) ((-584 . -873) 76595) ((-584 . -925) T) ((-584 . -561) T) ((-584 . -292) T) ((-584 . -173) T) ((-584 . -619) 76567) ((-584 . -720) 76554) ((-584 . -643) 76541) ((-584 . -1060) 76528) ((-584 . -1055) 76515) ((-584 . -111) 76500) ((-584 . -38) 76487) ((-584 . -456) T) ((-584 . -309) T) ((-584 . -1053) T) ((-584 . -1061) T) ((-584 . -1116) T) ((-584 . -729) T) ((-584 . -21) T) ((-584 . -649) 76459) ((-584 . -23) T) ((-584 . -1105) T) ((-584 . -616) 76441) ((-584 . -102) T) ((-584 . -25) T) ((-584 . -131) T) ((-584 . -651) 76428) ((-584 . -147) T) ((-583 . -1105) T) ((-583 . -616) 76410) ((-583 . -102) T) ((-582 . -1105) T) ((-582 . -616) 76392) ((-582 . -102) T) ((-581 . -580) T) ((-581 . -864) T) ((-581 . -174) T) ((-581 . -531) T) ((-581 . -616) 76374) ((-575 . -559) 76358) ((-575 . -35) T) ((-575 . -95) T) ((-575 . -286) T) ((-575 . -497) T) ((-575 . -1209) T) ((-575 . -1206) T) ((-575 . -1042) 76340) ((-575 . -1006) T) ((-575 . -853) T) ((-575 . -561) T) ((-575 . -292) T) ((-575 . -173) T) ((-575 . -619) 76312) ((-575 . -720) 76299) ((-575 . -643) 76286) ((-575 . -651) 76273) ((-575 . -649) 76245) ((-575 . -131) T) ((-575 . -25) T) ((-575 . -102) T) ((-575 . -616) 76227) ((-575 . -1105) T) ((-575 . -23) T) ((-575 . -21) T) ((-575 . -1060) 76214) ((-575 . -1055) 76201) ((-575 . -111) 76186) ((-575 . -1053) T) ((-575 . -1061) T) ((-575 . -1116) T) ((-575 . -729) T) ((-575 . -38) 76173) ((-575 . -456) T) ((-555 . -1197) 76152) ((-555 . -230) 76102) ((-555 . -107) 76052) ((-555 . -311) 75856) ((-555 . -518) 75648) ((-555 . -493) 75585) ((-555 . -151) 75535) ((-555 . -617) NIL) ((-555 . -236) 75485) ((-555 . -613) 75464) ((-555 . -290) 75443) ((-555 . -288) 75422) ((-555 . -102) T) ((-555 . -1105) T) ((-555 . -616) 75404) ((-555 . -1220) T) ((-555 . -34) T) ((-555 . -607) 75383) ((-554 . -847) T) ((-554 . -853) T) ((-554 . -1105) T) ((-554 . -616) 75365) ((-554 . -102) T) ((-554 . -371) T) ((-553 . -847) T) ((-553 . -853) T) ((-553 . -1105) T) ((-553 . -616) 75347) ((-553 . -102) T) ((-553 . -371) T) ((-552 . -847) T) ((-552 . -853) T) ((-552 . -1105) T) ((-552 . -616) 75329) ((-552 . -102) T) ((-552 . -371) T) ((-551 . -847) T) ((-551 . -853) T) ((-551 . -1105) T) ((-551 . -616) 75311) ((-551 . -102) T) ((-551 . -371) T) ((-550 . -549) T) ((-550 . -1225) T) ((-550 . -1155) T) ((-550 . -1042) 75293) ((-550 . -617) 75192) ((-550 . -1024) T) ((-550 . -890) 75174) ((-550 . -851) T) ((-550 . -800) T) ((-550 . -797) T) ((-550 . -853) T) ((-550 . -795) T) ((-550 . -794) T) ((-550 . -823) T) ((-550 . -642) 75156) ((-550 . -925) T) ((-550 . -561) T) ((-550 . -292) T) ((-550 . -173) T) ((-550 . -619) 75128) ((-550 . -720) 75115) ((-550 . -643) 75102) ((-550 . -1060) 75089) ((-550 . -1055) 75076) ((-550 . -111) 75061) ((-550 . -38) 75048) ((-550 . -456) T) ((-550 . -309) T) ((-550 . -234) T) ((-550 . -143) T) ((-550 . -1053) T) ((-550 . -1061) T) ((-550 . -1116) T) ((-550 . -729) T) ((-550 . -21) T) ((-550 . -649) 75020) ((-550 . -23) T) ((-550 . -1105) T) ((-550 . -616) 75002) ((-550 . -102) T) ((-550 . -25) T) ((-550 . -131) T) ((-550 . -651) 74989) ((-550 . -147) T) ((-550 . -824) T) ((-539 . -1108) 74941) ((-539 . -102) T) ((-539 . -616) 74923) ((-539 . -1105) T) ((-539 . -621) 74826) ((-539 . -617) 74807) ((-537 . -770) 74789) ((-537 . -531) T) ((-537 . -174) T) ((-537 . -864) T) ((-537 . -580) T) ((-537 . -616) 74771) ((-535 . -796) T) ((-535 . -131) T) ((-535 . -25) T) ((-535 . -102) T) ((-535 . -616) 74753) ((-535 . -1105) T) ((-535 . -23) T) ((-535 . -795) T) ((-535 . -853) T) ((-535 . -797) T) ((-535 . -800) T) ((-535 . -513) 74730) ((-533 . -531) T) ((-533 . -174) T) ((-533 . -616) 74712) ((-529 . -1087) T) ((-529 . -494) 74693) ((-529 . -616) 74659) ((-529 . -619) 74640) ((-529 . -1105) T) ((-529 . -102) T) ((-529 . -93) T) ((-528 . -1087) T) ((-528 . -494) 74621) ((-528 . -616) 74587) ((-528 . -619) 74568) ((-528 . -1105) T) ((-528 . -102) T) ((-528 . -93) T) ((-527 . -689) 74518) ((-527 . -493) 74502) ((-527 . -102) 74480) ((-527 . -1105) 74458) ((-527 . -518) 74391) ((-527 . -311) 74329) ((-527 . -616) 74261) ((-527 . -1220) T) ((-527 . -34) T) ((-527 . -57) 74211) ((-524 . -669) 74195) ((-524 . -1259) 74179) ((-524 . -1014) 74163) ((-524 . -1153) 74147) ((-524 . -853) 74126) ((-524 . -375) 74110) ((-524 . -654) 74094) ((-524 . -290) 74071) ((-524 . -288) 74048) ((-524 . -607) 74025) ((-524 . -617) 73986) ((-524 . -493) 73970) ((-524 . -102) 73920) ((-524 . -1105) 73870) ((-524 . -518) 73803) ((-524 . -311) 73741) ((-524 . -616) 73653) ((-524 . -1220) T) ((-524 . -34) T) ((-524 . -151) 73637) ((-524 . -284) 73621) ((-523 . -57) 73595) ((-523 . -34) T) ((-523 . -1220) T) ((-523 . -616) 73527) ((-523 . -311) 73465) ((-523 . -518) 73398) ((-523 . -1105) 73376) ((-523 . -102) 73354) ((-523 . -493) 73338) ((-522 . -331) 73315) ((-522 . -234) T) ((-522 . -371) T) ((-522 . -1155) T) ((-522 . -353) T) ((-522 . -147) 73297) ((-522 . -619) 73227) ((-522 . -651) 73172) ((-522 . -649) 73102) ((-522 . -131) T) ((-522 . -25) T) ((-522 . -102) T) ((-522 . -616) 73084) ((-522 . -1105) T) ((-522 . -23) T) ((-522 . -21) T) ((-522 . -729) T) ((-522 . -1116) T) ((-522 . -1061) T) ((-522 . -1053) T) ((-522 . -366) T) ((-522 . -1225) T) ((-522 . -925) T) ((-522 . -561) T) ((-522 . -173) T) ((-522 . -720) 73029) ((-522 . -643) 72974) ((-522 . -38) 72939) ((-522 . -456) T) ((-522 . -309) T) ((-522 . -111) 72868) ((-522 . -1055) 72813) ((-522 . -1060) 72758) ((-522 . -292) T) ((-522 . -244) T) ((-522 . -406) T) ((-522 . -145) T) ((-522 . -1042) 72735) ((-522 . -1278) 72712) ((-522 . -1289) 72689) ((-521 . -1087) T) ((-521 . -494) 72670) ((-521 . -616) 72636) ((-521 . -619) 72617) ((-521 . -1105) T) ((-521 . -102) T) ((-521 . -93) T) ((-520 . -19) 72601) ((-520 . -654) 72585) ((-520 . -290) 72562) ((-520 . -288) 72539) ((-520 . -607) 72516) ((-520 . -617) 72477) ((-520 . -493) 72461) ((-520 . -102) 72411) ((-520 . -1105) 72361) ((-520 . -518) 72294) ((-520 . -311) 72232) ((-520 . -616) 72144) ((-520 . -1220) T) ((-520 . -34) T) ((-520 . -151) 72128) ((-520 . -853) 72107) ((-520 . -375) 72091) ((-520 . -284) 72075) ((-519 . -325) 72054) ((-519 . -619) 72038) ((-519 . -1042) 72022) ((-519 . -23) T) ((-519 . -1105) T) ((-519 . -616) 72004) ((-519 . -102) T) ((-519 . -25) T) ((-519 . -131) T) ((-516 . -796) T) ((-516 . -131) T) ((-516 . -25) T) ((-516 . -102) T) ((-516 . -616) 71986) ((-516 . -1105) T) ((-516 . -23) T) ((-516 . -795) T) ((-516 . -853) T) ((-516 . -797) T) ((-516 . -800) T) ((-516 . -513) 71965) ((-515 . -795) T) ((-515 . -853) T) ((-515 . -797) T) ((-515 . -25) T) ((-515 . -102) T) ((-515 . -616) 71947) ((-515 . -1105) T) ((-515 . -23) T) ((-515 . -513) 71926) ((-514 . -513) 71905) ((-514 . -102) T) ((-514 . -616) 71887) ((-514 . -1105) T) ((-512 . -23) T) ((-512 . -1105) T) ((-512 . -616) 71869) ((-512 . -102) T) ((-512 . -25) T) ((-512 . -513) 71848) ((-511 . -21) T) ((-511 . -649) 71830) ((-511 . -23) T) ((-511 . -1105) T) ((-511 . -616) 71812) ((-511 . -102) T) ((-511 . -25) T) ((-511 . -131) T) ((-511 . -513) 71791) ((-510 . -1105) T) ((-510 . -616) 71757) ((-510 . -102) T) ((-508 . -1105) T) ((-508 . -616) 71739) ((-508 . -102) T) ((-506 . -853) T) ((-506 . -102) T) ((-506 . -616) 71721) ((-506 . -1105) T) ((-504 . -123) T) ((-504 . -375) 71703) ((-504 . -853) T) ((-504 . -151) 71685) ((-504 . -34) T) ((-504 . -1220) T) ((-504 . -616) 71667) ((-504 . -311) NIL) ((-504 . -518) NIL) ((-504 . -1105) T) ((-504 . -493) 71649) ((-504 . -617) 71631) ((-504 . -607) 71606) ((-504 . -288) 71581) ((-504 . -290) 71556) ((-504 . -654) 71538) ((-504 . -19) 71520) ((-504 . -102) T) ((-504 . -665) T) ((-501 . -57) 71470) ((-501 . -34) T) ((-501 . -1220) T) ((-501 . -616) 71402) ((-501 . -311) 71340) ((-501 . -518) 71273) ((-501 . -1105) 71251) ((-501 . -102) 71229) ((-501 . -493) 71213) ((-500 . -19) 71197) ((-500 . -654) 71181) ((-500 . -290) 71158) ((-500 . -288) 71135) ((-500 . -607) 71112) ((-500 . -617) 71073) ((-500 . -493) 71057) ((-500 . -102) 71007) ((-500 . -1105) 70957) ((-500 . -518) 70890) ((-500 . -311) 70828) ((-500 . -616) 70740) ((-500 . -1220) T) ((-500 . -34) T) ((-500 . -151) 70724) ((-500 . -853) 70703) ((-500 . -375) 70687) ((-499 . -300) T) ((-499 . -102) T) ((-499 . -616) 70669) ((-499 . -1105) T) ((-499 . -619) 70602) ((-499 . -1042) 70545) ((-499 . -518) 70511) ((-499 . -311) 70498) ((-499 . -27) T) ((-499 . -1006) T) ((-499 . -244) T) ((-499 . -111) 70454) ((-499 . -1055) 70419) ((-499 . -1060) 70384) ((-499 . -292) T) ((-499 . -720) 70349) ((-499 . -643) 70314) ((-499 . -651) 70279) ((-499 . -649) 70229) ((-499 . -131) T) ((-499 . -25) T) ((-499 . -23) T) ((-499 . -21) T) ((-499 . -1053) T) ((-499 . -1061) T) ((-499 . -1116) T) ((-499 . -729) T) ((-499 . -38) 70194) ((-499 . -309) T) ((-499 . -456) T) ((-499 . -173) T) ((-499 . -561) T) ((-499 . -925) T) ((-499 . -1225) T) ((-499 . -366) T) ((-499 . -642) 70154) ((-499 . -1024) T) ((-499 . -617) 70099) ((-499 . -147) T) ((-499 . -234) T) ((-495 . -1105) T) ((-495 . -616) 70065) ((-495 . -102) T) ((-491 . -995) 70047) ((-491 . -1155) T) ((-491 . -619) 69997) ((-491 . -1042) 69957) ((-491 . -617) 69887) ((-491 . -1024) T) ((-491 . -914) NIL) ((-491 . -888) 69869) ((-491 . -851) T) ((-491 . -800) T) ((-491 . -797) T) ((-491 . -853) T) ((-491 . -795) T) ((-491 . -794) T) ((-491 . -823) T) ((-491 . -890) 69851) ((-491 . -1220) T) ((-491 . -404) 69833) ((-491 . -642) 69815) ((-491 . -380) 69797) ((-491 . -288) NIL) ((-491 . -311) NIL) ((-491 . -518) NIL) ((-491 . -341) 69779) ((-491 . -244) T) ((-491 . -111) 69713) ((-491 . -1055) 69663) ((-491 . -1060) 69613) ((-491 . -292) T) ((-491 . -720) 69563) ((-491 . -643) 69513) ((-491 . -651) 69463) ((-491 . -649) 69413) ((-491 . -38) 69363) ((-491 . -309) T) ((-491 . -456) T) ((-491 . -173) T) ((-491 . -561) T) ((-491 . -925) T) ((-491 . -1225) T) ((-491 . -366) T) ((-491 . -234) T) ((-491 . -904) NIL) ((-491 . -232) 69345) ((-491 . -147) T) ((-491 . -145) NIL) ((-491 . -131) T) ((-491 . -25) T) ((-491 . -102) T) ((-491 . -616) 69286) ((-491 . -1105) T) ((-491 . -23) T) ((-491 . -21) T) ((-491 . -1053) T) ((-491 . -1061) T) ((-491 . -1116) T) ((-491 . -729) T) ((-489 . -339) 69255) ((-489 . -131) T) ((-489 . -25) T) ((-489 . -102) T) ((-489 . -616) 69237) ((-489 . -1105) T) ((-489 . -23) T) ((-489 . -649) 69219) ((-489 . -21) T) ((-488 . -972) 69203) ((-488 . -493) 69187) ((-488 . -102) 69165) ((-488 . -1105) 69143) ((-488 . -518) 69076) ((-488 . -311) 69014) ((-488 . -616) 68946) ((-488 . -1220) T) ((-488 . -34) T) ((-488 . -107) 68930) ((-487 . -1087) T) ((-487 . -494) 68911) ((-487 . -616) 68877) ((-487 . -619) 68858) ((-487 . -1105) T) ((-487 . -102) T) ((-487 . -93) T) ((-486 . -239) 68837) ((-486 . -1278) 68807) ((-486 . -794) 68786) ((-486 . -851) 68765) ((-486 . -800) 68716) ((-486 . -797) 68667) ((-486 . -853) 68618) ((-486 . -795) 68569) ((-486 . -796) 68548) ((-486 . -290) 68525) ((-486 . -288) 68502) ((-486 . -493) 68486) ((-486 . -518) 68419) ((-486 . -311) 68357) ((-486 . -1220) T) ((-486 . -34) T) ((-486 . -607) 68334) ((-486 . -1042) 68161) ((-486 . -619) 67891) ((-486 . -416) 67860) ((-486 . -642) 67766) ((-486 . -380) 67735) ((-486 . -371) 67714) ((-486 . -234) 67666) ((-486 . -904) 67598) ((-486 . -232) 67567) ((-486 . -111) 67457) ((-486 . -1055) 67354) ((-486 . -1060) 67251) ((-486 . -173) 67230) ((-486 . -616) 66961) ((-486 . -720) 66903) ((-486 . -643) 66845) ((-486 . -651) 66693) ((-486 . -649) 66443) ((-486 . -131) 66313) ((-486 . -23) 66183) ((-486 . -21) 66093) ((-486 . -1053) 66023) ((-486 . -1061) 65953) ((-486 . -1116) 65863) ((-486 . -729) 65773) ((-486 . -38) 65743) ((-486 . -1105) 65533) ((-486 . -102) 65323) ((-486 . -25) 65174) ((-485 . -954) 65119) ((-485 . -619) 64904) ((-485 . -1042) 64780) ((-485 . -1225) 64759) ((-485 . -914) 64738) ((-485 . -890) NIL) ((-485 . -904) 64715) ((-485 . -518) 64658) ((-485 . -456) 64609) ((-485 . -642) 64557) ((-485 . -380) 64541) ((-485 . -47) 64498) ((-485 . -38) 64347) ((-485 . -643) 64196) ((-485 . -720) 64045) ((-485 . -292) 63976) ((-485 . -561) 63907) ((-485 . -111) 63736) ((-485 . -1055) 63579) ((-485 . -1060) 63422) ((-485 . -173) 63333) ((-485 . -147) 63312) ((-485 . -145) 63291) ((-485 . -651) 63216) ((-485 . -649) 63126) ((-485 . -131) T) ((-485 . -25) T) ((-485 . -102) T) ((-485 . -616) 63108) ((-485 . -1105) T) ((-485 . -23) T) ((-485 . -21) T) ((-485 . -1053) T) ((-485 . -1061) T) ((-485 . -1116) T) ((-485 . -729) T) ((-485 . -416) 63092) ((-485 . -328) 63049) ((-485 . -311) 63036) ((-485 . -617) 62897) ((-483 . -1197) 62876) ((-483 . -230) 62826) ((-483 . -107) 62776) ((-483 . -311) 62580) ((-483 . -518) 62372) ((-483 . -493) 62309) ((-483 . -151) 62259) ((-483 . -617) NIL) ((-483 . -236) 62209) ((-483 . -613) 62188) ((-483 . -290) 62167) ((-483 . -288) 62146) ((-483 . -102) T) ((-483 . -1105) T) ((-483 . -616) 62128) ((-483 . -1220) T) ((-483 . -34) T) ((-483 . -607) 62107) ((-482 . -1087) T) ((-482 . -494) 62088) ((-482 . -616) 62054) ((-482 . -619) 62035) ((-482 . -1105) T) ((-482 . -102) T) ((-482 . -93) T) ((-481 . -366) T) ((-481 . -1225) T) ((-481 . -925) T) ((-481 . -561) T) ((-481 . -173) T) ((-481 . -619) 61985) ((-481 . -720) 61950) ((-481 . -643) 61915) ((-481 . -38) 61880) ((-481 . -456) T) ((-481 . -309) T) ((-481 . -651) 61845) ((-481 . -649) 61795) ((-481 . -729) T) ((-481 . -1116) T) ((-481 . -1061) T) ((-481 . -1053) T) ((-481 . -111) 61751) ((-481 . -1055) 61716) ((-481 . -1060) 61681) ((-481 . -21) T) ((-481 . -23) T) ((-481 . -1105) T) ((-481 . -616) 61633) ((-481 . -102) T) ((-481 . -25) T) ((-481 . -131) T) ((-481 . -292) T) ((-481 . -244) T) ((-481 . -147) T) ((-481 . -1042) 61593) ((-481 . -1024) T) ((-481 . -617) 61515) ((-480 . -1215) 61484) ((-480 . -616) 61446) ((-480 . -151) 61430) ((-480 . -34) T) ((-480 . -1220) T) ((-480 . -311) 61368) ((-480 . -518) 61301) ((-480 . -1105) T) ((-480 . -102) T) ((-480 . -493) 61285) ((-480 . -617) 61246) ((-480 . -980) 61215) ((-479 . -1197) 61194) ((-479 . -230) 61144) ((-479 . -107) 61094) ((-479 . -311) 60898) ((-479 . -518) 60690) ((-479 . -493) 60627) ((-479 . -151) 60577) ((-479 . -617) NIL) ((-479 . -236) 60527) ((-479 . -613) 60506) ((-479 . -290) 60485) ((-479 . -288) 60464) ((-479 . -102) T) ((-479 . -1105) T) ((-479 . -616) 60446) ((-479 . -1220) T) ((-479 . -34) T) ((-479 . -607) 60425) ((-478 . -1253) 60409) ((-478 . -234) 60361) ((-478 . -288) 60346) ((-478 . -904) 60252) ((-478 . -977) 60214) ((-478 . -38) 60055) ((-478 . -111) 59876) ((-478 . -1055) 59711) ((-478 . -1060) 59546) ((-478 . -649) 59428) ((-478 . -651) 59325) ((-478 . -643) 59166) ((-478 . -720) 59007) ((-478 . -619) 58833) ((-478 . -145) 58812) ((-478 . -147) 58791) ((-478 . -47) 58761) ((-478 . -1249) 58731) ((-478 . -35) 58697) ((-478 . -95) 58663) ((-478 . -286) 58629) ((-478 . -497) 58595) ((-478 . -1209) 58561) ((-478 . -1206) 58527) ((-478 . -1006) 58493) ((-478 . -244) 58472) ((-478 . -292) 58423) ((-478 . -131) T) ((-478 . -25) T) ((-478 . -102) T) ((-478 . -616) 58405) ((-478 . -1105) T) ((-478 . -23) T) ((-478 . -21) T) ((-478 . -1053) T) ((-478 . -1061) T) ((-478 . -1116) T) ((-478 . -729) T) ((-478 . -309) 58384) ((-478 . -456) 58363) ((-478 . -173) 58294) ((-478 . -561) 58245) ((-478 . -925) 58224) ((-478 . -1225) 58203) ((-478 . -366) 58182) ((-472 . -1105) T) ((-472 . -616) 58164) ((-472 . -102) T) ((-467 . -980) 58133) ((-467 . -617) 58094) ((-467 . -493) 58078) ((-467 . -102) T) ((-467 . -1105) T) ((-467 . -518) 58011) ((-467 . -311) 57949) ((-467 . -616) 57911) ((-467 . -1220) T) ((-467 . -34) T) ((-467 . -151) 57895) ((-465 . -720) 57866) ((-465 . -643) 57837) ((-465 . -651) 57808) ((-465 . -649) 57764) ((-465 . -131) T) ((-465 . -25) T) ((-465 . -102) T) ((-465 . -616) 57746) ((-465 . -1105) T) ((-465 . -23) T) ((-465 . -21) T) ((-465 . -1060) 57717) ((-465 . -1055) 57688) ((-465 . -111) 57649) ((-458 . -954) 57616) ((-458 . -619) 57401) ((-458 . -1042) 57277) ((-458 . -1225) 57256) ((-458 . -914) 57235) ((-458 . -890) NIL) ((-458 . -904) 57212) ((-458 . -518) 57155) ((-458 . -456) 57106) ((-458 . -642) 57054) ((-458 . -380) 57038) ((-458 . -47) 57017) ((-458 . -38) 56866) ((-458 . -643) 56715) ((-458 . -720) 56564) ((-458 . -292) 56495) ((-458 . -561) 56426) ((-458 . -111) 56255) ((-458 . -1055) 56098) ((-458 . -1060) 55941) ((-458 . -173) 55852) ((-458 . -147) 55831) ((-458 . -145) 55810) ((-458 . -651) 55735) ((-458 . -649) 55645) ((-458 . -131) T) ((-458 . -25) T) ((-458 . -102) T) ((-458 . -616) 55627) ((-458 . -1105) T) ((-458 . -23) T) ((-458 . -21) T) ((-458 . -1053) T) ((-458 . -1061) T) ((-458 . -1116) T) ((-458 . -729) T) ((-458 . -416) 55611) ((-458 . -328) 55590) ((-458 . -311) 55577) ((-458 . -617) 55438) ((-457 . -422) 55408) ((-457 . -747) 55378) ((-457 . -723) T) ((-457 . -764) T) ((-457 . -111) 55341) ((-457 . -1055) 55311) ((-457 . -1060) 55281) ((-457 . -21) T) ((-457 . -649) 55196) ((-457 . -23) T) ((-457 . -1105) T) ((-457 . -616) 55178) ((-457 . -102) T) ((-457 . -25) T) ((-457 . -131) T) ((-457 . -651) 55108) ((-457 . -643) 55078) ((-457 . -720) 55048) ((-457 . -370) 55018) ((-443 . -1105) T) ((-443 . -616) 55000) ((-443 . -102) T) ((-442 . -1105) T) ((-442 . -616) 54982) ((-442 . -102) T) ((-441 . -368) 54956) ((-441 . -102) T) ((-441 . -616) 54938) ((-441 . -1105) T) ((-440 . -1105) T) ((-440 . -616) 54920) ((-440 . -102) T) ((-438 . -616) 54902) ((-433 . -38) 54886) ((-433 . -619) 54855) ((-433 . -651) 54829) ((-433 . -649) 54788) ((-433 . -729) T) ((-433 . -1116) T) ((-433 . -1061) T) ((-433 . -1053) T) ((-433 . -111) 54767) ((-433 . -1055) 54751) ((-433 . -1060) 54735) ((-433 . -21) T) ((-433 . -23) T) ((-433 . -1105) T) ((-433 . -616) 54717) ((-433 . -102) T) ((-433 . -25) T) ((-433 . -131) T) ((-433 . -643) 54701) ((-433 . -720) 54685) ((-419 . -729) T) ((-419 . -1105) T) ((-419 . -616) 54667) ((-419 . -102) T) ((-419 . -1116) T) ((-417 . -477) T) ((-417 . -1116) T) ((-417 . -102) T) ((-417 . -616) 54649) ((-417 . -1105) T) ((-417 . -729) T) ((-411 . -995) 54633) ((-411 . -1155) 54611) ((-411 . -1042) 54477) ((-411 . -619) 54375) ((-411 . -617) 54182) ((-411 . -1024) 54160) ((-411 . -914) 54139) ((-411 . -888) 54123) ((-411 . -851) 54102) ((-411 . -800) 54081) ((-411 . -797) 54060) ((-411 . -853) 54011) ((-411 . -795) 53990) ((-411 . -794) 53969) ((-411 . -823) 53948) ((-411 . -890) 53873) ((-411 . -1220) T) ((-411 . -404) 53857) ((-411 . -642) 53805) ((-411 . -380) 53789) ((-411 . -288) 53747) ((-411 . -311) 53712) ((-411 . -518) 53624) ((-411 . -341) 53608) ((-411 . -244) T) ((-411 . -111) 53546) ((-411 . -1055) 53498) ((-411 . -1060) 53450) ((-411 . -292) T) ((-411 . -720) 53402) ((-411 . -643) 53354) ((-411 . -651) 53306) ((-411 . -649) 53243) ((-411 . -38) 53195) ((-411 . -309) T) ((-411 . -456) T) ((-411 . -173) T) ((-411 . -561) T) ((-411 . -925) T) ((-411 . -1225) T) ((-411 . -366) T) ((-411 . -234) 53174) ((-411 . -904) 53133) ((-411 . -232) 53117) ((-411 . -147) 53096) ((-411 . -145) 53075) ((-411 . -131) T) ((-411 . -25) T) ((-411 . -102) T) ((-411 . -616) 53057) ((-411 . -1105) T) ((-411 . -23) T) ((-411 . -21) T) ((-411 . -1053) T) ((-411 . -1061) T) ((-411 . -1116) T) ((-411 . -729) T) ((-411 . -824) 53010) ((-409 . -561) T) ((-409 . -292) T) ((-409 . -173) T) ((-409 . -619) 52918) ((-409 . -720) 52892) ((-409 . -643) 52866) ((-409 . -651) 52840) ((-409 . -649) 52799) ((-409 . -131) T) ((-409 . -25) T) ((-409 . -102) T) ((-409 . -616) 52781) ((-409 . -1105) T) ((-409 . -23) T) ((-409 . -21) T) ((-409 . -1060) 52755) ((-409 . -1055) 52729) ((-409 . -111) 52696) ((-409 . -1053) T) ((-409 . -1061) T) ((-409 . -1116) T) ((-409 . -729) T) ((-409 . -38) 52670) ((-409 . -232) 52654) ((-409 . -904) 52613) ((-409 . -234) 52592) ((-409 . -341) 52576) ((-409 . -518) 52418) ((-409 . -311) 52357) ((-409 . -288) 52285) ((-409 . -416) 52269) ((-409 . -1042) 52165) ((-409 . -456) 52115) ((-409 . -1024) 52093) ((-409 . -617) 52000) ((-409 . -1225) 51978) ((-403 . -1105) T) ((-403 . -616) 51960) ((-403 . -102) T) ((-403 . -617) 51937) ((-402 . -400) T) ((-402 . -1220) T) ((-402 . -616) 51919) ((-397 . -1105) T) ((-397 . -616) 51901) ((-397 . -102) T) ((-397 . -619) 51883) ((-394 . -747) 51867) ((-394 . -723) T) ((-394 . -764) T) ((-394 . -111) 51846) ((-394 . -1055) 51830) ((-394 . -1060) 51814) ((-394 . -21) T) ((-394 . -649) 51783) ((-394 . -23) T) ((-394 . -1105) T) ((-394 . -616) 51765) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -131) T) ((-394 . -651) 51749) ((-394 . -643) 51733) ((-394 . -720) 51717) ((-392 . -393) T) ((-392 . -102) T) ((-392 . -616) 51683) ((-392 . -1105) T) ((-392 . -619) 51664) ((-392 . -494) 51645) ((-390 . -389) 51629) ((-390 . -619) 51613) ((-390 . -1042) 51597) ((-390 . -853) 51576) ((-390 . -1116) T) ((-390 . -102) T) ((-390 . -616) 51558) ((-390 . -1105) T) ((-390 . -729) T) ((-385 . -387) 51537) ((-385 . -619) 51521) ((-385 . -1042) 51505) ((-385 . -643) 51475) ((-385 . -720) 51445) ((-385 . -651) 51429) ((-385 . -649) 51398) ((-385 . -131) T) ((-385 . -25) T) ((-385 . -102) T) ((-385 . -616) 51380) ((-385 . -1105) T) ((-385 . -23) T) ((-385 . -21) T) ((-385 . -1060) 51364) ((-385 . -1055) 51348) ((-385 . -111) 51327) ((-384 . -111) 51306) ((-384 . -1055) 51290) ((-384 . -1060) 51274) ((-384 . -21) T) ((-384 . -649) 51243) ((-384 . -23) T) ((-384 . -1105) T) ((-384 . -616) 51225) ((-384 . -102) T) ((-384 . -25) T) ((-384 . -131) T) ((-384 . -651) 51209) ((-384 . -513) 51188) ((-384 . -720) 51158) ((-384 . -643) 51128) ((-381 . -408) T) ((-381 . -147) T) ((-381 . -619) 51078) ((-381 . -651) 51043) ((-381 . -649) 50993) ((-381 . -131) T) ((-381 . -25) T) ((-381 . -102) T) ((-381 . -616) 50960) ((-381 . -1105) T) ((-381 . -23) T) ((-381 . -21) T) ((-381 . -729) T) ((-381 . -1116) T) ((-381 . -1061) T) ((-381 . -1053) T) ((-381 . -617) 50874) ((-381 . -366) T) ((-381 . -1225) T) ((-381 . -925) T) ((-381 . -561) T) ((-381 . -173) T) ((-381 . -720) 50839) ((-381 . -643) 50804) ((-381 . -38) 50769) ((-381 . -456) T) ((-381 . -309) T) ((-381 . -111) 50725) ((-381 . -1055) 50690) ((-381 . -1060) 50655) ((-381 . -292) T) ((-381 . -244) T) ((-381 . -851) T) ((-381 . -800) T) ((-381 . -797) T) ((-381 . -853) T) ((-381 . -795) T) ((-381 . -794) T) ((-381 . -890) 50637) ((-381 . -1006) T) ((-381 . -1024) T) ((-381 . -1042) 50597) ((-381 . -1064) T) ((-381 . -234) T) ((-381 . -824) T) ((-381 . -1206) T) ((-381 . -1209) T) ((-381 . -497) T) ((-381 . -286) T) ((-381 . -95) T) ((-381 . -35) T) ((-381 . -621) 50579) ((-367 . -368) 50556) ((-367 . -102) T) ((-367 . -616) 50538) ((-367 . -1105) T) ((-364 . -477) T) ((-364 . -1116) T) ((-364 . -102) T) ((-364 . -616) 50520) ((-364 . -1105) T) ((-364 . -729) T) ((-364 . -1042) 50504) ((-364 . -619) 50488) ((-362 . -331) 50472) ((-362 . -234) 50451) ((-362 . -371) 50430) ((-362 . -1155) 50409) ((-362 . -353) 50388) ((-362 . -147) 50367) ((-362 . -619) 50304) ((-362 . -651) 50256) ((-362 . -649) 50193) ((-362 . -131) T) ((-362 . -25) T) ((-362 . -102) T) ((-362 . -616) 50175) ((-362 . -1105) T) ((-362 . -23) T) ((-362 . -21) T) ((-362 . -729) T) ((-362 . -1116) T) ((-362 . -1061) T) ((-362 . -1053) T) ((-362 . -366) T) ((-362 . -1225) T) ((-362 . -925) T) ((-362 . -561) T) ((-362 . -173) T) ((-362 . -720) 50127) ((-362 . -643) 50079) ((-362 . -38) 50044) ((-362 . -456) T) ((-362 . -309) T) ((-362 . -111) 49982) ((-362 . -1055) 49934) ((-362 . -1060) 49886) ((-362 . -292) T) ((-362 . -244) T) ((-362 . -406) 49837) ((-362 . -145) 49788) ((-362 . -1042) 49772) ((-362 . -1278) 49756) ((-362 . -1289) 49740) ((-358 . -331) 49724) ((-358 . -234) 49703) ((-358 . -371) 49682) ((-358 . -1155) 49661) ((-358 . -353) 49640) ((-358 . -147) 49619) ((-358 . -619) 49556) ((-358 . -651) 49508) ((-358 . -649) 49445) ((-358 . -131) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -616) 49427) ((-358 . -1105) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -729) T) ((-358 . -1116) T) ((-358 . -1061) T) ((-358 . -1053) T) ((-358 . -366) T) ((-358 . -1225) T) ((-358 . -925) T) ((-358 . -561) T) ((-358 . -173) T) ((-358 . -720) 49379) ((-358 . -643) 49331) ((-358 . -38) 49296) ((-358 . -456) T) ((-358 . -309) T) ((-358 . -111) 49234) ((-358 . -1055) 49186) ((-358 . -1060) 49138) ((-358 . -292) T) ((-358 . -244) T) ((-358 . -406) 49089) ((-358 . -145) 49040) ((-358 . -1042) 49024) ((-358 . -1278) 49008) ((-358 . -1289) 48992) ((-357 . -331) 48976) ((-357 . -234) 48955) ((-357 . -371) 48934) ((-357 . -1155) 48913) ((-357 . -353) 48892) ((-357 . -147) 48871) ((-357 . -619) 48808) ((-357 . -651) 48760) ((-357 . -649) 48697) ((-357 . -131) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -616) 48679) ((-357 . -1105) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -729) T) ((-357 . -1116) T) ((-357 . -1061) T) ((-357 . -1053) T) ((-357 . -366) T) ((-357 . -1225) T) ((-357 . -925) T) ((-357 . -561) T) ((-357 . -173) T) ((-357 . -720) 48631) ((-357 . -643) 48583) ((-357 . -38) 48548) ((-357 . -456) T) ((-357 . -309) T) ((-357 . -111) 48486) ((-357 . -1055) 48438) ((-357 . -1060) 48390) ((-357 . -292) T) ((-357 . -244) T) ((-357 . -406) 48341) ((-357 . -145) 48292) ((-357 . -1042) 48276) ((-357 . -1278) 48260) ((-357 . -1289) 48244) ((-356 . -331) 48228) ((-356 . -234) 48207) ((-356 . -371) 48186) ((-356 . -1155) 48165) ((-356 . -353) 48144) ((-356 . -147) 48123) ((-356 . -619) 48060) ((-356 . -651) 48012) ((-356 . -649) 47949) ((-356 . -131) T) ((-356 . -25) T) ((-356 . -102) T) ((-356 . -616) 47931) ((-356 . -1105) T) ((-356 . -23) T) ((-356 . -21) T) ((-356 . -729) T) ((-356 . -1116) T) ((-356 . -1061) T) ((-356 . -1053) T) ((-356 . -366) T) ((-356 . -1225) T) ((-356 . -925) T) ((-356 . -561) T) ((-356 . -173) T) ((-356 . -720) 47883) ((-356 . -643) 47835) ((-356 . -38) 47800) ((-356 . -456) T) ((-356 . -309) T) ((-356 . -111) 47738) ((-356 . -1055) 47690) ((-356 . -1060) 47642) ((-356 . -292) T) ((-356 . -244) T) ((-356 . -406) 47593) ((-356 . -145) 47544) ((-356 . -1042) 47528) ((-356 . -1278) 47512) ((-356 . -1289) 47496) ((-355 . -331) 47473) ((-355 . -234) T) ((-355 . -371) T) ((-355 . -1155) T) ((-355 . -353) T) ((-355 . -147) 47455) ((-355 . -619) 47385) ((-355 . -651) 47330) ((-355 . -649) 47260) ((-355 . -131) T) ((-355 . -25) T) ((-355 . -102) T) ((-355 . -616) 47242) ((-355 . -1105) T) ((-355 . -23) T) ((-355 . -21) T) ((-355 . -729) T) ((-355 . -1116) T) ((-355 . -1061) T) ((-355 . -1053) T) ((-355 . -366) T) ((-355 . -1225) T) ((-355 . -925) T) ((-355 . -561) T) ((-355 . -173) T) ((-355 . -720) 47187) ((-355 . -643) 47132) ((-355 . -38) 47097) ((-355 . -456) T) ((-355 . -309) T) ((-355 . -111) 47026) ((-355 . -1055) 46971) ((-355 . -1060) 46916) ((-355 . -292) T) ((-355 . -244) T) ((-355 . -406) T) ((-355 . -145) T) ((-355 . -1042) 46893) ((-355 . -1278) 46870) ((-355 . -1289) 46847) ((-349 . -331) 46831) ((-349 . -234) 46810) ((-349 . -371) 46789) ((-349 . -1155) 46768) ((-349 . -353) 46747) ((-349 . -147) 46726) ((-349 . -619) 46663) ((-349 . -651) 46615) ((-349 . -649) 46552) ((-349 . -131) T) ((-349 . -25) T) ((-349 . -102) T) ((-349 . -616) 46534) ((-349 . -1105) T) ((-349 . -23) T) ((-349 . -21) T) ((-349 . -729) T) ((-349 . -1116) T) ((-349 . -1061) T) ((-349 . -1053) T) ((-349 . -366) T) ((-349 . -1225) T) ((-349 . -925) T) ((-349 . -561) T) ((-349 . -173) T) ((-349 . -720) 46486) ((-349 . -643) 46438) ((-349 . -38) 46403) ((-349 . -456) T) ((-349 . -309) T) ((-349 . -111) 46341) ((-349 . -1055) 46293) ((-349 . -1060) 46245) ((-349 . -292) T) ((-349 . -244) T) ((-349 . -406) 46196) ((-349 . -145) 46147) ((-349 . -1042) 46131) ((-349 . -1278) 46115) ((-349 . -1289) 46099) ((-348 . -331) 46083) ((-348 . -234) 46062) ((-348 . -371) 46041) ((-348 . -1155) 46020) ((-348 . -353) 45999) ((-348 . -147) 45978) ((-348 . -619) 45915) ((-348 . -651) 45867) ((-348 . -649) 45804) ((-348 . -131) T) ((-348 . -25) T) ((-348 . -102) T) ((-348 . -616) 45786) ((-348 . -1105) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -729) T) ((-348 . -1116) T) ((-348 . -1061) T) ((-348 . -1053) T) ((-348 . -366) T) ((-348 . -1225) T) ((-348 . -925) T) ((-348 . -561) T) ((-348 . -173) T) ((-348 . -720) 45738) ((-348 . -643) 45690) ((-348 . -38) 45655) ((-348 . -456) T) ((-348 . -309) T) ((-348 . -111) 45593) ((-348 . -1055) 45545) ((-348 . -1060) 45497) ((-348 . -292) T) ((-348 . -244) T) ((-348 . -406) 45448) ((-348 . -145) 45399) ((-348 . -1042) 45383) ((-348 . -1278) 45367) ((-348 . -1289) 45351) ((-347 . -331) 45328) ((-347 . -234) T) ((-347 . -371) T) ((-347 . -1155) T) ((-347 . -353) T) ((-347 . -147) 45310) ((-347 . -619) 45240) ((-347 . -651) 45185) ((-347 . -649) 45115) ((-347 . -131) T) ((-347 . -25) T) ((-347 . -102) T) ((-347 . -616) 45097) ((-347 . -1105) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -729) T) ((-347 . -1116) T) ((-347 . -1061) T) ((-347 . -1053) T) ((-347 . -366) T) ((-347 . -1225) T) ((-347 . -925) T) ((-347 . -561) T) ((-347 . -173) T) ((-347 . -720) 45042) ((-347 . -643) 44987) ((-347 . -38) 44952) ((-347 . -456) T) ((-347 . -309) T) ((-347 . -111) 44881) ((-347 . -1055) 44826) ((-347 . -1060) 44771) ((-347 . -292) T) ((-347 . -244) T) ((-347 . -406) T) ((-347 . -145) T) ((-347 . -1042) 44748) ((-347 . -1278) 44725) ((-347 . -1289) 44702) ((-343 . -331) 44679) ((-343 . -234) T) ((-343 . -371) T) ((-343 . -1155) T) ((-343 . -353) T) ((-343 . -147) 44661) ((-343 . -619) 44591) ((-343 . -651) 44536) ((-343 . -649) 44466) ((-343 . -131) T) ((-343 . -25) T) ((-343 . -102) T) ((-343 . -616) 44448) ((-343 . -1105) T) ((-343 . -23) T) ((-343 . -21) T) ((-343 . -729) T) ((-343 . -1116) T) ((-343 . -1061) T) ((-343 . -1053) T) ((-343 . -366) T) ((-343 . -1225) T) ((-343 . -925) T) ((-343 . -561) T) ((-343 . -173) T) ((-343 . -720) 44393) ((-343 . -643) 44338) ((-343 . -38) 44303) ((-343 . -456) T) ((-343 . -309) T) ((-343 . -111) 44232) ((-343 . -1055) 44177) ((-343 . -1060) 44122) ((-343 . -292) T) ((-343 . -244) T) ((-343 . -406) T) ((-343 . -145) T) ((-343 . -1042) 44099) ((-343 . -1278) 44076) ((-343 . -1289) 44053) ((-342 . -300) T) ((-342 . -102) T) ((-342 . -616) 44035) ((-342 . -1105) T) ((-342 . -619) 43987) ((-342 . -1042) 43954) ((-342 . -518) 43920) ((-342 . -311) 43907) ((-342 . -38) 43891) ((-342 . -651) 43865) ((-342 . -649) 43824) ((-342 . -729) T) ((-342 . -1116) T) ((-342 . -1061) T) ((-342 . -1053) T) ((-342 . -111) 43803) ((-342 . -1055) 43787) ((-342 . -1060) 43771) ((-342 . -21) T) ((-342 . -23) T) ((-342 . -25) T) ((-342 . -131) T) ((-342 . -643) 43755) ((-342 . -720) 43739) ((-342 . -904) 43720) ((-336 . -339) 43689) ((-336 . -131) T) ((-336 . -25) T) ((-336 . -102) T) ((-336 . -616) 43671) ((-336 . -1105) T) ((-336 . -23) T) ((-336 . -649) 43653) ((-336 . -21) T) ((-335 . -1105) T) ((-335 . -616) 43635) ((-335 . -102) T) ((-333 . -853) T) ((-333 . -102) T) ((-333 . -616) 43617) ((-333 . -1105) T) ((-332 . -1105) T) ((-332 . -616) 43599) ((-332 . -102) T) ((-329 . -19) 43583) ((-329 . -654) 43567) ((-329 . -290) 43544) ((-329 . -288) 43521) ((-329 . -607) 43498) ((-329 . -617) 43459) ((-329 . -493) 43443) ((-329 . -102) 43393) ((-329 . -1105) 43343) ((-329 . -518) 43276) ((-329 . -311) 43214) ((-329 . -616) 43126) ((-329 . -1220) T) ((-329 . -34) T) ((-329 . -151) 43110) ((-329 . -853) 43089) ((-329 . -375) 43073) ((-329 . -284) 43057) ((-326 . -325) 43034) ((-326 . -619) 43018) ((-326 . -1042) 43002) ((-326 . -23) T) ((-326 . -1105) T) ((-326 . -616) 42984) ((-326 . -102) T) ((-326 . -25) T) ((-326 . -131) T) ((-324 . -21) T) ((-324 . -649) 42966) ((-324 . -23) T) ((-324 . -1105) T) ((-324 . -616) 42948) ((-324 . -102) T) ((-324 . -25) T) ((-324 . -131) T) ((-324 . -720) 42930) ((-324 . -643) 42912) ((-324 . -651) 42894) ((-324 . -1060) 42876) ((-324 . -1055) 42858) ((-324 . -111) 42833) ((-324 . -325) 42810) ((-324 . -619) 42794) ((-324 . -1042) 42778) ((-324 . -853) 42757) ((-321 . -1253) 42741) ((-321 . -234) 42693) ((-321 . -288) 42678) ((-321 . -904) 42584) ((-321 . -977) 42546) ((-321 . -38) 42387) ((-321 . -111) 42208) ((-321 . -1055) 42043) ((-321 . -1060) 41878) ((-321 . -649) 41760) ((-321 . -651) 41657) ((-321 . -643) 41498) ((-321 . -720) 41339) ((-321 . -619) 41165) ((-321 . -145) 41144) ((-321 . -147) 41123) ((-321 . -47) 41093) ((-321 . -1249) 41063) ((-321 . -35) 41029) ((-321 . -95) 40995) ((-321 . -286) 40961) ((-321 . -497) 40927) ((-321 . -1209) 40893) ((-321 . -1206) 40859) ((-321 . -1006) 40825) ((-321 . -244) 40804) ((-321 . -292) 40755) ((-321 . -131) T) ((-321 . -25) T) ((-321 . -102) T) ((-321 . -616) 40737) ((-321 . -1105) T) ((-321 . -23) T) ((-321 . -21) T) ((-321 . -1053) T) ((-321 . -1061) T) ((-321 . -1116) T) ((-321 . -729) T) ((-321 . -309) 40716) ((-321 . -456) 40695) ((-321 . -173) 40626) ((-321 . -561) 40577) ((-321 . -925) 40556) ((-321 . -1225) 40535) ((-321 . -366) 40514) ((-321 . -795) T) ((-321 . -853) T) ((-321 . -797) T) ((-316 . -425) 40498) ((-316 . -619) 40062) ((-316 . -1042) 39725) ((-316 . -617) 39586) ((-316 . -888) 39570) ((-316 . -904) 39536) ((-316 . -477) 39515) ((-316 . -416) 39499) ((-316 . -890) 39424) ((-316 . -1220) T) ((-316 . -404) 39408) ((-316 . -642) 39314) ((-316 . -380) 39283) ((-316 . -244) 39262) ((-316 . -111) 39158) ((-316 . -1055) 39068) ((-316 . -1060) 38978) ((-316 . -292) 38957) ((-316 . -720) 38867) ((-316 . -643) 38777) ((-316 . -651) 38598) ((-316 . -649) 38282) ((-316 . -38) 38192) ((-316 . -309) 38171) ((-316 . -456) 38150) ((-316 . -173) 38129) ((-316 . -561) 38108) ((-316 . -925) 38087) ((-316 . -1225) 38066) ((-316 . -366) 38045) ((-316 . -311) 38032) ((-316 . -518) 37998) ((-316 . -300) T) ((-316 . -147) 37977) ((-316 . -145) 37956) ((-316 . -1053) 37846) ((-316 . -1061) 37736) ((-316 . -1116) 37585) ((-316 . -729) 37434) ((-316 . -131) 37305) ((-316 . -25) 37157) ((-316 . -102) T) ((-316 . -616) 37139) ((-316 . -1105) T) ((-316 . -23) 36991) ((-316 . -21) 36862) ((-316 . -29) 36832) ((-316 . -1006) 36811) ((-316 . -27) 36790) ((-316 . -1206) 36769) ((-316 . -1209) 36748) ((-316 . -497) 36727) ((-316 . -286) 36706) ((-316 . -95) 36685) ((-316 . -35) 36664) ((-316 . -160) 36643) ((-316 . -143) 36622) ((-316 . -633) 36601) ((-316 . -964) 36580) ((-316 . -1143) 36559) ((-315 . -995) 36520) ((-315 . -1155) NIL) ((-315 . -1042) 36450) ((-315 . -619) 36333) ((-315 . -617) NIL) ((-315 . -1024) NIL) ((-315 . -914) NIL) ((-315 . -888) 36294) ((-315 . -851) NIL) ((-315 . -800) NIL) ((-315 . -797) NIL) ((-315 . -853) NIL) ((-315 . -795) NIL) ((-315 . -794) NIL) ((-315 . -823) NIL) ((-315 . -890) NIL) ((-315 . -1220) T) ((-315 . -404) 36255) ((-315 . -642) 36216) ((-315 . -380) 36177) ((-315 . -288) 36112) ((-315 . -311) 36053) ((-315 . -518) 35945) ((-315 . -341) 35906) ((-315 . -244) T) ((-315 . -111) 35819) ((-315 . -1055) 35748) ((-315 . -1060) 35677) ((-315 . -292) T) ((-315 . -720) 35606) ((-315 . -643) 35535) ((-315 . -651) 35464) ((-315 . -649) 35378) ((-315 . -38) 35307) ((-315 . -309) T) ((-315 . -456) T) ((-315 . -173) T) ((-315 . -561) T) ((-315 . -925) T) ((-315 . -1225) T) ((-315 . -366) T) ((-315 . -234) NIL) ((-315 . -904) NIL) ((-315 . -232) 35268) ((-315 . -147) 35224) ((-315 . -145) 35180) ((-315 . -131) T) ((-315 . -25) T) ((-315 . -102) T) ((-315 . -616) 35162) ((-315 . -1105) T) ((-315 . -23) T) ((-315 . -21) T) ((-315 . -1053) T) ((-315 . -1061) T) ((-315 . -1116) T) ((-315 . -729) T) ((-314 . -1087) T) ((-314 . -494) 35143) ((-314 . -616) 35109) ((-314 . -619) 35090) ((-314 . -1105) T) ((-314 . -102) T) ((-314 . -93) T) ((-313 . -1105) T) ((-313 . -616) 35072) ((-313 . -102) T) ((-297 . -1197) 35051) ((-297 . -230) 35001) ((-297 . -107) 34951) ((-297 . -311) 34755) ((-297 . -518) 34547) ((-297 . -493) 34484) ((-297 . -151) 34434) ((-297 . -617) NIL) ((-297 . -236) 34384) ((-297 . -613) 34363) ((-297 . -290) 34342) ((-297 . -288) 34321) ((-297 . -102) T) ((-297 . -1105) T) ((-297 . -616) 34303) ((-297 . -1220) T) ((-297 . -34) T) ((-297 . -607) 34282) ((-295 . -1220) T) ((-295 . -518) 34231) ((-295 . -1105) 34013) ((-295 . -616) 33754) ((-295 . -102) 33536) ((-295 . -25) 33400) ((-295 . -21) 33283) ((-295 . -649) 33018) ((-295 . -23) 32901) ((-295 . -131) 32784) ((-295 . -1116) 32665) ((-295 . -729) 32567) ((-295 . -477) 32546) ((-295 . -1053) 32488) ((-295 . -1061) 32430) ((-295 . -651) 32290) ((-295 . -619) 32221) ((-295 . -111) 32137) ((-295 . -1055) 32058) ((-295 . -1060) 31979) ((-295 . -720) 31921) ((-295 . -643) 31863) ((-295 . -904) 31822) ((-295 . -1278) 31792) ((-293 . -616) 31774) ((-291 . -309) T) ((-291 . -456) T) ((-291 . -38) 31761) ((-291 . -619) 31733) ((-291 . -729) T) ((-291 . -1116) T) ((-291 . -1061) T) ((-291 . -1053) T) ((-291 . -111) 31718) ((-291 . -1055) 31705) ((-291 . -1060) 31692) ((-291 . -21) T) ((-291 . -649) 31664) ((-291 . -23) T) ((-291 . -1105) T) ((-291 . -616) 31646) ((-291 . -102) T) ((-291 . -25) T) ((-291 . -131) T) ((-291 . -651) 31633) ((-291 . -643) 31620) ((-291 . -720) 31607) ((-291 . -173) T) ((-291 . -292) T) ((-291 . -561) T) ((-291 . -925) T) ((-282 . -616) 31589) ((-281 . -987) 31573) ((-280 . -987) 31557) ((-277 . -853) T) ((-277 . -102) T) ((-277 . -616) 31539) ((-277 . -1105) T) ((-276 . -842) T) ((-276 . -102) T) ((-276 . -616) 31521) ((-276 . -1105) T) ((-275 . -842) T) ((-275 . -102) T) ((-275 . -616) 31503) ((-275 . -1105) T) ((-274 . -842) T) ((-274 . -102) T) ((-274 . -616) 31485) ((-274 . -1105) T) ((-273 . -842) T) ((-273 . -102) T) ((-273 . -616) 31467) ((-273 . -1105) T) ((-272 . -842) T) ((-272 . -102) T) ((-272 . -616) 31449) ((-272 . -1105) T) ((-271 . -842) T) ((-271 . -102) T) ((-271 . -616) 31431) ((-271 . -1105) T) ((-270 . -842) T) ((-270 . -102) T) ((-270 . -616) 31413) ((-270 . -1105) T) ((-266 . -255) 31375) ((-266 . -619) 31128) ((-266 . -1042) 30972) ((-266 . -617) 30720) ((-266 . -328) 30692) ((-266 . -416) 30676) ((-266 . -38) 30525) ((-266 . -111) 30354) ((-266 . -1055) 30197) ((-266 . -1060) 30040) ((-266 . -649) 29950) ((-266 . -651) 29875) ((-266 . -643) 29724) ((-266 . -720) 29573) ((-266 . -145) 29552) ((-266 . -147) 29531) ((-266 . -173) 29442) ((-266 . -561) 29373) ((-266 . -292) 29304) ((-266 . -47) 29276) ((-266 . -380) 29260) ((-266 . -642) 29208) ((-266 . -456) 29159) ((-266 . -518) 29044) ((-266 . -904) 28990) ((-266 . -890) 28849) ((-266 . -914) 28828) ((-266 . -1225) 28807) ((-266 . -954) 28774) ((-266 . -311) 28761) ((-266 . -234) 28740) ((-266 . -131) T) ((-266 . -25) T) ((-266 . -102) T) ((-266 . -616) 28722) ((-266 . -1105) T) ((-266 . -23) T) ((-266 . -21) T) ((-266 . -729) T) ((-266 . -1116) T) ((-266 . -1061) T) ((-266 . -1053) T) ((-266 . -232) 28706) ((-263 . -1105) T) ((-263 . -616) 28688) ((-263 . -102) T) ((-253 . -239) 28667) ((-253 . -1278) 28637) ((-253 . -794) 28616) ((-253 . -851) 28595) ((-253 . -800) 28546) ((-253 . -797) 28497) ((-253 . -853) 28448) ((-253 . -795) 28399) ((-253 . -796) 28378) ((-253 . -290) 28355) ((-253 . -288) 28332) ((-253 . -493) 28316) ((-253 . -518) 28249) ((-253 . -311) 28187) ((-253 . -1220) T) ((-253 . -34) T) ((-253 . -607) 28164) ((-253 . -1042) 27991) ((-253 . -619) 27721) ((-253 . -416) 27690) ((-253 . -642) 27596) ((-253 . -380) 27565) ((-253 . -371) 27544) ((-253 . -234) 27496) ((-253 . -904) 27428) ((-253 . -232) 27397) ((-253 . -111) 27287) ((-253 . -1055) 27184) ((-253 . -1060) 27081) ((-253 . -173) 27060) ((-253 . -616) 27021) ((-253 . -720) 26963) ((-253 . -643) 26905) ((-253 . -651) 26740) ((-253 . -649) 26560) ((-253 . -131) T) ((-253 . -23) T) ((-253 . -21) T) ((-253 . -1053) 26490) ((-253 . -1061) 26420) ((-253 . -1116) 26330) ((-253 . -729) 26240) ((-253 . -38) 26210) ((-253 . -1105) T) ((-253 . -102) T) ((-253 . -25) T) ((-252 . -239) 26189) ((-252 . -1278) 26159) ((-252 . -794) 26138) ((-252 . -851) 26117) ((-252 . -800) 26068) ((-252 . -797) 26019) ((-252 . -853) 25970) ((-252 . -795) 25921) ((-252 . -796) 25900) ((-252 . -290) 25877) ((-252 . -288) 25854) ((-252 . -493) 25838) ((-252 . -518) 25771) ((-252 . -311) 25709) ((-252 . -1220) T) ((-252 . -34) T) ((-252 . -607) 25686) ((-252 . -1042) 25513) ((-252 . -619) 25243) ((-252 . -416) 25212) ((-252 . -642) 25118) ((-252 . -380) 25087) ((-252 . -371) 25066) ((-252 . -234) 25018) ((-252 . -904) 24950) ((-252 . -232) 24919) ((-252 . -111) 24809) ((-252 . -1055) 24706) ((-252 . -1060) 24603) ((-252 . -173) 24582) ((-252 . -616) 24543) ((-252 . -720) 24485) ((-252 . -643) 24427) ((-252 . -651) 24249) ((-252 . -649) 24056) ((-252 . -131) T) ((-252 . -23) T) ((-252 . -21) T) ((-252 . -1053) 23986) ((-252 . -1061) 23916) ((-252 . -1116) 23826) ((-252 . -729) 23736) ((-252 . -38) 23706) ((-252 . -1105) T) ((-252 . -102) T) ((-252 . -25) T) ((-251 . -1105) T) ((-251 . -616) 23688) ((-251 . -102) T) ((-250 . -187) T) ((-250 . -1105) T) ((-250 . -616) 23655) ((-250 . -102) T) ((-250 . -839) 23637) ((-249 . -1105) T) ((-249 . -616) 23619) ((-249 . -102) T) ((-248 . -954) 23564) ((-248 . -619) 23349) ((-248 . -1042) 23225) ((-248 . -1225) 23204) ((-248 . -914) 23183) ((-248 . -890) NIL) ((-248 . -904) 23160) ((-248 . -518) 23103) ((-248 . -456) 23054) ((-248 . -642) 23002) ((-248 . -380) 22986) ((-248 . -47) 22943) ((-248 . -38) 22792) ((-248 . -643) 22641) ((-248 . -720) 22490) ((-248 . -292) 22421) ((-248 . -561) 22352) ((-248 . -111) 22181) ((-248 . -1055) 22024) ((-248 . -1060) 21867) ((-248 . -173) 21778) ((-248 . -147) 21757) ((-248 . -145) 21736) ((-248 . -651) 21661) ((-248 . -649) 21571) ((-248 . -131) T) ((-248 . -25) T) ((-248 . -102) T) ((-248 . -616) 21553) ((-248 . -1105) T) ((-248 . -23) T) ((-248 . -21) T) ((-248 . -1053) T) ((-248 . -1061) T) ((-248 . -1116) T) ((-248 . -729) T) ((-248 . -416) 21537) ((-248 . -328) 21494) ((-248 . -311) 21481) ((-248 . -617) 21342) ((-246 . -669) 21326) ((-246 . -1259) 21310) ((-246 . -1014) 21294) ((-246 . -1153) 21278) ((-246 . -853) 21257) ((-246 . -375) 21241) ((-246 . -654) 21225) ((-246 . -290) 21202) ((-246 . -288) 21179) ((-246 . -607) 21156) ((-246 . -617) 21117) ((-246 . -493) 21101) ((-246 . -102) 21051) ((-246 . -1105) 21001) ((-246 . -518) 20934) ((-246 . -311) 20872) ((-246 . -616) 20764) ((-246 . -1220) T) ((-246 . -34) T) ((-246 . -151) 20748) ((-246 . -284) 20732) ((-246 . -494) 20709) ((-246 . -619) 20686) ((-240 . -239) 20665) ((-240 . -1278) 20635) ((-240 . -794) 20614) ((-240 . -851) 20593) ((-240 . -800) 20544) ((-240 . -797) 20495) ((-240 . -853) 20446) ((-240 . -795) 20397) ((-240 . -796) 20376) ((-240 . -290) 20353) ((-240 . -288) 20330) ((-240 . -493) 20314) ((-240 . -518) 20247) ((-240 . -311) 20185) ((-240 . -1220) T) ((-240 . -34) T) ((-240 . -607) 20162) ((-240 . -1042) 19989) ((-240 . -619) 19719) ((-240 . -416) 19688) ((-240 . -642) 19594) ((-240 . -380) 19563) ((-240 . -371) 19542) ((-240 . -234) 19494) ((-240 . -904) 19426) ((-240 . -232) 19395) ((-240 . -111) 19285) ((-240 . -1055) 19182) ((-240 . -1060) 19079) ((-240 . -173) 19058) ((-240 . -616) 18789) ((-240 . -720) 18731) ((-240 . -643) 18673) ((-240 . -651) 18521) ((-240 . -649) 18271) ((-240 . -131) 18141) ((-240 . -23) 18011) ((-240 . -21) 17921) ((-240 . -1053) 17851) ((-240 . -1061) 17781) ((-240 . -1116) 17691) ((-240 . -729) 17601) ((-240 . -38) 17571) ((-240 . -1105) 17361) ((-240 . -102) 17151) ((-240 . -25) 17002) ((-228 . -689) 16960) ((-228 . -493) 16944) ((-228 . -102) 16922) ((-228 . -1105) 16900) ((-228 . -518) 16833) ((-228 . -311) 16771) ((-228 . -616) 16703) ((-228 . -1220) T) ((-228 . -34) T) ((-228 . -57) 16661) ((-226 . -408) T) ((-226 . -147) T) ((-226 . -619) 16611) ((-226 . -651) 16576) ((-226 . -649) 16526) ((-226 . -131) T) ((-226 . -25) T) ((-226 . -102) T) ((-226 . -616) 16508) ((-226 . -1105) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -729) T) ((-226 . -1116) T) ((-226 . -1061) T) ((-226 . -1053) T) ((-226 . -617) 16438) ((-226 . -366) T) ((-226 . -1225) T) ((-226 . -925) T) ((-226 . -561) T) ((-226 . -173) T) ((-226 . -720) 16403) ((-226 . -643) 16368) ((-226 . -38) 16333) ((-226 . -456) T) ((-226 . -309) T) ((-226 . -111) 16289) ((-226 . -1055) 16254) ((-226 . -1060) 16219) ((-226 . -292) T) ((-226 . -244) T) ((-226 . -851) T) ((-226 . -800) T) ((-226 . -797) T) ((-226 . -853) T) ((-226 . -795) T) ((-226 . -794) T) ((-226 . -890) 16201) ((-226 . -1006) T) ((-226 . -1024) T) ((-226 . -1042) 16161) ((-226 . -1064) T) ((-226 . -234) T) ((-226 . -824) T) ((-226 . -1206) T) ((-226 . -1209) T) ((-226 . -497) T) ((-226 . -286) T) ((-226 . -95) T) ((-226 . -35) T) ((-224 . -624) 16138) ((-224 . -619) 16100) ((-224 . -651) 16067) ((-224 . -649) 16019) ((-224 . -729) T) ((-224 . -1116) T) ((-224 . -1061) T) ((-224 . -1053) T) ((-224 . -21) T) ((-224 . -23) T) ((-224 . -1105) T) ((-224 . -616) 16001) ((-224 . -102) T) ((-224 . -25) T) ((-224 . -131) T) ((-224 . -1042) 15978) ((-223 . -256) 15962) ((-223 . -1125) 15946) ((-223 . -107) 15930) ((-223 . -34) T) ((-223 . -1220) T) ((-223 . -616) 15862) ((-223 . -311) 15800) ((-223 . -518) 15733) ((-223 . -1105) 15711) ((-223 . -102) 15689) ((-223 . -493) 15673) ((-223 . -999) 15657) ((-219 . -1087) T) ((-219 . -494) 15638) ((-219 . -616) 15604) ((-219 . -619) 15585) ((-219 . -1105) T) ((-219 . -102) T) ((-219 . -93) T) ((-218 . -995) 15567) ((-218 . -1155) T) ((-218 . -619) 15517) ((-218 . -1042) 15477) ((-218 . -617) 15407) ((-218 . -1024) T) ((-218 . -914) NIL) ((-218 . -888) 15389) ((-218 . -851) T) ((-218 . -800) T) ((-218 . -797) T) ((-218 . -853) T) ((-218 . -795) T) ((-218 . -794) T) ((-218 . -823) T) ((-218 . -890) 15371) ((-218 . -1220) T) ((-218 . -404) 15353) ((-218 . -642) 15335) ((-218 . -380) 15317) ((-218 . -288) NIL) ((-218 . -311) NIL) ((-218 . -518) NIL) ((-218 . -341) 15299) ((-218 . -244) T) ((-218 . -111) 15233) ((-218 . -1055) 15183) ((-218 . -1060) 15133) ((-218 . -292) T) ((-218 . -720) 15083) ((-218 . -643) 15033) ((-218 . -651) 14983) ((-218 . -649) 14933) ((-218 . -38) 14883) ((-218 . -309) T) ((-218 . -456) T) ((-218 . -173) T) ((-218 . -561) T) ((-218 . -925) T) ((-218 . -1225) T) ((-218 . -366) T) ((-218 . -234) T) ((-218 . -904) NIL) ((-218 . -232) 14865) ((-218 . -147) T) ((-218 . -145) NIL) ((-218 . -131) T) ((-218 . -25) T) ((-218 . -102) T) ((-218 . -616) 14806) ((-218 . -1105) T) ((-218 . -23) T) ((-218 . -21) T) ((-218 . -1053) T) ((-218 . -1061) T) ((-218 . -1116) T) ((-218 . -729) T) ((-215 . -1105) T) ((-215 . -616) 14788) ((-215 . -102) T) ((-215 . -619) 14765) ((-214 . -1105) T) ((-214 . -616) 14747) ((-214 . -102) T) ((-213 . -899) T) ((-213 . -102) T) ((-213 . -616) 14729) ((-213 . -1105) T) ((-212 . -899) T) ((-212 . -102) T) ((-212 . -616) 14711) ((-212 . -1105) T) ((-210 . -803) T) ((-210 . -102) T) ((-210 . -616) 14693) ((-210 . -1105) T) ((-209 . -803) T) ((-209 . -102) T) ((-209 . -616) 14675) ((-209 . -1105) T) ((-208 . -803) T) ((-208 . -102) T) ((-208 . -616) 14657) ((-208 . -1105) T) ((-207 . -803) T) ((-207 . -102) T) ((-207 . -616) 14639) ((-207 . -1105) T) ((-204 . -790) T) ((-204 . -102) T) ((-204 . -616) 14621) ((-204 . -1105) T) ((-203 . -790) T) ((-203 . -102) T) ((-203 . -616) 14603) ((-203 . -1105) T) ((-202 . -790) T) ((-202 . -102) T) ((-202 . -616) 14585) ((-202 . -1105) T) ((-201 . -790) T) ((-201 . -102) T) ((-201 . -616) 14567) ((-201 . -1105) T) ((-200 . -790) T) ((-200 . -102) T) ((-200 . -616) 14549) ((-200 . -1105) T) ((-199 . -790) T) ((-199 . -102) T) ((-199 . -616) 14531) ((-199 . -1105) T) ((-198 . -790) T) ((-198 . -102) T) ((-198 . -616) 14513) ((-198 . -1105) T) ((-197 . -790) T) ((-197 . -102) T) ((-197 . -616) 14495) ((-197 . -1105) T) ((-196 . -790) T) ((-196 . -102) T) ((-196 . -616) 14477) ((-196 . -1105) T) ((-195 . -790) T) ((-195 . -102) T) ((-195 . -616) 14459) ((-195 . -1105) T) ((-194 . -790) T) ((-194 . -102) T) ((-194 . -616) 14441) ((-194 . -1105) T) ((-188 . -1105) T) ((-188 . -616) 14423) ((-188 . -102) T) ((-185 . -1105) T) ((-185 . -616) 14405) ((-185 . -102) T) ((-184 . -187) T) ((-184 . -1105) T) ((-184 . -616) 14387) ((-184 . -102) T) ((-184 . -839) 14369) ((-181 . -1087) T) ((-181 . -494) 14350) ((-181 . -616) 14316) ((-181 . -619) 14297) ((-181 . -1105) T) ((-181 . -102) T) ((-181 . -93) T) ((-176 . -616) 14279) ((-175 . -38) 14211) ((-175 . -619) 14128) ((-175 . -651) 14060) ((-175 . -649) 13977) ((-175 . -729) T) ((-175 . -1116) T) ((-175 . -1061) T) ((-175 . -1053) T) ((-175 . -111) 13888) ((-175 . -1055) 13820) ((-175 . -1060) 13752) ((-175 . -21) T) ((-175 . -23) T) ((-175 . -1105) T) ((-175 . -616) 13734) ((-175 . -102) T) ((-175 . -25) T) ((-175 . -131) T) ((-175 . -643) 13666) ((-175 . -720) 13598) ((-175 . -366) T) ((-175 . -1225) T) ((-175 . -925) T) ((-175 . -561) T) ((-175 . -173) T) ((-175 . -456) T) ((-175 . -309) T) ((-175 . -292) T) ((-175 . -244) T) ((-172 . -1105) T) ((-172 . -616) 13580) ((-172 . -102) T) ((-169 . -166) 13564) ((-169 . -35) 13542) ((-169 . -95) 13520) ((-169 . -286) 13498) ((-169 . -497) 13476) ((-169 . -1209) 13454) ((-169 . -1206) 13432) ((-169 . -1006) 13383) ((-169 . -914) 13336) ((-169 . -617) 13097) ((-169 . -888) 13081) ((-169 . -371) 13032) ((-169 . -353) 13011) ((-169 . -1155) 12990) ((-169 . -406) 12969) ((-169 . -414) 12940) ((-169 . -38) 12768) ((-169 . -111) 12664) ((-169 . -1055) 12574) ((-169 . -1060) 12484) ((-169 . -649) 12379) ((-169 . -651) 12289) ((-169 . -643) 12117) ((-169 . -720) 11945) ((-169 . -373) 11916) ((-169 . -727) 11887) ((-169 . -1042) 11783) ((-169 . -619) 11561) ((-169 . -416) 11545) ((-169 . -890) 11470) ((-169 . -1220) T) ((-169 . -404) 11454) ((-169 . -642) 11402) ((-169 . -380) 11386) ((-169 . -288) 11344) ((-169 . -311) 11309) ((-169 . -518) 11221) ((-169 . -341) 11205) ((-169 . -244) 11156) ((-169 . -1225) 11061) ((-169 . -366) 11012) ((-169 . -925) 10943) ((-169 . -561) 10854) ((-169 . -292) 10765) ((-169 . -456) 10696) ((-169 . -309) 10627) ((-169 . -234) 10578) ((-169 . -904) 10537) ((-169 . -232) 10521) ((-169 . -173) T) ((-169 . -147) 10500) ((-169 . -1053) T) ((-169 . -1061) T) ((-169 . -1116) T) ((-169 . -729) T) ((-169 . -21) T) ((-169 . -23) T) ((-169 . -1105) T) ((-169 . -616) 10482) ((-169 . -102) T) ((-169 . -25) T) ((-169 . -131) T) ((-169 . -145) 10433) ((-169 . -824) 10412) ((-168 . -1220) T) ((-162 . -1087) T) ((-162 . -494) 10393) ((-162 . -616) 10359) ((-162 . -619) 10340) ((-162 . -1105) T) ((-162 . -102) T) ((-162 . -93) T) ((-161 . -1105) T) ((-161 . -616) 10322) ((-161 . -102) T) ((-157 . -25) T) ((-157 . -102) T) ((-157 . -616) 10304) ((-157 . -1105) T) ((-156 . -1087) T) ((-156 . -494) 10285) ((-156 . -616) 10251) ((-156 . -619) 10232) ((-156 . -1105) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1087) T) ((-154 . -494) 10213) ((-154 . -616) 10179) ((-154 . -619) 10160) ((-154 . -1105) T) ((-154 . -102) T) ((-154 . -93) T) ((-152 . -1053) T) ((-152 . -1061) T) ((-152 . -1116) T) ((-152 . -729) T) ((-152 . -21) T) ((-152 . -649) 10119) ((-152 . -23) T) ((-152 . -1105) T) ((-152 . -616) 10101) ((-152 . -102) T) ((-152 . -25) T) ((-152 . -131) T) ((-152 . -651) 10075) ((-152 . -619) 10044) ((-152 . -38) 10028) ((-152 . -111) 10007) ((-152 . -1055) 9991) ((-152 . -1060) 9975) ((-152 . -643) 9959) ((-152 . -720) 9943) ((-152 . -1278) 9927) ((-144 . -847) T) ((-144 . -853) T) ((-144 . -1105) T) ((-144 . -616) 9909) ((-144 . -102) T) ((-144 . -371) T) ((-141 . -1105) T) ((-141 . -616) 9891) ((-141 . -102) T) ((-141 . -617) 9850) ((-141 . -430) 9832) ((-141 . -1103) 9814) ((-141 . -371) T) ((-141 . -236) 9796) ((-141 . -151) 9778) ((-141 . -493) 9760) ((-141 . -518) NIL) ((-141 . -311) NIL) ((-141 . -1220) T) ((-141 . -34) T) ((-141 . -107) 9742) ((-141 . -230) 9724) ((-140 . -616) 9706) ((-139 . -187) T) ((-139 . -1105) T) ((-139 . -616) 9673) ((-139 . -102) T) ((-139 . -839) 9655) ((-138 . -1087) T) ((-138 . -494) 9636) ((-138 . -616) 9602) ((-138 . -619) 9583) ((-138 . -1105) T) ((-138 . -102) T) ((-138 . -93) T) ((-137 . -1087) T) ((-137 . -494) 9564) ((-137 . -616) 9530) ((-137 . -619) 9511) ((-137 . -1105) T) ((-137 . -102) T) ((-137 . -93) T) ((-135 . -469) 9488) ((-135 . -619) 9472) ((-135 . -1042) 9456) ((-135 . -1105) T) ((-135 . -616) 9438) ((-135 . -102) T) ((-135 . -474) 9393) ((-134 . -853) T) ((-134 . -102) T) ((-134 . -616) 9375) ((-134 . -1105) T) ((-134 . -23) T) ((-134 . -25) T) ((-134 . -729) T) ((-134 . -1116) T) ((-134 . -1042) 9357) ((-134 . -619) 9339) ((-133 . -1087) T) ((-133 . -494) 9320) ((-133 . -616) 9286) ((-133 . -619) 9267) ((-133 . -1105) T) ((-133 . -102) T) ((-133 . -93) T) ((-130 . -1105) T) ((-130 . -616) 9249) ((-130 . -102) T) ((-129 . -19) 9231) ((-129 . -654) 9213) ((-129 . -290) 9188) ((-129 . -288) 9163) ((-129 . -607) 9138) ((-129 . -617) NIL) ((-129 . -493) 9120) ((-129 . -102) T) ((-129 . -1105) T) ((-129 . -518) NIL) ((-129 . -311) NIL) ((-129 . -616) 9064) ((-129 . -1220) T) ((-129 . -34) T) ((-129 . -151) 9046) ((-129 . -853) T) ((-129 . -375) 9028) ((-128 . -847) T) ((-128 . -853) T) ((-128 . -1105) T) ((-128 . -616) 8995) ((-128 . -102) T) ((-128 . -371) T) ((-128 . -494) 8977) ((-128 . -619) 8959) ((-127 . -125) 8943) ((-127 . -1014) 8927) ((-127 . -34) T) ((-127 . -1220) T) ((-127 . -616) 8859) ((-127 . -311) 8797) ((-127 . -518) 8730) ((-127 . -1105) 8708) ((-127 . -102) 8686) ((-127 . -493) 8670) ((-127 . -119) 8654) ((-126 . -125) 8638) ((-126 . -1014) 8622) ((-126 . -34) T) ((-126 . -1220) T) ((-126 . -616) 8554) ((-126 . -311) 8492) ((-126 . -518) 8425) ((-126 . -1105) 8403) ((-126 . -102) 8381) ((-126 . -493) 8365) ((-126 . -119) 8349) ((-121 . -125) 8333) ((-121 . -1014) 8317) ((-121 . -34) T) ((-121 . -1220) T) ((-121 . -616) 8249) ((-121 . -311) 8187) ((-121 . -518) 8120) ((-121 . -1105) 8098) ((-121 . -102) 8076) ((-121 . -493) 8060) ((-121 . -119) 8044) ((-117 . -995) 8021) ((-117 . -1155) NIL) ((-117 . -1042) 7998) ((-117 . -619) 7928) ((-117 . -617) NIL) ((-117 . -1024) NIL) ((-117 . -914) NIL) ((-117 . -888) 7905) ((-117 . -851) NIL) ((-117 . -800) NIL) ((-117 . -797) NIL) ((-117 . -853) NIL) ((-117 . -795) NIL) ((-117 . -794) NIL) ((-117 . -823) NIL) ((-117 . -890) NIL) ((-117 . -1220) T) ((-117 . -404) 7882) ((-117 . -642) 7859) ((-117 . -380) 7836) ((-117 . -288) 7787) ((-117 . -311) 7744) ((-117 . -518) 7652) ((-117 . -341) 7629) ((-117 . -244) T) ((-117 . -111) 7558) ((-117 . -1055) 7503) ((-117 . -1060) 7448) ((-117 . -292) T) ((-117 . -720) 7393) ((-117 . -643) 7338) ((-117 . -651) 7283) ((-117 . -649) 7213) ((-117 . -38) 7158) ((-117 . -309) T) ((-117 . -456) T) ((-117 . -173) T) ((-117 . -561) T) ((-117 . -925) T) ((-117 . -1225) T) ((-117 . -366) T) ((-117 . -234) NIL) ((-117 . -904) NIL) ((-117 . -232) 7135) ((-117 . -147) T) ((-117 . -145) NIL) ((-117 . -131) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -616) 7117) ((-117 . -1105) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1053) T) ((-117 . -1061) T) ((-117 . -1116) T) ((-117 . -729) T) ((-116 . -873) 7101) ((-116 . -925) T) ((-116 . -561) T) ((-116 . -292) T) ((-116 . -173) T) ((-116 . -619) 7073) ((-116 . -720) 7060) ((-116 . -643) 7047) ((-116 . -1060) 7034) ((-116 . -1055) 7021) ((-116 . -111) 7006) ((-116 . -38) 6993) ((-116 . -456) T) ((-116 . -309) T) ((-116 . -1053) T) ((-116 . -1061) T) ((-116 . -1116) T) ((-116 . -729) T) ((-116 . -21) T) ((-116 . -649) 6965) ((-116 . -23) T) ((-116 . -1105) T) ((-116 . -616) 6947) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -131) T) ((-116 . -651) 6934) ((-116 . -147) T) ((-113 . -853) T) ((-113 . -102) T) ((-113 . -616) 6916) ((-113 . -1105) T) ((-113 . -839) 6897) ((-112 . -847) T) ((-112 . -853) T) ((-112 . -1105) T) ((-112 . -616) 6879) ((-112 . -102) T) ((-112 . -371) T) ((-112 . -665) T) ((-112 . -971) T) ((-112 . -617) 6861) ((-110 . -123) T) ((-110 . -375) 6843) ((-110 . -853) T) ((-110 . -151) 6825) ((-110 . -34) T) ((-110 . -1220) T) ((-110 . -616) 6807) ((-110 . -311) NIL) ((-110 . -518) NIL) ((-110 . -1105) T) ((-110 . -493) 6789) ((-110 . -617) 6771) ((-110 . -607) 6746) ((-110 . -288) 6721) ((-110 . -290) 6696) ((-110 . -654) 6678) ((-110 . -19) 6660) ((-110 . -102) T) ((-110 . -665) T) ((-109 . -616) 6642) ((-108 . -995) 6624) ((-108 . -1155) T) ((-108 . -619) 6574) ((-108 . -1042) 6534) ((-108 . -617) 6464) ((-108 . -1024) T) ((-108 . -914) NIL) ((-108 . -888) 6446) ((-108 . -851) T) ((-108 . -800) T) ((-108 . -797) T) ((-108 . -853) T) ((-108 . -795) T) ((-108 . -794) T) ((-108 . -823) T) ((-108 . -890) 6428) ((-108 . -1220) T) ((-108 . -404) 6410) ((-108 . -642) 6392) ((-108 . -380) 6374) ((-108 . -288) NIL) ((-108 . -311) NIL) ((-108 . -518) NIL) ((-108 . -341) 6356) ((-108 . -244) T) ((-108 . -111) 6290) ((-108 . -1055) 6240) ((-108 . -1060) 6190) ((-108 . -292) T) ((-108 . -720) 6140) ((-108 . -643) 6090) ((-108 . -651) 6040) ((-108 . -649) 5990) ((-108 . -38) 5940) ((-108 . -309) T) ((-108 . -456) T) ((-108 . -173) T) ((-108 . -561) T) ((-108 . -925) T) ((-108 . -1225) T) ((-108 . -366) T) ((-108 . -234) T) ((-108 . -904) NIL) ((-108 . -232) 5922) ((-108 . -147) T) ((-108 . -145) NIL) ((-108 . -131) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -616) 5864) ((-108 . -1105) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1053) T) ((-108 . -1061) T) ((-108 . -1116) T) ((-108 . -729) T) ((-105 . -1105) T) ((-105 . -616) 5846) ((-105 . -102) T) ((-103 . -125) 5830) ((-103 . -1014) 5814) ((-103 . -34) T) ((-103 . -1220) T) ((-103 . -616) 5746) ((-103 . -311) 5684) ((-103 . -518) 5617) ((-103 . -1105) 5595) ((-103 . -102) 5573) ((-103 . -493) 5557) ((-103 . -119) 5541) ((-99 . -477) T) ((-99 . -1116) T) ((-99 . -102) T) ((-99 . -616) 5523) ((-99 . -1105) T) ((-99 . -729) T) ((-99 . -288) 5502) ((-97 . -1105) T) ((-97 . -616) 5484) ((-97 . -102) T) ((-96 . -1087) T) ((-96 . -494) 5465) ((-96 . -616) 5431) ((-96 . -619) 5412) ((-96 . -1105) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1125) 5396) ((-91 . -493) 5380) ((-91 . -102) 5358) ((-91 . -1105) 5336) ((-91 . -518) 5269) ((-91 . -311) 5207) ((-91 . -616) 5139) ((-91 . -1220) T) ((-91 . -34) T) ((-91 . -107) 5123) ((-89 . -401) T) ((-89 . -616) 5105) ((-89 . -1220) T) ((-89 . -400) T) ((-88 . -388) T) ((-88 . -616) 5087) ((-88 . -1220) T) ((-88 . -400) T) ((-87 . -444) T) ((-87 . -616) 5069) ((-87 . -1220) T) ((-87 . -400) T) ((-86 . -445) T) ((-86 . -616) 5051) ((-86 . -1220) T) ((-86 . -400) T) ((-85 . -388) T) ((-85 . -616) 5033) ((-85 . -1220) T) ((-85 . -400) T) ((-84 . -388) T) ((-84 . -616) 5015) ((-84 . -1220) T) ((-84 . -400) T) ((-83 . -445) T) ((-83 . -616) 4997) ((-83 . -1220) T) ((-83 . -400) T) ((-82 . -445) T) ((-82 . -616) 4979) ((-82 . -1220) T) ((-82 . -400) T) ((-81 . -445) T) ((-81 . -616) 4961) ((-81 . -1220) T) ((-81 . -400) T) ((-81 . -619) 4902) ((-80 . -445) T) ((-80 . -616) 4884) ((-80 . -1220) T) ((-80 . -400) T) ((-79 . -445) T) ((-79 . -616) 4866) ((-79 . -1220) T) ((-79 . -400) T) ((-78 . -401) T) ((-78 . -616) 4848) ((-78 . -1220) T) ((-78 . -400) T) ((-77 . -445) T) ((-77 . -616) 4830) ((-77 . -1220) T) ((-77 . -400) T) ((-76 . -445) T) ((-76 . -616) 4812) ((-76 . -1220) T) ((-76 . -400) T) ((-75 . -401) T) ((-75 . -616) 4794) ((-75 . -1220) T) ((-75 . -400) T) ((-74 . -445) T) ((-74 . -616) 4776) ((-74 . -1220) T) ((-74 . -400) T) ((-73 . -386) T) ((-73 . -616) 4758) ((-73 . -1220) T) ((-73 . -400) T) ((-72 . -400) T) ((-72 . -1220) T) ((-72 . -616) 4740) ((-71 . -445) T) ((-71 . -616) 4722) ((-71 . -1220) T) ((-71 . -400) T) ((-70 . -386) T) ((-70 . -616) 4704) ((-70 . -1220) T) ((-70 . -400) T) ((-69 . -400) T) ((-69 . -1220) T) ((-69 . -616) 4686) ((-68 . -386) T) ((-68 . -616) 4668) ((-68 . -1220) T) ((-68 . -400) T) ((-67 . -386) T) ((-67 . -616) 4650) ((-67 . -1220) T) ((-67 . -400) T) ((-66 . -401) T) ((-66 . -616) 4632) ((-66 . -1220) T) ((-66 . -400) T) ((-65 . -388) T) ((-65 . -616) 4614) ((-65 . -1220) T) ((-65 . -400) T) ((-65 . -619) 4543) ((-64 . -445) T) ((-64 . -616) 4525) ((-64 . -1220) T) ((-64 . -400) T) ((-63 . -400) T) ((-63 . -1220) T) ((-63 . -616) 4507) ((-62 . -445) T) ((-62 . -616) 4489) ((-62 . -1220) T) ((-62 . -400) T) ((-61 . -401) T) ((-61 . -616) 4471) ((-61 . -1220) T) ((-61 . -400) T) ((-60 . -57) 4433) ((-60 . -34) T) ((-60 . -1220) T) ((-60 . -616) 4365) ((-60 . -311) 4303) ((-60 . -518) 4236) ((-60 . -1105) 4214) ((-60 . -102) 4192) ((-60 . -493) 4176) ((-58 . -19) 4160) ((-58 . -654) 4144) ((-58 . -290) 4121) ((-58 . -288) 4098) ((-58 . -607) 4075) ((-58 . -617) 4036) ((-58 . -493) 4020) ((-58 . -102) 3970) ((-58 . -1105) 3920) ((-58 . -518) 3853) ((-58 . -311) 3791) ((-58 . -616) 3703) ((-58 . -1220) T) ((-58 . -34) T) ((-58 . -151) 3687) ((-58 . -853) 3666) ((-58 . -375) 3650) ((-55 . -1105) T) ((-55 . -616) 3632) ((-55 . -102) T) ((-55 . -1042) 3614) ((-55 . -619) 3596) ((-51 . -1105) T) ((-51 . -616) 3578) ((-51 . -102) T) ((-50 . -624) 3562) ((-50 . -619) 3531) ((-50 . -651) 3505) ((-50 . -649) 3464) ((-50 . -729) T) ((-50 . -1116) T) ((-50 . -1061) T) ((-50 . -1053) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1105) T) ((-50 . -616) 3446) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -131) T) ((-50 . -1042) 3430) ((-49 . -1105) T) ((-49 . -616) 3412) ((-49 . -102) T) ((-48 . -300) T) ((-48 . -102) T) ((-48 . -616) 3394) ((-48 . -1105) T) ((-48 . -619) 3327) ((-48 . -1042) 3270) ((-48 . -518) 3236) ((-48 . -311) 3223) ((-48 . -27) T) ((-48 . -1006) T) ((-48 . -244) T) ((-48 . -111) 3179) ((-48 . -1055) 3144) ((-48 . -1060) 3109) ((-48 . -292) T) ((-48 . -720) 3074) ((-48 . -643) 3039) ((-48 . -651) 3004) ((-48 . -649) 2954) ((-48 . -131) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1053) T) ((-48 . -1061) T) ((-48 . -1116) T) ((-48 . -729) T) ((-48 . -38) 2919) ((-48 . -309) T) ((-48 . -456) T) ((-48 . -173) T) ((-48 . -561) T) ((-48 . -925) T) ((-48 . -1225) T) ((-48 . -366) T) ((-48 . -642) 2879) ((-48 . -1024) T) ((-48 . -617) 2824) ((-48 . -147) T) ((-48 . -234) T) ((-45 . -36) 2803) ((-45 . -607) 2728) ((-45 . -311) 2532) ((-45 . -518) 2324) ((-45 . -493) 2261) ((-45 . -288) 2186) ((-45 . -290) 2111) ((-45 . -613) 2090) ((-45 . -236) 2040) ((-45 . -107) 1990) ((-45 . -230) 1940) ((-45 . -1197) 1919) ((-45 . -284) 1869) ((-45 . -151) 1819) ((-45 . -34) T) ((-45 . -1220) T) ((-45 . -616) 1801) ((-45 . -1105) T) ((-45 . -102) T) ((-45 . -617) NIL) ((-45 . -654) 1751) ((-45 . -375) 1701) ((-45 . -853) NIL) ((-45 . -1153) 1651) ((-45 . -1014) 1601) ((-45 . -1259) 1551) ((-45 . -669) 1501) ((-44 . -422) 1485) ((-44 . -747) 1469) ((-44 . -723) T) ((-44 . -764) T) ((-44 . -111) 1448) ((-44 . -1055) 1432) ((-44 . -1060) 1416) ((-44 . -21) T) ((-44 . -649) 1359) ((-44 . -23) T) ((-44 . -1105) T) ((-44 . -616) 1341) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -131) T) ((-44 . -651) 1299) ((-44 . -643) 1283) ((-44 . -720) 1267) ((-44 . -370) 1251) ((-40 . -345) 1225) ((-40 . -173) T) ((-40 . -619) 1155) ((-40 . -729) T) ((-40 . -1116) T) ((-40 . -1061) T) ((-40 . -1053) T) ((-40 . -651) 1100) ((-40 . -649) 1030) ((-40 . -131) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -616) 1012) ((-40 . -1105) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1060) 957) ((-40 . -1055) 902) ((-40 . -111) 831) ((-40 . -617) 815) ((-40 . -232) 792) ((-40 . -904) 744) ((-40 . -234) 716) ((-40 . -366) T) ((-40 . -1225) T) ((-40 . -925) T) ((-40 . -561) T) ((-40 . -720) 661) ((-40 . -643) 606) ((-40 . -38) 551) ((-40 . -456) T) ((-40 . -309) T) ((-40 . -292) T) ((-40 . -244) T) ((-40 . -371) NIL) ((-40 . -353) NIL) ((-40 . -1155) NIL) ((-40 . -145) 523) ((-40 . -406) NIL) ((-40 . -414) 495) ((-40 . -147) 467) ((-40 . -373) 439) ((-40 . -380) 416) ((-40 . -642) 355) ((-40 . -416) 332) ((-40 . -1042) 220) ((-40 . -727) 192) ((-31 . -1087) T) ((-31 . -494) 173) ((-31 . -616) 139) ((-31 . -619) 120) ((-31 . -1105) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -959) T) ((-30 . -616) 102) ((0 . |EnumerationCategory|) T) ((0 . -616) 84) ((0 . -1105) T) ((0 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -616) 66) ((-2 . -1105) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -616) 48) ((-3 . -1105) T) ((-3 . -102) T) ((-1 . -1105) T) ((-1 . -616) 30) ((-1 . -102) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 2bdfcc41..9b36e7fb 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3477417264) -(4428 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3477420784) +(4430 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -40,8 +40,8 @@ |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| - |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| + |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |CompilerPackage| + |Complex| |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| @@ -452,51 +452,51 @@ |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm| - |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators| - |numerators| |convergents| |approximants| |reducedForm| |partialQuotients| - |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push| - |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic| - |parabolicCylindrical| |paraboloidal| |ellipticCylindrical| - |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical| - |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros| - |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius| - |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt| - |computeCycleLength| |computeCycleEntry| |findConstructor| |arguments| - |operations| |dualSignature| |kind| |package| |domain| |category| |coerceP| - |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath| - |SFunction| |skewSFunction| |cyclotomicDecomposition| - |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints| - |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX| - |exprHasAlgebraicWeight| |exprHasLogarithmicWeights| - |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor| - |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF| - |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?| - |elliptic?| |qsetelt| |doubleResultant| |distdfact| |separateDegrees| - |trace2PowMod| |tracePowMod| |irreducible?| |decimal| |innerint| - |exteriorDifferential| |totalDifferential| |homogeneous?| |leadingBasisTerm| - |ignore?| |computeInt| |checkForZero| |logGamma| |hypergeometric0F1| |rotatez| - |rotatey| |rotatex| |identity| |dictionary| |dioSolve| |directProduct| - |newLine| |copies| |say| |sayLength| |setnext!| |setprevious!| |next| - |previous| |datalist| |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| - |constructor| |functorData| |separant| |initial| |leader| |isobaric?| - |weights| |differentialVariables| |extractBottom!| |extractTop!| - |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| - |drawComplex| |drawComplexVectorField| |setRealSteps| |setImagSteps| - |setClipValue| |draw| |option?| |range| |colorFunction| |curveColor| - |pointColor| |clip| |clipBoolean| |style| |toScale| |pointColorPalette| - |curveColorPalette| |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| - |option| |weight| |makeVariable| |finiteBound| |sortConstraints| - |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| |linearPart| - |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| |Nul| - |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| - |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| - |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| - |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| - |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| - |callForm?| |getIdentifier| |variable?| |getConstant| |type| |select!| - |delete!| |sn| |cn| |dn| |sncndn| |qsetelt!| |categoryFrame| |interactiveEnv| - |currentEnv| |setProperties!| |getProperties| |setProperty!| |getProperty| - |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector| + |polarCoordinates| |complex| |imaginary| |macroExpand| |solid| |solid?| + |denominators| |numerators| |convergents| |approximants| |reducedForm| + |partialQuotients| |partialDenominators| |partialNumerators| + |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical| + |spherical| |parabolic| |parabolicCylindrical| |paraboloidal| + |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar| + |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree| + |complexZeros| |divisorCascade| |graeffe| |pleskenSplit| + |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound| + |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry| + |findConstructor| |arguments| |operations| |dualSignature| |kind| |package| + |domain| |category| |coerceP| |powerSum| |elementary| |alternating| |cyclic| + |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction| + |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite| + |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName| + |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight| + |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF| + |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF| + |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF| + |subscriptedVariables| |central?| |elliptic?| |qsetelt| |doubleResultant| + |distdfact| |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| + |decimal| |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?| + |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |logGamma| + |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| |dictionary| + |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| |setnext!| + |setprevious!| |next| |previous| |datalist| |shanksDiscLogAlgorithm| + |showSummary| |reflect| |reify| |constructor| |functorData| |separant| + |initial| |leader| |isobaric?| |weights| |differentialVariables| + |extractBottom!| |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| + |dequeue| |makeObject| |recolor| |drawComplex| |drawComplexVectorField| + |setRealSteps| |setImagSteps| |setClipValue| |draw| |option?| |range| + |colorFunction| |curveColor| |pointColor| |clip| |clipBoolean| |style| + |toScale| |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| + |space| |tubePoints| |tubeRadius| |option| |weight| |makeVariable| + |finiteBound| |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| + |linearMatrix| |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| + |optAttributes| |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| + |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| + |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| + |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| + |localReal?| |rischNormalize| |realElementary| |validExponential| + |rootNormalize| |tanQ| |callForm?| |getIdentifier| |variable?| |getConstant| + |type| |select!| |delete!| |sn| |cn| |dn| |sncndn| |qsetelt!| |categoryFrame| + |interactiveEnv| |currentEnv| |setProperties!| |getProperties| |setProperty!| + |getProperty| |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| |distribute| |subst| |functionIsFracPolynomial?| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 3c816213..86b9f042 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5357 +1,5361 @@ -(3213809 . 3477417285) -((-1900 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1898 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4219 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-1236 (-549)) |#2|) 44)) (-2442 (($ $) 81)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3843 (((-549) (-1 (-112) |#2|) $) 27) (((-549) |#2| $) NIL) (((-549) |#2| $ (-549)) 97)) (-2124 (((-643 |#2|) $) 13)) (-3941 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2128 (($ (-1 |#2| |#2|) $) 37)) (-4390 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2449 (($ |#2| $ (-549)) NIL) (($ $ $ (-549)) 67)) (-1441 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2126 (((-112) (-1 (-112) |#2|) $) 23)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL) (($ $ (-1236 (-549))) 66)) (-2450 (($ $ (-549)) 76) (($ $ (-1236 (-549))) 75)) (-2125 (((-773) (-1 (-112) |#2|) $) 34) (((-773) |#2| $) NIL)) (-1899 (($ $ $ (-549)) 69)) (-3824 (($ $) 68)) (-3953 (($ (-643 |#2|)) 73)) (-4233 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-643 $)) 86)) (-4378 (((-865) $) 93)) (-2127 (((-112) (-1 (-112) |#2|) $) 22)) (-3455 (((-112) $ $) 96)) (-3088 (((-112) $ $) 100))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -1900 ((-112) |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) (-19 |#2|) (-1219)) (T -18)) +(3214087 . 3477420805) +((-1902 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1900 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4221 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-1237 (-550)) |#2|) 44)) (-2444 (($ $) 81)) (-4276 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3845 (((-550) (-1 (-112) |#2|) $) 27) (((-550) |#2| $) NIL) (((-550) |#2| $ (-550)) 97)) (-2126 (((-644 |#2|) $) 13)) (-3943 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2130 (($ (-1 |#2| |#2|) $) 37)) (-4392 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2451 (($ |#2| $ (-550)) NIL) (($ $ $ (-550)) 67)) (-1442 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2128 (((-112) (-1 (-112) |#2|) $) 23)) (-4233 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL) (($ $ (-1237 (-550))) 66)) (-2452 (($ $ (-550)) 76) (($ $ (-1237 (-550))) 75)) (-2127 (((-774) (-1 (-112) |#2|) $) 34) (((-774) |#2| $) NIL)) (-1901 (($ $ $ (-550)) 69)) (-3826 (($ $) 68)) (-3955 (($ (-644 |#2|)) 73)) (-4235 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-644 $)) 86)) (-4380 (((-866) $) 93)) (-2129 (((-112) (-1 (-112) |#2|) $) 22)) (-3457 (((-112) $ $) 96)) (-3090 (((-112) $ $) 100))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3457 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -1900 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -1901 (|#1| |#1| |#1| (-550))) (-15 -1902 ((-112) |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3845 ((-550) |#2| |#1| (-550))) (-15 -3845 ((-550) |#2| |#1|)) (-15 -3845 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1902 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3943 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4221 (|#2| |#1| (-1237 (-550)) |#2|)) (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -2452 (|#1| |#1| (-1237 (-550)))) (-15 -2452 (|#1| |#1| (-550))) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -1442 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4233 (|#2| |#1| (-550))) (-15 -4233 (|#2| |#1| (-550) |#2|)) (-15 -4221 (|#2| |#1| (-550) |#2|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2126 ((-644 |#2|) |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3826 (|#1| |#1|))) (-19 |#2|) (-1220)) (T -18)) NIL -(-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -1900 ((-112) |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-19 |#1|) (-140) (-1219)) (T -19)) +(-10 -8 (-15 -3457 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -1900 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -1901 (|#1| |#1| |#1| (-550))) (-15 -1902 ((-112) |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3845 ((-550) |#2| |#1| (-550))) (-15 -3845 ((-550) |#2| |#1|)) (-15 -3845 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1902 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3943 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4221 (|#2| |#1| (-1237 (-550)) |#2|)) (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -2452 (|#1| |#1| (-1237 (-550)))) (-15 -2452 (|#1| |#1| (-550))) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -1442 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4233 (|#2| |#1| (-550))) (-15 -4233 (|#2| |#1| (-550) |#2|)) (-15 -4221 (|#2| |#1| (-550) |#2|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2126 ((-644 |#2|) |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3826 (|#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4428))) (($ $) 89 (-12 (|has| |#1| (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2444 (($ $) 91 (|has| $ (-6 -4428)))) (-2445 (($ $) 101)) (-1441 (($ $) 79 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 78 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 52)) (-3845 (((-550) (-1 (-112) |#1|) $) 98) (((-550) |#1| $) 97 (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) 96 (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 88 (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 87 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 43 (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2375 (($ $ |#1|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) 51) ((|#1| $ (-550)) 50) (($ $ (-1237 (-550))) 64)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 92 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 71)) (-4235 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 84 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-3089 (((-112) $ $) 86 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 83 (|has| |#1| (-853)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-19 |#1|) (-140) (-1220)) (T -19)) NIL -(-13 (-374 |t#1|) (-10 -7 (-6 -4426))) -(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T)) -((-1407 (((-3 $ "failed") $ $) 12)) (-4269 (($ $) NIL) (($ $ $) 9)) (* (($ (-922) $) NIL) (($ (-773) $) 16) (($ (-549) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -1407 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-21)) (T -20)) +(-13 (-375 |t#1|) (-10 -7 (-6 -4428))) +(((-34) . T) ((-102) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-375 |#1|) . T) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-853) |has| |#1| (-853)) ((-1105) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-1220) . T)) +((-1408 (((-3 $ "failed") $ $) 12)) (-4271 (($ $) NIL) (($ $ $) 9)) (* (($ (-923) $) NIL) (($ (-774) $) 16) (($ (-550) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -1408 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -1407 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24))) +(-10 -8 (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -1408 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24))) (((-21) (-140)) (T -21)) -((-4269 (*1 *1 *1) (-4 *1 (-21))) (-4269 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-131) (-648 (-549)) (-10 -8 (-15 -4269 ($ $)) (-15 -4269 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1104) . T)) -((-3608 (((-112) $) 10)) (-4156 (($) 15)) (* (($ (-922) $) 14) (($ (-773) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 * (|#1| (-922) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) +((-4271 (*1 *1 *1) (-4 *1 (-21))) (-4271 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-131) (-649 (-550)) (-10 -8 (-15 -4271 ($ $)) (-15 -4271 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-1105) . T)) +((-3610 (((-112) $) 10)) (-4158 (($) 15)) (* (($ (-923) $) 14) (($ (-774) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-774) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -4158 (|#1|)) (-15 * (|#1| (-923) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-774) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -4158 (|#1|)) (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16))) (((-23) (-140)) (T -23)) -((-3510 (*1 *1) (-4 *1 (-23))) (-4156 (*1 *1) (-4 *1 (-23))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-773))))) -(-13 (-25) (-10 -8 (-15 (-3510) ($) -4384) (-15 -4156 ($) -4384) (-15 -3608 ((-112) $)) (-15 * ($ (-773) $)))) -(((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((* (($ (-922) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-922) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14))) +((-3512 (*1 *1) (-4 *1 (-23))) (-4158 (*1 *1) (-4 *1 (-23))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-774))))) +(-13 (-25) (-10 -8 (-15 (-3512) ($) -4386) (-15 -4158 ($) -4386) (-15 -3610 ((-112) $)) (-15 * ($ (-774) $)))) +(((-25) . T) ((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((* (($ (-923) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-923) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14))) (((-25) (-140)) (T -25)) -((-4271 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922))))) -(-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ (-922) $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-1715 (((-643 $) (-949 $)) 32) (((-643 $) (-1174 $)) 16) (((-643 $) (-1174 $) (-1180)) 20)) (-1303 (($ (-949 $)) 30) (($ (-1174 $)) 11) (($ (-1174 $) (-1180)) 60)) (-1304 (((-643 $) (-949 $)) 33) (((-643 $) (-1174 $)) 18) (((-643 $) (-1174 $) (-1180)) 19)) (-3603 (($ (-949 $)) 31) (($ (-1174 $)) 13) (($ (-1174 $) (-1180)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) -((-2968 (((-112) $ $) 7)) (-1715 (((-643 $) (-949 $)) 88) (((-643 $) (-1174 $)) 87) (((-643 $) (-1174 $) (-1180)) 86)) (-1303 (($ (-949 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1180)) 89)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 100)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-1304 (((-643 $) (-949 $)) 94) (((-643 $) (-1174 $)) 93) (((-643 $) (-1174 $) (-1180)) 92)) (-3603 (($ (-949 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1180)) 95)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 99)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 98)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) +((-4273 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923))))) +(-13 (-1105) (-10 -8 (-15 -4273 ($ $ $)) (-15 * ($ (-923) $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-1717 (((-644 $) (-950 $)) 32) (((-644 $) (-1175 $)) 16) (((-644 $) (-1175 $) (-1181)) 20)) (-1304 (($ (-950 $)) 30) (($ (-1175 $)) 11) (($ (-1175 $) (-1181)) 60)) (-1305 (((-644 $) (-950 $)) 33) (((-644 $) (-1175 $)) 18) (((-644 $) (-1175 $) (-1181)) 19)) (-3605 (($ (-950 $)) 31) (($ (-1175 $)) 13) (($ (-1175 $) (-1181)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1717 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1717 ((-644 |#1|) (-1175 |#1|))) (-15 -1717 ((-644 |#1|) (-950 |#1|))) (-15 -1304 (|#1| (-1175 |#1|) (-1181))) (-15 -1304 (|#1| (-1175 |#1|))) (-15 -1304 (|#1| (-950 |#1|))) (-15 -1305 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1305 ((-644 |#1|) (-1175 |#1|))) (-15 -1305 ((-644 |#1|) (-950 |#1|))) (-15 -3605 (|#1| (-1175 |#1|) (-1181))) (-15 -3605 (|#1| (-1175 |#1|))) (-15 -3605 (|#1| (-950 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1717 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1717 ((-644 |#1|) (-1175 |#1|))) (-15 -1717 ((-644 |#1|) (-950 |#1|))) (-15 -1304 (|#1| (-1175 |#1|) (-1181))) (-15 -1304 (|#1| (-1175 |#1|))) (-15 -1304 (|#1| (-950 |#1|))) (-15 -1305 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1305 ((-644 |#1|) (-1175 |#1|))) (-15 -1305 ((-644 |#1|) (-950 |#1|))) (-15 -3605 (|#1| (-1175 |#1|) (-1181))) (-15 -3605 (|#1| (-1175 |#1|))) (-15 -3605 (|#1| (-950 |#1|)))) +((-2970 (((-112) $ $) 7)) (-1717 (((-644 $) (-950 $)) 88) (((-644 $) (-1175 $)) 87) (((-644 $) (-1175 $) (-1181)) 86)) (-1304 (($ (-950 $)) 91) (($ (-1175 $)) 90) (($ (-1175 $) (-1181)) 89)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-3440 (($ $) 100)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-1305 (((-644 $) (-950 $)) 94) (((-644 $) (-1175 $)) 93) (((-644 $) (-1175 $) (-1181)) 92)) (-3605 (($ (-950 $)) 97) (($ (-1175 $)) 96) (($ (-1175 $) (-1181)) 95)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4157 (((-112) $) 79)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 99)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77) (($ $ (-411 (-550))) 98)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75))) (((-27) (-140)) (T -27)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1303 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-1303 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-1303 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1))))) -(-13 (-365) (-1005) (-10 -8 (-15 -3603 ($ (-949 $))) (-15 -3603 ($ (-1174 $))) (-15 -3603 ($ (-1174 $) (-1180))) (-15 -1304 ((-643 $) (-949 $))) (-15 -1304 ((-643 $) (-1174 $))) (-15 -1304 ((-643 $) (-1174 $) (-1180))) (-15 -1303 ($ (-949 $))) (-15 -1303 ($ (-1174 $))) (-15 -1303 ($ (-1174 $) (-1180))) (-15 -1715 ((-643 $) (-949 $))) (-15 -1715 ((-643 $) (-1174 $))) (-15 -1715 ((-643 $) (-1174 $) (-1180))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1005) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-1715 (((-643 $) (-949 $)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-1174 $) (-1180)) 55) (((-643 $) $) 22) (((-643 $) $ (-1180)) 46)) (-1303 (($ (-949 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1180)) 57) (($ $) 20) (($ $ (-1180)) 40)) (-1304 (((-643 $) (-949 $)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-1174 $) (-1180)) 53) (((-643 $) $) 18) (((-643 $) $ (-1180)) 48)) (-3603 (($ (-949 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1180)) NIL) (($ $) 15) (($ $ (-1180)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1715 ((-643 |#1|) |#1| (-1180))) (-15 -1303 (|#1| |#1| (-1180))) (-15 -1715 ((-643 |#1|) |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -1304 ((-643 |#1|) |#1| (-1180))) (-15 -3603 (|#1| |#1| (-1180))) (-15 -1304 ((-643 |#1|) |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) (-29 |#2|) (-560)) (T -28)) -NIL -(-10 -8 (-15 -1715 ((-643 |#1|) |#1| (-1180))) (-15 -1303 (|#1| |#1| (-1180))) (-15 -1715 ((-643 |#1|) |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -1304 ((-643 |#1|) |#1| (-1180))) (-15 -3603 (|#1| |#1| (-1180))) (-15 -1304 ((-643 |#1|) |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) -((-2968 (((-112) $ $) 7)) (-1715 (((-643 $) (-949 $)) 88) (((-643 $) (-1174 $)) 87) (((-643 $) (-1174 $) (-1180)) 86) (((-643 $) $) 134) (((-643 $) $ (-1180)) 132)) (-1303 (($ (-949 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1180)) 89) (($ $) 135) (($ $ (-1180)) 133)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1180)) $) 203)) (-3487 (((-410 (-1174 $)) $ (-613 $)) 235 (|has| |#1| (-560)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1708 (((-643 (-613 $)) $) 166)) (-1407 (((-3 $ "failed") $ $) 20)) (-1712 (($ $ (-643 (-613 $)) (-643 $)) 156) (($ $ (-643 (-294 $))) 155) (($ $ (-294 $)) 154)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 100)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-1304 (((-643 $) (-949 $)) 94) (((-643 $) (-1174 $)) 93) (((-643 $) (-1174 $) (-1180)) 92) (((-643 $) $) 138) (((-643 $) $ (-1180)) 136)) (-3603 (($ (-949 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1180)) 95) (($ $) 139) (($ $ (-1180)) 137)) (-3577 (((-3 (-949 |#1|) #1="failed") $) 253 (|has| |#1| (-1052))) (((-3 (-410 (-949 |#1|)) #1#) $) 237 (|has| |#1| (-560))) (((-3 |#1| #1#) $) 199) (((-3 (-549) #1#) $) 196 (|has| |#1| (-1041 (-549)))) (((-3 (-1180) #1#) $) 190) (((-3 (-613 $) #1#) $) 141) (((-3 (-410 (-549)) #1#) $) 130 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 (((-949 |#1|) $) 252 (|has| |#1| (-1052))) (((-410 (-949 |#1|)) $) 236 (|has| |#1| (-560))) ((|#1| $) 198) (((-549) $) 197 (|has| |#1| (-1041 (-549)))) (((-1180) $) 189) (((-613 $) $) 140) (((-410 (-549)) $) 131 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-2964 (($ $ $) 61)) (-2427 (((-691 |#1|) (-691 $)) 243 (|has| |#1| (-1052))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 242 (|has| |#1| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 129 (-3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (((-691 (-549)) (-691 $)) 128 (-3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 195 (|has| |#1| (-889 (-380)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 194 (|has| |#1| (-889 (-549))))) (-2973 (($ (-643 $)) 160) (($ $) 159)) (-1707 (((-643 (-113)) $) 167)) (-3448 (((-113) (-113)) 168)) (-2573 (((-112) $) 35)) (-3076 (((-112) $) 188 (|has| $ (-1041 (-549))))) (-3397 (($ $) 220 (|has| |#1| (-1052)))) (-3399 (((-1128 |#1| (-613 $)) $) 219 (|has| |#1| (-1052)))) (-3412 (($ $ (-549)) 99)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 58)) (-1705 (((-1174 $) (-613 $)) 185 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 174)) (-1710 (((-3 (-613 $) "failed") $) 164)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-1709 (((-643 (-613 $)) $) 165)) (-2384 (($ (-113) (-643 $)) 173) (($ (-113) $) 172)) (-3226 (((-3 (-643 $) #3="failed") $) 214 (|has| |#1| (-1115)))) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) #3#) $) 223 (|has| |#1| (-1052)))) (-3225 (((-3 (-643 $) #3#) $) 216 (|has| |#1| (-25)))) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) #3#) $) 217 (|has| |#1| (-25)))) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-1180)) 222 (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-113)) 221 (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $) 215 (|has| |#1| (-1115)))) (-3035 (((-112) $ (-1180)) 171) (((-112) $ (-113)) 170)) (-2806 (($ $) 78)) (-3003 (((-773) $) 163)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 201)) (-1971 ((|#1| $) 202)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1706 (((-112) $ (-1180)) 176) (((-112) $ $) 175)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-3077 (((-112) $) 187 (|has| $ (-1041 (-549))))) (-4199 (($ $ (-1180) (-773) (-1 $ $)) 227 (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ (-643 $))) 226 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) 225 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) 224 (|has| |#1| (-1052))) (($ $ (-643 (-113)) (-643 $) (-1180)) 213 (|has| |#1| (-616 (-538)))) (($ $ (-113) $ (-1180)) 212 (|has| |#1| (-616 (-538)))) (($ $) 211 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180))) 210 (|has| |#1| (-616 (-538)))) (($ $ (-1180)) 209 (|has| |#1| (-616 (-538)))) (($ $ (-113) (-1 $ $)) 184) (($ $ (-113) (-1 $ (-643 $))) 183) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 182) (($ $ (-643 (-113)) (-643 (-1 $ $))) 181) (($ $ (-1180) (-1 $ $)) 180) (($ $ (-1180) (-1 $ (-643 $))) 179) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 178) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 177) (($ $ (-643 $) (-643 $)) 148) (($ $ $ $) 147) (($ $ (-294 $)) 146) (($ $ (-643 (-294 $))) 145) (($ $ (-643 (-613 $)) (-643 $)) 144) (($ $ (-613 $) $) 143)) (-1752 (((-773) $) 64)) (-4231 (($ (-113) (-643 $)) 153) (($ (-113) $ $ $ $) 152) (($ (-113) $ $ $) 151) (($ (-113) $ $) 150) (($ (-113) $) 149)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1711 (($ $ $) 162) (($ $) 161)) (-4242 (($ $ (-1180)) 251 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 250 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 249 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) 248 (|has| |#1| (-1052)))) (-3396 (($ $) 230 (|has| |#1| (-560)))) (-3398 (((-1128 |#1| (-613 $)) $) 229 (|has| |#1| (-560)))) (-3605 (($ $) 186 (|has| $ (-1052)))) (-4402 (((-538) $) 257 (|has| |#1| (-616 (-538)))) (($ (-408 $)) 228 (|has| |#1| (-560))) (((-893 (-380)) $) 193 (|has| |#1| (-616 (-893 (-380))))) (((-893 (-549)) $) 192 (|has| |#1| (-616 (-893 (-549)))))) (-3410 (($ $ $) 256 (|has| |#1| (-476)))) (-2756 (($ $ $) 255 (|has| |#1| (-476)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ (-949 |#1|)) 254 (|has| |#1| (-1052))) (($ (-410 (-949 |#1|))) 238 (|has| |#1| (-560))) (($ (-410 (-949 (-410 |#1|)))) 234 (|has| |#1| (-560))) (($ (-949 (-410 |#1|))) 233 (|has| |#1| (-560))) (($ (-410 |#1|)) 232 (|has| |#1| (-560))) (($ (-1128 |#1| (-613 $))) 218 (|has| |#1| (-1052))) (($ |#1|) 200) (($ (-1180)) 191) (($ (-613 $)) 142)) (-3105 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-2990 (($ (-643 $)) 158) (($ $) 157)) (-2403 (((-112) (-113)) 169)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-1970 (($ (-1180) (-643 $)) 208) (($ (-1180) $ $ $ $) 207) (($ (-1180) $ $ $) 206) (($ (-1180) $ $) 205) (($ (-1180) $) 204)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1180)) 247 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 246 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 245 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) 244 (|has| |#1| (-1052)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73) (($ (-1128 |#1| (-613 $)) (-1128 |#1| (-613 $))) 231 (|has| |#1| (-560)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 98)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) -(((-29 |#1|) (-140) (-560)) (T -29)) -((-3603 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560)))) (-1304 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3)))) (-3603 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4)))) (-1303 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560)))) (-1715 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3)))) (-1303 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) (-1715 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-424 |t#1|) (-10 -8 (-15 -3603 ($ $)) (-15 -1304 ((-643 $) $)) (-15 -3603 ($ $ (-1180))) (-15 -1304 ((-643 $) $ (-1180))) (-15 -1303 ($ $)) (-15 -1715 ((-643 $) $)) (-15 -1303 ($ $ (-1180))) (-15 -1715 ((-643 $) $ (-1180))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 #2=(-410 (-949 |#1|))) |has| |#1| (-560)) ((-618 (-549)) . T) ((-618 #3=(-613 $)) . T) ((-618 #4=(-949 |#1|)) |has| |#1| (-1052)) ((-618 #5=(-1180)) . T) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-299) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1052)) ((-403 |#1|) . T) ((-415 |#1|) . T) ((-424 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) |has| |#1| (-172)) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) . T) ((-641 (-549)) -12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) ((-641 |#1|) |has| |#1| (-1052)) ((-719 #1#) . T) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) . T) ((-728) . T) ((-903 (-1180)) |has| |#1| (-1052)) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-924) . T) ((-1005) . T) ((-1041 (-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) ((-1041 #2#) |has| |#1| (-560)) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #3#) . T) ((-1041 #4#) |has| |#1| (-1052)) ((-1041 #5#) . T) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) |has| |#1| (-172)) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1219) . T) ((-1224) . T)) -((-3297 (((-1092 (-225)) $) NIL)) (-3298 (((-1092 (-225)) $) NIL)) (-3538 (($ $ (-225)) 164)) (-1305 (($ (-949 (-549)) (-1180) (-1180) (-1092 (-410 (-549))) (-1092 (-410 (-549)))) 104)) (-3299 (((-643 (-643 (-946 (-225)))) $) 180)) (-4378 (((-865) $) 194))) -(((-30) (-13 (-958) (-10 -8 (-15 -1305 ($ (-949 (-549)) (-1180) (-1180) (-1092 (-410 (-549))) (-1092 (-410 (-549))))) (-15 -3538 ($ $ (-225)))))) (T -30)) -((-1305 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-949 (-549))) (-5 *3 (-1180)) (-5 *4 (-1092 (-410 (-549)))) (-5 *1 (-30)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-958) (-10 -8 (-15 -1305 ($ (-949 (-549)) (-1180) (-1180) (-1092 (-410 (-549))) (-1092 (-410 (-549))))) (-15 -3538 ($ $ (-225))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 11)) (-3662 (((-112) $ $) NIL)) (-3097 (((-1138) $) 9)) (-3455 (((-112) $ $) NIL))) -(((-31) (-13 (-1086) (-10 -8 (-15 -3097 ((-1138) $)) (-15 -3653 ((-1138) $))))) (T -31)) -((-3097 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31))))) -(-13 (-1086) (-10 -8 (-15 -3097 ((-1138) $)) (-15 -3653 ((-1138) $)))) -((-3603 ((|#2| (-1174 |#2|) (-1180)) 41)) (-3448 (((-113) (-113)) 55)) (-1705 (((-1174 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1041 (-549))))) (-1308 ((|#2| |#1| (-549)) 137 (|has| |#1| (-1041 (-549))))) (-1306 ((|#2| (-1174 |#2|) |#2|) 29)) (-1307 (((-865) (-643 |#2|)) 86)) (-3605 ((|#2| |#2|) 144 (|has| |#1| (-1041 (-549))))) (-2403 (((-112) (-113)) 17)) (** ((|#2| |#2| (-410 (-549))) 103 (|has| |#1| (-1041 (-549)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3603 (|#2| (-1174 |#2|) (-1180))) (-15 -3448 ((-113) (-113))) (-15 -2403 ((-112) (-113))) (-15 -1306 (|#2| (-1174 |#2|) |#2|)) (-15 -1307 ((-865) (-643 |#2|))) (IF (|has| |#1| (-1041 (-549))) (PROGN (-15 ** (|#2| |#2| (-410 (-549)))) (-15 -1705 ((-1174 |#2|) (-613 |#2|))) (-15 -3605 (|#2| |#2|)) (-15 -1308 (|#2| |#1| (-549)))) |%noBranch|)) (-560) (-424 |#1|)) (T -32)) -((-1308 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1041 *4)) (-4 *3 (-560)))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-1041 (-549))) (-4 *3 (-560)) (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1041 (-549))) (-4 *4 (-560)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-1041 (-549))) (-4 *4 (-560)) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-560)) (-5 *2 (-865)) (-5 *1 (-32 *4 *5)))) (-1306 (*1 *2 *3 *2) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) (-5 *1 (-32 *4 *2)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1180)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-560))))) -(-10 -7 (-15 -3603 (|#2| (-1174 |#2|) (-1180))) (-15 -3448 ((-113) (-113))) (-15 -2403 ((-112) (-113))) (-15 -1306 (|#2| (-1174 |#2|) |#2|)) (-15 -1307 ((-865) (-643 |#2|))) (IF (|has| |#1| (-1041 (-549))) (PROGN (-15 ** (|#2| |#2| (-410 (-549)))) (-15 -1705 ((-1174 |#2|) (-613 |#2|))) (-15 -3605 (|#2| |#2|)) (-15 -1308 (|#2| |#1| (-549)))) |%noBranch|)) -((-1309 (((-112) $ (-773)) 20)) (-4156 (($) 10)) (-4151 (((-112) $ (-773)) 19)) (-4148 (((-112) $ (-773)) 17)) (-1310 (((-112) $ $) 8)) (-3827 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -4156 (|#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3827 ((-112) |#1|)) (-15 -1310 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -4156 (|#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3827 ((-112) |#1|)) (-15 -1310 ((-112) |#1| |#1|))) -((-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-4151 (((-112) $ (-773)) 9)) (-4148 (((-112) $ (-773)) 10)) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3824 (($ $) 13)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +((-3605 (*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) (-3605 (*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) (-3605 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1181)) (-4 *1 (-27)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1305 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1181)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) (-1304 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1181)) (-4 *1 (-27)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1181)) (-4 *1 (-27)) (-5 *2 (-644 *1))))) +(-13 (-366) (-1006) (-10 -8 (-15 -3605 ($ (-950 $))) (-15 -3605 ($ (-1175 $))) (-15 -3605 ($ (-1175 $) (-1181))) (-15 -1305 ((-644 $) (-950 $))) (-15 -1305 ((-644 $) (-1175 $))) (-15 -1305 ((-644 $) (-1175 $) (-1181))) (-15 -1304 ($ (-950 $))) (-15 -1304 ($ (-1175 $))) (-15 -1304 ($ (-1175 $) (-1181))) (-15 -1717 ((-644 $) (-950 $))) (-15 -1717 ((-644 $) (-1175 $))) (-15 -1717 ((-644 $) (-1175 $) (-1181))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1006) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-1717 (((-644 $) (-950 $)) NIL) (((-644 $) (-1175 $)) NIL) (((-644 $) (-1175 $) (-1181)) 55) (((-644 $) $) 22) (((-644 $) $ (-1181)) 46)) (-1304 (($ (-950 $)) NIL) (($ (-1175 $)) NIL) (($ (-1175 $) (-1181)) 57) (($ $) 20) (($ $ (-1181)) 40)) (-1305 (((-644 $) (-950 $)) NIL) (((-644 $) (-1175 $)) NIL) (((-644 $) (-1175 $) (-1181)) 53) (((-644 $) $) 18) (((-644 $) $ (-1181)) 48)) (-3605 (($ (-950 $)) NIL) (($ (-1175 $)) NIL) (($ (-1175 $) (-1181)) NIL) (($ $) 15) (($ $ (-1181)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1717 ((-644 |#1|) |#1| (-1181))) (-15 -1304 (|#1| |#1| (-1181))) (-15 -1717 ((-644 |#1|) |#1|)) (-15 -1304 (|#1| |#1|)) (-15 -1305 ((-644 |#1|) |#1| (-1181))) (-15 -3605 (|#1| |#1| (-1181))) (-15 -1305 ((-644 |#1|) |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -1717 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1717 ((-644 |#1|) (-1175 |#1|))) (-15 -1717 ((-644 |#1|) (-950 |#1|))) (-15 -1304 (|#1| (-1175 |#1|) (-1181))) (-15 -1304 (|#1| (-1175 |#1|))) (-15 -1304 (|#1| (-950 |#1|))) (-15 -1305 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1305 ((-644 |#1|) (-1175 |#1|))) (-15 -1305 ((-644 |#1|) (-950 |#1|))) (-15 -3605 (|#1| (-1175 |#1|) (-1181))) (-15 -3605 (|#1| (-1175 |#1|))) (-15 -3605 (|#1| (-950 |#1|)))) (-29 |#2|) (-561)) (T -28)) +NIL +(-10 -8 (-15 -1717 ((-644 |#1|) |#1| (-1181))) (-15 -1304 (|#1| |#1| (-1181))) (-15 -1717 ((-644 |#1|) |#1|)) (-15 -1304 (|#1| |#1|)) (-15 -1305 ((-644 |#1|) |#1| (-1181))) (-15 -3605 (|#1| |#1| (-1181))) (-15 -1305 ((-644 |#1|) |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -1717 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1717 ((-644 |#1|) (-1175 |#1|))) (-15 -1717 ((-644 |#1|) (-950 |#1|))) (-15 -1304 (|#1| (-1175 |#1|) (-1181))) (-15 -1304 (|#1| (-1175 |#1|))) (-15 -1304 (|#1| (-950 |#1|))) (-15 -1305 ((-644 |#1|) (-1175 |#1|) (-1181))) (-15 -1305 ((-644 |#1|) (-1175 |#1|))) (-15 -1305 ((-644 |#1|) (-950 |#1|))) (-15 -3605 (|#1| (-1175 |#1|) (-1181))) (-15 -3605 (|#1| (-1175 |#1|))) (-15 -3605 (|#1| (-950 |#1|)))) +((-2970 (((-112) $ $) 7)) (-1717 (((-644 $) (-950 $)) 88) (((-644 $) (-1175 $)) 87) (((-644 $) (-1175 $) (-1181)) 86) (((-644 $) $) 134) (((-644 $) $ (-1181)) 132)) (-1304 (($ (-950 $)) 91) (($ (-1175 $)) 90) (($ (-1175 $) (-1181)) 89) (($ $) 135) (($ $ (-1181)) 133)) (-3610 (((-112) $) 17)) (-3487 (((-644 (-1181)) $) 203)) (-3489 (((-411 (-1175 $)) $ (-614 $)) 235 (|has| |#1| (-561)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1710 (((-644 (-614 $)) $) 166)) (-1408 (((-3 $ "failed") $ $) 20)) (-1714 (($ $ (-644 (-614 $)) (-644 $)) 156) (($ $ (-644 (-295 $))) 155) (($ $ (-295 $)) 154)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-3440 (($ $) 100)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-1305 (((-644 $) (-950 $)) 94) (((-644 $) (-1175 $)) 93) (((-644 $) (-1175 $) (-1181)) 92) (((-644 $) $) 138) (((-644 $) $ (-1181)) 136)) (-3605 (($ (-950 $)) 97) (($ (-1175 $)) 96) (($ (-1175 $) (-1181)) 95) (($ $) 139) (($ $ (-1181)) 137)) (-3579 (((-3 (-950 |#1|) #1="failed") $) 253 (|has| |#1| (-1053))) (((-3 (-411 (-950 |#1|)) #1#) $) 237 (|has| |#1| (-561))) (((-3 |#1| #1#) $) 199) (((-3 (-550) #1#) $) 196 (|has| |#1| (-1042 (-550)))) (((-3 (-1181) #1#) $) 190) (((-3 (-614 $) #1#) $) 141) (((-3 (-411 (-550)) #1#) $) 130 (-3962 (-12 (|has| |#1| (-1042 (-550))) (|has| |#1| (-561))) (|has| |#1| (-1042 (-411 (-550))))))) (-3578 (((-950 |#1|) $) 252 (|has| |#1| (-1053))) (((-411 (-950 |#1|)) $) 236 (|has| |#1| (-561))) ((|#1| $) 198) (((-550) $) 197 (|has| |#1| (-1042 (-550)))) (((-1181) $) 189) (((-614 $) $) 140) (((-411 (-550)) $) 131 (-3962 (-12 (|has| |#1| (-1042 (-550))) (|has| |#1| (-561))) (|has| |#1| (-1042 (-411 (-550))))))) (-2966 (($ $ $) 61)) (-2429 (((-692 |#1|) (-692 $)) 243 (|has| |#1| (-1053))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 242 (|has| |#1| (-1053))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 129 (-3962 (-3258 (|has| |#1| (-1053)) (|has| |#1| (-642 (-550)))) (-3258 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))))) (((-692 (-550)) (-692 $)) 128 (-3962 (-3258 (|has| |#1| (-1053)) (|has| |#1| (-642 (-550)))) (-3258 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))))) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4157 (((-112) $) 79)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 195 (|has| |#1| (-890 (-381)))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 194 (|has| |#1| (-890 (-550))))) (-2975 (($ (-644 $)) 160) (($ $) 159)) (-1709 (((-644 (-113)) $) 167)) (-3450 (((-113) (-113)) 168)) (-2575 (((-112) $) 35)) (-3078 (((-112) $) 188 (|has| $ (-1042 (-550))))) (-3399 (($ $) 220 (|has| |#1| (-1053)))) (-3401 (((-1129 |#1| (-614 $)) $) 219 (|has| |#1| (-1053)))) (-3414 (($ $ (-550)) 99)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 58)) (-1707 (((-1175 $) (-614 $)) 185 (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) 174)) (-1712 (((-3 (-614 $) "failed") $) 164)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-1711 (((-644 (-614 $)) $) 165)) (-2386 (($ (-113) (-644 $)) 173) (($ (-113) $) 172)) (-3228 (((-3 (-644 $) #3="failed") $) 214 (|has| |#1| (-1116)))) (-3230 (((-3 (-2 (|:| |val| $) (|:| -2566 (-550))) #3#) $) 223 (|has| |#1| (-1053)))) (-3227 (((-3 (-644 $) #3#) $) 216 (|has| |#1| (-25)))) (-1971 (((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 $))) #3#) $) 217 (|has| |#1| (-25)))) (-3229 (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) #3#) $ (-1181)) 222 (|has| |#1| (-1053))) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) #3#) $ (-113)) 221 (|has| |#1| (-1053))) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) #3#) $) 215 (|has| |#1| (-1116)))) (-3037 (((-112) $ (-1181)) 171) (((-112) $ (-113)) 170)) (-2808 (($ $) 78)) (-3005 (((-774) $) 163)) (-3666 (((-1124) $) 11)) (-1974 (((-112) $) 201)) (-1973 ((|#1| $) 202)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-1708 (((-112) $ (-1181)) 176) (((-112) $ $) 175)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3079 (((-112) $) 187 (|has| $ (-1042 (-550))))) (-4201 (($ $ (-1181) (-774) (-1 $ $)) 227 (|has| |#1| (-1053))) (($ $ (-1181) (-774) (-1 $ (-644 $))) 226 (|has| |#1| (-1053))) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ (-644 $)))) 225 (|has| |#1| (-1053))) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ $))) 224 (|has| |#1| (-1053))) (($ $ (-644 (-113)) (-644 $) (-1181)) 213 (|has| |#1| (-617 (-539)))) (($ $ (-113) $ (-1181)) 212 (|has| |#1| (-617 (-539)))) (($ $) 211 (|has| |#1| (-617 (-539)))) (($ $ (-644 (-1181))) 210 (|has| |#1| (-617 (-539)))) (($ $ (-1181)) 209 (|has| |#1| (-617 (-539)))) (($ $ (-113) (-1 $ $)) 184) (($ $ (-113) (-1 $ (-644 $))) 183) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) 182) (($ $ (-644 (-113)) (-644 (-1 $ $))) 181) (($ $ (-1181) (-1 $ $)) 180) (($ $ (-1181) (-1 $ (-644 $))) 179) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) 178) (($ $ (-644 (-1181)) (-644 (-1 $ $))) 177) (($ $ (-644 $) (-644 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-644 (-295 $))) 145) (($ $ (-644 (-614 $)) (-644 $)) 144) (($ $ (-614 $) $) 143)) (-1754 (((-774) $) 64)) (-4233 (($ (-113) (-644 $)) 153) (($ (-113) $ $ $ $) 152) (($ (-113) $ $ $) 151) (($ (-113) $ $) 150) (($ (-113) $) 149)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-1713 (($ $ $) 162) (($ $) 161)) (-4244 (($ $ (-1181)) 251 (|has| |#1| (-1053))) (($ $ (-644 (-1181))) 250 (|has| |#1| (-1053))) (($ $ (-1181) (-774)) 249 (|has| |#1| (-1053))) (($ $ (-644 (-1181)) (-644 (-774))) 248 (|has| |#1| (-1053)))) (-3398 (($ $) 230 (|has| |#1| (-561)))) (-3400 (((-1129 |#1| (-614 $)) $) 229 (|has| |#1| (-561)))) (-3607 (($ $) 186 (|has| $ (-1053)))) (-4404 (((-539) $) 257 (|has| |#1| (-617 (-539)))) (($ (-409 $)) 228 (|has| |#1| (-561))) (((-894 (-381)) $) 193 (|has| |#1| (-617 (-894 (-381))))) (((-894 (-550)) $) 192 (|has| |#1| (-617 (-894 (-550)))))) (-3412 (($ $ $) 256 (|has| |#1| (-477)))) (-2758 (($ $ $) 255 (|has| |#1| (-477)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74) (($ (-950 |#1|)) 254 (|has| |#1| (-1053))) (($ (-411 (-950 |#1|))) 238 (|has| |#1| (-561))) (($ (-411 (-950 (-411 |#1|)))) 234 (|has| |#1| (-561))) (($ (-950 (-411 |#1|))) 233 (|has| |#1| (-561))) (($ (-411 |#1|)) 232 (|has| |#1| (-561))) (($ (-1129 |#1| (-614 $))) 218 (|has| |#1| (-1053))) (($ |#1|) 200) (($ (-1181)) 191) (($ (-614 $)) 142)) (-3107 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-2992 (($ (-644 $)) 158) (($ $) 157)) (-2405 (((-112) (-113)) 169)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-1972 (($ (-1181) (-644 $)) 208) (($ (-1181) $ $ $ $) 207) (($ (-1181) $ $ $) 206) (($ (-1181) $ $) 205) (($ (-1181) $) 204)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1181)) 247 (|has| |#1| (-1053))) (($ $ (-644 (-1181))) 246 (|has| |#1| (-1053))) (($ $ (-1181) (-774)) 245 (|has| |#1| (-1053))) (($ $ (-644 (-1181)) (-644 (-774))) 244 (|has| |#1| (-1053)))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73) (($ (-1129 |#1| (-614 $)) (-1129 |#1| (-614 $))) 231 (|has| |#1| (-561)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77) (($ $ (-411 (-550))) 98)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-173))) (($ |#1| $) 239 (|has| |#1| (-173))))) +(((-29 |#1|) (-140) (-561)) (T -29)) +((-3605 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-1305 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-3605 (*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-1305 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) (-1304 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-1717 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-1304 (*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-1717 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-425 |t#1|) (-10 -8 (-15 -3605 ($ $)) (-15 -1305 ((-644 $) $)) (-15 -3605 ($ $ (-1181))) (-15 -1305 ((-644 $) $ (-1181))) (-15 -1304 ($ $)) (-15 -1717 ((-644 $) $)) (-15 -1304 ($ $ (-1181))) (-15 -1717 ((-644 $) $ (-1181))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) . T) ((-619 #2=(-411 (-950 |#1|))) |has| |#1| (-561)) ((-619 (-550)) . T) ((-619 #3=(-614 $)) . T) ((-619 #4=(-950 |#1|)) |has| |#1| (-1053)) ((-619 #5=(-1181)) . T) ((-619 |#1|) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-617 (-894 (-381))) |has| |#1| (-617 (-894 (-381)))) ((-617 (-894 (-550))) |has| |#1| (-617 (-894 (-550)))) ((-244) . T) ((-292) . T) ((-309) . T) ((-311 $) . T) ((-300) . T) ((-366) . T) ((-380 |#1|) |has| |#1| (-1053)) ((-404 |#1|) . T) ((-416 |#1|) . T) ((-425 |#1|) . T) ((-456) . T) ((-477) |has| |#1| (-477)) ((-518 (-614 $) $) . T) ((-518 $ $) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 |#1|) |has| |#1| (-173)) ((-649 $) . T) ((-651 #1#) . T) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) . T) ((-643 #1#) . T) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) . T) ((-642 (-550)) -12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) ((-642 |#1|) |has| |#1| (-1053)) ((-720 #1#) . T) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) . T) ((-729) . T) ((-904 (-1181)) |has| |#1| (-1053)) ((-890 (-381)) |has| |#1| (-890 (-381))) ((-890 (-550)) |has| |#1| (-890 (-550))) ((-888 |#1|) . T) ((-925) . T) ((-1006) . T) ((-1042 (-411 (-550))) -3962 (|has| |#1| (-1042 (-411 (-550)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550))))) ((-1042 #2#) |has| |#1| (-561)) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 #3#) . T) ((-1042 #4#) |has| |#1| (-1053)) ((-1042 #5#) . T) ((-1042 |#1|) . T) ((-1055 #1#) . T) ((-1055 |#1|) |has| |#1| (-173)) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 |#1|) |has| |#1| (-173)) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1220) . T) ((-1225) . T)) +((-3299 (((-1093 (-226)) $) NIL)) (-3300 (((-1093 (-226)) $) NIL)) (-3540 (($ $ (-226)) 164)) (-1306 (($ (-950 (-550)) (-1181) (-1181) (-1093 (-411 (-550))) (-1093 (-411 (-550)))) 104)) (-3301 (((-644 (-644 (-947 (-226)))) $) 180)) (-4380 (((-866) $) 194))) +(((-30) (-13 (-959) (-10 -8 (-15 -1306 ($ (-950 (-550)) (-1181) (-1181) (-1093 (-411 (-550))) (-1093 (-411 (-550))))) (-15 -3540 ($ $ (-226)))))) (T -30)) +((-1306 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-950 (-550))) (-5 *3 (-1181)) (-5 *4 (-1093 (-411 (-550)))) (-5 *1 (-30)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30))))) +(-13 (-959) (-10 -8 (-15 -1306 ($ (-950 (-550)) (-1181) (-1181) (-1093 (-411 (-550))) (-1093 (-411 (-550))))) (-15 -3540 ($ $ (-226))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 17) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-1139) $) 11)) (-3664 (((-112) $ $) NIL)) (-3099 (((-1139) $) 9)) (-3457 (((-112) $ $) NIL))) +(((-31) (-13 (-1087) (-10 -8 (-15 -3099 ((-1139) $)) (-15 -3655 ((-1139) $))))) (T -31)) +((-3099 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-31)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-31))))) +(-13 (-1087) (-10 -8 (-15 -3099 ((-1139) $)) (-15 -3655 ((-1139) $)))) +((-3605 ((|#2| (-1175 |#2|) (-1181)) 41)) (-3450 (((-113) (-113)) 55)) (-1707 (((-1175 |#2|) (-614 |#2|)) 149 (|has| |#1| (-1042 (-550))))) (-1309 ((|#2| |#1| (-550)) 137 (|has| |#1| (-1042 (-550))))) (-1307 ((|#2| (-1175 |#2|) |#2|) 29)) (-1308 (((-866) (-644 |#2|)) 86)) (-3607 ((|#2| |#2|) 144 (|has| |#1| (-1042 (-550))))) (-2405 (((-112) (-113)) 17)) (** ((|#2| |#2| (-411 (-550))) 103 (|has| |#1| (-1042 (-550)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3605 (|#2| (-1175 |#2|) (-1181))) (-15 -3450 ((-113) (-113))) (-15 -2405 ((-112) (-113))) (-15 -1307 (|#2| (-1175 |#2|) |#2|)) (-15 -1308 ((-866) (-644 |#2|))) (IF (|has| |#1| (-1042 (-550))) (PROGN (-15 ** (|#2| |#2| (-411 (-550)))) (-15 -1707 ((-1175 |#2|) (-614 |#2|))) (-15 -3607 (|#2| |#2|)) (-15 -1309 (|#2| |#1| (-550)))) |%noBranch|)) (-561) (-425 |#1|)) (T -32)) +((-1309 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1042 *4)) (-4 *3 (-561)))) (-3607 (*1 *2 *2) (-12 (-4 *3 (-1042 (-550))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-614 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1042 (-550))) (-4 *4 (-561)) (-5 *2 (-1175 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-411 (-550))) (-4 *4 (-1042 (-550))) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-425 *4)) (-4 *4 (-561)) (-5 *2 (-866)) (-5 *1 (-32 *4 *5)))) (-1307 (*1 *2 *3 *2) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-425 *4)) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) (-4 *4 (-425 *3)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *2)) (-5 *4 (-1181)) (-4 *2 (-425 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-561))))) +(-10 -7 (-15 -3605 (|#2| (-1175 |#2|) (-1181))) (-15 -3450 ((-113) (-113))) (-15 -2405 ((-112) (-113))) (-15 -1307 (|#2| (-1175 |#2|) |#2|)) (-15 -1308 ((-866) (-644 |#2|))) (IF (|has| |#1| (-1042 (-550))) (PROGN (-15 ** (|#2| |#2| (-411 (-550)))) (-15 -1707 ((-1175 |#2|) (-614 |#2|))) (-15 -3607 (|#2| |#2|)) (-15 -1309 (|#2| |#1| (-550)))) |%noBranch|)) +((-1310 (((-112) $ (-774)) 20)) (-4158 (($) 10)) (-4153 (((-112) $ (-774)) 19)) (-4150 (((-112) $ (-774)) 17)) (-1311 (((-112) $ $) 8)) (-3829 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -4158 (|#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774))) (-15 -3829 ((-112) |#1|)) (-15 -1311 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -4158 (|#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774))) (-15 -3829 ((-112) |#1|)) (-15 -1311 ((-112) |#1| |#1|))) +((-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-4153 (((-112) $ (-774)) 9)) (-4150 (((-112) $ (-774)) 10)) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-3826 (($ $) 13)) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) (((-34) (-140)) (T -34)) -((-1310 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3824 (*1 *1 *1) (-4 *1 (-34))) (-3996 (*1 *1) (-4 *1 (-34))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4148 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) (-4151 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) (-1309 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) (-4156 (*1 *1) (-4 *1 (-34))) (-4389 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-34)) (-5 *2 (-773))))) -(-13 (-1219) (-10 -8 (-15 -1310 ((-112) $ $)) (-15 -3824 ($ $)) (-15 -3996 ($)) (-15 -3827 ((-112) $)) (-15 -4148 ((-112) $ (-773))) (-15 -4151 ((-112) $ (-773))) (-15 -1309 ((-112) $ (-773))) (-15 -4156 ($) -4384) (IF (|has| $ (-6 -4425)) (-15 -4389 ((-773) $)) |%noBranch|))) -(((-1219) . T)) -((-3921 (($ $) 11)) (-3919 (($ $) 10)) (-3923 (($ $) 9)) (-3924 (($ $) 8)) (-3922 (($ $) 7)) (-3920 (($ $) 6))) +((-1311 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3826 (*1 *1 *1) (-4 *1 (-34))) (-3998 (*1 *1) (-4 *1 (-34))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4150 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-774)) (-5 *2 (-112)))) (-4153 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-774)) (-5 *2 (-112)))) (-1310 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-774)) (-5 *2 (-112)))) (-4158 (*1 *1) (-4 *1 (-34))) (-4391 (*1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-34)) (-5 *2 (-774))))) +(-13 (-1220) (-10 -8 (-15 -1311 ((-112) $ $)) (-15 -3826 ($ $)) (-15 -3998 ($)) (-15 -3829 ((-112) $)) (-15 -4150 ((-112) $ (-774))) (-15 -4153 ((-112) $ (-774))) (-15 -1310 ((-112) $ (-774))) (-15 -4158 ($) -4386) (IF (|has| $ (-6 -4427)) (-15 -4391 ((-774) $)) |%noBranch|))) +(((-1220) . T)) +((-3923 (($ $) 11)) (-3921 (($ $) 10)) (-3925 (($ $) 9)) (-3926 (($ $) 8)) (-3924 (($ $) 7)) (-3922 (($ $) 6))) (((-35) (-140)) (T -35)) -((-3921 (*1 *1 *1) (-4 *1 (-35))) (-3919 (*1 *1 *1) (-4 *1 (-35))) (-3923 (*1 *1 *1) (-4 *1 (-35))) (-3924 (*1 *1 *1) (-4 *1 (-35))) (-3922 (*1 *1 *1) (-4 *1 (-35))) (-3920 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3920 ($ $)) (-15 -3922 ($ $)) (-15 -3924 ($ $)) (-15 -3923 ($ $)) (-15 -3919 ($ $)) (-15 -3921 ($ $)))) -((-2968 (((-112) $ $) 19 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3826 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 126)) (-4226 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 149)) (-4228 (($ $) 147)) (-4029 (($) 73) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 72)) (-2372 (((-1275) $ |#1| |#1|) 100 (|has| $ (-6 -4426))) (((-1275) $ (-549) (-549)) 179 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 160 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1898 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 201 (|has| $ (-6 -4426))) (($ $) 200 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1309 (((-112) $ (-773)) 8)) (-3426 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 135 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 156 (|has| $ (-6 -4426)))) (-4217 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 158 (|has| $ (-6 -4426)))) (-4220 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 154 (|has| $ (-6 -4426)))) (-4219 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 190 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-1236 (-549)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 161 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1="last" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 159 (|has| $ (-6 -4426))) (($ $ #2="rest" $) 157 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3="first" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 155 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4="value" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 134 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 133 (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 46 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 217)) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 56 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 176 (|has| $ (-6 -4425)))) (-4227 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 148)) (-2381 (((-3 |#2| #5="failed") |#1| $) 62)) (-4156 (($) 7 T CONST)) (-2442 (($ $) 202 (|has| $ (-6 -4426)))) (-2443 (($ $) 212)) (-4230 (($ $ (-773)) 143) (($ $) 141)) (-2526 (($ $) 215 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1440 (($ $) 59 (-3960 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))) (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 47 (|has| $ (-6 -4425))) (((-3 |#2| #5#) |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 221) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 216 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 55 (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 178 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 175 (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 57 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 54 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 53 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 177 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 174 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 173 (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 191 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 89) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 189)) (-3866 (((-112) $) 193)) (-3843 (((-549) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 209) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 208 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 207 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 31 (|has| $ (-6 -4425))) (((-643 |#2|) $) 80 (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 115 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 124)) (-3428 (((-112) $ $) 132 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-4046 (($ (-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 170)) (-4151 (((-112) $ (-773)) 9)) (-2374 ((|#1| $) 97 (|has| |#1| (-852))) (((-549) $) 181 (|has| (-549) (-852)))) (-2934 (($ $ $) 199 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3259 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3941 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 30 (|has| $ (-6 -4425))) (((-643 |#2|) $) 81 (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 116 (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-2375 ((|#1| $) 96 (|has| |#1| (-852))) (((-549) $) 182 (|has| (-549) (-852)))) (-3260 (($ $ $) 198 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 35 (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4426))) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 111 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 110)) (-3965 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 226)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 129)) (-3950 (((-112) $) 125)) (-3663 (((-1162) $) 22 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4229 (($ $ (-773)) 146) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 144)) (-2816 (((-643 |#1|) $) 64)) (-2382 (((-112) |#1| $) 65)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 40)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 41) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 220) (($ $ $ (-549)) 219)) (-2449 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 163) (($ $ $ (-549)) 162)) (-2377 (((-643 |#1|) $) 94) (((-643 (-549)) $) 184)) (-2378 (((-112) |#1| $) 93) (((-112) (-549) $) 185)) (-3664 (((-1123) $) 21 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4232 ((|#2| $) 98 (|has| |#1| (-852))) (($ $ (-773)) 140) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 138)) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 52) (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6#) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 172)) (-2373 (($ $ |#2|) 99 (|has| $ (-6 -4426))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 180 (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 42)) (-3867 (((-112) $) 192)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 33 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 113 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 27 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 26 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 25 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 24 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 122 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 121 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 120 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 119 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 183 (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2379 (((-643 |#2|) $) 92) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 186)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 188) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 187) (($ $ (-1236 (-549))) 166) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1#) 145) (($ $ #2#) 142) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3#) 139) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4#) 127)) (-3430 (((-549) $ $) 130)) (-1567 (($) 50) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 49)) (-1679 (($ $ (-549)) 223) (($ $ (-1236 (-549))) 222)) (-2450 (($ $ (-549)) 165) (($ $ (-1236 (-549))) 164)) (-4065 (((-112) $) 128)) (-4223 (($ $) 152)) (-4221 (($ $) 153 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 151)) (-4225 (($ $) 150)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 32 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-773) |#2| $) 82 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 114 (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) 203 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538)))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 51) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 171)) (-4222 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 225) (($ $ $) 224)) (-4233 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 169) (($ (-643 $)) 168) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 137) (($ $ $) 136)) (-4378 (((-865) $) 18 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865)))))) (-3945 (((-643 $) $) 123)) (-3429 (((-112) $ $) 131 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3662 (((-112) $ $) 23 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 43)) (-1311 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") |#1| $) 109)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 34 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 112 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 196 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2967 (((-112) $ $) 195 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3455 (((-112) $ $) 20 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3087 (((-112) $ $) 197 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3088 (((-112) $ $) 194 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-36 |#1| |#2|) (-140) (-1104) (-1104)) (T -36)) -((-1311 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| -4292 *3) (|:| -2254 *4)))))) -(-13 (-1196 |t#1| |t#2|) (-668 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|))) (-10 -8 (-15 -1311 ((-3 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-102) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| |#2| (-1104))) ((-615 (-865)) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-1104)) (|has| |#2| (-615 (-865)))) ((-151 #2=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-616 (-538)) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) ((-229 #1#) . T) ((-235 #1#) . T) ((-287 #3=(-549) #2#) . T) ((-287 |#1| |#2|) . T) ((-289 #3# #2#) . T) ((-289 |#1| |#2|) . T) ((-310 #2#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-283 #2#) . T) ((-374 #2#) . T) ((-492 #2#) . T) ((-492 |#2|) . T) ((-606 #3# #2#) . T) ((-606 |#1| |#2|) . T) ((-517 #2# #2#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-612 |#1| |#2|) . T) ((-653 #2#) . T) ((-668 #2#) . T) ((-852) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) ((-1013 #2#) . T) ((-1104) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| |#2| (-1104))) ((-1152 #2#) . T) ((-1196 |#1| |#2|) . T) ((-1219) . T) ((-1258 #2#) . T)) -((-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-38 |#1|) (-140) (-172)) (T -38)) -NIL -(-13 (-1052) (-719 |t#1|) (-618 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-3842 (((-408 |#1|) |#1|) 41)) (-4164 (((-408 |#1|) |#1|) 30) (((-408 |#1|) |#1| (-643 (-48))) 33)) (-1312 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1| (-643 (-48)))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3842 ((-408 |#1|) |#1|)) (-15 -1312 ((-112) |#1|))) (-1245 (-48))) (T -39)) -((-1312 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-3842 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-48))) (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))) -(-10 -7 (-15 -4164 ((-408 |#1|) |#1| (-643 (-48)))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3842 ((-408 |#1|) |#1|)) (-15 -1312 ((-112) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1815 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-2241 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2239 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-1957 (((-691 (-410 |#2|)) (-1269 $)) NIL) (((-691 (-410 |#2|))) NIL)) (-3754 (((-410 |#2|) $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-410 |#2|) (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4401 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1753 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3540 (((-773)) NIL (|has| (-410 |#2|) (-370)))) (-1829 (((-112)) NIL)) (-1828 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-3 (-410 |#2|) #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-410 |#2|) $) NIL)) (-1967 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 61) (($ (-1269 |#2|) |#2|) 134)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-352)))) (-2964 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1956 (((-691 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-691 $) (-1269 $)) NIL) (((-691 (-410 |#2|)) (-691 $)) NIL)) (-1820 (((-1269 $) (-1269 $)) NIL)) (-4274 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-1807 (((-643 (-643 |#1|))) NIL (|has| |#1| (-370)))) (-1832 (((-112) |#1| |#1|) NIL)) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| (-410 |#2|) (-370)))) (-1827 (((-112)) NIL)) (-1826 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2963 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| (-410 |#2|) (-365)))) (-3926 (($ $) NIL)) (-3236 (($) NIL (|has| (-410 |#2|) (-352)))) (-1848 (((-112) $) NIL (|has| (-410 |#2|) (-352)))) (-1941 (($ $ (-773)) NIL (|has| (-410 |#2|) (-352))) (($ $) NIL (|has| (-410 |#2|) (-352)))) (-4155 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4203 (((-922) $) NIL (|has| (-410 |#2|) (-352))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-352)))) (-2573 (((-112) $) NIL)) (-3801 (((-773)) NIL)) (-1821 (((-1269 $) (-1269 $)) 109)) (-3536 (((-410 |#2|) $) NIL)) (-1808 (((-643 (-949 |#1|)) (-1180)) NIL (|has| |#1| (-365)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2192 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-2188 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-3481 ((|#3| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3663 (((-1162) $) NIL)) (-1313 (((-1275) (-773)) 87)) (-1816 (((-691 (-410 |#2|))) 56)) (-1818 (((-691 (-410 |#2|))) 49)) (-2806 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1813 (($ (-1269 |#2|) |#2|) 135)) (-1817 (((-691 (-410 |#2|))) 50)) (-1819 (((-691 (-410 |#2|))) 48)) (-1812 (((-2 (|:| |num| (-691 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-1814 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 68)) (-1825 (((-1269 $)) 47)) (-4350 (((-1269 $)) 46)) (-1824 (((-112) $) NIL)) (-1823 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3869 (($) NIL (|has| (-410 |#2|) (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-1810 (((-3 |#2| #3="failed")) NIL)) (-3664 (((-1123) $) NIL)) (-1834 (((-773)) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-3564 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-410 |#2|) (-352)))) (-4164 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1752 (((-773) $) NIL (|has| (-410 |#2|) (-365)))) (-4231 ((|#1| $ |#1| |#1|) NIL)) (-1811 (((-3 |#2| #3#)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-4189 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 44)) (-1942 (((-773) $) NIL (|has| (-410 |#2|) (-352))) (((-3 (-773) "failed") $ $) NIL (|has| (-410 |#2|) (-352)))) (-4242 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-2571 (((-691 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3605 ((|#3|) 55)) (-1842 (($) NIL (|has| (-410 |#2|) (-352)))) (-3644 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 62) (((-691 (-410 |#2|)) (-1269 $)) 110)) (-4402 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-410 |#2|) (-352)))) (-1822 (((-1269 $) (-1269 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1041 (-410 (-549)))))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3105 (($ $) NIL (|has| (-410 |#2|) (-352))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2770 ((|#3| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-1831 (((-112)) 42)) (-1830 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-2240 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1809 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1833 (((-112)) NIL)) (-3510 (($) 17 T CONST)) (-3067 (($) 27 T CONST)) (-3072 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-549)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-549))) NIL (|has| (-410 |#2|) (-365))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1313 ((-1275) (-773))))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) |#3|) (T -40)) -((-1313 (*1 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1275)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6)))) -(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1313 ((-1275) (-773))))) -((-1314 ((|#2| |#2|) 47)) (-1319 ((|#2| |#2|) 139 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1318 ((|#2| |#2|) 100 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1317 ((|#2| |#2|) 101 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1320 ((|#2| (-113) |#2| (-773)) 135 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1316 (((-1174 |#2|) |#2|) 44)) (-1315 ((|#2| |#2| (-643 (-613 |#2|))) 18) ((|#2| |#2| (-643 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1314 (|#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -1315 (|#2| |#2| |#2|)) (-15 -1315 (|#2| |#2| (-643 |#2|))) (-15 -1315 (|#2| |#2| (-643 (-613 |#2|)))) (-15 -1316 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1041 (-549)))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1317 (|#2| |#2|)) (-15 -1318 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1320 (|#2| (-113) |#2| (-773)))) |%noBranch|) |%noBranch|)) (-560) (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 |#1| (-613 $)) $)) (-15 -3398 ((-1128 |#1| (-613 $)) $)) (-15 -4378 ($ (-1128 |#1| (-613 $))))))) (T -41)) -((-1320 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)))) (-4 *5 (-560)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *5 (-613 $)) $)) (-15 -3398 ((-1128 *5 (-613 $)) $)) (-15 -4378 ($ (-1128 *5 (-613 $))))))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1317 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1316 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) (-15 -3398 ((-1128 *4 (-613 $)) $)) (-15 -4378 ($ (-1128 *4 (-613 $))))))))) (-1315 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-613 *2))) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) (-15 -3398 ((-1128 *4 (-613 $)) $)) (-15 -4378 ($ (-1128 *4 (-613 $))))))) (-4 *4 (-560)) (-5 *1 (-41 *4 *2)))) (-1315 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) (-15 -3398 ((-1128 *4 (-613 $)) $)) (-15 -4378 ($ (-1128 *4 (-613 $))))))) (-4 *4 (-560)) (-5 *1 (-41 *4 *2)))) (-1315 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1315 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) -(-10 -7 (-15 -1314 (|#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -1315 (|#2| |#2| |#2|)) (-15 -1315 (|#2| |#2| (-643 |#2|))) (-15 -1315 (|#2| |#2| (-643 (-613 |#2|)))) (-15 -1316 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1041 (-549)))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1317 (|#2| |#2|)) (-15 -1318 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1320 (|#2| (-113) |#2| (-773)))) |%noBranch|) |%noBranch|)) -((-4164 (((-408 (-1174 |#3|)) (-1174 |#3|) (-643 (-48))) 23) (((-408 |#3|) |#3| (-643 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-408 |#3|) |#3| (-643 (-48)))) (-15 -4164 ((-408 (-1174 |#3|)) (-1174 |#3|) (-643 (-48))))) (-852) (-795) (-953 (-48) |#2| |#1|)) (T -42)) -((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *7 (-953 (-48) *6 *5)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-953 (-48) *6 *5))))) -(-10 -7 (-15 -4164 ((-408 |#3|) |#3| (-643 (-48)))) (-15 -4164 ((-408 (-1174 |#3|)) (-1174 |#3|) (-643 (-48))))) -((-1324 (((-773) |#2|) 72)) (-1322 (((-773) |#2|) 76)) (-1337 (((-643 |#2|)) 39)) (-1321 (((-773) |#2|) 75)) (-1323 (((-773) |#2|) 71)) (-1325 (((-773) |#2|) 74)) (-1335 (((-643 (-691 |#1|))) 67)) (-1330 (((-643 |#2|)) 62)) (-1328 (((-643 |#2|) |#2|) 50)) (-1332 (((-643 |#2|)) 64)) (-1331 (((-643 |#2|)) 63)) (-1334 (((-643 (-691 |#1|))) 55)) (-1329 (((-643 |#2|)) 61)) (-1327 (((-643 |#2|) |#2|) 49)) (-1326 (((-643 |#2|)) 57)) (-1336 (((-643 (-691 |#1|))) 68)) (-1333 (((-643 |#2|)) 66)) (-2190 (((-1269 |#2|) (-1269 |#2|)) 101 (|has| |#1| (-308))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1321 ((-773) |#2|)) (-15 -1322 ((-773) |#2|)) (-15 -1323 ((-773) |#2|)) (-15 -1324 ((-773) |#2|)) (-15 -1325 ((-773) |#2|)) (-15 -1326 ((-643 |#2|))) (-15 -1327 ((-643 |#2|) |#2|)) (-15 -1328 ((-643 |#2|) |#2|)) (-15 -1329 ((-643 |#2|))) (-15 -1330 ((-643 |#2|))) (-15 -1331 ((-643 |#2|))) (-15 -1332 ((-643 |#2|))) (-15 -1333 ((-643 |#2|))) (-15 -1334 ((-643 (-691 |#1|)))) (-15 -1335 ((-643 (-691 |#1|)))) (-15 -1336 ((-643 (-691 |#1|)))) (-15 -1337 ((-643 |#2|))) (IF (|has| |#1| (-308)) (-15 -2190 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) (-560) (-421 |#1|)) (T -43)) -((-2190 (*1 *2 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-421 *3)) (-4 *3 (-308)) (-4 *3 (-560)) (-5 *1 (-43 *3 *4)))) (-1337 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1336 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1335 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1334 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1333 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1332 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1331 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1330 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1329 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1328 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1326 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1324 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1323 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1322 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1321 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) -(-10 -7 (-15 -1321 ((-773) |#2|)) (-15 -1322 ((-773) |#2|)) (-15 -1323 ((-773) |#2|)) (-15 -1324 ((-773) |#2|)) (-15 -1325 ((-773) |#2|)) (-15 -1326 ((-643 |#2|))) (-15 -1327 ((-643 |#2|) |#2|)) (-15 -1328 ((-643 |#2|) |#2|)) (-15 -1329 ((-643 |#2|))) (-15 -1330 ((-643 |#2|))) (-15 -1331 ((-643 |#2|))) (-15 -1332 ((-643 |#2|))) (-15 -1333 ((-643 |#2|))) (-15 -1334 ((-643 (-691 |#1|)))) (-15 -1335 ((-643 (-691 |#1|)))) (-15 -1336 ((-643 (-691 |#1|)))) (-15 -1337 ((-643 |#2|))) (IF (|has| |#1| (-308)) (-15 -2190 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#1|)) (-1269 $)) NIL) (((-1269 (-691 |#1|))) 24)) (-1897 (((-1269 $)) 55)) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#1| (-560)))) (-1871 (((-3 $ #1#)) NIL (|has| |#1| (-560)))) (-1963 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) NIL)) (-1895 ((|#1| $) NIL)) (-1961 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2567 (((-3 $ #1#) $) NIL (|has| |#1| (-560)))) (-2078 (((-1174 (-949 |#1|))) NIL (|has| |#1| (-365)))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#1| $) NIL)) (-1873 (((-1174 |#1|) $) NIL (|has| |#1| (-560)))) (-1965 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1891 (((-1174 |#1|) $) NIL)) (-1885 (((-112)) 101)) (-1967 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-3890 (((-3 $ #1#) $) 14 (|has| |#1| (-560)))) (-3513 (((-922)) 56)) (-1882 (((-112)) NIL)) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL)) (-1876 (((-112)) NIL)) (-1880 (((-112)) 103)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#1| (-560)))) (-1872 (((-3 $ #1#)) NIL (|has| |#1| (-560)))) (-1964 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) NIL)) (-1896 ((|#1| $) NIL)) (-1962 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2568 (((-3 $ #1#) $) NIL (|has| |#1| (-560)))) (-2082 (((-1174 (-949 |#1|))) NIL (|has| |#1| (-365)))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#1| $) NIL)) (-1874 (((-1174 |#1|) $) NIL (|has| |#1| (-560)))) (-1966 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1892 (((-1174 |#1|) $) NIL)) (-1886 (((-112)) 100)) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) 108)) (-1879 (((-112)) 107)) (-1881 (((-112)) 109)) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) 102)) (-4231 ((|#1| $ (-549)) 58)) (-3644 (((-1269 |#1|) $ (-1269 $)) 52) (((-691 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 28) (((-691 |#1|) (-1269 $)) NIL)) (-4402 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL)) (-2070 (((-643 (-949 |#1|)) (-1269 $)) NIL) (((-643 (-949 |#1|))) NIL)) (-2756 (($ $ $) NIL)) (-1890 (((-112)) 97)) (-4378 (((-865) $) 74) (($ (-1269 |#1|)) 22)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 54)) (-1875 (((-643 (-1269 |#1|))) NIL (|has| |#1| (-560)))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) 93)) (-2948 (($ (-691 |#1|) $) 18)) (-2755 (($ $ $) NIL)) (-1889 (((-112)) 99)) (-1887 (((-112)) 94)) (-1883 (((-112)) 92)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1145 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-421 |#1|) (-650 (-1145 |#2| |#1|)) (-10 -8 (-15 -4378 ($ (-1269 |#1|))))) (-365) (-922) (-643 (-1180)) (-1269 (-691 |#1|))) (T -44)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-691 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-643 (-1180)))))) -(-13 (-421 |#1|) (-650 (-1145 |#2| |#1|)) (-10 -8 (-15 -4378 ($ (-1269 |#1|))))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-3826 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4226 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4228 (($ $) NIL)) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426))) (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1898 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852))))) (-3310 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-3426 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) 33 (|has| $ (-6 -4426)))) (-4217 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-4220 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 35 (|has| $ (-6 -4426)))) (-4219 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-1236 (-549)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1="last" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3="first" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4="value" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4227 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2381 (((-3 |#2| #5="failed") |#1| $) 43)) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-4230 (($ $ (-773)) NIL) (($ $) 29)) (-2526 (($ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #5#) |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 20 (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 20 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-4046 (($ (-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852))) (((-549) $) 38 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3259 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3941 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852))) (((-549) $) 40 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-3965 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) 49 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4229 (($ $ (-773)) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2816 (((-643 |#1|) $) 22)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2449 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 |#1|) $) NIL) (((-643 (-549)) $) NIL)) (-2378 (((-112) |#1| $) NIL) (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852))) (($ $ (-773)) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 27)) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6#) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2379 (((-643 |#2|) $) NIL) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 19)) (-3827 (((-112) $) 18)) (-3996 (($) 14)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL) (($ $ (-1236 (-549))) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3#) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4#) NIL)) (-3430 (((-549) $ $) NIL)) (-1567 (($) 13) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-1679 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4065 (((-112) $) NIL)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4222 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL) (($ $ $) NIL)) (-4233 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL) (($ (-643 $)) NIL) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 31) (($ $ $) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-1311 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") |#1| $) 51)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-3087 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-4389 (((-773) $) 25 (|has| $ (-6 -4425))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1104) (-1104)) (T -45)) +((-3923 (*1 *1 *1) (-4 *1 (-35))) (-3921 (*1 *1 *1) (-4 *1 (-35))) (-3925 (*1 *1 *1) (-4 *1 (-35))) (-3926 (*1 *1 *1) (-4 *1 (-35))) (-3924 (*1 *1 *1) (-4 *1 (-35))) (-3922 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3922 ($ $)) (-15 -3924 ($ $)) (-15 -3926 ($ $)) (-15 -3925 ($ $)) (-15 -3921 ($ $)) (-15 -3923 ($ $)))) +((-2970 (((-112) $ $) 19 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3828 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 126)) (-4228 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 149)) (-4230 (($ $) 147)) (-4031 (($) 73) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 72)) (-2374 (((-1276) $ |#1| |#1|) 100 (|has| $ (-6 -4428))) (((-1276) $ (-550) (-550)) 179 (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) 160 (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-1900 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 201 (|has| $ (-6 -4428))) (($ $) 200 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-1310 (((-112) $ (-774)) 8)) (-3428 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 135 (|has| $ (-6 -4428)))) (-4220 (($ $ $) 156 (|has| $ (-6 -4428)))) (-4219 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 158 (|has| $ (-6 -4428)))) (-4222 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 154 (|has| $ (-6 -4428)))) (-4221 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 190 (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-1237 (-550)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 161 (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #1="last" (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 159 (|has| $ (-6 -4428))) (($ $ #2="rest" $) 157 (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #3="first" (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 155 (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #4="value" (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 134 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 133 (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 46 (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 217)) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 56 (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 176 (|has| $ (-6 -4427)))) (-4229 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 148)) (-2383 (((-3 |#2| #5="failed") |#1| $) 62)) (-4158 (($) 7 T CONST)) (-2444 (($ $) 202 (|has| $ (-6 -4428)))) (-2445 (($ $) 212)) (-4232 (($ $ (-774)) 143) (($ $) 141)) (-2528 (($ $) 215 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-1441 (($ $) 59 (-3962 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427))) (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 47 (|has| $ (-6 -4427))) (((-3 |#2| #5#) |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 221) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 216 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 55 (|has| $ (-6 -4427))) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 178 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 175 (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 57 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 54 (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 53 (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 177 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 174 (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 173 (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 191 (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) 89) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) 189)) (-3868 (((-112) $) 193)) (-3845 (((-550) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 209) (((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 208 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) (((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) 207 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 31 (|has| $ (-6 -4427))) (((-644 |#2|) $) 80 (|has| $ (-6 -4427))) (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 115 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 124)) (-3430 (((-112) $ $) 132 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-4048 (($ (-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 170)) (-4153 (((-112) $ (-774)) 9)) (-2376 ((|#1| $) 97 (|has| |#1| (-853))) (((-550) $) 181 (|has| (-550) (-853)))) (-2936 (($ $ $) 199 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3261 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3943 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 30 (|has| $ (-6 -4427))) (((-644 |#2|) $) 81 (|has| $ (-6 -4427))) (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 116 (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427)))) (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427))))) (-2377 ((|#1| $) 96 (|has| |#1| (-853))) (((-550) $) 182 (|has| (-550) (-853)))) (-3262 (($ $ $) 198 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 35 (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4428))) (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 111 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 110)) (-3967 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 226)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 129)) (-3952 (((-112) $) 125)) (-3665 (((-1163) $) 22 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-4231 (($ $ (-774)) 146) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 144)) (-2818 (((-644 |#1|) $) 64)) (-2384 (((-112) |#1| $) 65)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 40)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 41) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) 220) (($ $ $ (-550)) 219)) (-2451 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) 163) (($ $ $ (-550)) 162)) (-2379 (((-644 |#1|) $) 94) (((-644 (-550)) $) 184)) (-2380 (((-112) |#1| $) 93) (((-112) (-550) $) 185)) (-3666 (((-1124) $) 21 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-4234 ((|#2| $) 98 (|has| |#1| (-853))) (($ $ (-774)) 140) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 138)) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 52) (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #6#) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 172)) (-2375 (($ $ |#2|) 99 (|has| $ (-6 -4428))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 180 (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 42)) (-3869 (((-112) $) 192)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 33 (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 113 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) 27 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 26 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 25 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 24 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 122 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 121 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 120 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) 119 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 183 (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-2381 (((-644 |#2|) $) 92) (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 186)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 188) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) 187) (($ $ (-1237 (-550))) 166) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #1#) 145) (($ $ #2#) 142) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #3#) 139) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #4#) 127)) (-3432 (((-550) $ $) 130)) (-1569 (($) 50) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 49)) (-1681 (($ $ (-550)) 223) (($ $ (-1237 (-550))) 222)) (-2452 (($ $ (-550)) 165) (($ $ (-1237 (-550))) 164)) (-4067 (((-112) $) 128)) (-4225 (($ $) 152)) (-4223 (($ $) 153 (|has| $ (-6 -4428)))) (-4226 (((-774) $) 151)) (-4227 (($ $) 150)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 32 (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-774) |#2| $) 82 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 114 (|has| $ (-6 -4427)))) (-1901 (($ $ $ (-550)) 203 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539)))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 51) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 171)) (-4224 (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 225) (($ $ $) 224)) (-4235 (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 169) (($ (-644 $)) 168) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 137) (($ $ $) 136)) (-4380 (((-866) $) 18 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866)))))) (-3947 (((-644 $) $) 123)) (-3431 (((-112) $ $) 131 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-3664 (((-112) $ $) 23 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 43)) (-1312 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") |#1| $) 109)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 34 (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 112 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 196 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-2969 (((-112) $ $) 195 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3457 (((-112) $ $) 20 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3089 (((-112) $ $) 197 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3090 (((-112) $ $) 194 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-36 |#1| |#2|) (-140) (-1105) (-1105)) (T -36)) +((-1312 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-2 (|:| -4294 *3) (|:| -2256 *4)))))) +(-13 (-1197 |t#1| |t#2|) (-669 (-2 (|:| -4294 |t#1|) (|:| -2256 |t#2|))) (-10 -8 (-15 -1312 ((-3 (-2 (|:| -4294 |t#1|) (|:| -2256 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((-102) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)) (|has| |#2| (-1105))) ((-616 (-866)) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-1105)) (|has| |#2| (-616 (-866)))) ((-151 #2=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((-617 (-539)) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))) ((-230 #1#) . T) ((-236 #1#) . T) ((-288 #3=(-550) #2#) . T) ((-288 |#1| |#2|) . T) ((-290 #3# #2#) . T) ((-290 |#1| |#2|) . T) ((-311 #2#) -12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) ((-311 |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-284 #2#) . T) ((-375 #2#) . T) ((-493 #2#) . T) ((-493 |#2|) . T) ((-607 #3# #2#) . T) ((-607 |#1| |#2|) . T) ((-518 #2# #2#) -12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) ((-518 |#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-613 |#1| |#2|) . T) ((-654 #2#) . T) ((-669 #2#) . T) ((-853) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)) ((-1014 #2#) . T) ((-1105) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)) (|has| |#2| (-1105))) ((-1153 #2#) . T) ((-1197 |#1| |#2|) . T) ((-1220) . T) ((-1259 #2#) . T)) +((-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-38 |#2|) (-173)) (T -37)) +NIL +(-10 -8 (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-38 |#1|) (-140) (-173)) (T -38)) +NIL +(-13 (-1053) (-720 |t#1|) (-619 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-729) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-3844 (((-409 |#1|) |#1|) 41)) (-4166 (((-409 |#1|) |#1|) 30) (((-409 |#1|) |#1| (-644 (-48))) 33)) (-1313 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -4166 ((-409 |#1|) |#1| (-644 (-48)))) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3844 ((-409 |#1|) |#1|)) (-15 -1313 ((-112) |#1|))) (-1246 (-48))) (T -39)) +((-1313 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48))))) (-3844 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48))))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48)))))) +(-10 -7 (-15 -4166 ((-409 |#1|) |#1| (-644 (-48)))) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3844 ((-409 |#1|) |#1|)) (-15 -1313 ((-112) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1817 (((-2 (|:| |num| (-1270 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| (-411 |#2|) (-366)))) (-2243 (($ $) NIL (|has| (-411 |#2|) (-366)))) (-2241 (((-112) $) NIL (|has| (-411 |#2|) (-366)))) (-1959 (((-692 (-411 |#2|)) (-1270 $)) NIL) (((-692 (-411 |#2|))) NIL)) (-3756 (((-411 |#2|) $) NIL)) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-411 |#2|) (-353)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| (-411 |#2|) (-366)))) (-4403 (((-409 $) $) NIL (|has| (-411 |#2|) (-366)))) (-1755 (((-112) $ $) NIL (|has| (-411 |#2|) (-366)))) (-3542 (((-774)) NIL (|has| (-411 |#2|) (-371)))) (-1831 (((-112)) NIL)) (-1830 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| (-411 |#2|) (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| (-411 |#2|) (-1042 (-411 (-550))))) (((-3 (-411 |#2|) #1#) $) NIL)) (-3578 (((-550) $) NIL (|has| (-411 |#2|) (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| (-411 |#2|) (-1042 (-411 (-550))))) (((-411 |#2|) $) NIL)) (-1969 (($ (-1270 (-411 |#2|)) (-1270 $)) NIL) (($ (-1270 (-411 |#2|))) 61) (($ (-1270 |#2|) |#2|) 134)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-411 |#2|) (-353)))) (-2966 (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-1958 (((-692 (-411 |#2|)) $ (-1270 $)) NIL) (((-692 (-411 |#2|)) $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-411 |#2|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-411 |#2|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-411 |#2|))) (|:| |vec| (-1270 (-411 |#2|)))) (-692 $) (-1270 $)) NIL) (((-692 (-411 |#2|)) (-692 $)) NIL)) (-1822 (((-1270 $) (-1270 $)) NIL)) (-4276 (($ |#3|) NIL) (((-3 $ "failed") (-411 |#3|)) NIL (|has| (-411 |#2|) (-366)))) (-3892 (((-3 $ "failed") $) NIL)) (-1809 (((-644 (-644 |#1|))) NIL (|has| |#1| (-371)))) (-1834 (((-112) |#1| |#1|) NIL)) (-3515 (((-923)) NIL)) (-3397 (($) NIL (|has| (-411 |#2|) (-371)))) (-1829 (((-112)) NIL)) (-1828 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2965 (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| (-411 |#2|) (-366)))) (-3928 (($ $) NIL)) (-3238 (($) NIL (|has| (-411 |#2|) (-353)))) (-1850 (((-112) $) NIL (|has| (-411 |#2|) (-353)))) (-1943 (($ $ (-774)) NIL (|has| (-411 |#2|) (-353))) (($ $) NIL (|has| (-411 |#2|) (-353)))) (-4157 (((-112) $) NIL (|has| (-411 |#2|) (-366)))) (-4205 (((-923) $) NIL (|has| (-411 |#2|) (-353))) (((-835 (-923)) $) NIL (|has| (-411 |#2|) (-353)))) (-2575 (((-112) $) NIL)) (-3803 (((-774)) NIL)) (-1823 (((-1270 $) (-1270 $)) 109)) (-3538 (((-411 |#2|) $) NIL)) (-1810 (((-644 (-950 |#1|)) (-1181)) NIL (|has| |#1| (-366)))) (-3870 (((-3 $ "failed") $) NIL (|has| (-411 |#2|) (-353)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| (-411 |#2|) (-366)))) (-2194 ((|#3| $) NIL (|has| (-411 |#2|) (-366)))) (-2190 (((-923) $) NIL (|has| (-411 |#2|) (-371)))) (-3483 ((|#3| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| (-411 |#2|) (-366))) (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-3665 (((-1163) $) NIL)) (-1314 (((-1276) (-774)) 87)) (-1818 (((-692 (-411 |#2|))) 56)) (-1820 (((-692 (-411 |#2|))) 49)) (-2808 (($ $) NIL (|has| (-411 |#2|) (-366)))) (-1815 (($ (-1270 |#2|) |#2|) 135)) (-1819 (((-692 (-411 |#2|))) 50)) (-1821 (((-692 (-411 |#2|))) 48)) (-1814 (((-2 (|:| |num| (-692 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-1816 (((-2 (|:| |num| (-1270 |#2|)) (|:| |den| |#2|)) $) 68)) (-1827 (((-1270 $)) 47)) (-4352 (((-1270 $)) 46)) (-1826 (((-112) $) NIL)) (-1825 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3871 (($) NIL (|has| (-411 |#2|) (-353)) CONST)) (-2565 (($ (-923)) NIL (|has| (-411 |#2|) (-371)))) (-1812 (((-3 |#2| #3="failed")) NIL)) (-3666 (((-1124) $) NIL)) (-1836 (((-774)) NIL)) (-2574 (($) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-411 |#2|) (-366)))) (-3566 (($ (-644 $)) NIL (|has| (-411 |#2|) (-366))) (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-411 |#2|) (-353)))) (-4166 (((-409 $) $) NIL (|has| (-411 |#2|) (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-411 |#2|) (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| (-411 |#2|) (-366)))) (-3891 (((-3 $ "failed") $ $) NIL (|has| (-411 |#2|) (-366)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-411 |#2|) (-366)))) (-1754 (((-774) $) NIL (|has| (-411 |#2|) (-366)))) (-4233 ((|#1| $ |#1| |#1|) NIL)) (-1813 (((-3 |#2| #3#)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| (-411 |#2|) (-366)))) (-4191 (((-411 |#2|) (-1270 $)) NIL) (((-411 |#2|)) 44)) (-1944 (((-774) $) NIL (|has| (-411 |#2|) (-353))) (((-3 (-774) "failed") $ $) NIL (|has| (-411 |#2|) (-353)))) (-4244 (($ $ (-1 (-411 |#2|) (-411 |#2|)) (-774)) NIL (|has| (-411 |#2|) (-366))) (($ $ (-1 (-411 |#2|) (-411 |#2|))) NIL (|has| (-411 |#2|) (-366))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181) (-774)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-644 (-1181))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-774)) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353)))) (($ $) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353))))) (-2573 (((-692 (-411 |#2|)) (-1270 $) (-1 (-411 |#2|) (-411 |#2|))) NIL (|has| (-411 |#2|) (-366)))) (-3607 ((|#3|) 55)) (-1844 (($) NIL (|has| (-411 |#2|) (-353)))) (-3646 (((-1270 (-411 |#2|)) $ (-1270 $)) NIL) (((-692 (-411 |#2|)) (-1270 $) (-1270 $)) NIL) (((-1270 (-411 |#2|)) $) 62) (((-692 (-411 |#2|)) (-1270 $)) 110)) (-4404 (((-1270 (-411 |#2|)) $) NIL) (($ (-1270 (-411 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| (-411 |#2|) (-353)))) (-1824 (((-1270 $) (-1270 $)) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 |#2|)) NIL) (($ (-411 (-550))) NIL (-3962 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-1042 (-411 (-550)))))) (($ $) NIL (|has| (-411 |#2|) (-366)))) (-3107 (($ $) NIL (|has| (-411 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-411 |#2|) (-145)))) (-2772 ((|#3| $) NIL)) (-3532 (((-774)) NIL T CONST)) (-1833 (((-112)) 42)) (-1832 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL)) (-2242 (((-112) $ $) NIL (|has| (-411 |#2|) (-366)))) (-1811 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1835 (((-112)) NIL)) (-3512 (($) 17 T CONST)) (-3069 (($) 27 T CONST)) (-3074 (($ $ (-1 (-411 |#2|) (-411 |#2|)) (-774)) NIL (|has| (-411 |#2|) (-366))) (($ $ (-1 (-411 |#2|) (-411 |#2|))) NIL (|has| (-411 |#2|) (-366))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181) (-774)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-644 (-1181))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-774)) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353)))) (($ $) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| (-411 |#2|) (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 |#2|)) NIL) (($ (-411 |#2|) $) NIL) (($ (-411 (-550)) $) NIL (|has| (-411 |#2|) (-366))) (($ $ (-411 (-550))) NIL (|has| (-411 |#2|) (-366))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-345 |#1| |#2| |#3|) (-10 -7 (-15 -1314 ((-1276) (-774))))) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) |#3|) (T -40)) +((-1314 (*1 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-366)) (-4 *5 (-1246 *4)) (-5 *2 (-1276)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1246 (-411 *5))) (-14 *7 *6)))) +(-13 (-345 |#1| |#2| |#3|) (-10 -7 (-15 -1314 ((-1276) (-774))))) +((-1315 ((|#2| |#2|) 47)) (-1320 ((|#2| |#2|) 139 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-13 (-456) (-1042 (-550))))))) (-1319 ((|#2| |#2|) 100 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-13 (-456) (-1042 (-550))))))) (-1318 ((|#2| |#2|) 101 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-13 (-456) (-1042 (-550))))))) (-1321 ((|#2| (-113) |#2| (-774)) 135 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-13 (-456) (-1042 (-550))))))) (-1317 (((-1175 |#2|) |#2|) 44)) (-1316 ((|#2| |#2| (-644 (-614 |#2|))) 18) ((|#2| |#2| (-644 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1315 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -1316 (|#2| |#2| |#2|)) (-15 -1316 (|#2| |#2| (-644 |#2|))) (-15 -1316 (|#2| |#2| (-644 (-614 |#2|)))) (-15 -1317 ((-1175 |#2|) |#2|)) (IF (|has| |#1| (-13 (-456) (-1042 (-550)))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1321 (|#2| (-113) |#2| (-774)))) |%noBranch|) |%noBranch|)) (-561) (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 |#1| (-614 $)) $)) (-15 -3400 ((-1129 |#1| (-614 $)) $)) (-15 -4380 ($ (-1129 |#1| (-614 $))))))) (T -41)) +((-1321 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-774)) (-4 *5 (-13 (-456) (-1042 (-550)))) (-4 *5 (-561)) (-5 *1 (-41 *5 *2)) (-4 *2 (-425 *5)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *5 (-614 $)) $)) (-15 -3400 ((-1129 *5 (-614 $)) $)) (-15 -4380 ($ (-1129 *5 (-614 $))))))))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) (-15 -3400 ((-1129 *3 (-614 $)) $)) (-15 -4380 ($ (-1129 *3 (-614 $))))))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) (-15 -3400 ((-1129 *3 (-614 $)) $)) (-15 -4380 ($ (-1129 *3 (-614 $))))))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) (-15 -3400 ((-1129 *3 (-614 $)) $)) (-15 -4380 ($ (-1129 *3 (-614 $))))))))) (-1317 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1175 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *4 (-614 $)) $)) (-15 -3400 ((-1129 *4 (-614 $)) $)) (-15 -4380 ($ (-1129 *4 (-614 $))))))))) (-1316 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-614 *2))) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *4 (-614 $)) $)) (-15 -3400 ((-1129 *4 (-614 $)) $)) (-15 -4380 ($ (-1129 *4 (-614 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1316 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *4 (-614 $)) $)) (-15 -3400 ((-1129 *4 (-614 $)) $)) (-15 -4380 ($ (-1129 *4 (-614 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1316 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) (-15 -3400 ((-1129 *3 (-614 $)) $)) (-15 -4380 ($ (-1129 *3 (-614 $))))))))) (-1316 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) (-15 -3400 ((-1129 *3 (-614 $)) $)) (-15 -4380 ($ (-1129 *3 (-614 $))))))))) (-1315 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-366) (-300) (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) (-15 -3400 ((-1129 *3 (-614 $)) $)) (-15 -4380 ($ (-1129 *3 (-614 $)))))))))) +(-10 -7 (-15 -1315 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -1316 (|#2| |#2| |#2|)) (-15 -1316 (|#2| |#2| (-644 |#2|))) (-15 -1316 (|#2| |#2| (-644 (-614 |#2|)))) (-15 -1317 ((-1175 |#2|) |#2|)) (IF (|has| |#1| (-13 (-456) (-1042 (-550)))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1321 (|#2| (-113) |#2| (-774)))) |%noBranch|) |%noBranch|)) +((-4166 (((-409 (-1175 |#3|)) (-1175 |#3|) (-644 (-48))) 23) (((-409 |#3|) |#3| (-644 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4166 ((-409 |#3|) |#3| (-644 (-48)))) (-15 -4166 ((-409 (-1175 |#3|)) (-1175 |#3|) (-644 (-48))))) (-853) (-796) (-954 (-48) |#2| |#1|)) (T -42)) +((-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-853)) (-4 *6 (-796)) (-4 *7 (-954 (-48) *6 *5)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-853)) (-4 *6 (-796)) (-5 *2 (-409 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-954 (-48) *6 *5))))) +(-10 -7 (-15 -4166 ((-409 |#3|) |#3| (-644 (-48)))) (-15 -4166 ((-409 (-1175 |#3|)) (-1175 |#3|) (-644 (-48))))) +((-1325 (((-774) |#2|) 72)) (-1323 (((-774) |#2|) 76)) (-1338 (((-644 |#2|)) 39)) (-1322 (((-774) |#2|) 75)) (-1324 (((-774) |#2|) 71)) (-1326 (((-774) |#2|) 74)) (-1336 (((-644 (-692 |#1|))) 67)) (-1331 (((-644 |#2|)) 62)) (-1329 (((-644 |#2|) |#2|) 50)) (-1333 (((-644 |#2|)) 64)) (-1332 (((-644 |#2|)) 63)) (-1335 (((-644 (-692 |#1|))) 55)) (-1330 (((-644 |#2|)) 61)) (-1328 (((-644 |#2|) |#2|) 49)) (-1327 (((-644 |#2|)) 57)) (-1337 (((-644 (-692 |#1|))) 68)) (-1334 (((-644 |#2|)) 66)) (-2192 (((-1270 |#2|) (-1270 |#2|)) 101 (|has| |#1| (-309))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1322 ((-774) |#2|)) (-15 -1323 ((-774) |#2|)) (-15 -1324 ((-774) |#2|)) (-15 -1325 ((-774) |#2|)) (-15 -1326 ((-774) |#2|)) (-15 -1327 ((-644 |#2|))) (-15 -1328 ((-644 |#2|) |#2|)) (-15 -1329 ((-644 |#2|) |#2|)) (-15 -1330 ((-644 |#2|))) (-15 -1331 ((-644 |#2|))) (-15 -1332 ((-644 |#2|))) (-15 -1333 ((-644 |#2|))) (-15 -1334 ((-644 |#2|))) (-15 -1335 ((-644 (-692 |#1|)))) (-15 -1336 ((-644 (-692 |#1|)))) (-15 -1337 ((-644 (-692 |#1|)))) (-15 -1338 ((-644 |#2|))) (IF (|has| |#1| (-309)) (-15 -2192 ((-1270 |#2|) (-1270 |#2|))) |%noBranch|)) (-561) (-422 |#1|)) (T -43)) +((-2192 (*1 *2 *2) (-12 (-5 *2 (-1270 *4)) (-4 *4 (-422 *3)) (-4 *3 (-309)) (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) (-1338 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1337 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 (-692 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1336 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 (-692 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1335 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 (-692 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1334 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1333 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1332 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1331 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1330 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1329 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1328 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1327 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1324 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1323 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1322 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) +(-10 -7 (-15 -1322 ((-774) |#2|)) (-15 -1323 ((-774) |#2|)) (-15 -1324 ((-774) |#2|)) (-15 -1325 ((-774) |#2|)) (-15 -1326 ((-774) |#2|)) (-15 -1327 ((-644 |#2|))) (-15 -1328 ((-644 |#2|) |#2|)) (-15 -1329 ((-644 |#2|) |#2|)) (-15 -1330 ((-644 |#2|))) (-15 -1331 ((-644 |#2|))) (-15 -1332 ((-644 |#2|))) (-15 -1333 ((-644 |#2|))) (-15 -1334 ((-644 |#2|))) (-15 -1335 ((-644 (-692 |#1|)))) (-15 -1336 ((-644 (-692 |#1|)))) (-15 -1337 ((-644 (-692 |#1|)))) (-15 -1338 ((-644 |#2|))) (IF (|has| |#1| (-309)) (-15 -2192 ((-1270 |#2|) (-1270 |#2|))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1949 (((-3 $ #1="failed")) NIL (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3645 (((-1270 (-692 |#1|)) (-1270 $)) NIL) (((-1270 (-692 |#1|))) 24)) (-1899 (((-1270 $)) 55)) (-4158 (($) NIL T CONST)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (|has| |#1| (-561)))) (-1873 (((-3 $ #1#)) NIL (|has| |#1| (-561)))) (-1965 (((-692 |#1|) (-1270 $)) NIL) (((-692 |#1|)) NIL)) (-1897 ((|#1| $) NIL)) (-1963 (((-692 |#1|) $ (-1270 $)) NIL) (((-692 |#1|) $) NIL)) (-2569 (((-3 $ #1#) $) NIL (|has| |#1| (-561)))) (-2080 (((-1175 (-950 |#1|))) NIL (|has| |#1| (-366)))) (-2572 (($ $ (-923)) NIL)) (-1895 ((|#1| $) NIL)) (-1875 (((-1175 |#1|) $) NIL (|has| |#1| (-561)))) (-1967 ((|#1| (-1270 $)) NIL) ((|#1|) NIL)) (-1893 (((-1175 |#1|) $) NIL)) (-1887 (((-112)) 101)) (-1969 (($ (-1270 |#1|) (-1270 $)) NIL) (($ (-1270 |#1|)) NIL)) (-3892 (((-3 $ #1#) $) 14 (|has| |#1| (-561)))) (-3515 (((-923)) 56)) (-1884 (((-112)) NIL)) (-2596 (($ $ (-923)) NIL)) (-1880 (((-112)) NIL)) (-1878 (((-112)) NIL)) (-1882 (((-112)) 103)) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (|has| |#1| (-561)))) (-1874 (((-3 $ #1#)) NIL (|has| |#1| (-561)))) (-1966 (((-692 |#1|) (-1270 $)) NIL) (((-692 |#1|)) NIL)) (-1898 ((|#1| $) NIL)) (-1964 (((-692 |#1|) $ (-1270 $)) NIL) (((-692 |#1|) $) NIL)) (-2570 (((-3 $ #1#) $) NIL (|has| |#1| (-561)))) (-2084 (((-1175 (-950 |#1|))) NIL (|has| |#1| (-366)))) (-2571 (($ $ (-923)) NIL)) (-1896 ((|#1| $) NIL)) (-1876 (((-1175 |#1|) $) NIL (|has| |#1| (-561)))) (-1968 ((|#1| (-1270 $)) NIL) ((|#1|) NIL)) (-1894 (((-1175 |#1|) $) NIL)) (-1888 (((-112)) 100)) (-3665 (((-1163) $) NIL)) (-1879 (((-112)) 108)) (-1881 (((-112)) 107)) (-1883 (((-112)) 109)) (-3666 (((-1124) $) NIL)) (-1886 (((-112)) 102)) (-4233 ((|#1| $ (-550)) 58)) (-3646 (((-1270 |#1|) $ (-1270 $)) 52) (((-692 |#1|) (-1270 $) (-1270 $)) NIL) (((-1270 |#1|) $) 28) (((-692 |#1|) (-1270 $)) NIL)) (-4404 (((-1270 |#1|) $) NIL) (($ (-1270 |#1|)) NIL)) (-2072 (((-644 (-950 |#1|)) (-1270 $)) NIL) (((-644 (-950 |#1|))) NIL)) (-2758 (($ $ $) NIL)) (-1892 (((-112)) 97)) (-4380 (((-866) $) 74) (($ (-1270 |#1|)) 22)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) 54)) (-1877 (((-644 (-1270 |#1|))) NIL (|has| |#1| (-561)))) (-2759 (($ $ $ $) NIL)) (-1890 (((-112)) 93)) (-2950 (($ (-692 |#1|) $) 18)) (-2757 (($ $ $) NIL)) (-1891 (((-112)) 99)) (-1889 (((-112)) 94)) (-1885 (((-112)) 92)) (-3512 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1146 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-422 |#1|) (-651 (-1146 |#2| |#1|)) (-10 -8 (-15 -4380 ($ (-1270 |#1|))))) (-366) (-923) (-644 (-1181)) (-1270 (-692 |#1|))) (T -44)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-366)) (-14 *6 (-1270 (-692 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-644 (-1181)))))) +(-13 (-422 |#1|) (-651 (-1146 |#2| |#1|)) (-10 -8 (-15 -4380 ($ (-1270 |#1|))))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-3828 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4228 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4230 (($ $) NIL)) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428))) (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-1900 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853))))) (-3312 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-3428 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428)))) (-4220 (($ $ $) 33 (|has| $ (-6 -4428)))) (-4219 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428)))) (-4222 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 35 (|has| $ (-6 -4428)))) (-4221 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-1237 (-550)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #1="last" (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #3="first" (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #4="value" (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4229 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2383 (((-3 |#2| #5="failed") |#1| $) 43)) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-4232 (($ $ (-774)) NIL) (($ $) 29)) (-2528 (($ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #5#) |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) NIL)) (-3868 (((-112) $) NIL)) (-3845 (((-550) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) (((-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 20 (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427))) (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 20 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-4048 (($ (-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853))) (((-550) $) 38 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3261 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3943 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427))) (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853))) (((-550) $) 40 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428))) (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-3967 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3433 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-3952 (((-112) $) NIL)) (-3665 (((-1163) $) 49 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4231 (($ $ (-774)) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2818 (((-644 |#1|) $) 22)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2451 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 |#1|) $) NIL) (((-644 (-550)) $) NIL)) (-2380 (((-112) |#1| $) NIL) (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853))) (($ $ (-774)) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 27)) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) #6#) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-3869 (((-112) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-2381 (((-644 |#2|) $) NIL) (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 19)) (-3829 (((-112) $) 18)) (-3998 (($) 14)) (-4233 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ (-550)) NIL) (($ $ (-1237 (-550))) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #3#) NIL) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $ #4#) NIL)) (-3432 (((-550) $ $) NIL)) (-1569 (($) 13) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-1681 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-4067 (((-112) $) NIL)) (-4225 (($ $) NIL)) (-4223 (($ $) NIL (|has| $ (-6 -4428)))) (-4226 (((-774) $) NIL)) (-4227 (($ $) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4224 (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL) (($ $ $) NIL)) (-4235 (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL) (($ (-644 $)) NIL) (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 31) (($ $ $) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-1312 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") |#1| $) 51)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-3089 (((-112) $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-853)))) (-4391 (((-774) $) 25 (|has| $ (-6 -4427))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1105) (-1105)) (T -45)) NIL (-36 |#1| |#2|) -((-4369 (((-112) $) 12)) (-4390 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-549)) $) 25) (($ $ (-410 (-549))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4369 ((-112) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-47 |#2| |#3|) (-1052) (-794)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4369 ((-112) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4380 ((|#2| $) 76)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-47 |#1| |#2|) (-140) (-1052) (-794)) (T -47)) -((-3594 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) (-3294 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-4109 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-365))))) -(-13 (-1052) (-111 |t#1| |t#1|) (-10 -8 (-15 -3594 (|t#1| $)) (-15 -3295 ($ $)) (-15 -4380 (|t#2| $)) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -4369 ((-112) $)) (-15 -3294 ($ |t#1| |t#2|)) (-15 -4391 ($ $)) (-15 -4109 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -4381 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-560)) (-6 (-560)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (-6 (-38 (-410 (-549)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-291) |has| |#1| (-560)) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-1715 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-1303 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3608 (((-112) $) 9)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1708 (((-643 (-613 $)) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-1304 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-3603 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-613 $) $) NIL) (((-549) $) NIL) (((-410 (-549)) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-410 (-549)))) (|:| |vec| (-1269 (-410 (-549))))) (-691 $) (-1269 $)) NIL) (((-691 (-410 (-549))) (-691 $)) NIL)) (-4274 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) NIL)) (-2573 (((-112) $) 11)) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-3399 (((-1128 (-549) (-613 $)) $) NIL)) (-3412 (($ $ (-549)) NIL)) (-3536 (((-1174 $) (-1174 $) (-613 $)) NIL) (((-1174 $) (-1174 $) (-643 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-643 (-613 $))) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-1705 (((-1174 $) (-613 $)) NIL (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) NIL)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) NIL)) (-2384 (($ (-113) $) NIL) (($ (-113) (-643 $)) NIL)) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) NIL)) (-2806 (($ $) NIL)) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1752 (((-773) $) NIL)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-3398 (((-1128 (-549) (-613 $)) $) NIL)) (-3605 (($ $) NIL (|has| $ (-1052)))) (-4402 (((-380) $) NIL) (((-225) $) NIL) (((-168 (-380)) $) NIL)) (-4378 (((-865) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1128 (-549) (-613 $))) NIL)) (-3530 (((-773)) NIL T CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-2403 (((-112) (-113)) NIL)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 6 T CONST)) (-3067 (($) 10 T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) 13)) (-4381 (($ $ $) NIL)) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-410 (-549))) NIL) (($ $ (-549)) NIL) (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) -(((-48) (-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $))))))) (T -48)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) (-4274 (*1 *1 *1) (-5 *1 (-48))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-643 (-613 (-48)))) (-5 *1 (-48)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-48)))) (-5 *1 (-48))))) -(-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $)))))) -((-2968 (((-112) $ $) NIL)) (-2116 (((-643 (-509)) $) 17)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 7)) (-3653 (((-1185) $) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-49) (-13 (-1104) (-10 -8 (-15 -2116 ((-643 (-509)) $)) (-15 -3653 ((-1185) $))))) (T -49)) -((-2116 (*1 *2 *1) (-12 (-5 *2 (-643 (-509))) (-5 *1 (-49)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-49))))) -(-13 (-1104) (-10 -8 (-15 -2116 ((-643 (-509)) $)) (-15 -3653 ((-1185) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 87)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3065 (((-112) $) 30)) (-3577 (((-3 |#1| "failed") $) 33)) (-3576 ((|#1| $) 34)) (-4391 (($ $) 40)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3594 ((|#1| $) 31)) (-1557 (($ $) 76)) (-3663 (((-1162) $) NIL)) (-1556 (((-112) $) 43)) (-3664 (((-1123) $) NIL)) (-2572 (($ (-773)) 74)) (-4375 (($ (-643 (-549))) 75)) (-4380 (((-773) $) 44)) (-4378 (((-865) $) 93) (($ (-549)) 71) (($ |#1|) 69)) (-4109 ((|#1| $ $) 28)) (-3530 (((-773)) 73 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 45 T CONST)) (-3067 (($) 17 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-623 |#1|) (-1041 |#1|) (-10 -8 (-15 -3594 (|#1| $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 (|#1| $ $)) (-15 -2572 ($ (-773))) (-15 -4375 ($ (-643 (-549)))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-773) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)))) (-1052) (-643 (-1180))) (T -50)) -((-3594 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) (-4109 (*1 *2 *1 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-50 *3 *4)) (-14 *4 (-643 (-1180)))))) -(-13 (-623 |#1|) (-1041 |#1|) (-10 -8 (-15 -3594 (|#1| $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 (|#1| $ $)) (-15 -2572 ($ (-773))) (-15 -4375 ($ (-643 (-549)))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-773) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)))) -((-2968 (((-112) $ $) NIL)) (-1338 (((-775) $) 8)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1339 (((-1106) $) 10)) (-4378 (((-865) $) 15)) (-3662 (((-112) $ $) NIL)) (-1340 (($ (-1106) (-775)) 16)) (-3455 (((-112) $ $) 12))) -(((-51) (-13 (-1104) (-10 -8 (-15 -1340 ($ (-1106) (-775))) (-15 -1339 ((-1106) $)) (-15 -1338 ((-775) $))))) (T -51)) -((-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-51)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-51)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-51))))) -(-13 (-1104) (-10 -8 (-15 -1340 ($ (-1106) (-775))) (-15 -1339 ((-1106) $)) (-15 -1338 ((-775) $)))) -((-3065 (((-112) (-51)) 18)) (-3577 (((-3 |#1| "failed") (-51)) 20)) (-3576 ((|#1| (-51)) 21)) (-4378 (((-51) |#1|) 14))) -(((-52 |#1|) (-10 -7 (-15 -4378 ((-51) |#1|)) (-15 -3577 ((-3 |#1| "failed") (-51))) (-15 -3065 ((-112) (-51))) (-15 -3576 (|#1| (-51)))) (-1219)) (T -52)) -((-3576 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1219)))) (-3577 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1219))))) -(-10 -7 (-15 -4378 ((-51) |#1|)) (-15 -3577 ((-3 |#1| "failed") (-51))) (-15 -3065 ((-112) (-51))) (-15 -3576 (|#1| (-51)))) -((-2948 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2948 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1052) (-650 |#1|) (-854 |#1|)) (T -53)) -((-2948 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-650 *5)) (-4 *5 (-1052)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-854 *5))))) -(-10 -7 (-15 -2948 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1342 ((|#3| |#3| (-643 (-1180))) 46)) (-1341 ((|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3| (-922)) 32) ((|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3| (-922))) (-15 -1342 (|#3| |#3| (-643 (-1180))))) (-1104) (-13 (-1052) (-889 |#1|) (-616 (-893 |#1|))) (-13 (-424 |#2|) (-889 |#1|) (-616 (-893 |#1|)))) (T -54)) -((-1342 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) (-1341 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-643 (-1078 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1104)) (-4 *6 (-13 (-1052) (-889 *5) (-616 (-893 *5)))) (-4 *2 (-13 (-424 *6) (-889 *5) (-616 (-893 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1341 (*1 *2 *3 *2) (-12 (-5 *3 (-643 (-1078 *4 *5 *2))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3| (-922))) (-15 -1342 (|#3| |#3| (-643 (-1180))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 14)) (-3577 (((-3 (-773) "failed") $) 34)) (-3576 (((-773) $) NIL)) (-2573 (((-112) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) 18)) (-4378 (((-865) $) 23) (($ (-773)) 29)) (-3662 (((-112) $ $) NIL)) (-1343 (($) 11 T CONST)) (-3455 (((-112) $ $) 20))) -(((-55) (-13 (-1104) (-1041 (-773)) (-10 -8 (-15 -1343 ($) -4384) (-15 -3608 ((-112) $)) (-15 -2573 ((-112) $))))) (T -55)) -((-1343 (*1 *1) (-5 *1 (-55))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1104) (-1041 (-773)) (-10 -8 (-15 -1343 ($) -4384) (-15 -3608 ((-112) $)) (-15 -2573 ((-112) $)))) -((-1309 (((-112) $ (-773)) 27)) (-1345 (($ $ (-549) |#3|) 66)) (-1344 (($ $ (-549) |#4|) 70)) (-3516 ((|#3| $ (-549)) 79)) (-2124 (((-643 |#2|) $) 47)) (-4151 (((-112) $ (-773)) 31)) (-3666 (((-112) |#2| $) 74)) (-2128 (($ (-1 |#2| |#2|) $) 55)) (-4390 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4148 (((-112) $ (-773)) 29)) (-2373 (($ $ |#2|) 52)) (-2126 (((-112) (-1 (-112) |#2|) $) 21)) (-4231 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) 35)) (-2125 (((-773) (-1 (-112) |#2|) $) 41) (((-773) |#2| $) 76)) (-3824 (($ $) 51)) (-3515 ((|#4| $ (-549)) 82)) (-4378 (((-865) $) 88)) (-2127 (((-112) (-1 (-112) |#2|) $) 20)) (-3455 (((-112) $ $) 73)) (-4389 (((-773) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1344 (|#1| |#1| (-549) |#4|)) (-15 -1345 (|#1| |#1| (-549) |#3|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -3515 (|#4| |#1| (-549))) (-15 -3516 (|#3| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3824 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1219) (-374 |#2|) (-374 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1344 (|#1| |#1| (-549) |#4|)) (-15 -1345 (|#1| |#1| (-549) |#3|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -3515 (|#4| |#1| (-549))) (-15 -3516 (|#3| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3824 (|#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) (-549) |#1|) 45)) (-1345 (($ $ (-549) |#2|) 43)) (-1344 (($ $ (-549) |#3|) 42)) (-4156 (($) 7 T CONST)) (-3516 ((|#2| $ (-549)) 47)) (-1684 ((|#1| $ (-549) (-549) |#1|) 44)) (-3517 ((|#1| $ (-549) (-549)) 49)) (-2124 (((-643 |#1|) $) 31)) (-3519 (((-773) $) 52)) (-4046 (($ (-773) (-773) |#1|) 58)) (-3518 (((-773) $) 51)) (-4151 (((-112) $ (-773)) 9)) (-3523 (((-549) $) 56)) (-3521 (((-549) $) 54)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 55)) (-3520 (((-549) $) 53)) (-2128 (($ (-1 |#1| |#1|) $) 35)) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) 57)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) (-549)) 50) ((|#1| $ (-549) (-549) |#1|) 48)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-3515 ((|#3| $ (-549)) 46)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-57 |#1| |#2| |#3|) (-140) (-1219) (-374 |t#1|) (-374 |t#1|)) (T -57)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4046 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-773)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2373 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-773)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-773)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-1219)))) (-3517 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)))) (-3516 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) (-4 *2 (-374 *4)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) (-4 *2 (-374 *4)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-643 *3)))) (-4219 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)))) (-1684 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)))) (-1345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-374 *4)) (-4 *5 (-374 *4)))) (-1344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) (-4 *3 (-374 *4)))) (-2128 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4390 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -4046 ($ (-773) (-773) |t#1|)) (-15 -2373 ($ $ |t#1|)) (-15 -3523 ((-549) $)) (-15 -3522 ((-549) $)) (-15 -3521 ((-549) $)) (-15 -3520 ((-549) $)) (-15 -3519 ((-773) $)) (-15 -3518 ((-773) $)) (-15 -4231 (|t#1| $ (-549) (-549))) (-15 -3517 (|t#1| $ (-549) (-549))) (-15 -4231 (|t#1| $ (-549) (-549) |t#1|)) (-15 -3516 (|t#2| $ (-549))) (-15 -3515 (|t#3| $ (-549))) (-15 -2124 ((-643 |t#1|) $)) (-15 -4219 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1684 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1345 ($ $ (-549) |t#2|)) (-15 -1344 ($ $ (-549) |t#3|)) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -2128 ($ (-1 |t#1| |t#1|) $)) (-15 -4390 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4390 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-1346 (($ (-643 |#1|)) 11) (($ (-773) |#1|) 14)) (-4046 (($ (-773) |#1|) 13)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 10)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1346 ($ (-643 |#1|))) (-15 -1346 ($ (-773) |#1|)))) (-1219)) (T -58)) -((-1346 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-58 *3)))) (-1346 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-58 *3)) (-4 *3 (-1219))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1346 ($ (-643 |#1|))) (-15 -1346 ($ (-773) |#1|)))) -((-4273 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4390 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-59 |#1| |#2|) (-10 -7 (-15 -4273 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4390 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1219) (-1219)) (T -59)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-59 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -(-10 -7 (-15 -4273 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4390 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1345 (($ $ (-549) (-58 |#1|)) NIL)) (-1344 (($ $ (-549) (-58 |#1|)) NIL)) (-4156 (($) NIL T CONST)) (-3516 (((-58 |#1|) $ (-549)) NIL)) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-58 |#1|) $ (-549)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4426))) (-1219)) (T -60)) -NIL -(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4426))) -((-3577 (((-3 $ #1="failed") (-315 (-380))) 41) (((-3 $ #1#) (-315 (-549))) 46) (((-3 $ #1#) (-949 (-380))) 50) (((-3 $ #1#) (-949 (-549))) 54) (((-3 $ #1#) (-410 (-949 (-380)))) 36) (((-3 $ #1#) (-410 (-949 (-549)))) 29)) (-3576 (($ (-315 (-380))) 39) (($ (-315 (-549))) 44) (($ (-949 (-380))) 48) (($ (-949 (-549))) 52) (($ (-410 (-949 (-380)))) 34) (($ (-410 (-949 (-549)))) 26)) (-3804 (((-1275) $) 76)) (-4378 (((-865) $) 69) (($ (-643 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 64) (($ (-341 (-3953 (QUOTE X)) (-3953) (-701))) 25))) -(((-61 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953) (-701)))))) (-1180)) (T -61)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953 (QUOTE X)) (-3953) (-701))) (-5 *1 (-61 *3)) (-14 *3 (-1180))))) -(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953) (-701)))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 74) (((-3 $ #1#) (-1269 (-315 (-549)))) 63) (((-3 $ #1#) (-1269 (-949 (-380)))) 94) (((-3 $ #1#) (-1269 (-949 (-549)))) 84) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 52) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 39)) (-3576 (($ (-1269 (-315 (-380)))) 70) (($ (-1269 (-315 (-549)))) 59) (($ (-1269 (-949 (-380)))) 90) (($ (-1269 (-949 (-549)))) 80) (($ (-1269 (-410 (-949 (-380))))) 48) (($ (-1269 (-410 (-949 (-549))))) 32)) (-3804 (((-1275) $) 124)) (-4378 (((-865) $) 118) (($ (-643 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 101) (($ (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701)))) 31))) -(((-62 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701))))))) (-1180)) (T -62)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701)))) (-5 *1 (-62 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701))))))) -((-3804 (((-1275) $) 54) (((-1275)) 55)) (-4378 (((-865) $) 51))) -(((-63 |#1|) (-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) (-1180)) (T -63)) -((-3804 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-63 *3)) (-14 *3 (-1180))))) -(-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 153) (((-3 $ #1#) (-1269 (-315 (-549)))) 143) (((-3 $ #1#) (-1269 (-949 (-380)))) 173) (((-3 $ #1#) (-1269 (-949 (-549)))) 163) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 132) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 120)) (-3576 (($ (-1269 (-315 (-380)))) 149) (($ (-1269 (-315 (-549)))) 139) (($ (-1269 (-949 (-380)))) 169) (($ (-1269 (-949 (-549)))) 159) (($ (-1269 (-410 (-949 (-380))))) 128) (($ (-1269 (-410 (-949 (-549))))) 113)) (-3804 (((-1275) $) 106)) (-4378 (((-865) $) 100) (($ (-643 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 33) (($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) 98))) -(((-64 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) (-1180)) (T -64)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) (-5 *1 (-64 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 114) (((-3 $ #1#) (-691 (-315 (-549)))) 102) (((-3 $ #1#) (-691 (-949 (-380)))) 136) (((-3 $ #1#) (-691 (-949 (-549)))) 125) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 90) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 76)) (-3576 (($ (-691 (-315 (-380)))) 110) (($ (-691 (-315 (-549)))) 98) (($ (-691 (-949 (-380)))) 132) (($ (-691 (-949 (-549)))) 121) (($ (-691 (-410 (-949 (-380))))) 86) (($ (-691 (-410 (-949 (-549))))) 69)) (-3804 (((-1275) $) 144)) (-4378 (((-865) $) 138) (($ (-643 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 32) (($ (-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701)))) 59))) -(((-65 |#1|) (-13 (-387) (-618 (-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701))))) (-1180)) (T -65)) -NIL -(-13 (-387) (-618 (-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701))))) -((-3577 (((-3 $ #1="failed") (-315 (-380))) 60) (((-3 $ #1#) (-315 (-549))) 65) (((-3 $ #1#) (-949 (-380))) 69) (((-3 $ #1#) (-949 (-549))) 73) (((-3 $ #1#) (-410 (-949 (-380)))) 55) (((-3 $ #1#) (-410 (-949 (-549)))) 48)) (-3576 (($ (-315 (-380))) 58) (($ (-315 (-549))) 63) (($ (-949 (-380))) 67) (($ (-949 (-549))) 71) (($ (-410 (-949 (-380)))) 53) (($ (-410 (-949 (-549)))) 45)) (-3804 (((-1275) $) 82)) (-4378 (((-865) $) 76) (($ (-643 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 32) (($ (-341 (-3953) (-3953 (QUOTE XC)) (-701))) 40))) -(((-66 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE XC)) (-701)))))) (-1180)) (T -66)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953) (-3953 (QUOTE XC)) (-701))) (-5 *1 (-66 *3)) (-14 *3 (-1180))))) -(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE XC)) (-701)))))) -((-3804 (((-1275) $) 68)) (-4378 (((-865) $) 62) (($ (-691 (-701))) 54) (($ (-643 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 58))) -(((-67 |#1|) (-385) (-1180)) (T -67)) -NIL -(-385) -((-3804 (((-1275) $) 69)) (-4378 (((-865) $) 63) (($ (-691 (-701))) 55) (($ (-643 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 60))) -(((-68 |#1|) (-385) (-1180)) (T -68)) -NIL -(-385) -((-3804 (((-1275) $) NIL) (((-1275)) 33)) (-4378 (((-865) $) NIL))) -(((-69 |#1|) (-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) (-1180)) (T -69)) -((-3804 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-69 *3)) (-14 *3 (-1180))))) -(-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) -((-3804 (((-1275) $) 75)) (-4378 (((-865) $) 69) (($ (-691 (-701))) 61) (($ (-643 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 60))) -(((-70 |#1|) (-385) (-1180)) (T -70)) -NIL -(-385) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 111) (((-3 $ #1#) (-1269 (-315 (-549)))) 100) (((-3 $ #1#) (-1269 (-949 (-380)))) 131) (((-3 $ #1#) (-1269 (-949 (-549)))) 121) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 89) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 76)) (-3576 (($ (-1269 (-315 (-380)))) 107) (($ (-1269 (-315 (-549)))) 96) (($ (-1269 (-949 (-380)))) 127) (($ (-1269 (-949 (-549)))) 117) (($ (-1269 (-410 (-949 (-380))))) 85) (($ (-1269 (-410 (-949 (-549))))) 69)) (-3804 (((-1275) $) 144)) (-4378 (((-865) $) 138) (($ (-643 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 61) (($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) 62))) -(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) (-1180)) (T -71)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) (-5 *1 (-71 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) -((-3804 (((-1275) $) 33) (((-1275)) 32)) (-4378 (((-865) $) 36))) -(((-72 |#1|) (-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) (-1180)) (T -72)) -((-3804 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-72 *3)) (-14 *3 (-1180))))) -(-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) -((-3804 (((-1275) $) 65)) (-4378 (((-865) $) 59) (($ (-691 (-701))) 51) (($ (-643 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 50))) -(((-73 |#1|) (-385) (-1180)) (T -73)) -NIL -(-385) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 130) (((-3 $ #1#) (-1269 (-315 (-549)))) 120) (((-3 $ #1#) (-1269 (-949 (-380)))) 150) (((-3 $ #1#) (-1269 (-949 (-549)))) 140) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 110) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 98)) (-3576 (($ (-1269 (-315 (-380)))) 126) (($ (-1269 (-315 (-549)))) 116) (($ (-1269 (-949 (-380)))) 146) (($ (-1269 (-949 (-549)))) 136) (($ (-1269 (-410 (-949 (-380))))) 106) (($ (-1269 (-410 (-949 (-549))))) 91)) (-3804 (((-1275) $) 83)) (-4378 (((-865) $) 28) (($ (-643 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 76) (($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) 70))) -(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) (-1180)) (T -74)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) (-5 *1 (-74 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-315 (-380))) 47) (((-3 $ #1#) (-315 (-549))) 52) (((-3 $ #1#) (-949 (-380))) 56) (((-3 $ #1#) (-949 (-549))) 60) (((-3 $ #1#) (-410 (-949 (-380)))) 42) (((-3 $ #1#) (-410 (-949 (-549)))) 35)) (-3576 (($ (-315 (-380))) 45) (($ (-315 (-549))) 50) (($ (-949 (-380))) 54) (($ (-949 (-549))) 58) (($ (-410 (-949 (-380)))) 40) (($ (-410 (-949 (-549)))) 32)) (-3804 (((-1275) $) 81)) (-4378 (((-865) $) 75) (($ (-643 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 70) (($ (-341 (-3953) (-3953 (QUOTE X)) (-701))) 31))) -(((-75 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) (-1180)) (T -75)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953) (-3953 (QUOTE X)) (-701))) (-5 *1 (-75 *3)) (-14 *3 (-1180))))) -(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 135) (((-3 $ #1#) (-1269 (-315 (-549)))) 124) (((-3 $ #1#) (-1269 (-949 (-380)))) 155) (((-3 $ #1#) (-1269 (-949 (-549)))) 145) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 113) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 100)) (-3576 (($ (-1269 (-315 (-380)))) 131) (($ (-1269 (-315 (-549)))) 120) (($ (-1269 (-949 (-380)))) 151) (($ (-1269 (-949 (-549)))) 141) (($ (-1269 (-410 (-949 (-380))))) 109) (($ (-1269 (-410 (-949 (-549))))) 93)) (-3804 (((-1275) $) 85)) (-4378 (((-865) $) 77) (($ (-643 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) NIL) (($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701)))) 72))) -(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701))))))) (-1180) (-1180) (-1180)) (T -76)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 141) (((-3 $ #1#) (-1269 (-315 (-549)))) 130) (((-3 $ #1#) (-1269 (-949 (-380)))) 161) (((-3 $ #1#) (-1269 (-949 (-549)))) 151) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 119) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 106)) (-3576 (($ (-1269 (-315 (-380)))) 137) (($ (-1269 (-315 (-549)))) 126) (($ (-1269 (-949 (-380)))) 157) (($ (-1269 (-949 (-549)))) 147) (($ (-1269 (-410 (-949 (-380))))) 115) (($ (-1269 (-410 (-949 (-549))))) 99)) (-3804 (((-1275) $) 91)) (-4378 (((-865) $) 83) (($ (-643 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) NIL) (($ (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701)))) 78))) -(((-77 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701))))))) (-1180) (-1180) (-1180)) (T -77)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-315 (-380))) 83) (((-3 $ #1#) (-315 (-549))) 88) (((-3 $ #1#) (-949 (-380))) 92) (((-3 $ #1#) (-949 (-549))) 96) (((-3 $ #1#) (-410 (-949 (-380)))) 78) (((-3 $ #1#) (-410 (-949 (-549)))) 71)) (-3576 (($ (-315 (-380))) 81) (($ (-315 (-549))) 86) (($ (-949 (-380))) 90) (($ (-949 (-549))) 94) (($ (-410 (-949 (-380)))) 76) (($ (-410 (-949 (-549)))) 68)) (-3804 (((-1275) $) 63)) (-4378 (((-865) $) 51) (($ (-643 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 55) (($ (-341 (-3953) (-3953 (QUOTE X)) (-701))) 48))) -(((-78 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) (-1180)) (T -78)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953) (-3953 (QUOTE X)) (-701))) (-5 *1 (-78 *3)) (-14 *3 (-1180))))) -(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 90) (((-3 $ #1#) (-1269 (-315 (-549)))) 79) (((-3 $ #1#) (-1269 (-949 (-380)))) 110) (((-3 $ #1#) (-1269 (-949 (-549)))) 100) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 68) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 55)) (-3576 (($ (-1269 (-315 (-380)))) 86) (($ (-1269 (-315 (-549)))) 75) (($ (-1269 (-949 (-380)))) 106) (($ (-1269 (-949 (-549)))) 96) (($ (-1269 (-410 (-949 (-380))))) 64) (($ (-1269 (-410 (-949 (-549))))) 48)) (-3804 (((-1275) $) 126)) (-4378 (((-865) $) 120) (($ (-643 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 116) (($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) 39))) -(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) (-1180)) (T -79)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) (-5 *1 (-79 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 154) (((-3 $ #1#) (-1269 (-315 (-549)))) 144) (((-3 $ #1#) (-1269 (-949 (-380)))) 174) (((-3 $ #1#) (-1269 (-949 (-549)))) 164) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 134) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 122)) (-3576 (($ (-1269 (-315 (-380)))) 150) (($ (-1269 (-315 (-549)))) 140) (($ (-1269 (-949 (-380)))) 170) (($ (-1269 (-949 (-549)))) 160) (($ (-1269 (-410 (-949 (-380))))) 130) (($ (-1269 (-410 (-949 (-549))))) 115)) (-3804 (((-1275) $) 108)) (-4378 (((-865) $) 102) (($ (-643 (-331))) 93) (($ (-331)) 100) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 98) (($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) 94))) -(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) (-1180)) (T -80)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) (-5 *1 (-80 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 79) (((-3 $ #1#) (-1269 (-315 (-549)))) 68) (((-3 $ #1#) (-1269 (-949 (-380)))) 99) (((-3 $ #1#) (-1269 (-949 (-549)))) 89) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 57) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 44)) (-3576 (($ (-1269 (-315 (-380)))) 75) (($ (-1269 (-315 (-549)))) 64) (($ (-1269 (-949 (-380)))) 95) (($ (-1269 (-949 (-549)))) 85) (($ (-1269 (-410 (-949 (-380))))) 53) (($ (-1269 (-410 (-949 (-549))))) 37)) (-3804 (((-1275) $) 125)) (-4378 (((-865) $) 119) (($ (-643 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 114) (($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) 36))) -(((-81 |#1|) (-13 (-444) (-618 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))) (-1180)) (T -81)) -NIL -(-13 (-444) (-618 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 80) (((-3 $ #1#) (-1269 (-315 (-549)))) 69) (((-3 $ #1#) (-1269 (-949 (-380)))) 100) (((-3 $ #1#) (-1269 (-949 (-549)))) 90) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 58) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 45)) (-3576 (($ (-1269 (-315 (-380)))) 76) (($ (-1269 (-315 (-549)))) 65) (($ (-1269 (-949 (-380)))) 96) (($ (-1269 (-949 (-549)))) 86) (($ (-1269 (-410 (-949 (-380))))) 54) (($ (-1269 (-410 (-949 (-549))))) 38)) (-3804 (((-1275) $) 126)) (-4378 (((-865) $) 120) (($ (-643 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 115) (($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) 37))) -(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) (-1180)) (T -82)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) (-5 *1 (-82 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 98) (((-3 $ #1#) (-1269 (-315 (-549)))) 87) (((-3 $ #1#) (-1269 (-949 (-380)))) 118) (((-3 $ #1#) (-1269 (-949 (-549)))) 108) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 76) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 63)) (-3576 (($ (-1269 (-315 (-380)))) 94) (($ (-1269 (-315 (-549)))) 83) (($ (-1269 (-949 (-380)))) 114) (($ (-1269 (-949 (-549)))) 104) (($ (-1269 (-410 (-949 (-380))))) 72) (($ (-1269 (-410 (-949 (-549))))) 56)) (-3804 (((-1275) $) 48)) (-4378 (((-865) $) 42) (($ (-643 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 38) (($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) 33))) -(((-83 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) (-1180)) (T -83)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) (-5 *1 (-83 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) -((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 118) (((-3 $ #1#) (-691 (-315 (-549)))) 107) (((-3 $ #1#) (-691 (-949 (-380)))) 140) (((-3 $ #1#) (-691 (-949 (-549)))) 129) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 96) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 83)) (-3576 (($ (-691 (-315 (-380)))) 114) (($ (-691 (-315 (-549)))) 103) (($ (-691 (-949 (-380)))) 136) (($ (-691 (-949 (-549)))) 125) (($ (-691 (-410 (-949 (-380))))) 92) (($ (-691 (-410 (-949 (-549))))) 76)) (-3804 (((-1275) $) 66)) (-4378 (((-865) $) 53) (($ (-643 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 58) (($ (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) 50))) -(((-84 |#1|) (-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) (-1180)) (T -84)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) (-5 *1 (-84 *3)) (-14 *3 (-1180))))) -(-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) -((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 113) (((-3 $ #1#) (-691 (-315 (-549)))) 101) (((-3 $ #1#) (-691 (-949 (-380)))) 135) (((-3 $ #1#) (-691 (-949 (-549)))) 124) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 89) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 75)) (-3576 (($ (-691 (-315 (-380)))) 109) (($ (-691 (-315 (-549)))) 97) (($ (-691 (-949 (-380)))) 131) (($ (-691 (-949 (-549)))) 120) (($ (-691 (-410 (-949 (-380))))) 85) (($ (-691 (-410 (-949 (-549))))) 68)) (-3804 (((-1275) $) 60)) (-4378 (((-865) $) 54) (($ (-643 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 45) (($ (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) 46))) -(((-85 |#1|) (-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) (-1180)) (T -85)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) (-5 *1 (-85 *3)) (-14 *3 (-1180))))) -(-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) -((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 105) (((-3 $ #1#) (-1269 (-315 (-549)))) 94) (((-3 $ #1#) (-1269 (-949 (-380)))) 125) (((-3 $ #1#) (-1269 (-949 (-549)))) 115) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 83) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 70)) (-3576 (($ (-1269 (-315 (-380)))) 101) (($ (-1269 (-315 (-549)))) 90) (($ (-1269 (-949 (-380)))) 121) (($ (-1269 (-949 (-549)))) 111) (($ (-1269 (-410 (-949 (-380))))) 79) (($ (-1269 (-410 (-949 (-549))))) 63)) (-3804 (((-1275) $) 47)) (-4378 (((-865) $) 41) (($ (-643 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 53) (($ (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) 38))) -(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) (-1180)) (T -86)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) (-5 *1 (-86 *3)) (-14 *3 (-1180))))) -(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) -((-3804 (((-1275) $) 45)) (-4378 (((-865) $) 39) (($ (-1269 (-701))) 100) (($ (-643 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 34))) -(((-87 |#1|) (-443) (-1180)) (T -87)) -NIL -(-443) -((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 117) (((-3 $ #1#) (-691 (-315 (-549)))) 105) (((-3 $ #1#) (-691 (-949 (-380)))) 139) (((-3 $ #1#) (-691 (-949 (-549)))) 128) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 93) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 79)) (-3576 (($ (-691 (-315 (-380)))) 113) (($ (-691 (-315 (-549)))) 101) (($ (-691 (-949 (-380)))) 135) (($ (-691 (-949 (-549)))) 124) (($ (-691 (-410 (-949 (-380))))) 89) (($ (-691 (-410 (-949 (-549))))) 72)) (-3804 (((-1275) $) 63)) (-4378 (((-865) $) 57) (($ (-643 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 52) (($ (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701)))) 48))) -(((-88 |#1|) (-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701))))))) (-1180)) (T -88)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701)))) (-5 *1 (-88 *3)) (-14 *3 (-1180))))) -(-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701))))))) -((-3577 (((-3 $ #1="failed") (-315 (-380))) 48) (((-3 $ #1#) (-315 (-549))) 53) (((-3 $ #1#) (-949 (-380))) 57) (((-3 $ #1#) (-949 (-549))) 61) (((-3 $ #1#) (-410 (-949 (-380)))) 43) (((-3 $ #1#) (-410 (-949 (-549)))) 36)) (-3576 (($ (-315 (-380))) 46) (($ (-315 (-549))) 51) (($ (-949 (-380))) 55) (($ (-949 (-549))) 59) (($ (-410 (-949 (-380)))) 41) (($ (-410 (-949 (-549)))) 33)) (-3804 (((-1275) $) 91)) (-4378 (((-865) $) 85) (($ (-643 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 77) (($ (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))) 32))) -(((-89 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))))) (-1180)) (T -89)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))) (-5 *1 (-89 *3)) (-14 *3 (-1180))))) -(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))))) -((-1348 (((-1269 (-691 |#1|)) (-691 |#1|)) 64)) (-1347 (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 (-643 (-922))))) |#2| (-922)) 54)) (-1349 (((-2 (|:| |minor| (-643 (-922))) (|:| -3687 |#2|) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 |#2|))) |#2| (-922)) 75 (|has| |#1| (-365))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1347 ((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 (-643 (-922))))) |#2| (-922))) (-15 -1348 ((-1269 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-365)) (-15 -1349 ((-2 (|:| |minor| (-643 (-922))) (|:| -3687 |#2|) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 |#2|))) |#2| (-922))) |%noBranch|)) (-560) (-660 |#1|)) (T -90)) -((-1349 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |minor| (-643 (-922))) (|:| -3687 *3) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5)))) (-1348 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-691 *4)) (-4 *5 (-660 *4)))) (-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-560)) (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 (-643 (-922)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5))))) -(-10 -7 (-15 -1347 ((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 (-643 (-922))))) |#2| (-922))) (-15 -1348 ((-1269 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-365)) (-15 -1349 ((-2 (|:| |minor| (-643 (-922))) (|:| -3687 |#2|) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 |#2|))) |#2| (-922))) |%noBranch|)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3748 ((|#1| $) 42)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3750 ((|#1| |#1| $) 37)) (-3749 ((|#1| $) 35)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) NIL)) (-4039 (($ |#1| $) 38)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1370 ((|#1| $) 36)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 18)) (-3996 (($) 46)) (-3747 (((-773) $) 33)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 17)) (-4378 (((-865) $) 32 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-1350 (($ (-643 |#1|)) 44)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 15 (|has| |#1| (-1104)))) (-4389 (((-773) $) 12 (|has| $ (-6 -4425))))) -(((-91 |#1|) (-13 (-1124 |#1|) (-10 -8 (-15 -1350 ($ (-643 |#1|))))) (-1104)) (T -91)) -((-1350 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-91 *3))))) -(-13 (-1124 |#1|) (-10 -8 (-15 -1350 ($ (-643 |#1|))))) -((-4378 (((-865) $) 13) (($ (-1185)) 9) (((-1185) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4378 ((-1185) |#1|)) (-15 -4378 (|#1| (-1185))) (-15 -4378 ((-865) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4378 ((-1185) |#1|)) (-15 -4378 (|#1| (-1185))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-1185)) 17) (((-1185) $) 16)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +((-4371 (((-112) $) 12)) (-4392 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-411 (-550)) $) 25) (($ $ (-411 (-550))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4371 ((-112) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) (-47 |#2| |#3|) (-1053) (-795)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4371 ((-112) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-4371 (((-112) $) 74)) (-3296 (($ |#1| |#2|) 73)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4382 ((|#2| $) 76)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4111 ((|#1| $ |#2|) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-47 |#1| |#2|) (-140) (-1053) (-795)) (T -47)) +((-3596 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) (-3297 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-112)))) (-3296 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) (-4393 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) (-4111 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *2 (-366))))) +(-13 (-1053) (-111 |t#1| |t#1|) (-10 -8 (-15 -3596 (|t#1| $)) (-15 -3297 ($ $)) (-15 -4382 (|t#2| $)) (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (-15 -4371 ((-112) $)) (-15 -3296 ($ |t#1| |t#2|)) (-15 -4393 ($ $)) (-15 -4111 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-366)) (-15 -4383 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-6 (-173)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-561)) (-6 (-561)) |%noBranch|) (IF (|has| |t#1| (-38 (-411 (-550)))) (-6 (-38 (-411 (-550)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) |has| |#1| (-38 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-292) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-1717 (((-644 $) (-1175 $) (-1181)) NIL) (((-644 $) (-1175 $)) NIL) (((-644 $) (-950 $)) NIL)) (-1304 (($ (-1175 $) (-1181)) NIL) (($ (-1175 $)) NIL) (($ (-950 $)) NIL)) (-3610 (((-112) $) 9)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1710 (((-644 (-614 $)) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-1714 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3440 (($ $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-1305 (((-644 $) (-1175 $) (-1181)) NIL) (((-644 $) (-1175 $)) NIL) (((-644 $) (-950 $)) NIL)) (-3605 (($ (-1175 $) (-1181)) NIL) (($ (-1175 $)) NIL) (($ (-950 $)) NIL)) (-3579 (((-3 (-614 $) #1="failed") $) NIL) (((-3 (-550) #1#) $) NIL) (((-3 (-411 (-550)) #1#) $) NIL)) (-3578 (((-614 $) $) NIL) (((-550) $) NIL) (((-411 (-550)) $) NIL)) (-2966 (($ $ $) NIL)) (-2429 (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-411 (-550)))) (|:| |vec| (-1270 (-411 (-550))))) (-692 $) (-1270 $)) NIL) (((-692 (-411 (-550))) (-692 $)) NIL)) (-4276 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2975 (($ $) NIL) (($ (-644 $)) NIL)) (-1709 (((-644 (-113)) $) NIL)) (-3450 (((-113) (-113)) NIL)) (-2575 (((-112) $) 11)) (-3078 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-3401 (((-1129 (-550) (-614 $)) $) NIL)) (-3414 (($ $ (-550)) NIL)) (-3538 (((-1175 $) (-1175 $) (-614 $)) NIL) (((-1175 $) (-1175 $) (-644 (-614 $))) NIL) (($ $ (-614 $)) NIL) (($ $ (-644 (-614 $))) NIL)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL)) (-1707 (((-1175 $) (-614 $)) NIL (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) NIL)) (-1712 (((-3 (-614 $) "failed") $) NIL)) (-2071 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-1711 (((-644 (-614 $)) $) NIL)) (-2386 (($ (-113) $) NIL) (($ (-113) (-644 $)) NIL)) (-3037 (((-112) $ (-113)) NIL) (((-112) $ (-1181)) NIL)) (-2808 (($ $) NIL)) (-3005 (((-774) $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1708 (((-112) $ $) NIL) (((-112) $ (-1181)) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3079 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-4201 (($ $ (-614 $) $) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1181) (-1 $ (-644 $))) NIL) (($ $ (-1181) (-1 $ $)) NIL) (($ $ (-644 (-113)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-113) (-1 $ (-644 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1754 (((-774) $) NIL)) (-4233 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-644 $)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1713 (($ $) NIL) (($ $ $) NIL)) (-4244 (($ $ (-774)) NIL) (($ $) NIL)) (-3400 (((-1129 (-550) (-614 $)) $) NIL)) (-3607 (($ $) NIL (|has| $ (-1053)))) (-4404 (((-381) $) NIL) (((-226) $) NIL) (((-169 (-381)) $) NIL)) (-4380 (((-866) $) NIL) (($ (-614 $)) NIL) (($ (-411 (-550))) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-1129 (-550) (-614 $))) NIL)) (-3532 (((-774)) NIL T CONST)) (-2992 (($ $) NIL) (($ (-644 $)) NIL)) (-2405 (((-112) (-113)) NIL)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 6 T CONST)) (-3069 (($) 10 T CONST)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3457 (((-112) $ $) 13)) (-4383 (($ $ $) NIL)) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-411 (-550))) NIL) (($ $ (-550)) NIL) (($ $ (-774)) NIL) (($ $ (-923)) NIL)) (* (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-774) $) NIL) (($ (-923) $) NIL))) +(((-48) (-13 (-300) (-27) (-1042 (-550)) (-1042 (-411 (-550))) (-642 (-550)) (-1024) (-642 (-411 (-550))) (-147) (-617 (-169 (-381))) (-234) (-10 -8 (-15 -4380 ($ (-1129 (-550) (-614 $)))) (-15 -3401 ((-1129 (-550) (-614 $)) $)) (-15 -3400 ((-1129 (-550) (-614 $)) $)) (-15 -4276 ($ $)) (-15 -3538 ((-1175 $) (-1175 $) (-614 $))) (-15 -3538 ((-1175 $) (-1175 $) (-644 (-614 $)))) (-15 -3538 ($ $ (-614 $))) (-15 -3538 ($ $ (-644 (-614 $))))))) (T -48)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1129 (-550) (-614 (-48)))) (-5 *1 (-48)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-48)))) (-5 *1 (-48)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-48)))) (-5 *1 (-48)))) (-4276 (*1 *1 *1) (-5 *1 (-48))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-614 (-48))) (-5 *1 (-48)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-644 (-614 (-48)))) (-5 *1 (-48)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-614 (-48))) (-5 *1 (-48)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-614 (-48)))) (-5 *1 (-48))))) +(-13 (-300) (-27) (-1042 (-550)) (-1042 (-411 (-550))) (-642 (-550)) (-1024) (-642 (-411 (-550))) (-147) (-617 (-169 (-381))) (-234) (-10 -8 (-15 -4380 ($ (-1129 (-550) (-614 $)))) (-15 -3401 ((-1129 (-550) (-614 $)) $)) (-15 -3400 ((-1129 (-550) (-614 $)) $)) (-15 -4276 ($ $)) (-15 -3538 ((-1175 $) (-1175 $) (-614 $))) (-15 -3538 ((-1175 $) (-1175 $) (-644 (-614 $)))) (-15 -3538 ($ $ (-614 $))) (-15 -3538 ($ $ (-644 (-614 $)))))) +((-2970 (((-112) $ $) NIL)) (-2118 (((-644 (-510)) $) 17)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 7)) (-3655 (((-1186) $) 18)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-49) (-13 (-1105) (-10 -8 (-15 -2118 ((-644 (-510)) $)) (-15 -3655 ((-1186) $))))) (T -49)) +((-2118 (*1 *2 *1) (-12 (-5 *2 (-644 (-510))) (-5 *1 (-49)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-49))))) +(-13 (-1105) (-10 -8 (-15 -2118 ((-644 (-510)) $)) (-15 -3655 ((-1186) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 87)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3067 (((-112) $) 30)) (-3579 (((-3 |#1| "failed") $) 33)) (-3578 ((|#1| $) 34)) (-4393 (($ $) 40)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3596 ((|#1| $) 31)) (-1559 (($ $) 76)) (-3665 (((-1163) $) NIL)) (-1558 (((-112) $) 43)) (-3666 (((-1124) $) NIL)) (-2574 (($ (-774)) 74)) (-4377 (($ (-644 (-550))) 75)) (-4382 (((-774) $) 44)) (-4380 (((-866) $) 93) (($ (-550)) 71) (($ |#1|) 69)) (-4111 ((|#1| $ $) 28)) (-3532 (((-774)) 73 T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 45 T CONST)) (-3069 (($) 17 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-624 |#1|) (-1042 |#1|) (-10 -8 (-15 -3596 (|#1| $)) (-15 -1559 ($ $)) (-15 -4393 ($ $)) (-15 -4111 (|#1| $ $)) (-15 -2574 ($ (-774))) (-15 -4377 ($ (-644 (-550)))) (-15 -1558 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -4382 ((-774) $)) (-15 -4392 ($ (-1 |#1| |#1|) $)))) (-1053) (-644 (-1181))) (T -50)) +((-3596 (*1 *2 *1) (-12 (-4 *2 (-1053)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1181))))) (-1559 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1053)) (-14 *3 (-644 (-1181))))) (-4393 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1053)) (-14 *3 (-644 (-1181))))) (-4111 (*1 *2 *1 *1) (-12 (-4 *2 (-1053)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1181))))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) (-14 *4 (-644 (-1181))))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) (-14 *4 (-644 (-1181))))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) (-14 *4 (-644 (-1181))))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) (-14 *4 (-644 (-1181))))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) (-14 *4 (-644 (-1181))))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-50 *3 *4)) (-14 *4 (-644 (-1181)))))) +(-13 (-624 |#1|) (-1042 |#1|) (-10 -8 (-15 -3596 (|#1| $)) (-15 -1559 ($ $)) (-15 -4393 ($ $)) (-15 -4111 (|#1| $ $)) (-15 -2574 ($ (-774))) (-15 -4377 ($ (-644 (-550)))) (-15 -1558 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -4382 ((-774) $)) (-15 -4392 ($ (-1 |#1| |#1|) $)))) +((-2970 (((-112) $ $) NIL)) (-1339 (((-776) $) 8)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1340 (((-1107) $) 10)) (-4380 (((-866) $) 15)) (-3664 (((-112) $ $) NIL)) (-1341 (($ (-1107) (-776)) 16)) (-3457 (((-112) $ $) 12))) +(((-51) (-13 (-1105) (-10 -8 (-15 -1341 ($ (-1107) (-776))) (-15 -1340 ((-1107) $)) (-15 -1339 ((-776) $))))) (T -51)) +((-1341 (*1 *1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *3 (-776)) (-5 *1 (-51)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-51)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-51))))) +(-13 (-1105) (-10 -8 (-15 -1341 ($ (-1107) (-776))) (-15 -1340 ((-1107) $)) (-15 -1339 ((-776) $)))) +((-3067 (((-112) (-51)) 18)) (-3579 (((-3 |#1| "failed") (-51)) 20)) (-3578 ((|#1| (-51)) 21)) (-4380 (((-51) |#1|) 14))) +(((-52 |#1|) (-10 -7 (-15 -4380 ((-51) |#1|)) (-15 -3579 ((-3 |#1| "failed") (-51))) (-15 -3067 ((-112) (-51))) (-15 -3578 (|#1| (-51)))) (-1220)) (T -52)) +((-3578 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1220)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1220)))) (-3579 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1220)))) (-4380 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1220))))) +(-10 -7 (-15 -4380 ((-51) |#1|)) (-15 -3579 ((-3 |#1| "failed") (-51))) (-15 -3067 ((-112) (-51))) (-15 -3578 (|#1| (-51)))) +((-2950 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2950 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1053) (-651 |#1|) (-855 |#1|)) (T -53)) +((-2950 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-651 *5)) (-4 *5 (-1053)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-855 *5))))) +(-10 -7 (-15 -2950 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1343 ((|#3| |#3| (-644 (-1181))) 46)) (-1342 ((|#3| (-644 (-1079 |#1| |#2| |#3|)) |#3| (-923)) 32) ((|#3| (-644 (-1079 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1342 (|#3| (-644 (-1079 |#1| |#2| |#3|)) |#3|)) (-15 -1342 (|#3| (-644 (-1079 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1343 (|#3| |#3| (-644 (-1181))))) (-1105) (-13 (-1053) (-890 |#1|) (-617 (-894 |#1|))) (-13 (-425 |#2|) (-890 |#1|) (-617 (-894 |#1|)))) (T -54)) +((-1343 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-4 *4 (-1105)) (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))))) (-1342 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 (-1079 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1105)) (-4 *6 (-13 (-1053) (-890 *5) (-617 (-894 *5)))) (-4 *2 (-13 (-425 *6) (-890 *5) (-617 (-894 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1342 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-1079 *4 *5 *2))) (-4 *4 (-1105)) (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1342 (|#3| (-644 (-1079 |#1| |#2| |#3|)) |#3|)) (-15 -1342 (|#3| (-644 (-1079 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1343 (|#3| |#3| (-644 (-1181))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 14)) (-3579 (((-3 (-774) "failed") $) 34)) (-3578 (((-774) $) NIL)) (-2575 (((-112) $) 16)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) 18)) (-4380 (((-866) $) 23) (($ (-774)) 29)) (-3664 (((-112) $ $) NIL)) (-1344 (($) 11 T CONST)) (-3457 (((-112) $ $) 20))) +(((-55) (-13 (-1105) (-1042 (-774)) (-10 -8 (-15 -1344 ($) -4386) (-15 -3610 ((-112) $)) (-15 -2575 ((-112) $))))) (T -55)) +((-1344 (*1 *1) (-5 *1 (-55))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1105) (-1042 (-774)) (-10 -8 (-15 -1344 ($) -4386) (-15 -3610 ((-112) $)) (-15 -2575 ((-112) $)))) +((-1310 (((-112) $ (-774)) 27)) (-1346 (($ $ (-550) |#3|) 66)) (-1345 (($ $ (-550) |#4|) 70)) (-3518 ((|#3| $ (-550)) 79)) (-2126 (((-644 |#2|) $) 47)) (-4153 (((-112) $ (-774)) 31)) (-3668 (((-112) |#2| $) 74)) (-2130 (($ (-1 |#2| |#2|) $) 55)) (-4392 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4150 (((-112) $ (-774)) 29)) (-2375 (($ $ |#2|) 52)) (-2128 (((-112) (-1 (-112) |#2|) $) 21)) (-4233 ((|#2| $ (-550) (-550)) NIL) ((|#2| $ (-550) (-550) |#2|) 35)) (-2127 (((-774) (-1 (-112) |#2|) $) 41) (((-774) |#2| $) 76)) (-3826 (($ $) 51)) (-3517 ((|#4| $ (-550)) 82)) (-4380 (((-866) $) 88)) (-2129 (((-112) (-1 (-112) |#2|) $) 20)) (-3457 (((-112) $ $) 73)) (-4391 (((-774) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1345 (|#1| |#1| (-550) |#4|)) (-15 -1346 (|#1| |#1| (-550) |#3|)) (-15 -2126 ((-644 |#2|) |#1|)) (-15 -3517 (|#4| |#1| (-550))) (-15 -3518 (|#3| |#1| (-550))) (-15 -4233 (|#2| |#1| (-550) (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) (-550))) (-15 -2375 (|#1| |#1| |#2|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -3668 ((-112) |#2| |#1|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774))) (-15 -3826 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1220) (-375 |#2|) (-375 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1345 (|#1| |#1| (-550) |#4|)) (-15 -1346 (|#1| |#1| (-550) |#3|)) (-15 -2126 ((-644 |#2|) |#1|)) (-15 -3517 (|#4| |#1| (-550))) (-15 -3518 (|#3| |#1| (-550))) (-15 -4233 (|#2| |#1| (-550) (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) (-550))) (-15 -2375 (|#1| |#1| |#2|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -3668 ((-112) |#2| |#1|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774))) (-15 -3826 (|#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) (-550) |#1|) 45)) (-1346 (($ $ (-550) |#2|) 43)) (-1345 (($ $ (-550) |#3|) 42)) (-4158 (($) 7 T CONST)) (-3518 ((|#2| $ (-550)) 47)) (-1686 ((|#1| $ (-550) (-550) |#1|) 44)) (-3519 ((|#1| $ (-550) (-550)) 49)) (-2126 (((-644 |#1|) $) 31)) (-3521 (((-774) $) 52)) (-4048 (($ (-774) (-774) |#1|) 58)) (-3520 (((-774) $) 51)) (-4153 (((-112) $ (-774)) 9)) (-3525 (((-550) $) 56)) (-3523 (((-550) $) 54)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3524 (((-550) $) 55)) (-3522 (((-550) $) 53)) (-2130 (($ (-1 |#1| |#1|) $) 35)) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) 57)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) (-550)) 50) ((|#1| $ (-550) (-550) |#1|) 48)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-3517 ((|#3| $ (-550)) 46)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-57 |#1| |#2| |#3|) (-140) (-1220) (-375 |t#1|) (-375 |t#1|)) (T -57)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4048 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-774)) (-4 *3 (-1220)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2375 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1220)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-550)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-550)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-550)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-550)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-774)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-774)))) (-4233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1220)))) (-3519 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1220)))) (-4233 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1220)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1220)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1220)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) (-4221 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1220)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1686 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1220)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1346 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-1345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1220)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-2130 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4392 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(-13 (-493 |t#1|) (-10 -8 (-6 -4428) (-6 -4427) (-15 -4048 ($ (-774) (-774) |t#1|)) (-15 -2375 ($ $ |t#1|)) (-15 -3525 ((-550) $)) (-15 -3524 ((-550) $)) (-15 -3523 ((-550) $)) (-15 -3522 ((-550) $)) (-15 -3521 ((-774) $)) (-15 -3520 ((-774) $)) (-15 -4233 (|t#1| $ (-550) (-550))) (-15 -3519 (|t#1| $ (-550) (-550))) (-15 -4233 (|t#1| $ (-550) (-550) |t#1|)) (-15 -3518 (|t#2| $ (-550))) (-15 -3517 (|t#3| $ (-550))) (-15 -2126 ((-644 |t#1|) $)) (-15 -4221 (|t#1| $ (-550) (-550) |t#1|)) (-15 -1686 (|t#1| $ (-550) (-550) |t#1|)) (-15 -1346 ($ $ (-550) |t#2|)) (-15 -1345 ($ $ (-550) |t#3|)) (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (-15 -2130 ($ (-1 |t#1| |t#1|) $)) (-15 -4392 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4392 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-1347 (($ (-644 |#1|)) 11) (($ (-774) |#1|) 14)) (-4048 (($ (-774) |#1|) 13)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 10)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1347 ($ (-644 |#1|))) (-15 -1347 ($ (-774) |#1|)))) (-1220)) (T -58)) +((-1347 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-58 *3)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-58 *3)) (-4 *3 (-1220))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1347 ($ (-644 |#1|))) (-15 -1347 ($ (-774) |#1|)))) +((-4275 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4276 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4392 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-59 |#1| |#2|) (-10 -7 (-15 -4275 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4392 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1220) (-1220)) (T -59)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-59 *5 *2)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +(-10 -7 (-15 -4275 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4392 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) (-550) |#1|) NIL)) (-1346 (($ $ (-550) (-58 |#1|)) NIL)) (-1345 (($ $ (-550) (-58 |#1|)) NIL)) (-4158 (($) NIL T CONST)) (-3518 (((-58 |#1|) $ (-550)) NIL)) (-1686 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3519 ((|#1| $ (-550) (-550)) NIL)) (-2126 (((-644 |#1|) $) NIL)) (-3521 (((-774) $) NIL)) (-4048 (($ (-774) (-774) |#1|) NIL)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3525 (((-550) $) NIL)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3524 (((-550) $) NIL)) (-3522 (((-550) $) NIL)) (-2130 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-3517 (((-58 |#1|) $ (-550)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4428))) (-1220)) (T -60)) +NIL +(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4428))) +((-3579 (((-3 $ #1="failed") (-316 (-381))) 41) (((-3 $ #1#) (-316 (-550))) 46) (((-3 $ #1#) (-950 (-381))) 50) (((-3 $ #1#) (-950 (-550))) 54) (((-3 $ #1#) (-411 (-950 (-381)))) 36) (((-3 $ #1#) (-411 (-950 (-550)))) 29)) (-3578 (($ (-316 (-381))) 39) (($ (-316 (-550))) 44) (($ (-950 (-381))) 48) (($ (-950 (-550))) 52) (($ (-411 (-950 (-381)))) 34) (($ (-411 (-950 (-550)))) 26)) (-3806 (((-1276) $) 76)) (-4380 (((-866) $) 69) (($ (-644 (-332))) 61) (($ (-332)) 66) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 64) (($ (-342 (-3955 (QUOTE X)) (-3955) (-702))) 25))) +(((-61 |#1|) (-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955 (QUOTE X)) (-3955) (-702)))))) (-1181)) (T -61)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-342 (-3955 (QUOTE X)) (-3955) (-702))) (-5 *1 (-61 *3)) (-14 *3 (-1181))))) +(-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955 (QUOTE X)) (-3955) (-702)))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 74) (((-3 $ #1#) (-1270 (-316 (-550)))) 63) (((-3 $ #1#) (-1270 (-950 (-381)))) 94) (((-3 $ #1#) (-1270 (-950 (-550)))) 84) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 52) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 39)) (-3578 (($ (-1270 (-316 (-381)))) 70) (($ (-1270 (-316 (-550)))) 59) (($ (-1270 (-950 (-381)))) 90) (($ (-1270 (-950 (-550)))) 80) (($ (-1270 (-411 (-950 (-381))))) 48) (($ (-1270 (-411 (-950 (-550))))) 32)) (-3806 (((-1276) $) 124)) (-4380 (((-866) $) 118) (($ (-644 (-332))) 103) (($ (-332)) 97) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 101) (($ (-1270 (-342 (-3955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3955) (-702)))) 31))) +(((-62 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3955) (-702))))))) (-1181)) (T -62)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3955) (-702)))) (-5 *1 (-62 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3955) (-702))))))) +((-3806 (((-1276) $) 54) (((-1276)) 55)) (-4380 (((-866) $) 51))) +(((-63 |#1|) (-13 (-400) (-10 -7 (-15 -3806 ((-1276))))) (-1181)) (T -63)) +((-3806 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-63 *3)) (-14 *3 (-1181))))) +(-13 (-400) (-10 -7 (-15 -3806 ((-1276))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 153) (((-3 $ #1#) (-1270 (-316 (-550)))) 143) (((-3 $ #1#) (-1270 (-950 (-381)))) 173) (((-3 $ #1#) (-1270 (-950 (-550)))) 163) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 132) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 120)) (-3578 (($ (-1270 (-316 (-381)))) 149) (($ (-1270 (-316 (-550)))) 139) (($ (-1270 (-950 (-381)))) 169) (($ (-1270 (-950 (-550)))) 159) (($ (-1270 (-411 (-950 (-381))))) 128) (($ (-1270 (-411 (-950 (-550))))) 113)) (-3806 (((-1276) $) 106)) (-4380 (((-866) $) 100) (($ (-644 (-332))) 30) (($ (-332)) 35) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 33) (($ (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702)))) 98))) +(((-64 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702))))))) (-1181)) (T -64)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702)))) (-5 *1 (-64 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-692 (-316 (-381)))) 114) (((-3 $ #1#) (-692 (-316 (-550)))) 102) (((-3 $ #1#) (-692 (-950 (-381)))) 136) (((-3 $ #1#) (-692 (-950 (-550)))) 125) (((-3 $ #1#) (-692 (-411 (-950 (-381))))) 90) (((-3 $ #1#) (-692 (-411 (-950 (-550))))) 76)) (-3578 (($ (-692 (-316 (-381)))) 110) (($ (-692 (-316 (-550)))) 98) (($ (-692 (-950 (-381)))) 132) (($ (-692 (-950 (-550)))) 121) (($ (-692 (-411 (-950 (-381))))) 86) (($ (-692 (-411 (-950 (-550))))) 69)) (-3806 (((-1276) $) 144)) (-4380 (((-866) $) 138) (($ (-644 (-332))) 29) (($ (-332)) 34) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 32) (($ (-692 (-342 (-3955) (-3955 (QUOTE X) (QUOTE HESS)) (-702)))) 59))) +(((-65 |#1|) (-13 (-388) (-619 (-692 (-342 (-3955) (-3955 (QUOTE X) (QUOTE HESS)) (-702))))) (-1181)) (T -65)) +NIL +(-13 (-388) (-619 (-692 (-342 (-3955) (-3955 (QUOTE X) (QUOTE HESS)) (-702))))) +((-3579 (((-3 $ #1="failed") (-316 (-381))) 60) (((-3 $ #1#) (-316 (-550))) 65) (((-3 $ #1#) (-950 (-381))) 69) (((-3 $ #1#) (-950 (-550))) 73) (((-3 $ #1#) (-411 (-950 (-381)))) 55) (((-3 $ #1#) (-411 (-950 (-550)))) 48)) (-3578 (($ (-316 (-381))) 58) (($ (-316 (-550))) 63) (($ (-950 (-381))) 67) (($ (-950 (-550))) 71) (($ (-411 (-950 (-381)))) 53) (($ (-411 (-950 (-550)))) 45)) (-3806 (((-1276) $) 82)) (-4380 (((-866) $) 76) (($ (-644 (-332))) 29) (($ (-332)) 34) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 32) (($ (-342 (-3955) (-3955 (QUOTE XC)) (-702))) 40))) +(((-66 |#1|) (-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955) (-3955 (QUOTE XC)) (-702)))))) (-1181)) (T -66)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-342 (-3955) (-3955 (QUOTE XC)) (-702))) (-5 *1 (-66 *3)) (-14 *3 (-1181))))) +(-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955) (-3955 (QUOTE XC)) (-702)))))) +((-3806 (((-1276) $) 68)) (-4380 (((-866) $) 62) (($ (-692 (-702))) 54) (($ (-644 (-332))) 53) (($ (-332)) 60) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 58))) +(((-67 |#1|) (-386) (-1181)) (T -67)) +NIL +(-386) +((-3806 (((-1276) $) 69)) (-4380 (((-866) $) 63) (($ (-692 (-702))) 55) (($ (-644 (-332))) 54) (($ (-332)) 57) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 60))) +(((-68 |#1|) (-386) (-1181)) (T -68)) +NIL +(-386) +((-3806 (((-1276) $) NIL) (((-1276)) 33)) (-4380 (((-866) $) NIL))) +(((-69 |#1|) (-13 (-400) (-10 -7 (-15 -3806 ((-1276))))) (-1181)) (T -69)) +((-3806 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-69 *3)) (-14 *3 (-1181))))) +(-13 (-400) (-10 -7 (-15 -3806 ((-1276))))) +((-3806 (((-1276) $) 75)) (-4380 (((-866) $) 69) (($ (-692 (-702))) 61) (($ (-644 (-332))) 63) (($ (-332)) 66) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 60))) +(((-70 |#1|) (-386) (-1181)) (T -70)) +NIL +(-386) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 111) (((-3 $ #1#) (-1270 (-316 (-550)))) 100) (((-3 $ #1#) (-1270 (-950 (-381)))) 131) (((-3 $ #1#) (-1270 (-950 (-550)))) 121) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 89) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 76)) (-3578 (($ (-1270 (-316 (-381)))) 107) (($ (-1270 (-316 (-550)))) 96) (($ (-1270 (-950 (-381)))) 127) (($ (-1270 (-950 (-550)))) 117) (($ (-1270 (-411 (-950 (-381))))) 85) (($ (-1270 (-411 (-950 (-550))))) 69)) (-3806 (((-1276) $) 144)) (-4380 (((-866) $) 138) (($ (-644 (-332))) 133) (($ (-332)) 136) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 61) (($ (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702)))) 62))) +(((-71 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702))))))) (-1181)) (T -71)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702)))) (-5 *1 (-71 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702))))))) +((-3806 (((-1276) $) 33) (((-1276)) 32)) (-4380 (((-866) $) 36))) +(((-72 |#1|) (-13 (-400) (-10 -7 (-15 -3806 ((-1276))))) (-1181)) (T -72)) +((-3806 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-72 *3)) (-14 *3 (-1181))))) +(-13 (-400) (-10 -7 (-15 -3806 ((-1276))))) +((-3806 (((-1276) $) 65)) (-4380 (((-866) $) 59) (($ (-692 (-702))) 51) (($ (-644 (-332))) 53) (($ (-332)) 56) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 50))) +(((-73 |#1|) (-386) (-1181)) (T -73)) +NIL +(-386) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 130) (((-3 $ #1#) (-1270 (-316 (-550)))) 120) (((-3 $ #1#) (-1270 (-950 (-381)))) 150) (((-3 $ #1#) (-1270 (-950 (-550)))) 140) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 110) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 98)) (-3578 (($ (-1270 (-316 (-381)))) 126) (($ (-1270 (-316 (-550)))) 116) (($ (-1270 (-950 (-381)))) 146) (($ (-1270 (-950 (-550)))) 136) (($ (-1270 (-411 (-950 (-381))))) 106) (($ (-1270 (-411 (-950 (-550))))) 91)) (-3806 (((-1276) $) 83)) (-4380 (((-866) $) 28) (($ (-644 (-332))) 73) (($ (-332)) 69) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 76) (($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702)))) 70))) +(((-74 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702))))))) (-1181)) (T -74)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702)))) (-5 *1 (-74 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-316 (-381))) 47) (((-3 $ #1#) (-316 (-550))) 52) (((-3 $ #1#) (-950 (-381))) 56) (((-3 $ #1#) (-950 (-550))) 60) (((-3 $ #1#) (-411 (-950 (-381)))) 42) (((-3 $ #1#) (-411 (-950 (-550)))) 35)) (-3578 (($ (-316 (-381))) 45) (($ (-316 (-550))) 50) (($ (-950 (-381))) 54) (($ (-950 (-550))) 58) (($ (-411 (-950 (-381)))) 40) (($ (-411 (-950 (-550)))) 32)) (-3806 (((-1276) $) 81)) (-4380 (((-866) $) 75) (($ (-644 (-332))) 67) (($ (-332)) 72) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 70) (($ (-342 (-3955) (-3955 (QUOTE X)) (-702))) 31))) +(((-75 |#1|) (-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955) (-3955 (QUOTE X)) (-702)))))) (-1181)) (T -75)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-342 (-3955) (-3955 (QUOTE X)) (-702))) (-5 *1 (-75 *3)) (-14 *3 (-1181))))) +(-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955) (-3955 (QUOTE X)) (-702)))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 135) (((-3 $ #1#) (-1270 (-316 (-550)))) 124) (((-3 $ #1#) (-1270 (-950 (-381)))) 155) (((-3 $ #1#) (-1270 (-950 (-550)))) 145) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 113) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 100)) (-3578 (($ (-1270 (-316 (-381)))) 131) (($ (-1270 (-316 (-550)))) 120) (($ (-1270 (-950 (-381)))) 151) (($ (-1270 (-950 (-550)))) 141) (($ (-1270 (-411 (-950 (-381))))) 109) (($ (-1270 (-411 (-950 (-550))))) 93)) (-3806 (((-1276) $) 85)) (-4380 (((-866) $) 77) (($ (-644 (-332))) NIL) (($ (-332)) NIL) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) NIL) (($ (-1270 (-342 (-3955 (QUOTE X) (QUOTE EPS)) (-3955 (QUOTE -4398)) (-702)))) 72))) +(((-76 |#1| |#2| |#3|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X) (QUOTE EPS)) (-3955 (QUOTE -4398)) (-702))))))) (-1181) (-1181) (-1181)) (T -76)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE X) (QUOTE EPS)) (-3955 (QUOTE -4398)) (-702)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1181)) (-14 *4 (-1181)) (-14 *5 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X) (QUOTE EPS)) (-3955 (QUOTE -4398)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 141) (((-3 $ #1#) (-1270 (-316 (-550)))) 130) (((-3 $ #1#) (-1270 (-950 (-381)))) 161) (((-3 $ #1#) (-1270 (-950 (-550)))) 151) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 119) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 106)) (-3578 (($ (-1270 (-316 (-381)))) 137) (($ (-1270 (-316 (-550)))) 126) (($ (-1270 (-950 (-381)))) 157) (($ (-1270 (-950 (-550)))) 147) (($ (-1270 (-411 (-950 (-381))))) 115) (($ (-1270 (-411 (-950 (-550))))) 99)) (-3806 (((-1276) $) 91)) (-4380 (((-866) $) 83) (($ (-644 (-332))) NIL) (($ (-332)) NIL) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) NIL) (($ (-1270 (-342 (-3955 (QUOTE EPS)) (-3955 (QUOTE YA) (QUOTE YB)) (-702)))) 78))) +(((-77 |#1| |#2| |#3|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE EPS)) (-3955 (QUOTE YA) (QUOTE YB)) (-702))))))) (-1181) (-1181) (-1181)) (T -77)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE EPS)) (-3955 (QUOTE YA) (QUOTE YB)) (-702)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1181)) (-14 *4 (-1181)) (-14 *5 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE EPS)) (-3955 (QUOTE YA) (QUOTE YB)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-316 (-381))) 83) (((-3 $ #1#) (-316 (-550))) 88) (((-3 $ #1#) (-950 (-381))) 92) (((-3 $ #1#) (-950 (-550))) 96) (((-3 $ #1#) (-411 (-950 (-381)))) 78) (((-3 $ #1#) (-411 (-950 (-550)))) 71)) (-3578 (($ (-316 (-381))) 81) (($ (-316 (-550))) 86) (($ (-950 (-381))) 90) (($ (-950 (-550))) 94) (($ (-411 (-950 (-381)))) 76) (($ (-411 (-950 (-550)))) 68)) (-3806 (((-1276) $) 63)) (-4380 (((-866) $) 51) (($ (-644 (-332))) 47) (($ (-332)) 57) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 55) (($ (-342 (-3955) (-3955 (QUOTE X)) (-702))) 48))) +(((-78 |#1|) (-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955) (-3955 (QUOTE X)) (-702)))))) (-1181)) (T -78)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-342 (-3955) (-3955 (QUOTE X)) (-702))) (-5 *1 (-78 *3)) (-14 *3 (-1181))))) +(-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955) (-3955 (QUOTE X)) (-702)))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 90) (((-3 $ #1#) (-1270 (-316 (-550)))) 79) (((-3 $ #1#) (-1270 (-950 (-381)))) 110) (((-3 $ #1#) (-1270 (-950 (-550)))) 100) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 68) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 55)) (-3578 (($ (-1270 (-316 (-381)))) 86) (($ (-1270 (-316 (-550)))) 75) (($ (-1270 (-950 (-381)))) 106) (($ (-1270 (-950 (-550)))) 96) (($ (-1270 (-411 (-950 (-381))))) 64) (($ (-1270 (-411 (-950 (-550))))) 48)) (-3806 (((-1276) $) 126)) (-4380 (((-866) $) 120) (($ (-644 (-332))) 113) (($ (-332)) 38) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 116) (($ (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702)))) 39))) +(((-79 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702))))))) (-1181)) (T -79)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702)))) (-5 *1 (-79 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE XC)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 154) (((-3 $ #1#) (-1270 (-316 (-550)))) 144) (((-3 $ #1#) (-1270 (-950 (-381)))) 174) (((-3 $ #1#) (-1270 (-950 (-550)))) 164) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 134) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 122)) (-3578 (($ (-1270 (-316 (-381)))) 150) (($ (-1270 (-316 (-550)))) 140) (($ (-1270 (-950 (-381)))) 170) (($ (-1270 (-950 (-550)))) 160) (($ (-1270 (-411 (-950 (-381))))) 130) (($ (-1270 (-411 (-950 (-550))))) 115)) (-3806 (((-1276) $) 108)) (-4380 (((-866) $) 102) (($ (-644 (-332))) 93) (($ (-332)) 100) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 98) (($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702)))) 94))) +(((-80 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702))))))) (-1181)) (T -80)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702)))) (-5 *1 (-80 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 79) (((-3 $ #1#) (-1270 (-316 (-550)))) 68) (((-3 $ #1#) (-1270 (-950 (-381)))) 99) (((-3 $ #1#) (-1270 (-950 (-550)))) 89) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 57) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 44)) (-3578 (($ (-1270 (-316 (-381)))) 75) (($ (-1270 (-316 (-550)))) 64) (($ (-1270 (-950 (-381)))) 95) (($ (-1270 (-950 (-550)))) 85) (($ (-1270 (-411 (-950 (-381))))) 53) (($ (-1270 (-411 (-950 (-550))))) 37)) (-3806 (((-1276) $) 125)) (-4380 (((-866) $) 119) (($ (-644 (-332))) 110) (($ (-332)) 116) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 114) (($ (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702)))) 36))) +(((-81 |#1|) (-13 (-445) (-619 (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702))))) (-1181)) (T -81)) +NIL +(-13 (-445) (-619 (-1270 (-342 (-3955) (-3955 (QUOTE X)) (-702))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 80) (((-3 $ #1#) (-1270 (-316 (-550)))) 69) (((-3 $ #1#) (-1270 (-950 (-381)))) 100) (((-3 $ #1#) (-1270 (-950 (-550)))) 90) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 58) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 45)) (-3578 (($ (-1270 (-316 (-381)))) 76) (($ (-1270 (-316 (-550)))) 65) (($ (-1270 (-950 (-381)))) 96) (($ (-1270 (-950 (-550)))) 86) (($ (-1270 (-411 (-950 (-381))))) 54) (($ (-1270 (-411 (-950 (-550))))) 38)) (-3806 (((-1276) $) 126)) (-4380 (((-866) $) 120) (($ (-644 (-332))) 111) (($ (-332)) 117) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 115) (($ (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702)))) 37))) +(((-82 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702))))))) (-1181)) (T -82)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702)))) (-5 *1 (-82 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702))))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 98) (((-3 $ #1#) (-1270 (-316 (-550)))) 87) (((-3 $ #1#) (-1270 (-950 (-381)))) 118) (((-3 $ #1#) (-1270 (-950 (-550)))) 108) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 76) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 63)) (-3578 (($ (-1270 (-316 (-381)))) 94) (($ (-1270 (-316 (-550)))) 83) (($ (-1270 (-950 (-381)))) 114) (($ (-1270 (-950 (-550)))) 104) (($ (-1270 (-411 (-950 (-381))))) 72) (($ (-1270 (-411 (-950 (-550))))) 56)) (-3806 (((-1276) $) 48)) (-4380 (((-866) $) 42) (($ (-644 (-332))) 32) (($ (-332)) 35) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 38) (($ (-1270 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702)))) 33))) +(((-83 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702))))))) (-1181)) (T -83)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702)))) (-5 *1 (-83 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702))))))) +((-3579 (((-3 $ #1="failed") (-692 (-316 (-381)))) 118) (((-3 $ #1#) (-692 (-316 (-550)))) 107) (((-3 $ #1#) (-692 (-950 (-381)))) 140) (((-3 $ #1#) (-692 (-950 (-550)))) 129) (((-3 $ #1#) (-692 (-411 (-950 (-381))))) 96) (((-3 $ #1#) (-692 (-411 (-950 (-550))))) 83)) (-3578 (($ (-692 (-316 (-381)))) 114) (($ (-692 (-316 (-550)))) 103) (($ (-692 (-950 (-381)))) 136) (($ (-692 (-950 (-550)))) 125) (($ (-692 (-411 (-950 (-381))))) 92) (($ (-692 (-411 (-950 (-550))))) 76)) (-3806 (((-1276) $) 66)) (-4380 (((-866) $) 53) (($ (-644 (-332))) 60) (($ (-332)) 49) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 58) (($ (-692 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702)))) 50))) +(((-84 |#1|) (-13 (-388) (-10 -8 (-15 -4380 ($ (-692 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702))))))) (-1181)) (T -84)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-692 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702)))) (-5 *1 (-84 *3)) (-14 *3 (-1181))))) +(-13 (-388) (-10 -8 (-15 -4380 ($ (-692 (-342 (-3955 (QUOTE X) (QUOTE -4398)) (-3955) (-702))))))) +((-3579 (((-3 $ #1="failed") (-692 (-316 (-381)))) 113) (((-3 $ #1#) (-692 (-316 (-550)))) 101) (((-3 $ #1#) (-692 (-950 (-381)))) 135) (((-3 $ #1#) (-692 (-950 (-550)))) 124) (((-3 $ #1#) (-692 (-411 (-950 (-381))))) 89) (((-3 $ #1#) (-692 (-411 (-950 (-550))))) 75)) (-3578 (($ (-692 (-316 (-381)))) 109) (($ (-692 (-316 (-550)))) 97) (($ (-692 (-950 (-381)))) 131) (($ (-692 (-950 (-550)))) 120) (($ (-692 (-411 (-950 (-381))))) 85) (($ (-692 (-411 (-950 (-550))))) 68)) (-3806 (((-1276) $) 60)) (-4380 (((-866) $) 54) (($ (-644 (-332))) 48) (($ (-332)) 51) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 45) (($ (-692 (-342 (-3955 (QUOTE X)) (-3955) (-702)))) 46))) +(((-85 |#1|) (-13 (-388) (-10 -8 (-15 -4380 ($ (-692 (-342 (-3955 (QUOTE X)) (-3955) (-702))))))) (-1181)) (T -85)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-692 (-342 (-3955 (QUOTE X)) (-3955) (-702)))) (-5 *1 (-85 *3)) (-14 *3 (-1181))))) +(-13 (-388) (-10 -8 (-15 -4380 ($ (-692 (-342 (-3955 (QUOTE X)) (-3955) (-702))))))) +((-3579 (((-3 $ #1="failed") (-1270 (-316 (-381)))) 105) (((-3 $ #1#) (-1270 (-316 (-550)))) 94) (((-3 $ #1#) (-1270 (-950 (-381)))) 125) (((-3 $ #1#) (-1270 (-950 (-550)))) 115) (((-3 $ #1#) (-1270 (-411 (-950 (-381))))) 83) (((-3 $ #1#) (-1270 (-411 (-950 (-550))))) 70)) (-3578 (($ (-1270 (-316 (-381)))) 101) (($ (-1270 (-316 (-550)))) 90) (($ (-1270 (-950 (-381)))) 121) (($ (-1270 (-950 (-550)))) 111) (($ (-1270 (-411 (-950 (-381))))) 79) (($ (-1270 (-411 (-950 (-550))))) 63)) (-3806 (((-1276) $) 47)) (-4380 (((-866) $) 41) (($ (-644 (-332))) 50) (($ (-332)) 37) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 53) (($ (-1270 (-342 (-3955 (QUOTE X)) (-3955) (-702)))) 38))) +(((-86 |#1|) (-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X)) (-3955) (-702))))))) (-1181)) (T -86)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-342 (-3955 (QUOTE X)) (-3955) (-702)))) (-5 *1 (-86 *3)) (-14 *3 (-1181))))) +(-13 (-445) (-10 -8 (-15 -4380 ($ (-1270 (-342 (-3955 (QUOTE X)) (-3955) (-702))))))) +((-3806 (((-1276) $) 45)) (-4380 (((-866) $) 39) (($ (-1270 (-702))) 100) (($ (-644 (-332))) 31) (($ (-332)) 36) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 34))) +(((-87 |#1|) (-444) (-1181)) (T -87)) +NIL +(-444) +((-3579 (((-3 $ #1="failed") (-692 (-316 (-381)))) 117) (((-3 $ #1#) (-692 (-316 (-550)))) 105) (((-3 $ #1#) (-692 (-950 (-381)))) 139) (((-3 $ #1#) (-692 (-950 (-550)))) 128) (((-3 $ #1#) (-692 (-411 (-950 (-381))))) 93) (((-3 $ #1#) (-692 (-411 (-950 (-550))))) 79)) (-3578 (($ (-692 (-316 (-381)))) 113) (($ (-692 (-316 (-550)))) 101) (($ (-692 (-950 (-381)))) 135) (($ (-692 (-950 (-550)))) 124) (($ (-692 (-411 (-950 (-381))))) 89) (($ (-692 (-411 (-950 (-550))))) 72)) (-3806 (((-1276) $) 63)) (-4380 (((-866) $) 57) (($ (-644 (-332))) 47) (($ (-332)) 54) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 52) (($ (-692 (-342 (-3955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3955) (-702)))) 48))) +(((-88 |#1|) (-13 (-388) (-10 -8 (-15 -4380 ($ (-692 (-342 (-3955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3955) (-702))))))) (-1181)) (T -88)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-692 (-342 (-3955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3955) (-702)))) (-5 *1 (-88 *3)) (-14 *3 (-1181))))) +(-13 (-388) (-10 -8 (-15 -4380 ($ (-692 (-342 (-3955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3955) (-702))))))) +((-3579 (((-3 $ #1="failed") (-316 (-381))) 48) (((-3 $ #1#) (-316 (-550))) 53) (((-3 $ #1#) (-950 (-381))) 57) (((-3 $ #1#) (-950 (-550))) 61) (((-3 $ #1#) (-411 (-950 (-381)))) 43) (((-3 $ #1#) (-411 (-950 (-550)))) 36)) (-3578 (($ (-316 (-381))) 46) (($ (-316 (-550))) 51) (($ (-950 (-381))) 55) (($ (-950 (-550))) 59) (($ (-411 (-950 (-381)))) 41) (($ (-411 (-950 (-550)))) 33)) (-3806 (((-1276) $) 91)) (-4380 (((-866) $) 85) (($ (-644 (-332))) 79) (($ (-332)) 82) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 77) (($ (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702))) 32))) +(((-89 |#1|) (-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702)))))) (-1181)) (T -89)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702))) (-5 *1 (-89 *3)) (-14 *3 (-1181))))) +(-13 (-401) (-10 -8 (-15 -4380 ($ (-342 (-3955 (QUOTE X)) (-3955 (QUOTE -4398)) (-702)))))) +((-1349 (((-1270 (-692 |#1|)) (-692 |#1|)) 64)) (-1348 (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 (-644 (-923))))) |#2| (-923)) 54)) (-1350 (((-2 (|:| |minor| (-644 (-923))) (|:| -3689 |#2|) (|:| |minors| (-644 (-644 (-923)))) (|:| |ops| (-644 |#2|))) |#2| (-923)) 75 (|has| |#1| (-366))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1348 ((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 (-644 (-923))))) |#2| (-923))) (-15 -1349 ((-1270 (-692 |#1|)) (-692 |#1|))) (IF (|has| |#1| (-366)) (-15 -1350 ((-2 (|:| |minor| (-644 (-923))) (|:| -3689 |#2|) (|:| |minors| (-644 (-644 (-923)))) (|:| |ops| (-644 |#2|))) |#2| (-923))) |%noBranch|)) (-561) (-661 |#1|)) (T -90)) +((-1350 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |minor| (-644 (-923))) (|:| -3689 *3) (|:| |minors| (-644 (-644 (-923)))) (|:| |ops| (-644 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-661 *5)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1270 (-692 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-692 *4)) (-4 *5 (-661 *4)))) (-1348 (*1 *2 *3 *4) (-12 (-4 *5 (-561)) (-5 *2 (-2 (|:| -1750 (-692 *5)) (|:| |vec| (-1270 (-644 (-923)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-661 *5))))) +(-10 -7 (-15 -1348 ((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 (-644 (-923))))) |#2| (-923))) (-15 -1349 ((-1270 (-692 |#1|)) (-692 |#1|))) (IF (|has| |#1| (-366)) (-15 -1350 ((-2 (|:| |minor| (-644 (-923))) (|:| -3689 |#2|) (|:| |minors| (-644 (-644 (-923)))) (|:| |ops| (-644 |#2|))) |#2| (-923))) |%noBranch|)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3750 ((|#1| $) 42)) (-1310 (((-112) $ (-774)) NIL)) (-4158 (($) NIL T CONST)) (-3752 ((|#1| |#1| $) 37)) (-3751 ((|#1| $) 35)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1370 ((|#1| $) NIL)) (-4041 (($ |#1| $) 38)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-1371 ((|#1| $) 36)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 18)) (-3998 (($) 46)) (-3749 (((-774) $) 33)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 17)) (-4380 (((-866) $) 32 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) NIL)) (-1351 (($ (-644 |#1|)) 44)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 15 (|has| |#1| (-1105)))) (-4391 (((-774) $) 12 (|has| $ (-6 -4427))))) +(((-91 |#1|) (-13 (-1125 |#1|) (-10 -8 (-15 -1351 ($ (-644 |#1|))))) (-1105)) (T -91)) +((-1351 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-91 *3))))) +(-13 (-1125 |#1|) (-10 -8 (-15 -1351 ($ (-644 |#1|))))) +((-4380 (((-866) $) 13) (($ (-1186)) 9) (((-1186) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -4380 ((-1186) |#1|)) (-15 -4380 (|#1| (-1186))) (-15 -4380 ((-866) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -4380 ((-1186) |#1|)) (-15 -4380 (|#1| (-1186))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-1186)) 17) (((-1186) $) 16)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL -(-13 (-1104) (-493 (-1185))) -(((-102) . T) ((-618 #1=(-1185)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T)) -((-3911 (($ $) 10)) (-3912 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1105) (-494 (-1186))) +(((-102) . T) ((-619 #1=(-1186)) . T) ((-616 (-866)) . T) ((-616 #1#) . T) ((-494 #1#) . T) ((-1105) . T)) +((-3913 (($ $) 10)) (-3914 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|))) -((-3909 (($ $) 11)) (-3907 (($ $) 10)) (-3911 (($ $) 9)) (-3912 (($ $) 8)) (-3910 (($ $) 7)) (-3908 (($ $) 6))) +(-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|))) +((-3911 (($ $) 11)) (-3909 (($ $) 10)) (-3913 (($ $) 9)) (-3914 (($ $) 8)) (-3912 (($ $) 7)) (-3910 (($ $) 6))) (((-95) (-140)) (T -95)) -((-3909 (*1 *1 *1) (-4 *1 (-95))) (-3907 (*1 *1 *1) (-4 *1 (-95))) (-3911 (*1 *1 *1) (-4 *1 (-95))) (-3912 (*1 *1 *1) (-4 *1 (-95))) (-3910 (*1 *1 *1) (-4 *1 (-95))) (-3908 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3908 ($ $)) (-15 -3910 ($ $)) (-15 -3912 ($ $)) (-15 -3911 ($ $)) (-15 -3907 ($ $)) (-15 -3909 ($ $)))) -((-2968 (((-112) $ $) NIL)) (-3973 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-96) (-13 (-1086) (-10 -8 (-15 -3973 ((-1138) $))))) (T -96)) -((-3973 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-96))))) -(-13 (-1086) (-10 -8 (-15 -3973 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-1351 (((-380) (-1162) (-380)) 46) (((-380) (-1162) (-1162) (-380)) 44)) (-1352 (((-380) (-380)) 35)) (-1353 (((-1275)) 37)) (-3663 (((-1162) $) NIL)) (-1356 (((-380) (-1162) (-1162)) 50) (((-380) (-1162)) 52)) (-3664 (((-1123) $) NIL)) (-1354 (((-380) (-1162) (-1162)) 51)) (-1355 (((-380) (-1162) (-1162)) 53) (((-380) (-1162)) 54)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-97) (-13 (-1104) (-10 -7 (-15 -1356 ((-380) (-1162) (-1162))) (-15 -1356 ((-380) (-1162))) (-15 -1355 ((-380) (-1162) (-1162))) (-15 -1355 ((-380) (-1162))) (-15 -1354 ((-380) (-1162) (-1162))) (-15 -1353 ((-1275))) (-15 -1352 ((-380) (-380))) (-15 -1351 ((-380) (-1162) (-380))) (-15 -1351 ((-380) (-1162) (-1162) (-380))) (-6 -4425)))) (T -97)) -((-1356 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1355 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1354 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1353 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-97)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-97)))) (-1351 (*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97)))) (-1351 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97))))) -(-13 (-1104) (-10 -7 (-15 -1356 ((-380) (-1162) (-1162))) (-15 -1356 ((-380) (-1162))) (-15 -1355 ((-380) (-1162) (-1162))) (-15 -1355 ((-380) (-1162))) (-15 -1354 ((-380) (-1162) (-1162))) (-15 -1353 ((-1275))) (-15 -1352 ((-380) (-380))) (-15 -1351 ((-380) (-1162) (-380))) (-15 -1351 ((-380) (-1162) (-1162) (-380))) (-6 -4425))) +((-3911 (*1 *1 *1) (-4 *1 (-95))) (-3909 (*1 *1 *1) (-4 *1 (-95))) (-3913 (*1 *1 *1) (-4 *1 (-95))) (-3914 (*1 *1 *1) (-4 *1 (-95))) (-3912 (*1 *1 *1) (-4 *1 (-95))) (-3910 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3910 ($ $)) (-15 -3912 ($ $)) (-15 -3914 ($ $)) (-15 -3913 ($ $)) (-15 -3909 ($ $)) (-15 -3911 ($ $)))) +((-2970 (((-112) $ $) NIL)) (-3975 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 15) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-96) (-13 (-1087) (-10 -8 (-15 -3975 ((-1139) $))))) (T -96)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-96))))) +(-13 (-1087) (-10 -8 (-15 -3975 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-1352 (((-381) (-1163) (-381)) 46) (((-381) (-1163) (-1163) (-381)) 44)) (-1353 (((-381) (-381)) 35)) (-1354 (((-1276)) 37)) (-3665 (((-1163) $) NIL)) (-1357 (((-381) (-1163) (-1163)) 50) (((-381) (-1163)) 52)) (-3666 (((-1124) $) NIL)) (-1355 (((-381) (-1163) (-1163)) 51)) (-1356 (((-381) (-1163) (-1163)) 53) (((-381) (-1163)) 54)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-97) (-13 (-1105) (-10 -7 (-15 -1357 ((-381) (-1163) (-1163))) (-15 -1357 ((-381) (-1163))) (-15 -1356 ((-381) (-1163) (-1163))) (-15 -1356 ((-381) (-1163))) (-15 -1355 ((-381) (-1163) (-1163))) (-15 -1354 ((-1276))) (-15 -1353 ((-381) (-381))) (-15 -1352 ((-381) (-1163) (-381))) (-15 -1352 ((-381) (-1163) (-1163) (-381))) (-6 -4427)))) (T -97)) +((-1357 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1356 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1355 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1354 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-97)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-1352 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1163)) (-5 *1 (-97)))) (-1352 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1163)) (-5 *1 (-97))))) +(-13 (-1105) (-10 -7 (-15 -1357 ((-381) (-1163) (-1163))) (-15 -1357 ((-381) (-1163))) (-15 -1356 ((-381) (-1163) (-1163))) (-15 -1356 ((-381) (-1163))) (-15 -1355 ((-381) (-1163) (-1163))) (-15 -1354 ((-1276))) (-15 -1353 ((-381) (-381))) (-15 -1352 ((-381) (-1163) (-381))) (-15 -1352 ((-381) (-1163) (-1163) (-381))) (-6 -4427))) NIL (((-98) (-140)) (T -98)) NIL -(-13 (-10 -7 (-6 -4425) (-6 (-4427 "*")) (-6 -4426) (-6 -4422) (-6 -4420) (-6 -4419) (-6 -4418) (-6 -4423) (-6 -4417) (-6 -4416) (-6 -4415) (-6 -4414) (-6 -4413) (-6 -4421) (-6 -4424) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4412))) -((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-1357 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-549))) 24)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 16)) (-3664 (((-1123) $) NIL)) (-4231 ((|#1| $ |#1|) 13)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 22)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 8 T CONST)) (-3455 (((-112) $ $) 10)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) 34) (($ $ (-773)) NIL) (($ $ (-549)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -1357 ($ (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1| (-549)))))) (-1052)) (T -99)) -((-1357 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) (-1357 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-99 *3))))) -(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -1357 ($ (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1| (-549)))))) -((-1358 (((-408 |#2|) |#2| (-643 |#2|)) 10) (((-408 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1358 ((-408 |#2|) |#2| |#2|)) (-15 -1358 ((-408 |#2|) |#2| (-643 |#2|)))) (-13 (-455) (-147)) (-1245 |#1|)) (T -100)) -((-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-100 *5 *3)))) (-1358 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -1358 ((-408 |#2|) |#2| |#2|)) (-15 -1358 ((-408 |#2|) |#2| (-643 |#2|)))) -((-2968 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2968 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2968 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3455 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4427) (-6 (-4429 "*")) (-6 -4428) (-6 -4424) (-6 -4422) (-6 -4421) (-6 -4420) (-6 -4425) (-6 -4419) (-6 -4418) (-6 -4417) (-6 -4416) (-6 -4415) (-6 -4423) (-6 -4426) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4414))) +((-2970 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-1358 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-550))) 24)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 16)) (-3666 (((-1124) $) NIL)) (-4233 ((|#1| $ |#1|) 13)) (-3412 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-4380 (((-866) $) 22)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 8 T CONST)) (-3457 (((-112) $ $) 10)) (-4383 (($ $ $) NIL)) (** (($ $ (-923)) 34) (($ $ (-774)) NIL) (($ $ (-550)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-477) (-288 |#1| |#1|) (-10 -8 (-15 -1358 ($ (-1 |#1| |#1|))) (-15 -1358 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1358 ($ (-1 |#1| |#1| (-550)))))) (-1053)) (T -99)) +((-1358 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-99 *3)))) (-1358 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-99 *3)))) (-1358 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-550))) (-4 *3 (-1053)) (-5 *1 (-99 *3))))) +(-13 (-477) (-288 |#1| |#1|) (-10 -8 (-15 -1358 ($ (-1 |#1| |#1|))) (-15 -1358 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1358 ($ (-1 |#1| |#1| (-550)))))) +((-1359 (((-409 |#2|) |#2| (-644 |#2|)) 10) (((-409 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1359 ((-409 |#2|) |#2| |#2|)) (-15 -1359 ((-409 |#2|) |#2| (-644 |#2|)))) (-13 (-456) (-147)) (-1246 |#1|)) (T -100)) +((-1359 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-13 (-456) (-147))) (-5 *2 (-409 *3)) (-5 *1 (-100 *5 *3)))) (-1359 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-456) (-147))) (-5 *2 (-409 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -1359 ((-409 |#2|) |#2| |#2|)) (-15 -1359 ((-409 |#2|) |#2| (-644 |#2|)))) +((-2970 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3457 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3455 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -3455 ((-112) $ $)) (-15 -2968 ((-112) $ $)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) 24 (|has| $ (-6 -4426)))) (-1388 (($ $ $) NIL (|has| $ (-6 -4426)))) (-1389 (($ $ $) NIL (|has| $ (-6 -4426)))) (-1361 (($ $ (-643 |#1|)) 34)) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 12)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 36)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1360 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1359 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-643 |#1|) |#1| |#1| |#1|)) 53)) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 11)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) 13)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 9)) (-3996 (($) 35)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1362 (($ (-773) |#1|) 37)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -1362 ($ (-773) |#1|)) (-15 -1361 ($ $ (-643 |#1|))) (-15 -1360 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1360 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 (-643 |#1|) |#1| |#1| |#1|))))) (-1104)) (T -103)) -((-1362 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-103 *3)) (-4 *3 (-1104)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1104)))) (-1360 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3)))) (-1359 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2)))) (-1359 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-643 *2) *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -1362 ($ (-773) |#1|)) (-15 -1361 ($ $ (-643 |#1|))) (-15 -1360 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1360 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 (-643 |#1|) |#1| |#1| |#1|))))) -((-1363 ((|#3| |#2| |#2|) 36)) (-1365 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4427 #1="*"))))) (-1364 ((|#3| |#2| |#2|) 38)) (-1366 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4427 #1#)))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1363 (|#3| |#2| |#2|)) (-15 -1364 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4427 "*"))) (PROGN (-15 -1365 (|#1| |#2| |#2|)) (-15 -1366 (|#1| |#2|))) |%noBranch|)) (-1052) (-1245 |#1|) (-688 |#1| |#4| |#5|) (-374 |#1|) (-374 |#1|)) (T -104)) -((-1366 (*1 *2 *3) (-12 (|has| *2 (-6 (-4427 #1="*"))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-1365 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4427 #1#))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-1364 (*1 *2 *3 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)))) (-1363 (*1 *2 *3 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4))))) -(-10 -7 (-15 -1363 (|#3| |#2| |#2|)) (-15 -1364 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4427 "*"))) (PROGN (-15 -1365 (|#1| |#2| |#2|)) (-15 -1366 (|#1| |#2|))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-1368 (((-643 (-1180))) 37)) (-1367 (((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1180)) 39)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-105) (-13 (-1104) (-10 -7 (-15 -1368 ((-643 (-1180)))) (-15 -1367 ((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1180))) (-6 -4425)))) (T -105)) -((-1368 (*1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-105)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225))))) (-5 *1 (-105))))) -(-13 (-1104) (-10 -7 (-15 -1368 ((-643 (-1180)))) (-15 -1367 ((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1180))) (-6 -4425))) -((-1371 (($ (-643 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -1371 (|#1| (-643 |#2|)))) (-107 |#2|) (-1219)) (T -106)) -NIL -(-10 -8 (-15 -1371 (|#1| (-643 |#2|)))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-107 |#1|) (-140) (-1219)) (T -107)) -((-1371 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-4039 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4426) (-15 -1371 ($ (-643 |t#1|))) (-15 -1370 (|t#1| $)) (-15 -4039 ($ |t#1| $)) (-15 -1369 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-549) $) NIL (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) NIL)) (-3534 (((-549) $) NIL (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 8) (($ (-549)) NIL) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL) (((-1007 2) $) 10)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-549) $) NIL (|has| (-549) (-548)))) (-2207 (($ (-410 (-549))) 9)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-549) (-852)))) (-4381 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL))) -(((-108) (-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 2)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2207 ($ (-410 (-549))))))) (T -108)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108))))) -(-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 2)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2207 ($ (-410 (-549)))))) -((-1383 (((-643 (-968)) $) 13)) (-3973 (((-509) $) 9)) (-4378 (((-865) $) 20)) (-1372 (($ (-509) (-643 (-968))) 15))) -(((-109) (-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -1383 ((-643 (-968)) $)) (-15 -1372 ($ (-509) (-643 (-968))))))) (T -109)) -((-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-643 (-968))) (-5 *1 (-109)))) (-1372 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-109))))) -(-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -1383 ((-643 (-968)) $)) (-15 -1372 ($ (-509) (-643 (-968)))))) -((-2968 (((-112) $ $) NIL)) (-2458 (($ $) NIL)) (-3745 (($ $ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| (-112) (-852))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-112) (-852)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-112) $ (-1236 (-549)) (-112)) NIL (|has| $ (-6 -4426))) (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-3830 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-4274 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-1684 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4426)))) (-3517 (((-112) $ (-549)) NIL)) (-3843 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1104))) (((-549) (-112) $) NIL (|has| (-112) (-1104))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2124 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3255 (($ $ $) NIL)) (-3746 (($ $) NIL)) (-1395 (($ $ $) NIL)) (-4046 (($ (-773) (-112)) 10)) (-1396 (($ $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL)) (-3941 (($ $ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3008 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL)) (-2128 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-112) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2373 (($ $ (-112)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-112)) (-643 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-643 (-294 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2379 (((-643 (-112)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (($ $ (-1236 (-549))) NIL) (((-112) $ (-549)) NIL) (((-112) $ (-549) (-112)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2125 (((-773) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104)))) (((-773) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-112) (-616 (-538))))) (-3953 (($ (-643 (-112))) NIL)) (-4233 (($ (-643 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4378 (((-865) $) NIL)) (-1945 (($ (-773) (-112)) 11)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-3256 (($ $ $) NIL)) (-2456 (($ $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-2457 (($ $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-110) (-13 (-123) (-10 -8 (-15 -1945 ($ (-773) (-112)))))) (T -110)) -((-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -1945 ($ (-773) (-112))))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-140) (-1052) (-1052)) (T -111)) -NIL -(-13 (-650 |t#1|) (-1059 |t#2|) (-10 -7 (-6 -4420) (-6 -4419))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-2458 (($ $) 10)) (-3745 (($ $ $) 15)) (-3258 (($) 7 T CONST)) (-1373 (($ $) 6)) (-3540 (((-773)) 24)) (-3395 (($) 32)) (-3255 (($ $ $) 13)) (-3746 (($ $) 9)) (-1395 (($ $ $) 16)) (-1396 (($ $ $) 17)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) 30)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 28)) (-3254 (($ $ $) 20)) (-3664 (((-1123) $) NIL)) (-3257 (($) 8 T CONST)) (-3253 (($ $ $) 21)) (-4402 (((-538) $) 34)) (-4378 (((-865) $) 36)) (-3662 (((-112) $ $) NIL)) (-3256 (($ $ $) 11)) (-2456 (($ $ $) 14)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 19)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 22)) (-2457 (($ $ $) 12))) -(((-112) (-13 (-846) (-664) (-970) (-616 (-538)) (-10 -8 (-15 -3745 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -1373 ($ $))))) (T -112)) -((-3745 (*1 *1 *1 *1) (-5 *1 (-112))) (-1396 (*1 *1 *1 *1) (-5 *1 (-112))) (-1395 (*1 *1 *1 *1) (-5 *1 (-112))) (-1373 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-846) (-664) (-970) (-616 (-538)) (-10 -8 (-15 -3745 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -1373 ($ $)))) -((-2968 (((-112) $ $) NIL)) (-1623 (((-773) $) 91) (($ $ (-773)) 37)) (-1381 (((-112) $) 41)) (-1375 (($ $ (-1162) (-775)) 58) (($ $ (-509) (-775)) 33)) (-1374 (($ $ (-45 (-1162) (-775))) 16)) (-3244 (((-3 (-775) "failed") $ (-1162)) 27) (((-693 (-775)) $ (-509)) 32)) (-1383 (((-45 (-1162) (-775)) $) 15)) (-3448 (($ (-1180)) 20) (($ (-1180) (-773)) 23) (($ (-1180) (-55)) 24)) (-1382 (((-112) $) 39)) (-1380 (((-112) $) 43)) (-3973 (((-1180) $) 8)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3035 (((-112) $ (-1180)) 11)) (-2310 (($ $ (-1 (-538) (-643 (-538)))) 64) (((-3 (-1 (-538) (-643 (-538))) "failed") $) 71)) (-3664 (((-1123) $) NIL)) (-1377 (((-112) $ (-509)) 36)) (-1379 (($ $ (-1 (-112) $ $)) 45)) (-4049 (((-3 (-1 (-865) (-643 (-865))) "failed") $) 69) (($ $ (-1 (-865) (-643 (-865)))) 51) (($ $ (-1 (-865) (-865))) 53)) (-1376 (($ $ (-1162)) 55) (($ $ (-509)) 56)) (-3824 (($ $) 77)) (-1378 (($ $ (-1 (-112) $ $)) 46)) (-4378 (((-865) $) 60)) (-3662 (((-112) $ $) NIL)) (-3195 (($ $ (-509)) 34)) (-2921 (((-55) $) 72)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 89)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 103))) -(((-113) (-13 (-852) (-838 (-1180)) (-10 -8 (-15 -1383 ((-45 (-1162) (-775)) $)) (-15 -3824 ($ $)) (-15 -3448 ($ (-1180))) (-15 -3448 ($ (-1180) (-773))) (-15 -3448 ($ (-1180) (-55))) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $)) (-15 -1623 ((-773) $)) (-15 -1623 ($ $ (-773))) (-15 -1379 ($ $ (-1 (-112) $ $))) (-15 -1378 ($ $ (-1 (-112) $ $))) (-15 -4049 ((-3 (-1 (-865) (-643 (-865))) "failed") $)) (-15 -4049 ($ $ (-1 (-865) (-643 (-865))))) (-15 -4049 ($ $ (-1 (-865) (-865)))) (-15 -2310 ($ $ (-1 (-538) (-643 (-538))))) (-15 -2310 ((-3 (-1 (-538) (-643 (-538))) "failed") $)) (-15 -1377 ((-112) $ (-509))) (-15 -3195 ($ $ (-509))) (-15 -1376 ($ $ (-1162))) (-15 -1376 ($ $ (-509))) (-15 -3244 ((-3 (-775) "failed") $ (-1162))) (-15 -3244 ((-693 (-775)) $ (-509))) (-15 -1375 ($ $ (-1162) (-775))) (-15 -1375 ($ $ (-509) (-775))) (-15 -1374 ($ $ (-45 (-1162) (-775))))))) (T -113)) -((-1383 (*1 *2 *1) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113)))) (-3824 (*1 *1 *1) (-5 *1 (-113))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-113)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *1 (-113)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-55)) (-5 *1 (-113)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) (-1379 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4049 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-865))) (-5 *1 (-113)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) (-2310 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) (-1377 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-113)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) (-3244 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-775)) (-5 *1 (-113)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-775))) (-5 *1 (-113)))) (-1375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-775)) (-5 *1 (-113)))) (-1375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-113)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113))))) -(-13 (-852) (-838 (-1180)) (-10 -8 (-15 -1383 ((-45 (-1162) (-775)) $)) (-15 -3824 ($ $)) (-15 -3448 ($ (-1180))) (-15 -3448 ($ (-1180) (-773))) (-15 -3448 ($ (-1180) (-55))) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $)) (-15 -1623 ((-773) $)) (-15 -1623 ($ $ (-773))) (-15 -1379 ($ $ (-1 (-112) $ $))) (-15 -1378 ($ $ (-1 (-112) $ $))) (-15 -4049 ((-3 (-1 (-865) (-643 (-865))) "failed") $)) (-15 -4049 ($ $ (-1 (-865) (-643 (-865))))) (-15 -4049 ($ $ (-1 (-865) (-865)))) (-15 -2310 ($ $ (-1 (-538) (-643 (-538))))) (-15 -2310 ((-3 (-1 (-538) (-643 (-538))) "failed") $)) (-15 -1377 ((-112) $ (-509))) (-15 -3195 ($ $ (-509))) (-15 -1376 ($ $ (-1162))) (-15 -1376 ($ $ (-509))) (-15 -3244 ((-3 (-775) "failed") $ (-1162))) (-15 -3244 ((-693 (-775)) $ (-509))) (-15 -1375 ($ $ (-1162) (-775))) (-15 -1375 ($ $ (-509) (-775))) (-15 -1374 ($ $ (-45 (-1162) (-775)))))) -((-2918 (((-3 (-1 |#1| (-643 |#1|)) "failed") (-113)) 23) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-643 |#1|))) 11) (((-3 |#1| "failed") (-113) (-643 |#1|)) 25)) (-1384 (((-3 (-643 (-1 |#1| (-643 |#1|))) "failed") (-113)) 29) (((-113) (-113) (-1 |#1| |#1|)) 33) (((-113) (-113) (-643 (-1 |#1| (-643 |#1|)))) 30)) (-1385 (((-113) |#1|) 63)) (-1386 (((-3 |#1| "failed") (-113)) 58))) -(((-114 |#1|) (-10 -7 (-15 -2918 ((-3 |#1| "failed") (-113) (-643 |#1|))) (-15 -2918 ((-113) (-113) (-1 |#1| (-643 |#1|)))) (-15 -2918 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2918 ((-3 (-1 |#1| (-643 |#1|)) "failed") (-113))) (-15 -1384 ((-113) (-113) (-643 (-1 |#1| (-643 |#1|))))) (-15 -1384 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1384 ((-3 (-643 (-1 |#1| (-643 |#1|))) "failed") (-113))) (-15 -1385 ((-113) |#1|)) (-15 -1386 ((-3 |#1| "failed") (-113)))) (-1104)) (T -114)) -((-1386 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1104)))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1104)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-1 *4 (-643 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1104)))) (-1384 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-1384 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 (-1 *4 (-643 *4)))) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-2918 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-643 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1104)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-643 *4))) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-2918 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-643 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1104))))) -(-10 -7 (-15 -2918 ((-3 |#1| "failed") (-113) (-643 |#1|))) (-15 -2918 ((-113) (-113) (-1 |#1| (-643 |#1|)))) (-15 -2918 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2918 ((-3 (-1 |#1| (-643 |#1|)) "failed") (-113))) (-15 -1384 ((-113) (-113) (-643 (-1 |#1| (-643 |#1|))))) (-15 -1384 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1384 ((-3 (-643 (-1 |#1| (-643 |#1|))) "failed") (-113))) (-15 -1385 ((-113) |#1|)) (-15 -1386 ((-3 |#1| "failed") (-113)))) -((-1387 (((-549) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -1387 ((-549) |#2|))) (-13 (-365) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -115)) -((-1387 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1041 (-410 *2)))) (-5 *2 (-549)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -1387 ((-549) |#2|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $ (-549)) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3011 (($ (-1174 (-549)) (-549)) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3012 (($ $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4203 (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 (((-549)) NIL)) (-3013 (((-549) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4200 (($ $ (-549)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-1157 (-549)) $) NIL)) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-549) $ (-549)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-872 |#1|) (-549)) (T -116)) -NIL -(-872 |#1|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-116 |#1|) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-116 |#1|) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-116 |#1|) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-116 |#1|) (-1041 (-549))))) (-3576 (((-116 |#1|) $) NIL) (((-1180) $) NIL (|has| (-116 |#1|) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-116 |#1|) (-1041 (-549)))) (((-549) $) NIL (|has| (-116 |#1|) (-1041 (-549))))) (-4162 (($ $) NIL) (($ (-549) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-116 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-116 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-116 |#1|))) (|:| |vec| (-1269 (-116 |#1|)))) (-691 $) (-1269 $)) NIL) (((-691 (-116 |#1|)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-116 |#1|) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-116 |#1|) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-116 |#1|) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-116 |#1|) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-116 |#1|) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1154)))) (-3607 (((-112) $) NIL (|has| (-116 |#1|) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-116 |#1|) (-852)))) (-3260 (($ $ $) NIL (|has| (-116 |#1|) (-852)))) (-4390 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-116 |#1|) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-3534 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-116 |#1|)) (-643 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-643 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-643 (-1180)) (-643 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1180) (-116 |#1|)))) (($ $ (-1180) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1180) (-116 |#1|))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-773)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-116 |#1|) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-116 |#1|) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-116 |#1|) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-116 |#1|) (-616 (-538)))) (((-380) $) NIL (|has| (-116 |#1|) (-1023))) (((-225) $) NIL (|has| (-116 |#1|) (-1023)))) (-3016 (((-174 (-410 (-549))) $) NIL)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-116 |#1|)) NIL) (($ (-1180)) NIL (|has| (-116 |#1|) (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-913))) (|has| (-116 |#1|) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ (-549)) NIL)) (-3807 (($ $) NIL (|has| (-116 |#1|) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-773)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-4381 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-994 (-116 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) (-549)) (T -117)) -((-4201 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-994 (-116 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) -((-4219 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3432 (((-643 $) $) 31)) (-3428 (((-112) $ $) 36)) (-3666 (((-112) |#2| $) 40)) (-3431 (((-643 |#2|) $) 25)) (-3950 (((-112) $) 18)) (-4231 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4065 (((-112) $) 57)) (-4378 (((-865) $) 47)) (-3945 (((-643 $) $) 32)) (-3455 (((-112) $ $) 38)) (-4389 (((-773) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4219 (|#1| |#1| "right" |#1|)) (-15 -4219 (|#1| |#1| "left" |#1|)) (-15 -4231 (|#1| |#1| "right")) (-15 -4231 (|#1| |#1| "left")) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3431 ((-643 |#2|) |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -4389 ((-773) |#1|))) (-119 |#2|) (-1219)) (T -118)) -NIL -(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4219 (|#1| |#1| "right" |#1|)) (-15 -4219 (|#1| |#1| "left" |#1|)) (-15 -4231 (|#1| |#1| "right")) (-15 -4231 (|#1| |#1| "left")) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3431 ((-643 |#2|) |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -4389 ((-773) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 53 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 55 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) (($ $ "left" $) 56 (|has| $ (-6 -4426))) (($ $ "right" $) 54 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-3541 (($ $) 58)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3542 (($ $) 60)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) (($ $ "left") 59) (($ $ "right") 57)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-119 |#1|) (-140) (-1219)) (T -119)) -((-3542 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-3541 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-4219 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-1389 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4219 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-1388 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) -(-13 (-1013 |t#1|) (-10 -8 (-15 -3542 ($ $)) (-15 -4231 ($ $ "left")) (-15 -3541 ($ $)) (-15 -4231 ($ $ "right")) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4219 ($ $ "left" $)) (-15 -1389 ($ $ $)) (-15 -4219 ($ $ "right" $)) (-15 -1388 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-1392 (((-112) |#1|) 29)) (-1391 (((-773) (-773)) 28) (((-773)) 27)) (-1390 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -1390 ((-112) |#1|)) (-15 -1390 ((-112) |#1| (-112))) (-15 -1391 ((-773))) (-15 -1391 ((-773) (-773))) (-15 -1392 ((-112) |#1|))) (-1245 (-549))) (T -120)) -((-1392 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1391 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1390 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1390 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) -(-10 -7 (-15 -1390 ((-112) |#1|)) (-15 -1390 ((-112) |#1| (-112))) (-15 -1391 ((-773))) (-15 -1391 ((-773) (-773))) (-15 -1392 ((-112) |#1|))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 18)) (-3842 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-1388 (($ $ $) 21 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 23 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 20)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 27)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 22)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1393 (($ |#1| $) 28)) (-4039 (($ |#1| $) 15)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 11)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1394 (($ (-643 |#1|)) 16)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1394 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)) (-15 -1393 ($ |#1| $)) (-15 -3842 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-852)) (T -121)) -((-1394 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-121 *3)))) (-4039 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852)))) (-3842 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-852))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1394 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)) (-15 -1393 ($ |#1| $)) (-15 -3842 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2458 (($ $) 13)) (-3746 (($ $) 11)) (-1395 (($ $ $) 23)) (-1396 (($ $ $) 21)) (-2456 (($ $ $) 19)) (-2457 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-2458 (($ $) 104)) (-3745 (($ $ $) 26)) (-2372 (((-1275) $ (-549) (-549)) 67 (|has| $ (-6 -4426)))) (-1900 (((-112) $) 99 (|has| (-112) (-852))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1898 (($ $) 103 (-12 (|has| (-112) (-852)) (|has| $ (-6 -4426)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4426)))) (-3310 (($ $) 98 (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1309 (((-112) $ (-773)) 38)) (-4219 (((-112) $ (-1236 (-549)) (-112)) 89 (|has| $ (-6 -4426))) (((-112) $ (-549) (-112)) 55 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4425)))) (-4156 (($) 39 T CONST)) (-2442 (($ $) 101 (|has| $ (-6 -4426)))) (-2443 (($ $) 91)) (-1440 (($ $) 69 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4425))) (($ (-112) $) 70 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-4274 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-1684 (((-112) $ (-549) (-112)) 54 (|has| $ (-6 -4426)))) (-3517 (((-112) $ (-549)) 56)) (-3843 (((-549) (-112) $ (-549)) 96 (|has| (-112) (-1104))) (((-549) (-112) $) 95 (|has| (-112) (-1104))) (((-549) (-1 (-112) (-112)) $) 94)) (-2124 (((-643 (-112)) $) 46 (|has| $ (-6 -4425)))) (-3255 (($ $ $) 27)) (-3746 (($ $) 31)) (-1395 (($ $ $) 29)) (-4046 (($ (-773) (-112)) 78)) (-1396 (($ $ $) 30)) (-4151 (((-112) $ (-773)) 37)) (-2374 (((-549) $) 64 (|has| (-549) (-852)))) (-2934 (($ $ $) 14)) (-3941 (($ $ $) 97 (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3008 (((-643 (-112)) $) 47 (|has| $ (-6 -4425)))) (-3666 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 63 (|has| (-549) (-852)))) (-3260 (($ $ $) 15)) (-2128 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4148 (((-112) $ (-773)) 36)) (-3663 (((-1162) $) 10)) (-2449 (($ $ $ (-549)) 88) (($ (-112) $ (-549)) 87)) (-2377 (((-643 (-549)) $) 61)) (-2378 (((-112) (-549) $) 60)) (-3664 (((-1123) $) 11)) (-4232 (((-112) $) 65 (|has| (-549) (-852)))) (-1441 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2373 (($ $ (-112)) 66 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-112)) (-643 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-294 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-643 (-294 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))))) (-1310 (((-112) $ $) 32)) (-2376 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2379 (((-643 (-112)) $) 59)) (-3827 (((-112) $) 35)) (-3996 (($) 34)) (-4231 (($ $ (-1236 (-549))) 84) (((-112) $ (-549)) 58) (((-112) $ (-549) (-112)) 57)) (-2450 (($ $ (-1236 (-549))) 86) (($ $ (-549)) 85)) (-2125 (((-773) (-112) $) 48 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) 100 (|has| $ (-6 -4426)))) (-3824 (($ $) 33)) (-4402 (((-538) $) 68 (|has| (-112) (-616 (-538))))) (-3953 (($ (-643 (-112))) 77)) (-4233 (($ (-643 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4425)))) (-3256 (($ $ $) 28)) (-2456 (($ $ $) 106)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-2457 (($ $ $) 105)) (-4389 (((-773) $) 40 (|has| $ (-6 -4425))))) +((-2970 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3457 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -3457 ((-112) $ $)) (-15 -2970 ((-112) $ $)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) 24 (|has| $ (-6 -4428)))) (-1389 (($ $ $) NIL (|has| $ (-6 -4428)))) (-1390 (($ $ $) NIL (|has| $ (-6 -4428)))) (-1362 (($ $ (-644 |#1|)) 34)) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #2="left" $) NIL (|has| $ (-6 -4428))) (($ $ #3="right" $) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3543 (($ $) 12)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1398 (($ $ |#1| $) 36)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1361 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1360 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|)) 53)) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3544 (($ $) 11)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) 13)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 9)) (-3998 (($) 35)) (-4233 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3432 (((-550) $ $) NIL)) (-4067 (((-112) $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1363 (($ (-774) |#1|) 37)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -1363 ($ (-774) |#1|)) (-15 -1362 ($ $ (-644 |#1|))) (-15 -1361 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1361 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1360 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1360 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) (-1105)) (T -103)) +((-1363 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-103 *3)) (-4 *3 (-1105)))) (-1362 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-103 *3)))) (-1361 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1105)))) (-1361 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1105)) (-5 *1 (-103 *3)))) (-1360 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1105)) (-5 *1 (-103 *2)))) (-1360 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1105)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -1363 ($ (-774) |#1|)) (-15 -1362 ($ $ (-644 |#1|))) (-15 -1361 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1361 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1360 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1360 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) +((-1364 ((|#3| |#2| |#2|) 36)) (-1366 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4429 #1="*"))))) (-1365 ((|#3| |#2| |#2|) 38)) (-1367 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4429 #1#)))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1364 (|#3| |#2| |#2|)) (-15 -1365 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4429 "*"))) (PROGN (-15 -1366 (|#1| |#2| |#2|)) (-15 -1367 (|#1| |#2|))) |%noBranch|)) (-1053) (-1246 |#1|) (-689 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) +((-1367 (*1 *2 *3) (-12 (|has| *2 (-6 (-4429 #1="*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1053)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1246 *2)) (-4 *4 (-689 *2 *5 *6)))) (-1366 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4429 #1#))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1053)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1246 *2)) (-4 *4 (-689 *2 *5 *6)))) (-1365 (*1 *2 *3 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-689 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1246 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-1364 (*1 *2 *3 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-689 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1246 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(-10 -7 (-15 -1364 (|#3| |#2| |#2|)) (-15 -1365 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4429 "*"))) (PROGN (-15 -1366 (|#1| |#2| |#2|)) (-15 -1367 (|#1| |#2|))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-1369 (((-644 (-1181))) 37)) (-1368 (((-2 (|:| |zeros| (-1158 (-226))) (|:| |ones| (-1158 (-226))) (|:| |singularities| (-1158 (-226)))) (-1181)) 39)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-105) (-13 (-1105) (-10 -7 (-15 -1369 ((-644 (-1181)))) (-15 -1368 ((-2 (|:| |zeros| (-1158 (-226))) (|:| |ones| (-1158 (-226))) (|:| |singularities| (-1158 (-226)))) (-1181))) (-6 -4427)))) (T -105)) +((-1369 (*1 *2) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-105)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-2 (|:| |zeros| (-1158 (-226))) (|:| |ones| (-1158 (-226))) (|:| |singularities| (-1158 (-226))))) (-5 *1 (-105))))) +(-13 (-1105) (-10 -7 (-15 -1369 ((-644 (-1181)))) (-15 -1368 ((-2 (|:| |zeros| (-1158 (-226))) (|:| |ones| (-1158 (-226))) (|:| |singularities| (-1158 (-226)))) (-1181))) (-6 -4427))) +((-1372 (($ (-644 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1372 (|#1| (-644 |#2|)))) (-107 |#2|) (-1220)) (T -106)) +NIL +(-10 -8 (-15 -1372 (|#1| (-644 |#2|)))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-107 |#1|) (-140) (-1220)) (T -107)) +((-1372 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-4 *1 (-107 *3)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1220)))) (-4041 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1220)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1220))))) +(-13 (-493 |t#1|) (-10 -8 (-6 -4428) (-15 -1372 ($ (-644 |t#1|))) (-15 -1371 (|t#1| $)) (-15 -4041 ($ |t#1| $)) (-15 -1370 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-550) $) NIL (|has| (-550) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-550) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| (-550) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-550) (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| (-550) (-1042 (-550))))) (-3578 (((-550) $) NIL) (((-1181) $) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-550) (-1042 (-550)))) (((-550) $) NIL (|has| (-550) (-1042 (-550))))) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-550) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| (-550) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-550) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-550) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-550) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| (-550) (-1155)))) (-3609 (((-112) $) NIL (|has| (-550) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-550) (-853)))) (-4392 (($ (-1 (-550) (-550)) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-550) (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-550) (-309))) (((-411 (-550)) $) NIL)) (-3536 (((-550) $) NIL (|has| (-550) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-550)) (-644 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-311 (-550)))) (($ $ (-295 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-295 (-550)))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-1181)) (-644 (-550))) NIL (|has| (-550) (-518 (-1181) (-550)))) (($ $ (-1181) (-550)) NIL (|has| (-550) (-518 (-1181) (-550))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-550)) NIL (|has| (-550) (-288 (-550) (-550))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-550) $) NIL)) (-4404 (((-894 (-550)) $) NIL (|has| (-550) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-550) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-550) (-617 (-539)))) (((-381) $) NIL (|has| (-550) (-1024))) (((-226) $) NIL (|has| (-550) (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-550) (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) 8) (($ (-550)) NIL) (($ (-1181)) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL) (((-1008 2) $) 10)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-550) (-914))) (|has| (-550) (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 (((-550) $) NIL (|has| (-550) (-549)))) (-2209 (($ (-411 (-550))) 9)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| (-550) (-823)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-550) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-550) (-853)))) (-4383 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) +(((-108) (-13 (-995 (-550)) (-616 (-411 (-550))) (-616 (-1008 2)) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -2209 ($ (-411 (-550))))))) (T -108)) +((-3534 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-108)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-108))))) +(-13 (-995 (-550)) (-616 (-411 (-550))) (-616 (-1008 2)) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -2209 ($ (-411 (-550)))))) +((-1384 (((-644 (-969)) $) 13)) (-3975 (((-510) $) 9)) (-4380 (((-866) $) 20)) (-1373 (($ (-510) (-644 (-969))) 15))) +(((-109) (-13 (-616 (-866)) (-10 -8 (-15 -3975 ((-510) $)) (-15 -1384 ((-644 (-969)) $)) (-15 -1373 ($ (-510) (-644 (-969))))))) (T -109)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-109)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-644 (-969))) (-5 *1 (-109)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-969))) (-5 *1 (-109))))) +(-13 (-616 (-866)) (-10 -8 (-15 -3975 ((-510) $)) (-15 -1384 ((-644 (-969)) $)) (-15 -1373 ($ (-510) (-644 (-969)))))) +((-2970 (((-112) $ $) NIL)) (-2460 (($ $) NIL)) (-3747 (($ $ $) NIL)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) $) NIL (|has| (-112) (-853))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1900 (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| (-112) (-853)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4428)))) (-3312 (($ $) NIL (|has| (-112) (-853))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4221 (((-112) $ (-1237 (-550)) (-112)) NIL (|has| $ (-6 -4428))) (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-3832 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-4276 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-1686 (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4428)))) (-3519 (((-112) $ (-550)) NIL)) (-3845 (((-550) (-112) $ (-550)) NIL (|has| (-112) (-1105))) (((-550) (-112) $) NIL (|has| (-112) (-1105))) (((-550) (-1 (-112) (-112)) $) NIL)) (-2126 (((-644 (-112)) $) NIL (|has| $ (-6 -4427)))) (-3257 (($ $ $) NIL)) (-3748 (($ $) NIL)) (-1396 (($ $ $) NIL)) (-4048 (($ (-774) (-112)) 10)) (-1397 (($ $ $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL)) (-3943 (($ $ $) NIL (|has| (-112) (-853))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3010 (((-644 (-112)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL)) (-2130 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-2451 (($ $ $ (-550)) NIL) (($ (-112) $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-112) $) NIL (|has| (-550) (-853)))) (-1442 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2375 (($ $ (-112)) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-2381 (((-644 (-112)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 (($ $ (-1237 (-550))) NIL) (((-112) $ (-550)) NIL) (((-112) $ (-550) (-112)) NIL)) (-2452 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-2127 (((-774) (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105)))) (((-774) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-112) (-617 (-539))))) (-3955 (($ (-644 (-112))) NIL)) (-4235 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4380 (((-866) $) NIL)) (-1947 (($ (-774) (-112)) 11)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-3258 (($ $ $) NIL)) (-2458 (($ $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-2459 (($ $ $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-110) (-13 (-123) (-10 -8 (-15 -1947 ($ (-774) (-112)))))) (T -110)) +((-1947 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -1947 ($ (-774) (-112))))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-140) (-1053) (-1053)) (T -111)) +NIL +(-13 (-651 |t#1|) (-1060 |t#2|) (-10 -7 (-6 -4422) (-6 -4421))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-1055 |#2|) . T) ((-1060 |#2|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-2460 (($ $) 10)) (-3747 (($ $ $) 15)) (-3260 (($) 7 T CONST)) (-1374 (($ $) 6)) (-3542 (((-774)) 24)) (-3397 (($) 32)) (-3257 (($ $ $) 13)) (-3748 (($ $) 9)) (-1396 (($ $ $) 16)) (-1397 (($ $ $) 17)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) 30)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) 28)) (-3256 (($ $ $) 20)) (-3666 (((-1124) $) NIL)) (-3259 (($) 8 T CONST)) (-3255 (($ $ $) 21)) (-4404 (((-539) $) 34)) (-4380 (((-866) $) 36)) (-3664 (((-112) $ $) NIL)) (-3258 (($ $ $) 11)) (-2458 (($ $ $) 14)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 19)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 22)) (-2459 (($ $ $) 12))) +(((-112) (-13 (-847) (-665) (-971) (-617 (-539)) (-10 -8 (-15 -3747 ($ $ $)) (-15 -1397 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1374 ($ $))))) (T -112)) +((-3747 (*1 *1 *1 *1) (-5 *1 (-112))) (-1397 (*1 *1 *1 *1) (-5 *1 (-112))) (-1396 (*1 *1 *1 *1) (-5 *1 (-112))) (-1374 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-847) (-665) (-971) (-617 (-539)) (-10 -8 (-15 -3747 ($ $ $)) (-15 -1397 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1374 ($ $)))) +((-2970 (((-112) $ $) NIL)) (-1625 (((-774) $) 91) (($ $ (-774)) 37)) (-1382 (((-112) $) 41)) (-1376 (($ $ (-1163) (-776)) 58) (($ $ (-510) (-776)) 33)) (-1375 (($ $ (-45 (-1163) (-776))) 16)) (-3246 (((-3 (-776) "failed") $ (-1163)) 27) (((-694 (-776)) $ (-510)) 32)) (-1384 (((-45 (-1163) (-776)) $) 15)) (-3450 (($ (-1181)) 20) (($ (-1181) (-774)) 23) (($ (-1181) (-55)) 24)) (-1383 (((-112) $) 39)) (-1381 (((-112) $) 43)) (-3975 (((-1181) $) 8)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3037 (((-112) $ (-1181)) 11)) (-2312 (($ $ (-1 (-539) (-644 (-539)))) 64) (((-3 (-1 (-539) (-644 (-539))) "failed") $) 71)) (-3666 (((-1124) $) NIL)) (-1378 (((-112) $ (-510)) 36)) (-1380 (($ $ (-1 (-112) $ $)) 45)) (-4051 (((-3 (-1 (-866) (-644 (-866))) "failed") $) 69) (($ $ (-1 (-866) (-644 (-866)))) 51) (($ $ (-1 (-866) (-866))) 53)) (-1377 (($ $ (-1163)) 55) (($ $ (-510)) 56)) (-3826 (($ $) 77)) (-1379 (($ $ (-1 (-112) $ $)) 46)) (-4380 (((-866) $) 60)) (-3664 (((-112) $ $) NIL)) (-3197 (($ $ (-510)) 34)) (-2923 (((-55) $) 72)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 89)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 103))) +(((-113) (-13 (-853) (-839 (-1181)) (-10 -8 (-15 -1384 ((-45 (-1163) (-776)) $)) (-15 -3826 ($ $)) (-15 -3450 ($ (-1181))) (-15 -3450 ($ (-1181) (-774))) (-15 -3450 ($ (-1181) (-55))) (-15 -1383 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1625 ((-774) $)) (-15 -1625 ($ $ (-774))) (-15 -1380 ($ $ (-1 (-112) $ $))) (-15 -1379 ($ $ (-1 (-112) $ $))) (-15 -4051 ((-3 (-1 (-866) (-644 (-866))) "failed") $)) (-15 -4051 ($ $ (-1 (-866) (-644 (-866))))) (-15 -4051 ($ $ (-1 (-866) (-866)))) (-15 -2312 ($ $ (-1 (-539) (-644 (-539))))) (-15 -2312 ((-3 (-1 (-539) (-644 (-539))) "failed") $)) (-15 -1378 ((-112) $ (-510))) (-15 -3197 ($ $ (-510))) (-15 -1377 ($ $ (-1163))) (-15 -1377 ($ $ (-510))) (-15 -3246 ((-3 (-776) "failed") $ (-1163))) (-15 -3246 ((-694 (-776)) $ (-510))) (-15 -1376 ($ $ (-1163) (-776))) (-15 -1376 ($ $ (-510) (-776))) (-15 -1375 ($ $ (-45 (-1163) (-776))))))) (T -113)) +((-1384 (*1 *2 *1) (-12 (-5 *2 (-45 (-1163) (-776))) (-5 *1 (-113)))) (-3826 (*1 *1 *1) (-5 *1 (-113))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-113)))) (-3450 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-774)) (-5 *1 (-113)))) (-3450 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-55)) (-5 *1 (-113)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-113)))) (-1625 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-113)))) (-1380 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1379 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4051 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-866) (-644 (-866)))) (-5 *1 (-113)))) (-4051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-866) (-644 (-866)))) (-5 *1 (-113)))) (-4051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-866) (-866))) (-5 *1 (-113)))) (-2312 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-644 (-539)))) (-5 *1 (-113)))) (-2312 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-644 (-539)))) (-5 *1 (-113)))) (-1378 (*1 *2 *1 *3) (-12 (-5 *3 (-510)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3197 (*1 *1 *1 *2) (-12 (-5 *2 (-510)) (-5 *1 (-113)))) (-1377 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-113)))) (-1377 (*1 *1 *1 *2) (-12 (-5 *2 (-510)) (-5 *1 (-113)))) (-3246 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-776)) (-5 *1 (-113)))) (-3246 (*1 *2 *1 *3) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-776))) (-5 *1 (-113)))) (-1376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-776)) (-5 *1 (-113)))) (-1376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-776)) (-5 *1 (-113)))) (-1375 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1163) (-776))) (-5 *1 (-113))))) +(-13 (-853) (-839 (-1181)) (-10 -8 (-15 -1384 ((-45 (-1163) (-776)) $)) (-15 -3826 ($ $)) (-15 -3450 ($ (-1181))) (-15 -3450 ($ (-1181) (-774))) (-15 -3450 ($ (-1181) (-55))) (-15 -1383 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1625 ((-774) $)) (-15 -1625 ($ $ (-774))) (-15 -1380 ($ $ (-1 (-112) $ $))) (-15 -1379 ($ $ (-1 (-112) $ $))) (-15 -4051 ((-3 (-1 (-866) (-644 (-866))) "failed") $)) (-15 -4051 ($ $ (-1 (-866) (-644 (-866))))) (-15 -4051 ($ $ (-1 (-866) (-866)))) (-15 -2312 ($ $ (-1 (-539) (-644 (-539))))) (-15 -2312 ((-3 (-1 (-539) (-644 (-539))) "failed") $)) (-15 -1378 ((-112) $ (-510))) (-15 -3197 ($ $ (-510))) (-15 -1377 ($ $ (-1163))) (-15 -1377 ($ $ (-510))) (-15 -3246 ((-3 (-776) "failed") $ (-1163))) (-15 -3246 ((-694 (-776)) $ (-510))) (-15 -1376 ($ $ (-1163) (-776))) (-15 -1376 ($ $ (-510) (-776))) (-15 -1375 ($ $ (-45 (-1163) (-776)))))) +((-2920 (((-3 (-1 |#1| (-644 |#1|)) "failed") (-113)) 23) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-644 |#1|))) 11) (((-3 |#1| "failed") (-113) (-644 |#1|)) 25)) (-1385 (((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-113)) 29) (((-113) (-113) (-1 |#1| |#1|)) 33) (((-113) (-113) (-644 (-1 |#1| (-644 |#1|)))) 30)) (-1386 (((-113) |#1|) 63)) (-1387 (((-3 |#1| "failed") (-113)) 58))) +(((-114 |#1|) (-10 -7 (-15 -2920 ((-3 |#1| "failed") (-113) (-644 |#1|))) (-15 -2920 ((-113) (-113) (-1 |#1| (-644 |#1|)))) (-15 -2920 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2920 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-113))) (-15 -1385 ((-113) (-113) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1385 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1385 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-113))) (-15 -1386 ((-113) |#1|)) (-15 -1387 ((-3 |#1| "failed") (-113)))) (-1105)) (T -114)) +((-1387 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1105)))) (-1386 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1105)))) (-1385 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-644 (-1 *4 (-644 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1105)))) (-1385 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) (-1385 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) (-2920 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-644 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1105)))) (-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) (-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) (-2920 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-644 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1105))))) +(-10 -7 (-15 -2920 ((-3 |#1| "failed") (-113) (-644 |#1|))) (-15 -2920 ((-113) (-113) (-1 |#1| (-644 |#1|)))) (-15 -2920 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2920 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-113))) (-15 -1385 ((-113) (-113) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1385 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1385 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-113))) (-15 -1386 ((-113) |#1|)) (-15 -1387 ((-3 |#1| "failed") (-113)))) +((-1388 (((-550) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1388 ((-550) |#2|))) (-13 (-366) (-1042 (-411 (-550)))) (-1246 |#1|)) (T -115)) +((-1388 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-1042 (-411 *2)))) (-5 *2 (-550)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -1388 ((-550) |#2|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $ (-550)) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3013 (($ (-1175 (-550)) (-550)) NIL)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3014 (($ $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4205 (((-774) $) NIL)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-3016 (((-550)) NIL)) (-3015 (((-550) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4202 (($ $ (-550)) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3017 (((-1158 (-550)) $) NIL)) (-3294 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-550) $ (-550)) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-873 |#1|) (-550)) (T -116)) +NIL +(-873 |#1|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-116 |#1|) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| (-116 |#1|) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-116 |#1|) (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| (-116 |#1|) (-1042 (-550))))) (-3578 (((-116 |#1|) $) NIL) (((-1181) $) NIL (|has| (-116 |#1|) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-116 |#1|) (-1042 (-550)))) (((-550) $) NIL (|has| (-116 |#1|) (-1042 (-550))))) (-4164 (($ $) NIL) (($ (-550) $) NIL)) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-116 |#1|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-116 |#1|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-116 |#1|))) (|:| |vec| (-1270 (-116 |#1|)))) (-692 $) (-1270 $)) NIL) (((-692 (-116 |#1|)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-116 |#1|) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| (-116 |#1|) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-116 |#1|) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-116 |#1|) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-116 |#1|) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1155)))) (-3609 (((-112) $) NIL (|has| (-116 |#1|) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-116 |#1|) (-853)))) (-3262 (($ $ $) NIL (|has| (-116 |#1|) (-853)))) (-4392 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-116 |#1|) (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-116 |#1|) (-309)))) (-3536 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-116 |#1|)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-311 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-311 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-311 (-116 |#1|)))) (($ $ (-644 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-311 (-116 |#1|)))) (($ $ (-644 (-1181)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-518 (-1181) (-116 |#1|)))) (($ $ (-1181) (-116 |#1|)) NIL (|has| (-116 |#1|) (-518 (-1181) (-116 |#1|))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-288 (-116 |#1|) (-116 |#1|))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-774)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1181)) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-774)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-116 |#1|) $) NIL)) (-4404 (((-894 (-550)) $) NIL (|has| (-116 |#1|) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-116 |#1|) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-617 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1024))) (((-226) $) NIL (|has| (-116 |#1|) (-1024)))) (-3018 (((-175 (-411 (-550))) $) NIL)) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-116 |#1|)) NIL) (($ (-1181)) NIL (|has| (-116 |#1|) (-1042 (-1181))))) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-914))) (|has| (-116 |#1|) (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-411 (-550)) $ (-550)) NIL)) (-3809 (($ $) NIL (|has| (-116 |#1|) (-823)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-774)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1181)) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-116 |#1|) (-904 (-1181)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-774)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-116 |#1|) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-116 |#1|) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-116 |#1|) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-116 |#1|) (-853)))) (-4383 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-995 (-116 |#1|)) (-10 -8 (-15 -4203 ((-411 (-550)) $ (-550))) (-15 -3018 ((-175 (-411 (-550))) $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)))) (-550)) (T -117)) +((-4203 (*1 *2 *1 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-550)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-175 (-411 (-550)))) (-5 *1 (-117 *3)) (-14 *3 (-550)))) (-4164 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-550)))) (-4164 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-995 (-116 |#1|)) (-10 -8 (-15 -4203 ((-411 (-550)) $ (-550))) (-15 -3018 ((-175 (-411 (-550))) $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)))) +((-4221 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3434 (((-644 $) $) 31)) (-3430 (((-112) $ $) 36)) (-3668 (((-112) |#2| $) 40)) (-3433 (((-644 |#2|) $) 25)) (-3952 (((-112) $) 18)) (-4233 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4067 (((-112) $) 57)) (-4380 (((-866) $) 47)) (-3947 (((-644 $) $) 32)) (-3457 (((-112) $ $) 38)) (-4391 (((-774) $) 50))) +(((-118 |#1| |#2|) (-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -4221 (|#1| |#1| "right" |#1|)) (-15 -4221 (|#1| |#1| "left" |#1|)) (-15 -4233 (|#1| |#1| "right")) (-15 -4233 (|#1| |#1| "left")) (-15 -4221 (|#2| |#1| #1="value" |#2|)) (-15 -3430 ((-112) |#1| |#1|)) (-15 -3433 ((-644 |#2|) |#1|)) (-15 -4067 ((-112) |#1|)) (-15 -4233 (|#2| |#1| #1#)) (-15 -3952 ((-112) |#1|)) (-15 -3434 ((-644 |#1|) |#1|)) (-15 -3947 ((-644 |#1|) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -3668 ((-112) |#2| |#1|)) (-15 -4391 ((-774) |#1|))) (-119 |#2|) (-1220)) (T -118)) +NIL +(-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -4221 (|#1| |#1| "right" |#1|)) (-15 -4221 (|#1| |#1| "left" |#1|)) (-15 -4233 (|#1| |#1| "right")) (-15 -4233 (|#1| |#1| "left")) (-15 -4221 (|#2| |#1| #1="value" |#2|)) (-15 -3430 ((-112) |#1| |#1|)) (-15 -3433 ((-644 |#2|) |#1|)) (-15 -4067 ((-112) |#1|)) (-15 -4233 (|#2| |#1| #1#)) (-15 -3952 ((-112) |#1|)) (-15 -3434 ((-644 |#1|) |#1|)) (-15 -3947 ((-644 |#1|) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -3668 ((-112) |#2| |#1|)) (-15 -4391 ((-774) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-1389 (($ $ $) 53 (|has| $ (-6 -4428)))) (-1390 (($ $ $) 55 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428))) (($ $ "left" $) 56 (|has| $ (-6 -4428))) (($ $ "right" $) 54 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4158 (($) 7 T CONST)) (-3543 (($ $) 58)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3544 (($ $) 60)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48) (($ $ "left") 59) (($ $ "right") 57)) (-3432 (((-550) $ $) 45)) (-4067 (((-112) $) 47)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-119 |#1|) (-140) (-1220)) (T -119)) +((-3544 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1220)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1220)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1220)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1220)))) (-4221 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4428)) (-4 *1 (-119 *3)) (-4 *3 (-1220)))) (-1390 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-119 *2)) (-4 *2 (-1220)))) (-4221 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4428)) (-4 *1 (-119 *3)) (-4 *3 (-1220)))) (-1389 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-119 *2)) (-4 *2 (-1220))))) +(-13 (-1014 |t#1|) (-10 -8 (-15 -3544 ($ $)) (-15 -4233 ($ $ "left")) (-15 -3543 ($ $)) (-15 -4233 ($ $ "right")) (IF (|has| $ (-6 -4428)) (PROGN (-15 -4221 ($ $ "left" $)) (-15 -1390 ($ $ $)) (-15 -4221 ($ $ "right" $)) (-15 -1389 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1014 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-1393 (((-112) |#1|) 29)) (-1392 (((-774) (-774)) 28) (((-774)) 27)) (-1391 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -1391 ((-112) |#1|)) (-15 -1391 ((-112) |#1| (-112))) (-15 -1392 ((-774))) (-15 -1392 ((-774) (-774))) (-15 -1393 ((-112) |#1|))) (-1246 (-550))) (T -120)) +((-1393 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550))))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-774)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550))))) (-1392 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550))))) (-1391 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550))))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550)))))) +(-10 -7 (-15 -1391 ((-112) |#1|)) (-15 -1391 ((-112) |#1| (-112))) (-15 -1392 ((-774))) (-15 -1392 ((-774) (-774))) (-15 -1393 ((-112) |#1|))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) 18)) (-3844 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-1389 (($ $ $) 21 (|has| $ (-6 -4428)))) (-1390 (($ $ $) 23 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #2="left" $) NIL (|has| $ (-6 -4428))) (($ $ #3="right" $) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3543 (($ $) 20)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1398 (($ $ |#1| $) 27)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3544 (($ $) 22)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1394 (($ |#1| $) 28)) (-4041 (($ |#1| $) 15)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 17)) (-3998 (($) 11)) (-4233 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3432 (((-550) $ $) NIL)) (-4067 (((-112) $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1395 (($ (-644 |#1|)) 16)) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4428) (-6 -4427) (-15 -1395 ($ (-644 |#1|))) (-15 -4041 ($ |#1| $)) (-15 -1394 ($ |#1| $)) (-15 -3844 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-853)) (T -121)) +((-1395 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-121 *3)))) (-4041 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-853)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-853)))) (-3844 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-853))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4428) (-6 -4427) (-15 -1395 ($ (-644 |#1|))) (-15 -4041 ($ |#1| $)) (-15 -1394 ($ |#1| $)) (-15 -3844 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2460 (($ $) 13)) (-3748 (($ $) 11)) (-1396 (($ $ $) 23)) (-1397 (($ $ $) 21)) (-2458 (($ $ $) 19)) (-2459 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -1396 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2459 (|#1| |#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1396 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2459 (|#1| |#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-2460 (($ $) 104)) (-3747 (($ $ $) 26)) (-2374 (((-1276) $ (-550) (-550)) 67 (|has| $ (-6 -4428)))) (-1902 (((-112) $) 99 (|has| (-112) (-853))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1900 (($ $) 103 (-12 (|has| (-112) (-853)) (|has| $ (-6 -4428)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4428)))) (-3312 (($ $) 98 (|has| (-112) (-853))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1310 (((-112) $ (-774)) 38)) (-4221 (((-112) $ (-1237 (-550)) (-112)) 89 (|has| $ (-6 -4428))) (((-112) $ (-550) (-112)) 55 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4427)))) (-4158 (($) 39 T CONST)) (-2444 (($ $) 101 (|has| $ (-6 -4428)))) (-2445 (($ $) 91)) (-1441 (($ $) 69 (-12 (|has| (-112) (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4427))) (($ (-112) $) 70 (-12 (|has| (-112) (-1105)) (|has| $ (-6 -4427))))) (-4276 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1105)) (|has| $ (-6 -4427))))) (-1686 (((-112) $ (-550) (-112)) 54 (|has| $ (-6 -4428)))) (-3519 (((-112) $ (-550)) 56)) (-3845 (((-550) (-112) $ (-550)) 96 (|has| (-112) (-1105))) (((-550) (-112) $) 95 (|has| (-112) (-1105))) (((-550) (-1 (-112) (-112)) $) 94)) (-2126 (((-644 (-112)) $) 46 (|has| $ (-6 -4427)))) (-3257 (($ $ $) 27)) (-3748 (($ $) 31)) (-1396 (($ $ $) 29)) (-4048 (($ (-774) (-112)) 78)) (-1397 (($ $ $) 30)) (-4153 (((-112) $ (-774)) 37)) (-2376 (((-550) $) 64 (|has| (-550) (-853)))) (-2936 (($ $ $) 14)) (-3943 (($ $ $) 97 (|has| (-112) (-853))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3010 (((-644 (-112)) $) 47 (|has| $ (-6 -4427)))) (-3668 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 63 (|has| (-550) (-853)))) (-3262 (($ $ $) 15)) (-2130 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4150 (((-112) $ (-774)) 36)) (-3665 (((-1163) $) 10)) (-2451 (($ $ $ (-550)) 88) (($ (-112) $ (-550)) 87)) (-2379 (((-644 (-550)) $) 61)) (-2380 (((-112) (-550) $) 60)) (-3666 (((-1124) $) 11)) (-4234 (((-112) $) 65 (|has| (-550) (-853)))) (-1442 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2375 (($ $ (-112)) 66 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-112)) (-644 (-112))) 53 (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-644 (-295 (-112)))) 50 (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105))))) (-1311 (((-112) $ $) 32)) (-2378 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-2381 (((-644 (-112)) $) 59)) (-3829 (((-112) $) 35)) (-3998 (($) 34)) (-4233 (($ $ (-1237 (-550))) 84) (((-112) $ (-550)) 58) (((-112) $ (-550) (-112)) 57)) (-2452 (($ $ (-1237 (-550))) 86) (($ $ (-550)) 85)) (-2127 (((-774) (-112) $) 48 (-12 (|has| (-112) (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4427)))) (-1901 (($ $ $ (-550)) 100 (|has| $ (-6 -4428)))) (-3826 (($ $) 33)) (-4404 (((-539) $) 68 (|has| (-112) (-617 (-539))))) (-3955 (($ (-644 (-112))) 77)) (-4235 (($ (-644 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2129 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4427)))) (-3258 (($ $ $) 28)) (-2458 (($ $ $) 106)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-2459 (($ $ $) 105)) (-4391 (((-774) $) 40 (|has| $ (-6 -4427))))) (((-123) (-140)) (T -123)) -((-3746 (*1 *1 *1) (-4 *1 (-123))) (-1396 (*1 *1 *1 *1) (-4 *1 (-123))) (-1395 (*1 *1 *1 *1) (-4 *1 (-123))) (-3256 (*1 *1 *1 *1) (-4 *1 (-123))) (-3255 (*1 *1 *1 *1) (-4 *1 (-123))) (-3745 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-852) (-664) (-19 (-112)) (-10 -8 (-15 -3746 ($ $)) (-15 -1396 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3745 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 #1=(-112)) . T) ((-616 (-538)) |has| (-112) (-616 (-538))) ((-287 #2=(-549) #1#) . T) ((-289 #2# #1#) . T) ((-310 #1#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))) ((-374 #1#) . T) ((-492 #1#) . T) ((-606 #2# #1#) . T) ((-517 #1# #1#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))) ((-653 #1#) . T) ((-664) . T) ((-19 #1#) . T) ((-852) . T) ((-1104) . T) ((-1219) . T)) -((-2128 (($ (-1 |#2| |#2|) $) 22)) (-3824 (($ $) 16)) (-4389 (((-773) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -3824 (|#1| |#1|))) (-125 |#2|) (-1104)) (T -124)) -NIL -(-10 -8 (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -3824 (|#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 53 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 55 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) (($ $ #2="left" $) 56 (|has| $ (-6 -4426))) (($ $ #3="right" $) 54 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-3541 (($ $) 58)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 61)) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3542 (($ $) 60)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) (($ $ #2#) 59) (($ $ #3#) 57)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-125 |#1|) (-140) (-1104)) (T -125)) -((-1397 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1104))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1397 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-119 |#1|) . T) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 18)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) 22 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 23 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 21 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 24)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4039 (($ |#1| $) 15)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 11)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 20)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1398 (($ (-643 |#1|)) 16)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4426) (-15 -1398 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)))) (-852)) (T -126)) -((-1398 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-126 *3)))) (-4039 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-852))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4426) (-15 -1398 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 30)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) 32 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 36 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 34 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 23)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 16)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 22)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) 25)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 20)) (-3996 (($) 11)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1399 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 10 (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1399 ($ |#1|)) (-15 -1399 ($ $ |#1| $)))) (-1104)) (T -127)) -((-1399 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104)))) (-1399 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1399 ($ |#1|)) (-15 -1399 ($ $ |#1| $)))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) 26)) (-4156 (($) NIL T CONST)) (-3395 (($) 35)) (-2934 (($ $ $) NIL) (($) 24 T CONST)) (-3260 (($ $ $) NIL) (($) 25 T CONST)) (-2188 (((-922) $) 33)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 31)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-1400 (($ (-773)) 8)) (-4157 (($ $ $) 37)) (-4158 (($ $ $) 36)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 22)) (-2967 (((-112) $ $) 20)) (-3455 (((-112) $ $) 18)) (-3087 (((-112) $ $) 21)) (-3088 (((-112) $ $) 19))) -(((-128) (-13 (-846) (-493 (-144)) (-10 -8 (-15 -1400 ($ (-773))) (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -128)) -((-1400 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-128)))) (-4158 (*1 *1 *1 *1) (-5 *1 (-128))) (-4157 (*1 *1 *1 *1) (-5 *1 (-128))) (-4156 (*1 *1) (-5 *1 (-128)))) -(-13 (-846) (-493 (-144)) (-10 -8 (-15 -1400 ($ (-773))) (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) +((-3748 (*1 *1 *1) (-4 *1 (-123))) (-1397 (*1 *1 *1 *1) (-4 *1 (-123))) (-1396 (*1 *1 *1 *1) (-4 *1 (-123))) (-3258 (*1 *1 *1 *1) (-4 *1 (-123))) (-3257 (*1 *1 *1 *1) (-4 *1 (-123))) (-3747 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-853) (-665) (-19 (-112)) (-10 -8 (-15 -3748 ($ $)) (-15 -1397 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -3258 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -3747 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-616 (-866)) . T) ((-151 #1=(-112)) . T) ((-617 (-539)) |has| (-112) (-617 (-539))) ((-288 #2=(-550) #1#) . T) ((-290 #2# #1#) . T) ((-311 #1#) -12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105))) ((-375 #1#) . T) ((-493 #1#) . T) ((-607 #2# #1#) . T) ((-518 #1# #1#) -12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105))) ((-654 #1#) . T) ((-665) . T) ((-19 #1#) . T) ((-853) . T) ((-1105) . T) ((-1220) . T)) +((-2130 (($ (-1 |#2| |#2|) $) 22)) (-3826 (($ $) 16)) (-4391 (((-774) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -3826 (|#1| |#1|))) (-125 |#2|) (-1105)) (T -124)) +NIL +(-10 -8 (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -3826 (|#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-1389 (($ $ $) 53 (|has| $ (-6 -4428)))) (-1390 (($ $ $) 55 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428))) (($ $ #2="left" $) 56 (|has| $ (-6 -4428))) (($ $ #3="right" $) 54 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4158 (($) 7 T CONST)) (-3543 (($ $) 58)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-1398 (($ $ |#1| $) 61)) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3544 (($ $) 60)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48) (($ $ #2#) 59) (($ $ #3#) 57)) (-3432 (((-550) $ $) 45)) (-4067 (((-112) $) 47)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-125 |#1|) (-140) (-1105)) (T -125)) +((-1398 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1105))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4428) (-6 -4427) (-15 -1398 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-119 |#1|) . T) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1014 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) 18)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) 22 (|has| $ (-6 -4428)))) (-1389 (($ $ $) 23 (|has| $ (-6 -4428)))) (-1390 (($ $ $) 21 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #2="left" $) NIL (|has| $ (-6 -4428))) (($ $ #3="right" $) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3543 (($ $) 24)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1398 (($ $ |#1| $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3544 (($ $) NIL)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4041 (($ |#1| $) 15)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 17)) (-3998 (($) 11)) (-4233 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3432 (((-550) $ $) NIL)) (-4067 (((-112) $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 20)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1399 (($ (-644 |#1|)) 16)) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4428) (-15 -1399 ($ (-644 |#1|))) (-15 -4041 ($ |#1| $)))) (-853)) (T -126)) +((-1399 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-126 *3)))) (-4041 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-853))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4428) (-15 -1399 ($ (-644 |#1|))) (-15 -4041 ($ |#1| $)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) 30)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) 32 (|has| $ (-6 -4428)))) (-1389 (($ $ $) 36 (|has| $ (-6 -4428)))) (-1390 (($ $ $) 34 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #2="left" $) NIL (|has| $ (-6 -4428))) (($ $ #3="right" $) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3543 (($ $) 23)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1398 (($ $ |#1| $) 16)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3544 (($ $) 22)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) 25)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 20)) (-3998 (($) 11)) (-4233 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3432 (((-550) $ $) NIL)) (-4067 (((-112) $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1400 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 10 (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1400 ($ |#1|)) (-15 -1400 ($ $ |#1| $)))) (-1105)) (T -127)) +((-1400 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1105)))) (-1400 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1105))))) +(-13 (-125 |#1|) (-10 -8 (-15 -1400 ($ |#1|)) (-15 -1400 ($ $ |#1| $)))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) 26)) (-4158 (($) NIL T CONST)) (-3397 (($) 35)) (-2936 (($ $ $) NIL) (($) 24 T CONST)) (-3262 (($ $ $) NIL) (($) 25 T CONST)) (-2190 (((-923) $) 33)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) 31)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-1401 (($ (-774)) 8)) (-4159 (($ $ $) 37)) (-4160 (($ $ $) 36)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 22)) (-2969 (((-112) $ $) 20)) (-3457 (((-112) $ $) 18)) (-3089 (((-112) $ $) 21)) (-3090 (((-112) $ $) 19))) +(((-128) (-13 (-847) (-494 (-144)) (-10 -8 (-15 -1401 ($ (-774))) (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386)))) (T -128)) +((-1401 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-128)))) (-4160 (*1 *1 *1 *1) (-5 *1 (-128))) (-4159 (*1 *1 *1 *1) (-5 *1 (-128))) (-4158 (*1 *1) (-5 *1 (-128)))) +(-13 (-847) (-494 (-144)) (-10 -8 (-15 -1401 ($ (-774))) (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2968 (((-112) $ $) NIL (|has| (-128) (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-852)))) (-1898 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-128) (-852))))) (-3310 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-128) $ (-549) (-128)) 26 (|has| $ (-6 -4426))) (((-128) $ (-1236 (-549)) (-128)) NIL (|has| $ (-6 -4426)))) (-1401 (((-773) $ (-773)) 34)) (-4142 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-3830 (($ (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4425))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-128) $ (-549) (-128)) 25 (|has| $ (-6 -4426)))) (-3517 (((-128) $ (-549)) 20)) (-3843 (((-549) (-1 (-112) (-128)) $) NIL) (((-549) (-128) $) NIL (|has| (-128) (-1104))) (((-549) (-128) $ (-549)) NIL (|has| (-128) (-1104)))) (-2124 (((-643 (-128)) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-128)) 14)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 27 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-128) (-852)))) (-3941 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-852)))) (-3008 (((-643 (-128)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-2375 (((-549) $) 30 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-128) (-852)))) (-2128 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| (-128) (-1104)))) (-2449 (($ (-128) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| (-128) (-1104)))) (-4232 (((-128) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2373 (($ $ (-128)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-128)))) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104)))) (($ $ (-294 (-128))) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104)))) (($ $ (-643 (-128)) (-643 (-128))) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-2379 (((-643 (-128)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 12)) (-4231 (((-128) $ (-549) (-128)) NIL) (((-128) $ (-549)) 23) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425))) (((-773) (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-128) (-616 (-538))))) (-3953 (($ (-643 (-128))) 47)) (-4233 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 48) (($ (-643 $)) NIL)) (-4378 (((-961 (-128)) $) 35) (((-1162) $) 44) (((-865) $) NIL (|has| (-128) (-615 (-865))))) (-1402 (((-773) $) 18)) (-1403 (($ (-773)) 8)) (-3662 (((-112) $ $) NIL (|has| (-128) (-1104)))) (-2127 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| (-128) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-128) (-852)))) (-3455 (((-112) $ $) 32 (|has| (-128) (-1104)))) (-3087 (((-112) $ $) NIL (|has| (-128) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-128) (-852)))) (-4389 (((-773) $) 15 (|has| $ (-6 -4425))))) -(((-129) (-13 (-19 (-128)) (-615 (-961 (-128))) (-615 (-1162)) (-10 -8 (-15 -1403 ($ (-773))) (-15 -1402 ((-773) $)) (-15 -1401 ((-773) $ (-773))) (-6 -4425)))) (T -129)) -((-1403 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-129)))) (-1401 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) -(-13 (-19 (-128)) (-615 (-961 (-128))) (-615 (-1162)) (-10 -8 (-15 -1403 ($ (-773))) (-15 -1402 ((-773) $)) (-15 -1401 ((-773) $ (-773))) (-6 -4425))) -((-2968 (((-112) $ $) NIL)) (-1404 (($) 6 T CONST)) (-1406 (($) 7 T CONST)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 14)) (-1405 (($) 8 T CONST)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 10))) -(((-130) (-13 (-1104) (-10 -8 (-15 -1406 ($) -4384) (-15 -1405 ($) -4384) (-15 -1404 ($) -4384)))) (T -130)) -((-1406 (*1 *1) (-5 *1 (-130))) (-1405 (*1 *1) (-5 *1 (-130))) (-1404 (*1 *1) (-5 *1 (-130)))) -(-13 (-1104) (-10 -8 (-15 -1406 ($) -4384) (-15 -1405 ($) -4384) (-15 -1404 ($) -4384))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) +((-2970 (((-112) $ $) NIL (|has| (-128) (-1105)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-853)))) (-1900 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| (-128) (-853))))) (-3312 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 (((-128) $ (-550) (-128)) 26 (|has| $ (-6 -4428))) (((-128) $ (-1237 (-550)) (-128)) NIL (|has| $ (-6 -4428)))) (-1402 (((-774) $ (-774)) 34)) (-4144 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-128) (-1105))))) (-3832 (($ (-128) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-128) (-1105)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4427)) (|has| (-128) (-1105)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4427))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4427)))) (-1686 (((-128) $ (-550) (-128)) 25 (|has| $ (-6 -4428)))) (-3519 (((-128) $ (-550)) 20)) (-3845 (((-550) (-1 (-112) (-128)) $) NIL) (((-550) (-128) $) NIL (|has| (-128) (-1105))) (((-550) (-128) $ (-550)) NIL (|has| (-128) (-1105)))) (-2126 (((-644 (-128)) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) (-128)) 14)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 27 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| (-128) (-853)))) (-3943 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-853)))) (-3010 (((-644 (-128)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-128) (-1105))))) (-2377 (((-550) $) 30 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-128) (-853)))) (-2130 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| (-128) (-1105)))) (-2451 (($ (-128) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| (-128) (-1105)))) (-4234 (((-128) $) NIL (|has| (-550) (-853)))) (-1442 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2375 (($ $ (-128)) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-128)))) NIL (-12 (|has| (-128) (-311 (-128))) (|has| (-128) (-1105)))) (($ $ (-295 (-128))) NIL (-12 (|has| (-128) (-311 (-128))) (|has| (-128) (-1105)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-311 (-128))) (|has| (-128) (-1105)))) (($ $ (-644 (-128)) (-644 (-128))) NIL (-12 (|has| (-128) (-311 (-128))) (|has| (-128) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-128) (-1105))))) (-2381 (((-644 (-128)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 12)) (-4233 (((-128) $ (-550) (-128)) NIL) (((-128) $ (-550)) 23) (($ $ (-1237 (-550))) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4427))) (((-774) (-128) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-128) (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-128) (-617 (-539))))) (-3955 (($ (-644 (-128))) 47)) (-4235 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 48) (($ (-644 $)) NIL)) (-4380 (((-962 (-128)) $) 35) (((-1163) $) 44) (((-866) $) NIL (|has| (-128) (-616 (-866))))) (-1403 (((-774) $) 18)) (-1404 (($ (-774)) 8)) (-3664 (((-112) $ $) NIL (|has| (-128) (-1105)))) (-2129 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| (-128) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-128) (-853)))) (-3457 (((-112) $ $) 32 (|has| (-128) (-1105)))) (-3089 (((-112) $ $) NIL (|has| (-128) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-128) (-853)))) (-4391 (((-774) $) 15 (|has| $ (-6 -4427))))) +(((-129) (-13 (-19 (-128)) (-616 (-962 (-128))) (-616 (-1163)) (-10 -8 (-15 -1404 ($ (-774))) (-15 -1403 ((-774) $)) (-15 -1402 ((-774) $ (-774))) (-6 -4427)))) (T -129)) +((-1404 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-129)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-129)))) (-1402 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-129))))) +(-13 (-19 (-128)) (-616 (-962 (-128))) (-616 (-1163)) (-10 -8 (-15 -1404 ($ (-774))) (-15 -1403 ((-774) $)) (-15 -1402 ((-774) $ (-774))) (-6 -4427))) +((-2970 (((-112) $ $) NIL)) (-1405 (($) 6 T CONST)) (-1407 (($) 7 T CONST)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 14)) (-1406 (($) 8 T CONST)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 10))) +(((-130) (-13 (-1105) (-10 -8 (-15 -1407 ($) -4386) (-15 -1406 ($) -4386) (-15 -1405 ($) -4386)))) (T -130)) +((-1407 (*1 *1) (-5 *1 (-130))) (-1406 (*1 *1) (-5 *1 (-130))) (-1405 (*1 *1) (-5 *1 (-130)))) +(-13 (-1105) (-10 -8 (-15 -1407 ($) -4386) (-15 -1406 ($) -4386) (-15 -1405 ($) -4386))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16))) (((-131) (-140)) (T -131)) -((-1407 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -1407 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-1408 (((-1275) $ (-773)) 14)) (-3843 (((-773) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +((-1408 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -1408 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-1409 (((-1276) $ (-774)) 14)) (-3845 (((-774) $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) (((-132) (-140)) (T -132)) -((-3843 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-773)))) (-1408 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-773)) (-5 *2 (-1275))))) -(-13 (-1104) (-10 -8 (-15 -3843 ((-773) $)) (-15 -1408 ((-1275) $ (-773))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-133) (-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $))))) (T -133)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-133))))) -(-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)))) -((-2968 (((-112) $ $) 49)) (-3608 (((-112) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-773) "failed") $) 58)) (-3576 (((-773) $) 56)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) 37)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1410 (((-112)) 59)) (-1409 (((-112) (-112)) 61)) (-2928 (((-112) $) 30)) (-1411 (((-112) $) 55)) (-4378 (((-865) $) 28) (($ (-773)) 20)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 18 T CONST)) (-3067 (($) 19 T CONST)) (-1412 (($ (-773)) 21)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) 40)) (-3455 (((-112) $ $) 32)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 35)) (-4269 (((-3 $ "failed") $ $) 42)) (-4271 (($ $ $) 38)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL) (($ $ $) 54)) (* (($ (-773) $) 48) (($ (-922) $) NIL) (($ $ $) 45))) -(((-134) (-13 (-852) (-23) (-728) (-1041 (-773)) (-10 -8 (-6 (-4427 "*")) (-15 -4269 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1412 ($ (-773))) (-15 -2928 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112))) (-15 -1409 ((-112) (-112)))))) (T -134)) -((-4269 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1412 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-134)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1410 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-852) (-23) (-728) (-1041 (-773)) (-10 -8 (-6 (-4427 "*")) (-15 -4269 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1412 ($ (-773))) (-15 -2928 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112))) (-15 -1409 ((-112) (-112))))) -((-2968 (((-112) $ $) NIL)) (-1413 (($ (-643 |#3|)) 64)) (-3838 (($ $) 126) (($ $ (-549) (-549)) 125)) (-4156 (($) 20)) (-3577 (((-3 |#3| "failed") $) 86)) (-3576 ((|#3| $) NIL)) (-1417 (($ $ (-643 (-549))) 127)) (-1414 (((-643 |#3|) $) 59)) (-3513 (((-773) $) 69)) (-4376 (($ $ $) 120)) (-1415 (($) 68)) (-3663 (((-1162) $) NIL)) (-1416 (($) 19)) (-3664 (((-1123) $) NIL)) (-4231 ((|#3| $) 71) ((|#3| $ (-549)) 72) ((|#3| $ (-549) (-549)) 73) ((|#3| $ (-549) (-549) (-549)) 74) ((|#3| $ (-549) (-549) (-549) (-549)) 75) ((|#3| $ (-643 (-549))) 76)) (-4380 (((-773) $) 70)) (-2161 (($ $ (-549) $ (-549)) 121) (($ $ (-549) (-549)) 123)) (-4378 (((-865) $) 94) (($ |#3|) 95) (($ (-239 |#2| |#3|)) 102) (($ (-1145 |#2| |#3|)) 105) (($ (-643 |#3|)) 77) (($ (-643 $)) 83)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 96 T CONST)) (-3067 (($) 97 T CONST)) (-3455 (((-112) $ $) 107)) (-4269 (($ $) 113) (($ $ $) 111)) (-4271 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-549)) 116) (($ (-549) $) 115) (($ $ $) 122))) -(((-135 |#1| |#2| |#3|) (-13 (-468 |#3| (-773)) (-473 (-549) (-773)) (-10 -8 (-15 -4378 ($ (-239 |#2| |#3|))) (-15 -4378 ($ (-1145 |#2| |#3|))) (-15 -4378 ($ (-643 |#3|))) (-15 -4378 ($ (-643 $))) (-15 -3513 ((-773) $)) (-15 -4231 (|#3| $)) (-15 -4231 (|#3| $ (-549))) (-15 -4231 (|#3| $ (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-643 (-549)))) (-15 -4376 ($ $ $)) (-15 * ($ $ $)) (-15 -2161 ($ $ (-549) $ (-549))) (-15 -2161 ($ $ (-549) (-549))) (-15 -3838 ($ $)) (-15 -3838 ($ $ (-549) (-549))) (-15 -1417 ($ $ (-643 (-549)))) (-15 -1416 ($)) (-15 -1415 ($)) (-15 -1414 ((-643 |#3|) $)) (-15 -1413 ($ (-643 |#3|))) (-15 -4156 ($)))) (-549) (-773) (-172)) (T -135)) -((-4376 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)) (-4 *5 (-172)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 *2) (-4 *5 (-172)))) (-4231 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549)) (-14 *4 (-773)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-643 (-549))) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-549)) (-14 *5 (-773)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-2161 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) (-4 *5 (-172)))) (-2161 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) (-4 *5 (-172)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-3838 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) (-4 *5 (-172)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)) (-4 *5 (-172)))) (-1416 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-1415 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-643 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)) (-4 *5 (-172)))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)))) (-4156 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172))))) -(-13 (-468 |#3| (-773)) (-473 (-549) (-773)) (-10 -8 (-15 -4378 ($ (-239 |#2| |#3|))) (-15 -4378 ($ (-1145 |#2| |#3|))) (-15 -4378 ($ (-643 |#3|))) (-15 -4378 ($ (-643 $))) (-15 -3513 ((-773) $)) (-15 -4231 (|#3| $)) (-15 -4231 (|#3| $ (-549))) (-15 -4231 (|#3| $ (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-643 (-549)))) (-15 -4376 ($ $ $)) (-15 * ($ $ $)) (-15 -2161 ($ $ (-549) $ (-549))) (-15 -2161 ($ $ (-549) (-549))) (-15 -3838 ($ $)) (-15 -3838 ($ $ (-549) (-549))) (-15 -1417 ($ $ (-643 (-549)))) (-15 -1416 ($)) (-15 -1415 ($)) (-15 -1414 ((-643 |#3|) $)) (-15 -1413 ($ (-643 |#3|))) (-15 -4156 ($)))) -((-2576 (((-135 |#1| |#2| |#4|) (-643 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4390 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2576 ((-135 |#1| |#2| |#4|) (-643 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4390 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-549) (-773) (-172) (-172)) (T -136)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -2576 ((-135 |#1| |#2| |#4|) (-643 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4390 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) -((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-137) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -137)) -((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137))))) -(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) 10)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 13)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-138) (-13 (-1086) (-10 -8 (-15 -1510 ((-187) $)) (-15 -3653 ((-643 (-1138)) $))))) (T -138)) -((-1510 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-138))))) -(-13 (-1086) (-10 -8 (-15 -1510 ((-187) $)) (-15 -3653 ((-643 (-1138)) $)))) -((-2968 (((-112) $ $) NIL)) (-1508 (((-643 (-867)) $) NIL)) (-3973 (((-509) $) NIL)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) NIL)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-1509 (((-643 (-112)) $) NIL)) (-4378 (((-865) $) NIL) (((-183) $) 6)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-139) (-13 (-186) (-615 (-183)))) (T -139)) -NIL -(-13 (-186) (-615 (-183))) -((-1419 (((-643 (-184 (-139))) $) 13)) (-1418 (((-643 (-184 (-139))) $) 14)) (-1420 (((-643 (-840)) $) 10)) (-1583 (((-139) $) 7)) (-4378 (((-865) $) 16))) -(((-140) (-13 (-615 (-865)) (-10 -8 (-15 -1583 ((-139) $)) (-15 -1420 ((-643 (-840)) $)) (-15 -1419 ((-643 (-184 (-139))) $)) (-15 -1418 ((-643 (-184 (-139))) $))))) (T -140)) -((-1583 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-643 (-840))) (-5 *1 (-140)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140))))) -(-13 (-615 (-865)) (-10 -8 (-15 -1583 ((-139) $)) (-15 -1420 ((-643 (-840)) $)) (-15 -1419 ((-643 (-184 (-139))) $)) (-15 -1418 ((-643 (-184 (-139))) $)))) -((-2968 (((-112) $ $) NIL)) (-3851 (($) 17 T CONST)) (-1977 (($) NIL (|has| (-144) (-370)))) (-3654 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3656 (($ $ $) NIL)) (-3655 (((-112) $ $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| (-144) (-370)))) (-3659 (($) NIL) (($ (-643 (-144))) NIL)) (-1678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3829 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (($ (-144) $) 61 (|has| $ (-6 -4425)))) (-3830 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3395 (($) NIL (|has| (-144) (-370)))) (-2124 (((-643 (-144)) $) 70 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2934 (((-144) $) NIL (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3260 (((-144) $) NIL (|has| (-144) (-852)))) (-2128 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) 65)) (-3853 (($) 18 T CONST)) (-2188 (((-922) $) NIL (|has| (-144) (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 30)) (-1369 (((-144) $) 62)) (-4039 (($ (-144) $) 60)) (-2563 (($ (-922)) NIL (|has| (-144) (-370)))) (-1423 (($) 16 T CONST)) (-3664 (((-1123) $) NIL)) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1370 (((-144) $) 63)) (-2126 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-144)) (-643 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-294 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 58)) (-1424 (($) 15 T CONST)) (-3657 (($ $ $) 32) (($ $ (-144)) NIL)) (-1567 (($ (-643 (-144))) NIL) (($) NIL)) (-2125 (((-773) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (((-773) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-1162) $) 37) (((-538) $) NIL (|has| (-144) (-616 (-538)))) (((-643 (-144)) $) 35)) (-3953 (($ (-643 (-144))) NIL)) (-1978 (($ $) 33 (|has| (-144) (-370)))) (-4378 (((-865) $) 55)) (-1425 (($ (-1162)) 14) (($ (-643 (-144))) 52)) (-1979 (((-773) $) NIL)) (-3660 (($) 59) (($ (-643 (-144))) NIL)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 (-144))) NIL)) (-2127 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-1421 (($) 21 T CONST)) (-1422 (($) 20 T CONST)) (-3455 (((-112) $ $) 24)) (-4389 (((-773) $) 57 (|has| $ (-6 -4425))))) -(((-141) (-13 (-1104) (-616 (-1162)) (-429 (-144)) (-616 (-643 (-144))) (-10 -8 (-15 -1425 ($ (-1162))) (-15 -1425 ($ (-643 (-144)))) (-15 -1424 ($) -4384) (-15 -1423 ($) -4384) (-15 -3851 ($) -4384) (-15 -3853 ($) -4384) (-15 -1422 ($) -4384) (-15 -1421 ($) -4384)))) (T -141)) -((-1425 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-141)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-643 (-144))) (-5 *1 (-141)))) (-1424 (*1 *1) (-5 *1 (-141))) (-1423 (*1 *1) (-5 *1 (-141))) (-3851 (*1 *1) (-5 *1 (-141))) (-3853 (*1 *1) (-5 *1 (-141))) (-1422 (*1 *1) (-5 *1 (-141))) (-1421 (*1 *1) (-5 *1 (-141)))) -(-13 (-1104) (-616 (-1162)) (-429 (-144)) (-616 (-643 (-144))) (-10 -8 (-15 -1425 ($ (-1162))) (-15 -1425 ($ (-643 (-144)))) (-15 -1424 ($) -4384) (-15 -1423 ($) -4384) (-15 -3851 ($) -4384) (-15 -3853 ($) -4384) (-15 -1422 ($) -4384) (-15 -1421 ($) -4384))) -((-4173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4171 ((|#1| |#3|) 9)) (-4172 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-560) (-994 |#1|) (-374 |#2|)) (T -142)) -((-4173 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-374 *5)))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-374 *4)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-374 *4))))) -(-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1456 (($ $ $) 8)) (-1454 (($ $) 7)) (-3505 (($ $ $) 6))) +((-3845 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-774)))) (-1409 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-774)) (-5 *2 (-1276))))) +(-13 (-1105) (-10 -8 (-15 -3845 ((-774) $)) (-15 -1409 ((-1276) $ (-774))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 16) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-644 (-1139)) $) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-133) (-13 (-1087) (-10 -8 (-15 -3655 ((-644 (-1139)) $))))) (T -133)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-133))))) +(-13 (-1087) (-10 -8 (-15 -3655 ((-644 (-1139)) $)))) +((-2970 (((-112) $ $) 49)) (-3610 (((-112) $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-774) "failed") $) 58)) (-3578 (((-774) $) 56)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) 37)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1411 (((-112)) 59)) (-1410 (((-112) (-112)) 61)) (-2930 (((-112) $) 30)) (-1412 (((-112) $) 55)) (-4380 (((-866) $) 28) (($ (-774)) 20)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 18 T CONST)) (-3069 (($) 19 T CONST)) (-1413 (($ (-774)) 21)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 40)) (-3457 (((-112) $ $) 32)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 35)) (-4271 (((-3 $ "failed") $ $) 42)) (-4273 (($ $ $) 38)) (** (($ $ (-774)) NIL) (($ $ (-923)) NIL) (($ $ $) 54)) (* (($ (-774) $) 48) (($ (-923) $) NIL) (($ $ $) 45))) +(((-134) (-13 (-853) (-23) (-729) (-1042 (-774)) (-10 -8 (-6 (-4429 "*")) (-15 -4271 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1413 ($ (-774))) (-15 -2930 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -1411 ((-112))) (-15 -1410 ((-112) (-112)))))) (T -134)) +((-4271 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-134)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1411 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-853) (-23) (-729) (-1042 (-774)) (-10 -8 (-6 (-4429 "*")) (-15 -4271 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1413 ($ (-774))) (-15 -2930 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -1411 ((-112))) (-15 -1410 ((-112) (-112))))) +((-2970 (((-112) $ $) NIL)) (-1414 (($ (-644 |#3|)) 64)) (-3840 (($ $) 126) (($ $ (-550) (-550)) 125)) (-4158 (($) 20)) (-3579 (((-3 |#3| "failed") $) 86)) (-3578 ((|#3| $) NIL)) (-1418 (($ $ (-644 (-550))) 127)) (-1415 (((-644 |#3|) $) 59)) (-3515 (((-774) $) 69)) (-4378 (($ $ $) 120)) (-1416 (($) 68)) (-3665 (((-1163) $) NIL)) (-1417 (($) 19)) (-3666 (((-1124) $) NIL)) (-4233 ((|#3| $) 71) ((|#3| $ (-550)) 72) ((|#3| $ (-550) (-550)) 73) ((|#3| $ (-550) (-550) (-550)) 74) ((|#3| $ (-550) (-550) (-550) (-550)) 75) ((|#3| $ (-644 (-550))) 76)) (-4382 (((-774) $) 70)) (-2163 (($ $ (-550) $ (-550)) 121) (($ $ (-550) (-550)) 123)) (-4380 (((-866) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1146 |#2| |#3|)) 105) (($ (-644 |#3|)) 77) (($ (-644 $)) 83)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 96 T CONST)) (-3069 (($) 97 T CONST)) (-3457 (((-112) $ $) 107)) (-4271 (($ $) 113) (($ $ $) 111)) (-4273 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-550)) 116) (($ (-550) $) 115) (($ $ $) 122))) +(((-135 |#1| |#2| |#3|) (-13 (-469 |#3| (-774)) (-474 (-550) (-774)) (-10 -8 (-15 -4380 ($ (-240 |#2| |#3|))) (-15 -4380 ($ (-1146 |#2| |#3|))) (-15 -4380 ($ (-644 |#3|))) (-15 -4380 ($ (-644 $))) (-15 -3515 ((-774) $)) (-15 -4233 (|#3| $)) (-15 -4233 (|#3| $ (-550))) (-15 -4233 (|#3| $ (-550) (-550))) (-15 -4233 (|#3| $ (-550) (-550) (-550))) (-15 -4233 (|#3| $ (-550) (-550) (-550) (-550))) (-15 -4233 (|#3| $ (-644 (-550)))) (-15 -4378 ($ $ $)) (-15 * ($ $ $)) (-15 -2163 ($ $ (-550) $ (-550))) (-15 -2163 ($ $ (-550) (-550))) (-15 -3840 ($ $)) (-15 -3840 ($ $ (-550) (-550))) (-15 -1418 ($ $ (-644 (-550)))) (-15 -1417 ($)) (-15 -1416 ($)) (-15 -1415 ((-644 |#3|) $)) (-15 -1414 ($ (-644 |#3|))) (-15 -4158 ($)))) (-550) (-774) (-173)) (T -135)) +((-4378 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-774)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *5)) (-14 *4 (-774)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-774)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-774)) (-4 *5 (-173)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 *2) (-4 *5 (-173)))) (-4233 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-550)) (-14 *4 (-774)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-774)))) (-4233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-774)))) (-4233 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-774)))) (-4233 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-774)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-550))) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-550)) (-14 *5 (-774)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) (-2163 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-774)) (-4 *5 (-173)))) (-2163 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-774)) (-4 *5 (-173)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) (-3840 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-774)) (-4 *5 (-173)))) (-1418 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-774)) (-4 *5 (-173)))) (-1417 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) (-1416 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-644 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-774)) (-4 *5 (-173)))) (-1414 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 (-774)))) (-4158 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173))))) +(-13 (-469 |#3| (-774)) (-474 (-550) (-774)) (-10 -8 (-15 -4380 ($ (-240 |#2| |#3|))) (-15 -4380 ($ (-1146 |#2| |#3|))) (-15 -4380 ($ (-644 |#3|))) (-15 -4380 ($ (-644 $))) (-15 -3515 ((-774) $)) (-15 -4233 (|#3| $)) (-15 -4233 (|#3| $ (-550))) (-15 -4233 (|#3| $ (-550) (-550))) (-15 -4233 (|#3| $ (-550) (-550) (-550))) (-15 -4233 (|#3| $ (-550) (-550) (-550) (-550))) (-15 -4233 (|#3| $ (-644 (-550)))) (-15 -4378 ($ $ $)) (-15 * ($ $ $)) (-15 -2163 ($ $ (-550) $ (-550))) (-15 -2163 ($ $ (-550) (-550))) (-15 -3840 ($ $)) (-15 -3840 ($ $ (-550) (-550))) (-15 -1418 ($ $ (-644 (-550)))) (-15 -1417 ($)) (-15 -1416 ($)) (-15 -1415 ((-644 |#3|) $)) (-15 -1414 ($ (-644 |#3|))) (-15 -4158 ($)))) +((-2578 (((-135 |#1| |#2| |#4|) (-644 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4392 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2578 ((-135 |#1| |#2| |#4|) (-644 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4392 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-550) (-774) (-173) (-173)) (T -136)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) (-14 *6 (-774)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) (-14 *6 (-774)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -2578 ((-135 |#1| |#2| |#4|) (-644 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4392 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-2970 (((-112) $ $) NIL)) (-3953 (((-1139) $) 11)) (-3954 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 17) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-137) (-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $))))) (T -137)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-137)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-137))))) +(-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-1512 (((-188) $) 10)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 20) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-644 (-1139)) $) 13)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-138) (-13 (-1087) (-10 -8 (-15 -1512 ((-188) $)) (-15 -3655 ((-644 (-1139)) $))))) (T -138)) +((-1512 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-138)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-138))))) +(-13 (-1087) (-10 -8 (-15 -1512 ((-188) $)) (-15 -3655 ((-644 (-1139)) $)))) +((-2970 (((-112) $ $) NIL)) (-1510 (((-644 (-868)) $) NIL)) (-3975 (((-510) $) NIL)) (-3665 (((-1163) $) NIL)) (-1512 (((-188) $) NIL)) (-3037 (((-112) $ (-510)) NIL)) (-3666 (((-1124) $) NIL)) (-1511 (((-644 (-112)) $) NIL)) (-4380 (((-866) $) NIL) (((-184) $) 6)) (-3664 (((-112) $ $) NIL)) (-2923 (((-55) $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-139) (-13 (-187) (-616 (-184)))) (T -139)) +NIL +(-13 (-187) (-616 (-184))) +((-1420 (((-644 (-185 (-139))) $) 13)) (-1419 (((-644 (-185 (-139))) $) 14)) (-1421 (((-644 (-841)) $) 10)) (-1585 (((-139) $) 7)) (-4380 (((-866) $) 16))) +(((-140) (-13 (-616 (-866)) (-10 -8 (-15 -1585 ((-139) $)) (-15 -1421 ((-644 (-841)) $)) (-15 -1420 ((-644 (-185 (-139))) $)) (-15 -1419 ((-644 (-185 (-139))) $))))) (T -140)) +((-1585 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-644 (-841))) (-5 *1 (-140)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-644 (-185 (-139)))) (-5 *1 (-140)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-644 (-185 (-139)))) (-5 *1 (-140))))) +(-13 (-616 (-866)) (-10 -8 (-15 -1585 ((-139) $)) (-15 -1421 ((-644 (-841)) $)) (-15 -1420 ((-644 (-185 (-139))) $)) (-15 -1419 ((-644 (-185 (-139))) $)))) +((-2970 (((-112) $ $) NIL)) (-3853 (($) 17 T CONST)) (-1979 (($) NIL (|has| (-144) (-371)))) (-3656 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3658 (($ $ $) NIL)) (-3657 (((-112) $ $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| (-144) (-371)))) (-3661 (($) NIL) (($ (-644 (-144))) NIL)) (-1680 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-3831 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427))) (($ (-144) $) 61 (|has| $ (-6 -4427)))) (-3832 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-4276 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4427))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4427))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-3397 (($) NIL (|has| (-144) (-371)))) (-2126 (((-644 (-144)) $) 70 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2936 (((-144) $) NIL (|has| (-144) (-853)))) (-3010 (((-644 (-144)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-3262 (((-144) $) NIL (|has| (-144) (-853)))) (-2130 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-144) (-144)) $) 65)) (-3855 (($) 18 T CONST)) (-2190 (((-923) $) NIL (|has| (-144) (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3660 (($ $ $) 30)) (-1370 (((-144) $) 62)) (-4041 (($ (-144) $) 60)) (-2565 (($ (-923)) NIL (|has| (-144) (-371)))) (-1424 (($) 16 T CONST)) (-3666 (((-1124) $) NIL)) (-1442 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1371 (((-144) $) 63)) (-2128 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 58)) (-1425 (($) 15 T CONST)) (-3659 (($ $ $) 32) (($ $ (-144)) NIL)) (-1569 (($ (-644 (-144))) NIL) (($) NIL)) (-2127 (((-774) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105)))) (((-774) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-1163) $) 37) (((-539) $) NIL (|has| (-144) (-617 (-539)))) (((-644 (-144)) $) 35)) (-3955 (($ (-644 (-144))) NIL)) (-1980 (($ $) 33 (|has| (-144) (-371)))) (-4380 (((-866) $) 55)) (-1426 (($ (-1163)) 14) (($ (-644 (-144))) 52)) (-1981 (((-774) $) NIL)) (-3662 (($) 59) (($ (-644 (-144))) NIL)) (-3664 (((-112) $ $) NIL)) (-1372 (($ (-644 (-144))) NIL)) (-2129 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-1422 (($) 21 T CONST)) (-1423 (($) 20 T CONST)) (-3457 (((-112) $ $) 24)) (-4391 (((-774) $) 57 (|has| $ (-6 -4427))))) +(((-141) (-13 (-1105) (-617 (-1163)) (-430 (-144)) (-617 (-644 (-144))) (-10 -8 (-15 -1426 ($ (-1163))) (-15 -1426 ($ (-644 (-144)))) (-15 -1425 ($) -4386) (-15 -1424 ($) -4386) (-15 -3853 ($) -4386) (-15 -3855 ($) -4386) (-15 -1423 ($) -4386) (-15 -1422 ($) -4386)))) (T -141)) +((-1426 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-141)))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) (-1425 (*1 *1) (-5 *1 (-141))) (-1424 (*1 *1) (-5 *1 (-141))) (-3853 (*1 *1) (-5 *1 (-141))) (-3855 (*1 *1) (-5 *1 (-141))) (-1423 (*1 *1) (-5 *1 (-141))) (-1422 (*1 *1) (-5 *1 (-141)))) +(-13 (-1105) (-617 (-1163)) (-430 (-144)) (-617 (-644 (-144))) (-10 -8 (-15 -1426 ($ (-1163))) (-15 -1426 ($ (-644 (-144)))) (-15 -1425 ($) -4386) (-15 -1424 ($) -4386) (-15 -3853 ($) -4386) (-15 -3855 ($) -4386) (-15 -1423 ($) -4386) (-15 -1422 ($) -4386))) +((-4175 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4173 ((|#1| |#3|) 9)) (-4174 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4175 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-995 |#1|) (-375 |#2|)) (T -142)) +((-4175 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-995 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4175 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1457 (($ $ $) 8)) (-1455 (($ $) 7)) (-3507 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-1456 (*1 *1 *1 *1) (-4 *1 (-143))) (-1454 (*1 *1 *1) (-4 *1 (-143))) (-3505 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -3505 ($ $ $)) (-15 -1454 ($ $)) (-15 -1456 ($ $ $)))) -((-2968 (((-112) $ $) NIL)) (-1428 (((-112) $) 39)) (-3851 (($ $) 55)) (-1619 (($) 26 T CONST)) (-3540 (((-773)) 13)) (-3395 (($) 25)) (-2979 (($) 27 T CONST)) (-1434 (((-773) $) 21)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-1427 (((-112) $) 41)) (-3853 (($ $) 56)) (-2188 (((-922) $) 23)) (-3663 (((-1162) $) 49)) (-2563 (($ (-922)) 20)) (-1430 (((-112) $) 37)) (-3664 (((-1123) $) NIL)) (-1432 (($) 28 T CONST)) (-1431 (((-112) $) 35)) (-4378 (((-865) $) 30)) (-1433 (($ (-773)) 19) (($ (-1162)) 54)) (-3662 (((-112) $ $) NIL)) (-1426 (((-112) $) 45)) (-1429 (((-112) $) 43)) (-2966 (((-112) $ $) 11)) (-2967 (((-112) $ $) 9)) (-3455 (((-112) $ $) 7)) (-3087 (((-112) $ $) 10)) (-3088 (((-112) $ $) 8))) -(((-144) (-13 (-846) (-10 -8 (-15 -1434 ((-773) $)) (-15 -1433 ($ (-773))) (-15 -1433 ($ (-1162))) (-15 -1619 ($) -4384) (-15 -2979 ($) -4384) (-15 -1432 ($) -4384) (-15 -3851 ($ $)) (-15 -3853 ($ $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -1427 ((-112) $)) (-15 -1426 ((-112) $))))) (T -144)) -((-1434 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-144)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-144)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-144)))) (-1619 (*1 *1) (-5 *1 (-144))) (-2979 (*1 *1) (-5 *1 (-144))) (-1432 (*1 *1) (-5 *1 (-144))) (-3851 (*1 *1 *1) (-5 *1 (-144))) (-3853 (*1 *1 *1) (-5 *1 (-144))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-846) (-10 -8 (-15 -1434 ((-773) $)) (-15 -1433 ($ (-773))) (-15 -1433 ($ (-1162))) (-15 -1619 ($) -4384) (-15 -2979 ($) -4384) (-15 -1432 ($) -4384) (-15 -3851 ($ $)) (-15 -3853 ($ $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -1427 ((-112) $)) (-15 -1426 ((-112) $)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3105 (((-3 $ "failed") $) 39)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +((-1457 (*1 *1 *1 *1) (-4 *1 (-143))) (-1455 (*1 *1 *1) (-4 *1 (-143))) (-3507 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -3507 ($ $ $)) (-15 -1455 ($ $)) (-15 -1457 ($ $ $)))) +((-2970 (((-112) $ $) NIL)) (-1429 (((-112) $) 39)) (-3853 (($ $) 55)) (-1621 (($) 26 T CONST)) (-3542 (((-774)) 13)) (-3397 (($) 25)) (-2981 (($) 27 T CONST)) (-1435 (((-774) $) 21)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-1428 (((-112) $) 41)) (-3855 (($ $) 56)) (-2190 (((-923) $) 23)) (-3665 (((-1163) $) 49)) (-2565 (($ (-923)) 20)) (-1431 (((-112) $) 37)) (-3666 (((-1124) $) NIL)) (-1433 (($) 28 T CONST)) (-1432 (((-112) $) 35)) (-4380 (((-866) $) 30)) (-1434 (($ (-774)) 19) (($ (-1163)) 54)) (-3664 (((-112) $ $) NIL)) (-1427 (((-112) $) 45)) (-1430 (((-112) $) 43)) (-2968 (((-112) $ $) 11)) (-2969 (((-112) $ $) 9)) (-3457 (((-112) $ $) 7)) (-3089 (((-112) $ $) 10)) (-3090 (((-112) $ $) 8))) +(((-144) (-13 (-847) (-10 -8 (-15 -1435 ((-774) $)) (-15 -1434 ($ (-774))) (-15 -1434 ($ (-1163))) (-15 -1621 ($) -4386) (-15 -2981 ($) -4386) (-15 -1433 ($) -4386) (-15 -3853 ($ $)) (-15 -3855 ($ $)) (-15 -1432 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -1427 ((-112) $))))) (T -144)) +((-1435 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-144)))) (-1434 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-144)))) (-1434 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-144)))) (-1621 (*1 *1) (-5 *1 (-144))) (-2981 (*1 *1) (-5 *1 (-144))) (-1433 (*1 *1) (-5 *1 (-144))) (-3853 (*1 *1 *1) (-5 *1 (-144))) (-3855 (*1 *1 *1) (-5 *1 (-144))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-847) (-10 -8 (-15 -1435 ((-774) $)) (-15 -1434 ($ (-774))) (-15 -1434 ($ (-1163))) (-15 -1621 ($) -4386) (-15 -2981 ($) -4386) (-15 -1433 ($) -4386) (-15 -3853 ($ $)) (-15 -3855 ($ $)) (-15 -1432 ((-112) $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -1427 ((-112) $)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3107 (((-3 $ "failed") $) 39)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) (((-145) (-140)) (T -145)) -((-3105 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1052) (-10 -8 (-15 -3105 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2770 ((|#1| (-691 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -2770 (|#1| (-691 |#1|) |#1|))) (-172)) (T -146)) -((-2770 (*1 *2 *3 *2) (-12 (-5 *3 (-691 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -2770 (|#1| (-691 |#1|) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +((-3107 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1053) (-10 -8 (-15 -3107 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2772 ((|#1| (-692 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -2772 (|#1| (-692 |#1|) |#1|))) (-173)) (T -146)) +((-2772 (*1 *2 *3 *2) (-12 (-5 *3 (-692 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -2772 (|#1| (-692 |#1|) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) (((-147) (-140)) (T -147)) NIL -(-13 (-1052)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-1437 (((-2 (|:| -2564 (-773)) (|:| -4386 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-773)) 76)) (-1436 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-773))) "failed") |#3|) 56)) (-1435 (((-2 (|:| -4386 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1438 ((|#1| |#3| |#3|) 44)) (-4199 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-1439 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-773))) |#3| |#3|) 53))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1435 ((-2 (|:| -4386 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1436 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-773))) "failed") |#3|)) (-15 -1437 ((-2 (|:| -2564 (-773)) (|:| -4386 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-773))) (-15 -1438 (|#1| |#3| |#3|)) (-15 -4199 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1439 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-773))) |#3| |#3|))) (-1224) (-1245 |#1|) (-1245 (-410 |#2|))) (T -148)) -((-1439 (*1 *2 *3 *3) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-773)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-4199 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) (-1438 (*1 *2 *3 *3) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1224)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-773)) (-4 *7 (-1245 *3)))) (-1436 (*1 *2 *3) (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-773)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-1435 (*1 *2 *3) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -4386 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) -(-10 -7 (-15 -1435 ((-2 (|:| -4386 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1436 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-773))) "failed") |#3|)) (-15 -1437 ((-2 (|:| -2564 (-773)) (|:| -4386 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-773))) (-15 -1438 (|#1| |#3| |#3|)) (-15 -4199 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1439 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-773))) |#3| |#3|))) -((-3107 (((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)) 35))) -(((-149 |#1| |#2|) (-10 -7 (-15 -3107 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)))) (-548) (-166 |#1|)) (T -149)) -((-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -3107 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)))) -((-4142 (($ (-1 (-112) |#2|) $) 35)) (-1440 (($ $) 42)) (-3830 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1441 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2126 (((-112) (-1 (-112) |#2|) $) 22)) (-2125 (((-773) (-1 (-112) |#2|) $) 18) (((-773) |#2| $) NIL)) (-2127 (((-112) (-1 (-112) |#2|) $) 21)) (-4389 (((-773) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -1440 (|#1| |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) (-151 |#2|) (-1219)) (T -150)) -NIL -(-10 -8 (-15 -1440 (|#1| |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4142 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 42 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425))) (($ |#1| $) 43 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 41 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 50)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-151 |#1|) (-140) (-1219)) (T -151)) -((-3953 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) (-1441 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-4274 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-4274 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-4274 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-3830 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) (-1440 (*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1104))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -3953 ($ (-643 |t#1|))) (-15 -1441 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4274 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4274 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3830 ($ (-1 (-112) |t#1|) $)) (-15 -4142 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -4274 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3830 ($ |t#1| $)) (-15 -1440 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) 113)) (-2573 (((-112) $) NIL)) (-3294 (($ |#2| (-643 (-922))) 73)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1442 (($ (-922)) 60)) (-4343 (((-134)) 26)) (-4378 (((-865) $) 88) (($ (-549)) 56) (($ |#2|) 57)) (-4109 ((|#2| $ (-643 (-922))) 76)) (-3530 (((-773)) 23 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 51 T CONST)) (-3067 (($) 54 T CONST)) (-3455 (((-112) $ $) 37)) (-4381 (($ $ |#2|) NIL)) (-4269 (($ $) 46) (($ $ $) 44)) (-4271 (($ $ $) 42)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1052) (-38 |#2|) (-1277 |#2|) (-10 -8 (-15 -1442 ($ (-922))) (-15 -3294 ($ |#2| (-643 (-922)))) (-15 -4109 (|#2| $ (-643 (-922)))) (-15 -3890 ((-3 $ "failed") $)))) (-922) (-365) (-996 |#1| |#2|)) (T -152)) -((-3890 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) (-14 *4 (-996 *2 *3)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-996 *3 *4)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-4 *2 (-365)) (-14 *5 (-996 *4 *2)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-643 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-14 *5 (-996 *4 *2))))) -(-13 (-1052) (-38 |#2|) (-1277 |#2|) (-10 -8 (-15 -1442 ($ (-922))) (-15 -3294 ($ |#2| (-643 (-922)))) (-15 -4109 (|#2| $ (-643 (-922)))) (-15 -3890 ((-3 $ "failed") $)))) -((-1444 (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-1443 (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549))) 99) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928)) 100)) (-1611 (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225))))) 103) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-946 (-225)))) 102) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549))) 94) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928)) 95))) -(((-153) (-10 -7 (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1444 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-946 (-225))))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))))))) (T -153)) -((-1611 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 (-225))))))) (-1611 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)) (-5 *3 (-643 (-946 (-225)))))) (-1444 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 *4)))) (|:| |xValues| (-1092 *4)) (|:| |yValues| (-1092 *4)))) (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 *4)))))) (-1443 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1444 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-946 (-225))))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225))))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3601 (((-643 (-1138)) $) 20)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-154) (-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $))))) (T -154)) -((-3601 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-154)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-154))))) -(-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $)))) -((-1494 (((-643 (-168 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1494 ((-643 (-168 |#2|)) |#1| |#2|))) (-1245 (-168 (-549))) (-13 (-365) (-850))) (T -155)) -((-1494 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-168 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1245 (-168 (-549)))) (-4 *4 (-13 (-365) (-850)))))) -(-10 -7 (-15 -1494 ((-643 (-168 |#2|)) |#1| |#2|))) -((-2968 (((-112) $ $) NIL)) (-3951 (((-1220) $) 12)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-156) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1220) $))))) (T -156)) -((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-156)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-156))))) -(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1220) $)))) -((-2968 (((-112) $ $) NIL)) (-1446 (($) 41)) (-3502 (($) 40)) (-1445 (((-922)) 46)) (-3663 (((-1162) $) NIL)) (-3357 (((-549) $) 44)) (-3664 (((-1123) $) NIL)) (-3501 (($) 42)) (-3356 (($ (-549)) 47)) (-4378 (((-865) $) 53)) (-3500 (($) 43)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 38)) (-4271 (($ $ $) 35)) (* (($ (-922) $) 45) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -4271 ($ $ $)) (-15 -3502 ($)) (-15 -1446 ($)) (-15 -3501 ($)) (-15 -3500 ($)) (-15 -3357 ((-549) $)) (-15 -1445 ((-922))) (-15 -3356 ($ (-549)))))) (T -157)) -((-4271 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3502 (*1 *1) (-5 *1 (-157))) (-1446 (*1 *1) (-5 *1 (-157))) (-3501 (*1 *1) (-5 *1 (-157))) (-3500 (*1 *1) (-5 *1 (-157))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-157)))) (-1445 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -4271 ($ $ $)) (-15 -3502 ($)) (-15 -1446 ($)) (-15 -3501 ($)) (-15 -3500 ($)) (-15 -3357 ((-549) $)) (-15 -1445 ((-922))) (-15 -3356 ($ (-549))))) -((-1459 ((|#2| |#2| (-1095 |#2|)) 98) ((|#2| |#2| (-1180)) 75)) (-4376 ((|#2| |#2| (-1095 |#2|)) 97) ((|#2| |#2| (-1180)) 74)) (-1456 ((|#2| |#2| |#2|) 25)) (-3448 (((-113) (-113)) 111)) (-1453 ((|#2| (-643 |#2|)) 130)) (-1450 ((|#2| (-643 |#2|)) 152)) (-1449 ((|#2| (-643 |#2|)) 138)) (-1447 ((|#2| |#2|) 136)) (-1451 ((|#2| (-643 |#2|)) 124)) (-1452 ((|#2| (-643 |#2|)) 125)) (-1448 ((|#2| (-643 |#2|)) 150)) (-1460 ((|#2| |#2| (-1180)) 63) ((|#2| |#2|) 62)) (-1454 ((|#2| |#2|) 21)) (-3505 ((|#2| |#2| |#2|) 24)) (-2403 (((-112) (-113)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3505 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1095 |#2|))) (-15 -4376 (|#2| |#2| (-1180))) (-15 -4376 (|#2| |#2| (-1095 |#2|))) (-15 -1447 (|#2| |#2|)) (-15 -1448 (|#2| (-643 |#2|))) (-15 -1449 (|#2| (-643 |#2|))) (-15 -1450 (|#2| (-643 |#2|))) (-15 -1451 (|#2| (-643 |#2|))) (-15 -1452 (|#2| (-643 |#2|))) (-15 -1453 (|#2| (-643 |#2|)))) (-560) (-424 |#1|)) (T -158)) -((-1453 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) (-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)))) (-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-1456 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-3505 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-158 *3 *4)) (-4 *4 (-424 *3)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-424 *4))))) -(-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3505 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1095 |#2|))) (-15 -4376 (|#2| |#2| (-1180))) (-15 -4376 (|#2| |#2| (-1095 |#2|))) (-15 -1447 (|#2| |#2|)) (-15 -1448 (|#2| (-643 |#2|))) (-15 -1449 (|#2| (-643 |#2|))) (-15 -1450 (|#2| (-643 |#2|))) (-15 -1451 (|#2| (-643 |#2|))) (-15 -1452 (|#2| (-643 |#2|))) (-15 -1453 (|#2| (-643 |#2|)))) -((-1458 ((|#1| |#1| |#1|) 67)) (-1457 ((|#1| |#1| |#1|) 64)) (-1456 ((|#1| |#1| |#1|) 58)) (-3291 ((|#1| |#1|) 45)) (-1455 ((|#1| |#1| (-643 |#1|)) 55)) (-1454 ((|#1| |#1|) 48)) (-3505 ((|#1| |#1| |#1|) 51))) -(((-159 |#1|) (-10 -7 (-15 -3505 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -1455 (|#1| |#1| (-643 |#1|))) (-15 -3291 (|#1| |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|))) (-548)) (T -159)) -((-1458 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1457 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1456 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3291 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1455 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-1454 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3505 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(-10 -7 (-15 -3505 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -1455 (|#1| |#1| (-643 |#1|))) (-15 -3291 (|#1| |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|))) -((-1459 (($ $ (-1180)) 12) (($ $ (-1095 $)) 11)) (-4376 (($ $ (-1180)) 10) (($ $ (-1095 $)) 9)) (-1456 (($ $ $) 8)) (-1460 (($ $) 14) (($ $ (-1180)) 13)) (-1454 (($ $) 7)) (-3505 (($ $ $) 6))) +(-13 (-1053)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-1438 (((-2 (|:| -2566 (-774)) (|:| -4388 (-411 |#2|)) (|:| |radicand| |#2|)) (-411 |#2|) (-774)) 76)) (-1437 (((-3 (-2 (|:| |radicand| (-411 |#2|)) (|:| |deg| (-774))) "failed") |#3|) 56)) (-1436 (((-2 (|:| -4388 (-411 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1439 ((|#1| |#3| |#3|) 44)) (-4201 ((|#3| |#3| (-411 |#2|) (-411 |#2|)) 20)) (-1440 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-411 |#2|)) (|:| |c2| (-411 |#2|)) (|:| |deg| (-774))) |#3| |#3|) 53))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1436 ((-2 (|:| -4388 (-411 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1437 ((-3 (-2 (|:| |radicand| (-411 |#2|)) (|:| |deg| (-774))) "failed") |#3|)) (-15 -1438 ((-2 (|:| -2566 (-774)) (|:| -4388 (-411 |#2|)) (|:| |radicand| |#2|)) (-411 |#2|) (-774))) (-15 -1439 (|#1| |#3| |#3|)) (-15 -4201 (|#3| |#3| (-411 |#2|) (-411 |#2|))) (-15 -1440 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-411 |#2|)) (|:| |c2| (-411 |#2|)) (|:| |deg| (-774))) |#3| |#3|))) (-1225) (-1246 |#1|) (-1246 (-411 |#2|))) (T -148)) +((-1440 (*1 *2 *3 *3) (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-411 *5)) (|:| |c2| (-411 *5)) (|:| |deg| (-774)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1246 (-411 *5))))) (-4201 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-411 *5)) (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1246 *3)))) (-1439 (*1 *2 *3 *3) (-12 (-4 *4 (-1246 *2)) (-4 *2 (-1225)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1246 (-411 *4))))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-411 *6)) (-4 *5 (-1225)) (-4 *6 (-1246 *5)) (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-774)) (-4 *7 (-1246 *3)))) (-1437 (*1 *2 *3) (|partial| -12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| |radicand| (-411 *5)) (|:| |deg| (-774)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1246 (-411 *5))))) (-1436 (*1 *2 *3) (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| -4388 (-411 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1246 (-411 *5)))))) +(-10 -7 (-15 -1436 ((-2 (|:| -4388 (-411 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1437 ((-3 (-2 (|:| |radicand| (-411 |#2|)) (|:| |deg| (-774))) "failed") |#3|)) (-15 -1438 ((-2 (|:| -2566 (-774)) (|:| -4388 (-411 |#2|)) (|:| |radicand| |#2|)) (-411 |#2|) (-774))) (-15 -1439 (|#1| |#3| |#3|)) (-15 -4201 (|#3| |#3| (-411 |#2|) (-411 |#2|))) (-15 -1440 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-411 |#2|)) (|:| |c2| (-411 |#2|)) (|:| |deg| (-774))) |#3| |#3|))) +((-3109 (((-3 (-644 (-1175 |#2|)) "failed") (-644 (-1175 |#2|)) (-1175 |#2|)) 35))) +(((-149 |#1| |#2|) (-10 -7 (-15 -3109 ((-3 (-644 (-1175 |#2|)) "failed") (-644 (-1175 |#2|)) (-1175 |#2|)))) (-549) (-166 |#1|)) (T -149)) +((-3109 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-166 *4)) (-4 *4 (-549)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -3109 ((-3 (-644 (-1175 |#2|)) "failed") (-644 (-1175 |#2|)) (-1175 |#2|)))) +((-4144 (($ (-1 (-112) |#2|) $) 35)) (-1441 (($ $) 42)) (-3832 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-4276 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1442 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2128 (((-112) (-1 (-112) |#2|) $) 22)) (-2127 (((-774) (-1 (-112) |#2|) $) 18) (((-774) |#2| $) NIL)) (-2129 (((-112) (-1 (-112) |#2|) $) 21)) (-4391 (((-774) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -1441 (|#1| |#1|)) (-15 -3832 (|#1| |#2| |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4144 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3832 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1442 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4391 ((-774) |#1|))) (-151 |#2|) (-1220)) (T -150)) +NIL +(-10 -8 (-15 -1441 (|#1| |#1|)) (-15 -3832 (|#1| |#2| |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4144 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3832 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1442 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4391 ((-774) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-4144 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-1441 (($ $) 42 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427))) (($ |#1| $) 43 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 41 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 50)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-151 |#1|) (-140) (-1220)) (T -151)) +((-3955 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-4 *1 (-151 *3)))) (-1442 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1220)))) (-4276 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)))) (-4276 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)))) (-3832 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *3)) (-4 *3 (-1220)))) (-4144 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *3)) (-4 *3 (-1220)))) (-4276 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1105)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)))) (-3832 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)) (-4 *2 (-1105)))) (-1441 (*1 *1 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)) (-4 *2 (-1105))))) +(-13 (-493 |t#1|) (-10 -8 (-15 -3955 ($ (-644 |t#1|))) (-15 -1442 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4427)) (PROGN (-15 -4276 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4276 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3832 ($ (-1 (-112) |t#1|) $)) (-15 -4144 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1105)) (PROGN (-15 -4276 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3832 ($ |t#1| $)) (-15 -1441 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) 113)) (-2575 (((-112) $) NIL)) (-3296 (($ |#2| (-644 (-923))) 73)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1443 (($ (-923)) 60)) (-4345 (((-134)) 26)) (-4380 (((-866) $) 88) (($ (-550)) 56) (($ |#2|) 57)) (-4111 ((|#2| $ (-644 (-923))) 76)) (-3532 (((-774)) 23 T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 51 T CONST)) (-3069 (($) 54 T CONST)) (-3457 (((-112) $ $) 37)) (-4383 (($ $ |#2|) NIL)) (-4271 (($ $) 46) (($ $ $) 44)) (-4273 (($ $ $) 42)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1053) (-38 |#2|) (-1278 |#2|) (-10 -8 (-15 -1443 ($ (-923))) (-15 -3296 ($ |#2| (-644 (-923)))) (-15 -4111 (|#2| $ (-644 (-923)))) (-15 -3892 ((-3 $ "failed") $)))) (-923) (-366) (-997 |#1| |#2|)) (T -152)) +((-3892 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-366)) (-14 *4 (-997 *2 *3)))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-366)) (-14 *5 (-997 *3 *4)))) (-3296 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-4 *2 (-366)) (-14 *5 (-997 *4 *2)))) (-4111 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-923))) (-4 *2 (-366)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-14 *5 (-997 *4 *2))))) +(-13 (-1053) (-38 |#2|) (-1278 |#2|) (-10 -8 (-15 -1443 ($ (-923))) (-15 -3296 ($ |#2| (-644 (-923)))) (-15 -4111 (|#2| $ (-644 (-923)))) (-15 -3892 ((-3 $ "failed") $)))) +((-1445 (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-644 (-947 (-226)))) (-226) (-226) (-226) (-226)) 62)) (-1444 (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929) (-411 (-550)) (-411 (-550))) 99) (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929)) 100)) (-1613 (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-644 (-947 (-226))))) 103) (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-947 (-226)))) 102) (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929) (-411 (-550)) (-411 (-550))) 94) (((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929)) 95))) +(((-153) (-10 -7 (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929))) (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929) (-411 (-550)) (-411 (-550)))) (-15 -1444 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929))) (-15 -1444 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929) (-411 (-550)) (-411 (-550)))) (-15 -1445 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-644 (-947 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-947 (-226))))) (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-644 (-947 (-226)))))))) (T -153)) +((-1613 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-947 (-226))))))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)) (-5 *3 (-644 (-947 (-226)))))) (-1445 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-226)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 *4)))) (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-947 *4)))))) (-1444 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-411 (-550))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)))) (-1613 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-411 (-550))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153))))) +(-10 -7 (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929))) (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929) (-411 (-550)) (-411 (-550)))) (-15 -1444 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929))) (-15 -1444 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-929) (-411 (-550)) (-411 (-550)))) (-15 -1445 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-644 (-947 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-947 (-226))))) (-15 -1613 ((-2 (|:| |brans| (-644 (-644 (-947 (-226))))) (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226)))) (-644 (-644 (-947 (-226))))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3603 (((-644 (-1139)) $) 20)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 27) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-1139) $) 9)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-154) (-13 (-1087) (-10 -8 (-15 -3603 ((-644 (-1139)) $)) (-15 -3655 ((-1139) $))))) (T -154)) +((-3603 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-154)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-154))))) +(-13 (-1087) (-10 -8 (-15 -3603 ((-644 (-1139)) $)) (-15 -3655 ((-1139) $)))) +((-1496 (((-644 (-169 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1496 ((-644 (-169 |#2|)) |#1| |#2|))) (-1246 (-169 (-550))) (-13 (-366) (-851))) (T -155)) +((-1496 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1246 (-169 (-550)))) (-4 *4 (-13 (-366) (-851)))))) +(-10 -7 (-15 -1496 ((-644 (-169 |#2|)) |#1| |#2|))) +((-2970 (((-112) $ $) NIL)) (-3953 (((-1221) $) 12)) (-3954 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 19) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-156) (-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1221) $))))) (T -156)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-156)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-156))))) +(-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1221) $)))) +((-2970 (((-112) $ $) NIL)) (-1447 (($) 41)) (-3504 (($) 40)) (-1446 (((-923)) 46)) (-3665 (((-1163) $) NIL)) (-3359 (((-550) $) 44)) (-3666 (((-1124) $) NIL)) (-3503 (($) 42)) (-3358 (($ (-550)) 47)) (-4380 (((-866) $) 53)) (-3502 (($) 43)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 38)) (-4273 (($ $ $) 35)) (* (($ (-923) $) 45) (($ (-226) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-226) $)) (-15 -4273 ($ $ $)) (-15 -3504 ($)) (-15 -1447 ($)) (-15 -3503 ($)) (-15 -3502 ($)) (-15 -3359 ((-550) $)) (-15 -1446 ((-923))) (-15 -3358 ($ (-550)))))) (T -157)) +((-4273 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) (-3504 (*1 *1) (-5 *1 (-157))) (-1447 (*1 *1) (-5 *1 (-157))) (-3503 (*1 *1) (-5 *1 (-157))) (-3502 (*1 *1) (-5 *1 (-157))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-157)))) (-1446 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-226) $)) (-15 -4273 ($ $ $)) (-15 -3504 ($)) (-15 -1447 ($)) (-15 -3503 ($)) (-15 -3502 ($)) (-15 -3359 ((-550) $)) (-15 -1446 ((-923))) (-15 -3358 ($ (-550))))) +((-1460 ((|#2| |#2| (-1096 |#2|)) 98) ((|#2| |#2| (-1181)) 75)) (-4378 ((|#2| |#2| (-1096 |#2|)) 97) ((|#2| |#2| (-1181)) 74)) (-1457 ((|#2| |#2| |#2|) 25)) (-3450 (((-113) (-113)) 111)) (-1454 ((|#2| (-644 |#2|)) 130)) (-1451 ((|#2| (-644 |#2|)) 152)) (-1450 ((|#2| (-644 |#2|)) 138)) (-1448 ((|#2| |#2|) 136)) (-1452 ((|#2| (-644 |#2|)) 124)) (-1453 ((|#2| (-644 |#2|)) 125)) (-1449 ((|#2| (-644 |#2|)) 150)) (-1461 ((|#2| |#2| (-1181)) 63) ((|#2| |#2|) 62)) (-1455 ((|#2| |#2|) 21)) (-3507 ((|#2| |#2| |#2|) 24)) (-2405 (((-112) (-113)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3507 (|#2| |#2| |#2|)) (-15 -1457 (|#2| |#2| |#2|)) (-15 -1455 (|#2| |#2|)) (-15 -1461 (|#2| |#2|)) (-15 -1461 (|#2| |#2| (-1181))) (-15 -1460 (|#2| |#2| (-1181))) (-15 -1460 (|#2| |#2| (-1096 |#2|))) (-15 -4378 (|#2| |#2| (-1181))) (-15 -4378 (|#2| |#2| (-1096 |#2|))) (-15 -1448 (|#2| |#2|)) (-15 -1449 (|#2| (-644 |#2|))) (-15 -1450 (|#2| (-644 |#2|))) (-15 -1451 (|#2| (-644 |#2|))) (-15 -1452 (|#2| (-644 |#2|))) (-15 -1453 (|#2| (-644 |#2|))) (-15 -1454 (|#2| (-644 |#2|)))) (-561) (-425 |#1|)) (T -158)) +((-1454 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) (-4378 (*1 *2 *2 *3) (-12 (-5 *3 (-1096 *2)) (-4 *2 (-425 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-4378 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-425 *4)))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-1096 *2)) (-4 *2 (-425 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-425 *4)))) (-1461 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-425 *4)))) (-1461 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) (-1455 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) (-1457 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) (-3507 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) (-4 *4 (-425 *3)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-425 *4))))) +(-10 -7 (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3507 (|#2| |#2| |#2|)) (-15 -1457 (|#2| |#2| |#2|)) (-15 -1455 (|#2| |#2|)) (-15 -1461 (|#2| |#2|)) (-15 -1461 (|#2| |#2| (-1181))) (-15 -1460 (|#2| |#2| (-1181))) (-15 -1460 (|#2| |#2| (-1096 |#2|))) (-15 -4378 (|#2| |#2| (-1181))) (-15 -4378 (|#2| |#2| (-1096 |#2|))) (-15 -1448 (|#2| |#2|)) (-15 -1449 (|#2| (-644 |#2|))) (-15 -1450 (|#2| (-644 |#2|))) (-15 -1451 (|#2| (-644 |#2|))) (-15 -1452 (|#2| (-644 |#2|))) (-15 -1453 (|#2| (-644 |#2|))) (-15 -1454 (|#2| (-644 |#2|)))) +((-1459 ((|#1| |#1| |#1|) 67)) (-1458 ((|#1| |#1| |#1|) 64)) (-1457 ((|#1| |#1| |#1|) 58)) (-3293 ((|#1| |#1|) 45)) (-1456 ((|#1| |#1| (-644 |#1|)) 55)) (-1455 ((|#1| |#1|) 48)) (-3507 ((|#1| |#1| |#1|) 51))) +(((-159 |#1|) (-10 -7 (-15 -3507 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -1456 (|#1| |#1| (-644 |#1|))) (-15 -3293 (|#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|)) (-15 -1459 (|#1| |#1| |#1|))) (-549)) (T -159)) +((-1459 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) (-1457 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) (-3293 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) (-1456 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-549)) (-5 *1 (-159 *2)))) (-1455 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) (-3507 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549))))) +(-10 -7 (-15 -3507 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -1456 (|#1| |#1| (-644 |#1|))) (-15 -3293 (|#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|)) (-15 -1459 (|#1| |#1| |#1|))) +((-1460 (($ $ (-1181)) 12) (($ $ (-1096 $)) 11)) (-4378 (($ $ (-1181)) 10) (($ $ (-1096 $)) 9)) (-1457 (($ $ $) 8)) (-1461 (($ $) 14) (($ $ (-1181)) 13)) (-1455 (($ $) 7)) (-3507 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-1460 (*1 *1 *1) (-4 *1 (-160))) (-1460 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) (-1459 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) (-1459 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160)))) (-4376 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -1460 ($ $)) (-15 -1460 ($ $ (-1180))) (-15 -1459 ($ $ (-1180))) (-15 -1459 ($ $ (-1095 $))) (-15 -4376 ($ $ (-1180))) (-15 -4376 ($ $ (-1095 $))))) +((-1461 (*1 *1 *1) (-4 *1 (-160))) (-1461 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1181)))) (-1460 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1181)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 *1)) (-4 *1 (-160)))) (-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1181)))) (-4378 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -1461 ($ $)) (-15 -1461 ($ $ (-1181))) (-15 -1460 ($ $ (-1181))) (-15 -1460 ($ $ (-1096 $))) (-15 -4378 ($ $ (-1181))) (-15 -4378 ($ $ (-1096 $))))) (((-143) . T)) -((-2968 (((-112) $ $) NIL)) (-1461 (($ (-549)) 14) (($ $ $) 15)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) -(((-161) (-13 (-1104) (-10 -8 (-15 -1461 ($ (-549))) (-15 -1461 ($ $ $))))) (T -161)) -((-1461 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-161)))) (-1461 (*1 *1 *1 *1) (-5 *1 (-161)))) -(-13 (-1104) (-10 -8 (-15 -1461 ($ (-549))) (-15 -1461 ($ $ $)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-162) (-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $))))) (T -162)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-162))))) -(-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)))) -((-3448 (((-113) (-1180)) 102))) -(((-163) (-10 -7 (-15 -3448 ((-113) (-1180))))) (T -163)) -((-3448 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-113)) (-5 *1 (-163))))) -(-10 -7 (-15 -3448 ((-113) (-1180)))) -((-1703 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1703 (|#3| |#3|))) (-1052) (-1245 |#1|) (-1245 |#2|)) (T -164)) -((-1703 (*1 *2 *2) (-12 (-4 *3 (-1052)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1245 *4))))) -(-10 -7 (-15 -1703 (|#3| |#3|))) -((-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 223)) (-3754 ((|#2| $) 102)) (-3915 (($ $) 256)) (-4071 (($ $) 250)) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 47)) (-3913 (($ $) 254)) (-4070 (($ $) 248)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 146)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 144)) (-2964 (($ $ $) 229)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 160) (((-691 |#2|) (-691 $)) 154)) (-4274 (($ (-1174 |#2|)) 125) (((-3 $ "failed") (-410 (-1174 |#2|))) NIL)) (-3890 (((-3 $ "failed") $) 214)) (-3425 (((-3 (-410 (-549)) "failed") $) 204)) (-3424 (((-112) $) 199)) (-3423 (((-410 (-549)) $) 202)) (-3513 (((-922)) 96)) (-2963 (($ $ $) 231)) (-1462 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-4059 (($) 245)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 193) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 198)) (-3536 ((|#2| $) 100)) (-2192 (((-1174 |#2|) $) 127)) (-4390 (($ (-1 |#2| |#2|) $) 108)) (-4374 (($ $) 247)) (-3481 (((-1174 |#2|) $) 126)) (-2806 (($ $) 207)) (-1464 (($) 103)) (-3108 (((-408 (-1174 $)) (-1174 $)) 95)) (-3109 (((-408 (-1174 $)) (-1174 $)) 64)) (-3889 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4375 (($ $) 246)) (-1752 (((-773) $) 226)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 236)) (-4189 ((|#2| (-1269 $)) NIL) ((|#2|) 98)) (-4242 (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-3605 (((-1174 |#2|)) 120)) (-3914 (($ $) 255)) (-4066 (($ $) 249)) (-3644 (((-1269 |#2|) $ (-1269 $)) 136) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 116) (((-691 |#2|) (-1269 $)) NIL)) (-4402 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) (((-893 (-549)) $) 184) (((-893 (-380)) $) 188) (((-168 (-380)) $) 172) (((-168 (-225)) $) 167) (((-538) $) 180)) (-3410 (($ $) 104)) (-4378 (((-865) $) 143) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-410 (-549))) NIL) (($ $) NIL)) (-2770 (((-1174 |#2|) $) 32)) (-3530 (((-773)) 106)) (-3662 (((-112) $ $) 13)) (-3921 (($ $) 259)) (-3909 (($ $) 253)) (-3919 (($ $) 257)) (-3907 (($ $) 251)) (-2385 ((|#2| $) 242)) (-3920 (($ $) 258)) (-3908 (($ $) 252)) (-3807 (($ $) 162)) (-3455 (((-112) $ $) 110)) (-4269 (($ $) 112) (($ $ $) NIL)) (-4271 (($ $ $) 111)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-410 (-549))) 276) (($ $ $) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4378 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-168 (-225)) |#1|)) (-15 -4402 ((-168 (-380)) |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4059 (|#1|)) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -1462 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2385 (|#2| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3410 (|#1| |#1|)) (-15 -1464 (|#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4274 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -3481 ((-1174 |#2|) |#1|)) (-15 -4402 (|#1| (-1174 |#2|))) (-15 -4274 (|#1| (-1174 |#2|))) (-15 -3605 ((-1174 |#2|))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -2770 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3536 (|#2| |#1|)) (-15 -3754 (|#2| |#1|)) (-15 -3513 ((-922))) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-3530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3513 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4189 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3605 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4378 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-168 (-225)) |#1|)) (-15 -4402 ((-168 (-380)) |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4059 (|#1|)) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -1462 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2385 (|#2| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3410 (|#1| |#1|)) (-15 -1464 (|#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4274 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -3481 ((-1174 |#2|) |#1|)) (-15 -4402 (|#1| (-1174 |#2|))) (-15 -4274 (|#1| (-1174 |#2|))) (-15 -3605 ((-1174 |#2|))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -2770 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3536 (|#2| |#1|)) (-15 -3754 (|#2| |#1|)) (-15 -3513 ((-922))) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-2241 (($ $) 103 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-2239 (((-112) $) 105 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-1957 (((-691 |#1|) (-1269 $)) 53) (((-691 |#1|)) 68)) (-3754 ((|#1| $) 59)) (-3915 (($ $) 229 (|has| |#1| (-1205)))) (-4071 (($ $) 212 (|has| |#1| (-1205)))) (-1843 (((-1192 (-922) (-773)) (-549)) 155 (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4206 (($ $) 122 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-4401 (((-408 $) $) 123 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-3438 (($ $) 242 (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-1753 (((-112) $ $) 113 (|has| |#1| (-308)))) (-3540 (((-773)) 96 (|has| |#1| (-370)))) (-3913 (($ $) 228 (|has| |#1| (-1205)))) (-4070 (($ $) 213 (|has| |#1| (-1205)))) (-3917 (($ $) 227 (|has| |#1| (-1205)))) (-4069 (($ $) 214 (|has| |#1| (-1205)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 178 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 176 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 173)) (-3576 (((-549) $) 177 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 175 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 174)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-352)))) (-2964 (($ $ $) 117 (|has| |#1| (-308)))) (-1956 (((-691 |#1|) $ (-1269 $)) 60) (((-691 |#1|) $) 66)) (-2427 (((-691 (-549)) (-691 $)) 172 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 171 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 170) (((-691 |#1|) (-691 $)) 169)) (-4274 (($ (-1174 |#1|)) 166) (((-3 $ "failed") (-410 (-1174 |#1|))) 163 (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) 37)) (-4075 ((|#1| $) 254)) (-3425 (((-3 (-410 (-549)) "failed") $) 247 (|has| |#1| (-548)))) (-3424 (((-112) $) 249 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 248 (|has| |#1| (-548)))) (-3513 (((-922)) 61)) (-3395 (($) 99 (|has| |#1| (-370)))) (-2963 (($ $ $) 116 (|has| |#1| (-308)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111 (|has| |#1| (-308)))) (-3236 (($) 157 (|has| |#1| (-352)))) (-1848 (((-112) $) 158 (|has| |#1| (-352)))) (-1941 (($ $ (-773)) 149 (|has| |#1| (-352))) (($ $) 148 (|has| |#1| (-352)))) (-4155 (((-112) $) 124 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1462 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1063)) (|has| |#1| (-1205))))) (-4059 (($) 239 (|has| |#1| (-1205)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 262 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 261 (|has| |#1| (-889 (-380))))) (-4203 (((-922) $) 160 (|has| |#1| (-352))) (((-834 (-922)) $) 146 (|has| |#1| (-352)))) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 241 (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3536 ((|#1| $) 58)) (-3868 (((-3 $ "failed") $) 150 (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120 (|has| |#1| (-308)))) (-2192 (((-1174 |#1|) $) 51 (|has| |#1| (-365)))) (-4390 (($ (-1 |#1| |#1|) $) 263)) (-2188 (((-922) $) 98 (|has| |#1| (-370)))) (-4374 (($ $) 236 (|has| |#1| (-1205)))) (-3481 (((-1174 |#1|) $) 164)) (-2069 (($ (-643 $)) 109 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (($ $ $) 108 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 125 (|has| |#1| (-365)))) (-3869 (($) 151 (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) 97 (|has| |#1| (-370)))) (-1464 (($) 258)) (-4076 ((|#1| $) 255)) (-3664 (((-1123) $) 11)) (-2572 (($) 168)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3564 (($ (-643 $)) 107 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (($ $ $) 106 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 154 (|has| |#1| (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4164 (((-408 $) $) 121 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118 (|has| |#1| (-308)))) (-3889 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 101 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112 (|has| |#1| (-308)))) (-4375 (($ $) 237 (|has| |#1| (-1205)))) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 265 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 264 (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) 114 (|has| |#1| (-308)))) (-4231 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115 (|has| |#1| (-308)))) (-4189 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-1942 (((-773) $) 159 (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) 147 (|has| |#1| (-352)))) (-4242 (($ $ (-1 |#1| |#1|) (-773)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-643 (-1180)) (-643 (-773))) 138 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 139 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 140 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 141 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 143 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3605 (((-1174 |#1|)) 167)) (-3918 (($ $) 226 (|has| |#1| (-1205)))) (-4068 (($ $) 215 (|has| |#1| (-1205)))) (-1842 (($) 156 (|has| |#1| (-352)))) (-3916 (($ $) 225 (|has| |#1| (-1205)))) (-4067 (($ $) 216 (|has| |#1| (-1205)))) (-3914 (($ $) 224 (|has| |#1| (-1205)))) (-4066 (($ $) 217 (|has| |#1| (-1205)))) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-691 |#1|) (-1269 $)) 72)) (-4402 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) (((-1174 |#1|) $) 179) (($ (-1174 |#1|)) 165) (((-893 (-549)) $) 260 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 259 (|has| |#1| (-616 (-893 (-380))))) (((-168 (-380)) $) 211 (|has| |#1| (-1023))) (((-168 (-225)) $) 210 (|has| |#1| (-1023))) (((-538) $) 209 (|has| |#1| (-616 (-538))))) (-3410 (($ $) 257)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 153 (-3960 (-3256 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (|has| |#1| (-352))))) (-1463 (($ |#1| |#1|) 256)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ (-410 (-549))) 95 (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) 100 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3105 (($ $) 152 (|has| |#1| (-352))) (((-3 $ "failed") $) 50 (-3960 (-3256 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (|has| |#1| (-145))))) (-2770 (((-1174 |#1|) $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-3921 (($ $) 235 (|has| |#1| (-1205)))) (-3909 (($ $) 223 (|has| |#1| (-1205)))) (-2240 (((-112) $ $) 104 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3919 (($ $) 234 (|has| |#1| (-1205)))) (-3907 (($ $) 222 (|has| |#1| (-1205)))) (-3923 (($ $) 233 (|has| |#1| (-1205)))) (-3911 (($ $) 221 (|has| |#1| (-1205)))) (-2385 ((|#1| $) 251 (|has| |#1| (-1205)))) (-3924 (($ $) 232 (|has| |#1| (-1205)))) (-3912 (($ $) 220 (|has| |#1| (-1205)))) (-3922 (($ $) 231 (|has| |#1| (-1205)))) (-3910 (($ $) 219 (|has| |#1| (-1205)))) (-3920 (($ $) 230 (|has| |#1| (-1205)))) (-3908 (($ $) 218 (|has| |#1| (-1205)))) (-3807 (($ $) 252 (|has| |#1| (-1063)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#1| |#1|) (-773)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-643 (-1180)) (-643 (-773))) 134 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 135 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 136 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 137 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 142 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 129 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-410 (-549))) 240 (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205)))) (($ $ $) 238 (|has| |#1| (-1205))) (($ $ (-549)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-549)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-549))) 127 (|has| |#1| (-365))))) -(((-166 |#1|) (-140) (-172)) (T -166)) -((-3536 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1464 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1463 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-3807 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1205)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1063)) (-4 *3 (-1205)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549)))))) -(-13 (-726 |t#1| (-1174 |t#1|)) (-415 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-887 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -1463) (-15 -1464 ($)) (-15 -3410 ($ $)) (-15 -1463 ($ |t#1| |t#1|)) (-15 -4076 (|t#1| $)) (-15 -4075 (|t#1| $)) (-15 -3536 (|t#1| $)) (IF (|has| |t#1| (-560)) (PROGN (-6 (-560)) (-15 -3889 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4424)) (-6 -4424) |%noBranch|) (IF (|has| |t#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-616 (-168 (-225)))) (-6 (-616 (-168 (-380))))) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -3807 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1205)) (PROGN (-6 (-1205)) (-15 -2385 (|t#1| $)) (IF (|has| |t#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -1462 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-913)) (IF (|has| |t#1| (-308)) (-6 (-913)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1205)) ((-95) |has| |#1| (-1205)) ((-102) . T) ((-111 #1# #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-352)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-352)) (|has| |#1| (-365))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-615 (-865)) . T) ((-172) . T) ((-616 (-168 (-225))) |has| |#1| (-1023)) ((-616 (-168 (-380))) |has| |#1| (-1023)) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-616 #2=(-1174 |#1|)) . T) ((-231 |#1|) . T) ((-233) -3960 (|has| |#1| (-352)) (|has| |#1| (-233))) ((-243) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1205)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-405) |has| |#1| (-352)) ((-370) -3960 (|has| |#1| (-352)) (|has| |#1| (-370))) ((-352) |has| |#1| (-352)) ((-372 |#1| #2#) . T) ((-413 |#1| #2#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1205)) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-648 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-642 |#1|) . T) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-719 |#1|) . T) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-726 |#1| #2#) . T) ((-728) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-913) -12 (|has| |#1| (-308)) (|has| |#1| (-913))) ((-924) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1005) -12 (|has| |#1| (-1005)) (|has| |#1| (-1205))) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-352)) ((-1205) |has| |#1| (-1205)) ((-1208) |has| |#1| (-1205)) ((-1219) . T) ((-1224) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) -((-4164 (((-408 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -4164 ((-408 |#2|) |#2|))) (-308) (-1245 (-168 |#1|))) (T -167)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) -(-10 -7 (-15 -4164 ((-408 |#2|) |#2|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 34)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-2241 (($ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-2239 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-1957 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) NIL)) (-3754 ((|#1| $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-1205)))) (-4071 (($ $) NIL (|has| |#1| (-1205)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4206 (($ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-4401 (((-408 $) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-3438 (($ $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-308)))) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-3913 (($ $) NIL (|has| |#1| (-1205)))) (-4070 (($ $) NIL (|has| |#1| (-1205)))) (-3917 (($ $) NIL (|has| |#1| (-1205)))) (-4069 (($ $) NIL (|has| |#1| (-1205)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-2964 (($ $ $) NIL (|has| |#1| (-308)))) (-1956 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-4274 (($ (-1174 |#1|)) NIL) (((-3 $ "failed") (-410 (-1174 |#1|))) NIL (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-4075 ((|#1| $) 13)) (-3425 (((-3 (-410 (-549)) #3="failed") $) NIL (|has| |#1| (-548)))) (-3424 (((-112) $) NIL (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| |#1| (-548)))) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL (|has| |#1| (-308)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-308)))) (-3236 (($) NIL (|has| |#1| (-352)))) (-1848 (((-112) $) NIL (|has| |#1| (-352)))) (-1941 (($ $ (-773)) NIL (|has| |#1| (-352))) (($ $) NIL (|has| |#1| (-352)))) (-4155 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1462 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#1| (-1205))))) (-4059 (($) NIL (|has| |#1| (-1205)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| |#1| (-889 (-380))))) (-4203 (((-922) $) NIL (|has| |#1| (-352))) (((-834 (-922)) $) NIL (|has| |#1| (-352)))) (-2573 (((-112) $) 36)) (-3412 (($ $ (-549)) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3536 ((|#1| $) 47)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #4="failed") (-643 $) $) NIL (|has| |#1| (-308)))) (-2192 (((-1174 |#1|) $) NIL (|has| |#1| (-365)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-4374 (($ $) NIL (|has| |#1| (-1205)))) (-3481 (((-1174 |#1|) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-3869 (($) NIL (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-1464 (($) NIL)) (-4076 ((|#1| $) 15)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-308)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4164 (((-408 $) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-308)))) (-3889 (((-3 $ #3#) $ |#1|) 45 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 48 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-308)))) (-4375 (($ $) NIL (|has| |#1| (-1205)))) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) NIL (|has| |#1| (-308)))) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-308)))) (-4189 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) NIL (|has| |#1| (-352)))) (-4242 (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3605 (((-1174 |#1|)) NIL)) (-3918 (($ $) NIL (|has| |#1| (-1205)))) (-4068 (($ $) NIL (|has| |#1| (-1205)))) (-1842 (($) NIL (|has| |#1| (-352)))) (-3916 (($ $) NIL (|has| |#1| (-1205)))) (-4067 (($ $) NIL (|has| |#1| (-1205)))) (-3914 (($ $) NIL (|has| |#1| (-1205)))) (-4066 (($ $) NIL (|has| |#1| (-1205)))) (-3644 (((-1269 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-4402 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) (((-893 (-549)) $) NIL (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#1| (-616 (-893 (-380))))) (((-168 (-380)) $) NIL (|has| |#1| (-1023))) (((-168 (-225)) $) NIL (|has| |#1| (-1023))) (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3410 (($ $) 46)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-352))))) (-1463 (($ |#1| |#1|) 38)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) 37) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-3105 (($ $) NIL (|has| |#1| (-352))) (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-2770 (((-1174 |#1|) $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-3921 (($ $) NIL (|has| |#1| (-1205)))) (-3909 (($ $) NIL (|has| |#1| (-1205)))) (-2240 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-3919 (($ $) NIL (|has| |#1| (-1205)))) (-3907 (($ $) NIL (|has| |#1| (-1205)))) (-3923 (($ $) NIL (|has| |#1| (-1205)))) (-3911 (($ $) NIL (|has| |#1| (-1205)))) (-2385 ((|#1| $) NIL (|has| |#1| (-1205)))) (-3924 (($ $) NIL (|has| |#1| (-1205)))) (-3912 (($ $) NIL (|has| |#1| (-1205)))) (-3922 (($ $) NIL (|has| |#1| (-1205)))) (-3910 (($ $) NIL (|has| |#1| (-1205)))) (-3920 (($ $) NIL (|has| |#1| (-1205)))) (-3908 (($ $) NIL (|has| |#1| (-1205)))) (-3807 (($ $) NIL (|has| |#1| (-1063)))) (-3510 (($) 28 T CONST)) (-3067 (($) 30 T CONST)) (-2900 (((-1162) $) 23 (|has| |#1| (-823))) (((-1162) $ (-112)) 25 (|has| |#1| (-823))) (((-1275) (-825) $) 26 (|has| |#1| (-823))) (((-1275) (-825) $ (-112)) 27 (|has| |#1| (-823)))) (-3072 (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 40)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-410 (-549))) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205)))) (($ $ $) NIL (|has| |#1| (-1205))) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-549))) NIL (|has| |#1| (-365))))) -(((-168 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-172)) (T -168)) -NIL -(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) -((-4390 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14))) -(((-169 |#1| |#2|) (-10 -7 (-15 -4390 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-172) (-172)) (T -169)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-168 *6)) (-5 *1 (-169 *5 *6))))) -(-10 -7 (-15 -4390 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) -((-4402 (((-893 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -4402 ((-893 |#1|) |#3|))) (-1104) (-13 (-616 (-893 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-4402 (*1 *2 *3) (-12 (-4 *5 (-13 (-616 *2) (-172))) (-5 *2 (-893 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1104)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -4402 ((-893 |#1|) |#3|))) -((-2968 (((-112) $ $) NIL)) (-1466 (((-112) $) 9)) (-1465 (((-112) $ (-112)) 11)) (-4046 (($) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3824 (($ $) 14)) (-4378 (((-865) $) 18)) (-4134 (((-112) $) 8)) (-4293 (((-112) $ (-112)) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-171) (-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -4134 ((-112) $)) (-15 -1466 ((-112) $)) (-15 -4293 ((-112) $ (-112))) (-15 -1465 ((-112) $ (-112))) (-15 -3824 ($ $))))) (T -171)) -((-4046 (*1 *1) (-5 *1 (-171))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4293 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1465 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3824 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -4134 ((-112) $)) (-15 -1466 ((-112) $)) (-15 -4293 ((-112) $ (-112))) (-15 -1465 ((-112) $ (-112))) (-15 -3824 ($ $)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-172) (-140)) (T -172)) -NIL -(-13 (-1052) (-111 $ $) (-10 -7 (-6 (-4427 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-1868 (($ $) 6))) +((-2970 (((-112) $ $) NIL)) (-1462 (($ (-550)) 14) (($ $ $) 15)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 18)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 9))) +(((-161) (-13 (-1105) (-10 -8 (-15 -1462 ($ (-550))) (-15 -1462 ($ $ $))))) (T -161)) +((-1462 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-161)))) (-1462 (*1 *1 *1 *1) (-5 *1 (-161)))) +(-13 (-1105) (-10 -8 (-15 -1462 ($ (-550))) (-15 -1462 ($ $ $)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 16) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-644 (-1139)) $) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-162) (-13 (-1087) (-10 -8 (-15 -3655 ((-644 (-1139)) $))))) (T -162)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-162))))) +(-13 (-1087) (-10 -8 (-15 -3655 ((-644 (-1139)) $)))) +((-3450 (((-113) (-1181)) 102))) +(((-163) (-10 -7 (-15 -3450 ((-113) (-1181))))) (T -163)) +((-3450 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-113)) (-5 *1 (-163))))) +(-10 -7 (-15 -3450 ((-113) (-1181)))) +((-1705 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1705 (|#3| |#3|))) (-1053) (-1246 |#1|) (-1246 |#2|)) (T -164)) +((-1705 (*1 *2 *2) (-12 (-4 *3 (-1053)) (-4 *4 (-1246 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1246 *4))))) +(-10 -7 (-15 -1705 (|#3| |#3|))) +((-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 223)) (-3756 ((|#2| $) 102)) (-3917 (($ $) 256)) (-4073 (($ $) 250)) (-3109 (((-3 (-644 (-1175 $)) "failed") (-644 (-1175 $)) (-1175 $)) 47)) (-3915 (($ $) 254)) (-4072 (($ $) 248)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 |#2| #1#) $) 146)) (-3578 (((-550) $) NIL) (((-411 (-550)) $) NIL) ((|#2| $) 144)) (-2966 (($ $ $) 229)) (-2429 (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) 160) (((-692 |#2|) (-692 $)) 154)) (-4276 (($ (-1175 |#2|)) 125) (((-3 $ "failed") (-411 (-1175 |#2|))) NIL)) (-3892 (((-3 $ "failed") $) 214)) (-3427 (((-3 (-411 (-550)) "failed") $) 204)) (-3426 (((-112) $) 199)) (-3425 (((-411 (-550)) $) 202)) (-3515 (((-923)) 96)) (-2965 (($ $ $) 231)) (-1463 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-4061 (($) 245)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 193) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 198)) (-3538 ((|#2| $) 100)) (-2194 (((-1175 |#2|) $) 127)) (-4392 (($ (-1 |#2| |#2|) $) 108)) (-4376 (($ $) 247)) (-3483 (((-1175 |#2|) $) 126)) (-2808 (($ $) 207)) (-1465 (($) 103)) (-3110 (((-409 (-1175 $)) (-1175 $)) 95)) (-3111 (((-409 (-1175 $)) (-1175 $)) 64)) (-3891 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4377 (($ $) 246)) (-1754 (((-774) $) 226)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 236)) (-4191 ((|#2| (-1270 $)) NIL) ((|#2|) 98)) (-4244 (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL) (($ $ (-774)) NIL) (($ $) NIL)) (-3607 (((-1175 |#2|)) 120)) (-3916 (($ $) 255)) (-4068 (($ $) 249)) (-3646 (((-1270 |#2|) $ (-1270 $)) 136) (((-692 |#2|) (-1270 $) (-1270 $)) NIL) (((-1270 |#2|) $) 116) (((-692 |#2|) (-1270 $)) NIL)) (-4404 (((-1270 |#2|) $) NIL) (($ (-1270 |#2|)) NIL) (((-1175 |#2|) $) NIL) (($ (-1175 |#2|)) NIL) (((-894 (-550)) $) 184) (((-894 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-226)) $) 167) (((-539) $) 180)) (-3412 (($ $) 104)) (-4380 (((-866) $) 143) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-411 (-550))) NIL) (($ $) NIL)) (-2772 (((-1175 |#2|) $) 32)) (-3532 (((-774)) 106)) (-3664 (((-112) $ $) 13)) (-3923 (($ $) 259)) (-3911 (($ $) 253)) (-3921 (($ $) 257)) (-3909 (($ $) 251)) (-2387 ((|#2| $) 242)) (-3922 (($ $) 258)) (-3910 (($ $) 252)) (-3809 (($ $) 162)) (-3457 (((-112) $ $) 110)) (-4271 (($ $) 112) (($ $ $) NIL)) (-4273 (($ $ $) 111)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-411 (-550))) 276) (($ $ $) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4380 (|#1| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2244 ((-2 (|:| -1949 |#1|) (|:| -4414 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -1754 ((-774) |#1|)) (-15 -3284 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -2808 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4404 ((-539) |#1|)) (-15 -4404 ((-169 (-226)) |#1|)) (-15 -4404 ((-169 (-381)) |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -4377 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4061 (|#1|)) (-15 ** (|#1| |#1| (-411 (-550)))) (-15 -3111 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3110 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3109 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -1463 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2387 (|#2| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3412 (|#1| |#1|)) (-15 -1465 (|#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4276 ((-3 |#1| "failed") (-411 (-1175 |#2|)))) (-15 -3483 ((-1175 |#2|) |#1|)) (-15 -4404 (|#1| (-1175 |#2|))) (-15 -4276 (|#1| (-1175 |#2|))) (-15 -3607 ((-1175 |#2|))) (-15 -2429 ((-692 |#2|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4404 ((-1175 |#2|) |#1|)) (-15 -4191 (|#2|)) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -2194 ((-1175 |#2|) |#1|)) (-15 -2772 ((-1175 |#2|) |#1|)) (-15 -4191 (|#2| (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -3538 (|#2| |#1|)) (-15 -3756 (|#2| |#1|)) (-15 -3515 ((-923))) (-15 -4380 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 ** (|#1| |#1| (-774))) (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -3664 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-166 |#2|) (-173)) (T -165)) +((-3532 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-774)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3515 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4191 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3607 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1175 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4380 (|#1| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2244 ((-2 (|:| -1949 |#1|) (|:| -4414 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -1754 ((-774) |#1|)) (-15 -3284 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -2808 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4404 ((-539) |#1|)) (-15 -4404 ((-169 (-226)) |#1|)) (-15 -4404 ((-169 (-381)) |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -4377 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4061 (|#1|)) (-15 ** (|#1| |#1| (-411 (-550)))) (-15 -3111 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3110 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3109 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -1463 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2387 (|#2| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3412 (|#1| |#1|)) (-15 -1465 (|#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4276 ((-3 |#1| "failed") (-411 (-1175 |#2|)))) (-15 -3483 ((-1175 |#2|) |#1|)) (-15 -4404 (|#1| (-1175 |#2|))) (-15 -4276 (|#1| (-1175 |#2|))) (-15 -3607 ((-1175 |#2|))) (-15 -2429 ((-692 |#2|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4404 ((-1175 |#2|) |#1|)) (-15 -4191 (|#2|)) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -2194 ((-1175 |#2|) |#1|)) (-15 -2772 ((-1175 |#2|) |#1|)) (-15 -4191 (|#2| (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -3538 (|#2| |#1|)) (-15 -3756 (|#2| |#1|)) (-15 -3515 ((-923))) (-15 -4380 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 ** (|#1| |#1| (-774))) (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -3664 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 102 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-2243 (($ $) 103 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-2241 (((-112) $) 105 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-1959 (((-692 |#1|) (-1270 $)) 53) (((-692 |#1|)) 68)) (-3756 ((|#1| $) 59)) (-3917 (($ $) 229 (|has| |#1| (-1206)))) (-4073 (($ $) 212 (|has| |#1| (-1206)))) (-1845 (((-1193 (-923) (-774)) (-550)) 155 (|has| |#1| (-353)))) (-1408 (((-3 $ "failed") $ $) 20)) (-3112 (((-409 (-1175 $)) (-1175 $)) 243 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-4208 (($ $) 122 (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-4403 (((-409 $) $) 123 (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-3440 (($ $) 242 (-12 (|has| |#1| (-1006)) (|has| |#1| (-1206))))) (-3109 (((-3 (-644 (-1175 $)) "failed") (-644 (-1175 $)) (-1175 $)) 246 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-1755 (((-112) $ $) 113 (|has| |#1| (-309)))) (-3542 (((-774)) 96 (|has| |#1| (-371)))) (-3915 (($ $) 228 (|has| |#1| (-1206)))) (-4072 (($ $) 213 (|has| |#1| (-1206)))) (-3919 (($ $) 227 (|has| |#1| (-1206)))) (-4071 (($ $) 214 (|has| |#1| (-1206)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 178 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 176 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 173)) (-3578 (((-550) $) 177 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 175 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 174)) (-1969 (($ (-1270 |#1|) (-1270 $)) 55) (($ (-1270 |#1|)) 71)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2966 (($ $ $) 117 (|has| |#1| (-309)))) (-1958 (((-692 |#1|) $ (-1270 $)) 60) (((-692 |#1|) $) 66)) (-2429 (((-692 (-550)) (-692 $)) 172 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 171 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 170) (((-692 |#1|) (-692 $)) 169)) (-4276 (($ (-1175 |#1|)) 166) (((-3 $ "failed") (-411 (-1175 |#1|))) 163 (|has| |#1| (-366)))) (-3892 (((-3 $ "failed") $) 37)) (-4077 ((|#1| $) 254)) (-3427 (((-3 (-411 (-550)) "failed") $) 247 (|has| |#1| (-549)))) (-3426 (((-112) $) 249 (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) 248 (|has| |#1| (-549)))) (-3515 (((-923)) 61)) (-3397 (($) 99 (|has| |#1| (-371)))) (-2965 (($ $ $) 116 (|has| |#1| (-309)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 111 (|has| |#1| (-309)))) (-3238 (($) 157 (|has| |#1| (-353)))) (-1850 (((-112) $) 158 (|has| |#1| (-353)))) (-1943 (($ $ (-774)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-4157 (((-112) $) 124 (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-1463 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1206))))) (-4061 (($) 239 (|has| |#1| (-1206)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 262 (|has| |#1| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 261 (|has| |#1| (-890 (-381))))) (-4205 (((-923) $) 160 (|has| |#1| (-353))) (((-835 (-923)) $) 146 (|has| |#1| (-353)))) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 241 (-12 (|has| |#1| (-1006)) (|has| |#1| (-1206))))) (-3538 ((|#1| $) 58)) (-3870 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 120 (|has| |#1| (-309)))) (-2194 (((-1175 |#1|) $) 51 (|has| |#1| (-366)))) (-4392 (($ (-1 |#1| |#1|) $) 263)) (-2190 (((-923) $) 98 (|has| |#1| (-371)))) (-4376 (($ $) 236 (|has| |#1| (-1206)))) (-3483 (((-1175 |#1|) $) 164)) (-2071 (($ (-644 $)) 109 (-3962 (|has| |#1| (-309)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (($ $ $) 108 (-3962 (|has| |#1| (-309)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-3665 (((-1163) $) 10)) (-2808 (($ $) 125 (|has| |#1| (-366)))) (-3871 (($) 151 (|has| |#1| (-353)) CONST)) (-2565 (($ (-923)) 97 (|has| |#1| (-371)))) (-1465 (($) 258)) (-4078 ((|#1| $) 255)) (-3666 (((-1124) $) 11)) (-2574 (($) 168)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 110 (-3962 (|has| |#1| (-309)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-3566 (($ (-644 $)) 107 (-3962 (|has| |#1| (-309)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (($ $ $) 106 (-3962 (|has| |#1| (-309)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 154 (|has| |#1| (-353)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 245 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-3111 (((-409 (-1175 $)) (-1175 $)) 244 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-4166 (((-409 $) $) 121 (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-309))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 118 (|has| |#1| (-309)))) (-3891 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 101 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-309)))) (-4377 (($ $) 237 (|has| |#1| (-1206)))) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) 269 (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) 266 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 265 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) 264 (|has| |#1| (-518 (-1181) |#1|)))) (-1754 (((-774) $) 114 (|has| |#1| (-309)))) (-4233 (($ $ |#1|) 270 (|has| |#1| (-288 |#1| |#1|)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 115 (|has| |#1| (-309)))) (-4191 ((|#1| (-1270 $)) 54) ((|#1|) 67)) (-1944 (((-774) $) 159 (|has| |#1| (-353))) (((-3 (-774) "failed") $ $) 147 (|has| |#1| (-353)))) (-4244 (($ $ (-1 |#1| |#1|) (-774)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-644 (-1181)) (-644 (-774))) 138 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 139 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 140 (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) 141 (|has| |#1| (-904 (-1181)))) (($ $ (-774)) 143 (-3962 (-3258 (|has| |#1| (-366)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3258 (|has| |#1| (-234)) (|has| |#1| (-366))))) (($ $) 145 (-3962 (-3258 (|has| |#1| (-366)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3258 (|has| |#1| (-234)) (|has| |#1| (-366)))))) (-2573 (((-692 |#1|) (-1270 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-366)))) (-3607 (((-1175 |#1|)) 167)) (-3920 (($ $) 226 (|has| |#1| (-1206)))) (-4070 (($ $) 215 (|has| |#1| (-1206)))) (-1844 (($) 156 (|has| |#1| (-353)))) (-3918 (($ $) 225 (|has| |#1| (-1206)))) (-4069 (($ $) 216 (|has| |#1| (-1206)))) (-3916 (($ $) 224 (|has| |#1| (-1206)))) (-4068 (($ $) 217 (|has| |#1| (-1206)))) (-3646 (((-1270 |#1|) $ (-1270 $)) 57) (((-692 |#1|) (-1270 $) (-1270 $)) 56) (((-1270 |#1|) $) 73) (((-692 |#1|) (-1270 $)) 72)) (-4404 (((-1270 |#1|) $) 70) (($ (-1270 |#1|)) 69) (((-1175 |#1|) $) 179) (($ (-1175 |#1|)) 165) (((-894 (-550)) $) 260 (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) 259 (|has| |#1| (-617 (-894 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1024))) (((-169 (-226)) $) 210 (|has| |#1| (-1024))) (((-539) $) 209 (|has| |#1| (-617 (-539))))) (-3412 (($ $) 257)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 153 (-3962 (-3258 (|has| $ (-145)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))) (|has| |#1| (-353))))) (-1464 (($ |#1| |#1|) 256)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44) (($ (-411 (-550))) 95 (-3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) 100 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-3107 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (-3962 (-3258 (|has| $ (-145)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))) (|has| |#1| (-145))))) (-2772 (((-1175 |#1|) $) 52)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2192 (((-1270 $)) 74)) (-3923 (($ $) 235 (|has| |#1| (-1206)))) (-3911 (($ $) 223 (|has| |#1| (-1206)))) (-2242 (((-112) $ $) 104 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914)))))) (-3921 (($ $) 234 (|has| |#1| (-1206)))) (-3909 (($ $) 222 (|has| |#1| (-1206)))) (-3925 (($ $) 233 (|has| |#1| (-1206)))) (-3913 (($ $) 221 (|has| |#1| (-1206)))) (-2387 ((|#1| $) 251 (|has| |#1| (-1206)))) (-3926 (($ $) 232 (|has| |#1| (-1206)))) (-3914 (($ $) 220 (|has| |#1| (-1206)))) (-3924 (($ $) 231 (|has| |#1| (-1206)))) (-3912 (($ $) 219 (|has| |#1| (-1206)))) (-3922 (($ $) 230 (|has| |#1| (-1206)))) (-3910 (($ $) 218 (|has| |#1| (-1206)))) (-3809 (($ $) 252 (|has| |#1| (-1064)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1 |#1| |#1|) (-774)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-644 (-1181)) (-644 (-774))) 134 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 135 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 136 (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) 137 (|has| |#1| (-904 (-1181)))) (($ $ (-774)) 142 (-3962 (-3258 (|has| |#1| (-366)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3258 (|has| |#1| (-234)) (|has| |#1| (-366))))) (($ $) 144 (-3962 (-3258 (|has| |#1| (-366)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-3258 (|has| |#1| (-234)) (|has| |#1| (-366)))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 129 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-411 (-550))) 240 (-12 (|has| |#1| (-1006)) (|has| |#1| (-1206)))) (($ $ $) 238 (|has| |#1| (-1206))) (($ $ (-550)) 126 (|has| |#1| (-366)))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-411 (-550)) $) 128 (|has| |#1| (-366))) (($ $ (-411 (-550))) 127 (|has| |#1| (-366))))) +(((-166 |#1|) (-140) (-173)) (T -166)) +((-3538 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1465 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3412 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1464 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3891 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-3809 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1064)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1206)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1064)) (-4 *3 (-1206)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) (-3427 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550)))))) +(-13 (-727 |t#1| (-1175 |t#1|)) (-416 |t#1|) (-232 |t#1|) (-341 |t#1|) (-404 |t#1|) (-888 |t#1|) (-380 |t#1|) (-173) (-10 -8 (-6 -1464) (-15 -1465 ($)) (-15 -3412 ($ $)) (-15 -1464 ($ |t#1| |t#1|)) (-15 -4078 (|t#1| $)) (-15 -4077 (|t#1| $)) (-15 -3538 (|t#1| $)) (IF (|has| |t#1| (-561)) (PROGN (-6 (-561)) (-15 -3891 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-309)) (-6 (-309)) |%noBranch|) (IF (|has| |t#1| (-6 -4426)) (-6 -4426) |%noBranch|) (IF (|has| |t#1| (-6 -4423)) (-6 -4423) |%noBranch|) (IF (|has| |t#1| (-366)) (-6 (-366)) |%noBranch|) (IF (|has| |t#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-617 (-169 (-226)))) (-6 (-617 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1064)) (-15 -3809 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1206)) (PROGN (-6 (-1206)) (-15 -2387 (|t#1| $)) (IF (|has| |t#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |t#1| (-1064)) (-15 -1463 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-914)) (IF (|has| |t#1| (-309)) (-6 (-914)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-38 |#1|) . T) ((-38 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-35) |has| |#1| (-1206)) ((-95) |has| |#1| (-1206)) ((-102) . T) ((-111 #1# #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3962 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-353)) (|has| |#1| (-366))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-616 (-866)) . T) ((-173) . T) ((-617 (-169 (-226))) |has| |#1| (-1024)) ((-617 (-169 (-381))) |has| |#1| (-1024)) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-617 (-894 (-381))) |has| |#1| (-617 (-894 (-381)))) ((-617 (-894 (-550))) |has| |#1| (-617 (-894 (-550)))) ((-617 #2=(-1175 |#1|)) . T) ((-232 |#1|) . T) ((-234) -3962 (|has| |#1| (-353)) (|has| |#1| (-234))) ((-244) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-286) |has| |#1| (-1206)) ((-288 |#1| $) |has| |#1| (-288 |#1| |#1|)) ((-292) -3962 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-309) -3962 (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-311 |#1|) |has| |#1| (-311 |#1|)) ((-366) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-406) |has| |#1| (-353)) ((-371) -3962 (|has| |#1| (-353)) (|has| |#1| (-371))) ((-353) |has| |#1| (-353)) ((-373 |#1| #2#) . T) ((-414 |#1| #2#) . T) ((-341 |#1|) . T) ((-380 |#1|) . T) ((-404 |#1|) . T) ((-416 |#1|) . T) ((-456) -3962 (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-497) |has| |#1| (-1206)) ((-518 (-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((-518 |#1| |#1|) |has| |#1| (-311 |#1|)) ((-561) -3962 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-649 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-643 |#1|) . T) ((-643 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-720 |#1|) . T) ((-720 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-727 |#1| #2#) . T) ((-729) . T) ((-904 (-1181)) |has| |#1| (-904 (-1181))) ((-890 (-381)) |has| |#1| (-890 (-381))) ((-890 (-550)) |has| |#1| (-890 (-550))) ((-888 |#1|) . T) ((-914) -12 (|has| |#1| (-309)) (|has| |#1| (-914))) ((-925) -3962 (|has| |#1| (-353)) (|has| |#1| (-366)) (|has| |#1| (-309))) ((-1006) -12 (|has| |#1| (-1006)) (|has| |#1| (-1206))) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-1055 |#1|) . T) ((-1055 $) . T) ((-1060 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) |has| |#1| (-353)) ((-1206) |has| |#1| (-1206)) ((-1209) |has| |#1| (-1206)) ((-1220) . T) ((-1225) -3962 (|has| |#1| (-353)) (|has| |#1| (-366)) (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) +((-4166 (((-409 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4166 ((-409 |#2|) |#2|))) (-309) (-1246 (-169 |#1|))) (T -167)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1246 (-169 *4)))))) +(-10 -7 (-15 -4166 ((-409 |#2|) |#2|))) +((-1466 (((-1186) (-1186) (-293)) 8))) +(((-168) (-13 (-1220) (-10 -7 (-15 -1466 ((-1186) (-1186) (-293)))))) (T -168)) +((-1466 (*1 *2 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-293)) (-5 *1 (-168))))) +(-13 (-1220) (-10 -7 (-15 -1466 ((-1186) (-1186) (-293))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 34)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-561))))) (-2243 (($ $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-561))))) (-2241 (((-112) $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-561))))) (-1959 (((-692 |#1|) (-1270 $)) NIL) (((-692 |#1|)) NIL)) (-3756 ((|#1| $) NIL)) (-3917 (($ $) NIL (|has| |#1| (-1206)))) (-4073 (($ $) NIL (|has| |#1| (-1206)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| |#1| (-353)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-4208 (($ $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-4403 (((-409 $) $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-3440 (($ $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1206))))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-309)))) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-3915 (($ $) NIL (|has| |#1| (-1206)))) (-4072 (($ $) NIL (|has| |#1| (-1206)))) (-3919 (($ $) NIL (|has| |#1| (-1206)))) (-4071 (($ $) NIL (|has| |#1| (-1206)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-1969 (($ (-1270 |#1|) (-1270 $)) NIL) (($ (-1270 |#1|)) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2966 (($ $ $) NIL (|has| |#1| (-309)))) (-1958 (((-692 |#1|) $ (-1270 $)) NIL) (((-692 |#1|) $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-4276 (($ (-1175 |#1|)) NIL) (((-3 $ "failed") (-411 (-1175 |#1|))) NIL (|has| |#1| (-366)))) (-3892 (((-3 $ "failed") $) NIL)) (-4077 ((|#1| $) 13)) (-3427 (((-3 (-411 (-550)) #3="failed") $) NIL (|has| |#1| (-549)))) (-3426 (((-112) $) NIL (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) NIL (|has| |#1| (-549)))) (-3515 (((-923)) NIL)) (-3397 (($) NIL (|has| |#1| (-371)))) (-2965 (($ $ $) NIL (|has| |#1| (-309)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-309)))) (-3238 (($) NIL (|has| |#1| (-353)))) (-1850 (((-112) $) NIL (|has| |#1| (-353)))) (-1943 (($ $ (-774)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-4157 (((-112) $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-1463 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1064)) (|has| |#1| (-1206))))) (-4061 (($) NIL (|has| |#1| (-1206)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| |#1| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| |#1| (-890 (-381))))) (-4205 (((-923) $) NIL (|has| |#1| (-353))) (((-835 (-923)) $) NIL (|has| |#1| (-353)))) (-2575 (((-112) $) 36)) (-3414 (($ $ (-550)) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1206))))) (-3538 ((|#1| $) 47)) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1752 (((-3 (-644 $) #4="failed") (-644 $) $) NIL (|has| |#1| (-309)))) (-2194 (((-1175 |#1|) $) NIL (|has| |#1| (-366)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-4376 (($ $) NIL (|has| |#1| (-1206)))) (-3483 (((-1175 |#1|) $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-309))) (($ $ $) NIL (|has| |#1| (-309)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-3871 (($) NIL (|has| |#1| (-353)) CONST)) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-1465 (($) NIL)) (-4078 ((|#1| $) 15)) (-3666 (((-1124) $) NIL)) (-2574 (($) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-309)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-309))) (($ $ $) NIL (|has| |#1| (-309)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| |#1| (-353)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-309)) (|has| |#1| (-914))))) (-4166 (((-409 $) $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-366))))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-309))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-309)))) (-3891 (((-3 $ #3#) $ |#1|) 45 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 48 (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-561))))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-309)))) (-4377 (($ $) NIL (|has| |#1| (-1206)))) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) NIL (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-518 (-1181) |#1|)))) (-1754 (((-774) $) NIL (|has| |#1| (-309)))) (-4233 (($ $ |#1|) NIL (|has| |#1| (-288 |#1| |#1|)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-309)))) (-4191 ((|#1| (-1270 $)) NIL) ((|#1|) NIL)) (-1944 (((-774) $) NIL (|has| |#1| (-353))) (((-3 (-774) "failed") $ $) NIL (|has| |#1| (-353)))) (-4244 (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2573 (((-692 |#1|) (-1270 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-366)))) (-3607 (((-1175 |#1|)) NIL)) (-3920 (($ $) NIL (|has| |#1| (-1206)))) (-4070 (($ $) NIL (|has| |#1| (-1206)))) (-1844 (($) NIL (|has| |#1| (-353)))) (-3918 (($ $) NIL (|has| |#1| (-1206)))) (-4069 (($ $) NIL (|has| |#1| (-1206)))) (-3916 (($ $) NIL (|has| |#1| (-1206)))) (-4068 (($ $) NIL (|has| |#1| (-1206)))) (-3646 (((-1270 |#1|) $ (-1270 $)) NIL) (((-692 |#1|) (-1270 $) (-1270 $)) NIL) (((-1270 |#1|) $) NIL) (((-692 |#1|) (-1270 $)) NIL)) (-4404 (((-1270 |#1|) $) NIL) (($ (-1270 |#1|)) NIL) (((-1175 |#1|) $) NIL) (($ (-1175 |#1|)) NIL) (((-894 (-550)) $) NIL (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| |#1| (-617 (-894 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1024))) (((-169 (-226)) $) NIL (|has| |#1| (-1024))) (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3412 (($ $) 46)) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-353))))) (-1464 (($ |#1| |#1|) 38)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) 37) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-561))))) (-3107 (($ $) NIL (|has| |#1| (-353))) (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-2772 (((-1175 |#1|) $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL)) (-3923 (($ $) NIL (|has| |#1| (-1206)))) (-3911 (($ $) NIL (|has| |#1| (-1206)))) (-2242 (((-112) $ $) NIL (-3962 (-12 (|has| |#1| (-309)) (|has| |#1| (-914))) (|has| |#1| (-561))))) (-3921 (($ $) NIL (|has| |#1| (-1206)))) (-3909 (($ $) NIL (|has| |#1| (-1206)))) (-3925 (($ $) NIL (|has| |#1| (-1206)))) (-3913 (($ $) NIL (|has| |#1| (-1206)))) (-2387 ((|#1| $) NIL (|has| |#1| (-1206)))) (-3926 (($ $) NIL (|has| |#1| (-1206)))) (-3914 (($ $) NIL (|has| |#1| (-1206)))) (-3924 (($ $) NIL (|has| |#1| (-1206)))) (-3912 (($ $) NIL (|has| |#1| (-1206)))) (-3922 (($ $) NIL (|has| |#1| (-1206)))) (-3910 (($ $) NIL (|has| |#1| (-1206)))) (-3809 (($ $) NIL (|has| |#1| (-1064)))) (-3512 (($) 28 T CONST)) (-3069 (($) 30 T CONST)) (-2902 (((-1163) $) 23 (|has| |#1| (-824))) (((-1163) $ (-112)) 25 (|has| |#1| (-824))) (((-1276) (-826) $) 26 (|has| |#1| (-824))) (((-1276) (-826) $ (-112)) 27 (|has| |#1| (-824)))) (-3074 (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 40)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-411 (-550))) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1206)))) (($ $ $) NIL (|has| |#1| (-1206))) (($ $ (-550)) NIL (|has| |#1| (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-411 (-550)) $) NIL (|has| |#1| (-366))) (($ $ (-411 (-550))) NIL (|has| |#1| (-366))))) +(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-173)) (T -169)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) +((-4392 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -4392 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-173) (-173)) (T -170)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-5 *2 (-169 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -4392 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-4404 (((-894 |#1|) |#3|) 22))) +(((-171 |#1| |#2| |#3|) (-10 -7 (-15 -4404 ((-894 |#1|) |#3|))) (-1105) (-13 (-617 (-894 |#1|)) (-173)) (-166 |#2|)) (T -171)) +((-4404 (*1 *2 *3) (-12 (-4 *5 (-13 (-617 *2) (-173))) (-5 *2 (-894 *4)) (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1105)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -4404 ((-894 |#1|) |#3|))) +((-2970 (((-112) $ $) NIL)) (-1468 (((-112) $) 9)) (-1467 (((-112) $ (-112)) 11)) (-4048 (($) 13)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3826 (($ $) 14)) (-4380 (((-866) $) 18)) (-4136 (((-112) $) 8)) (-4295 (((-112) $ (-112)) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-172) (-13 (-1105) (-10 -8 (-15 -4048 ($)) (-15 -4136 ((-112) $)) (-15 -1468 ((-112) $)) (-15 -4295 ((-112) $ (-112))) (-15 -1467 ((-112) $ (-112))) (-15 -3826 ($ $))))) (T -172)) +((-4048 (*1 *1) (-5 *1 (-172))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-4295 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-1467 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3826 (*1 *1 *1) (-5 *1 (-172)))) +(-13 (-1105) (-10 -8 (-15 -4048 ($)) (-15 -4136 ((-112) $)) (-15 -1468 ((-112) $)) (-15 -4295 ((-112) $ (-112))) (-15 -1467 ((-112) $ (-112))) (-15 -3826 ($ $)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) (((-173) (-140)) (T -173)) -((-1868 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -1868 ($ $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 ((|#1| $) 81)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-1471 (($ $) 21)) (-1475 (($ |#1| (-1157 |#1|)) 50)) (-3890 (((-3 $ "failed") $) 123)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-1472 (((-1157 |#1|) $) 88)) (-1474 (((-1157 |#1|) $) 85)) (-1473 (((-1157 |#1|) $) 86)) (-2573 (((-112) $) NIL)) (-1468 (((-1157 |#1|) $) 94)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-4200 (($ $ (-549)) 97)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1467 (((-1157 |#1|) $) 95)) (-1469 (((-1157 (-410 |#1|)) $) 14)) (-3016 (($ (-410 |#1|)) 17) (($ |#1| (-1157 |#1|) (-1157 |#1|)) 40)) (-3292 (($ $) 99)) (-4378 (((-865) $) 140) (($ (-549)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-549))) NIL) (($ $) NIL)) (-3530 (((-773)) 69 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-1470 (((-1157 (-410 |#1|)) $) 20)) (-3510 (($) 27 T CONST)) (-3067 (($) 30 T CONST)) (-3455 (((-112) $ $) 37)) (-4381 (($ $ $) 121)) (-4269 (($ $) 112) (($ $ $) 109)) (-4271 (($ $ $) 107)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3016 ($ (-410 |#1|))) (-15 -3016 ($ |#1| (-1157 |#1|) (-1157 |#1|))) (-15 -1475 ($ |#1| (-1157 |#1|))) (-15 -1474 ((-1157 |#1|) $)) (-15 -1473 ((-1157 |#1|) $)) (-15 -1472 ((-1157 |#1|) $)) (-15 -3533 (|#1| $)) (-15 -1471 ($ $)) (-15 -1470 ((-1157 (-410 |#1|)) $)) (-15 -1469 ((-1157 (-410 |#1|)) $)) (-15 -1468 ((-1157 |#1|) $)) (-15 -1467 ((-1157 |#1|) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)))) (-308)) (T -174)) -((-3016 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3016 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-1475 (*1 *1 *2 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3533 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-1471 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3292 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3016 ($ (-410 |#1|))) (-15 -3016 ($ |#1| (-1157 |#1|) (-1157 |#1|))) (-15 -1475 ($ |#1| (-1157 |#1|))) (-15 -1474 ((-1157 |#1|) $)) (-15 -1473 ((-1157 |#1|) $)) (-15 -1472 ((-1157 |#1|) $)) (-15 -3533 (|#1| $)) (-15 -1471 ($ $)) (-15 -1470 ((-1157 (-410 |#1|)) $)) (-15 -1469 ((-1157 (-410 |#1|)) $)) (-15 -1468 ((-1157 |#1|) $)) (-15 -1467 ((-1157 |#1|) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)))) -((-1476 (($ (-109) $) 15)) (-3641 (((-693 (-109)) (-509) $) 14)) (-4378 (((-865) $) 18)) (-1477 (((-643 (-109)) $) 8))) -(((-175) (-13 (-615 (-865)) (-10 -8 (-15 -1477 ((-643 (-109)) $)) (-15 -1476 ($ (-109) $)) (-15 -3641 ((-693 (-109)) (-509) $))))) (T -175)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-643 (-109))) (-5 *1 (-175)))) (-1476 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3641 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-175))))) -(-13 (-615 (-865)) (-10 -8 (-15 -1477 ((-643 (-109)) $)) (-15 -1476 ($ (-109) $)) (-15 -3641 ((-693 (-109)) (-509) $)))) -((-1490 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 38)) (-1481 (((-946 |#1|) (-946 |#1|)) 22)) (-1486 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 34)) (-1479 (((-946 |#1|) (-946 |#1|)) 20)) (-1484 (((-946 |#1|) (-946 |#1|)) 28)) (-1483 (((-946 |#1|) (-946 |#1|)) 27)) (-1482 (((-946 |#1|) (-946 |#1|)) 26)) (-1487 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 35)) (-1485 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 33)) (-1811 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 32)) (-1480 (((-946 |#1|) (-946 |#1|)) 21)) (-1491 (((-1 (-946 |#1|) (-946 |#1|)) |#1| |#1|) 41)) (-1478 (((-946 |#1|) (-946 |#1|)) 8)) (-1489 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 37)) (-1488 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 36))) -(((-176 |#1|) (-10 -7 (-15 -1478 ((-946 |#1|) (-946 |#1|))) (-15 -1479 ((-946 |#1|) (-946 |#1|))) (-15 -1480 ((-946 |#1|) (-946 |#1|))) (-15 -1481 ((-946 |#1|) (-946 |#1|))) (-15 -1482 ((-946 |#1|) (-946 |#1|))) (-15 -1483 ((-946 |#1|) (-946 |#1|))) (-15 -1484 ((-946 |#1|) (-946 |#1|))) (-15 -1811 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1485 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1486 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1487 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1488 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1489 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1490 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1491 ((-1 (-946 |#1|) (-946 |#1|)) |#1| |#1|))) (-13 (-365) (-1205) (-1005))) (T -176)) -((-1491 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1490 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1488 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1486 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1485 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1811 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -1478 ((-946 |#1|) (-946 |#1|))) (-15 -1479 ((-946 |#1|) (-946 |#1|))) (-15 -1480 ((-946 |#1|) (-946 |#1|))) (-15 -1481 ((-946 |#1|) (-946 |#1|))) (-15 -1482 ((-946 |#1|) (-946 |#1|))) (-15 -1483 ((-946 |#1|) (-946 |#1|))) (-15 -1484 ((-946 |#1|) (-946 |#1|))) (-15 -1811 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1485 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1486 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1487 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1488 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1489 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1490 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1491 ((-1 (-946 |#1|) (-946 |#1|)) |#1| |#1|))) -((-2770 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2770 (|#2| |#3|))) (-172) (-1245 |#1|) (-726 |#1| |#2|)) (T -177)) -((-2770 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-726 *4 *2))))) -(-10 -7 (-15 -2770 (|#2| |#3|))) -((-3199 (((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)) 44 (|has| (-949 |#2|) (-889 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-949 |#2|) (-889 |#1|)) (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) |%noBranch|)) (-1104) (-13 (-889 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *3 (-166 *6)) (-4 (-949 *6) (-889 *5)) (-4 *6 (-13 (-889 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-949 |#2|) (-889 |#1|)) (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) |%noBranch|)) -((-1493 (((-643 |#1|) (-643 |#1|) |#1|) 41)) (-1492 (((-643 |#1|) |#1| (-643 |#1|)) 20)) (-2260 (((-643 |#1|) (-643 (-643 |#1|)) (-643 |#1|)) 36) ((|#1| (-643 |#1|) (-643 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -1492 ((-643 |#1|) |#1| (-643 |#1|))) (-15 -2260 (|#1| (-643 |#1|) (-643 |#1|))) (-15 -2260 ((-643 |#1|) (-643 (-643 |#1|)) (-643 |#1|))) (-15 -1493 ((-643 |#1|) (-643 |#1|) |#1|))) (-308)) (T -179)) -((-1493 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-2260 (*1 *2 *3 *2) (-12 (-5 *3 (-643 (-643 *4))) (-5 *2 (-643 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-2260 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-1492 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -1492 ((-643 |#1|) |#1| (-643 |#1|))) (-15 -2260 (|#1| (-643 |#1|) (-643 |#1|))) (-15 -2260 ((-643 |#1|) (-643 (-643 |#1|)) (-643 |#1|))) (-15 -1493 ((-643 |#1|) (-643 |#1|) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 10)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-180) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $))))) (T -180)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-180)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-180))))) -(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $)))) -((-1502 (((-2 (|:| |start| |#2|) (|:| -1954 (-408 |#2|))) |#2|) 66)) (-1501 ((|#1| |#1|) 58)) (-1500 (((-168 |#1|) |#2|) 93)) (-1499 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-1498 ((|#2| |#2|) 91)) (-1497 (((-408 |#2|) |#2| |#1|) 121) (((-408 |#2|) |#2| |#1| (-112)) 88)) (-3536 ((|#1| |#2|) 120)) (-1496 ((|#2| |#2|) 135)) (-4164 (((-408 |#2|) |#2|) 158) (((-408 |#2|) |#2| |#1|) 33) (((-408 |#2|) |#2| |#1| (-112)) 157)) (-1495 (((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2|) 156) (((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2| (-112)) 81)) (-1494 (((-643 (-168 |#1|)) |#2| |#1|) 42) (((-643 (-168 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -1494 ((-643 (-168 |#1|)) |#2|)) (-15 -1494 ((-643 (-168 |#1|)) |#2| |#1|)) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2| (-112))) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2|)) (-15 -4164 ((-408 |#2|) |#2| |#1| (-112))) (-15 -4164 ((-408 |#2|) |#2| |#1|)) (-15 -4164 ((-408 |#2|) |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3536 (|#1| |#2|)) (-15 -1497 ((-408 |#2|) |#2| |#1| (-112))) (-15 -1497 ((-408 |#2|) |#2| |#1|)) (-15 -1498 (|#2| |#2|)) (-15 -1499 (|#1| |#2| |#1|)) (-15 -1499 (|#1| |#2|)) (-15 -1500 ((-168 |#1|) |#2|)) (-15 -1501 (|#1| |#1|)) (-15 -1502 ((-2 (|:| |start| |#2|) (|:| -1954 (-408 |#2|))) |#2|))) (-13 (-365) (-850)) (-1245 (-168 |#1|))) (T -181)) -((-1502 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-2 (|:| |start| *3) (|:| -1954 (-408 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1501 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-850))) (-4 *3 (-1245 *2)))) (-1499 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1499 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-168 *3))))) (-1497 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-3536 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-168 *3))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-4164 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1495 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1495 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-850))) (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-168 *5))))) (-1494 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1494 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) -(-10 -7 (-15 -1494 ((-643 (-168 |#1|)) |#2|)) (-15 -1494 ((-643 (-168 |#1|)) |#2| |#1|)) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2| (-112))) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2|)) (-15 -4164 ((-408 |#2|) |#2| |#1| (-112))) (-15 -4164 ((-408 |#2|) |#2| |#1|)) (-15 -4164 ((-408 |#2|) |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3536 (|#1| |#2|)) (-15 -1497 ((-408 |#2|) |#2| |#1| (-112))) (-15 -1497 ((-408 |#2|) |#2| |#1|)) (-15 -1498 (|#2| |#2|)) (-15 -1499 (|#1| |#2| |#1|)) (-15 -1499 (|#1| |#2|)) (-15 -1500 ((-168 |#1|) |#2|)) (-15 -1501 (|#1| |#1|)) (-15 -1502 ((-2 (|:| |start| |#2|) (|:| -1954 (-408 |#2|))) |#2|))) -((-1503 (((-3 |#2| "failed") |#2|) 20)) (-1504 (((-773) |#2|) 23)) (-1505 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -1503 ((-3 |#2| "failed") |#2|)) (-15 -1504 ((-773) |#2|)) (-15 -1505 (|#2| |#2| |#2|))) (-1219) (-676 |#1|)) (T -182)) -((-1505 (*1 *2 *2 *2) (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-1219)) (-5 *2 (-773)) (-5 *1 (-182 *4 *3)) (-4 *3 (-676 *4)))) (-1503 (*1 *2 *2) (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3))))) -(-10 -7 (-15 -1503 ((-3 |#2| "failed") |#2|)) (-15 -1504 ((-773) |#2|)) (-15 -1505 (|#2| |#2| |#2|))) -((-2968 (((-112) $ $) NIL)) (-1508 (((-643 (-867)) $) NIL)) (-3973 (((-509) $) 8)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) 10)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-1506 (((-693 $) (-509)) 17)) (-1509 (((-643 (-112)) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) 12)) (-3455 (((-112) $ $) NIL))) -(((-183) (-13 (-186) (-10 -8 (-15 -1506 ((-693 $) (-509)))))) (T -183)) -((-1506 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-183))) (-5 *1 (-183))))) -(-13 (-186) (-10 -8 (-15 -1506 ((-693 $) (-509))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1583 ((|#1| $) 7)) (-4378 (((-865) $) 14)) (-3662 (((-112) $ $) NIL)) (-1507 (((-643 (-1185)) $) 10)) (-3455 (((-112) $ $) 12))) -(((-184 |#1|) (-13 (-1104) (-10 -8 (-15 -1583 (|#1| $)) (-15 -1507 ((-643 (-1185)) $)))) (-186)) (T -184)) -((-1583 (*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-184 *3)) (-4 *3 (-186))))) -(-13 (-1104) (-10 -8 (-15 -1583 (|#1| $)) (-15 -1507 ((-643 (-1185)) $)))) -((-1508 (((-643 (-867)) $) 16)) (-1510 (((-187) $) 8)) (-1509 (((-643 (-112)) $) 13)) (-2921 (((-55) $) 10))) -(((-185 |#1|) (-10 -8 (-15 -1508 ((-643 (-867)) |#1|)) (-15 -1509 ((-643 (-112)) |#1|)) (-15 -1510 ((-187) |#1|)) (-15 -2921 ((-55) |#1|))) (-186)) (T -185)) -NIL -(-10 -8 (-15 -1508 ((-643 (-867)) |#1|)) (-15 -1509 ((-643 (-112)) |#1|)) (-15 -1510 ((-187) |#1|)) (-15 -2921 ((-55) |#1|))) -((-2968 (((-112) $ $) 7)) (-1508 (((-643 (-867)) $) 19)) (-3973 (((-509) $) 16)) (-3663 (((-1162) $) 10)) (-1510 (((-187) $) 21)) (-3035 (((-112) $ (-509)) 14)) (-3664 (((-1123) $) 11)) (-1509 (((-643 (-112)) $) 20)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2921 (((-55) $) 15)) (-3455 (((-112) $ $) 6))) -(((-186) (-140)) (T -186)) -((-1510 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-112))))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-867)))))) -(-13 (-838 (-509)) (-10 -8 (-15 -1510 ((-187) $)) (-15 -1509 ((-643 (-112)) $)) (-15 -1508 ((-643 (-867)) $)))) -(((-102) . T) ((-615 (-865)) . T) ((-838 (-509)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-8 (($) 7 T CONST)) (-4378 (((-865) $) 12)) (-9 (($) 6 T CONST)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 10))) -(((-187) (-13 (-1104) (-10 -8 (-15 -9 ($) -4384) (-15 -8 ($) -4384) (-15 -7 ($) -4384)))) (T -187)) -((-9 (*1 *1) (-5 *1 (-187))) (-8 (*1 *1) (-5 *1 (-187))) (-7 (*1 *1) (-5 *1 (-187)))) -(-13 (-1104) (-10 -8 (-15 -9 ($) -4384) (-15 -8 ($) -4384) (-15 -7 ($) -4384))) -((-4074 ((|#2| |#2|) 28)) (-4077 (((-112) |#2|) 19)) (-4075 (((-315 |#1|) |#2|) 12)) (-4076 (((-315 |#1|) |#2|) 14)) (-4072 ((|#2| |#2| (-1180)) 69) ((|#2| |#2|) 70)) (-4078 (((-168 (-315 |#1|)) |#2|) 10)) (-4073 ((|#2| |#2| (-1180)) 66) ((|#2| |#2|) 60))) -(((-188 |#1| |#2|) (-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4075 ((-315 |#1|) |#2|)) (-15 -4076 ((-315 |#1|) |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4078 ((-168 (-315 |#1|)) |#2|))) (-13 (-560) (-1041 (-549))) (-13 (-27) (-1205) (-424 (-168 |#1|)))) (T -188)) -((-4078 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3))))))) -(-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4075 ((-315 |#1|) |#2|)) (-15 -4076 ((-315 |#1|) |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4078 ((-168 (-315 |#1|)) |#2|))) -((-1514 (((-1269 (-691 (-949 |#1|))) (-1269 (-691 |#1|))) 26)) (-4378 (((-1269 (-691 (-410 (-949 |#1|)))) (-1269 (-691 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -1514 ((-1269 (-691 (-949 |#1|))) (-1269 (-691 |#1|)))) (-15 -4378 ((-1269 (-691 (-410 (-949 |#1|)))) (-1269 (-691 |#1|))))) (-172)) (T -189)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-691 (-410 (-949 *4))))) (-5 *1 (-189 *4)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-691 (-949 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -1514 ((-1269 (-691 (-949 |#1|))) (-1269 (-691 |#1|)))) (-15 -4378 ((-1269 (-691 (-410 (-949 |#1|)))) (-1269 (-691 |#1|))))) -((-1522 (((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549)))) 88)) (-1524 (((-1182 (-410 (-549))) (-643 (-549)) (-643 (-549))) 99)) (-1515 (((-1182 (-410 (-549))) (-549)) 55)) (-4286 (((-1182 (-410 (-549))) (-549)) 74)) (-4199 (((-410 (-549)) (-1182 (-410 (-549)))) 84)) (-1516 (((-1182 (-410 (-549))) (-549)) 37)) (-1519 (((-1182 (-410 (-549))) (-549)) 67)) (-1518 (((-1182 (-410 (-549))) (-549)) 61)) (-1521 (((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549)))) 82)) (-3292 (((-1182 (-410 (-549))) (-549)) 29)) (-1520 (((-410 (-549)) (-1182 (-410 (-549))) (-1182 (-410 (-549)))) 86)) (-1517 (((-1182 (-410 (-549))) (-549)) 35)) (-1523 (((-1182 (-410 (-549))) (-643 (-549))) 95))) -(((-190) (-10 -7 (-15 -3292 ((-1182 (-410 (-549))) (-549))) (-15 -1515 ((-1182 (-410 (-549))) (-549))) (-15 -1516 ((-1182 (-410 (-549))) (-549))) (-15 -1517 ((-1182 (-410 (-549))) (-549))) (-15 -1518 ((-1182 (-410 (-549))) (-549))) (-15 -1519 ((-1182 (-410 (-549))) (-549))) (-15 -4286 ((-1182 (-410 (-549))) (-549))) (-15 -1520 ((-410 (-549)) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1521 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -4199 ((-410 (-549)) (-1182 (-410 (-549))))) (-15 -1522 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1523 ((-1182 (-410 (-549))) (-643 (-549)))) (-15 -1524 ((-1182 (-410 (-549))) (-643 (-549)) (-643 (-549)))))) (T -190)) -((-1524 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-1520 (*1 *2 *3 *3) (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-3292 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) -(-10 -7 (-15 -3292 ((-1182 (-410 (-549))) (-549))) (-15 -1515 ((-1182 (-410 (-549))) (-549))) (-15 -1516 ((-1182 (-410 (-549))) (-549))) (-15 -1517 ((-1182 (-410 (-549))) (-549))) (-15 -1518 ((-1182 (-410 (-549))) (-549))) (-15 -1519 ((-1182 (-410 (-549))) (-549))) (-15 -4286 ((-1182 (-410 (-549))) (-549))) (-15 -1520 ((-410 (-549)) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1521 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -4199 ((-410 (-549)) (-1182 (-410 (-549))))) (-15 -1522 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1523 ((-1182 (-410 (-549))) (-643 (-549)))) (-15 -1524 ((-1182 (-410 (-549))) (-643 (-549)) (-643 (-549))))) -((-1526 (((-408 (-1174 (-549))) (-549)) 38)) (-1525 (((-643 (-1174 (-549))) (-549)) 33)) (-3204 (((-1174 (-549)) (-549)) 28))) -(((-191) (-10 -7 (-15 -1525 ((-643 (-1174 (-549))) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -1526 ((-408 (-1174 (-549))) (-549))))) (T -191)) -((-1526 (*1 *2 *3) (-12 (-5 *2 (-408 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-191)) (-5 *3 (-549)))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-643 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549))))) -(-10 -7 (-15 -1525 ((-643 (-1174 (-549))) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -1526 ((-408 (-1174 (-549))) (-549)))) -((-1716 (((-1157 (-225)) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-1737 (((-643 (-1162)) (-1157 (-225))) NIL)) (-1527 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-1714 (((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225)))) NIL)) (-1736 (((-643 (-1162)) (-643 (-225))) NIL)) (-1738 (((-225) (-1092 (-844 (-225)))) 31)) (-1739 (((-225) (-1092 (-844 (-225)))) 32)) (-1529 (((-380) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-1528 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-1734 (((-1162) (-225)) NIL)) (-2971 (((-1162) (-643 (-1162))) 27)) (-1530 (((-1038) (-1180) (-1180) (-1038)) 13))) -(((-192) (-10 -7 (-15 -1527 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1528 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1529 ((-380) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -2971 ((-1162) (-643 (-1162)))) (-15 -1530 ((-1038) (-1180) (-1180) (-1038))))) (T -192)) -((-1530 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-192)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-192)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-192)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-192)))) (-1714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-192)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-192)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -1527 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1528 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1529 ((-380) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -2971 ((-1162) (-643 (-1162)))) (-15 -1530 ((-1038) (-1180) (-1180) (-1038)))) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 61) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-193) (-789)) (T -193)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 66) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-194) (-789)) (T -194)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 81) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-195) (-789)) (T -195)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 63) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-196) (-789)) (T -196)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 75) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-197) (-789)) (T -197)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 90) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-198) (-789)) (T -198)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 90) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-199) (-789)) (T -199)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 77) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-200) (-789)) (T -200)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 78)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-201) (-789)) (T -201)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 79)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-202) (-789)) (T -202)) -NIL -(-789) -((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 105) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-203) (-789)) (T -203)) -NIL -(-789) -((-1531 (((-3 (-2 (|:| -2902 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-1533 (((-549) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-1532 (((-3 (-643 (-225)) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) -(((-204) (-10 -7 (-15 -1531 ((-3 (-2 (|:| -2902 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1532 ((-3 (-643 (-225)) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1533 ((-549) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-1533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-549)) (-5 *1 (-204)))) (-1532 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-204)))) (-1531 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2902 (-113)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -1531 ((-3 (-2 (|:| -2902 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1532 ((-3 (-643 (-225)) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1533 ((-549) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-1538 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-1537 (((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-1536 (((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-691 (-315 (-225)))) 112)) (-1535 (((-380) (-691 (-315 (-225)))) 140)) (-2523 (((-691 (-315 (-225))) (-1269 (-315 (-225))) (-643 (-1180))) 136)) (-1541 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-1539 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-4199 (((-691 (-315 (-225))) (-691 (-315 (-225))) (-643 (-1180)) (-1269 (-315 (-225)))) 125)) (-1534 (((-380) (-380) (-643 (-380))) 133) (((-380) (-380) (-380)) 128)) (-1540 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -1534 ((-380) (-380) (-380))) (-15 -1534 ((-380) (-380) (-643 (-380)))) (-15 -1535 ((-380) (-691 (-315 (-225))))) (-15 -2523 ((-691 (-315 (-225))) (-1269 (-315 (-225))) (-643 (-1180)))) (-15 -4199 ((-691 (-315 (-225))) (-691 (-315 (-225))) (-643 (-1180)) (-1269 (-315 (-225))))) (-15 -1536 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-691 (-315 (-225))))) (-15 -1537 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1538 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1539 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1540 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1541 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-1541 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) (-5 *1 (-205)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-691 (-315 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) (-5 *1 (-205)))) (-4199 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-691 (-315 (-225)))) (-5 *3 (-643 (-1180))) (-5 *4 (-1269 (-315 (-225)))) (-5 *1 (-205)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) (-5 *2 (-691 (-315 (-225)))) (-5 *1 (-205)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-691 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1534 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-380))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-205))))) -(-10 -7 (-15 -1534 ((-380) (-380) (-380))) (-15 -1534 ((-380) (-380) (-643 (-380)))) (-15 -1535 ((-380) (-691 (-315 (-225))))) (-15 -2523 ((-691 (-315 (-225))) (-1269 (-315 (-225))) (-643 (-1180)))) (-15 -4199 ((-691 (-315 (-225))) (-691 (-315 (-225))) (-643 (-1180)) (-1269 (-315 (-225))))) (-15 -1536 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-691 (-315 (-225))))) (-15 -1537 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1538 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1539 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1540 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1541 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-3455 (((-112) $ $) NIL))) -(((-206) (-802)) (T -206)) -NIL -(-802) -((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-3455 (((-112) $ $) NIL))) -(((-207) (-802)) (T -207)) -NIL -(-802) -((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-3455 (((-112) $ $) NIL))) -(((-208) (-802)) (T -208)) -NIL -(-802) -((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-3455 (((-112) $ $) NIL))) -(((-209) (-802)) (T -209)) -NIL -(-802) -((-4366 (((-643 (-1180)) (-1180) (-773)) 26)) (-1542 (((-315 (-225)) (-315 (-225))) 35)) (-1544 (((-112) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 87)) (-1543 (((-112) (-225) (-225) (-643 (-315 (-225)))) 47))) -(((-210) (-10 -7 (-15 -4366 ((-643 (-1180)) (-1180) (-773))) (-15 -1542 ((-315 (-225)) (-315 (-225)))) (-15 -1543 ((-112) (-225) (-225) (-643 (-315 (-225))))) (-15 -1544 ((-112) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))))) (T -210)) -((-1544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1543 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-643 (-315 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-210)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-643 (-1180))) (-5 *1 (-210)) (-5 *3 (-1180))))) -(-10 -7 (-15 -4366 ((-643 (-1180)) (-1180) (-773))) (-15 -1542 ((-315 (-225)) (-315 (-225)))) (-15 -1543 ((-112) (-225) (-225) (-643 (-315 (-225))))) (-15 -1544 ((-112) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))))) -((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 28)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3068 (((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 70)) (-3455 (((-112) $ $) NIL))) -(((-211) (-898)) (T -211)) -NIL -(-898) -((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 24)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3068 (((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) NIL)) (-3455 (((-112) $ $) NIL))) -(((-212) (-898)) (T -212)) -NIL -(-898) -((-2968 (((-112) $ $) NIL)) (-1545 ((|#2| $ (-773) |#2|) 11)) (-3517 ((|#2| $ (-773)) 10)) (-4046 (($) 8)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 26)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -3517 (|#2| $ (-773))) (-15 -1545 (|#2| $ (-773) |#2|)))) (-922) (-1104)) (T -213)) -((-4046 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1104)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *2 (-1104)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)))) (-1545 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) (-4 *2 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -3517 (|#2| $ (-773))) (-15 -1545 (|#2| $ (-773) |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2143 (((-1275) $) 37) (((-1275) $ (-922) (-922)) 44)) (-4231 (($ $ (-992)) 19) (((-245 (-1162)) $ (-1180)) 15)) (-4049 (((-1275) $) 35)) (-4378 (((-865) $) 32) (($ (-643 |#1|)) 8)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $ $) 27)) (-4271 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1104) (-618 (-643 |#1|)) (-10 -8 (-15 -4231 ($ $ (-992))) (-15 -4231 ((-245 (-1162)) $ (-1180))) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -2143 ((-1275) $ (-922) (-922))))) (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))) (T -214)) -((-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-992)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-245 (-1162))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ *3)) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4271 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4269 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) (-15 -2143 (*2 $))))))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) (-15 -2143 (*2 $))))))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) (-15 -2143 (*2 $)))))))) -(-13 (-1104) (-618 (-643 |#1|)) (-10 -8 (-15 -4231 ($ $ (-992))) (-15 -4231 ((-245 (-1162)) $ (-1180))) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -2143 ((-1275) $ (-922) (-922))))) -((-1546 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1546 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) -((-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) -(-10 -7 (-15 -1546 (|#2| |#4| (-1 |#2| |#2|)))) -((-1550 ((|#2| |#2| (-773) |#2|) 58)) (-1549 ((|#2| |#2| (-773) |#2|) 54)) (-2529 (((-643 |#2|) (-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|)))) 82)) (-1548 (((-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))) |#2|) 76)) (-1551 (((-112) |#2|) 74)) (-4165 (((-408 |#2|) |#2|) 94)) (-4164 (((-408 |#2|) |#2|) 93)) (-2530 ((|#2| |#2| (-773) |#2|) 52)) (-1547 (((-2 (|:| |cont| |#1|) (|:| -1954 (-643 (-2 (|:| |irr| |#2|) (|:| -2558 (-549)))))) |#2| (-112)) 88))) -(((-216 |#1| |#2|) (-10 -7 (-15 -4164 ((-408 |#2|) |#2|)) (-15 -4165 ((-408 |#2|) |#2|)) (-15 -1547 ((-2 (|:| |cont| |#1|) (|:| -1954 (-643 (-2 (|:| |irr| |#2|) (|:| -2558 (-549)))))) |#2| (-112))) (-15 -1548 ((-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))) |#2|)) (-15 -2529 ((-643 |#2|) (-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))))) (-15 -2530 (|#2| |#2| (-773) |#2|)) (-15 -1549 (|#2| |#2| (-773) |#2|)) (-15 -1550 (|#2| |#2| (-773) |#2|)) (-15 -1551 ((-112) |#2|))) (-352) (-1245 |#1|)) (T -216)) -((-1551 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-1550 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-1549 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-2530 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *5)))) (-4 *5 (-1245 *4)) (-4 *4 (-352)) (-5 *2 (-643 *5)) (-5 *1 (-216 *4 *5)))) (-1548 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-352)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5)))) (-4165 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -4164 ((-408 |#2|) |#2|)) (-15 -4165 ((-408 |#2|) |#2|)) (-15 -1547 ((-2 (|:| |cont| |#1|) (|:| -1954 (-643 (-2 (|:| |irr| |#2|) (|:| -2558 (-549)))))) |#2| (-112))) (-15 -1548 ((-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))) |#2|)) (-15 -2529 ((-643 |#2|) (-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))))) (-15 -2530 (|#2| |#2| (-773) |#2|)) (-15 -1549 (|#2| |#2| (-773) |#2|)) (-15 -1550 (|#2| |#2| (-773) |#2|)) (-15 -1551 ((-112) |#2|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-549) $) NIL (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) NIL)) (-3534 (((-549) $) NIL (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) NIL)) (-1552 (($ (-410 (-549))) 9)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 8) (($ (-549)) NIL) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL) (((-1007 10) $) 10)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-549) $) NIL (|has| (-549) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-549) (-852)))) (-4381 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL))) -(((-217) (-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 10)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -1552 ($ (-410 (-549))))))) (T -217)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217))))) -(-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 10)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -1552 ($ (-410 (-549)))))) -((-2968 (((-112) $ $) NIL)) (-3740 (((-1118) $) 13)) (-3663 (((-1162) $) NIL)) (-3598 (((-486) $) 10)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 23) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 15)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-218) (-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3740 ((-1118) $)) (-15 -3653 ((-1138) $))))) (T -218)) -((-3598 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-218))))) -(-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3740 ((-1118) $)) (-15 -3653 ((-1138) $)))) -((-4244 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1095 (-844 |#2|)) (-1162)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1095 (-844 |#2|))) 25)) (-1553 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1180) (-844 |#2|) (-844 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1095 (-844 |#2|)))) (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1095 (-844 |#2|)) (-1162))) (-15 -1553 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1180) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-29 |#1|))) (T -219)) -((-1553 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1180)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-4 *3 (-13 (-1205) (-963) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095 (-844 *3))) (-5 *5 (-1162)) (-4 *3 (-13 (-1205) (-963) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *6 *3)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-844 *3))) (-4 *3 (-13 (-1205) (-963) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1095 (-844 |#2|)))) (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1095 (-844 |#2|)) (-1162))) (-15 -1553 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1180) (-844 |#2|) (-844 |#2|) (-112)))) -((-4244 (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))) (-1162)) 49) (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))) (-1162)) 50) (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))) (-1162))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))) (-1162)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (T -220)) -((-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095 (-844 (-410 (-949 *6))))) (-5 *5 (-1162)) (-5 *3 (-410 (-949 *6))) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-220 *6)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-844 (-410 (-949 *5))))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1095 (-844 (-315 *6)))) (-5 *5 (-1162)) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *6)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1095 (-844 (-315 *5)))) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))) (-1162))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))) (-1162)))) -((-4274 (((-2 (|:| -2182 (-1174 |#1|)) (|:| |deg| (-922))) (-1174 |#1|)) 26)) (-4395 (((-643 (-315 |#2|)) (-315 |#2|) (-922)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -4274 ((-2 (|:| -2182 (-1174 |#1|)) (|:| |deg| (-922))) (-1174 |#1|))) (-15 -4395 ((-643 (-315 |#2|)) (-315 |#2|) (-922)))) (-1052) (-560)) (T -221)) -((-4395 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *6 (-560)) (-5 *2 (-643 (-315 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1052)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-2 (|:| -2182 (-1174 *4)) (|:| |deg| (-922)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-560))))) -(-10 -7 (-15 -4274 ((-2 (|:| -2182 (-1174 |#1|)) (|:| |deg| (-922))) (-1174 |#1|))) (-15 -4395 ((-643 (-315 |#2|)) (-315 |#2|) (-922)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1596 ((|#1| $) NIL)) (-3748 ((|#1| $) 30)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3403 (($ $) NIL)) (-2442 (($ $) 39)) (-3750 ((|#1| |#1| $) NIL)) (-3749 ((|#1| $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-4265 (((-773) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) NIL)) (-1594 ((|#1| |#1| $) 35)) (-1593 ((|#1| |#1| $) 37)) (-4039 (($ |#1| $) NIL)) (-3003 (((-773) $) 33)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3402 ((|#1| $) NIL)) (-1592 ((|#1| $) 31)) (-1591 ((|#1| $) 29)) (-1370 ((|#1| $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3405 ((|#1| |#1| $) NIL)) (-3827 (((-112) $) 9)) (-3996 (($) NIL)) (-3404 ((|#1| $) NIL)) (-1597 (($) NIL) (($ (-643 |#1|)) 16)) (-3747 (((-773) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-1595 ((|#1| $) 13)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-3401 ((|#1| $) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -1597 ($ (-643 |#1|))))) (-1104)) (T -222)) -((-1597 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-222 *3))))) -(-13 (-255 |#1|) (-10 -8 (-15 -1597 ($ (-643 |#1|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1555 (($ (-315 |#1|)) 27)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3065 (((-112) $) NIL)) (-3577 (((-3 (-315 |#1|) "failed") $) NIL)) (-3576 (((-315 |#1|) $) NIL)) (-4391 (($ $) 35)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-4390 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-3594 (((-315 |#1|) $) NIL)) (-1557 (($ $) 34)) (-3663 (((-1162) $) NIL)) (-1556 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($ (-773)) NIL)) (-1554 (($ $) 36)) (-4380 (((-549) $) NIL)) (-4378 (((-865) $) 68) (($ (-549)) NIL) (($ (-315 |#1|)) NIL)) (-4109 (((-315 |#1|) $ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 29 T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) 32)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 28) (($ (-315 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-623 (-315 |#1|)) (-1041 (-315 |#1|)) (-10 -8 (-15 -3594 ((-315 |#1|) $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 ((-315 |#1|) $ $)) (-15 -2572 ($ (-773))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4390 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -1555 ($ (-315 |#1|))) (-15 -1554 ($ $)))) (-13 (-1052) (-852)) (-643 (-1180))) (T -223)) -((-3594 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) (-14 *3 (-643 (-1180))))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) (-14 *3 (-643 (-1180))))) (-4109 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1052) (-852))) (-5 *1 (-223 *3 *4)) (-14 *4 (-643 (-1180))))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1052) (-852))) (-5 *1 (-223 *3 *4)) (-14 *4 (-643 (-1180))))) (-1554 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) (-14 *3 (-643 (-1180)))))) -(-13 (-623 (-315 |#1|)) (-1041 (-315 |#1|)) (-10 -8 (-15 -3594 ((-315 |#1|) $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 ((-315 |#1|) $ $)) (-15 -2572 ($ (-773))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4390 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -1555 ($ (-315 |#1|))) (-15 -1554 ($ $)))) -((-1558 (((-112) (-1162)) 26)) (-1559 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-1560 (((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-949 |#1|) (-1180) (-844 |#2|) (-844 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -1558 ((-112) (-1162))) (-15 -1559 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-949 |#1|) (-1180) (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-29 |#1|))) (T -224)) -((-1560 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1205) (-29 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *5 *6)))) (-1560 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1180)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *7 (-13 (-1205) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-1559 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1205) (-29 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *6 *4)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1205) (-29 *4)))))) -(-10 -7 (-15 -1558 ((-112) (-1162))) (-15 -1559 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-949 |#1|) (-1180) (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 99)) (-3533 (((-549) $) 35)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4202 (($ $) NIL)) (-3915 (($ $) 88)) (-4071 (($ $) 76)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) 67)) (-1753 (((-112) $ $) NIL)) (-3913 (($ $) 86)) (-4070 (($ $) 74)) (-4055 (((-549) $) 129)) (-3917 (($ $) 91)) (-4069 (($ $) 78)) (-4156 (($) NIL T CONST)) (-3531 (($ $) NIL)) (-3577 (((-3 (-549) #1="failed") $) 128) (((-3 (-410 (-549)) #1#) $) 125)) (-3576 (((-549) $) 126) (((-410 (-549)) $) 123)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 104)) (-1912 (((-410 (-549)) $ (-773)) 118) (((-410 (-549)) $ (-773) (-773)) 117)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2537 (((-922)) 29) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-3606 (((-112) $) NIL)) (-4059 (($) 46)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL)) (-4203 (((-549) $) 42)) (-2573 (((-112) $) 100)) (-3412 (($ $ (-549)) NIL)) (-3536 (($ $) NIL)) (-3607 (((-112) $) 98)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2934 (($ $ $) 64) (($) 38 (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-3260 (($ $ $) 63) (($) 37 (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2538 (((-549) $) 27)) (-1911 (($ $) 33)) (-1910 (($ $) 68)) (-4374 (($ $) 73)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-1944 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-3664 (((-1123) $) 102)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL)) (-3534 (($ $) NIL)) (-3675 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-922)) 111)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2564 (((-549) $) 28)) (-1909 (($) 45)) (-4375 (($ $) 72)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-4242 (($ $ (-773)) NIL) (($ $) 105)) (-1943 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-3918 (($ $) 89)) (-4068 (($ $) 79)) (-3916 (($ $) 90)) (-4067 (($ $) 77)) (-3914 (($ $) 87)) (-4066 (($ $) 75)) (-4402 (((-380) $) 114) (((-225) $) 14) (((-893 (-380)) $) NIL) (((-538) $) 52)) (-4378 (((-865) $) 49) (($ (-549)) 71) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-549)) 71) (($ (-410 (-549))) NIL)) (-3530 (((-773)) NIL T CONST)) (-3535 (($ $) NIL)) (-1945 (((-922)) 36) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) NIL)) (-3097 (((-922)) 25)) (-3921 (($ $) 94)) (-3909 (($ $) 82) (($ $ $) 121)) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) 92)) (-3907 (($ $) 80)) (-3923 (($ $) 97)) (-3911 (($ $) 85)) (-3924 (($ $) 95)) (-3912 (($ $) 83)) (-3922 (($ $) 96)) (-3910 (($ $) 84)) (-3920 (($ $) 93)) (-3908 (($ $) 81)) (-3807 (($ $) 120)) (-3510 (($) 23 T CONST)) (-3067 (($) 43 T CONST)) (-2900 (((-1162) $) 18) (((-1162) $ (-112)) 20) (((-1275) (-825) $) 21) (((-1275) (-825) $ (-112)) 22)) (-3811 (($ $) 108)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3808 (($ $ $) 110)) (-2966 (((-112) $ $) 57)) (-2967 (((-112) $ $) 54)) (-3455 (((-112) $ $) 65)) (-3087 (((-112) $ $) 56)) (-3088 (((-112) $ $) 53)) (-4381 (($ $ $) 44) (($ $ (-549)) 66)) (-4269 (($ $) 58) (($ $ $) 60)) (-4271 (($ $ $) 59)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 69) (($ $ (-410 (-549))) 153) (($ $ $) 70)) (* (($ (-922) $) 34) (($ (-773) $) NIL) (($ (-549) $) 62) (($ $ $) 61) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-225) (-13 (-407) (-233) (-823) (-1205) (-616 (-538)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -1909 ($)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -3909 ($ $ $)) (-15 -3811 ($ $)) (-15 -3808 ($ $ $)) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-225)))) (-1909 (*1 *1) (-5 *1 (-225))) (-1911 (*1 *1 *1) (-5 *1 (-225))) (-1910 (*1 *1 *1) (-5 *1 (-225))) (-3909 (*1 *1 *1 *1) (-5 *1 (-225))) (-3811 (*1 *1 *1) (-5 *1 (-225))) (-3808 (*1 *1 *1 *1) (-5 *1 (-225))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225)))) (-1912 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225))))) -(-13 (-407) (-233) (-823) (-1205) (-616 (-538)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -1909 ($)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -3909 ($ $ $)) (-15 -3811 ($ $)) (-15 -3808 ($ $ $)) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773))))) -((-3810 (((-168 (-225)) (-773) (-168 (-225))) 11) (((-225) (-773) (-225)) 12)) (-1561 (((-168 (-225)) (-168 (-225))) 13) (((-225) (-225)) 14)) (-1562 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3809 (((-168 (-225)) (-168 (-225))) 27) (((-225) (-225)) 26)) (-3813 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3815 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3812 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3814 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3817 (((-168 (-225)) (-168 (-225))) 74) (((-225) (-225)) 73)) (-3816 (((-225) (-225)) 68) (((-168 (-225)) (-168 (-225))) 72)) (-3811 (((-168 (-225)) (-168 (-225))) 8) (((-225) (-225)) 9)) (-3808 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -3811 ((-225) (-225))) (-15 -3811 ((-168 (-225)) (-168 (-225)))) (-15 -3808 ((-225) (-225) (-225))) (-15 -3808 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -1561 ((-225) (-225))) (-15 -1561 ((-168 (-225)) (-168 (-225)))) (-15 -3809 ((-225) (-225))) (-15 -3809 ((-168 (-225)) (-168 (-225)))) (-15 -3810 ((-225) (-773) (-225))) (-15 -3810 ((-168 (-225)) (-773) (-168 (-225)))) (-15 -3812 ((-225) (-225) (-225))) (-15 -3812 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3813 ((-225) (-225) (-225))) (-15 -3813 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3814 ((-225) (-225) (-225))) (-15 -3814 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3815 ((-225) (-225) (-225))) (-15 -3815 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3816 ((-168 (-225)) (-168 (-225)))) (-15 -3816 ((-225) (-225))) (-15 -3817 ((-225) (-225))) (-15 -3817 ((-168 (-225)) (-168 (-225)))) (-15 -1562 ((-225) (-225) (-225))) (-15 -1562 ((-168 (-225)) (-168 (-225)) (-168 (-225)))))) (T -226)) -((-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3814 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3814 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-225))) (-5 *3 (-773)) (-5 *1 (-226)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-773)) (-5 *1 (-226)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -3811 ((-225) (-225))) (-15 -3811 ((-168 (-225)) (-168 (-225)))) (-15 -3808 ((-225) (-225) (-225))) (-15 -3808 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -1561 ((-225) (-225))) (-15 -1561 ((-168 (-225)) (-168 (-225)))) (-15 -3809 ((-225) (-225))) (-15 -3809 ((-168 (-225)) (-168 (-225)))) (-15 -3810 ((-225) (-773) (-225))) (-15 -3810 ((-168 (-225)) (-773) (-168 (-225)))) (-15 -3812 ((-225) (-225) (-225))) (-15 -3812 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3813 ((-225) (-225) (-225))) (-15 -3813 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3814 ((-225) (-225) (-225))) (-15 -3814 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3815 ((-225) (-225) (-225))) (-15 -3815 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3816 ((-168 (-225)) (-168 (-225)))) (-15 -3816 ((-225) (-225))) (-15 -3817 ((-225) (-225))) (-15 -3817 ((-168 (-225)) (-168 (-225)))) (-15 -1562 ((-225) (-225) (-225))) (-15 -1562 ((-168 (-225)) (-168 (-225)) (-168 (-225))))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) NIL)) (-2501 (($ $ $) NIL)) (-3838 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-4305 (($ |#1| |#1| |#1|) 33)) (-3525 (((-112) $) NIL)) (-2500 (($ $ (-549) (-549)) NIL)) (-2499 (($ $ (-549) (-549)) NIL)) (-2498 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-2503 (($ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-2497 (($ $ (-549) (-549) $) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) NIL)) (-1345 (($ $ (-549) (-1269 |#1|)) NIL)) (-1344 (($ $ (-549) (-1269 |#1|)) NIL)) (-4279 (($ |#1| |#1| |#1|) 32)) (-3757 (($ (-773) |#1|) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) NIL (|has| |#1| (-308)))) (-3516 (((-1269 |#1|) $ (-549)) NIL)) (-1563 (($ |#1|) 31)) (-1564 (($ |#1|) 30)) (-1565 (($ |#1|) 29)) (-3513 (((-773) $) NIL (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3512 (((-773) $) NIL (|has| |#1| (-560)))) (-3511 (((-643 (-1269 |#1|)) $) NIL (|has| |#1| (-560)))) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#1| $) NIL (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#1|))) 11)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4025 (((-643 (-643 |#1|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4021 (((-3 $ #2="failed") $) NIL (|has| |#1| (-365)))) (-1566 (($) 12)) (-2502 (($ $ $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-3889 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549))) NIL)) (-3756 (($ (-643 |#1|)) NIL) (($ (-643 $)) NIL)) (-3526 (((-112) $) NIL)) (-3752 ((|#1| $) NIL (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-1269 |#1|) $ (-549)) NIL)) (-4378 (($ (-1269 |#1|)) NIL) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) 15) (((-1269 |#1|) (-1269 |#1|) $) NIL) (((-946 |#1|) $ (-946 |#1|)) 21)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-227 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-946 |#1|) $ (-946 |#1|))) (-15 -1566 ($)) (-15 -1565 ($ |#1|)) (-15 -1564 ($ |#1|)) (-15 -1563 ($ |#1|)) (-15 -4279 ($ |#1| |#1| |#1|)) (-15 -4305 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1205))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205))) (-5 *1 (-227 *3)))) (-1566 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-1565 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-1564 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-1563 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-4279 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-4305 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) -(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-946 |#1|) $ (-946 |#1|))) (-15 -1566 ($)) (-15 -1565 ($ |#1|)) (-15 -1564 ($ |#1|)) (-15 -1563 ($ |#1|)) (-15 -4279 ($ |#1| |#1| |#1|)) (-15 -4305 ($ |#1| |#1| |#1|)))) -((-1678 (($ (-1 (-112) |#2|) $) 16)) (-3829 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1567 (($) NIL) (($ (-643 |#2|)) 11)) (-3455 (((-112) $ $) 25))) -(((-228 |#1| |#2|) (-10 -8 (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-229 |#2|) (-1104)) (T -228)) -NIL -(-10 -8 (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-229 |#1|) (-140) (-1104)) (T -229)) -NIL -(-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-4242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) 14) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) 22) (($ $ (-773)) NIL) (($ $) 19)) (-3072 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-773)) 17) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1180))) (-15 -3072 (|#1| |#1| (-643 (-1180)))) (-15 -3072 (|#1| |#1| (-1180) (-773))) (-15 -3072 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1052)) (T -230)) -NIL -(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1180))) (-15 -3072 (|#1| |#1| (-643 (-1180)))) (-15 -3072 (|#1| |#1| (-1180) (-773))) (-15 -3072 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-773)) 55) (($ $ (-643 (-1180)) (-643 (-773))) 48 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 47 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 46 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 45 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-773)) 53) (($ $ (-643 (-1180)) (-643 (-773))) 52 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 51 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 50 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 49 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-231 |#1|) (-140) (-1052)) (T -231)) -((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052))))) -(-13 (-1052) (-10 -8 (-15 -4242 ($ $ (-1 |t#1| |t#1|))) (-15 -4242 ($ $ (-1 |t#1| |t#1|) (-773))) (-15 -3072 ($ $ (-1 |t#1| |t#1|))) (-15 -3072 ($ $ (-1 |t#1| |t#1|) (-773))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-233) |has| |#1| (-233)) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-4242 (($ $) NIL) (($ $ (-773)) 13)) (-3072 (($ $) 8) (($ $ (-773)) 15))) -(((-232 |#1|) (-10 -8 (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $) 42) (($ $ (-773)) 40)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 41) (($ $ (-773)) 39)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-233) (-140)) (T -233)) -((-4242 (*1 *1 *1) (-4 *1 (-233))) (-3072 (*1 *1 *1) (-4 *1 (-233))) (-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773)))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773))))) -(-13 (-1052) (-10 -8 (-15 -4242 ($ $)) (-15 -3072 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -3072 ($ $ (-773))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-1567 (($) 12) (($ (-643 |#2|)) NIL)) (-3824 (($ $) 14)) (-3953 (($ (-643 |#2|)) 10)) (-4378 (((-865) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -3824 (|#1| |#1|))) (-235 |#2|) (-1104)) (T -234)) -NIL -(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -3824 (|#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-235 |#1|) (-140) (-1104)) (T -235)) -((-1567 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1104)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-235 *3)))) (-3829 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-235 *2)) (-4 *2 (-1104)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) (-4 *3 (-1104)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) (-4 *3 (-1104))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1567 ($)) (-15 -1567 ($ (-643 |t#1|))) (IF (|has| $ (-6 -4425)) (PROGN (-15 -3829 ($ |t#1| $)) (-15 -3829 ($ (-1 (-112) |t#1|) $)) (-15 -1678 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-1568 (((-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773))))) (-294 (-949 (-549)))) 42))) -(((-236) (-10 -7 (-15 -1568 ((-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773))))) (-294 (-949 (-549))))))) (T -236)) -((-1568 (*1 *2 *3) (-12 (-5 *3 (-294 (-949 (-549)))) (-5 *2 (-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -1568 ((-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773))))) (-294 (-949 (-549)))))) -((-3540 (((-773)) 56)) (-2427 (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) 53) (((-691 |#3|) (-691 $)) 44) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-4343 (((-134)) 62)) (-4242 (($ $ (-1 |#3| |#3|) (-773)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-4378 (((-1269 |#3|) $) NIL) (($ |#3|) NIL) (((-865) $) NIL) (($ (-549)) 12) (($ (-410 (-549))) NIL)) (-3530 (((-773)) 15)) (-4381 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|)) (-15 -3530 ((-773))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -3540 ((-773))) (-15 -4381 (|#1| |#1| |#3|)) (-15 -4343 ((-134))) (-15 -4378 ((-1269 |#3|) |#1|))) (-238 |#2| |#3|) (-773) (-1219)) (T -237)) -((-4343 (*1 *2) (-12 (-14 *4 (-773)) (-4 *5 (-1219)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3540 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3530 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|)) (-15 -3530 ((-773))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -3540 ((-773))) (-15 -4381 (|#1| |#1| |#3|)) (-15 -4343 ((-134))) (-15 -4378 ((-1269 |#3|) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#2| (-1104)))) (-3608 (((-112) $) 73 (|has| |#2| (-131)))) (-4139 (($ (-922)) 126 (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-2805 (($ $ $) 122 (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) 8)) (-3540 (((-773)) 108 (|has| |#2| (-370)))) (-4055 (((-549) $) 120 (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) 53 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 68 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) 65 (-3256 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) 62 (|has| |#2| (-1104)))) (-3576 (((-549) $) 67 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) 64 (-3256 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) 63 (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) 107 (-3256 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 106 (-3256 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 105 (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) 104 (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) 80 (|has| |#2| (-728)))) (-3395 (($) 111 (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) 52)) (-3606 (((-112) $) 118 (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) 31 (|has| $ (-6 -4425)))) (-2573 (((-112) $) 82 (|has| |#2| (-728)))) (-3607 (((-112) $) 119 (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 117 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-3008 (((-643 |#2|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 116 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-2128 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) 36)) (-2188 (((-922) $) 110 (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-2563 (($ (-922)) 109 (|has| |#2| (-370)))) (-3664 (((-1123) $) 21 (|has| |#2| (-1104)))) (-4232 ((|#2| $) 43 (|has| (-549) (-852)))) (-2373 (($ $ |#2|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ (-549) |#2|) 51) ((|#2| $ (-549)) 50)) (-4268 ((|#2| $ $) 125 (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) 127)) (-4343 (((-134)) 124 (|has| |#2| (-365)))) (-4242 (($ $) 99 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) 97 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) 95 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) 94 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) 93 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) 92 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) 85 (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4425))) (((-773) |#2| $) 29 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-1269 |#2|) $) 128) (($ (-549)) 69 (-3960 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) 66 (-3256 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) 61 (|has| |#2| (-1104))) (((-865) $) 18 (|has| |#2| (-615 (-865))))) (-3530 (((-773)) 103 (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) 23 (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4425)))) (-3807 (($ $) 121 (|has| |#2| (-850)))) (-3510 (($) 72 (|has| |#2| (-131)) CONST)) (-3067 (($) 83 (|has| |#2| (-728)) CONST)) (-3072 (($ $) 98 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) 96 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) 91 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) 90 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) 89 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) 88 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) 87 (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1052)))) (-2966 (((-112) $ $) 114 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-2967 (((-112) $ $) 113 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-3455 (((-112) $ $) 20 (|has| |#2| (-1104)))) (-3087 (((-112) $ $) 115 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-3088 (((-112) $ $) 112 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-4381 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-4269 (($ $ $) 102 (|has| |#2| (-1052))) (($ $) 101 (|has| |#2| (-1052)))) (-4271 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-773)) 81 (|has| |#2| (-728))) (($ $ (-922)) 78 (|has| |#2| (-728)))) (* (($ (-549) $) 100 (|has| |#2| (-1052))) (($ $ $) 79 (|has| |#2| (-728))) (($ $ |#2|) 77 (|has| |#2| (-728))) (($ |#2| $) 76 (|has| |#2| (-728))) (($ (-773) $) 74 (|has| |#2| (-131))) (($ (-922) $) 71 (|has| |#2| (-25)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-238 |#1| |#2|) (-140) (-773) (-1219)) (T -238)) -((-1569 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4)))) (-4139 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1052)) (-4 *4 (-1219)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728))))) -(-13 (-606 (-549) |t#2|) (-615 (-1269 |t#2|)) (-10 -8 (-6 -4425) (-15 -1569 ($ (-1269 |t#2|))) (IF (|has| |t#2| (-1104)) (-6 (-415 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1052)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -4139 ($ (-922))) (-15 -4268 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-728)) (PROGN (-6 (-728)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |t#2| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#2| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1277 |t#2|)) |%noBranch|))) -(((-21) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -3960 (|has| |#2| (-1104)) (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-728)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-618 #1=(-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104))) ((-618 (-549)) -3960 (|has| |#2| (-1052)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-618 |#2|) -3960 (|has| |#2| (-1104)) (|has| |#2| (-172))) ((-615 (-865)) -3960 (|has| |#2| (-1104)) (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-728)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-615 (-865))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-615 (-1269 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1052)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1052))) ((-287 #2=(-549) |#2|) . T) ((-289 #2# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1052)) ((-415 |#2|) |has| |#2| (-1104)) ((-492 |#2|) . T) ((-606 #2# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-648 (-549)) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 $) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-650 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-650 $) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-642 |#2|) -3960 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-641 (-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052))) ((-641 |#2|) |has| |#2| (-1052)) ((-719 |#2|) -3960 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-728) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-728)) (|has| |#2| (-172))) ((-793) |has| |#2| (-850)) ((-794) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-795) |has| |#2| (-795)) ((-796) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-799) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-850) |has| |#2| (-850)) ((-852) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-903 (-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052))) ((-1041 #1#) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104))) ((-1041 (-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) ((-1041 |#2|) |has| |#2| (-1104)) ((-1054 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1054 $) |has| |#2| (-172)) ((-1059 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1059 $) |has| |#2| (-172)) ((-1052) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-1060) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-1115) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-728)) (|has| |#2| (-172))) ((-1104) -3960 (|has| |#2| (-1104)) (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-728)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1219) . T) ((-1277 |#2|) |has| |#2| (-365))) -((-2968 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3608 (((-112) $) NIL (|has| |#2| (-131)))) (-4139 (($ (-922)) 65 (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) 70 (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) 17)) (-3540 (((-773)) NIL (|has| |#2| (-370)))) (-4055 (((-549) $) NIL (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) 34 (|has| |#2| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) 32 (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) NIL (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) 61 (|has| |#2| (-728)))) (-3395 (($) NIL (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) 59)) (-3606 (((-112) $) NIL (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) 15 (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#2| (-728)))) (-3607 (((-112) $) NIL (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 20 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 (((-549) $) 58 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) 47)) (-2188 (((-922) $) NIL (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#2| (-370)))) (-3664 (((-1123) $) NIL (|has| |#2| (-1104)))) (-4232 ((|#2| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) 21)) (-4268 ((|#2| $ $) NIL (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) 18)) (-4343 (((-134)) NIL (|has| |#2| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#2|) $) 10) (($ (-549)) NIL (-3960 (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) 13 (|has| |#2| (-1104))) (((-865) $) NIL (|has| |#2| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#2| (-850)))) (-3510 (($) 40 (|has| |#2| (-131)) CONST)) (-3067 (($) 44 (|has| |#2| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3455 (((-112) $ $) 31 (|has| |#2| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3088 (((-112) $ $) 68 (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $ $) NIL (|has| |#2| (-1052))) (($ $) NIL (|has| |#2| (-1052)))) (-4271 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-773)) NIL (|has| |#2| (-728))) (($ $ (-922)) NIL (|has| |#2| (-728)))) (* (($ (-549) $) NIL (|has| |#2| (-1052))) (($ $ $) 50 (|has| |#2| (-728))) (($ $ |#2|) 48 (|has| |#2| (-728))) (($ |#2| $) 49 (|has| |#2| (-728))) (($ (-773) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-239 |#1| |#2|) (-238 |#1| |#2|) (-773) (-1219)) (T -239)) -NIL -(-238 |#1| |#2|) -((-4273 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-4274 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4390 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18))) -(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -4273 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4274 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4390 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-773) (-1219) (-1219)) (T -240)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-5 *2 (-239 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-240 *5 *6 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-773)) (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-239 *6 *5)) (-5 *1 (-240 *6 *7 *5))))) -(-10 -7 (-15 -4273 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4274 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4390 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) -((-1573 (((-549) (-643 (-1162))) 36) (((-549) (-1162)) 29)) (-1572 (((-1275) (-643 (-1162))) 40) (((-1275) (-1162)) 39)) (-1570 (((-1162)) 16)) (-1571 (((-1162) (-549) (-1162)) 23)) (-4204 (((-643 (-1162)) (-643 (-1162)) (-549) (-1162)) 37) (((-1162) (-1162) (-549) (-1162)) 35)) (-3020 (((-643 (-1162)) (-643 (-1162))) 15) (((-643 (-1162)) (-1162)) 11))) -(((-241) (-10 -7 (-15 -3020 ((-643 (-1162)) (-1162))) (-15 -3020 ((-643 (-1162)) (-643 (-1162)))) (-15 -1570 ((-1162))) (-15 -1571 ((-1162) (-549) (-1162))) (-15 -4204 ((-1162) (-1162) (-549) (-1162))) (-15 -4204 ((-643 (-1162)) (-643 (-1162)) (-549) (-1162))) (-15 -1572 ((-1275) (-1162))) (-15 -1572 ((-1275) (-643 (-1162)))) (-15 -1573 ((-549) (-1162))) (-15 -1573 ((-549) (-643 (-1162)))))) (T -241)) -((-1573 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-549)) (-5 *1 (-241)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-241)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1275)) (-5 *1 (-241)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-241)))) (-4204 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-643 (-1162))) (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *1 (-241)))) (-4204 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241)))) (-1571 (*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241)))) (-1570 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-241)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)))) (-3020 (*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)) (-5 *3 (-1162))))) -(-10 -7 (-15 -3020 ((-643 (-1162)) (-1162))) (-15 -3020 ((-643 (-1162)) (-643 (-1162)))) (-15 -1570 ((-1162))) (-15 -1571 ((-1162) (-549) (-1162))) (-15 -4204 ((-1162) (-1162) (-549) (-1162))) (-15 -4204 ((-643 (-1162)) (-643 (-1162)) (-549) (-1162))) (-15 -1572 ((-1275) (-1162))) (-15 -1572 ((-1275) (-643 (-1162)))) (-15 -1573 ((-549) (-1162))) (-15 -1573 ((-549) (-643 (-1162))))) -((** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 20)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-410 (-549)) $) 27) (($ $ (-410 (-549))) NIL))) -(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-243)) (T -242)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 47)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 51)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 48)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ (-410 (-549)) $) 50) (($ $ (-410 (-549))) 49))) -(((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-549)))) (-2806 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-291) (-38 (-410 (-549))) (-10 -8 (-15 ** ($ $ (-549))) (-15 -2806 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-291) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-719 #1#) . T) ((-728) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4228 (($ $) 58)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-1575 (($ $ $) 54 (|has| $ (-6 -4426)))) (-1574 (($ $ $) 53 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-1577 (($ $) 57)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-1576 (($ $) 56)) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 60)) (-3598 (($ $) 59)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4222 (($ $ $) 55 (|has| $ (-6 -4426)))) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-244 |#1|) (-140) (-1219)) (T -244)) -((-4229 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1575 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1574 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(-13 (-1013 |t#1|) (-10 -8 (-15 -4229 (|t#1| $)) (-15 -3598 ($ $)) (-15 -4228 ($ $)) (-15 -1577 ($ $)) (-15 -1576 ($ $)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4222 ($ $ $)) (-15 -1575 ($ $ $)) (-15 -1574 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) 10 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) NIL (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-4230 (($ $) NIL) (($ $ (-773)) NIL)) (-2526 (($ $) NIL (|has| |#1| (-1104)))) (-1440 (($ $) 7 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104))) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3941 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3965 (($ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-773) $ "count") 16)) (-3430 (((-549) $ $) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-1578 (($ (-643 |#1|)) 22)) (-4065 (((-112) $) NIL)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4222 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4233 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-643 $)) NIL) (($ $ |#1|) NIL)) (-4378 (($ (-643 |#1|)) 17) (((-643 |#1|) $) 18) (((-865) $) 21 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 14 (|has| $ (-6 -4425))))) -(((-245 |#1|) (-13 (-668 |#1|) (-493 (-643 |#1|)) (-10 -8 (-15 -1578 ($ (-643 |#1|))) (-15 -4231 ($ $ "unique")) (-15 -4231 ($ $ "sort")) (-15 -4231 ((-773) $ "count")))) (-852)) (T -245)) -((-1578 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-245 *3)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-852)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-852)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-773)) (-5 *1 (-245 *4)) (-4 *4 (-852))))) -(-13 (-668 |#1|) (-493 (-643 |#1|)) (-10 -8 (-15 -1578 ($ (-643 |#1|))) (-15 -4231 ($ $ "unique")) (-15 -4231 ($ $ "sort")) (-15 -4231 ((-773) $ "count")))) -((-1579 (((-3 (-773) "failed") |#1| |#1| (-773)) 43))) -(((-246 |#1|) (-10 -7 (-15 -1579 ((-3 (-773) "failed") |#1| |#1| (-773)))) (-13 (-728) (-370) (-10 -7 (-15 ** (|#1| |#1| (-549)))))) (T -246)) -((-1579 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-773)) (-4 *3 (-13 (-728) (-370) (-10 -7 (-15 ** (*3 *3 (-549)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -1579 ((-3 (-773) "failed") |#1| |#1| (-773)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-866 |#1|)) $) NIL)) (-3487 (((-1174 $) $ (-866 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-2115 (($ $ (-643 (-549))) NIL)) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-239 (-4389 |#1|) (-773)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) NIL) (($ (-1174 $) (-866 |#1|)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-239 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 (((-239 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-1770 (($ (-1 (-239 (-4389 |#1|) (-773)) (-239 (-4389 |#1|) (-773))) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) NIL) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) NIL) (($ $ (-866 |#1|) $) NIL) (($ $ (-643 (-866 |#1|)) (-643 $)) NIL)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 (((-239 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-866 |#1|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-239 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-953 |#2| (-239 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) (-643 (-1180)) (-1052)) (T -247)) -((-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-247 *3 *4)) (-14 *3 (-643 (-1180))) (-4 *4 (-1052))))) -(-13 (-953 |#2| (-239 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) -((-2968 (((-112) $ $) NIL)) (-1580 (((-1275) $) 17)) (-1582 (((-184 (-249)) $) 11)) (-1581 (($ (-184 (-249))) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1583 (((-249) $) 7)) (-4378 (((-865) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 15))) -(((-248) (-13 (-1104) (-10 -8 (-15 -1583 ((-249) $)) (-15 -1582 ((-184 (-249)) $)) (-15 -1581 ($ (-184 (-249)))) (-15 -1580 ((-1275) $))))) (T -248)) -((-1583 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-248))))) -(-13 (-1104) (-10 -8 (-15 -1583 ((-249) $)) (-15 -1582 ((-184 (-249)) $)) (-15 -1581 ($ (-184 (-249)))) (-15 -1580 ((-1275) $)))) -((-2968 (((-112) $ $) NIL)) (-1508 (((-643 (-867)) $) NIL)) (-3973 (((-509) $) NIL)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) NIL)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-1584 (((-334) $) 7)) (-1509 (((-643 (-112)) $) NIL)) (-4378 (((-865) $) NIL) (((-183) $) 8)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-249) (-13 (-186) (-615 (-183)) (-10 -8 (-15 -1584 ((-334) $))))) (T -249)) -((-1584 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(-13 (-186) (-615 (-183)) (-10 -8 (-15 -1584 ((-334) $)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 (((-1185) $ (-773)) 13)) (-4378 (((-865) $) 20)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 16)) (-4389 (((-773) $) 9))) -(((-250) (-13 (-1104) (-10 -8 (-15 -4389 ((-773) $)) (-15 -4231 ((-1185) $ (-773)))))) (T -250)) -((-4389 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-250)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-250))))) -(-13 (-1104) (-10 -8 (-15 -4389 ((-773) $)) (-15 -4231 ((-1185) $ (-773))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4139 (($ (-922)) NIL (|has| |#4| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#4| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#4| (-370)))) (-4055 (((-549) $) NIL (|has| |#4| (-850)))) (-4219 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1104))) (((-3 (-549) #1#) $) NIL (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104))))) (-3576 ((|#4| $) NIL (|has| |#4| (-1104))) (((-549) $) NIL (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104))))) (-2427 (((-2 (|:| -1748 (-691 |#4|)) (|:| |vec| (-1269 |#4|))) (-691 $) (-1269 $)) NIL (|has| |#4| (-1052))) (((-691 |#4|) (-691 $)) NIL (|has| |#4| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))))) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (-3395 (($) NIL (|has| |#4| (-370)))) (-1684 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#4| $ (-549)) NIL)) (-3606 (((-112) $) NIL (|has| |#4| (-850)))) (-2124 (((-643 |#4|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (-3607 (((-112) $) NIL (|has| |#4| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-3008 (((-643 |#4|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-2128 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#4| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#4| (-370)))) (-3664 (((-1123) $) NIL)) (-4232 ((|#4| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#4|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2379 (((-643 |#4|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#4| $ (-549) |#4|) NIL) ((|#4| $ (-549)) 16)) (-4268 ((|#4| $ $) NIL (|has| |#4| (-1052)))) (-1569 (($ (-1269 |#4|)) NIL)) (-4343 (((-134)) NIL (|has| |#4| (-365)))) (-4242 (($ $ (-1 |#4| |#4|) (-773)) NIL (|has| |#4| (-1052))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))))) (-2125 (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#4|) $) NIL) (((-865) $) NIL) (($ |#4|) NIL (|has| |#4| (-1104))) (($ (-549)) NIL (-3960 (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104))) (|has| |#4| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104))))) (-3530 (((-773)) NIL (|has| |#4| (-1052)) CONST)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#4| (-850)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) CONST)) (-3072 (($ $ (-1 |#4| |#4|) (-773)) NIL (|has| |#4| (-1052))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-3088 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-4381 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052))))) (($ $ (-922)) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (* (($ |#2| $) 18) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-728))) (($ |#4| $) NIL (|has| |#4| (-728))) (($ $ $) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-650 |#2|) (-650 |#3|)) (-922) (-1052) (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-650 |#2|)) (T -251)) -NIL -(-13 (-238 |#1| |#4|) (-650 |#2|) (-650 |#3|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4139 (($ (-922)) NIL (|has| |#3| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#3| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#3| (-370)))) (-4055 (((-549) $) NIL (|has| |#3| (-850)))) (-4219 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1104))) (((-3 (-549) #1#) $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104))))) (-3576 ((|#3| $) NIL (|has| |#3| (-1104))) (((-549) $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104))))) (-2427 (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) NIL (|has| |#3| (-1052))) (((-691 |#3|) (-691 $)) NIL (|has| |#3| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))))) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (-3395 (($) NIL (|has| |#3| (-370)))) (-1684 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#3| $ (-549)) NIL)) (-3606 (((-112) $) NIL (|has| |#3| (-850)))) (-2124 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (-3607 (((-112) $) NIL (|has| |#3| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3008 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2128 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#3| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#3| (-370)))) (-3664 (((-1123) $) NIL)) (-4232 ((|#3| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#3|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 |#3|) (-643 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2379 (((-643 |#3|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) 15)) (-4268 ((|#3| $ $) NIL (|has| |#3| (-1052)))) (-1569 (($ (-1269 |#3|)) NIL)) (-4343 (((-134)) NIL (|has| |#3| (-365)))) (-4242 (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))))) (-2125 (((-773) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425))) (((-773) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#3|) $) NIL) (((-865) $) NIL) (($ |#3|) NIL (|has| |#3| (-1104))) (($ (-549)) NIL (-3960 (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104))))) (-3530 (((-773)) NIL (|has| |#3| (-1052)) CONST)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#3| (-850)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) CONST)) (-3072 (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3088 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-4381 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052))))) (($ $ (-922)) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (* (($ |#2| $) 17) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-728))) (($ |#3| $) NIL (|has| |#3| (-728))) (($ $ $) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-650 |#2|)) (-773) (-1052) (-650 |#2|)) (T -252)) -NIL -(-13 (-238 |#1| |#3|) (-650 |#2|)) -((-1589 (((-643 (-773)) $) 56) (((-643 (-773)) $ |#3|) 59)) (-1623 (((-773) $) 58) (((-773) $ |#3|) 61)) (-1585 (($ $) 76)) (-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 83)) (-4203 (((-773) $ |#3|) 43) (((-773) $) 38)) (-1624 (((-1 $ (-773)) |#3|) 15) (((-1 $ (-773)) $) 88)) (-1587 ((|#4| $) 69)) (-1588 (((-112) $) 67)) (-1586 (($ $) 75)) (-4199 (($ $ (-643 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-643 |#4|) (-643 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-643 |#4|) (-643 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-643 |#3|) (-643 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-643 |#3|) (-643 |#2|)) 100)) (-4242 (($ $ |#4|) NIL) (($ $ (-643 |#4|)) NIL) (($ $ |#4| (-773)) NIL) (($ $ (-643 |#4|) (-643 (-773))) NIL) (($ $) NIL) (($ $ (-773)) NIL) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1590 (((-643 |#3|) $) 86)) (-4380 ((|#5| $) NIL) (((-773) $ |#4|) NIL) (((-643 (-773)) $ (-643 |#4|)) NIL) (((-773) $ |#3|) 49)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-549))) NIL) (($ $) NIL))) -(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#3| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#3| |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1587 (|#4| |#1|)) (-15 -1588 ((-112) |#1|)) (-15 -1623 ((-773) |#1| |#3|)) (-15 -1589 ((-643 (-773)) |#1| |#3|)) (-15 -1623 ((-773) |#1|)) (-15 -1589 ((-643 (-773)) |#1|)) (-15 -4380 ((-773) |#1| |#3|)) (-15 -4203 ((-773) |#1|)) (-15 -4203 ((-773) |#1| |#3|)) (-15 -1590 ((-643 |#3|) |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#3|)) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 |#4|))) (-15 -4380 ((-773) |#1| |#4|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1#) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 (|#5| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#4| (-773))) (-15 -4242 (|#1| |#1| (-643 |#4|))) (-15 -4242 (|#1| |#1| |#4|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1052) (-852) (-267 |#3|) (-795)) (T -253)) -NIL -(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#3| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#3| |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1587 (|#4| |#1|)) (-15 -1588 ((-112) |#1|)) (-15 -1623 ((-773) |#1| |#3|)) (-15 -1589 ((-643 (-773)) |#1| |#3|)) (-15 -1623 ((-773) |#1|)) (-15 -1589 ((-643 (-773)) |#1|)) (-15 -4380 ((-773) |#1| |#3|)) (-15 -4203 ((-773) |#1|)) (-15 -4203 ((-773) |#1| |#3|)) (-15 -1590 ((-643 |#3|) |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#3|)) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 |#4|))) (-15 -4380 ((-773) |#1| |#4|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1#) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 (|#5| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#4| (-773))) (-15 -4242 (|#1| |#1| (-643 |#4|))) (-15 -4242 (|#1| |#1| |#4|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1589 (((-643 (-773)) $) 216) (((-643 (-773)) $ |#2|) 214)) (-1623 (((-773) $) 215) (((-773) $ |#2|) 213)) (-3485 (((-643 |#3|) $) 112)) (-3487 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 |#3|)) 113)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-1585 (($ $) 209)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) 138) (((-3 |#2| #2#) $) 223)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) ((|#3| $) 139) ((|#2| $) 224)) (-4188 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-4391 (($ $) 156)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-1769 (($ $ |#1| |#4| $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| |#3| (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| |#3| (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ |#2|) 219) (((-773) $) 218)) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-3488 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| |#4|) 155) (($ $ |#3| (-773)) 121) (($ $ (-643 |#3|) (-643 (-773))) 120)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 122)) (-3223 ((|#4| $) 172) (((-773) $ |#3|) 124) (((-643 (-773)) $ (-643 |#3|)) 123)) (-1770 (($ (-1 |#4| |#4|) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-1624 (((-1 $ (-773)) |#2|) 221) (((-1 $ (-773)) $) 208 (|has| |#1| (-233)))) (-3486 (((-3 |#3| #3="failed") $) 125)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150)) (-1587 ((|#3| $) 211)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3663 (((-1162) $) 10)) (-1588 (((-112) $) 212)) (-3226 (((-3 (-643 $) #3#) $) 116)) (-3225 (((-3 (-643 $) #3#) $) 117)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) #3#) $) 115)) (-1586 (($ $) 210)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-643 |#3|) (-643 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-643 |#3|) (-643 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 |#1|)) 204 (|has| |#1| (-233)))) (-4189 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-4242 (($ $ |#3|) 46) (($ $ (-643 |#3|)) 45) (($ $ |#3| (-773)) 44) (($ $ (-643 |#3|) (-643 (-773))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-773)) 238 (|has| |#1| (-233))) (($ $ (-1180)) 236 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 235 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 234 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 233 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1590 (((-643 |#2|) $) 220)) (-4380 ((|#4| $) 152) (((-773) $ |#3|) 132) (((-643 (-773)) $ (-643 |#3|)) 131) (((-773) $ |#2|) 217)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| |#3| (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| |#3| (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| |#3| (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549)))))) (($ $) 87 (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ |#4|) 157) (($ $ |#3| (-773)) 130) (($ $ (-643 |#3|) (-643 (-773))) 129)) (-3105 (((-3 $ #1#) $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#3|) 42) (($ $ (-643 |#3|)) 41) (($ $ |#3| (-773)) 40) (($ $ (-643 |#3|) (-643 (-773))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-773)) 237 (|has| |#1| (-233))) (($ $ (-1180)) 232 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 231 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 230 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 229 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-254 |#1| |#2| |#3| |#4|) (-140) (-1052) (-852) (-267 |t#2|) (-795)) (T -254)) -((-1624 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *4 *3 *5 *6)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 *4)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) (-4380 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 (-773))))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) (-1589 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-643 (-773))))) (-1623 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-112)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-795)) (-4 *2 (-267 *4)))) (-1586 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-267 *3)) (-4 *5 (-795)))) (-1585 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-267 *3)) (-4 *5 (-795)))) (-1624 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *3 *4 *5 *6))))) -(-13 (-953 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1041 |t#2|) (-10 -8 (-15 -1624 ((-1 $ (-773)) |t#2|)) (-15 -1590 ((-643 |t#2|) $)) (-15 -4203 ((-773) $ |t#2|)) (-15 -4203 ((-773) $)) (-15 -4380 ((-773) $ |t#2|)) (-15 -1589 ((-643 (-773)) $)) (-15 -1623 ((-773) $)) (-15 -1589 ((-643 (-773)) $ |t#2|)) (-15 -1623 ((-773) $ |t#2|)) (-15 -1588 ((-112) $)) (-15 -1587 (|t#3| $)) (-15 -1586 ($ $)) (-15 -1585 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -1624 ((-1 $ (-773)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 |#2|) . T) ((-618 |#3|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-728) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-903 |#3|) . T) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) ((-953 |#1| |#4| |#3|) . T) ((-913) |has| |#1| (-913)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1041 |#2|) . T) ((-1041 |#3|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) |has| |#1| (-913))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1596 ((|#1| $) 55)) (-3748 ((|#1| $) 45)) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-3403 (($ $) 61)) (-2442 (($ $) 49)) (-3750 ((|#1| |#1| $) 47)) (-3749 ((|#1| $) 46)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-4265 (((-773) $) 62)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-1594 ((|#1| |#1| $) 53)) (-1593 ((|#1| |#1| $) 52)) (-4039 (($ |#1| $) 41)) (-3003 (((-773) $) 56)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-3402 ((|#1| $) 63)) (-1592 ((|#1| $) 51)) (-1591 ((|#1| $) 50)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3405 ((|#1| |#1| $) 59)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3404 ((|#1| $) 60)) (-1597 (($) 58) (($ (-643 |#1|)) 57)) (-3747 (((-773) $) 44)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-1595 ((|#1| $) 54)) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-3401 ((|#1| $) 64)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-255 |#1|) (-140) (-1219)) (T -255)) -((-1597 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1594 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1593 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(-13 (-1124 |t#1|) (-998 |t#1|) (-10 -8 (-15 -1597 ($)) (-15 -1597 ($ (-643 |t#1|))) (-15 -3003 ((-773) $)) (-15 -1596 (|t#1| $)) (-15 -1595 (|t#1| $)) (-15 -1594 (|t#1| |t#1| $)) (-15 -1593 (|t#1| |t#1| $)) (-15 -1592 (|t#1| $)) (-15 -1591 (|t#1| $)) (-15 -2442 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-998 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1124 |#1|) . T) ((-1219) . T)) -((-1598 (((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380))) 75) (((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 74) (((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380))) 65) (((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 64) (((-1136 (-225)) (-882 |#1|) (-1095 (-380))) 56) (((-1136 (-225)) (-882 |#1|) (-1095 (-380)) (-643 (-262))) 55)) (-1605 (((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380))) 78) (((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 77) (((-1273) |#1| (-1095 (-380)) (-1095 (-380))) 68) (((-1273) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 67) (((-1273) (-882 |#1|) (-1095 (-380))) 60) (((-1273) (-882 |#1|) (-1095 (-380)) (-643 (-262))) 59) (((-1272) (-880 |#1|) (-1095 (-380))) 47) (((-1272) (-880 |#1|) (-1095 (-380)) (-643 (-262))) 46) (((-1272) |#1| (-1095 (-380))) 38) (((-1272) |#1| (-1095 (-380)) (-643 (-262))) 36))) -(((-256 |#1|) (-10 -7 (-15 -1605 ((-1272) |#1| (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) |#1| (-1095 (-380)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380))))) (-13 (-616 (-538)) (-1104))) (T -256)) -((-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *5)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1273)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *5)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *5)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1272)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104)))))) -(-10 -7 (-15 -1605 ((-1272) |#1| (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) |#1| (-1095 (-380)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380))))) -((-1599 (((-1 (-946 (-225)) (-225) (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-1598 (((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380))) 173) (((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 171) (((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 176) (((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 172) (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 164) (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 163) (((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380))) 145) (((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262))) 143) (((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380))) 144) (((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262))) 141)) (-1605 (((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380))) 175) (((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 174) (((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 178) (((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 177) (((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 166) (((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 165) (((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380))) 151) (((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262))) 150) (((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380))) 149) (((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262))) 148) (((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380))) 113) (((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262))) 112) (((-1272) (-1 (-225) (-225)) (-1092 (-380))) 107) (((-1272) (-1 (-225) (-225)) (-1092 (-380)) (-643 (-262))) 105))) -(((-257) (-10 -7 (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1599 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -257)) -((-1599 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-257))))) -(-10 -7 (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1599 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-1605 (((-1272) (-294 |#2|) (-1180) (-1180) (-643 (-262))) 101))) -(((-258 |#1| |#2|) (-10 -7 (-15 -1605 ((-1272) (-294 |#2|) (-1180) (-1180) (-643 (-262))))) (-13 (-560) (-852) (-1041 (-549))) (-424 |#1|)) (T -258)) -((-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1180)) (-5 *5 (-643 (-262))) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-852) (-1041 (-549)))) (-5 *2 (-1272)) (-5 *1 (-258 *6 *7))))) -(-10 -7 (-15 -1605 ((-1272) (-294 |#2|) (-1180) (-1180) (-643 (-262))))) -((-1602 (((-549) (-549)) 73)) (-1603 (((-549) (-549)) 74)) (-1604 (((-225) (-225)) 75)) (-1601 (((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225))) 72)) (-1600 (((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)) (-112)) 70))) -(((-259) (-10 -7 (-15 -1600 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)) (-112))) (-15 -1601 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -1602 ((-549) (-549))) (-15 -1603 ((-549) (-549))) (-15 -1604 ((-225) (-225))))) (T -259)) -((-1604 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-259)))) (-1603 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259)))) (-1601 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) (-5 *2 (-1273)) (-5 *1 (-259)))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) (-5 *5 (-112)) (-5 *2 (-1273)) (-5 *1 (-259))))) -(-10 -7 (-15 -1600 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)) (-112))) (-15 -1601 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -1602 ((-549) (-549))) (-15 -1603 ((-549) (-549))) (-15 -1604 ((-225) (-225)))) -((-4378 (((-1095 (-380)) (-1095 (-315 |#1|))) 16))) -(((-260 |#1|) (-10 -7 (-15 -4378 ((-1095 (-380)) (-1095 (-315 |#1|))))) (-13 (-852) (-560) (-616 (-380)))) (T -260)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-1095 (-315 *4))) (-4 *4 (-13 (-852) (-560) (-616 (-380)))) (-5 *2 (-1095 (-380))) (-5 *1 (-260 *4))))) -(-10 -7 (-15 -4378 ((-1095 (-380)) (-1095 (-315 |#1|))))) -((-1605 (((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)) (-643 (-262))) 23) (((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225))) 24) (((-1272) (-643 (-946 (-225))) (-643 (-262))) 16) (((-1272) (-643 (-946 (-225)))) 17) (((-1272) (-643 (-225)) (-643 (-225)) (-643 (-262))) 20) (((-1272) (-643 (-225)) (-643 (-225))) 21))) -(((-261) (-10 -7 (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)) (-643 (-262)))) (-15 -1605 ((-1272) (-643 (-946 (-225))))) (-15 -1605 ((-1272) (-643 (-946 (-225))) (-643 (-262)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)) (-643 (-262)))))) (T -261)) -((-1605 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1273)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-261)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *2 (-1272)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1272)) (-5 *1 (-261))))) -(-10 -7 (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)) (-643 (-262)))) (-15 -1605 ((-1272) (-643 (-946 (-225))))) (-15 -1605 ((-1272) (-643 (-946 (-225))) (-643 (-262)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)) (-643 (-262))))) -((-2968 (((-112) $ $) NIL)) (-4313 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-1618 (($ (-922)) 81)) (-1617 (($ (-922)) 80)) (-1947 (($ (-643 (-380))) 87)) (-1621 (($ (-380)) 66)) (-1620 (($ (-922)) 82)) (-1614 (($ (-112)) 33)) (-4315 (($ (-1162)) 28)) (-1613 (($ (-1162)) 29)) (-1619 (($ (-1136 (-225))) 76)) (-2106 (($ (-643 (-1092 (-380)))) 72)) (-1607 (($ (-643 (-1092 (-380)))) 68) (($ (-643 (-1092 (-410 (-549))))) 71)) (-1610 (($ (-380)) 38) (($ (-876)) 42)) (-1606 (((-112) (-643 $) (-1180)) 100)) (-1622 (((-3 (-51) "failed") (-643 $) (-1180)) 102)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1609 (($ (-380)) 43) (($ (-876)) 44)) (-3644 (($ (-1 (-946 (-225)) (-946 (-225)))) 65)) (-2415 (($ (-1 (-946 (-225)) (-946 (-225)))) 83)) (-1608 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4378 (((-865) $) 93)) (-1611 (($ (-112)) 34) (($ (-643 (-1092 (-380)))) 60)) (-3662 (((-112) $ $) NIL)) (-2101 (($ (-112)) 35)) (-3455 (((-112) $ $) 97))) -(((-262) (-13 (-1104) (-10 -8 (-15 -2101 ($ (-112))) (-15 -1611 ($ (-112))) (-15 -4313 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ($ (-1162))) (-15 -1613 ($ (-1162))) (-15 -1614 ($ (-112))) (-15 -1611 ($ (-643 (-1092 (-380))))) (-15 -3644 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1610 ($ (-380))) (-15 -1610 ($ (-876))) (-15 -1609 ($ (-380))) (-15 -1609 ($ (-876))) (-15 -1608 ($ (-1 (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1621 ($ (-380))) (-15 -1607 ($ (-643 (-1092 (-380))))) (-15 -1607 ($ (-643 (-1092 (-410 (-549)))))) (-15 -2106 ($ (-643 (-1092 (-380))))) (-15 -1619 ($ (-1136 (-225)))) (-15 -1617 ($ (-922))) (-15 -1618 ($ (-922))) (-15 -1620 ($ (-922))) (-15 -2415 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1947 ($ (-643 (-380)))) (-15 -1622 ((-3 (-51) "failed") (-643 $) (-1180))) (-15 -1606 ((-112) (-643 $) (-1180)))))) (T -262)) -((-2101 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-262)))) (-4315 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-262)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-262)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-262)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-410 (-549))))) (-5 *1 (-262)))) (-2106 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-262)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) (-2415 (*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) (-1947 (*1 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-262)))) (-1622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-51)) (-5 *1 (-262)))) (-1606 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-112)) (-5 *1 (-262))))) -(-13 (-1104) (-10 -8 (-15 -2101 ($ (-112))) (-15 -1611 ($ (-112))) (-15 -4313 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ($ (-1162))) (-15 -1613 ($ (-1162))) (-15 -1614 ($ (-112))) (-15 -1611 ($ (-643 (-1092 (-380))))) (-15 -3644 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1610 ($ (-380))) (-15 -1610 ($ (-876))) (-15 -1609 ($ (-380))) (-15 -1609 ($ (-876))) (-15 -1608 ($ (-1 (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1621 ($ (-380))) (-15 -1607 ($ (-643 (-1092 (-380))))) (-15 -1607 ($ (-643 (-1092 (-410 (-549)))))) (-15 -2106 ($ (-643 (-1092 (-380))))) (-15 -1619 ($ (-1136 (-225)))) (-15 -1617 ($ (-922))) (-15 -1618 ($ (-922))) (-15 -1620 ($ (-922))) (-15 -2415 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1947 ($ (-643 (-380)))) (-15 -1622 ((-3 (-51) "failed") (-643 $) (-1180))) (-15 -1606 ((-112) (-643 $) (-1180))))) -((-4313 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-643 (-262)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1618 (((-922) (-643 (-262)) (-922)) 52)) (-1617 (((-922) (-643 (-262)) (-922)) 51)) (-4283 (((-643 (-380)) (-643 (-262)) (-643 (-380))) 68)) (-1621 (((-380) (-643 (-262)) (-380)) 57)) (-1620 (((-922) (-643 (-262)) (-922)) 53)) (-1614 (((-112) (-643 (-262)) (-112)) 27)) (-4315 (((-1162) (-643 (-262)) (-1162)) 19)) (-1613 (((-1162) (-643 (-262)) (-1162)) 26)) (-1619 (((-1136 (-225)) (-643 (-262))) 46)) (-2106 (((-643 (-1092 (-380))) (-643 (-262)) (-643 (-1092 (-380)))) 40)) (-1615 (((-876) (-643 (-262)) (-876)) 32)) (-1616 (((-876) (-643 (-262)) (-876)) 33)) (-2415 (((-1 (-946 (-225)) (-946 (-225))) (-643 (-262)) (-1 (-946 (-225)) (-946 (-225)))) 63)) (-1612 (((-112) (-643 (-262)) (-112)) 14)) (-2101 (((-112) (-643 (-262)) (-112)) 13))) -(((-263) (-10 -7 (-15 -2101 ((-112) (-643 (-262)) (-112))) (-15 -1612 ((-112) (-643 (-262)) (-112))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-643 (-262)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ((-1162) (-643 (-262)) (-1162))) (-15 -1613 ((-1162) (-643 (-262)) (-1162))) (-15 -1614 ((-112) (-643 (-262)) (-112))) (-15 -1615 ((-876) (-643 (-262)) (-876))) (-15 -1616 ((-876) (-643 (-262)) (-876))) (-15 -2106 ((-643 (-1092 (-380))) (-643 (-262)) (-643 (-1092 (-380))))) (-15 -1617 ((-922) (-643 (-262)) (-922))) (-15 -1618 ((-922) (-643 (-262)) (-922))) (-15 -1619 ((-1136 (-225)) (-643 (-262)))) (-15 -1620 ((-922) (-643 (-262)) (-922))) (-15 -1621 ((-380) (-643 (-262)) (-380))) (-15 -2415 ((-1 (-946 (-225)) (-946 (-225))) (-643 (-262)) (-1 (-946 (-225)) (-946 (-225))))) (-15 -4283 ((-643 (-380)) (-643 (-262)) (-643 (-380)))))) (T -263)) -((-4283 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-380))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-2415 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1621 (*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1620 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-263)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1617 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-2106 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1616 (*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1615 (*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1614 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1613 (*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-4315 (*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-4313 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1612 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(-10 -7 (-15 -2101 ((-112) (-643 (-262)) (-112))) (-15 -1612 ((-112) (-643 (-262)) (-112))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-643 (-262)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ((-1162) (-643 (-262)) (-1162))) (-15 -1613 ((-1162) (-643 (-262)) (-1162))) (-15 -1614 ((-112) (-643 (-262)) (-112))) (-15 -1615 ((-876) (-643 (-262)) (-876))) (-15 -1616 ((-876) (-643 (-262)) (-876))) (-15 -2106 ((-643 (-1092 (-380))) (-643 (-262)) (-643 (-1092 (-380))))) (-15 -1617 ((-922) (-643 (-262)) (-922))) (-15 -1618 ((-922) (-643 (-262)) (-922))) (-15 -1619 ((-1136 (-225)) (-643 (-262)))) (-15 -1620 ((-922) (-643 (-262)) (-922))) (-15 -1621 ((-380) (-643 (-262)) (-380))) (-15 -2415 ((-1 (-946 (-225)) (-946 (-225))) (-643 (-262)) (-1 (-946 (-225)) (-946 (-225))))) (-15 -4283 ((-643 (-380)) (-643 (-262)) (-643 (-380))))) -((-1622 (((-3 |#1| "failed") (-643 (-262)) (-1180)) 17))) -(((-264 |#1|) (-10 -7 (-15 -1622 ((-3 |#1| "failed") (-643 (-262)) (-1180)))) (-1219)) (T -264)) -((-1622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *1 (-264 *2)) (-4 *2 (-1219))))) -(-10 -7 (-15 -1622 ((-3 |#1| "failed") (-643 (-262)) (-1180)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1589 (((-643 (-773)) $) NIL) (((-643 (-773)) $ |#2|) NIL)) (-1623 (((-773) $) NIL) (((-773) $ |#2|) NIL)) (-3485 (((-643 |#3|) $) NIL)) (-3487 (((-1174 $) $ |#3|) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 |#3|)) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1585 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1128 |#1| |#2|) #2#) $) 23)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1128 |#1| |#2|) $) NIL)) (-4188 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 |#3|) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))))) (-4203 (((-773) $ |#2|) NIL) (((-773) $) 10)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) |#3|) NIL) (($ (-1174 $) |#3|) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) NIL)) (-3223 (((-534 |#3|) $) NIL) (((-773) $ |#3|) NIL) (((-643 (-773)) $ (-643 |#3|)) NIL)) (-1770 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1624 (((-1 $ (-773)) |#2|) NIL) (((-1 $ (-773)) $) NIL (|has| |#1| (-233)))) (-3486 (((-3 |#3| #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-1587 ((|#3| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1588 (((-112) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) #3#) $) NIL)) (-1586 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-643 |#3|) (-643 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-643 |#3|) (-643 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 |#1|)) NIL (|has| |#1| (-233)))) (-4189 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4242 (($ $ |#3|) NIL) (($ $ (-643 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1590 (((-643 |#2|) $) NIL)) (-4380 (((-534 |#3|) $) NIL) (((-773) $ |#3|) NIL) (((-643 (-773)) $ (-643 |#3|)) NIL) (((-773) $ |#2|) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1128 |#1| |#2|)) 32) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ |#3|) NIL) (($ $ (-643 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1041 (-1128 |#1| |#2|))) (-1052) (-852) (-267 |#2|)) (T -265)) -NIL -(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1041 (-1128 |#1| |#2|))) -((-1623 (((-773) $) 37)) (-3577 (((-3 |#2| "failed") $) 22)) (-3576 ((|#2| $) 33)) (-4242 (($ $) 14) (($ $ (-773)) 18)) (-4378 (((-865) $) 32) (($ |#2|) 11)) (-3455 (((-112) $ $) 26)) (-3088 (((-112) $ $) 36))) -(((-266 |#1| |#2|) (-10 -8 (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -1623 ((-773) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| "failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-267 |#2|) (-852)) (T -266)) -NIL -(-10 -8 (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -1623 ((-773) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| "failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-1623 (((-773) $) 23)) (-4263 ((|#1| $) 24)) (-3577 (((-3 |#1| "failed") $) 28)) (-3576 ((|#1| $) 29)) (-4203 (((-773) $) 25)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-1624 (($ |#1| (-773)) 26)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $) 22) (($ $ (-773)) 21)) (-4378 (((-865) $) 12) (($ |#1|) 27)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19))) -(((-267 |#1|) (-140) (-852)) (T -267)) -((-4378 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-1624 (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-267 *3)) (-4 *3 (-852))))) -(-13 (-852) (-1041 |t#1|) (-10 -8 (-15 -1624 ($ |t#1| (-773))) (-15 -4203 ((-773) $)) (-15 -4263 (|t#1| $)) (-15 -1623 ((-773) $)) (-15 -4242 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -4378 ($ |t#1|)))) -(((-102) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-852) . T) ((-1041 |#1|) . T) ((-1104) . T)) -((-3485 (((-643 (-1180)) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 54)) (-4366 (((-643 (-1180)) (-315 (-225)) (-773)) 96)) (-1627 (((-3 (-315 (-225)) "failed") (-315 (-225))) 64)) (-1628 (((-315 (-225)) (-315 (-225))) 82)) (-1626 (((-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 39)) (-1629 (((-112) (-643 (-315 (-225)))) 106)) (-1633 (((-112) (-315 (-225))) 37)) (-1635 (((-643 (-1162)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) 134)) (-1632 (((-643 (-315 (-225))) (-643 (-315 (-225)))) 110)) (-1631 (((-643 (-315 (-225))) (-643 (-315 (-225)))) 108)) (-1630 (((-691 (-225)) (-643 (-315 (-225))) (-773)) 122)) (-3328 (((-112) (-315 (-225))) 32) (((-112) (-643 (-315 (-225)))) 107)) (-1625 (((-643 (-225)) (-643 (-844 (-225))) (-225)) 15)) (-1725 (((-380) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 128)) (-1634 (((-1038) (-1180) (-1038)) 47))) -(((-268) (-10 -7 (-15 -1625 ((-643 (-225)) (-643 (-844 (-225))) (-225))) (-15 -1626 ((-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -1627 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1628 ((-315 (-225)) (-315 (-225)))) (-15 -1629 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-315 (-225)))) (-15 -1630 ((-691 (-225)) (-643 (-315 (-225))) (-773))) (-15 -1631 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1632 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1633 ((-112) (-315 (-225)))) (-15 -3485 ((-643 (-1180)) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4366 ((-643 (-1180)) (-315 (-225)) (-773))) (-15 -1634 ((-1038) (-1180) (-1038))) (-15 -1725 ((-380) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -1635 ((-643 (-1162)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))))))) (T -268)) -((-1635 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) (-5 *2 (-643 (-1162))) (-5 *1 (-268)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-380)) (-5 *1 (-268)))) (-1634 (*1 *2 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-268)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-773)) (-5 *2 (-643 (-1180))) (-5 *1 (-268)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-643 (-1180))) (-5 *1 (-268)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) (-5 *1 (-268)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-268)))) (-1627 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-268)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *1 (-268)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 *4)) (-5 *1 (-268))))) -(-10 -7 (-15 -1625 ((-643 (-225)) (-643 (-844 (-225))) (-225))) (-15 -1626 ((-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -1627 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1628 ((-315 (-225)) (-315 (-225)))) (-15 -1629 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-315 (-225)))) (-15 -1630 ((-691 (-225)) (-643 (-315 (-225))) (-773))) (-15 -1631 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1632 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1633 ((-112) (-315 (-225)))) (-15 -3485 ((-643 (-1180)) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4366 ((-643 (-1180)) (-315 (-225)) (-773))) (-15 -1634 ((-1038) (-1180) (-1038))) (-15 -1725 ((-380) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -1635 ((-643 (-1162)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))))) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 56)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 32) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-269) (-841)) (T -269)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 72) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 63)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 41) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 43)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-270) (-841)) (T -270)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 90) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 85)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 52) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 65)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-271) (-841)) (T -271)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 73)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 45) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-272) (-841)) (T -272)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 65)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 31) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-273) (-841)) (T -273)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 90)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 33) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-274) (-841)) (T -274)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 87)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 32) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-275) (-841)) (T -275)) -NIL -(-841) -((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1637 (((-643 (-549)) $) 29)) (-4380 (((-773) $) 27)) (-4378 (((-865) $) 36) (($ (-643 (-549))) 23)) (-3662 (((-112) $ $) NIL)) (-1636 (($ (-773)) 33)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 17))) -(((-276) (-13 (-852) (-10 -8 (-15 -4378 ($ (-643 (-549)))) (-15 -4380 ((-773) $)) (-15 -1637 ((-643 (-549)) $)) (-15 -1636 ($ (-773)))))) (T -276)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-276)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-276))))) -(-13 (-852) (-10 -8 (-15 -4378 ($ (-643 (-549)))) (-15 -4380 ((-773) $)) (-15 -1637 ((-643 (-549)) $)) (-15 -1636 ($ (-773))))) -((-3915 ((|#2| |#2|) 77)) (-4071 ((|#2| |#2|) 65)) (-1666 (((-3 |#2| "failed") |#2| (-643 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3913 ((|#2| |#2|) 75)) (-4070 ((|#2| |#2|) 63)) (-3917 ((|#2| |#2|) 79)) (-4069 ((|#2| |#2|) 67)) (-4059 ((|#2|) 46)) (-3448 (((-113) (-113)) 100)) (-4374 ((|#2| |#2|) 61)) (-1667 (((-112) |#2|) 147)) (-1656 ((|#2| |#2|) 195)) (-1644 ((|#2| |#2|) 171)) (-1639 ((|#2|) 59)) (-1638 ((|#2|) 58)) (-1654 ((|#2| |#2|) 191)) (-1642 ((|#2| |#2|) 167)) (-1658 ((|#2| |#2|) 199)) (-1646 ((|#2| |#2|) 175)) (-1641 ((|#2| |#2|) 163)) (-1640 ((|#2| |#2|) 165)) (-1659 ((|#2| |#2|) 201)) (-1647 ((|#2| |#2|) 177)) (-1657 ((|#2| |#2|) 197)) (-1645 ((|#2| |#2|) 173)) (-1655 ((|#2| |#2|) 193)) (-1643 ((|#2| |#2|) 169)) (-1662 ((|#2| |#2|) 207)) (-1650 ((|#2| |#2|) 183)) (-1660 ((|#2| |#2|) 203)) (-1648 ((|#2| |#2|) 179)) (-1664 ((|#2| |#2|) 211)) (-1652 ((|#2| |#2|) 187)) (-1665 ((|#2| |#2|) 213)) (-1653 ((|#2| |#2|) 189)) (-1663 ((|#2| |#2|) 209)) (-1651 ((|#2| |#2|) 185)) (-1661 ((|#2| |#2|) 205)) (-1649 ((|#2| |#2|) 181)) (-4375 ((|#2| |#2|) 62)) (-3918 ((|#2| |#2|) 80)) (-4068 ((|#2| |#2|) 68)) (-3916 ((|#2| |#2|) 78)) (-4067 ((|#2| |#2|) 66)) (-3914 ((|#2| |#2|) 76)) (-4066 ((|#2| |#2|) 64)) (-2403 (((-112) (-113)) 98)) (-3921 ((|#2| |#2|) 83)) (-3909 ((|#2| |#2|) 71)) (-3919 ((|#2| |#2|) 81)) (-3907 ((|#2| |#2|) 69)) (-3923 ((|#2| |#2|) 85)) (-3911 ((|#2| |#2|) 73)) (-3924 ((|#2| |#2|) 86)) (-3912 ((|#2| |#2|) 74)) (-3922 ((|#2| |#2|) 84)) (-3910 ((|#2| |#2|) 72)) (-3920 ((|#2| |#2|) 82)) (-3908 ((|#2| |#2|) 70))) -(((-277 |#1| |#2|) (-10 -7 (-15 -4375 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -4059 (|#2|)) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1638 (|#2|)) (-15 -1639 (|#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 ((-3 |#2| "failed") |#2| (-643 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1667 ((-112) |#2|))) (-560) (-13 (-424 |#1|) (-1005))) (T -277)) -((-1667 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-424 *4) (-1005))))) (-1666 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-643 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-424 *4) (-1005))) (-4 *4 (-560)) (-5 *1 (-277 *4 *2)))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1639 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) (-1638 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-424 *3) (-1005))))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-424 *4) (-1005))))) (-4059 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) -(-10 -7 (-15 -4375 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -4059 (|#2|)) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1638 (|#2|)) (-15 -1639 (|#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 ((-3 |#2| "failed") |#2| (-643 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1667 ((-112) |#2|))) -((-1670 (((-3 |#2| "failed") (-643 (-613 |#2|)) |#2| (-1180)) 153)) (-1672 ((|#2| (-410 (-549)) |#2|) 49)) (-1671 ((|#2| |#2| (-613 |#2|)) 146)) (-1668 (((-2 (|:| |func| |#2|) (|:| |kers| (-643 (-613 |#2|))) (|:| |vals| (-643 |#2|))) |#2| (-1180)) 145)) (-1669 ((|#2| |#2| (-1180)) 20) ((|#2| |#2|) 23)) (-2764 ((|#2| |#2| (-1180)) 159) ((|#2| |#2|) 157))) -(((-278 |#1| |#2|) (-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -2764 (|#2| |#2| (-1180))) (-15 -1668 ((-2 (|:| |func| |#2|) (|:| |kers| (-643 (-613 |#2|))) (|:| |vals| (-643 |#2|))) |#2| (-1180))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1180))) (-15 -1670 ((-3 |#2| "failed") (-643 (-613 |#2|)) |#2| (-1180))) (-15 -1671 (|#2| |#2| (-613 |#2|))) (-15 -1672 (|#2| (-410 (-549)) |#2|))) (-13 (-560) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -278)) -((-1672 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-1671 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)))) (-1670 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-1180)) (-4 *2 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *5 *2)))) (-1669 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-643 (-613 *3))) (|:| |vals| (-643 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2764 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) -(-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -2764 (|#2| |#2| (-1180))) (-15 -1668 ((-2 (|:| |func| |#2|) (|:| |kers| (-643 (-613 |#2|))) (|:| |vals| (-643 |#2|))) |#2| (-1180))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1180))) (-15 -1670 ((-3 |#2| "failed") (-643 (-613 |#2|)) |#2| (-1180))) (-15 -1671 (|#2| |#2| (-613 |#2|))) (-15 -1672 (|#2| (-410 (-549)) |#2|))) -((-3376 (((-3 |#3| #1="failed") |#3|) 120)) (-3915 ((|#3| |#3|) 142)) (-3364 (((-3 |#3| #1#) |#3|) 89)) (-4071 ((|#3| |#3|) 132)) (-3374 (((-3 |#3| #1#) |#3|) 65)) (-3913 ((|#3| |#3|) 140)) (-3362 (((-3 |#3| #1#) |#3|) 53)) (-4070 ((|#3| |#3|) 130)) (-3378 (((-3 |#3| #1#) |#3|) 122)) (-3917 ((|#3| |#3|) 144)) (-3366 (((-3 |#3| #1#) |#3|) 91)) (-4069 ((|#3| |#3|) 134)) (-3359 (((-3 |#3| #1#) |#3| (-773)) 41)) (-3361 (((-3 |#3| #1#) |#3|) 81)) (-4374 ((|#3| |#3|) 129)) (-3360 (((-3 |#3| #1#) |#3|) 51)) (-4375 ((|#3| |#3|) 128)) (-3379 (((-3 |#3| #1#) |#3|) 123)) (-3918 ((|#3| |#3|) 145)) (-3367 (((-3 |#3| #1#) |#3|) 92)) (-4068 ((|#3| |#3|) 135)) (-3377 (((-3 |#3| #1#) |#3|) 121)) (-3916 ((|#3| |#3|) 143)) (-3365 (((-3 |#3| #1#) |#3|) 90)) (-4067 ((|#3| |#3|) 133)) (-3375 (((-3 |#3| #1#) |#3|) 67)) (-3914 ((|#3| |#3|) 141)) (-3363 (((-3 |#3| #1#) |#3|) 55)) (-4066 ((|#3| |#3|) 131)) (-3382 (((-3 |#3| #1#) |#3|) 73)) (-3921 ((|#3| |#3|) 148)) (-3370 (((-3 |#3| #1#) |#3|) 114)) (-3909 ((|#3| |#3|) 152)) (-3380 (((-3 |#3| #1#) |#3|) 69)) (-3919 ((|#3| |#3|) 146)) (-3368 (((-3 |#3| #1#) |#3|) 57)) (-3907 ((|#3| |#3|) 136)) (-3384 (((-3 |#3| #1#) |#3|) 77)) (-3923 ((|#3| |#3|) 150)) (-3372 (((-3 |#3| #1#) |#3|) 61)) (-3911 ((|#3| |#3|) 138)) (-3385 (((-3 |#3| #1#) |#3|) 79)) (-3924 ((|#3| |#3|) 151)) (-3373 (((-3 |#3| #1#) |#3|) 63)) (-3912 ((|#3| |#3|) 139)) (-3383 (((-3 |#3| #1#) |#3|) 75)) (-3922 ((|#3| |#3|) 149)) (-3371 (((-3 |#3| #1#) |#3|) 117)) (-3910 ((|#3| |#3|) 153)) (-3381 (((-3 |#3| #1#) |#3|) 71)) (-3920 ((|#3| |#3|) 147)) (-3369 (((-3 |#3| #1#) |#3|) 59)) (-3908 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-549))) 47 (|has| |#1| (-365))))) -(((-279 |#1| |#2| |#3|) (-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) (-38 (-410 (-549))) (-1262 |#1|) (-1233 |#1| |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1262 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1233 *4 *5)))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4))))) -(-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) -((-3376 (((-3 |#3| #1="failed") |#3|) 70)) (-3915 ((|#3| |#3|) 137)) (-3364 (((-3 |#3| #1#) |#3|) 54)) (-4071 ((|#3| |#3|) 125)) (-3374 (((-3 |#3| #1#) |#3|) 66)) (-3913 ((|#3| |#3|) 135)) (-3362 (((-3 |#3| #1#) |#3|) 50)) (-4070 ((|#3| |#3|) 123)) (-3378 (((-3 |#3| #1#) |#3|) 74)) (-3917 ((|#3| |#3|) 139)) (-3366 (((-3 |#3| #1#) |#3|) 58)) (-4069 ((|#3| |#3|) 127)) (-3359 (((-3 |#3| #1#) |#3| (-773)) 38)) (-3361 (((-3 |#3| #1#) |#3|) 48)) (-4374 ((|#3| |#3|) 111)) (-3360 (((-3 |#3| #1#) |#3|) 46)) (-4375 ((|#3| |#3|) 122)) (-3379 (((-3 |#3| #1#) |#3|) 76)) (-3918 ((|#3| |#3|) 140)) (-3367 (((-3 |#3| #1#) |#3|) 60)) (-4068 ((|#3| |#3|) 128)) (-3377 (((-3 |#3| #1#) |#3|) 72)) (-3916 ((|#3| |#3|) 138)) (-3365 (((-3 |#3| #1#) |#3|) 56)) (-4067 ((|#3| |#3|) 126)) (-3375 (((-3 |#3| #1#) |#3|) 68)) (-3914 ((|#3| |#3|) 136)) (-3363 (((-3 |#3| #1#) |#3|) 52)) (-4066 ((|#3| |#3|) 124)) (-3382 (((-3 |#3| #1#) |#3|) 78)) (-3921 ((|#3| |#3|) 143)) (-3370 (((-3 |#3| #1#) |#3|) 62)) (-3909 ((|#3| |#3|) 131)) (-3380 (((-3 |#3| #1#) |#3|) 112)) (-3919 ((|#3| |#3|) 141)) (-3368 (((-3 |#3| #1#) |#3|) 100)) (-3907 ((|#3| |#3|) 129)) (-3384 (((-3 |#3| #1#) |#3|) 116)) (-3923 ((|#3| |#3|) 145)) (-3372 (((-3 |#3| #1#) |#3|) 107)) (-3911 ((|#3| |#3|) 133)) (-3385 (((-3 |#3| #1#) |#3|) 117)) (-3924 ((|#3| |#3|) 146)) (-3373 (((-3 |#3| #1#) |#3|) 109)) (-3912 ((|#3| |#3|) 134)) (-3383 (((-3 |#3| #1#) |#3|) 80)) (-3922 ((|#3| |#3|) 144)) (-3371 (((-3 |#3| #1#) |#3|) 64)) (-3910 ((|#3| |#3|) 132)) (-3381 (((-3 |#3| #1#) |#3|) 113)) (-3920 ((|#3| |#3|) 142)) (-3369 (((-3 |#3| #1#) |#3|) 103)) (-3908 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-549))) 44 (|has| |#1| (-365))))) -(((-280 |#1| |#2| |#3| |#4|) (-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) (-38 (-410 (-549))) (-1231 |#1|) (-1254 |#1| |#2|) (-986 |#2|)) (T -280)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1231 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1254 *4 *5)) (-4 *6 (-986 *5)))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4))))) -(-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) -((-1675 (((-112) $) 20)) (-1677 (((-1185) $) 7)) (-4000 (((-3 (-509) "failed") $) 14)) (-3999 (((-3 (-643 $) "failed") $) NIL)) (-1674 (((-3 (-509) "failed") $) 21)) (-1676 (((-3 (-1106) "failed") $) 18)) (-4385 (((-112) $) 16)) (-4378 (((-865) $) NIL)) (-1673 (((-112) $) 9))) -(((-281) (-13 (-615 (-865)) (-10 -8 (-15 -1677 ((-1185) $)) (-15 -4385 ((-112) $)) (-15 -1676 ((-3 (-1106) "failed") $)) (-15 -1675 ((-112) $)) (-15 -1674 ((-3 (-509) "failed") $)) (-15 -1673 ((-112) $)) (-15 -4000 ((-3 (-509) "failed") $)) (-15 -3999 ((-3 (-643 $) "failed") $))))) (T -281)) -((-1677 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-281)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1676 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1674 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-4000 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-3999 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-281))) (-5 *1 (-281))))) -(-13 (-615 (-865)) (-10 -8 (-15 -1677 ((-1185) $)) (-15 -4385 ((-112) $)) (-15 -1676 ((-3 (-1106) "failed") $)) (-15 -1675 ((-112) $)) (-15 -1674 ((-3 (-509) "failed") $)) (-15 -1673 ((-112) $)) (-15 -4000 ((-3 (-509) "failed") $)) (-15 -3999 ((-3 (-643 $) "failed") $)))) -((-4142 (($ (-1 (-112) |#2|) $) 24)) (-1440 (($ $) 38)) (-3829 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3830 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3259 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2449 (($ |#2| $ (-549)) 20) (($ $ $ (-549)) 22)) (-2450 (($ $ (-549)) 11) (($ $ (-1236 (-549))) 14)) (-4222 (($ $ |#2|) 32) (($ $ $) NIL)) (-4233 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-643 $)) NIL))) -(((-282 |#1| |#2|) (-10 -8 (-15 -3259 (|#1| |#1| |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -1440 (|#1| |#1|))) (-283 |#2|) (-1219)) (T -282)) -NIL -(-10 -8 (-15 -3259 (|#1| |#1| |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -1440 (|#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) 86)) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 84 (|has| |#1| (-1104)))) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1104)))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-3259 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4039 (($ |#1| $ (-549)) 89) (($ $ $ (-549)) 88)) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-1679 (($ $ (-549)) 92) (($ $ (-1236 (-549))) 91)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4222 (($ $ |#1|) 94) (($ $ $) 93)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-283 |#1|) (-140) (-1219)) (T -283)) -((-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-4039 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-4039 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3259 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3829 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) (-2526 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-852))))) -(-13 (-653 |t#1|) (-10 -8 (-6 -4426) (-15 -4222 ($ $ |t#1|)) (-15 -4222 ($ $ $)) (-15 -1679 ($ $ (-549))) (-15 -1679 ($ $ (-1236 (-549)))) (-15 -3829 ($ (-1 (-112) |t#1|) $)) (-15 -4039 ($ |t#1| $ (-549))) (-15 -4039 ($ $ $ (-549))) (-15 -3259 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1678 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -3829 ($ |t#1| $)) (-15 -2526 ($ $))) |%noBranch|) (IF (|has| |t#1| (-852)) (-15 -3259 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +NIL +(-13 (-1053) (-111 $ $) (-10 -7 (-6 (-4429 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-1870 (($ $) 6))) +(((-174) (-140)) (T -174)) +((-1870 (*1 *1 *1) (-4 *1 (-174)))) +(-13 (-10 -8 (-15 -1870 ($ $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 ((|#1| $) 81)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL)) (-1473 (($ $) 21)) (-1477 (($ |#1| (-1158 |#1|)) 50)) (-3892 (((-3 $ "failed") $) 123)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-1474 (((-1158 |#1|) $) 88)) (-1476 (((-1158 |#1|) $) 85)) (-1475 (((-1158 |#1|) $) 86)) (-2575 (((-112) $) NIL)) (-1470 (((-1158 |#1|) $) 94)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2071 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-4202 (($ $ (-550)) 97)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1469 (((-1158 |#1|) $) 95)) (-1471 (((-1158 (-411 |#1|)) $) 14)) (-3018 (($ (-411 |#1|)) 17) (($ |#1| (-1158 |#1|) (-1158 |#1|)) 40)) (-3294 (($ $) 99)) (-4380 (((-866) $) 140) (($ (-550)) 53) (($ |#1|) 54) (($ (-411 |#1|)) 38) (($ (-411 (-550))) NIL) (($ $) NIL)) (-3532 (((-774)) 69 T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-1472 (((-1158 (-411 |#1|)) $) 20)) (-3512 (($) 27 T CONST)) (-3069 (($) 30 T CONST)) (-3457 (((-112) $ $) 37)) (-4383 (($ $ $) 121)) (-4271 (($ $) 112) (($ $ $) 109)) (-4273 (($ $ $) 107)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-411 |#1|) $) 117) (($ $ (-411 |#1|)) NIL) (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL))) +(((-175 |#1|) (-13 (-38 |#1|) (-38 (-411 |#1|)) (-366) (-10 -8 (-15 -3018 ($ (-411 |#1|))) (-15 -3018 ($ |#1| (-1158 |#1|) (-1158 |#1|))) (-15 -1477 ($ |#1| (-1158 |#1|))) (-15 -1476 ((-1158 |#1|) $)) (-15 -1475 ((-1158 |#1|) $)) (-15 -1474 ((-1158 |#1|) $)) (-15 -3535 (|#1| $)) (-15 -1473 ($ $)) (-15 -1472 ((-1158 (-411 |#1|)) $)) (-15 -1471 ((-1158 (-411 |#1|)) $)) (-15 -1470 ((-1158 |#1|) $)) (-15 -1469 ((-1158 |#1|) $)) (-15 -4202 ($ $ (-550))) (-15 -3294 ($ $)))) (-309)) (T -175)) +((-3018 (*1 *1 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-309)) (-5 *1 (-175 *3)))) (-3018 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-309)) (-5 *1 (-175 *2)))) (-1477 (*1 *1 *2 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-309)) (-5 *1 (-175 *2)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-3535 (*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-309)))) (-1473 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-309)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1158 (-411 *3))) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-1158 (-411 *3))) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) (-3294 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-309))))) +(-13 (-38 |#1|) (-38 (-411 |#1|)) (-366) (-10 -8 (-15 -3018 ($ (-411 |#1|))) (-15 -3018 ($ |#1| (-1158 |#1|) (-1158 |#1|))) (-15 -1477 ($ |#1| (-1158 |#1|))) (-15 -1476 ((-1158 |#1|) $)) (-15 -1475 ((-1158 |#1|) $)) (-15 -1474 ((-1158 |#1|) $)) (-15 -3535 (|#1| $)) (-15 -1473 ($ $)) (-15 -1472 ((-1158 (-411 |#1|)) $)) (-15 -1471 ((-1158 (-411 |#1|)) $)) (-15 -1470 ((-1158 |#1|) $)) (-15 -1469 ((-1158 |#1|) $)) (-15 -4202 ($ $ (-550))) (-15 -3294 ($ $)))) +((-1478 (($ (-109) $) 15)) (-3643 (((-694 (-109)) (-510) $) 14)) (-4380 (((-866) $) 18)) (-1479 (((-644 (-109)) $) 8))) +(((-176) (-13 (-616 (-866)) (-10 -8 (-15 -1479 ((-644 (-109)) $)) (-15 -1478 ($ (-109) $)) (-15 -3643 ((-694 (-109)) (-510) $))))) (T -176)) +((-1479 (*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-176)))) (-1478 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))) (-3643 (*1 *2 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-109))) (-5 *1 (-176))))) +(-13 (-616 (-866)) (-10 -8 (-15 -1479 ((-644 (-109)) $)) (-15 -1478 ($ (-109) $)) (-15 -3643 ((-694 (-109)) (-510) $)))) +((-1492 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 38)) (-1483 (((-947 |#1|) (-947 |#1|)) 22)) (-1488 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 34)) (-1481 (((-947 |#1|) (-947 |#1|)) 20)) (-1486 (((-947 |#1|) (-947 |#1|)) 28)) (-1485 (((-947 |#1|) (-947 |#1|)) 27)) (-1484 (((-947 |#1|) (-947 |#1|)) 26)) (-1489 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 35)) (-1487 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 33)) (-1813 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 32)) (-1482 (((-947 |#1|) (-947 |#1|)) 21)) (-1493 (((-1 (-947 |#1|) (-947 |#1|)) |#1| |#1|) 41)) (-1480 (((-947 |#1|) (-947 |#1|)) 8)) (-1491 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 37)) (-1490 (((-1 (-947 |#1|) (-947 |#1|)) |#1|) 36))) +(((-177 |#1|) (-10 -7 (-15 -1480 ((-947 |#1|) (-947 |#1|))) (-15 -1481 ((-947 |#1|) (-947 |#1|))) (-15 -1482 ((-947 |#1|) (-947 |#1|))) (-15 -1483 ((-947 |#1|) (-947 |#1|))) (-15 -1484 ((-947 |#1|) (-947 |#1|))) (-15 -1485 ((-947 |#1|) (-947 |#1|))) (-15 -1486 ((-947 |#1|) (-947 |#1|))) (-15 -1813 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1487 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1488 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1489 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1490 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1491 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1492 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1493 ((-1 (-947 |#1|) (-947 |#1|)) |#1| |#1|))) (-13 (-366) (-1206) (-1006))) (T -177)) +((-1493 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1491 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1490 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1488 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1813 (*1 *2 *3) (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) (-5 *1 (-177 *3))))) +(-10 -7 (-15 -1480 ((-947 |#1|) (-947 |#1|))) (-15 -1481 ((-947 |#1|) (-947 |#1|))) (-15 -1482 ((-947 |#1|) (-947 |#1|))) (-15 -1483 ((-947 |#1|) (-947 |#1|))) (-15 -1484 ((-947 |#1|) (-947 |#1|))) (-15 -1485 ((-947 |#1|) (-947 |#1|))) (-15 -1486 ((-947 |#1|) (-947 |#1|))) (-15 -1813 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1487 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1488 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1489 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1490 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1491 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1492 ((-1 (-947 |#1|) (-947 |#1|)) |#1|)) (-15 -1493 ((-1 (-947 |#1|) (-947 |#1|)) |#1| |#1|))) +((-2772 ((|#2| |#3|) 28))) +(((-178 |#1| |#2| |#3|) (-10 -7 (-15 -2772 (|#2| |#3|))) (-173) (-1246 |#1|) (-727 |#1| |#2|)) (T -178)) +((-2772 (*1 *2 *3) (-12 (-4 *4 (-173)) (-4 *2 (-1246 *4)) (-5 *1 (-178 *4 *2 *3)) (-4 *3 (-727 *4 *2))))) +(-10 -7 (-15 -2772 (|#2| |#3|))) +((-3201 (((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)) 44 (|has| (-950 |#2|) (-890 |#1|))))) +(((-179 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-950 |#2|) (-890 |#1|)) (-15 -3201 ((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|))) |%noBranch|)) (-1105) (-13 (-890 |#1|) (-173)) (-166 |#2|)) (T -179)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *3 (-166 *6)) (-4 (-950 *6) (-890 *5)) (-4 *6 (-13 (-890 *5) (-173))) (-5 *1 (-179 *5 *6 *3))))) +(-10 -7 (IF (|has| (-950 |#2|) (-890 |#1|)) (-15 -3201 ((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|))) |%noBranch|)) +((-1495 (((-644 |#1|) (-644 |#1|) |#1|) 41)) (-1494 (((-644 |#1|) |#1| (-644 |#1|)) 20)) (-2262 (((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|)) 36) ((|#1| (-644 |#1|) (-644 |#1|)) 32))) +(((-180 |#1|) (-10 -7 (-15 -1494 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -2262 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -2262 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -1495 ((-644 |#1|) (-644 |#1|) |#1|))) (-309)) (T -180)) +((-1495 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-309)) (-5 *1 (-180 *3)))) (-2262 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-309)) (-5 *1 (-180 *4)))) (-2262 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-180 *2)) (-4 *2 (-309)))) (-1494 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-309)) (-5 *1 (-180 *3))))) +(-10 -7 (-15 -1494 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -2262 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -2262 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -1495 ((-644 |#1|) (-644 |#1|) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3741 (((-1221) $) 13)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3628 (((-1139) $) 10)) (-4380 (((-866) $) 20) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-181) (-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3741 ((-1221) $))))) (T -181)) +((-3628 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-181)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-181))))) +(-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3741 ((-1221) $)))) +((-1504 (((-2 (|:| |start| |#2|) (|:| -1956 (-409 |#2|))) |#2|) 66)) (-1503 ((|#1| |#1|) 58)) (-1502 (((-169 |#1|) |#2|) 93)) (-1501 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-1500 ((|#2| |#2|) 91)) (-1499 (((-409 |#2|) |#2| |#1|) 121) (((-409 |#2|) |#2| |#1| (-112)) 88)) (-3538 ((|#1| |#2|) 120)) (-1498 ((|#2| |#2|) 135)) (-4166 (((-409 |#2|) |#2|) 158) (((-409 |#2|) |#2| |#1|) 33) (((-409 |#2|) |#2| |#1| (-112)) 157)) (-1497 (((-644 (-2 (|:| -1956 (-644 |#2|)) (|:| -1706 |#1|))) |#2| |#2|) 156) (((-644 (-2 (|:| -1956 (-644 |#2|)) (|:| -1706 |#1|))) |#2| |#2| (-112)) 81)) (-1496 (((-644 (-169 |#1|)) |#2| |#1|) 42) (((-644 (-169 |#1|)) |#2|) 43))) +(((-182 |#1| |#2|) (-10 -7 (-15 -1496 ((-644 (-169 |#1|)) |#2|)) (-15 -1496 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -1497 ((-644 (-2 (|:| -1956 (-644 |#2|)) (|:| -1706 |#1|))) |#2| |#2| (-112))) (-15 -1497 ((-644 (-2 (|:| -1956 (-644 |#2|)) (|:| -1706 |#1|))) |#2| |#2|)) (-15 -4166 ((-409 |#2|) |#2| |#1| (-112))) (-15 -4166 ((-409 |#2|) |#2| |#1|)) (-15 -4166 ((-409 |#2|) |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -3538 (|#1| |#2|)) (-15 -1499 ((-409 |#2|) |#2| |#1| (-112))) (-15 -1499 ((-409 |#2|) |#2| |#1|)) (-15 -1500 (|#2| |#2|)) (-15 -1501 (|#1| |#2| |#1|)) (-15 -1501 (|#1| |#2|)) (-15 -1502 ((-169 |#1|) |#2|)) (-15 -1503 (|#1| |#1|)) (-15 -1504 ((-2 (|:| |start| |#2|) (|:| -1956 (-409 |#2|))) |#2|))) (-13 (-366) (-851)) (-1246 (-169 |#1|))) (T -182)) +((-1504 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-2 (|:| |start| *3) (|:| -1956 (-409 *3)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-1503 (*1 *2 *2) (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1246 (-169 *2))))) (-1502 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-366) (-851))) (-4 *3 (-1246 *2)))) (-1501 (*1 *2 *3) (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1246 (-169 *2))))) (-1501 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1246 (-169 *2))))) (-1500 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-851))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1246 (-169 *3))))) (-1499 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-3538 (*1 *2 *3) (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1246 (-169 *2))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-851))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1246 (-169 *3))))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-4166 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-1497 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-644 (-2 (|:| -1956 (-644 *3)) (|:| -1706 *4)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-1497 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-366) (-851))) (-5 *2 (-644 (-2 (|:| -1956 (-644 *3)) (|:| -1706 *5)))) (-5 *1 (-182 *5 *3)) (-4 *3 (-1246 (-169 *5))))) (-1496 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4)))))) +(-10 -7 (-15 -1496 ((-644 (-169 |#1|)) |#2|)) (-15 -1496 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -1497 ((-644 (-2 (|:| -1956 (-644 |#2|)) (|:| -1706 |#1|))) |#2| |#2| (-112))) (-15 -1497 ((-644 (-2 (|:| -1956 (-644 |#2|)) (|:| -1706 |#1|))) |#2| |#2|)) (-15 -4166 ((-409 |#2|) |#2| |#1| (-112))) (-15 -4166 ((-409 |#2|) |#2| |#1|)) (-15 -4166 ((-409 |#2|) |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -3538 (|#1| |#2|)) (-15 -1499 ((-409 |#2|) |#2| |#1| (-112))) (-15 -1499 ((-409 |#2|) |#2| |#1|)) (-15 -1500 (|#2| |#2|)) (-15 -1501 (|#1| |#2| |#1|)) (-15 -1501 (|#1| |#2|)) (-15 -1502 ((-169 |#1|) |#2|)) (-15 -1503 (|#1| |#1|)) (-15 -1504 ((-2 (|:| |start| |#2|) (|:| -1956 (-409 |#2|))) |#2|))) +((-1505 (((-3 |#2| "failed") |#2|) 20)) (-1506 (((-774) |#2|) 23)) (-1507 ((|#2| |#2| |#2|) 25))) +(((-183 |#1| |#2|) (-10 -7 (-15 -1505 ((-3 |#2| "failed") |#2|)) (-15 -1506 ((-774) |#2|)) (-15 -1507 (|#2| |#2| |#2|))) (-1220) (-677 |#1|)) (T -183)) +((-1507 (*1 *2 *2 *2) (-12 (-4 *3 (-1220)) (-5 *1 (-183 *3 *2)) (-4 *2 (-677 *3)))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-1220)) (-5 *2 (-774)) (-5 *1 (-183 *4 *3)) (-4 *3 (-677 *4)))) (-1505 (*1 *2 *2) (|partial| -12 (-4 *3 (-1220)) (-5 *1 (-183 *3 *2)) (-4 *2 (-677 *3))))) +(-10 -7 (-15 -1505 ((-3 |#2| "failed") |#2|)) (-15 -1506 ((-774) |#2|)) (-15 -1507 (|#2| |#2| |#2|))) +((-2970 (((-112) $ $) NIL)) (-1510 (((-644 (-868)) $) NIL)) (-3975 (((-510) $) 8)) (-3665 (((-1163) $) NIL)) (-1512 (((-188) $) 10)) (-3037 (((-112) $ (-510)) NIL)) (-3666 (((-1124) $) NIL)) (-1508 (((-694 $) (-510)) 17)) (-1511 (((-644 (-112)) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2923 (((-55) $) 12)) (-3457 (((-112) $ $) NIL))) +(((-184) (-13 (-187) (-10 -8 (-15 -1508 ((-694 $) (-510)))))) (T -184)) +((-1508 (*1 *2 *3) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-184))) (-5 *1 (-184))))) +(-13 (-187) (-10 -8 (-15 -1508 ((-694 $) (-510))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1585 ((|#1| $) 7)) (-4380 (((-866) $) 14)) (-3664 (((-112) $ $) NIL)) (-1509 (((-644 (-1186)) $) 10)) (-3457 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1105) (-10 -8 (-15 -1585 (|#1| $)) (-15 -1509 ((-644 (-1186)) $)))) (-187)) (T -185)) +((-1585 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1105) (-10 -8 (-15 -1585 (|#1| $)) (-15 -1509 ((-644 (-1186)) $)))) +((-1510 (((-644 (-868)) $) 16)) (-1512 (((-188) $) 8)) (-1511 (((-644 (-112)) $) 13)) (-2923 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -1510 ((-644 (-868)) |#1|)) (-15 -1511 ((-644 (-112)) |#1|)) (-15 -1512 ((-188) |#1|)) (-15 -2923 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -1510 ((-644 (-868)) |#1|)) (-15 -1511 ((-644 (-112)) |#1|)) (-15 -1512 ((-188) |#1|)) (-15 -2923 ((-55) |#1|))) +((-2970 (((-112) $ $) 7)) (-1510 (((-644 (-868)) $) 19)) (-3975 (((-510) $) 16)) (-3665 (((-1163) $) 10)) (-1512 (((-188) $) 21)) (-3037 (((-112) $ (-510)) 14)) (-3666 (((-1124) $) 11)) (-1511 (((-644 (-112)) $) 20)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2923 (((-55) $) 15)) (-3457 (((-112) $ $) 6))) +(((-187) (-140)) (T -187)) +((-1512 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-644 (-112))))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-644 (-868)))))) +(-13 (-839 (-510)) (-10 -8 (-15 -1512 ((-188) $)) (-15 -1511 ((-644 (-112)) $)) (-15 -1510 ((-644 (-868)) $)))) +(((-102) . T) ((-616 (-866)) . T) ((-839 (-510)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-8 (($) 7 T CONST)) (-4380 (((-866) $) 12)) (-9 (($) 6 T CONST)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 10))) +(((-188) (-13 (-1105) (-10 -8 (-15 -9 ($) -4386) (-15 -8 ($) -4386) (-15 -7 ($) -4386)))) (T -188)) +((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) +(-13 (-1105) (-10 -8 (-15 -9 ($) -4386) (-15 -8 ($) -4386) (-15 -7 ($) -4386))) +((-4076 ((|#2| |#2|) 28)) (-4079 (((-112) |#2|) 19)) (-4077 (((-316 |#1|) |#2|) 12)) (-4078 (((-316 |#1|) |#2|) 14)) (-4074 ((|#2| |#2| (-1181)) 69) ((|#2| |#2|) 70)) (-4080 (((-169 (-316 |#1|)) |#2|) 10)) (-4075 ((|#2| |#2| (-1181)) 66) ((|#2| |#2|) 60))) +(((-189 |#1| |#2|) (-10 -7 (-15 -4074 (|#2| |#2|)) (-15 -4074 (|#2| |#2| (-1181))) (-15 -4075 (|#2| |#2|)) (-15 -4075 (|#2| |#2| (-1181))) (-15 -4077 ((-316 |#1|) |#2|)) (-15 -4078 ((-316 |#1|) |#2|)) (-15 -4079 ((-112) |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4080 ((-169 (-316 |#1|)) |#2|))) (-13 (-561) (-1042 (-550))) (-13 (-27) (-1206) (-425 (-169 |#1|)))) (T -189)) +((-4080 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 (-169 *3)))))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) (-4078 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-316 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-316 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) (-4075 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 (-169 *4)))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 (-169 *3)))))) (-4074 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 (-169 *4)))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 (-169 *3))))))) +(-10 -7 (-15 -4074 (|#2| |#2|)) (-15 -4074 (|#2| |#2| (-1181))) (-15 -4075 (|#2| |#2|)) (-15 -4075 (|#2| |#2| (-1181))) (-15 -4077 ((-316 |#1|) |#2|)) (-15 -4078 ((-316 |#1|) |#2|)) (-15 -4079 ((-112) |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4080 ((-169 (-316 |#1|)) |#2|))) +((-1516 (((-1270 (-692 (-950 |#1|))) (-1270 (-692 |#1|))) 26)) (-4380 (((-1270 (-692 (-411 (-950 |#1|)))) (-1270 (-692 |#1|))) 37))) +(((-190 |#1|) (-10 -7 (-15 -1516 ((-1270 (-692 (-950 |#1|))) (-1270 (-692 |#1|)))) (-15 -4380 ((-1270 (-692 (-411 (-950 |#1|)))) (-1270 (-692 |#1|))))) (-173)) (T -190)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-1270 (-692 *4))) (-4 *4 (-173)) (-5 *2 (-1270 (-692 (-411 (-950 *4))))) (-5 *1 (-190 *4)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-1270 (-692 *4))) (-4 *4 (-173)) (-5 *2 (-1270 (-692 (-950 *4)))) (-5 *1 (-190 *4))))) +(-10 -7 (-15 -1516 ((-1270 (-692 (-950 |#1|))) (-1270 (-692 |#1|)))) (-15 -4380 ((-1270 (-692 (-411 (-950 |#1|)))) (-1270 (-692 |#1|))))) +((-1524 (((-1183 (-411 (-550))) (-1183 (-411 (-550))) (-1183 (-411 (-550)))) 88)) (-1526 (((-1183 (-411 (-550))) (-644 (-550)) (-644 (-550))) 99)) (-1517 (((-1183 (-411 (-550))) (-550)) 55)) (-4288 (((-1183 (-411 (-550))) (-550)) 74)) (-4201 (((-411 (-550)) (-1183 (-411 (-550)))) 84)) (-1518 (((-1183 (-411 (-550))) (-550)) 37)) (-1521 (((-1183 (-411 (-550))) (-550)) 67)) (-1520 (((-1183 (-411 (-550))) (-550)) 61)) (-1523 (((-1183 (-411 (-550))) (-1183 (-411 (-550))) (-1183 (-411 (-550)))) 82)) (-3294 (((-1183 (-411 (-550))) (-550)) 29)) (-1522 (((-411 (-550)) (-1183 (-411 (-550))) (-1183 (-411 (-550)))) 86)) (-1519 (((-1183 (-411 (-550))) (-550)) 35)) (-1525 (((-1183 (-411 (-550))) (-644 (-550))) 95))) +(((-191) (-10 -7 (-15 -3294 ((-1183 (-411 (-550))) (-550))) (-15 -1517 ((-1183 (-411 (-550))) (-550))) (-15 -1518 ((-1183 (-411 (-550))) (-550))) (-15 -1519 ((-1183 (-411 (-550))) (-550))) (-15 -1520 ((-1183 (-411 (-550))) (-550))) (-15 -1521 ((-1183 (-411 (-550))) (-550))) (-15 -4288 ((-1183 (-411 (-550))) (-550))) (-15 -1522 ((-411 (-550)) (-1183 (-411 (-550))) (-1183 (-411 (-550))))) (-15 -1523 ((-1183 (-411 (-550))) (-1183 (-411 (-550))) (-1183 (-411 (-550))))) (-15 -4201 ((-411 (-550)) (-1183 (-411 (-550))))) (-15 -1524 ((-1183 (-411 (-550))) (-1183 (-411 (-550))) (-1183 (-411 (-550))))) (-15 -1525 ((-1183 (-411 (-550))) (-644 (-550)))) (-15 -1526 ((-1183 (-411 (-550))) (-644 (-550)) (-644 (-550)))))) (T -191)) +((-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)))) (-1524 (*1 *2 *2 *2) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-1183 (-411 (-550)))) (-5 *2 (-411 (-550))) (-5 *1 (-191)))) (-1523 (*1 *2 *2 *2) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)))) (-1522 (*1 *2 *3 *3) (-12 (-5 *3 (-1183 (-411 (-550)))) (-5 *2 (-411 (-550))) (-5 *1 (-191)))) (-4288 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) (-1521 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) (-1520 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) (-3294 (*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550))))) +(-10 -7 (-15 -3294 ((-1183 (-411 (-550))) (-550))) (-15 -1517 ((-1183 (-411 (-550))) (-550))) (-15 -1518 ((-1183 (-411 (-550))) (-550))) (-15 -1519 ((-1183 (-411 (-550))) (-550))) (-15 -1520 ((-1183 (-411 (-550))) (-550))) (-15 -1521 ((-1183 (-411 (-550))) (-550))) (-15 -4288 ((-1183 (-411 (-550))) (-550))) (-15 -1522 ((-411 (-550)) (-1183 (-411 (-550))) (-1183 (-411 (-550))))) (-15 -1523 ((-1183 (-411 (-550))) (-1183 (-411 (-550))) (-1183 (-411 (-550))))) (-15 -4201 ((-411 (-550)) (-1183 (-411 (-550))))) (-15 -1524 ((-1183 (-411 (-550))) (-1183 (-411 (-550))) (-1183 (-411 (-550))))) (-15 -1525 ((-1183 (-411 (-550))) (-644 (-550)))) (-15 -1526 ((-1183 (-411 (-550))) (-644 (-550)) (-644 (-550))))) +((-1528 (((-409 (-1175 (-550))) (-550)) 38)) (-1527 (((-644 (-1175 (-550))) (-550)) 33)) (-3206 (((-1175 (-550)) (-550)) 28))) +(((-192) (-10 -7 (-15 -1527 ((-644 (-1175 (-550))) (-550))) (-15 -3206 ((-1175 (-550)) (-550))) (-15 -1528 ((-409 (-1175 (-550))) (-550))))) (T -192)) +((-1528 (*1 *2 *3) (-12 (-5 *2 (-409 (-1175 (-550)))) (-5 *1 (-192)) (-5 *3 (-550)))) (-3206 (*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-192)) (-5 *3 (-550)))) (-1527 (*1 *2 *3) (-12 (-5 *2 (-644 (-1175 (-550)))) (-5 *1 (-192)) (-5 *3 (-550))))) +(-10 -7 (-15 -1527 ((-644 (-1175 (-550))) (-550))) (-15 -3206 ((-1175 (-550)) (-550))) (-15 -1528 ((-409 (-1175 (-550))) (-550)))) +((-1718 (((-1158 (-226)) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 132)) (-1739 (((-644 (-1163)) (-1158 (-226))) NIL)) (-1529 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 108)) (-1716 (((-644 (-226)) (-316 (-226)) (-1181) (-1093 (-845 (-226)))) NIL)) (-1738 (((-644 (-1163)) (-644 (-226))) NIL)) (-1740 (((-226) (-1093 (-845 (-226)))) 31)) (-1741 (((-226) (-1093 (-845 (-226)))) 32)) (-1531 (((-381) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 126)) (-1530 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 68)) (-1736 (((-1163) (-226)) NIL)) (-2973 (((-1163) (-644 (-1163))) 27)) (-1532 (((-1039) (-1181) (-1181) (-1039)) 13))) +(((-193) (-10 -7 (-15 -1529 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1530 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1740 ((-226) (-1093 (-845 (-226))))) (-15 -1741 ((-226) (-1093 (-845 (-226))))) (-15 -1531 ((-381) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1716 ((-644 (-226)) (-316 (-226)) (-1181) (-1093 (-845 (-226))))) (-15 -1718 ((-1158 (-226)) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1736 ((-1163) (-226))) (-15 -1738 ((-644 (-1163)) (-644 (-226)))) (-15 -1739 ((-644 (-1163)) (-1158 (-226)))) (-15 -2973 ((-1163) (-644 (-1163)))) (-15 -1532 ((-1039) (-1181) (-1181) (-1039))))) (T -193)) +((-1532 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1039)) (-5 *3 (-1181)) (-5 *1 (-193)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1163)) (-5 *1 (-193)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1158 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-193)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-193)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1163)) (-5 *1 (-193)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-193)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-226))) (-5 *4 (-1181)) (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-644 (-226))) (-5 *1 (-193)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-381)) (-5 *1 (-193)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-193)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-193))))) +(-10 -7 (-15 -1529 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1530 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1740 ((-226) (-1093 (-845 (-226))))) (-15 -1741 ((-226) (-1093 (-845 (-226))))) (-15 -1531 ((-381) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1716 ((-644 (-226)) (-316 (-226)) (-1181) (-1093 (-845 (-226))))) (-15 -1718 ((-1158 (-226)) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1736 ((-1163) (-226))) (-15 -1738 ((-644 (-1163)) (-644 (-226)))) (-15 -1739 ((-644 (-1163)) (-1158 (-226)))) (-15 -2973 ((-1163) (-644 (-1163)))) (-15 -1532 ((-1039) (-1181) (-1181) (-1039)))) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 61) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 33) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-194) (-790)) (T -194)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 66) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-195) (-790)) (T -195)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 81) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 46) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-196) (-790)) (T -196)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 63) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 36) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-197) (-790)) (T -197)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 75) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-198) (-790)) (T -198)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 90) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-199) (-790)) (T -199)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 90) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 51) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-200) (-790)) (T -200)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 77) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 42) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-201) (-790)) (T -201)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 78)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-202) (-790)) (T -202)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 79)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-203) (-790)) (T -203)) +NIL +(-790) +((-2970 (((-112) $ $) NIL)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 105) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 86) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-204) (-790)) (T -204)) +NIL +(-790) +((-1533 (((-3 (-2 (|:| -2904 (-113)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 110)) (-1535 (((-550) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 60)) (-1534 (((-3 (-644 (-226)) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 91))) +(((-205) (-10 -7 (-15 -1533 ((-3 (-2 (|:| -2904 (-113)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1534 ((-3 (-644 (-226)) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1535 ((-550) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -205)) +((-1535 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-550)) (-5 *1 (-205)))) (-1534 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-644 (-226))) (-5 *1 (-205)))) (-1533 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -2904 (-113)) (|:| |w| (-226)))) (-5 *1 (-205))))) +(-10 -7 (-15 -1533 ((-3 (-2 (|:| -2904 (-113)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1534 ((-3 (-644 (-226)) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1535 ((-550) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) +((-1540 (((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49)) (-1539 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 160)) (-1538 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-692 (-316 (-226)))) 112)) (-1537 (((-381) (-692 (-316 (-226)))) 140)) (-2525 (((-692 (-316 (-226))) (-1270 (-316 (-226))) (-644 (-1181))) 136)) (-1543 (((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 37)) (-1541 (((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 53)) (-4201 (((-692 (-316 (-226))) (-692 (-316 (-226))) (-644 (-1181)) (-1270 (-316 (-226)))) 125)) (-1536 (((-381) (-381) (-644 (-381))) 133) (((-381) (-381) (-381)) 128)) (-1542 (((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 45))) +(((-206) (-10 -7 (-15 -1536 ((-381) (-381) (-381))) (-15 -1536 ((-381) (-381) (-644 (-381)))) (-15 -1537 ((-381) (-692 (-316 (-226))))) (-15 -2525 ((-692 (-316 (-226))) (-1270 (-316 (-226))) (-644 (-1181)))) (-15 -4201 ((-692 (-316 (-226))) (-692 (-316 (-226))) (-644 (-1181)) (-1270 (-316 (-226))))) (-15 -1538 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-692 (-316 (-226))))) (-15 -1539 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1540 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1541 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1542 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1543 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -206)) +((-1543 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-381)) (-5 *1 (-206)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-381)) (-5 *1 (-206)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-381)) (-5 *1 (-206)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-381)) (-5 *1 (-206)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-206)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-692 (-316 (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-206)))) (-4201 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-692 (-316 (-226)))) (-5 *3 (-644 (-1181))) (-5 *4 (-1270 (-316 (-226)))) (-5 *1 (-206)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *4 (-644 (-1181))) (-5 *2 (-692 (-316 (-226)))) (-5 *1 (-206)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-692 (-316 (-226)))) (-5 *2 (-381)) (-5 *1 (-206)))) (-1536 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-206)))) (-1536 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-206))))) +(-10 -7 (-15 -1536 ((-381) (-381) (-381))) (-15 -1536 ((-381) (-381) (-644 (-381)))) (-15 -1537 ((-381) (-692 (-316 (-226))))) (-15 -2525 ((-692 (-316 (-226))) (-1270 (-316 (-226))) (-644 (-1181)))) (-15 -4201 ((-692 (-316 (-226))) (-692 (-316 (-226))) (-644 (-1181)) (-1270 (-316 (-226))))) (-15 -1538 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-692 (-316 (-226))))) (-15 -1539 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1540 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1541 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1542 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1543 ((-381) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) +((-2970 (((-112) $ $) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2814 (((-1039) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 75)) (-3457 (((-112) $ $) NIL))) +(((-207) (-803)) (T -207)) +NIL +(-803) +((-2970 (((-112) $ $) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2814 (((-1039) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 73)) (-3457 (((-112) $ $) NIL))) +(((-208) (-803)) (T -208)) +NIL +(-803) +((-2970 (((-112) $ $) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2814 (((-1039) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 76)) (-3457 (((-112) $ $) NIL))) +(((-209) (-803)) (T -209)) +NIL +(-803) +((-2970 (((-112) $ $) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 48)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2814 (((-1039) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 88)) (-3457 (((-112) $ $) NIL))) +(((-210) (-803)) (T -210)) +NIL +(-803) +((-4368 (((-644 (-1181)) (-1181) (-774)) 26)) (-1544 (((-316 (-226)) (-316 (-226))) 35)) (-1546 (((-112) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 87)) (-1545 (((-112) (-226) (-226) (-644 (-316 (-226)))) 47))) +(((-211) (-10 -7 (-15 -4368 ((-644 (-1181)) (-1181) (-774))) (-15 -1544 ((-316 (-226)) (-316 (-226)))) (-15 -1545 ((-112) (-226) (-226) (-644 (-316 (-226))))) (-15 -1546 ((-112) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))))))) (T -211)) +((-1546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) (-5 *2 (-112)) (-5 *1 (-211)))) (-1545 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-644 (-316 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-211)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-316 (-226))) (-5 *1 (-211)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-5 *2 (-644 (-1181))) (-5 *1 (-211)) (-5 *3 (-1181))))) +(-10 -7 (-15 -4368 ((-644 (-1181)) (-1181) (-774))) (-15 -1544 ((-316 (-226)) (-316 (-226)))) (-15 -1545 ((-112) (-226) (-226) (-644 (-316 (-226))))) (-15 -1546 ((-112) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))))) +((-2970 (((-112) $ $) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 28)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3070 (((-1039) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 70)) (-3457 (((-112) $ $) NIL))) +(((-212) (-899)) (T -212)) +NIL +(-899) +((-2970 (((-112) $ $) NIL)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 24)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3070 (((-1039) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) NIL)) (-3457 (((-112) $ $) NIL))) +(((-213) (-899)) (T -213)) +NIL +(-899) +((-2970 (((-112) $ $) NIL)) (-1547 ((|#2| $ (-774) |#2|) 11)) (-3519 ((|#2| $ (-774)) 10)) (-4048 (($) 8)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 26)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 13))) +(((-214 |#1| |#2|) (-13 (-1105) (-10 -8 (-15 -4048 ($)) (-15 -3519 (|#2| $ (-774))) (-15 -1547 (|#2| $ (-774) |#2|)))) (-923) (-1105)) (T -214)) +((-4048 (*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1105)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *2 (-1105)) (-5 *1 (-214 *4 *2)) (-14 *4 (-923)))) (-1547 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-214 *4 *2)) (-14 *4 (-923)) (-4 *2 (-1105))))) +(-13 (-1105) (-10 -8 (-15 -4048 ($)) (-15 -3519 (|#2| $ (-774))) (-15 -1547 (|#2| $ (-774) |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2145 (((-1276) $) 37) (((-1276) $ (-923) (-923)) 44)) (-4233 (($ $ (-993)) 19) (((-246 (-1163)) $ (-1181)) 15)) (-4051 (((-1276) $) 35)) (-4380 (((-866) $) 32) (($ (-644 |#1|)) 8)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $ $) 27)) (-4273 (($ $ $) 22))) +(((-215 |#1|) (-13 (-1105) (-619 (-644 |#1|)) (-10 -8 (-15 -4233 ($ $ (-993))) (-15 -4233 ((-246 (-1163)) $ (-1181))) (-15 -4273 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $)) (-15 -2145 ((-1276) $ (-923) (-923))))) (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $))))) (T -215)) +((-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-993)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $))))))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-246 (-1163))) (-5 *1 (-215 *4)) (-4 *4 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ *3)) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $))))))) (-4273 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $))))))) (-4271 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $))))))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 (*2 $)) (-15 -2145 (*2 $))))))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 (*2 $)) (-15 -2145 (*2 $))))))) (-2145 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1276)) (-5 *1 (-215 *4)) (-4 *4 (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 (*2 $)) (-15 -2145 (*2 $)))))))) +(-13 (-1105) (-619 (-644 |#1|)) (-10 -8 (-15 -4233 ($ $ (-993))) (-15 -4233 ((-246 (-1163)) $ (-1181))) (-15 -4273 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $)) (-15 -2145 ((-1276) $ (-923) (-923))))) +((-1548 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1548 (|#2| |#4| (-1 |#2| |#2|)))) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|)) (T -216)) +((-1548 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-366)) (-4 *6 (-1246 (-411 *2))) (-4 *2 (-1246 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-345 *5 *2 *6))))) +(-10 -7 (-15 -1548 (|#2| |#4| (-1 |#2| |#2|)))) +((-1552 ((|#2| |#2| (-774) |#2|) 58)) (-1551 ((|#2| |#2| (-774) |#2|) 54)) (-2531 (((-644 |#2|) (-644 (-2 (|:| |deg| (-774)) (|:| -2977 |#2|)))) 82)) (-1550 (((-644 (-2 (|:| |deg| (-774)) (|:| -2977 |#2|))) |#2|) 76)) (-1553 (((-112) |#2|) 74)) (-4167 (((-409 |#2|) |#2|) 94)) (-4166 (((-409 |#2|) |#2|) 93)) (-2532 ((|#2| |#2| (-774) |#2|) 52)) (-1549 (((-2 (|:| |cont| |#1|) (|:| -1956 (-644 (-2 (|:| |irr| |#2|) (|:| -2560 (-550)))))) |#2| (-112)) 88))) +(((-217 |#1| |#2|) (-10 -7 (-15 -4166 ((-409 |#2|) |#2|)) (-15 -4167 ((-409 |#2|) |#2|)) (-15 -1549 ((-2 (|:| |cont| |#1|) (|:| -1956 (-644 (-2 (|:| |irr| |#2|) (|:| -2560 (-550)))))) |#2| (-112))) (-15 -1550 ((-644 (-2 (|:| |deg| (-774)) (|:| -2977 |#2|))) |#2|)) (-15 -2531 ((-644 |#2|) (-644 (-2 (|:| |deg| (-774)) (|:| -2977 |#2|))))) (-15 -2532 (|#2| |#2| (-774) |#2|)) (-15 -1551 (|#2| |#2| (-774) |#2|)) (-15 -1552 (|#2| |#2| (-774) |#2|)) (-15 -1553 ((-112) |#2|))) (-353) (-1246 |#1|)) (T -217)) +((-1553 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1246 *4)))) (-1552 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1246 *4)))) (-1551 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1246 *4)))) (-2532 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1246 *4)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |deg| (-774)) (|:| -2977 *5)))) (-4 *5 (-1246 *4)) (-4 *4 (-353)) (-5 *2 (-644 *5)) (-5 *1 (-217 *4 *5)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-644 (-2 (|:| |deg| (-774)) (|:| -2977 *3)))) (-5 *1 (-217 *4 *3)) (-4 *3 (-1246 *4)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-353)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) (-5 *1 (-217 *5 *3)) (-4 *3 (-1246 *5)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-409 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1246 *4)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-409 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -4166 ((-409 |#2|) |#2|)) (-15 -4167 ((-409 |#2|) |#2|)) (-15 -1549 ((-2 (|:| |cont| |#1|) (|:| -1956 (-644 (-2 (|:| |irr| |#2|) (|:| -2560 (-550)))))) |#2| (-112))) (-15 -1550 ((-644 (-2 (|:| |deg| (-774)) (|:| -2977 |#2|))) |#2|)) (-15 -2531 ((-644 |#2|) (-644 (-2 (|:| |deg| (-774)) (|:| -2977 |#2|))))) (-15 -2532 (|#2| |#2| (-774) |#2|)) (-15 -1551 (|#2| |#2| (-774) |#2|)) (-15 -1552 (|#2| |#2| (-774) |#2|)) (-15 -1553 ((-112) |#2|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-550) $) NIL (|has| (-550) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-550) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| (-550) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-550) (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| (-550) (-1042 (-550))))) (-3578 (((-550) $) NIL) (((-1181) $) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-550) (-1042 (-550)))) (((-550) $) NIL (|has| (-550) (-1042 (-550))))) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-550) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| (-550) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-550) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-550) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-550) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| (-550) (-1155)))) (-3609 (((-112) $) NIL (|has| (-550) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-550) (-853)))) (-4392 (($ (-1 (-550) (-550)) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-550) (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-550) (-309))) (((-411 (-550)) $) NIL)) (-3536 (((-550) $) NIL (|has| (-550) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-550)) (-644 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-311 (-550)))) (($ $ (-295 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-295 (-550)))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-1181)) (-644 (-550))) NIL (|has| (-550) (-518 (-1181) (-550)))) (($ $ (-1181) (-550)) NIL (|has| (-550) (-518 (-1181) (-550))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-550)) NIL (|has| (-550) (-288 (-550) (-550))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-550) $) NIL)) (-1554 (($ (-411 (-550))) 9)) (-4404 (((-894 (-550)) $) NIL (|has| (-550) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-550) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-550) (-617 (-539)))) (((-381) $) NIL (|has| (-550) (-1024))) (((-226) $) NIL (|has| (-550) (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-550) (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) 8) (($ (-550)) NIL) (($ (-1181)) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL) (((-1008 10) $) 10)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-550) (-914))) (|has| (-550) (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 (((-550) $) NIL (|has| (-550) (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| (-550) (-823)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-550) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-550) (-853)))) (-4383 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) +(((-218) (-13 (-995 (-550)) (-616 (-411 (-550))) (-616 (-1008 10)) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -1554 ($ (-411 (-550))))))) (T -218)) +((-3534 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-218)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-218))))) +(-13 (-995 (-550)) (-616 (-411 (-550))) (-616 (-1008 10)) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -1554 ($ (-411 (-550)))))) +((-2970 (((-112) $ $) NIL)) (-3742 (((-1119) $) 13)) (-3665 (((-1163) $) NIL)) (-3600 (((-487) $) 10)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 23) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-1139) $) 15)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-219) (-13 (-1087) (-10 -8 (-15 -3600 ((-487) $)) (-15 -3742 ((-1119) $)) (-15 -3655 ((-1139) $))))) (T -219)) +((-3600 (*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-219)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-219)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-219))))) +(-13 (-1087) (-10 -8 (-15 -3600 ((-487) $)) (-15 -3742 ((-1119) $)) (-15 -3655 ((-1139) $)))) +((-4246 (((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1096 (-845 |#2|)) (-1163)) 29) (((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1096 (-845 |#2|))) 25)) (-1555 (((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1181) (-845 |#2|) (-845 |#2|) (-112)) 17))) +(((-220 |#1| |#2|) (-10 -7 (-15 -4246 ((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1096 (-845 |#2|)))) (-15 -4246 ((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1096 (-845 |#2|)) (-1163))) (-15 -1555 ((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1181) (-845 |#2|) (-845 |#2|) (-112)))) (-13 (-309) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-964) (-29 |#1|))) (T -220)) +((-1555 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1181)) (-5 *6 (-112)) (-4 *7 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-4 *3 (-13 (-1206) (-964) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-845 *3)) (|:| |f2| (-644 (-845 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-220 *7 *3)) (-5 *5 (-845 *3)))) (-4246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1096 (-845 *3))) (-5 *5 (-1163)) (-4 *3 (-13 (-1206) (-964) (-29 *6))) (-4 *6 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |f1| (-845 *3)) (|:| |f2| (-644 (-845 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *6 *3)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-845 *3))) (-4 *3 (-13 (-1206) (-964) (-29 *5))) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |f1| (-845 *3)) (|:| |f2| (-644 (-845 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5 *3))))) +(-10 -7 (-15 -4246 ((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1096 (-845 |#2|)))) (-15 -4246 ((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1096 (-845 |#2|)) (-1163))) (-15 -1555 ((-3 (|:| |f1| (-845 |#2|)) (|:| |f2| (-644 (-845 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1181) (-845 |#2|) (-845 |#2|) (-112)))) +((-4246 (((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-411 (-950 |#1|)) (-1096 (-845 (-411 (-950 |#1|)))) (-1163)) 49) (((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-411 (-950 |#1|))))) 46) (((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-316 |#1|))) (-1163)) 50) (((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-316 |#1|)))) 22))) +(((-221 |#1|) (-10 -7 (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-411 (-950 |#1|)) (-1096 (-845 (-316 |#1|))))) (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-316 |#1|))) (-1163))) (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-411 (-950 |#1|)))))) (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-411 (-950 |#1|)))) (-1163)))) (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (T -221)) +((-4246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1096 (-845 (-411 (-950 *6))))) (-5 *5 (-1163)) (-5 *3 (-411 (-950 *6))) (-4 *6 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |f1| (-845 (-316 *6))) (|:| |f2| (-644 (-845 (-316 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-221 *6)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-845 (-411 (-950 *5))))) (-5 *3 (-411 (-950 *5))) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |f1| (-845 (-316 *5))) (|:| |f2| (-644 (-845 (-316 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-221 *5)))) (-4246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-411 (-950 *6))) (-5 *4 (-1096 (-845 (-316 *6)))) (-5 *5 (-1163)) (-4 *6 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |f1| (-845 (-316 *6))) (|:| |f2| (-644 (-845 (-316 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-221 *6)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1096 (-845 (-316 *5)))) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |f1| (-845 (-316 *5))) (|:| |f2| (-644 (-845 (-316 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-221 *5))))) +(-10 -7 (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-411 (-950 |#1|)) (-1096 (-845 (-316 |#1|))))) (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-316 |#1|))) (-1163))) (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-411 (-950 |#1|)))))) (-15 -4246 ((-3 (|:| |f1| (-845 (-316 |#1|))) (|:| |f2| (-644 (-845 (-316 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-411 (-950 |#1|)) (-1096 (-845 (-411 (-950 |#1|)))) (-1163)))) +((-4276 (((-2 (|:| -2184 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|)) 26)) (-4397 (((-644 (-316 |#2|)) (-316 |#2|) (-923)) 54))) +(((-222 |#1| |#2|) (-10 -7 (-15 -4276 ((-2 (|:| -2184 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|))) (-15 -4397 ((-644 (-316 |#2|)) (-316 |#2|) (-923)))) (-1053) (-561)) (T -222)) +((-4397 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *6 (-561)) (-5 *2 (-644 (-316 *6))) (-5 *1 (-222 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1053)))) (-4276 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-5 *2 (-2 (|:| -2184 (-1175 *4)) (|:| |deg| (-923)))) (-5 *1 (-222 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-561))))) +(-10 -7 (-15 -4276 ((-2 (|:| -2184 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|))) (-15 -4397 ((-644 (-316 |#2|)) (-316 |#2|) (-923)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1598 ((|#1| $) NIL)) (-3750 ((|#1| $) 30)) (-1310 (((-112) $ (-774)) NIL)) (-4158 (($) NIL T CONST)) (-3405 (($ $) NIL)) (-2444 (($ $) 39)) (-3752 ((|#1| |#1| $) NIL)) (-3751 ((|#1| $) NIL)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-4267 (((-774) $) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1370 ((|#1| $) NIL)) (-1596 ((|#1| |#1| $) 35)) (-1595 ((|#1| |#1| $) 37)) (-4041 (($ |#1| $) NIL)) (-3005 (((-774) $) 33)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-3404 ((|#1| $) NIL)) (-1594 ((|#1| $) 31)) (-1593 ((|#1| $) 29)) (-1371 ((|#1| $) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3407 ((|#1| |#1| $) NIL)) (-3829 (((-112) $) 9)) (-3998 (($) NIL)) (-3406 ((|#1| $) NIL)) (-1599 (($) NIL) (($ (-644 |#1|)) 16)) (-3749 (((-774) $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-1597 ((|#1| $) 13)) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) NIL)) (-3403 ((|#1| $) NIL)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-223 |#1|) (-13 (-256 |#1|) (-10 -8 (-15 -1599 ($ (-644 |#1|))))) (-1105)) (T -223)) +((-1599 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-223 *3))))) +(-13 (-256 |#1|) (-10 -8 (-15 -1599 ($ (-644 |#1|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1557 (($ (-316 |#1|)) 27)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3067 (((-112) $) NIL)) (-3579 (((-3 (-316 |#1|) "failed") $) NIL)) (-3578 (((-316 |#1|) $) NIL)) (-4393 (($ $) 35)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-4392 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-3596 (((-316 |#1|) $) NIL)) (-1559 (($ $) 34)) (-3665 (((-1163) $) NIL)) (-1558 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-2574 (($ (-774)) NIL)) (-1556 (($ $) 36)) (-4382 (((-550) $) NIL)) (-4380 (((-866) $) 68) (($ (-550)) NIL) (($ (-316 |#1|)) NIL)) (-4111 (((-316 |#1|) $ $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 29 T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) 32)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22))) +(((-224 |#1| |#2|) (-13 (-624 (-316 |#1|)) (-1042 (-316 |#1|)) (-10 -8 (-15 -3596 ((-316 |#1|) $)) (-15 -1559 ($ $)) (-15 -4393 ($ $)) (-15 -4111 ((-316 |#1|) $ $)) (-15 -2574 ($ (-774))) (-15 -1558 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -4382 ((-550) $)) (-15 -4392 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1557 ($ (-316 |#1|))) (-15 -1556 ($ $)))) (-13 (-1053) (-853)) (-644 (-1181))) (T -224)) +((-3596 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) (-14 *4 (-644 (-1181))))) (-1559 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1053) (-853))) (-14 *3 (-644 (-1181))))) (-4393 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1053) (-853))) (-14 *3 (-644 (-1181))))) (-4111 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) (-14 *4 (-644 (-1181))))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) (-14 *4 (-644 (-1181))))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) (-14 *4 (-644 (-1181))))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) (-14 *4 (-644 (-1181))))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) (-14 *4 (-644 (-1181))))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1053) (-853))) (-5 *1 (-224 *3 *4)) (-14 *4 (-644 (-1181))))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1053) (-853))) (-5 *1 (-224 *3 *4)) (-14 *4 (-644 (-1181))))) (-1556 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1053) (-853))) (-14 *3 (-644 (-1181)))))) +(-13 (-624 (-316 |#1|)) (-1042 (-316 |#1|)) (-10 -8 (-15 -3596 ((-316 |#1|) $)) (-15 -1559 ($ $)) (-15 -4393 ($ $)) (-15 -4111 ((-316 |#1|) $ $)) (-15 -2574 ($ (-774))) (-15 -1558 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -4382 ((-550) $)) (-15 -4392 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1557 ($ (-316 |#1|))) (-15 -1556 ($ $)))) +((-1560 (((-112) (-1163)) 26)) (-1561 (((-3 (-845 |#2|) "failed") (-614 |#2|) |#2| (-845 |#2|) (-845 |#2|) (-112)) 35)) (-1562 (((-3 (-112) "failed") (-1175 |#2|) (-845 |#2|) (-845 |#2|) (-112)) 84) (((-3 (-112) "failed") (-950 |#1|) (-1181) (-845 |#2|) (-845 |#2|) (-112)) 85))) +(((-225 |#1| |#2|) (-10 -7 (-15 -1560 ((-112) (-1163))) (-15 -1561 ((-3 (-845 |#2|) "failed") (-614 |#2|) |#2| (-845 |#2|) (-845 |#2|) (-112))) (-15 -1562 ((-3 (-112) "failed") (-950 |#1|) (-1181) (-845 |#2|) (-845 |#2|) (-112))) (-15 -1562 ((-3 (-112) "failed") (-1175 |#2|) (-845 |#2|) (-845 |#2|) (-112)))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-29 |#1|))) (T -225)) +((-1562 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1175 *6)) (-5 *4 (-845 *6)) (-4 *6 (-13 (-1206) (-29 *5))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-225 *5 *6)))) (-1562 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-950 *6)) (-5 *4 (-1181)) (-5 *5 (-845 *7)) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-4 *7 (-13 (-1206) (-29 *6))) (-5 *1 (-225 *6 *7)))) (-1561 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-845 *4)) (-5 *3 (-614 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1206) (-29 *6))) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-225 *6 *4)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1206) (-29 *4)))))) +(-10 -7 (-15 -1560 ((-112) (-1163))) (-15 -1561 ((-3 (-845 |#2|) "failed") (-614 |#2|) |#2| (-845 |#2|) (-845 |#2|) (-112))) (-15 -1562 ((-3 (-112) "failed") (-950 |#1|) (-1181) (-845 |#2|) (-845 |#2|) (-112))) (-15 -1562 ((-3 (-112) "failed") (-1175 |#2|) (-845 |#2|) (-845 |#2|) (-112)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 99)) (-3535 (((-550) $) 35)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4204 (($ $) NIL)) (-3917 (($ $) 88)) (-4073 (($ $) 76)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3440 (($ $) 67)) (-1755 (((-112) $ $) NIL)) (-3915 (($ $) 86)) (-4072 (($ $) 74)) (-4057 (((-550) $) 129)) (-3919 (($ $) 91)) (-4071 (($ $) 78)) (-4158 (($) NIL T CONST)) (-3533 (($ $) NIL)) (-3579 (((-3 (-550) #1="failed") $) 128) (((-3 (-411 (-550)) #1#) $) 125)) (-3578 (((-550) $) 126) (((-411 (-550)) $) 123)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) 104)) (-1914 (((-411 (-550)) $ (-774)) 118) (((-411 (-550)) $ (-774) (-774)) 117)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2539 (((-923)) 29) (((-923) (-923)) NIL (|has| $ (-6 -4418)))) (-3608 (((-112) $) NIL)) (-4061 (($) 46)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL)) (-4205 (((-550) $) 42)) (-2575 (((-112) $) 100)) (-3414 (($ $ (-550)) NIL)) (-3538 (($ $) NIL)) (-3609 (((-112) $) 98)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL)) (-2936 (($ $ $) 64) (($) 38 (-12 (-3748 (|has| $ (-6 -4410))) (-3748 (|has| $ (-6 -4418)))))) (-3262 (($ $ $) 63) (($) 37 (-12 (-3748 (|has| $ (-6 -4410))) (-3748 (|has| $ (-6 -4418)))))) (-2540 (((-550) $) 27)) (-1913 (($ $) 33)) (-1912 (($ $) 68)) (-4376 (($ $) 73)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-1946 (((-923) (-550)) NIL (|has| $ (-6 -4418)))) (-3666 (((-1124) $) 102)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL)) (-3536 (($ $) NIL)) (-3677 (($ (-550) (-550)) NIL) (($ (-550) (-550) (-923)) 111)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2566 (((-550) $) 28)) (-1911 (($) 45)) (-4377 (($ $) 72)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3017 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4418)))) (-4244 (($ $ (-774)) NIL) (($ $) 105)) (-1945 (((-923) (-550)) NIL (|has| $ (-6 -4418)))) (-3920 (($ $) 89)) (-4070 (($ $) 79)) (-3918 (($ $) 90)) (-4069 (($ $) 77)) (-3916 (($ $) 87)) (-4068 (($ $) 75)) (-4404 (((-381) $) 114) (((-226) $) 14) (((-894 (-381)) $) NIL) (((-539) $) 52)) (-4380 (((-866) $) 49) (($ (-550)) 71) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-550)) 71) (($ (-411 (-550))) NIL)) (-3532 (((-774)) NIL T CONST)) (-3537 (($ $) NIL)) (-1947 (((-923)) 36) (((-923) (-923)) NIL (|has| $ (-6 -4418)))) (-3664 (((-112) $ $) NIL)) (-3099 (((-923)) 25)) (-3923 (($ $) 94)) (-3911 (($ $) 82) (($ $ $) 121)) (-2242 (((-112) $ $) NIL)) (-3921 (($ $) 92)) (-3909 (($ $) 80)) (-3925 (($ $) 97)) (-3913 (($ $) 85)) (-3926 (($ $) 95)) (-3914 (($ $) 83)) (-3924 (($ $) 96)) (-3912 (($ $) 84)) (-3922 (($ $) 93)) (-3910 (($ $) 81)) (-3809 (($ $) 120)) (-3512 (($) 23 T CONST)) (-3069 (($) 43 T CONST)) (-2902 (((-1163) $) 18) (((-1163) $ (-112)) 20) (((-1276) (-826) $) 21) (((-1276) (-826) $ (-112)) 22)) (-3813 (($ $) 108)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3810 (($ $ $) 110)) (-2968 (((-112) $ $) 57)) (-2969 (((-112) $ $) 54)) (-3457 (((-112) $ $) 65)) (-3089 (((-112) $ $) 56)) (-3090 (((-112) $ $) 53)) (-4383 (($ $ $) 44) (($ $ (-550)) 66)) (-4271 (($ $) 58) (($ $ $) 60)) (-4273 (($ $ $) 59)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 69) (($ $ (-411 (-550))) 153) (($ $ $) 70)) (* (($ (-923) $) 34) (($ (-774) $) NIL) (($ (-550) $) 62) (($ $ $) 61) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-226) (-13 (-408) (-234) (-824) (-1206) (-617 (-539)) (-10 -8 (-15 -4383 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -1911 ($)) (-15 -1913 ($ $)) (-15 -1912 ($ $)) (-15 -3911 ($ $ $)) (-15 -3813 ($ $)) (-15 -3810 ($ $ $)) (-15 -1914 ((-411 (-550)) $ (-774))) (-15 -1914 ((-411 (-550)) $ (-774) (-774)))))) (T -226)) +((** (*1 *1 *1 *1) (-5 *1 (-226))) (-4383 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-226)))) (-1911 (*1 *1) (-5 *1 (-226))) (-1913 (*1 *1 *1) (-5 *1 (-226))) (-1912 (*1 *1 *1) (-5 *1 (-226))) (-3911 (*1 *1 *1 *1) (-5 *1 (-226))) (-3813 (*1 *1 *1) (-5 *1 (-226))) (-3810 (*1 *1 *1 *1) (-5 *1 (-226))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-226)))) (-1914 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-226))))) +(-13 (-408) (-234) (-824) (-1206) (-617 (-539)) (-10 -8 (-15 -4383 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -1911 ($)) (-15 -1913 ($ $)) (-15 -1912 ($ $)) (-15 -3911 ($ $ $)) (-15 -3813 ($ $)) (-15 -3810 ($ $ $)) (-15 -1914 ((-411 (-550)) $ (-774))) (-15 -1914 ((-411 (-550)) $ (-774) (-774))))) +((-3812 (((-169 (-226)) (-774) (-169 (-226))) 11) (((-226) (-774) (-226)) 12)) (-1563 (((-169 (-226)) (-169 (-226))) 13) (((-226) (-226)) 14)) (-1564 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 19) (((-226) (-226) (-226)) 22)) (-3811 (((-169 (-226)) (-169 (-226))) 27) (((-226) (-226)) 26)) (-3815 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 57) (((-226) (-226) (-226)) 49)) (-3817 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 62) (((-226) (-226) (-226)) 60)) (-3814 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 15) (((-226) (-226) (-226)) 16)) (-3816 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 17) (((-226) (-226) (-226)) 18)) (-3819 (((-169 (-226)) (-169 (-226))) 74) (((-226) (-226)) 73)) (-3818 (((-226) (-226)) 68) (((-169 (-226)) (-169 (-226))) 72)) (-3813 (((-169 (-226)) (-169 (-226))) 8) (((-226) (-226)) 9)) (-3810 (((-169 (-226)) (-169 (-226)) (-169 (-226))) 35) (((-226) (-226) (-226)) 31))) +(((-227) (-10 -7 (-15 -3813 ((-226) (-226))) (-15 -3813 ((-169 (-226)) (-169 (-226)))) (-15 -3810 ((-226) (-226) (-226))) (-15 -3810 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -1563 ((-226) (-226))) (-15 -1563 ((-169 (-226)) (-169 (-226)))) (-15 -3811 ((-226) (-226))) (-15 -3811 ((-169 (-226)) (-169 (-226)))) (-15 -3812 ((-226) (-774) (-226))) (-15 -3812 ((-169 (-226)) (-774) (-169 (-226)))) (-15 -3814 ((-226) (-226) (-226))) (-15 -3814 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3815 ((-226) (-226) (-226))) (-15 -3815 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3816 ((-226) (-226) (-226))) (-15 -3816 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3817 ((-226) (-226) (-226))) (-15 -3817 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3818 ((-169 (-226)) (-169 (-226)))) (-15 -3818 ((-226) (-226))) (-15 -3819 ((-226) (-226))) (-15 -3819 ((-169 (-226)) (-169 (-226)))) (-15 -1564 ((-226) (-226) (-226))) (-15 -1564 ((-169 (-226)) (-169 (-226)) (-169 (-226)))))) (T -227)) +((-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3817 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3817 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3814 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3814 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3812 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-226))) (-5 *3 (-774)) (-5 *1 (-227)))) (-3812 (*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-774)) (-5 *1 (-227)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))) +(-10 -7 (-15 -3813 ((-226) (-226))) (-15 -3813 ((-169 (-226)) (-169 (-226)))) (-15 -3810 ((-226) (-226) (-226))) (-15 -3810 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -1563 ((-226) (-226))) (-15 -1563 ((-169 (-226)) (-169 (-226)))) (-15 -3811 ((-226) (-226))) (-15 -3811 ((-169 (-226)) (-169 (-226)))) (-15 -3812 ((-226) (-774) (-226))) (-15 -3812 ((-169 (-226)) (-774) (-169 (-226)))) (-15 -3814 ((-226) (-226) (-226))) (-15 -3814 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3815 ((-226) (-226) (-226))) (-15 -3815 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3816 ((-226) (-226) (-226))) (-15 -3816 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3817 ((-226) (-226) (-226))) (-15 -3817 ((-169 (-226)) (-169 (-226)) (-169 (-226)))) (-15 -3818 ((-169 (-226)) (-169 (-226)))) (-15 -3818 ((-226) (-226))) (-15 -3819 ((-226) (-226))) (-15 -3819 ((-169 (-226)) (-169 (-226)))) (-15 -1564 ((-226) (-226) (-226))) (-15 -1564 ((-169 (-226)) (-169 (-226)) (-169 (-226))))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4272 (($ (-774) (-774)) NIL)) (-2503 (($ $ $) NIL)) (-3840 (($ (-1270 |#1|)) NIL) (($ $) NIL)) (-4307 (($ |#1| |#1| |#1|) 33)) (-3527 (((-112) $) NIL)) (-2502 (($ $ (-550) (-550)) NIL)) (-2501 (($ $ (-550) (-550)) NIL)) (-2500 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-2505 (($ $) NIL)) (-3529 (((-112) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-2499 (($ $ (-550) (-550) $) NIL)) (-4221 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-644 (-550)) (-644 (-550)) $) NIL)) (-1346 (($ $ (-550) (-1270 |#1|)) NIL)) (-1345 (($ $ (-550) (-1270 |#1|)) NIL)) (-4281 (($ |#1| |#1| |#1|) 32)) (-3759 (($ (-774) |#1|) NIL)) (-4158 (($) NIL T CONST)) (-3516 (($ $) NIL (|has| |#1| (-309)))) (-3518 (((-1270 |#1|) $ (-550)) NIL)) (-1565 (($ |#1|) 31)) (-1566 (($ |#1|) 30)) (-1567 (($ |#1|) 29)) (-3515 (((-774) $) NIL (|has| |#1| (-561)))) (-1686 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3519 ((|#1| $ (-550) (-550)) NIL)) (-2126 (((-644 |#1|) $) NIL)) (-3514 (((-774) $) NIL (|has| |#1| (-561)))) (-3513 (((-644 (-1270 |#1|)) $) NIL (|has| |#1| (-561)))) (-3521 (((-774) $) NIL)) (-4048 (($ (-774) (-774) |#1|) NIL)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3753 ((|#1| $) NIL (|has| |#1| (-6 (-4429 #1="*"))))) (-3525 (((-550) $) NIL)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3524 (((-550) $) NIL)) (-3522 (((-550) $) NIL)) (-3530 (($ (-644 (-644 |#1|))) 11)) (-2130 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4027 (((-644 (-644 |#1|)) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4023 (((-3 $ #2="failed") $) NIL (|has| |#1| (-366)))) (-1568 (($) 12)) (-2504 (($ $ $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) NIL)) (-3891 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-561)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-644 (-550)) (-644 (-550))) NIL)) (-3758 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-3528 (((-112) $) NIL)) (-3754 ((|#1| $) NIL (|has| |#1| (-6 (-4429 #1#))))) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-3517 (((-1270 |#1|) $ (-550)) NIL)) (-4380 (($ (-1270 |#1|)) NIL) (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3526 (((-112) $) NIL)) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-1270 |#1|) $ (-1270 |#1|)) 15) (((-1270 |#1|) (-1270 |#1|) $) NIL) (((-947 |#1|) $ (-947 |#1|)) 21)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-228 |#1|) (-13 (-689 |#1| (-1270 |#1|) (-1270 |#1|)) (-10 -8 (-15 * ((-947 |#1|) $ (-947 |#1|))) (-15 -1568 ($)) (-15 -1567 ($ |#1|)) (-15 -1566 ($ |#1|)) (-15 -1565 ($ |#1|)) (-15 -4281 ($ |#1| |#1| |#1|)) (-15 -4307 ($ |#1| |#1| |#1|)))) (-13 (-366) (-1206))) (T -228)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206))) (-5 *1 (-228 *3)))) (-1568 (*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) (-1567 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) (-1566 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) (-1565 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) (-4281 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) (-4307 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206)))))) +(-13 (-689 |#1| (-1270 |#1|) (-1270 |#1|)) (-10 -8 (-15 * ((-947 |#1|) $ (-947 |#1|))) (-15 -1568 ($)) (-15 -1567 ($ |#1|)) (-15 -1566 ($ |#1|)) (-15 -1565 ($ |#1|)) (-15 -4281 ($ |#1| |#1| |#1|)) (-15 -4307 ($ |#1| |#1| |#1|)))) +((-1680 (($ (-1 (-112) |#2|) $) 16)) (-3831 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1569 (($) NIL) (($ (-644 |#2|)) 11)) (-3457 (((-112) $ $) 25))) +(((-229 |#1| |#2|) (-10 -8 (-15 -1680 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| |#2| |#1|)) (-15 -1569 (|#1| (-644 |#2|))) (-15 -1569 (|#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-230 |#2|) (-1105)) (T -229)) +NIL +(-10 -8 (-15 -1680 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| |#2| |#1|)) (-15 -1569 (|#1| (-644 |#2|))) (-15 -1569 (|#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-1680 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-1441 (($ $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-1569 (($) 50) (($ (-644 |#1|)) 49)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 51)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-230 |#1|) (-140) (-1105)) (T -230)) +NIL +(-13 (-236 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-236 |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-4244 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-774)) 14) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) 22) (($ $ (-774)) NIL) (($ $) 19)) (-3074 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-774)) 17) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL) (($ $ (-774)) NIL) (($ $) NIL))) +(((-231 |#1| |#2|) (-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -3074 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -3074 (|#1| |#1| (-1181))) (-15 -3074 (|#1| |#1| (-644 (-1181)))) (-15 -3074 (|#1| |#1| (-1181) (-774))) (-15 -3074 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -3074 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -3074 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|)))) (-232 |#2|) (-1053)) (T -231)) +NIL +(-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -3074 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -3074 (|#1| |#1| (-1181))) (-15 -3074 (|#1| |#1| (-644 (-1181)))) (-15 -3074 (|#1| |#1| (-1181) (-774))) (-15 -3074 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -3074 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -3074 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4244 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-774)) 55) (($ $ (-644 (-1181)) (-644 (-774))) 48 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 47 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 46 (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) 45 (|has| |#1| (-904 (-1181)))) (($ $ (-774)) 43 (|has| |#1| (-234))) (($ $) 41 (|has| |#1| (-234)))) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-774)) 53) (($ $ (-644 (-1181)) (-644 (-774))) 52 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 51 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 50 (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) 49 (|has| |#1| (-904 (-1181)))) (($ $ (-774)) 44 (|has| |#1| (-234))) (($ $) 42 (|has| |#1| (-234)))) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-232 |#1|) (-140) (-1053)) (T -232)) +((-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1053)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-774)) (-4 *1 (-232 *4)) (-4 *4 (-1053)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1053)))) (-3074 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-774)) (-4 *1 (-232 *4)) (-4 *4 (-1053))))) +(-13 (-1053) (-10 -8 (-15 -4244 ($ $ (-1 |t#1| |t#1|))) (-15 -4244 ($ $ (-1 |t#1| |t#1|) (-774))) (-15 -3074 ($ $ (-1 |t#1| |t#1|))) (-15 -3074 ($ $ (-1 |t#1| |t#1|) (-774))) (IF (|has| |t#1| (-234)) (-6 (-234)) |%noBranch|) (IF (|has| |t#1| (-904 (-1181))) (-6 (-904 (-1181))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-234) |has| |#1| (-234)) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-904 (-1181)) |has| |#1| (-904 (-1181))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-4244 (($ $) NIL) (($ $ (-774)) 13)) (-3074 (($ $) 8) (($ $ (-774)) 15))) +(((-233 |#1|) (-10 -8 (-15 -3074 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-774))) (-15 -3074 (|#1| |#1|)) (-15 -4244 (|#1| |#1|))) (-234)) (T -233)) +NIL +(-10 -8 (-15 -3074 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-774))) (-15 -3074 (|#1| |#1|)) (-15 -4244 (|#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4244 (($ $) 42) (($ $ (-774)) 40)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $) 41) (($ $ (-774)) 39)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-234) (-140)) (T -234)) +((-4244 (*1 *1 *1) (-4 *1 (-234))) (-3074 (*1 *1 *1) (-4 *1 (-234))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-774)))) (-3074 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-774))))) +(-13 (-1053) (-10 -8 (-15 -4244 ($ $)) (-15 -3074 ($ $)) (-15 -4244 ($ $ (-774))) (-15 -3074 ($ $ (-774))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-1569 (($) 12) (($ (-644 |#2|)) NIL)) (-3826 (($ $) 14)) (-3955 (($ (-644 |#2|)) 10)) (-4380 (((-866) $) 21))) +(((-235 |#1| |#2|) (-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -1569 (|#1| (-644 |#2|))) (-15 -1569 (|#1|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -3826 (|#1| |#1|))) (-236 |#2|) (-1105)) (T -235)) +NIL +(-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -1569 (|#1| (-644 |#2|))) (-15 -1569 (|#1|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -3826 (|#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-1680 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-1441 (($ $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-1569 (($) 50) (($ (-644 |#1|)) 49)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 51)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-236 |#1|) (-140) (-1105)) (T -236)) +((-1569 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1105)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-236 *3)))) (-3831 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-236 *2)) (-4 *2 (-1105)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-236 *3)) (-4 *3 (-1105)))) (-1680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-236 *3)) (-4 *3 (-1105))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1569 ($)) (-15 -1569 ($ (-644 |t#1|))) (IF (|has| $ (-6 -4427)) (PROGN (-15 -3831 ($ |t#1| $)) (-15 -3831 ($ (-1 (-112) |t#1|) $)) (-15 -1680 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-1570 (((-2 (|:| |varOrder| (-644 (-1181))) (|:| |inhom| (-3 (-644 (-1270 (-774))) "failed")) (|:| |hom| (-644 (-1270 (-774))))) (-295 (-950 (-550)))) 42))) +(((-237) (-10 -7 (-15 -1570 ((-2 (|:| |varOrder| (-644 (-1181))) (|:| |inhom| (-3 (-644 (-1270 (-774))) "failed")) (|:| |hom| (-644 (-1270 (-774))))) (-295 (-950 (-550))))))) (T -237)) +((-1570 (*1 *2 *3) (-12 (-5 *3 (-295 (-950 (-550)))) (-5 *2 (-2 (|:| |varOrder| (-644 (-1181))) (|:| |inhom| (-3 (-644 (-1270 (-774))) "failed")) (|:| |hom| (-644 (-1270 (-774)))))) (-5 *1 (-237))))) +(-10 -7 (-15 -1570 ((-2 (|:| |varOrder| (-644 (-1181))) (|:| |inhom| (-3 (-644 (-1270 (-774))) "failed")) (|:| |hom| (-644 (-1270 (-774))))) (-295 (-950 (-550)))))) +((-3542 (((-774)) 56)) (-2429 (((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 $) (-1270 $)) 53) (((-692 |#3|) (-692 $)) 44) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL)) (-4345 (((-134)) 62)) (-4244 (($ $ (-1 |#3| |#3|) (-774)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL) (($ $ (-774)) NIL) (($ $) NIL)) (-4380 (((-1270 |#3|) $) NIL) (($ |#3|) NIL) (((-866) $) NIL) (($ (-550)) 12) (($ (-411 (-550))) NIL)) (-3532 (((-774)) 15)) (-4383 (($ $ |#3|) 59))) +(((-238 |#1| |#2| |#3|) (-10 -8 (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|)) (-15 -3532 ((-774))) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -4380 (|#1| |#3|)) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|) (-774))) (-15 -2429 ((-692 |#3|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 |#1|) (-1270 |#1|))) (-15 -3542 ((-774))) (-15 -4383 (|#1| |#1| |#3|)) (-15 -4345 ((-134))) (-15 -4380 ((-1270 |#3|) |#1|))) (-239 |#2| |#3|) (-774) (-1220)) (T -238)) +((-4345 (*1 *2) (-12 (-14 *4 (-774)) (-4 *5 (-1220)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3542 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1220)) (-5 *2 (-774)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3532 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1220)) (-5 *2 (-774)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))) +(-10 -8 (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|)) (-15 -3532 ((-774))) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -4380 (|#1| |#3|)) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|) (-774))) (-15 -2429 ((-692 |#3|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 |#1|) (-1270 |#1|))) (-15 -3542 ((-774))) (-15 -4383 (|#1| |#1| |#3|)) (-15 -4345 ((-134))) (-15 -4380 ((-1270 |#3|) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#2| (-1105)))) (-3610 (((-112) $) 73 (|has| |#2| (-131)))) (-4141 (($ (-923)) 126 (|has| |#2| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-2807 (($ $ $) 122 (|has| |#2| (-796)))) (-1408 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1310 (((-112) $ (-774)) 8)) (-3542 (((-774)) 108 (|has| |#2| (-371)))) (-4057 (((-550) $) 120 (|has| |#2| (-851)))) (-4221 ((|#2| $ (-550) |#2|) 53 (|has| $ (-6 -4428)))) (-4158 (($) 7 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 68 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-3 (-411 (-550)) #1#) $) 65 (-3258 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (((-3 |#2| #1#) $) 62 (|has| |#2| (-1105)))) (-3578 (((-550) $) 67 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-411 (-550)) $) 64 (-3258 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) ((|#2| $) 63 (|has| |#2| (-1105)))) (-2429 (((-692 (-550)) (-692 $)) 107 (-3258 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 106 (-3258 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) 105 (|has| |#2| (-1053))) (((-692 |#2|) (-692 $)) 104 (|has| |#2| (-1053)))) (-3892 (((-3 $ "failed") $) 80 (|has| |#2| (-729)))) (-3397 (($) 111 (|has| |#2| (-371)))) (-1686 ((|#2| $ (-550) |#2|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#2| $ (-550)) 52)) (-3608 (((-112) $) 118 (|has| |#2| (-851)))) (-2126 (((-644 |#2|) $) 31 (|has| $ (-6 -4427)))) (-2575 (((-112) $) 82 (|has| |#2| (-729)))) (-3609 (((-112) $) 119 (|has| |#2| (-851)))) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 117 (-3962 (|has| |#2| (-851)) (|has| |#2| (-796))))) (-3010 (((-644 |#2|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 116 (-3962 (|has| |#2| (-851)) (|has| |#2| (-796))))) (-2130 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2|) $) 36)) (-2190 (((-923) $) 110 (|has| |#2| (-371)))) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#2| (-1105)))) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-2565 (($ (-923)) 109 (|has| |#2| (-371)))) (-3666 (((-1124) $) 21 (|has| |#2| (-1105)))) (-4234 ((|#2| $) 43 (|has| (-550) (-853)))) (-2375 (($ $ |#2|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#2| $ (-550) |#2|) 51) ((|#2| $ (-550)) 50)) (-4270 ((|#2| $ $) 125 (|has| |#2| (-1053)))) (-1571 (($ (-1270 |#2|)) 127)) (-4345 (((-134)) 124 (|has| |#2| (-366)))) (-4244 (($ $) 99 (-3258 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) 97 (-3258 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) 95 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) 94 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) 93 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) 92 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) 85 (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1053)))) (-2127 (((-774) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4427))) (((-774) |#2| $) 29 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-1270 |#2|) $) 128) (($ (-550)) 69 (-3962 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053)))) (($ (-411 (-550))) 66 (-3258 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (($ |#2|) 61 (|has| |#2| (-1105))) (((-866) $) 18 (|has| |#2| (-616 (-866))))) (-3532 (((-774)) 103 (|has| |#2| (-1053)) CONST)) (-3664 (((-112) $ $) 23 (|has| |#2| (-1105)))) (-2129 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4427)))) (-3809 (($ $) 121 (|has| |#2| (-851)))) (-3512 (($) 72 (|has| |#2| (-131)) CONST)) (-3069 (($) 83 (|has| |#2| (-729)) CONST)) (-3074 (($ $) 98 (-3258 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) 96 (-3258 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) 91 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) 90 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) 89 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) 88 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) 87 (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1053)))) (-2968 (((-112) $ $) 114 (-3962 (|has| |#2| (-851)) (|has| |#2| (-796))))) (-2969 (((-112) $ $) 113 (-3962 (|has| |#2| (-851)) (|has| |#2| (-796))))) (-3457 (((-112) $ $) 20 (|has| |#2| (-1105)))) (-3089 (((-112) $ $) 115 (-3962 (|has| |#2| (-851)) (|has| |#2| (-796))))) (-3090 (((-112) $ $) 112 (-3962 (|has| |#2| (-851)) (|has| |#2| (-796))))) (-4383 (($ $ |#2|) 123 (|has| |#2| (-366)))) (-4271 (($ $ $) 102 (|has| |#2| (-1053))) (($ $) 101 (|has| |#2| (-1053)))) (-4273 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-774)) 81 (|has| |#2| (-729))) (($ $ (-923)) 78 (|has| |#2| (-729)))) (* (($ (-550) $) 100 (|has| |#2| (-1053))) (($ $ $) 79 (|has| |#2| (-729))) (($ $ |#2|) 77 (|has| |#2| (-729))) (($ |#2| $) 76 (|has| |#2| (-729))) (($ (-774) $) 74 (|has| |#2| (-131))) (($ (-923) $) 71 (|has| |#2| (-25)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-239 |#1| |#2|) (-140) (-774) (-1220)) (T -239)) +((-1571 (*1 *1 *2) (-12 (-5 *2 (-1270 *4)) (-4 *4 (-1220)) (-4 *1 (-239 *3 *4)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1053)) (-4 *4 (-1220)))) (-4270 (*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1220)) (-4 *2 (-1053)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1220)) (-4 *2 (-729))))) +(-13 (-607 (-550) |t#2|) (-616 (-1270 |t#2|)) (-10 -8 (-6 -4427) (-15 -1571 ($ (-1270 |t#2|))) (IF (|has| |t#2| (-1105)) (-6 (-416 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1053)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-380 |t#2|)) (-15 -4141 ($ (-923))) (-15 -4270 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-729)) (PROGN (-6 (-729)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-371)) (-6 (-371)) |%noBranch|) (IF (|has| |t#2| (-173)) (PROGN (-6 (-38 |t#2|)) (-6 (-173))) |%noBranch|) (IF (|has| |t#2| (-6 -4424)) (-6 -4424) |%noBranch|) (IF (|has| |t#2| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#2| (-796)) (-6 (-796)) |%noBranch|) (IF (|has| |t#2| (-366)) (-6 (-1278 |t#2|)) |%noBranch|))) +(((-21) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-23) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-796)) (|has| |#2| (-366)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-25) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-796)) (|has| |#2| (-366)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) -3962 (|has| |#2| (-1105)) (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-796)) (|has| |#2| (-729)) (|has| |#2| (-371)) (|has| |#2| (-366)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3962 (|has| |#2| (-1053)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-111 $ $) |has| |#2| (-173)) ((-131) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-796)) (|has| |#2| (-366)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-619 #1=(-411 (-550))) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105))) ((-619 (-550)) -3962 (|has| |#2| (-1053)) (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-851)) (|has| |#2| (-173))) ((-619 |#2|) -3962 (|has| |#2| (-1105)) (|has| |#2| (-173))) ((-616 (-866)) -3962 (|has| |#2| (-1105)) (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-796)) (|has| |#2| (-729)) (|has| |#2| (-371)) (|has| |#2| (-366)) (|has| |#2| (-173)) (|has| |#2| (-616 (-866))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-616 (-1270 |#2|)) . T) ((-173) |has| |#2| (-173)) ((-232 |#2|) |has| |#2| (-1053)) ((-234) -12 (|has| |#2| (-234)) (|has| |#2| (-1053))) ((-288 #2=(-550) |#2|) . T) ((-290 #2# |#2|) . T) ((-311 |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-371) |has| |#2| (-371)) ((-380 |#2|) |has| |#2| (-1053)) ((-416 |#2|) |has| |#2| (-1105)) ((-493 |#2|) . T) ((-607 #2# |#2|) . T) ((-518 |#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-649 (-550)) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-649 |#2|) -3962 (|has| |#2| (-1053)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-649 $) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-173))) ((-651 |#2|) -3962 (|has| |#2| (-1053)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-651 $) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-173))) ((-643 |#2|) -3962 (|has| |#2| (-366)) (|has| |#2| (-173))) ((-642 (-550)) -12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053))) ((-642 |#2|) |has| |#2| (-1053)) ((-720 |#2|) -3962 (|has| |#2| (-366)) (|has| |#2| (-173))) ((-729) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-729)) (|has| |#2| (-173))) ((-794) |has| |#2| (-851)) ((-795) -3962 (|has| |#2| (-851)) (|has| |#2| (-796))) ((-796) |has| |#2| (-796)) ((-797) -3962 (|has| |#2| (-851)) (|has| |#2| (-796))) ((-800) -3962 (|has| |#2| (-851)) (|has| |#2| (-796))) ((-851) |has| |#2| (-851)) ((-853) -3962 (|has| |#2| (-851)) (|has| |#2| (-796))) ((-904 (-1181)) -12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053))) ((-1042 #1#) -12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105))) ((-1042 (-550)) -12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) ((-1042 |#2|) |has| |#2| (-1105)) ((-1055 |#2|) -3962 (|has| |#2| (-1053)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-1055 $) |has| |#2| (-173)) ((-1060 |#2|) -3962 (|has| |#2| (-1053)) (|has| |#2| (-366)) (|has| |#2| (-173))) ((-1060 $) |has| |#2| (-173)) ((-1053) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-173))) ((-1061) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-173))) ((-1116) -3962 (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-729)) (|has| |#2| (-173))) ((-1105) -3962 (|has| |#2| (-1105)) (|has| |#2| (-1053)) (|has| |#2| (-851)) (|has| |#2| (-796)) (|has| |#2| (-729)) (|has| |#2| (-371)) (|has| |#2| (-366)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1220) . T) ((-1278 |#2|) |has| |#2| (-366))) +((-2970 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-3610 (((-112) $) NIL (|has| |#2| (-131)))) (-4141 (($ (-923)) 65 (|has| |#2| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-2807 (($ $ $) 70 (|has| |#2| (-796)))) (-1408 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1310 (((-112) $ (-774)) 17)) (-3542 (((-774)) NIL (|has| |#2| (-371)))) (-4057 (((-550) $) NIL (|has| |#2| (-851)))) (-4221 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-3 (-411 (-550)) #1#) $) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (((-3 |#2| #1#) $) 34 (|has| |#2| (-1105)))) (-3578 (((-550) $) NIL (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-411 (-550)) $) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) ((|#2| $) 32 (|has| |#2| (-1105)))) (-2429 (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL (|has| |#2| (-1053))) (((-692 |#2|) (-692 $)) NIL (|has| |#2| (-1053)))) (-3892 (((-3 $ "failed") $) 61 (|has| |#2| (-729)))) (-3397 (($) NIL (|has| |#2| (-371)))) (-1686 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ (-550)) 59)) (-3608 (((-112) $) NIL (|has| |#2| (-851)))) (-2126 (((-644 |#2|) $) 15 (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL (|has| |#2| (-729)))) (-3609 (((-112) $) NIL (|has| |#2| (-851)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 20 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3010 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 (((-550) $) 58 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-2130 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2|) $) 47)) (-2190 (((-923) $) NIL (|has| |#2| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#2| (-1105)))) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-2565 (($ (-923)) NIL (|has| |#2| (-371)))) (-3666 (((-1124) $) NIL (|has| |#2| (-1105)))) (-4234 ((|#2| $) NIL (|has| (-550) (-853)))) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) 21)) (-4270 ((|#2| $ $) NIL (|has| |#2| (-1053)))) (-1571 (($ (-1270 |#2|)) 18)) (-4345 (((-134)) NIL (|has| |#2| (-366)))) (-4244 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1053)))) (-2127 (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1270 |#2|) $) 10) (($ (-550)) NIL (-3962 (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053)))) (($ (-411 (-550))) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (($ |#2|) 13 (|has| |#2| (-1105))) (((-866) $) NIL (|has| |#2| (-616 (-866))))) (-3532 (((-774)) NIL (|has| |#2| (-1053)) CONST)) (-3664 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-2129 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3809 (($ $) NIL (|has| |#2| (-851)))) (-3512 (($) 40 (|has| |#2| (-131)) CONST)) (-3069 (($) 44 (|has| |#2| (-729)) CONST)) (-3074 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1053)))) (-2968 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3457 (((-112) $ $) 31 (|has| |#2| (-1105)))) (-3089 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3090 (((-112) $ $) 68 (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $ $) NIL (|has| |#2| (-1053))) (($ $) NIL (|has| |#2| (-1053)))) (-4273 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-774)) NIL (|has| |#2| (-729))) (($ $ (-923)) NIL (|has| |#2| (-729)))) (* (($ (-550) $) NIL (|has| |#2| (-1053))) (($ $ $) 50 (|has| |#2| (-729))) (($ $ |#2|) 48 (|has| |#2| (-729))) (($ |#2| $) 49 (|has| |#2| (-729))) (($ (-774) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-240 |#1| |#2|) (-239 |#1| |#2|) (-774) (-1220)) (T -240)) +NIL +(-239 |#1| |#2|) +((-4275 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-4276 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-4392 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-241 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4276 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4392 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-774) (-1220) (-1220)) (T -241)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-774)) (-4 *6 (-1220)) (-4 *7 (-1220)) (-5 *2 (-240 *5 *7)) (-5 *1 (-241 *5 *6 *7)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-774)) (-4 *6 (-1220)) (-4 *2 (-1220)) (-5 *1 (-241 *5 *6 *2)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-774)) (-4 *7 (-1220)) (-4 *5 (-1220)) (-5 *2 (-240 *6 *5)) (-5 *1 (-241 *6 *7 *5))))) +(-10 -7 (-15 -4275 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4276 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4392 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-1575 (((-550) (-644 (-1163))) 36) (((-550) (-1163)) 29)) (-1574 (((-1276) (-644 (-1163))) 40) (((-1276) (-1163)) 39)) (-1572 (((-1163)) 16)) (-1573 (((-1163) (-550) (-1163)) 23)) (-4206 (((-644 (-1163)) (-644 (-1163)) (-550) (-1163)) 37) (((-1163) (-1163) (-550) (-1163)) 35)) (-3022 (((-644 (-1163)) (-644 (-1163))) 15) (((-644 (-1163)) (-1163)) 11))) +(((-242) (-10 -7 (-15 -3022 ((-644 (-1163)) (-1163))) (-15 -3022 ((-644 (-1163)) (-644 (-1163)))) (-15 -1572 ((-1163))) (-15 -1573 ((-1163) (-550) (-1163))) (-15 -4206 ((-1163) (-1163) (-550) (-1163))) (-15 -4206 ((-644 (-1163)) (-644 (-1163)) (-550) (-1163))) (-15 -1574 ((-1276) (-1163))) (-15 -1574 ((-1276) (-644 (-1163)))) (-15 -1575 ((-550) (-1163))) (-15 -1575 ((-550) (-644 (-1163)))))) (T -242)) +((-1575 (*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-550)) (-5 *1 (-242)))) (-1575 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-550)) (-5 *1 (-242)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1276)) (-5 *1 (-242)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-242)))) (-4206 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 (-1163))) (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *1 (-242)))) (-4206 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-550)) (-5 *1 (-242)))) (-1573 (*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-550)) (-5 *1 (-242)))) (-1572 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-242)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-242)))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-242)) (-5 *3 (-1163))))) +(-10 -7 (-15 -3022 ((-644 (-1163)) (-1163))) (-15 -3022 ((-644 (-1163)) (-644 (-1163)))) (-15 -1572 ((-1163))) (-15 -1573 ((-1163) (-550) (-1163))) (-15 -4206 ((-1163) (-1163) (-550) (-1163))) (-15 -4206 ((-644 (-1163)) (-644 (-1163)) (-550) (-1163))) (-15 -1574 ((-1276) (-1163))) (-15 -1574 ((-1276) (-644 (-1163)))) (-15 -1575 ((-550) (-1163))) (-15 -1575 ((-550) (-644 (-1163))))) +((** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 20)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ (-411 (-550)) $) 27) (($ $ (-411 (-550))) NIL))) +(((-243 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 ** (|#1| |#1| (-774))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) (-244)) (T -243)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 ** (|#1| |#1| (-774))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 47)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 51)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 48)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ (-411 (-550)) $) 50) (($ $ (-411 (-550))) 49))) +(((-244) (-140)) (T -244)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-550)))) (-2808 (*1 *1 *1) (-4 *1 (-244)))) +(-13 (-292) (-38 (-411 (-550))) (-10 -8 (-15 ** ($ $ (-550))) (-15 -2808 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-292) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-720 #1#) . T) ((-729) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-4230 (($ $) 58)) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-1577 (($ $ $) 54 (|has| $ (-6 -4428)))) (-1576 (($ $ $) 53 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4158 (($) 7 T CONST)) (-1579 (($ $) 57)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-1578 (($ $) 56)) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4231 ((|#1| $) 60)) (-3600 (($ $) 59)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48)) (-3432 (((-550) $ $) 45)) (-4067 (((-112) $) 47)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4224 (($ $ $) 55 (|has| $ (-6 -4428)))) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-245 |#1|) (-140) (-1220)) (T -245)) +((-4231 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-1579 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-4224 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-1577 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-245 *2)) (-4 *2 (-1220)))) (-1576 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-245 *2)) (-4 *2 (-1220))))) +(-13 (-1014 |t#1|) (-10 -8 (-15 -4231 (|t#1| $)) (-15 -3600 ($ $)) (-15 -4230 ($ $)) (-15 -1579 ($ $)) (-15 -1578 ($ $)) (IF (|has| $ (-6 -4428)) (PROGN (-15 -4224 ($ $ $)) (-15 -1577 ($ $ $)) (-15 -1576 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1014 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) NIL)) (-4228 ((|#1| $) NIL)) (-4230 (($ $) NIL)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) $) NIL (|has| |#1| (-853))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1900 (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-3312 (($ $) 10 (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4220 (($ $ $) NIL (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) |#1|) $) NIL)) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4229 ((|#1| $) NIL)) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-4232 (($ $) NIL) (($ $ (-774)) NIL)) (-2528 (($ $) NIL (|has| |#1| (-1105)))) (-1441 (($ $) 7 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) NIL (|has| |#1| (-1105))) (($ (-1 (-112) |#1|) $) NIL)) (-3832 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3868 (((-112) $) NIL)) (-3845 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105))) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) (-1 (-112) |#1|) $) NIL)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3261 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3967 (($ |#1|) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4231 ((|#1| $) NIL) (($ $ (-774)) NIL)) (-4041 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2451 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL) (($ $ (-774)) NIL)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-3869 (((-112) $) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1237 (-550))) NIL) ((|#1| $ (-550)) NIL) ((|#1| $ (-550) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-774) $ "count") 16)) (-3432 (((-550) $ $) NIL)) (-1681 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-2452 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-1580 (($ (-644 |#1|)) 22)) (-4067 (((-112) $) NIL)) (-4225 (($ $) NIL)) (-4223 (($ $) NIL (|has| $ (-6 -4428)))) (-4226 (((-774) $) NIL)) (-4227 (($ $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) NIL)) (-4224 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4235 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-4380 (($ (-644 |#1|)) 17) (((-644 |#1|) $) 18) (((-866) $) 21 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) 14 (|has| $ (-6 -4427))))) +(((-246 |#1|) (-13 (-669 |#1|) (-494 (-644 |#1|)) (-10 -8 (-15 -1580 ($ (-644 |#1|))) (-15 -4233 ($ $ "unique")) (-15 -4233 ($ $ "sort")) (-15 -4233 ((-774) $ "count")))) (-853)) (T -246)) +((-1580 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-246 *3)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-853)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-853)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-774)) (-5 *1 (-246 *4)) (-4 *4 (-853))))) +(-13 (-669 |#1|) (-494 (-644 |#1|)) (-10 -8 (-15 -1580 ($ (-644 |#1|))) (-15 -4233 ($ $ "unique")) (-15 -4233 ($ $ "sort")) (-15 -4233 ((-774) $ "count")))) +((-1581 (((-3 (-774) "failed") |#1| |#1| (-774)) 43))) +(((-247 |#1|) (-10 -7 (-15 -1581 ((-3 (-774) "failed") |#1| |#1| (-774)))) (-13 (-729) (-371) (-10 -7 (-15 ** (|#1| |#1| (-550)))))) (T -247)) +((-1581 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-774)) (-4 *3 (-13 (-729) (-371) (-10 -7 (-15 ** (*3 *3 (-550)))))) (-5 *1 (-247 *3))))) +(-10 -7 (-15 -1581 ((-3 (-774) "failed") |#1| |#1| (-774)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-867 |#1|)) $) NIL)) (-3489 (((-1175 $) $ (-867 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2243 (($ $) NIL (|has| |#2| (-561)))) (-2241 (((-112) $) NIL (|has| |#2| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-867 |#1|))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4208 (($ $) NIL (|has| |#2| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#2| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-867 |#1|) #2#) $) NIL)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-867 |#1|) $) NIL)) (-4190 (($ $ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-2117 (($ $ (-644 (-550))) NIL)) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#2| (-914)))) (-1771 (($ $ |#2| (-240 (-4391 |#1|) (-774)) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#2|) (-867 |#1|)) NIL) (($ (-1175 $) (-867 |#1|)) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#2| (-240 (-4391 |#1|) (-774))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-867 |#1|)) NIL)) (-3225 (((-240 (-4391 |#1|) (-774)) $) NIL) (((-774) $ (-867 |#1|)) NIL) (((-644 (-774)) $ (-644 (-867 |#1|))) NIL)) (-1772 (($ (-1 (-240 (-4391 |#1|) (-774)) (-240 (-4391 |#1|) (-774))) $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-3488 (((-3 (-867 |#1|) #3="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#2| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-867 |#1|)) (|:| -2566 (-774))) #3#) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#2| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#2| (-914)))) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-867 |#1|) |#2|) NIL) (($ $ (-644 (-867 |#1|)) (-644 |#2|)) NIL) (($ $ (-867 |#1|) $) NIL) (($ $ (-644 (-867 |#1|)) (-644 $)) NIL)) (-4191 (($ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-4244 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4382 (((-240 (-4391 |#1|) (-774)) $) NIL) (((-774) $ (-867 |#1|)) NIL) (((-644 (-774)) $ (-644 (-867 |#1|))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-867 |#1|) (-617 (-539))) (|has| |#2| (-617 (-539)))))) (-3222 ((|#2| $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-867 |#1|)) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#2| (-561)))) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-240 (-4391 |#1|) (-774))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#2| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#2| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#2| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#2| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#2| (-38 (-411 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-248 |#1| |#2|) (-13 (-954 |#2| (-240 (-4391 |#1|) (-774)) (-867 |#1|)) (-10 -8 (-15 -2117 ($ $ (-644 (-550)))))) (-644 (-1181)) (-1053)) (T -248)) +((-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-248 *3 *4)) (-14 *3 (-644 (-1181))) (-4 *4 (-1053))))) +(-13 (-954 |#2| (-240 (-4391 |#1|) (-774)) (-867 |#1|)) (-10 -8 (-15 -2117 ($ $ (-644 (-550)))))) +((-2970 (((-112) $ $) NIL)) (-1582 (((-1276) $) 17)) (-1584 (((-185 (-250)) $) 11)) (-1583 (($ (-185 (-250))) 12)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1585 (((-250) $) 7)) (-4380 (((-866) $) 9)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 15))) +(((-249) (-13 (-1105) (-10 -8 (-15 -1585 ((-250) $)) (-15 -1584 ((-185 (-250)) $)) (-15 -1583 ($ (-185 (-250)))) (-15 -1582 ((-1276) $))))) (T -249)) +((-1585 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249)))) (-1583 (*1 *1 *2) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-249))))) +(-13 (-1105) (-10 -8 (-15 -1585 ((-250) $)) (-15 -1584 ((-185 (-250)) $)) (-15 -1583 ($ (-185 (-250)))) (-15 -1582 ((-1276) $)))) +((-2970 (((-112) $ $) NIL)) (-1510 (((-644 (-868)) $) NIL)) (-3975 (((-510) $) NIL)) (-3665 (((-1163) $) NIL)) (-1512 (((-188) $) NIL)) (-3037 (((-112) $ (-510)) NIL)) (-3666 (((-1124) $) NIL)) (-1586 (((-335) $) 7)) (-1511 (((-644 (-112)) $) NIL)) (-4380 (((-866) $) NIL) (((-184) $) 8)) (-3664 (((-112) $ $) NIL)) (-2923 (((-55) $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-250) (-13 (-187) (-616 (-184)) (-10 -8 (-15 -1586 ((-335) $))))) (T -250)) +((-1586 (*1 *2 *1) (-12 (-5 *2 (-335)) (-5 *1 (-250))))) +(-13 (-187) (-616 (-184)) (-10 -8 (-15 -1586 ((-335) $)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4233 (((-1186) $ (-774)) 13)) (-4380 (((-866) $) 20)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 16)) (-4391 (((-774) $) 9))) +(((-251) (-13 (-1105) (-10 -8 (-15 -4391 ((-774) $)) (-15 -4233 ((-1186) $ (-774)))))) (T -251)) +((-4391 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-251)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-251))))) +(-13 (-1105) (-10 -8 (-15 -4391 ((-774) $)) (-15 -4233 ((-1186) $ (-774))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4141 (($ (-923)) NIL (|has| |#4| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-2807 (($ $ $) NIL (|has| |#4| (-796)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| |#4| (-371)))) (-4057 (((-550) $) NIL (|has| |#4| (-851)))) (-4221 ((|#4| $ (-550) |#4|) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1105))) (((-3 (-550) #1#) $) NIL (-12 (|has| |#4| (-1042 (-550))) (|has| |#4| (-1105)))) (((-3 (-411 (-550)) #1#) $) NIL (-12 (|has| |#4| (-1042 (-411 (-550)))) (|has| |#4| (-1105))))) (-3578 ((|#4| $) NIL (|has| |#4| (-1105))) (((-550) $) NIL (-12 (|has| |#4| (-1042 (-550))) (|has| |#4| (-1105)))) (((-411 (-550)) $) NIL (-12 (|has| |#4| (-1042 (-411 (-550)))) (|has| |#4| (-1105))))) (-2429 (((-2 (|:| -1750 (-692 |#4|)) (|:| |vec| (-1270 |#4|))) (-692 $) (-1270 $)) NIL (|has| |#4| (-1053))) (((-692 |#4|) (-692 $)) NIL (|has| |#4| (-1053))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053)))) (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))))) (-3892 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))) (|has| |#4| (-729)) (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))))) (-3397 (($) NIL (|has| |#4| (-371)))) (-1686 ((|#4| $ (-550) |#4|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#4| $ (-550)) NIL)) (-3608 (((-112) $) NIL (|has| |#4| (-851)))) (-2126 (((-644 |#4|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL (-3962 (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))) (|has| |#4| (-729)) (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))))) (-3609 (((-112) $) NIL (|has| |#4| (-851)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (-3962 (|has| |#4| (-796)) (|has| |#4| (-851))))) (-3010 (((-644 |#4|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (-3962 (|has| |#4| (-796)) (|has| |#4| (-851))))) (-2130 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#4| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-2565 (($ (-923)) NIL (|has| |#4| (-371)))) (-3666 (((-1124) $) NIL)) (-4234 ((|#4| $) NIL (|has| (-550) (-853)))) (-2375 (($ $ |#4|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-2381 (((-644 |#4|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#4| $ (-550) |#4|) NIL) ((|#4| $ (-550)) 16)) (-4270 ((|#4| $ $) NIL (|has| |#4| (-1053)))) (-1571 (($ (-1270 |#4|)) NIL)) (-4345 (((-134)) NIL (|has| |#4| (-366)))) (-4244 (($ $ (-1 |#4| |#4|) (-774)) NIL (|has| |#4| (-1053))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1053))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1053)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))))) (-2127 (((-774) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427))) (((-774) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1270 |#4|) $) NIL) (((-866) $) NIL) (($ |#4|) NIL (|has| |#4| (-1105))) (($ (-550)) NIL (-3962 (-12 (|has| |#4| (-1042 (-550))) (|has| |#4| (-1105))) (|has| |#4| (-1053)))) (($ (-411 (-550))) NIL (-12 (|has| |#4| (-1042 (-411 (-550)))) (|has| |#4| (-1105))))) (-3532 (((-774)) NIL (|has| |#4| (-1053)) CONST)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3809 (($ $) NIL (|has| |#4| (-851)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL (-3962 (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))) (|has| |#4| (-729)) (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) CONST)) (-3074 (($ $ (-1 |#4| |#4|) (-774)) NIL (|has| |#4| (-1053))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1053))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1053)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))))) (-2968 (((-112) $ $) NIL (-3962 (|has| |#4| (-796)) (|has| |#4| (-851))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#4| (-796)) (|has| |#4| (-851))))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (-3962 (|has| |#4| (-796)) (|has| |#4| (-851))))) (-3090 (((-112) $ $) NIL (-3962 (|has| |#4| (-796)) (|has| |#4| (-851))))) (-4383 (($ $ |#4|) NIL (|has| |#4| (-366)))) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL (-3962 (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))) (|has| |#4| (-729)) (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053))))) (($ $ (-923)) NIL (-3962 (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))) (|has| |#4| (-729)) (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))))) (* (($ |#2| $) 18) (($ (-550) $) NIL) (($ (-774) $) NIL) (($ (-923) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-729))) (($ |#4| $) NIL (|has| |#4| (-729))) (($ $ $) NIL (-3962 (-12 (|has| |#4| (-234)) (|has| |#4| (-1053))) (-12 (|has| |#4| (-642 (-550))) (|has| |#4| (-1053))) (|has| |#4| (-729)) (-12 (|has| |#4| (-904 (-1181))) (|has| |#4| (-1053)))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-252 |#1| |#2| |#3| |#4|) (-13 (-239 |#1| |#4|) (-651 |#2|) (-651 |#3|)) (-923) (-1053) (-1127 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-651 |#2|)) (T -252)) +NIL +(-13 (-239 |#1| |#4|) (-651 |#2|) (-651 |#3|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4141 (($ (-923)) NIL (|has| |#3| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-2807 (($ $ $) NIL (|has| |#3| (-796)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| |#3| (-371)))) (-4057 (((-550) $) NIL (|has| |#3| (-851)))) (-4221 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1105))) (((-3 (-550) #1#) $) NIL (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105)))) (((-3 (-411 (-550)) #1#) $) NIL (-12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105))))) (-3578 ((|#3| $) NIL (|has| |#3| (-1105))) (((-550) $) NIL (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105)))) (((-411 (-550)) $) NIL (-12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105))))) (-2429 (((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 $) (-1270 $)) NIL (|has| |#3| (-1053))) (((-692 |#3|) (-692 $)) NIL (|has| |#3| (-1053))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053)))) (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))))) (-3892 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))) (|has| |#3| (-729)) (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))))) (-3397 (($) NIL (|has| |#3| (-371)))) (-1686 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#3| $ (-550)) NIL)) (-3608 (((-112) $) NIL (|has| |#3| (-851)))) (-2126 (((-644 |#3|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL (-3962 (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))) (|has| |#3| (-729)) (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))))) (-3609 (((-112) $) NIL (|has| |#3| (-851)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-3010 (((-644 |#3|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-2130 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#3| |#3|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#3| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-2565 (($ (-923)) NIL (|has| |#3| (-371)))) (-3666 (((-1124) $) NIL)) (-4234 ((|#3| $) NIL (|has| (-550) (-853)))) (-2375 (($ $ |#3|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-2381 (((-644 |#3|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#3| $ (-550) |#3|) NIL) ((|#3| $ (-550)) 15)) (-4270 ((|#3| $ $) NIL (|has| |#3| (-1053)))) (-1571 (($ (-1270 |#3|)) NIL)) (-4345 (((-134)) NIL (|has| |#3| (-366)))) (-4244 (($ $ (-1 |#3| |#3|) (-774)) NIL (|has| |#3| (-1053))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1053))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))))) (-2127 (((-774) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427))) (((-774) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1270 |#3|) $) NIL) (((-866) $) NIL) (($ |#3|) NIL (|has| |#3| (-1105))) (($ (-550)) NIL (-3962 (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105))) (|has| |#3| (-1053)))) (($ (-411 (-550))) NIL (-12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105))))) (-3532 (((-774)) NIL (|has| |#3| (-1053)) CONST)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-3809 (($ $) NIL (|has| |#3| (-851)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL (-3962 (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))) (|has| |#3| (-729)) (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) CONST)) (-3074 (($ $ (-1 |#3| |#3|) (-774)) NIL (|has| |#3| (-1053))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1053))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))))) (-2968 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-3090 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-4383 (($ $ |#3|) NIL (|has| |#3| (-366)))) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL (-3962 (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))) (|has| |#3| (-729)) (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053))))) (($ $ (-923)) NIL (-3962 (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))) (|has| |#3| (-729)) (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))))) (* (($ |#2| $) 17) (($ (-550) $) NIL) (($ (-774) $) NIL) (($ (-923) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-729))) (($ |#3| $) NIL (|has| |#3| (-729))) (($ $ $) NIL (-3962 (-12 (|has| |#3| (-234)) (|has| |#3| (-1053))) (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053))) (|has| |#3| (-729)) (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-253 |#1| |#2| |#3|) (-13 (-239 |#1| |#3|) (-651 |#2|)) (-774) (-1053) (-651 |#2|)) (T -253)) +NIL +(-13 (-239 |#1| |#3|) (-651 |#2|)) +((-1591 (((-644 (-774)) $) 56) (((-644 (-774)) $ |#3|) 59)) (-1625 (((-774) $) 58) (((-774) $ |#3|) 61)) (-1587 (($ $) 76)) (-3579 (((-3 |#2| #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 (-550) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 83)) (-4205 (((-774) $ |#3|) 43) (((-774) $) 38)) (-1626 (((-1 $ (-774)) |#3|) 15) (((-1 $ (-774)) $) 88)) (-1589 ((|#4| $) 69)) (-1590 (((-112) $) 67)) (-1588 (($ $) 75)) (-4201 (($ $ (-644 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-644 |#3|) (-644 |#2|)) 100)) (-4244 (($ $ |#4|) NIL) (($ $ (-644 |#4|)) NIL) (($ $ |#4| (-774)) NIL) (($ $ (-644 |#4|) (-644 (-774))) NIL) (($ $) NIL) (($ $ (-774)) NIL) (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1592 (((-644 |#3|) $) 86)) (-4382 ((|#5| $) NIL) (((-774) $ |#4|) NIL) (((-644 (-774)) $ (-644 |#4|)) NIL) (((-774) $ |#3|) 49)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-411 (-550))) NIL) (($ $) NIL))) +(((-254 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4380 (|#1| |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4201 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#3| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#3| |#1|)) (-15 -1626 ((-1 |#1| (-774)) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1589 (|#4| |#1|)) (-15 -1590 ((-112) |#1|)) (-15 -1625 ((-774) |#1| |#3|)) (-15 -1591 ((-644 (-774)) |#1| |#3|)) (-15 -1625 ((-774) |#1|)) (-15 -1591 ((-644 (-774)) |#1|)) (-15 -4382 ((-774) |#1| |#3|)) (-15 -4205 ((-774) |#1|)) (-15 -4205 ((-774) |#1| |#3|)) (-15 -1592 ((-644 |#3|) |#1|)) (-15 -1626 ((-1 |#1| (-774)) |#3|)) (-15 -4380 (|#1| |#3|)) (-15 -3579 ((-3 |#3| #1="failed") |#1|)) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -4382 ((-644 (-774)) |#1| (-644 |#4|))) (-15 -4382 ((-774) |#1| |#4|)) (-15 -4380 (|#1| |#4|)) (-15 -3579 ((-3 |#4| #1#) |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#4| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#4| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4382 (|#5| |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -4244 (|#1| |#1| (-644 |#4|) (-644 (-774)))) (-15 -4244 (|#1| |#1| |#4| (-774))) (-15 -4244 (|#1| |#1| (-644 |#4|))) (-15 -4244 (|#1| |#1| |#4|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-255 |#2| |#3| |#4| |#5|) (-1053) (-853) (-268 |#3|) (-796)) (T -254)) +NIL +(-10 -8 (-15 -4380 (|#1| |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4201 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#3| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#3| |#1|)) (-15 -1626 ((-1 |#1| (-774)) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1589 (|#4| |#1|)) (-15 -1590 ((-112) |#1|)) (-15 -1625 ((-774) |#1| |#3|)) (-15 -1591 ((-644 (-774)) |#1| |#3|)) (-15 -1625 ((-774) |#1|)) (-15 -1591 ((-644 (-774)) |#1|)) (-15 -4382 ((-774) |#1| |#3|)) (-15 -4205 ((-774) |#1|)) (-15 -4205 ((-774) |#1| |#3|)) (-15 -1592 ((-644 |#3|) |#1|)) (-15 -1626 ((-1 |#1| (-774)) |#3|)) (-15 -4380 (|#1| |#3|)) (-15 -3579 ((-3 |#3| #1="failed") |#1|)) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -4382 ((-644 (-774)) |#1| (-644 |#4|))) (-15 -4382 ((-774) |#1| |#4|)) (-15 -4380 (|#1| |#4|)) (-15 -3579 ((-3 |#4| #1#) |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#4| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#4| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4382 (|#5| |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -4244 (|#1| |#1| (-644 |#4|) (-644 (-774)))) (-15 -4244 (|#1| |#1| |#4| (-774))) (-15 -4244 (|#1| |#1| (-644 |#4|))) (-15 -4244 (|#1| |#1| |#4|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1591 (((-644 (-774)) $) 216) (((-644 (-774)) $ |#2|) 214)) (-1625 (((-774) $) 215) (((-774) $ |#2|) 213)) (-3487 (((-644 |#3|) $) 112)) (-3489 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2243 (($ $) 90 (|has| |#1| (-561)))) (-2241 (((-112) $) 92 (|has| |#1| (-561)))) (-3224 (((-774) $) 114) (((-774) $ (-644 |#3|)) 113)) (-1408 (((-3 $ "failed") $ $) 20)) (-3112 (((-409 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-914)))) (-4208 (($ $) 100 (|has| |#1| (-456)))) (-4403 (((-409 $) $) 99 (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-914)))) (-1587 (($ $) 209)) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| #2="failed") $) 166) (((-3 (-411 (-550)) #2#) $) 163 (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) 161 (|has| |#1| (-1042 (-550)))) (((-3 |#3| #2#) $) 138) (((-3 |#2| #2#) $) 223)) (-3578 ((|#1| $) 165) (((-411 (-550)) $) 164 (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) 162 (|has| |#1| (-1042 (-550)))) ((|#3| $) 139) ((|#2| $) 224)) (-4190 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-4393 (($ $) 156)) (-2429 (((-692 (-550)) (-692 $)) 136 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 135 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 134) (((-692 |#1|) (-692 $)) 133)) (-3892 (((-3 $ "failed") $) 37)) (-3928 (($ $) 178 (|has| |#1| (-456))) (($ $ |#3|) 107 (|has| |#1| (-456)))) (-3223 (((-644 $) $) 111)) (-4157 (((-112) $) 98 (|has| |#1| (-914)))) (-1771 (($ $ |#1| |#4| $) 174)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 86 (-12 (|has| |#3| (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 85 (-12 (|has| |#3| (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-4205 (((-774) $ |#2|) 219) (((-774) $) 218)) (-2575 (((-112) $) 35)) (-2583 (((-774) $) 171)) (-3490 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-3226 (((-644 $) $) 128)) (-4371 (((-112) $) 154)) (-3296 (($ |#1| |#4|) 155) (($ $ |#3| (-774)) 121) (($ $ (-644 |#3|) (-644 (-774))) 120)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#3|) 122)) (-3225 ((|#4| $) 172) (((-774) $ |#3|) 124) (((-644 (-774)) $ (-644 |#3|)) 123)) (-1772 (($ (-1 |#4| |#4|) $) 173)) (-4392 (($ (-1 |#1| |#1|) $) 153)) (-1626 (((-1 $ (-774)) |#2|) 221) (((-1 $ (-774)) $) 208 (|has| |#1| (-234)))) (-3488 (((-3 |#3| #3="failed") $) 125)) (-3297 (($ $) 151)) (-3596 ((|#1| $) 150)) (-1589 ((|#3| $) 211)) (-2071 (($ (-644 $)) 96 (|has| |#1| (-456))) (($ $ $) 95 (|has| |#1| (-456)))) (-3665 (((-1163) $) 10)) (-1590 (((-112) $) 212)) (-3228 (((-3 (-644 $) #3#) $) 116)) (-3227 (((-3 (-644 $) #3#) $) 117)) (-3229 (((-3 (-2 (|:| |var| |#3|) (|:| -2566 (-774))) #3#) $) 115)) (-1588 (($ $) 210)) (-3666 (((-1124) $) 11)) (-1974 (((-112) $) 168)) (-1973 ((|#1| $) 169)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-456)))) (-3566 (($ (-644 $)) 94 (|has| |#1| (-456))) (($ $ $) 93 (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-914)))) (-4166 (((-409 $) $) 101 (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-234))) (($ $ (-644 |#2|) (-644 $)) 206 (|has| |#1| (-234))) (($ $ |#2| |#1|) 205 (|has| |#1| (-234))) (($ $ (-644 |#2|) (-644 |#1|)) 204 (|has| |#1| (-234)))) (-4191 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-4244 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-774)) 44) (($ $ (-644 |#3|) (-644 (-774))) 43) (($ $) 240 (|has| |#1| (-234))) (($ $ (-774)) 238 (|has| |#1| (-234))) (($ $ (-1181)) 236 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 235 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 234 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 233 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1592 (((-644 |#2|) $) 220)) (-4382 ((|#4| $) 152) (((-774) $ |#3|) 132) (((-644 (-774)) $ (-644 |#3|)) 131) (((-774) $ |#2|) 217)) (-4404 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) 83 (-12 (|has| |#3| (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) 82 (-12 (|has| |#3| (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) 177 (|has| |#1| (-456))) (($ $ |#3|) 108 (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 106 (-3258 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-411 (-550))) 80 (-3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550)))))) (($ $) 87 (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) 170)) (-4111 ((|#1| $ |#4|) 157) (($ $ |#3| (-774)) 130) (($ $ (-644 |#3|) (-644 (-774))) 129)) (-3107 (((-3 $ #1#) $) 81 (-3962 (-3258 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) 32 T CONST)) (-1770 (($ $ $ (-774)) 175 (|has| |#1| (-173)))) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 91 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-774)) 40) (($ $ (-644 |#3|) (-644 (-774))) 39) (($ $) 239 (|has| |#1| (-234))) (($ $ (-774)) 237 (|has| |#1| (-234))) (($ $ (-1181)) 232 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 231 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 230 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 229 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 158 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 160 (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) 159 (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-255 |#1| |#2| |#3| |#4|) (-140) (-1053) (-853) (-268 |t#2|) (-796)) (T -255)) +((-1626 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *3 (-853)) (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-1 *1 (-774))) (-4 *1 (-255 *4 *3 *5 *6)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-644 *4)))) (-4205 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-774)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-774)))) (-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-774)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-644 (-774))))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-774)))) (-1591 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-644 (-774))))) (-1625 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-774)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-112)))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-796)) (-4 *2 (-268 *4)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1053)) (-4 *3 (-853)) (-4 *4 (-268 *3)) (-4 *5 (-796)))) (-1587 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1053)) (-4 *3 (-853)) (-4 *4 (-268 *3)) (-4 *5 (-796)))) (-1626 (*1 *2 *1) (-12 (-4 *3 (-234)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-1 *1 (-774))) (-4 *1 (-255 *3 *4 *5 *6))))) +(-13 (-954 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1042 |t#2|) (-10 -8 (-15 -1626 ((-1 $ (-774)) |t#2|)) (-15 -1592 ((-644 |t#2|) $)) (-15 -4205 ((-774) $ |t#2|)) (-15 -4205 ((-774) $)) (-15 -4382 ((-774) $ |t#2|)) (-15 -1591 ((-644 (-774)) $)) (-15 -1625 ((-774) $)) (-15 -1591 ((-644 (-774)) $ |t#2|)) (-15 -1625 ((-774) $ |t#2|)) (-15 -1590 ((-112) $)) (-15 -1589 (|t#3| $)) (-15 -1588 ($ $)) (-15 -1587 ($ $)) (IF (|has| |t#1| (-234)) (PROGN (-6 (-518 |t#2| |t#1|)) (-6 (-518 |t#2| $)) (-6 (-311 $)) (-15 -1626 ((-1 $ (-774)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 |#2|) . T) ((-619 |#3|) . T) ((-619 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-617 (-539)) -12 (|has| |#1| (-617 (-539))) (|has| |#3| (-617 (-539)))) ((-617 (-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#3| (-617 (-894 (-381))))) ((-617 (-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#3| (-617 (-894 (-550))))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-292) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-311 $) . T) ((-328 |#1| |#4|) . T) ((-380 |#1|) . T) ((-416 |#1|) . T) ((-456) -3962 (|has| |#1| (-914)) (|has| |#1| (-456))) ((-518 |#2| |#1|) |has| |#1| (-234)) ((-518 |#2| $) |has| |#1| (-234)) ((-518 |#3| |#1|) . T) ((-518 |#3| $) . T) ((-518 $ $) . T) ((-561) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-729) . T) ((-904 (-1181)) |has| |#1| (-904 (-1181))) ((-904 |#3|) . T) ((-890 (-381)) -12 (|has| |#1| (-890 (-381))) (|has| |#3| (-890 (-381)))) ((-890 (-550)) -12 (|has| |#1| (-890 (-550))) (|has| |#3| (-890 (-550)))) ((-954 |#1| |#4| |#3|) . T) ((-914) |has| |#1| (-914)) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1042 |#2|) . T) ((-1042 |#3|) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) |has| |#1| (-914))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1598 ((|#1| $) 55)) (-3750 ((|#1| $) 45)) (-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-3405 (($ $) 61)) (-2444 (($ $) 49)) (-3752 ((|#1| |#1| $) 47)) (-3751 ((|#1| $) 46)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-4267 (((-774) $) 62)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-1596 ((|#1| |#1| $) 53)) (-1595 ((|#1| |#1| $) 52)) (-4041 (($ |#1| $) 41)) (-3005 (((-774) $) 56)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-3404 ((|#1| $) 63)) (-1594 ((|#1| $) 51)) (-1593 ((|#1| $) 50)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3407 ((|#1| |#1| $) 59)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-3406 ((|#1| $) 60)) (-1599 (($) 58) (($ (-644 |#1|)) 57)) (-3749 (((-774) $) 44)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-1597 ((|#1| $) 54)) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-3403 ((|#1| $) 64)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-256 |#1|) (-140) (-1220)) (T -256)) +((-1599 (*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-4 *1 (-256 *3)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1220)) (-5 *2 (-774)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-1596 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-1595 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(-13 (-1125 |t#1|) (-999 |t#1|) (-10 -8 (-15 -1599 ($)) (-15 -1599 ($ (-644 |t#1|))) (-15 -3005 ((-774) $)) (-15 -1598 (|t#1| $)) (-15 -1597 (|t#1| $)) (-15 -1596 (|t#1| |t#1| $)) (-15 -1595 (|t#1| |t#1| $)) (-15 -1594 (|t#1| $)) (-15 -1593 (|t#1| $)) (-15 -2444 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-999 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1125 |#1|) . T) ((-1220) . T)) +((-1600 (((-1137 (-226)) (-886 |#1|) (-1096 (-381)) (-1096 (-381))) 75) (((-1137 (-226)) (-886 |#1|) (-1096 (-381)) (-1096 (-381)) (-644 (-263))) 74) (((-1137 (-226)) |#1| (-1096 (-381)) (-1096 (-381))) 65) (((-1137 (-226)) |#1| (-1096 (-381)) (-1096 (-381)) (-644 (-263))) 64) (((-1137 (-226)) (-883 |#1|) (-1096 (-381))) 56) (((-1137 (-226)) (-883 |#1|) (-1096 (-381)) (-644 (-263))) 55)) (-1607 (((-1274) (-886 |#1|) (-1096 (-381)) (-1096 (-381))) 78) (((-1274) (-886 |#1|) (-1096 (-381)) (-1096 (-381)) (-644 (-263))) 77) (((-1274) |#1| (-1096 (-381)) (-1096 (-381))) 68) (((-1274) |#1| (-1096 (-381)) (-1096 (-381)) (-644 (-263))) 67) (((-1274) (-883 |#1|) (-1096 (-381))) 60) (((-1274) (-883 |#1|) (-1096 (-381)) (-644 (-263))) 59) (((-1273) (-881 |#1|) (-1096 (-381))) 47) (((-1273) (-881 |#1|) (-1096 (-381)) (-644 (-263))) 46) (((-1273) |#1| (-1096 (-381))) 38) (((-1273) |#1| (-1096 (-381)) (-644 (-263))) 36))) +(((-257 |#1|) (-10 -7 (-15 -1607 ((-1273) |#1| (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) |#1| (-1096 (-381)))) (-15 -1607 ((-1273) (-881 |#1|) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) (-881 |#1|) (-1096 (-381)))) (-15 -1607 ((-1274) (-883 |#1|) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-883 |#1|) (-1096 (-381)))) (-15 -1600 ((-1137 (-226)) (-883 |#1|) (-1096 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-883 |#1|) (-1096 (-381)))) (-15 -1607 ((-1274) |#1| (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) |#1| (-1096 (-381)) (-1096 (-381)))) (-15 -1600 ((-1137 (-226)) |#1| (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) |#1| (-1096 (-381)) (-1096 (-381)))) (-15 -1607 ((-1274) (-886 |#1|) (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-886 |#1|) (-1096 (-381)) (-1096 (-381)))) (-15 -1600 ((-1137 (-226)) (-886 |#1|) (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-886 |#1|) (-1096 (-381)) (-1096 (-381))))) (-13 (-617 (-539)) (-1105))) (T -257)) +((-1600 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1096 (-381))) (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *5)))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *6)))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1096 (-381))) (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *5)))) (-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *6)))) (-1600 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1096 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1096 (-381))) (-5 *2 (-1274)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) (-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1096 (-381))) (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *5)))) (-1600 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *6)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1096 (-381))) (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *5)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *6)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1096 (-381))) (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1273)) (-5 *1 (-257 *5)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1273)) (-5 *1 (-257 *6)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-381))) (-5 *2 (-1273)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105)))))) +(-10 -7 (-15 -1607 ((-1273) |#1| (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) |#1| (-1096 (-381)))) (-15 -1607 ((-1273) (-881 |#1|) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) (-881 |#1|) (-1096 (-381)))) (-15 -1607 ((-1274) (-883 |#1|) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-883 |#1|) (-1096 (-381)))) (-15 -1600 ((-1137 (-226)) (-883 |#1|) (-1096 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-883 |#1|) (-1096 (-381)))) (-15 -1607 ((-1274) |#1| (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) |#1| (-1096 (-381)) (-1096 (-381)))) (-15 -1600 ((-1137 (-226)) |#1| (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) |#1| (-1096 (-381)) (-1096 (-381)))) (-15 -1607 ((-1274) (-886 |#1|) (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-886 |#1|) (-1096 (-381)) (-1096 (-381)))) (-15 -1600 ((-1137 (-226)) (-886 |#1|) (-1096 (-381)) (-1096 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-886 |#1|) (-1096 (-381)) (-1096 (-381))))) +((-1601 (((-1 (-947 (-226)) (-226) (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 153)) (-1600 (((-1137 (-226)) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381))) 173) (((-1137 (-226)) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)) (-644 (-263))) 171) (((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381))) 176) (((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263))) 172) (((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381))) 164) (((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263))) 163) (((-1137 (-226)) (-1 (-947 (-226)) (-226)) (-1093 (-381))) 145) (((-1137 (-226)) (-1 (-947 (-226)) (-226)) (-1093 (-381)) (-644 (-263))) 143) (((-1137 (-226)) (-883 (-1 (-226) (-226))) (-1093 (-381))) 144) (((-1137 (-226)) (-883 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263))) 141)) (-1607 (((-1274) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381))) 175) (((-1274) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)) (-644 (-263))) 174) (((-1274) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381))) 178) (((-1274) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263))) 177) (((-1274) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381))) 166) (((-1274) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263))) 165) (((-1274) (-1 (-947 (-226)) (-226)) (-1093 (-381))) 151) (((-1274) (-1 (-947 (-226)) (-226)) (-1093 (-381)) (-644 (-263))) 150) (((-1274) (-883 (-1 (-226) (-226))) (-1093 (-381))) 149) (((-1274) (-883 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263))) 148) (((-1273) (-881 (-1 (-226) (-226))) (-1093 (-381))) 113) (((-1273) (-881 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263))) 112) (((-1273) (-1 (-226) (-226)) (-1093 (-381))) 107) (((-1273) (-1 (-226) (-226)) (-1093 (-381)) (-644 (-263))) 105))) +(((-258) (-10 -7 (-15 -1607 ((-1273) (-1 (-226) (-226)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) (-1 (-226) (-226)) (-1093 (-381)))) (-15 -1607 ((-1273) (-881 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) (-881 (-1 (-226) (-226))) (-1093 (-381)))) (-15 -1607 ((-1274) (-883 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-883 (-1 (-226) (-226))) (-1093 (-381)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-883 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-883 (-1 (-226) (-226))) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226)) (-1093 (-381)))) (-15 -1607 ((-1274) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1607 ((-1274) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)))) (-15 -1601 ((-1 (-947 (-226)) (-226) (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -258)) +((-1601 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-947 (-226)) (-226) (-226))) (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1600 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1273)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1273)) (-5 *1 (-258)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-258))))) +(-10 -7 (-15 -1607 ((-1273) (-1 (-226) (-226)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) (-1 (-226) (-226)) (-1093 (-381)))) (-15 -1607 ((-1273) (-881 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1273) (-881 (-1 (-226) (-226))) (-1093 (-381)))) (-15 -1607 ((-1274) (-883 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-883 (-1 (-226) (-226))) (-1093 (-381)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-883 (-1 (-226) (-226))) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-883 (-1 (-226) (-226))) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226)) (-1093 (-381)))) (-15 -1607 ((-1274) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-381)) (-1093 (-381)))) (-15 -1607 ((-1274) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1607 ((-1274) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)))) (-15 -1600 ((-1137 (-226)) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)) (-644 (-263)))) (-15 -1600 ((-1137 (-226)) (-886 (-1 (-226) (-226) (-226))) (-1093 (-381)) (-1093 (-381)))) (-15 -1601 ((-1 (-947 (-226)) (-226) (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))))) +((-1607 (((-1273) (-295 |#2|) (-1181) (-1181) (-644 (-263))) 101))) +(((-259 |#1| |#2|) (-10 -7 (-15 -1607 ((-1273) (-295 |#2|) (-1181) (-1181) (-644 (-263))))) (-13 (-561) (-853) (-1042 (-550))) (-425 |#1|)) (T -259)) +((-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1181)) (-5 *5 (-644 (-263))) (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-853) (-1042 (-550)))) (-5 *2 (-1273)) (-5 *1 (-259 *6 *7))))) +(-10 -7 (-15 -1607 ((-1273) (-295 |#2|) (-1181) (-1181) (-644 (-263))))) +((-1604 (((-550) (-550)) 73)) (-1605 (((-550) (-550)) 74)) (-1606 (((-226) (-226)) 75)) (-1603 (((-1274) (-1 (-169 (-226)) (-169 (-226))) (-1093 (-226)) (-1093 (-226))) 72)) (-1602 (((-1274) (-1 (-169 (-226)) (-169 (-226))) (-1093 (-226)) (-1093 (-226)) (-112)) 70))) +(((-260) (-10 -7 (-15 -1602 ((-1274) (-1 (-169 (-226)) (-169 (-226))) (-1093 (-226)) (-1093 (-226)) (-112))) (-15 -1603 ((-1274) (-1 (-169 (-226)) (-169 (-226))) (-1093 (-226)) (-1093 (-226)))) (-15 -1604 ((-550) (-550))) (-15 -1605 ((-550) (-550))) (-15 -1606 ((-226) (-226))))) (T -260)) +((-1606 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-260)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-260)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-260)))) (-1603 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1093 (-226))) (-5 *2 (-1274)) (-5 *1 (-260)))) (-1602 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1093 (-226))) (-5 *5 (-112)) (-5 *2 (-1274)) (-5 *1 (-260))))) +(-10 -7 (-15 -1602 ((-1274) (-1 (-169 (-226)) (-169 (-226))) (-1093 (-226)) (-1093 (-226)) (-112))) (-15 -1603 ((-1274) (-1 (-169 (-226)) (-169 (-226))) (-1093 (-226)) (-1093 (-226)))) (-15 -1604 ((-550) (-550))) (-15 -1605 ((-550) (-550))) (-15 -1606 ((-226) (-226)))) +((-4380 (((-1096 (-381)) (-1096 (-316 |#1|))) 16))) +(((-261 |#1|) (-10 -7 (-15 -4380 ((-1096 (-381)) (-1096 (-316 |#1|))))) (-13 (-853) (-561) (-617 (-381)))) (T -261)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-1096 (-316 *4))) (-4 *4 (-13 (-853) (-561) (-617 (-381)))) (-5 *2 (-1096 (-381))) (-5 *1 (-261 *4))))) +(-10 -7 (-15 -4380 ((-1096 (-381)) (-1096 (-316 |#1|))))) +((-1607 (((-1274) (-644 (-226)) (-644 (-226)) (-644 (-226)) (-644 (-263))) 23) (((-1274) (-644 (-226)) (-644 (-226)) (-644 (-226))) 24) (((-1273) (-644 (-947 (-226))) (-644 (-263))) 16) (((-1273) (-644 (-947 (-226)))) 17) (((-1273) (-644 (-226)) (-644 (-226)) (-644 (-263))) 20) (((-1273) (-644 (-226)) (-644 (-226))) 21))) +(((-262) (-10 -7 (-15 -1607 ((-1273) (-644 (-226)) (-644 (-226)))) (-15 -1607 ((-1273) (-644 (-226)) (-644 (-226)) (-644 (-263)))) (-15 -1607 ((-1273) (-644 (-947 (-226))))) (-15 -1607 ((-1273) (-644 (-947 (-226))) (-644 (-263)))) (-15 -1607 ((-1274) (-644 (-226)) (-644 (-226)) (-644 (-226)))) (-15 -1607 ((-1274) (-644 (-226)) (-644 (-226)) (-644 (-226)) (-644 (-263)))))) (T -262)) +((-1607 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-644 (-226))) (-5 *4 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1607 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-947 (-226)))) (-5 *4 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-262)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-644 (-947 (-226)))) (-5 *2 (-1273)) (-5 *1 (-262)))) (-1607 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-226))) (-5 *4 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-262)))) (-1607 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-1273)) (-5 *1 (-262))))) +(-10 -7 (-15 -1607 ((-1273) (-644 (-226)) (-644 (-226)))) (-15 -1607 ((-1273) (-644 (-226)) (-644 (-226)) (-644 (-263)))) (-15 -1607 ((-1273) (-644 (-947 (-226))))) (-15 -1607 ((-1273) (-644 (-947 (-226))) (-644 (-263)))) (-15 -1607 ((-1274) (-644 (-226)) (-644 (-226)) (-644 (-226)))) (-15 -1607 ((-1274) (-644 (-226)) (-644 (-226)) (-644 (-226)) (-644 (-263))))) +((-2970 (((-112) $ $) NIL)) (-4315 (($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 24)) (-1620 (($ (-923)) 81)) (-1619 (($ (-923)) 80)) (-1949 (($ (-644 (-381))) 87)) (-1623 (($ (-381)) 66)) (-1622 (($ (-923)) 82)) (-1616 (($ (-112)) 33)) (-4317 (($ (-1163)) 28)) (-1615 (($ (-1163)) 29)) (-1621 (($ (-1137 (-226))) 76)) (-2108 (($ (-644 (-1093 (-381)))) 72)) (-1609 (($ (-644 (-1093 (-381)))) 68) (($ (-644 (-1093 (-411 (-550))))) 71)) (-1612 (($ (-381)) 38) (($ (-877)) 42)) (-1608 (((-112) (-644 $) (-1181)) 100)) (-1624 (((-3 (-51) "failed") (-644 $) (-1181)) 102)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1611 (($ (-381)) 43) (($ (-877)) 44)) (-3646 (($ (-1 (-947 (-226)) (-947 (-226)))) 65)) (-2417 (($ (-1 (-947 (-226)) (-947 (-226)))) 83)) (-1610 (($ (-1 (-226) (-226))) 48) (($ (-1 (-226) (-226) (-226))) 52) (($ (-1 (-226) (-226) (-226) (-226))) 56)) (-4380 (((-866) $) 93)) (-1613 (($ (-112)) 34) (($ (-644 (-1093 (-381)))) 60)) (-3664 (((-112) $ $) NIL)) (-2103 (($ (-112)) 35)) (-3457 (((-112) $ $) 97))) +(((-263) (-13 (-1105) (-10 -8 (-15 -2103 ($ (-112))) (-15 -1613 ($ (-112))) (-15 -4315 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4317 ($ (-1163))) (-15 -1615 ($ (-1163))) (-15 -1616 ($ (-112))) (-15 -1613 ($ (-644 (-1093 (-381))))) (-15 -3646 ($ (-1 (-947 (-226)) (-947 (-226))))) (-15 -1612 ($ (-381))) (-15 -1612 ($ (-877))) (-15 -1611 ($ (-381))) (-15 -1611 ($ (-877))) (-15 -1610 ($ (-1 (-226) (-226)))) (-15 -1610 ($ (-1 (-226) (-226) (-226)))) (-15 -1610 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -1623 ($ (-381))) (-15 -1609 ($ (-644 (-1093 (-381))))) (-15 -1609 ($ (-644 (-1093 (-411 (-550)))))) (-15 -2108 ($ (-644 (-1093 (-381))))) (-15 -1621 ($ (-1137 (-226)))) (-15 -1619 ($ (-923))) (-15 -1620 ($ (-923))) (-15 -1622 ($ (-923))) (-15 -2417 ($ (-1 (-947 (-226)) (-947 (-226))))) (-15 -1949 ($ (-644 (-381)))) (-15 -1624 ((-3 (-51) "failed") (-644 $) (-1181))) (-15 -1608 ((-112) (-644 $) (-1181)))))) (T -263)) +((-2103 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-4315 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-263)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-263)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-263)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-263)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-1 (-947 (-226)) (-947 (-226)))) (-5 *1 (-263)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-263)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-263)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-263)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-263)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-263)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-263)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-263)))) (-1623 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-263)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-263)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-411 (-550))))) (-5 *1 (-263)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-263)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-263)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-263)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-263)))) (-1622 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-263)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1 (-947 (-226)) (-947 (-226)))) (-5 *1 (-263)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-263)))) (-1624 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-263))) (-5 *4 (-1181)) (-5 *2 (-51)) (-5 *1 (-263)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-263))) (-5 *4 (-1181)) (-5 *2 (-112)) (-5 *1 (-263))))) +(-13 (-1105) (-10 -8 (-15 -2103 ($ (-112))) (-15 -1613 ($ (-112))) (-15 -4315 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4317 ($ (-1163))) (-15 -1615 ($ (-1163))) (-15 -1616 ($ (-112))) (-15 -1613 ($ (-644 (-1093 (-381))))) (-15 -3646 ($ (-1 (-947 (-226)) (-947 (-226))))) (-15 -1612 ($ (-381))) (-15 -1612 ($ (-877))) (-15 -1611 ($ (-381))) (-15 -1611 ($ (-877))) (-15 -1610 ($ (-1 (-226) (-226)))) (-15 -1610 ($ (-1 (-226) (-226) (-226)))) (-15 -1610 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -1623 ($ (-381))) (-15 -1609 ($ (-644 (-1093 (-381))))) (-15 -1609 ($ (-644 (-1093 (-411 (-550)))))) (-15 -2108 ($ (-644 (-1093 (-381))))) (-15 -1621 ($ (-1137 (-226)))) (-15 -1619 ($ (-923))) (-15 -1620 ($ (-923))) (-15 -1622 ($ (-923))) (-15 -2417 ($ (-1 (-947 (-226)) (-947 (-226))))) (-15 -1949 ($ (-644 (-381)))) (-15 -1624 ((-3 (-51) "failed") (-644 $) (-1181))) (-15 -1608 ((-112) (-644 $) (-1181))))) +((-4315 (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-644 (-263)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 25)) (-1620 (((-923) (-644 (-263)) (-923)) 52)) (-1619 (((-923) (-644 (-263)) (-923)) 51)) (-4285 (((-644 (-381)) (-644 (-263)) (-644 (-381))) 68)) (-1623 (((-381) (-644 (-263)) (-381)) 57)) (-1622 (((-923) (-644 (-263)) (-923)) 53)) (-1616 (((-112) (-644 (-263)) (-112)) 27)) (-4317 (((-1163) (-644 (-263)) (-1163)) 19)) (-1615 (((-1163) (-644 (-263)) (-1163)) 26)) (-1621 (((-1137 (-226)) (-644 (-263))) 46)) (-2108 (((-644 (-1093 (-381))) (-644 (-263)) (-644 (-1093 (-381)))) 40)) (-1617 (((-877) (-644 (-263)) (-877)) 32)) (-1618 (((-877) (-644 (-263)) (-877)) 33)) (-2417 (((-1 (-947 (-226)) (-947 (-226))) (-644 (-263)) (-1 (-947 (-226)) (-947 (-226)))) 63)) (-1614 (((-112) (-644 (-263)) (-112)) 14)) (-2103 (((-112) (-644 (-263)) (-112)) 13))) +(((-264) (-10 -7 (-15 -2103 ((-112) (-644 (-263)) (-112))) (-15 -1614 ((-112) (-644 (-263)) (-112))) (-15 -4315 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-644 (-263)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4317 ((-1163) (-644 (-263)) (-1163))) (-15 -1615 ((-1163) (-644 (-263)) (-1163))) (-15 -1616 ((-112) (-644 (-263)) (-112))) (-15 -1617 ((-877) (-644 (-263)) (-877))) (-15 -1618 ((-877) (-644 (-263)) (-877))) (-15 -2108 ((-644 (-1093 (-381))) (-644 (-263)) (-644 (-1093 (-381))))) (-15 -1619 ((-923) (-644 (-263)) (-923))) (-15 -1620 ((-923) (-644 (-263)) (-923))) (-15 -1621 ((-1137 (-226)) (-644 (-263)))) (-15 -1622 ((-923) (-644 (-263)) (-923))) (-15 -1623 ((-381) (-644 (-263)) (-381))) (-15 -2417 ((-1 (-947 (-226)) (-947 (-226))) (-644 (-263)) (-1 (-947 (-226)) (-947 (-226))))) (-15 -4285 ((-644 (-381)) (-644 (-263)) (-644 (-381)))))) (T -264)) +((-4285 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-2417 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-947 (-226)) (-947 (-226)))) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1623 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1622 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-264)))) (-1620 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1619 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-2108 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1617 (*1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1616 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1615 (*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-4317 (*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-4315 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-1614 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) (-2103 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(-10 -7 (-15 -2103 ((-112) (-644 (-263)) (-112))) (-15 -1614 ((-112) (-644 (-263)) (-112))) (-15 -4315 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-644 (-263)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4317 ((-1163) (-644 (-263)) (-1163))) (-15 -1615 ((-1163) (-644 (-263)) (-1163))) (-15 -1616 ((-112) (-644 (-263)) (-112))) (-15 -1617 ((-877) (-644 (-263)) (-877))) (-15 -1618 ((-877) (-644 (-263)) (-877))) (-15 -2108 ((-644 (-1093 (-381))) (-644 (-263)) (-644 (-1093 (-381))))) (-15 -1619 ((-923) (-644 (-263)) (-923))) (-15 -1620 ((-923) (-644 (-263)) (-923))) (-15 -1621 ((-1137 (-226)) (-644 (-263)))) (-15 -1622 ((-923) (-644 (-263)) (-923))) (-15 -1623 ((-381) (-644 (-263)) (-381))) (-15 -2417 ((-1 (-947 (-226)) (-947 (-226))) (-644 (-263)) (-1 (-947 (-226)) (-947 (-226))))) (-15 -4285 ((-644 (-381)) (-644 (-263)) (-644 (-381))))) +((-1624 (((-3 |#1| "failed") (-644 (-263)) (-1181)) 17))) +(((-265 |#1|) (-10 -7 (-15 -1624 ((-3 |#1| "failed") (-644 (-263)) (-1181)))) (-1220)) (T -265)) +((-1624 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-263))) (-5 *4 (-1181)) (-5 *1 (-265 *2)) (-4 *2 (-1220))))) +(-10 -7 (-15 -1624 ((-3 |#1| "failed") (-644 (-263)) (-1181)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1591 (((-644 (-774)) $) NIL) (((-644 (-774)) $ |#2|) NIL)) (-1625 (((-774) $) NIL) (((-774) $ |#2|) NIL)) (-3487 (((-644 |#3|) $) NIL)) (-3489 (((-1175 $) $ |#3|) NIL) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 |#3|)) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-1587 (($ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1129 |#1| |#2|) #2#) $) 23)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1129 |#1| |#2|) $) NIL)) (-4190 (($ $ $ |#3|) NIL (|has| |#1| (-173)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ |#3|) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-535 |#3|) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| |#1| (-890 (-381))) (|has| |#3| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| |#1| (-890 (-550))) (|has| |#3| (-890 (-550)))))) (-4205 (((-774) $ |#2|) NIL) (((-774) $) 10)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#1|) |#3|) NIL) (($ (-1175 $) |#3|) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-535 |#3|)) NIL) (($ $ |#3| (-774)) NIL) (($ $ (-644 |#3|) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#3|) NIL)) (-3225 (((-535 |#3|) $) NIL) (((-774) $ |#3|) NIL) (((-644 (-774)) $ (-644 |#3|)) NIL)) (-1772 (($ (-1 (-535 |#3|) (-535 |#3|)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-1626 (((-1 $ (-774)) |#2|) NIL) (((-1 $ (-774)) $) NIL (|has| |#1| (-234)))) (-3488 (((-3 |#3| #3="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-1589 ((|#3| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-1590 (((-112) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| |#3|) (|:| -2566 (-774))) #3#) $) NIL)) (-1588 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-644 |#3|) (-644 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-234))) (($ $ (-644 |#2|) (-644 $)) NIL (|has| |#1| (-234))) (($ $ |#2| |#1|) NIL (|has| |#1| (-234))) (($ $ (-644 |#2|) (-644 |#1|)) NIL (|has| |#1| (-234)))) (-4191 (($ $ |#3|) NIL (|has| |#1| (-173)))) (-4244 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-774)) NIL) (($ $ (-644 |#3|) (-644 (-774))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1592 (((-644 |#2|) $) NIL)) (-4382 (((-535 |#3|) $) NIL) (((-774) $ |#3|) NIL) (((-644 (-774)) $ (-644 |#3|)) NIL) (((-774) $ |#2|) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#3| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#3| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| |#1| (-617 (-539))) (|has| |#3| (-617 (-539)))))) (-3222 ((|#1| $) NIL (|has| |#1| (-456))) (($ $ |#3|) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1129 |#1| |#2|)) 32) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-535 |#3|)) NIL) (($ $ |#3| (-774)) NIL) (($ $ (-644 |#3|) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-774)) NIL) (($ $ (-644 |#3|) (-644 (-774))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-266 |#1| |#2| |#3|) (-13 (-255 |#1| |#2| |#3| (-535 |#3|)) (-1042 (-1129 |#1| |#2|))) (-1053) (-853) (-268 |#2|)) (T -266)) +NIL +(-13 (-255 |#1| |#2| |#3| (-535 |#3|)) (-1042 (-1129 |#1| |#2|))) +((-1625 (((-774) $) 37)) (-3579 (((-3 |#2| "failed") $) 22)) (-3578 ((|#2| $) 33)) (-4244 (($ $) 14) (($ $ (-774)) 18)) (-4380 (((-866) $) 32) (($ |#2|) 11)) (-3457 (((-112) $ $) 26)) (-3090 (((-112) $ $) 36))) +(((-267 |#1| |#2|) (-10 -8 (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -1625 ((-774) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3579 ((-3 |#2| "failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-268 |#2|) (-853)) (T -267)) +NIL +(-10 -8 (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -1625 ((-774) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3579 ((-3 |#2| "failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-1625 (((-774) $) 23)) (-4265 ((|#1| $) 24)) (-3579 (((-3 |#1| "failed") $) 28)) (-3578 ((|#1| $) 29)) (-4205 (((-774) $) 25)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-1626 (($ |#1| (-774)) 26)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4244 (($ $) 22) (($ $ (-774)) 21)) (-4380 (((-866) $) 12) (($ |#1|) 27)) (-3664 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19))) +(((-268 |#1|) (-140) (-853)) (T -268)) +((-4380 (*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-853)))) (-1626 (*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-268 *2)) (-4 *2 (-853)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-853)) (-5 *2 (-774)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-853)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-853)) (-5 *2 (-774)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-853)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-268 *3)) (-4 *3 (-853))))) +(-13 (-853) (-1042 |t#1|) (-10 -8 (-15 -1626 ($ |t#1| (-774))) (-15 -4205 ((-774) $)) (-15 -4265 (|t#1| $)) (-15 -1625 ((-774) $)) (-15 -4244 ($ $)) (-15 -4244 ($ $ (-774))) (-15 -4380 ($ |t#1|)))) +(((-102) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-853) . T) ((-1042 |#1|) . T) ((-1105) . T)) +((-3487 (((-644 (-1181)) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 54)) (-4368 (((-644 (-1181)) (-316 (-226)) (-774)) 96)) (-1629 (((-3 (-316 (-226)) "failed") (-316 (-226))) 64)) (-1630 (((-316 (-226)) (-316 (-226))) 82)) (-1628 (((-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 39)) (-1631 (((-112) (-644 (-316 (-226)))) 106)) (-1635 (((-112) (-316 (-226))) 37)) (-1637 (((-644 (-1163)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) 134)) (-1634 (((-644 (-316 (-226))) (-644 (-316 (-226)))) 110)) (-1633 (((-644 (-316 (-226))) (-644 (-316 (-226)))) 108)) (-1632 (((-692 (-226)) (-644 (-316 (-226))) (-774)) 122)) (-3330 (((-112) (-316 (-226))) 32) (((-112) (-644 (-316 (-226)))) 107)) (-1627 (((-644 (-226)) (-644 (-845 (-226))) (-226)) 15)) (-1727 (((-381) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 128)) (-1636 (((-1039) (-1181) (-1039)) 47))) +(((-269) (-10 -7 (-15 -1627 ((-644 (-226)) (-644 (-845 (-226))) (-226))) (-15 -1628 ((-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))))) (-15 -1629 ((-3 (-316 (-226)) "failed") (-316 (-226)))) (-15 -1630 ((-316 (-226)) (-316 (-226)))) (-15 -1631 ((-112) (-644 (-316 (-226))))) (-15 -3330 ((-112) (-644 (-316 (-226))))) (-15 -3330 ((-112) (-316 (-226)))) (-15 -1632 ((-692 (-226)) (-644 (-316 (-226))) (-774))) (-15 -1633 ((-644 (-316 (-226))) (-644 (-316 (-226))))) (-15 -1634 ((-644 (-316 (-226))) (-644 (-316 (-226))))) (-15 -1635 ((-112) (-316 (-226)))) (-15 -3487 ((-644 (-1181)) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -4368 ((-644 (-1181)) (-316 (-226)) (-774))) (-15 -1636 ((-1039) (-1181) (-1039))) (-15 -1727 ((-381) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -1637 ((-644 (-1163)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))))))) (T -269)) +((-1637 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) (-5 *2 (-644 (-1163))) (-5 *1 (-269)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) (-5 *2 (-381)) (-5 *1 (-269)))) (-1636 (*1 *2 *3 *2) (-12 (-5 *2 (-1039)) (-5 *3 (-1181)) (-5 *1 (-269)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-226))) (-5 *4 (-774)) (-5 *2 (-644 (-1181))) (-5 *1 (-269)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) (-5 *2 (-644 (-1181))) (-5 *1 (-269)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-644 (-316 (-226)))) (-5 *1 (-269)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-644 (-316 (-226)))) (-5 *1 (-269)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-316 (-226)))) (-5 *4 (-774)) (-5 *2 (-692 (-226))) (-5 *1 (-269)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-644 (-316 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-644 (-316 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-316 (-226))) (-5 *1 (-269)))) (-1629 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-226))) (-5 *1 (-269)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (-5 *1 (-269)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-845 (-226)))) (-5 *4 (-226)) (-5 *2 (-644 *4)) (-5 *1 (-269))))) +(-10 -7 (-15 -1627 ((-644 (-226)) (-644 (-845 (-226))) (-226))) (-15 -1628 ((-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))))) (-15 -1629 ((-3 (-316 (-226)) "failed") (-316 (-226)))) (-15 -1630 ((-316 (-226)) (-316 (-226)))) (-15 -1631 ((-112) (-644 (-316 (-226))))) (-15 -3330 ((-112) (-644 (-316 (-226))))) (-15 -3330 ((-112) (-316 (-226)))) (-15 -1632 ((-692 (-226)) (-644 (-316 (-226))) (-774))) (-15 -1633 ((-644 (-316 (-226))) (-644 (-316 (-226))))) (-15 -1634 ((-644 (-316 (-226))) (-644 (-316 (-226))))) (-15 -1635 ((-112) (-316 (-226)))) (-15 -3487 ((-644 (-1181)) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -4368 ((-644 (-1181)) (-316 (-226)) (-774))) (-15 -1636 ((-1039) (-1181) (-1039))) (-15 -1727 ((-381) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -1637 ((-644 (-1163)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))))) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 56)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 32) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-270) (-842)) (T -270)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 72) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 63)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 41) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 43)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-271) (-842)) (T -271)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 90) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 85)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 52) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 65)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-272) (-842)) (T -272)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 73)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 45) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-273) (-842)) (T -273)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 65)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 31) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-274) (-842)) (T -274)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 90)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 33) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-275) (-842)) (T -275)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 87)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 32) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-276) (-842)) (T -276)) +NIL +(-842) +((-2970 (((-112) $ $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1639 (((-644 (-550)) $) 29)) (-4382 (((-774) $) 27)) (-4380 (((-866) $) 36) (($ (-644 (-550))) 23)) (-3664 (((-112) $ $) NIL)) (-1638 (($ (-774)) 33)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 9)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 17))) +(((-277) (-13 (-853) (-10 -8 (-15 -4380 ($ (-644 (-550)))) (-15 -4382 ((-774) $)) (-15 -1639 ((-644 (-550)) $)) (-15 -1638 ($ (-774)))))) (T -277)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-277)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-277)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-277)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-277))))) +(-13 (-853) (-10 -8 (-15 -4380 ($ (-644 (-550)))) (-15 -4382 ((-774) $)) (-15 -1639 ((-644 (-550)) $)) (-15 -1638 ($ (-774))))) +((-3917 ((|#2| |#2|) 77)) (-4073 ((|#2| |#2|) 65)) (-1668 (((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3915 ((|#2| |#2|) 75)) (-4072 ((|#2| |#2|) 63)) (-3919 ((|#2| |#2|) 79)) (-4071 ((|#2| |#2|) 67)) (-4061 ((|#2|) 46)) (-3450 (((-113) (-113)) 100)) (-4376 ((|#2| |#2|) 61)) (-1669 (((-112) |#2|) 147)) (-1658 ((|#2| |#2|) 195)) (-1646 ((|#2| |#2|) 171)) (-1641 ((|#2|) 59)) (-1640 ((|#2|) 58)) (-1656 ((|#2| |#2|) 191)) (-1644 ((|#2| |#2|) 167)) (-1660 ((|#2| |#2|) 199)) (-1648 ((|#2| |#2|) 175)) (-1643 ((|#2| |#2|) 163)) (-1642 ((|#2| |#2|) 165)) (-1661 ((|#2| |#2|) 201)) (-1649 ((|#2| |#2|) 177)) (-1659 ((|#2| |#2|) 197)) (-1647 ((|#2| |#2|) 173)) (-1657 ((|#2| |#2|) 193)) (-1645 ((|#2| |#2|) 169)) (-1664 ((|#2| |#2|) 207)) (-1652 ((|#2| |#2|) 183)) (-1662 ((|#2| |#2|) 203)) (-1650 ((|#2| |#2|) 179)) (-1666 ((|#2| |#2|) 211)) (-1654 ((|#2| |#2|) 187)) (-1667 ((|#2| |#2|) 213)) (-1655 ((|#2| |#2|) 189)) (-1665 ((|#2| |#2|) 209)) (-1653 ((|#2| |#2|) 185)) (-1663 ((|#2| |#2|) 205)) (-1651 ((|#2| |#2|) 181)) (-4377 ((|#2| |#2|) 62)) (-3920 ((|#2| |#2|) 80)) (-4070 ((|#2| |#2|) 68)) (-3918 ((|#2| |#2|) 78)) (-4069 ((|#2| |#2|) 66)) (-3916 ((|#2| |#2|) 76)) (-4068 ((|#2| |#2|) 64)) (-2405 (((-112) (-113)) 98)) (-3923 ((|#2| |#2|) 83)) (-3911 ((|#2| |#2|) 71)) (-3921 ((|#2| |#2|) 81)) (-3909 ((|#2| |#2|) 69)) (-3925 ((|#2| |#2|) 85)) (-3913 ((|#2| |#2|) 73)) (-3926 ((|#2| |#2|) 86)) (-3914 ((|#2| |#2|) 74)) (-3924 ((|#2| |#2|) 84)) (-3912 ((|#2| |#2|) 72)) (-3922 ((|#2| |#2|) 82)) (-3910 ((|#2| |#2|) 70))) +(((-278 |#1| |#2|) (-10 -7 (-15 -4377 (|#2| |#2|)) (-15 -4376 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -4061 (|#2|)) (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -1640 (|#2|)) (-15 -1641 (|#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -1668 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1669 ((-112) |#2|))) (-561) (-13 (-425 |#1|) (-1006))) (T -278)) +((-1669 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) (-4 *3 (-13 (-425 *4) (-1006))))) (-1668 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-425 *4) (-1006))) (-4 *4 (-561)) (-5 *1 (-278 *4 *2)))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-1641 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-1006))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-1640 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-1006))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) (-4 *4 (-13 (-425 *3) (-1006))))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-425 *4) (-1006))))) (-4061 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-1006))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4376 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) (-4377 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) +(-10 -7 (-15 -4377 (|#2| |#2|)) (-15 -4376 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -4061 (|#2|)) (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -1640 (|#2|)) (-15 -1641 (|#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -1668 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1669 ((-112) |#2|))) +((-1672 (((-3 |#2| "failed") (-644 (-614 |#2|)) |#2| (-1181)) 153)) (-1674 ((|#2| (-411 (-550)) |#2|) 49)) (-1673 ((|#2| |#2| (-614 |#2|)) 146)) (-1670 (((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-614 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1181)) 145)) (-1671 ((|#2| |#2| (-1181)) 20) ((|#2| |#2|) 23)) (-2766 ((|#2| |#2| (-1181)) 159) ((|#2| |#2|) 157))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2766 (|#2| |#2|)) (-15 -2766 (|#2| |#2| (-1181))) (-15 -1670 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-614 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1181))) (-15 -1671 (|#2| |#2|)) (-15 -1671 (|#2| |#2| (-1181))) (-15 -1672 ((-3 |#2| "failed") (-644 (-614 |#2|)) |#2| (-1181))) (-15 -1673 (|#2| |#2| (-614 |#2|))) (-15 -1674 (|#2| (-411 (-550)) |#2|))) (-13 (-561) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -279)) +((-1674 (*1 *2 *3 *2) (-12 (-5 *3 (-411 (-550))) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) (-1673 (*1 *2 *2 *3) (-12 (-5 *3 (-614 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *4 *2)))) (-1672 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-644 (-614 *2))) (-5 *4 (-1181)) (-4 *2 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *5 *2)))) (-1671 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3))))) (-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-644 (-614 *3))) (|:| |vals| (-644 *3)))) (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-2766 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3)))))) +(-10 -7 (-15 -2766 (|#2| |#2|)) (-15 -2766 (|#2| |#2| (-1181))) (-15 -1670 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-614 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1181))) (-15 -1671 (|#2| |#2|)) (-15 -1671 (|#2| |#2| (-1181))) (-15 -1672 ((-3 |#2| "failed") (-644 (-614 |#2|)) |#2| (-1181))) (-15 -1673 (|#2| |#2| (-614 |#2|))) (-15 -1674 (|#2| (-411 (-550)) |#2|))) +((-3378 (((-3 |#3| #1="failed") |#3|) 120)) (-3917 ((|#3| |#3|) 142)) (-3366 (((-3 |#3| #1#) |#3|) 89)) (-4073 ((|#3| |#3|) 132)) (-3376 (((-3 |#3| #1#) |#3|) 65)) (-3915 ((|#3| |#3|) 140)) (-3364 (((-3 |#3| #1#) |#3|) 53)) (-4072 ((|#3| |#3|) 130)) (-3380 (((-3 |#3| #1#) |#3|) 122)) (-3919 ((|#3| |#3|) 144)) (-3368 (((-3 |#3| #1#) |#3|) 91)) (-4071 ((|#3| |#3|) 134)) (-3361 (((-3 |#3| #1#) |#3| (-774)) 41)) (-3363 (((-3 |#3| #1#) |#3|) 81)) (-4376 ((|#3| |#3|) 129)) (-3362 (((-3 |#3| #1#) |#3|) 51)) (-4377 ((|#3| |#3|) 128)) (-3381 (((-3 |#3| #1#) |#3|) 123)) (-3920 ((|#3| |#3|) 145)) (-3369 (((-3 |#3| #1#) |#3|) 92)) (-4070 ((|#3| |#3|) 135)) (-3379 (((-3 |#3| #1#) |#3|) 121)) (-3918 ((|#3| |#3|) 143)) (-3367 (((-3 |#3| #1#) |#3|) 90)) (-4069 ((|#3| |#3|) 133)) (-3377 (((-3 |#3| #1#) |#3|) 67)) (-3916 ((|#3| |#3|) 141)) (-3365 (((-3 |#3| #1#) |#3|) 55)) (-4068 ((|#3| |#3|) 131)) (-3384 (((-3 |#3| #1#) |#3|) 73)) (-3923 ((|#3| |#3|) 148)) (-3372 (((-3 |#3| #1#) |#3|) 114)) (-3911 ((|#3| |#3|) 152)) (-3382 (((-3 |#3| #1#) |#3|) 69)) (-3921 ((|#3| |#3|) 146)) (-3370 (((-3 |#3| #1#) |#3|) 57)) (-3909 ((|#3| |#3|) 136)) (-3386 (((-3 |#3| #1#) |#3|) 77)) (-3925 ((|#3| |#3|) 150)) (-3374 (((-3 |#3| #1#) |#3|) 61)) (-3913 ((|#3| |#3|) 138)) (-3387 (((-3 |#3| #1#) |#3|) 79)) (-3926 ((|#3| |#3|) 151)) (-3375 (((-3 |#3| #1#) |#3|) 63)) (-3914 ((|#3| |#3|) 139)) (-3385 (((-3 |#3| #1#) |#3|) 75)) (-3924 ((|#3| |#3|) 149)) (-3373 (((-3 |#3| #1#) |#3|) 117)) (-3912 ((|#3| |#3|) 153)) (-3383 (((-3 |#3| #1#) |#3|) 71)) (-3922 ((|#3| |#3|) 147)) (-3371 (((-3 |#3| #1#) |#3|) 59)) (-3910 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-411 (-550))) 47 (|has| |#1| (-366))))) +(((-280 |#1| |#2| |#3|) (-13 (-987 |#3|) (-10 -7 (IF (|has| |#1| (-366)) (-15 ** (|#3| |#3| (-411 (-550)))) |%noBranch|) (-15 -4377 (|#3| |#3|)) (-15 -4376 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)))) (-38 (-411 (-550))) (-1263 |#1|) (-1234 |#1| |#2|)) (T -280)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-411 (-550))) (-4 *4 (-366)) (-4 *4 (-38 *3)) (-4 *5 (-1263 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1234 *4 *5)))) (-4377 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4376 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1234 *3 *4))))) +(-13 (-987 |#3|) (-10 -7 (IF (|has| |#1| (-366)) (-15 ** (|#3| |#3| (-411 (-550)))) |%noBranch|) (-15 -4377 (|#3| |#3|)) (-15 -4376 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)))) +((-3378 (((-3 |#3| #1="failed") |#3|) 70)) (-3917 ((|#3| |#3|) 137)) (-3366 (((-3 |#3| #1#) |#3|) 54)) (-4073 ((|#3| |#3|) 125)) (-3376 (((-3 |#3| #1#) |#3|) 66)) (-3915 ((|#3| |#3|) 135)) (-3364 (((-3 |#3| #1#) |#3|) 50)) (-4072 ((|#3| |#3|) 123)) (-3380 (((-3 |#3| #1#) |#3|) 74)) (-3919 ((|#3| |#3|) 139)) (-3368 (((-3 |#3| #1#) |#3|) 58)) (-4071 ((|#3| |#3|) 127)) (-3361 (((-3 |#3| #1#) |#3| (-774)) 38)) (-3363 (((-3 |#3| #1#) |#3|) 48)) (-4376 ((|#3| |#3|) 111)) (-3362 (((-3 |#3| #1#) |#3|) 46)) (-4377 ((|#3| |#3|) 122)) (-3381 (((-3 |#3| #1#) |#3|) 76)) (-3920 ((|#3| |#3|) 140)) (-3369 (((-3 |#3| #1#) |#3|) 60)) (-4070 ((|#3| |#3|) 128)) (-3379 (((-3 |#3| #1#) |#3|) 72)) (-3918 ((|#3| |#3|) 138)) (-3367 (((-3 |#3| #1#) |#3|) 56)) (-4069 ((|#3| |#3|) 126)) (-3377 (((-3 |#3| #1#) |#3|) 68)) (-3916 ((|#3| |#3|) 136)) (-3365 (((-3 |#3| #1#) |#3|) 52)) (-4068 ((|#3| |#3|) 124)) (-3384 (((-3 |#3| #1#) |#3|) 78)) (-3923 ((|#3| |#3|) 143)) (-3372 (((-3 |#3| #1#) |#3|) 62)) (-3911 ((|#3| |#3|) 131)) (-3382 (((-3 |#3| #1#) |#3|) 112)) (-3921 ((|#3| |#3|) 141)) (-3370 (((-3 |#3| #1#) |#3|) 100)) (-3909 ((|#3| |#3|) 129)) (-3386 (((-3 |#3| #1#) |#3|) 116)) (-3925 ((|#3| |#3|) 145)) (-3374 (((-3 |#3| #1#) |#3|) 107)) (-3913 ((|#3| |#3|) 133)) (-3387 (((-3 |#3| #1#) |#3|) 117)) (-3926 ((|#3| |#3|) 146)) (-3375 (((-3 |#3| #1#) |#3|) 109)) (-3914 ((|#3| |#3|) 134)) (-3385 (((-3 |#3| #1#) |#3|) 80)) (-3924 ((|#3| |#3|) 144)) (-3373 (((-3 |#3| #1#) |#3|) 64)) (-3912 ((|#3| |#3|) 132)) (-3383 (((-3 |#3| #1#) |#3|) 113)) (-3922 ((|#3| |#3|) 142)) (-3371 (((-3 |#3| #1#) |#3|) 103)) (-3910 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-411 (-550))) 44 (|has| |#1| (-366))))) +(((-281 |#1| |#2| |#3| |#4|) (-13 (-987 |#3|) (-10 -7 (IF (|has| |#1| (-366)) (-15 ** (|#3| |#3| (-411 (-550)))) |%noBranch|) (-15 -4377 (|#3| |#3|)) (-15 -4376 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)))) (-38 (-411 (-550))) (-1232 |#1|) (-1255 |#1| |#2|) (-987 |#2|)) (T -281)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-411 (-550))) (-4 *4 (-366)) (-4 *4 (-38 *3)) (-4 *5 (-1232 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1255 *4 *5)) (-4 *6 (-987 *5)))) (-4377 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4376 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4))))) +(-13 (-987 |#3|) (-10 -7 (IF (|has| |#1| (-366)) (-15 ** (|#3| |#3| (-411 (-550)))) |%noBranch|) (-15 -4377 (|#3| |#3|)) (-15 -4376 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)))) +((-1677 (((-112) $) 20)) (-1679 (((-1186) $) 7)) (-4002 (((-3 (-510) "failed") $) 14)) (-4001 (((-3 (-644 $) "failed") $) NIL)) (-1676 (((-3 (-510) "failed") $) 21)) (-1678 (((-3 (-1107) "failed") $) 18)) (-4387 (((-112) $) 16)) (-4380 (((-866) $) NIL)) (-1675 (((-112) $) 9))) +(((-282) (-13 (-616 (-866)) (-10 -8 (-15 -1679 ((-1186) $)) (-15 -4387 ((-112) $)) (-15 -1678 ((-3 (-1107) "failed") $)) (-15 -1677 ((-112) $)) (-15 -1676 ((-3 (-510) "failed") $)) (-15 -1675 ((-112) $)) (-15 -4002 ((-3 (-510) "failed") $)) (-15 -4001 ((-3 (-644 $) "failed") $))))) (T -282)) +((-1679 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-282)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-1678 (*1 *2 *1) (|partial| -12 (-5 *2 (-1107)) (-5 *1 (-282)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-1676 (*1 *2 *1) (|partial| -12 (-5 *2 (-510)) (-5 *1 (-282)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-4002 (*1 *2 *1) (|partial| -12 (-5 *2 (-510)) (-5 *1 (-282)))) (-4001 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-282))) (-5 *1 (-282))))) +(-13 (-616 (-866)) (-10 -8 (-15 -1679 ((-1186) $)) (-15 -4387 ((-112) $)) (-15 -1678 ((-3 (-1107) "failed") $)) (-15 -1677 ((-112) $)) (-15 -1676 ((-3 (-510) "failed") $)) (-15 -1675 ((-112) $)) (-15 -4002 ((-3 (-510) "failed") $)) (-15 -4001 ((-3 (-644 $) "failed") $)))) +((-4144 (($ (-1 (-112) |#2|) $) 24)) (-1441 (($ $) 38)) (-3831 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3832 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3261 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2451 (($ |#2| $ (-550)) 20) (($ $ $ (-550)) 22)) (-2452 (($ $ (-550)) 11) (($ $ (-1237 (-550))) 14)) (-4224 (($ $ |#2|) 32) (($ $ $) NIL)) (-4235 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-644 $)) NIL))) +(((-283 |#1| |#2|) (-10 -8 (-15 -3261 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#2| |#1|)) (-15 -3261 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4224 (|#1| |#1| |#2|)) (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -2452 (|#1| |#1| (-1237 (-550)))) (-15 -2452 (|#1| |#1| (-550))) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -3832 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4144 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3832 (|#1| |#2| |#1|)) (-15 -1441 (|#1| |#1|))) (-284 |#2|) (-1220)) (T -283)) +NIL +(-10 -8 (-15 -3261 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#2| |#1|)) (-15 -3261 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4224 (|#1| |#1| |#2|)) (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -2452 (|#1| |#1| (-1237 (-550)))) (-15 -2452 (|#1| |#1| (-550))) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -3832 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4144 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3832 (|#1| |#2| |#1|)) (-15 -1441 (|#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 59 (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) |#1|) $) 86)) (-4144 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2528 (($ $) 84 (|has| |#1| (-1105)))) (-1441 (($ $) 79 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1105)))) (-3832 (($ |#1| $) 78 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 52)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-3261 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4041 (($ |#1| $ (-550)) 89) (($ $ $ (-550)) 88)) (-2451 (($ |#1| $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 43 (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2375 (($ $ |#1|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) 51) ((|#1| $ (-550)) 50) (($ $ (-1237 (-550))) 64)) (-1681 (($ $ (-550)) 92) (($ $ (-1237 (-550))) 91)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 71)) (-4224 (($ $ |#1|) 94) (($ $ $) 93)) (-4235 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-284 |#1|) (-140) (-1220)) (T -284)) +((-4224 (*1 *1 *1 *2) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)))) (-4224 (*1 *1 *1 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 (-550))) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) (-4041 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-284 *2)) (-4 *2 (-1220)))) (-4041 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) (-1680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) (-3831 (*1 *1 *2 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)) (-4 *2 (-1105)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)) (-4 *2 (-1105)))) (-3261 (*1 *1 *1 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)) (-4 *2 (-853))))) +(-13 (-654 |t#1|) (-10 -8 (-6 -4428) (-15 -4224 ($ $ |t#1|)) (-15 -4224 ($ $ $)) (-15 -1681 ($ $ (-550))) (-15 -1681 ($ $ (-1237 (-550)))) (-15 -3831 ($ (-1 (-112) |t#1|) $)) (-15 -4041 ($ |t#1| $ (-550))) (-15 -4041 ($ $ $ (-550))) (-15 -3261 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1680 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1105)) (PROGN (-15 -3831 ($ |t#1| $)) (-15 -2528 ($ $))) |%noBranch|) (IF (|has| |t#1| (-853)) (-15 -3261 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) ((** (($ $ $) 10))) -(((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284)) +(((-285 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-286)) (T -285)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4374 (($ $) 6)) (-4375 (($ $) 7)) (** (($ $ $) 8))) -(((-285) (-140)) (T -285)) -((** (*1 *1 *1 *1) (-4 *1 (-285))) (-4375 (*1 *1 *1) (-4 *1 (-285))) (-4374 (*1 *1 *1) (-4 *1 (-285)))) -(-13 (-10 -8 (-15 -4374 ($ $)) (-15 -4375 ($ $)) (-15 ** ($ $ $)))) -((-1683 (((-643 (-1157 |#1|)) (-1157 |#1|) |#1|) 35)) (-1680 ((|#2| |#2| |#1|) 39)) (-1682 ((|#2| |#2| |#1|) 41)) (-1681 ((|#2| |#2| |#1|) 40))) -(((-286 |#1| |#2|) (-10 -7 (-15 -1680 (|#2| |#2| |#1|)) (-15 -1681 (|#2| |#2| |#1|)) (-15 -1682 (|#2| |#2| |#1|)) (-15 -1683 ((-643 (-1157 |#1|)) (-1157 |#1|) |#1|))) (-365) (-1262 |#1|)) (T -286)) -((-1683 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-643 (-1157 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1157 *4)) (-4 *5 (-1262 *4)))) (-1682 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3)))) (-1681 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3)))) (-1680 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -1680 (|#2| |#2| |#1|)) (-15 -1681 (|#2| |#2| |#1|)) (-15 -1682 (|#2| |#2| |#1|)) (-15 -1683 ((-643 (-1157 |#1|)) (-1157 |#1|) |#1|))) -((-4231 ((|#2| $ |#1|) 6))) -(((-287 |#1| |#2|) (-140) (-1104) (-1219)) (T -287)) -((-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -4231 (|t#2| $ |t#1|)))) -((-1684 ((|#3| $ |#2| |#3|) 12)) (-3517 ((|#3| $ |#2|) 10))) -(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -1684 (|#3| |#1| |#2| |#3|)) (-15 -3517 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1104) (-1219)) (T -288)) -NIL -(-10 -8 (-15 -1684 (|#3| |#1| |#2| |#3|)) (-15 -3517 (|#3| |#1| |#2|))) -((-4219 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4426)))) (-1684 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 11)) (-4231 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-289 |#1| |#2|) (-140) (-1104) (-1219)) (T -289)) -((-4231 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-3517 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-1684 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219))))) -(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -4231 (|t#2| $ |t#1| |t#2|)) (-15 -3517 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4219 (|t#2| $ |t#1| |t#2|)) (-15 -1684 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-287 |#1| |#2|) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 37)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 44)) (-2241 (($ $) 41)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) 35)) (-4274 (($ |#2| |#3|) 18)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 ((|#3| $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 19)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2565 (((-3 $ "failed") $ $) NIL)) (-1752 (((-773) $) 36)) (-4231 ((|#2| $ |#2|) 46)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 23)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 31 T CONST)) (-3067 (($) 39 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 40))) -(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -3014 (|#3| $)) (-15 -4378 (|#2| $)) (-15 -4274 ($ |#2| |#3|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)) (-15 -4231 (|#2| $ |#2|)))) (-172) (-1245 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) -((-3890 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3014 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4378 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4274 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1245 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2565 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2806 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4231 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1245 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) -(-13 (-308) (-10 -8 (-15 -3014 (|#3| $)) (-15 -4378 (|#2| $)) (-15 -4274 ($ |#2| |#3|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)) (-15 -4231 (|#2| $ |#2|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-291) (-140)) (T -291)) -NIL -(-13 (-1052) (-111 $ $) (-10 -7 (-6 -4418))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-1690 (($ (-509) (-509) (-1106) $) 19)) (-1688 (($ (-509) (-643 (-968)) $) 23)) (-1692 (((-643 (-1088)) $) 10)) (-1686 (($) 25)) (-1691 (((-693 (-1106)) (-509) (-509) $) 18)) (-1689 (((-643 (-968)) (-509) $) 22)) (-3996 (($) 7)) (-1687 (($) 24)) (-4378 (((-865) $) 29)) (-1685 (($) 26))) -(((-292) (-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -1692 ((-643 (-1088)) $)) (-15 -1691 ((-693 (-1106)) (-509) (-509) $)) (-15 -1690 ($ (-509) (-509) (-1106) $)) (-15 -1689 ((-643 (-968)) (-509) $)) (-15 -1688 ($ (-509) (-643 (-968)) $)) (-15 -1687 ($)) (-15 -1686 ($)) (-15 -1685 ($))))) (T -292)) -((-3996 (*1 *1) (-5 *1 (-292))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-643 (-1088))) (-5 *1 (-292)))) (-1691 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-1106))) (-5 *1 (-292)))) (-1690 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))) (-1689 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-643 (-968))) (-5 *1 (-292)))) (-1688 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-292)))) (-1687 (*1 *1) (-5 *1 (-292))) (-1686 (*1 *1) (-5 *1 (-292))) (-1685 (*1 *1) (-5 *1 (-292)))) -(-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -1692 ((-643 (-1088)) $)) (-15 -1691 ((-693 (-1106)) (-509) (-509) $)) (-15 -1690 ($ (-509) (-509) (-1106) $)) (-15 -1689 ((-643 (-968)) (-509) $)) (-15 -1688 ($ (-509) (-643 (-968)) $)) (-15 -1687 ($)) (-15 -1686 ($)) (-15 -1685 ($)))) -((-1696 (((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))) 104)) (-1695 (((-643 (-691 (-410 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|)))))) (-691 (-410 (-949 |#1|)))) 99) (((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))) (-773) (-773)) 41)) (-1697 (((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))) 101)) (-1694 (((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|)))) 77)) (-1693 (((-643 (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (-691 (-410 (-949 |#1|)))) 76)) (-2770 (((-949 |#1|) (-691 (-410 (-949 |#1|)))) 57) (((-949 |#1|) (-691 (-410 (-949 |#1|))) (-1180)) 58))) -(((-293 |#1|) (-10 -7 (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))) (-1180))) (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))))) (-15 -1693 ((-643 (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (-691 (-410 (-949 |#1|))))) (-15 -1694 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))) (-773) (-773))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|)))))) (-691 (-410 (-949 |#1|))))) (-15 -1696 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|))))) (-15 -1697 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))))) (-455)) (T -293)) -((-1697 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-643 (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4)))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-643 (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4)))))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 *4)))) (-4 *5 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-691 (-410 (-949 *5)))))) (-1695 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-949 *6)) (-1169 (-1180) (-949 *6)))) (-5 *5 (-773)) (-4 *6 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-691 (-410 (-949 *6)))))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) (-4 *5 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-691 (-410 (-949 *5)))))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-4 *4 (-455)) (-5 *2 (-643 (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4))))) (-5 *1 (-293 *4)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-949 *5)))) (-5 *4 (-1180)) (-5 *2 (-949 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))) -(-10 -7 (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))) (-1180))) (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))))) (-15 -1693 ((-643 (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (-691 (-410 (-949 |#1|))))) (-15 -1694 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))) (-773) (-773))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|)))))) (-691 (-410 (-949 |#1|))))) (-15 -1696 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|))))) (-15 -1697 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3608 (((-112) $) NIL (|has| |#1| (-21)))) (-1703 (($ $) 12)) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1712 (($ $ $) 95 (|has| |#1| (-299)))) (-4156 (($) NIL (-3960 (|has| |#1| (-21)) (|has| |#1| (-728))) CONST)) (-1701 (($ $) 51 (|has| |#1| (-21)))) (-1699 (((-3 $ "failed") $) 62 (|has| |#1| (-728)))) (-3951 ((|#1| $) 11)) (-3890 (((-3 $ "failed") $) 60 (|has| |#1| (-728)))) (-2573 (((-112) $) NIL (|has| |#1| (-728)))) (-4390 (($ (-1 |#1| |#1|) $) 14)) (-3952 ((|#1| $) 10)) (-1702 (($ $) 50 (|has| |#1| (-21)))) (-1700 (((-3 $ "failed") $) 61 (|has| |#1| (-728)))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2806 (($ $) 64 (-3960 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1698 (((-643 $) $) 85 (|has| |#1| (-560)))) (-4199 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-1180) |#1|) 17 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 21 (|has| |#1| (-517 (-1180) |#1|)))) (-3646 (($ |#1| |#1|) 9)) (-4343 (((-134)) 90 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 87 (|has| |#1| (-903 (-1180))))) (-3410 (($ $ $) NIL (|has| |#1| (-476)))) (-2756 (($ $ $) NIL (|has| |#1| (-476)))) (-4378 (($ (-549)) NIL (|has| |#1| (-1052))) (((-112) $) 37 (|has| |#1| (-1104))) (((-865) $) 36 (|has| |#1| (-1104)))) (-3530 (((-773)) 67 (|has| |#1| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3510 (($) 47 (|has| |#1| (-21)) CONST)) (-3067 (($) 57 (|has| |#1| (-728)) CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180))))) (-3455 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-3960 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-4269 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4271 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-549)) NIL (|has| |#1| (-476))) (($ $ (-773)) NIL (|has| |#1| (-728))) (($ $ (-922)) NIL (|has| |#1| (-1115)))) (* (($ $ |#1|) 55 (|has| |#1| (-1115))) (($ |#1| $) 54 (|has| |#1| (-1115))) (($ $ $) 53 (|has| |#1| (-1115))) (($ (-549) $) 70 (|has| |#1| (-21))) (($ (-773) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-25))))) -(((-294 |#1|) (-13 (-1219) (-10 -8 (-15 -3455 ($ |#1| |#1|)) (-15 -3646 ($ |#1| |#1|)) (-15 -1703 ($ $)) (-15 -3952 (|#1| $)) (-15 -3951 (|#1| $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1180) |#1|)) (-6 (-517 (-1180) |#1|)) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-6 (-615 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -4199 ($ $ $)) (-15 -4199 ($ $ (-643 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4271 ($ |#1| $)) (-15 -4271 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1702 ($ $)) (-15 -1701 ($ $)) (-15 -4269 ($ |#1| $)) (-15 -4269 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-728)) (PROGN (-6 (-728)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|) (IF (|has| |#1| (-560)) (-15 -1698 ((-643 $) $)) |%noBranch|) (IF (|has| |#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1277 |#1|)) (-15 -4381 ($ $ $)) (-15 -2806 ($ $))) |%noBranch|) (IF (|has| |#1| (-299)) (-15 -1712 ($ $ $)) |%noBranch|))) (-1219)) (T -294)) -((-3455 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-3646 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-1703 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-3952 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-3951 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-294 *3)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)) (-5 *1 (-294 *2)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1104)) (-4 *3 (-1219)) (-5 *1 (-294 *3)))) (-4271 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-4271 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-1702 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-4269 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-1700 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219)))) (-1699 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-643 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-560)) (-4 *3 (-1219)))) (-1712 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-299)) (-4 *2 (-1219)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) (-4381 (*1 *1 *1 *1) (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) (-2806 (*1 *1 *1) (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219)))))) -(-13 (-1219) (-10 -8 (-15 -3455 ($ |#1| |#1|)) (-15 -3646 ($ |#1| |#1|)) (-15 -1703 ($ $)) (-15 -3952 (|#1| $)) (-15 -3951 (|#1| $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1180) |#1|)) (-6 (-517 (-1180) |#1|)) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-6 (-615 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -4199 ($ $ $)) (-15 -4199 ($ $ (-643 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4271 ($ |#1| $)) (-15 -4271 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1702 ($ $)) (-15 -1701 ($ $)) (-15 -4269 ($ |#1| $)) (-15 -4269 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-728)) (PROGN (-6 (-728)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|) (IF (|has| |#1| (-560)) (-15 -1698 ((-643 $) $)) |%noBranch|) (IF (|has| |#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1277 |#1|)) (-15 -4381 ($ $ $)) (-15 -2806 ($ $))) |%noBranch|) (IF (|has| |#1| (-299)) (-15 -1712 ($ $ $)) |%noBranch|))) -((-4390 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) -(((-295 |#1| |#2|) (-10 -7 (-15 -4390 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1219) (-1219)) (T -295)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-294 *6)) (-5 *1 (-295 *5 *6))))) -(-10 -7 (-15 -4390 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-296 |#1| |#2|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104)) (T -296)) -NIL -(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) -((-1704 (((-312) (-1162) (-643 (-1162))) 17) (((-312) (-1162) (-1162)) 16) (((-312) (-643 (-1162))) 15) (((-312) (-1162)) 14))) -(((-297) (-10 -7 (-15 -1704 ((-312) (-1162))) (-15 -1704 ((-312) (-643 (-1162)))) (-15 -1704 ((-312) (-1162) (-1162))) (-15 -1704 ((-312) (-1162) (-643 (-1162)))))) (T -297)) -((-1704 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1162))) (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) (-1704 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-312)) (-5 *1 (-297)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297))))) -(-10 -7 (-15 -1704 ((-312) (-1162))) (-15 -1704 ((-312) (-643 (-1162)))) (-15 -1704 ((-312) (-1162) (-1162))) (-15 -1704 ((-312) (-1162) (-643 (-1162))))) -((-1708 (((-643 (-613 $)) $) 27)) (-1712 (($ $ (-294 $)) 78) (($ $ (-643 (-294 $))) 139) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-3577 (((-3 (-613 $) "failed") $) 127)) (-3576 (((-613 $) $) 126)) (-2973 (($ $) 17) (($ (-643 $)) 54)) (-1707 (((-643 (-113)) $) 35)) (-3448 (((-113) (-113)) 88)) (-3076 (((-112) $) 150)) (-4390 (($ (-1 $ $) (-613 $)) 86)) (-1710 (((-3 (-613 $) "failed") $) 94)) (-2384 (($ (-113) $) 59) (($ (-113) (-643 $)) 110)) (-3035 (((-112) $ (-113)) 132) (((-112) $ (-1180)) 131)) (-3003 (((-773) $) 44)) (-1706 (((-112) $ $) 57) (((-112) $ (-1180)) 49)) (-3077 (((-112) $) 148)) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) 137) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 81) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) 67) (($ $ (-1180) (-1 $ $)) 72) (($ $ (-643 (-113)) (-643 (-1 $ $))) 80) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 82) (($ $ (-113) (-1 $ (-643 $))) 68) (($ $ (-113) (-1 $ $)) 74)) (-4231 (($ (-113) $) 60) (($ (-113) $ $) 61) (($ (-113) $ $ $) 62) (($ (-113) $ $ $ $) 63) (($ (-113) (-643 $)) 123)) (-1711 (($ $) 51) (($ $ $) 135)) (-2990 (($ $) 15) (($ (-643 $)) 53)) (-2403 (((-112) (-113)) 21))) -(((-298 |#1|) (-10 -8 (-15 -3076 ((-112) |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -1706 ((-112) |#1| (-1180))) (-15 -1706 ((-112) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -2384 (|#1| (-113) (-643 |#1|))) (-15 -2384 (|#1| (-113) |#1|)) (-15 -3035 ((-112) |#1| (-1180))) (-15 -3035 ((-112) |#1| (-113))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1707 ((-643 (-113)) |#1|)) (-15 -1708 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3003 ((-773) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2973 (|#1| (-643 |#1|))) (-15 -2973 (|#1| |#1|)) (-15 -2990 (|#1| (-643 |#1|))) (-15 -2990 (|#1| |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3577 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3576 ((-613 |#1|) |#1|))) (-299)) (T -298)) -((-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-298 *3)) (-4 *3 (-299)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-298 *4)) (-4 *4 (-299))))) -(-10 -8 (-15 -3076 ((-112) |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -1706 ((-112) |#1| (-1180))) (-15 -1706 ((-112) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -2384 (|#1| (-113) (-643 |#1|))) (-15 -2384 (|#1| (-113) |#1|)) (-15 -3035 ((-112) |#1| (-1180))) (-15 -3035 ((-112) |#1| (-113))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1707 ((-643 (-113)) |#1|)) (-15 -1708 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3003 ((-773) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2973 (|#1| (-643 |#1|))) (-15 -2973 (|#1| |#1|)) (-15 -2990 (|#1| (-643 |#1|))) (-15 -2990 (|#1| |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3577 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3576 ((-613 |#1|) |#1|))) -((-2968 (((-112) $ $) 7)) (-1708 (((-643 (-613 $)) $) 39)) (-1712 (($ $ (-294 $)) 51) (($ $ (-643 (-294 $))) 50) (($ $ (-643 (-613 $)) (-643 $)) 49)) (-3577 (((-3 (-613 $) "failed") $) 64)) (-3576 (((-613 $) $) 65)) (-2973 (($ $) 46) (($ (-643 $)) 45)) (-1707 (((-643 (-113)) $) 38)) (-3448 (((-113) (-113)) 37)) (-3076 (((-112) $) 17 (|has| $ (-1041 (-549))))) (-1705 (((-1174 $) (-613 $)) 20 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 31)) (-1710 (((-3 (-613 $) "failed") $) 41)) (-3663 (((-1162) $) 10)) (-1709 (((-643 (-613 $)) $) 40)) (-2384 (($ (-113) $) 33) (($ (-113) (-643 $)) 32)) (-3035 (((-112) $ (-113)) 35) (((-112) $ (-1180)) 34)) (-3003 (((-773) $) 42)) (-3664 (((-1123) $) 11)) (-1706 (((-112) $ $) 30) (((-112) $ (-1180)) 29)) (-3077 (((-112) $) 18 (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) 62) (($ $ (-643 (-613 $)) (-643 $)) 61) (($ $ (-643 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-643 $) (-643 $)) 57) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 28) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 27) (($ $ (-1180) (-1 $ (-643 $))) 26) (($ $ (-1180) (-1 $ $)) 25) (($ $ (-643 (-113)) (-643 (-1 $ $))) 24) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 23) (($ $ (-113) (-1 $ (-643 $))) 22) (($ $ (-113) (-1 $ $)) 21)) (-4231 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-643 $)) 52)) (-1711 (($ $) 44) (($ $ $) 43)) (-3605 (($ $) 19 (|has| $ (-1052)))) (-4378 (((-865) $) 12) (($ (-613 $)) 63)) (-2990 (($ $) 48) (($ (-643 $)) 47)) (-2403 (((-112) (-113)) 36)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-299) (-140)) (T -299)) -((-4231 (*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-299)))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *1))) (-4 *1 (-299)))) (-1712 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-613 *1))) (-5 *3 (-643 *1)) (-4 *1 (-299)))) (-2990 (*1 *1 *1) (-4 *1 (-299))) (-2990 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) (-2973 (*1 *1 *1) (-4 *1 (-299))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) (-1711 (*1 *1 *1) (-4 *1 (-299))) (-1711 (*1 *1 *1 *1) (-4 *1 (-299))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-773)))) (-1710 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-299)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-643 (-113))))) (-3448 (*1 *2 *2) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-2403 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) (-2384 (*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-2384 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) (-4390 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-299)))) (-1706 (*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112)))) (-1706 (*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1052)) (-4 *1 (-299)) (-5 *2 (-1174 *1)))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-1052)) (-4 *1 (-299)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112))))) -(-13 (-1104) (-1041 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -4231 ($ (-113) $)) (-15 -4231 ($ (-113) $ $)) (-15 -4231 ($ (-113) $ $ $)) (-15 -4231 ($ (-113) $ $ $ $)) (-15 -4231 ($ (-113) (-643 $))) (-15 -1712 ($ $ (-294 $))) (-15 -1712 ($ $ (-643 (-294 $)))) (-15 -1712 ($ $ (-643 (-613 $)) (-643 $))) (-15 -2990 ($ $)) (-15 -2990 ($ (-643 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-643 $))) (-15 -1711 ($ $)) (-15 -1711 ($ $ $)) (-15 -3003 ((-773) $)) (-15 -1710 ((-3 (-613 $) "failed") $)) (-15 -1709 ((-643 (-613 $)) $)) (-15 -1708 ((-643 (-613 $)) $)) (-15 -1707 ((-643 (-113)) $)) (-15 -3448 ((-113) (-113))) (-15 -2403 ((-112) (-113))) (-15 -3035 ((-112) $ (-113))) (-15 -3035 ((-112) $ (-1180))) (-15 -2384 ($ (-113) $)) (-15 -2384 ($ (-113) (-643 $))) (-15 -4390 ($ (-1 $ $) (-613 $))) (-15 -1706 ((-112) $ $)) (-15 -1706 ((-112) $ (-1180))) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-1 $ $)))) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-1 $ (-643 $))))) (-15 -4199 ($ $ (-1180) (-1 $ (-643 $)))) (-15 -4199 ($ $ (-1180) (-1 $ $))) (-15 -4199 ($ $ (-643 (-113)) (-643 (-1 $ $)))) (-15 -4199 ($ $ (-643 (-113)) (-643 (-1 $ (-643 $))))) (-15 -4199 ($ $ (-113) (-1 $ (-643 $)))) (-15 -4199 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1052)) (PROGN (-15 -1705 ((-1174 $) (-613 $))) (-15 -3605 ($ $))) |%noBranch|) (IF (|has| $ (-1041 (-549))) (PROGN (-15 -3077 ((-112) $)) (-15 -3076 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-618 #1=(-613 $)) . T) ((-615 (-865)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1041 #1#) . T) ((-1104) . T)) -((-4390 ((|#2| (-1 |#2| |#1|) (-1162) (-613 |#1|)) 18))) -(((-300 |#1| |#2|) (-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-1162) (-613 |#1|)))) (-299) (-1219)) (T -300)) -((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1162)) (-5 *5 (-613 *6)) (-4 *6 (-299)) (-4 *2 (-1219)) (-5 *1 (-300 *6 *2))))) -(-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-1162) (-613 |#1|)))) -((-4390 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17))) -(((-301 |#1| |#2|) (-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-299) (-299)) (T -301)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-299)) (-4 *2 (-299)) (-5 *1 (-301 *5 *2))))) -(-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) -((-1715 (((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225)))) 118)) (-1716 (((-1157 (-225)) (-1269 (-315 (-225))) (-643 (-1180)) (-1092 (-844 (-225)))) 135) (((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225)))) 72)) (-1737 (((-643 (-1162)) (-1157 (-225))) NIL)) (-1714 (((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225)))) 69)) (-1717 (((-643 (-225)) (-949 (-410 (-549))) (-1180) (-1092 (-844 (-225)))) 59)) (-1736 (((-643 (-1162)) (-643 (-225))) NIL)) (-1738 (((-225) (-1092 (-844 (-225)))) 29)) (-1739 (((-225) (-1092 (-844 (-225)))) 30)) (-1713 (((-112) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1734 (((-1162) (-225)) NIL))) -(((-302) (-10 -7 (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1713 ((-112) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1715 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-1269 (-315 (-225))) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1717 ((-643 (-225)) (-949 (-410 (-549))) (-1180) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))))) (T -302)) -((-1737 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-302)))) (-1717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-302)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) (-1715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) (-1714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-302)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-302)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302))))) -(-10 -7 (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1713 ((-112) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1715 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-1269 (-315 (-225))) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1717 ((-643 (-225)) (-949 (-410 (-549))) (-1180) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225))))) -((-2155 (((-112) (-225)) 12))) -(((-303 |#1| |#2|) (-10 -7 (-15 -2155 ((-112) (-225)))) (-225) (-225)) (T -303)) -((-2155 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2155 ((-112) (-225)))) -((-1733 (((-1269 (-315 (-380))) (-1269 (-315 (-225)))) 112)) (-1721 (((-1092 (-844 (-225))) (-1092 (-844 (-380)))) 45)) (-1737 (((-643 (-1162)) (-1157 (-225))) 94)) (-1744 (((-315 (-380)) (-949 (-225))) 55)) (-1745 (((-225) (-949 (-225))) 51)) (-1740 (((-1162) (-380)) 197)) (-1720 (((-844 (-225)) (-844 (-380))) 39)) (-1726 (((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1269 (-315 (-225)))) 165)) (-1741 (((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) 209) (((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) 207)) (-1748 (((-691 (-225)) (-643 (-225)) (-773)) 21)) (-1731 (((-1269 (-701)) (-643 (-225))) 101)) (-1736 (((-643 (-1162)) (-643 (-225))) 81)) (-3060 (((-3 (-315 (-225)) "failed") (-315 (-225))) 130)) (-2155 (((-112) (-225) (-1092 (-844 (-225)))) 119)) (-1743 (((-1038) (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))) 226)) (-1738 (((-225) (-1092 (-844 (-225)))) 114)) (-1739 (((-225) (-1092 (-844 (-225)))) 115)) (-1747 (((-225) (-410 (-549))) 33)) (-1735 (((-1162) (-380)) 79)) (-1718 (((-225) (-380)) 24)) (-1725 (((-380) (-1269 (-315 (-225)))) 179)) (-1719 (((-315 (-225)) (-315 (-380))) 30)) (-1723 (((-410 (-549)) (-315 (-225))) 58)) (-1727 (((-315 (-410 (-549))) (-315 (-225))) 75)) (-1732 (((-315 (-380)) (-315 (-225))) 105)) (-1724 (((-225) (-315 (-225))) 59)) (-1729 (((-643 (-225)) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) 70)) (-1728 (((-1092 (-844 (-225))) (-1092 (-844 (-225)))) 67)) (-1734 (((-1162) (-225)) 78)) (-1730 (((-701) (-225)) 97)) (-1722 (((-410 (-549)) (-225)) 60)) (-1746 (((-315 (-380)) (-225)) 54)) (-4402 (((-643 (-1092 (-844 (-225)))) (-643 (-1092 (-844 (-380))))) 48)) (-4233 (((-1038) (-643 (-1038))) 193) (((-1038) (-1038) (-1038)) 187)) (-1742 (((-1038) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) -(((-304) (-10 -7 (-15 -1718 ((-225) (-380))) (-15 -1719 ((-315 (-225)) (-315 (-380)))) (-15 -1720 ((-844 (-225)) (-844 (-380)))) (-15 -1721 ((-1092 (-844 (-225))) (-1092 (-844 (-380))))) (-15 -4402 ((-643 (-1092 (-844 (-225)))) (-643 (-1092 (-844 (-380)))))) (-15 -1722 ((-410 (-549)) (-225))) (-15 -1723 ((-410 (-549)) (-315 (-225)))) (-15 -1724 ((-225) (-315 (-225)))) (-15 -3060 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1725 ((-380) (-1269 (-315 (-225))))) (-15 -1726 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1269 (-315 (-225))))) (-15 -1727 ((-315 (-410 (-549))) (-315 (-225)))) (-15 -1728 ((-1092 (-844 (-225))) (-1092 (-844 (-225))))) (-15 -1729 ((-643 (-225)) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-15 -1730 ((-701) (-225))) (-15 -1731 ((-1269 (-701)) (-643 (-225)))) (-15 -1732 ((-315 (-380)) (-315 (-225)))) (-15 -1733 ((-1269 (-315 (-380))) (-1269 (-315 (-225))))) (-15 -2155 ((-112) (-225) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1735 ((-1162) (-380))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -4233 ((-1038) (-1038) (-1038))) (-15 -4233 ((-1038) (-643 (-1038)))) (-15 -1740 ((-1162) (-380))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))))) (-15 -1742 ((-1038) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1743 ((-1038) (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))) (-15 -1744 ((-315 (-380)) (-949 (-225)))) (-15 -1745 ((-225) (-949 (-225)))) (-15 -1746 ((-315 (-380)) (-225))) (-15 -1747 ((-225) (-410 (-549)))) (-15 -1748 ((-691 (-225)) (-643 (-225)) (-773))))) (T -304)) -((-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-225))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) (-5 *1 (-304)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-410 (-549))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-315 (-380))) (-5 *1 (-304)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-643 (-1038))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-4233 (*1 *2 *2 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-304)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-304)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-304)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-1269 (-315 (-380)))) (-5 *1 (-304)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1269 (-701))) (-5 *1 (-304)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-701)) (-5 *1 (-304)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *2 (-643 (-225))) (-5 *1 (-304)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-1092 (-844 (-225)))) (-5 *1 (-304)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-410 (-549)))) (-5 *1 (-304)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549)))) (-5 *1 (-304)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-304)))) (-3060 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-304)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-410 (-549))) (-5 *1 (-304)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-549))) (-5 *1 (-304)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-643 (-1092 (-844 (-380))))) (-5 *2 (-643 (-1092 (-844 (-225))))) (-5 *1 (-304)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-380)))) (-5 *2 (-1092 (-844 (-225)))) (-5 *1 (-304)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-844 (-380))) (-5 *2 (-844 (-225))) (-5 *1 (-304)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-315 (-380))) (-5 *2 (-315 (-225))) (-5 *1 (-304)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-304))))) -(-10 -7 (-15 -1718 ((-225) (-380))) (-15 -1719 ((-315 (-225)) (-315 (-380)))) (-15 -1720 ((-844 (-225)) (-844 (-380)))) (-15 -1721 ((-1092 (-844 (-225))) (-1092 (-844 (-380))))) (-15 -4402 ((-643 (-1092 (-844 (-225)))) (-643 (-1092 (-844 (-380)))))) (-15 -1722 ((-410 (-549)) (-225))) (-15 -1723 ((-410 (-549)) (-315 (-225)))) (-15 -1724 ((-225) (-315 (-225)))) (-15 -3060 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1725 ((-380) (-1269 (-315 (-225))))) (-15 -1726 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1269 (-315 (-225))))) (-15 -1727 ((-315 (-410 (-549))) (-315 (-225)))) (-15 -1728 ((-1092 (-844 (-225))) (-1092 (-844 (-225))))) (-15 -1729 ((-643 (-225)) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-15 -1730 ((-701) (-225))) (-15 -1731 ((-1269 (-701)) (-643 (-225)))) (-15 -1732 ((-315 (-380)) (-315 (-225)))) (-15 -1733 ((-1269 (-315 (-380))) (-1269 (-315 (-225))))) (-15 -2155 ((-112) (-225) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1735 ((-1162) (-380))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -4233 ((-1038) (-1038) (-1038))) (-15 -4233 ((-1038) (-643 (-1038)))) (-15 -1740 ((-1162) (-380))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))))) (-15 -1742 ((-1038) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1743 ((-1038) (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))) (-15 -1744 ((-315 (-380)) (-949 (-225)))) (-15 -1745 ((-225) (-949 (-225)))) (-15 -1746 ((-315 (-380)) (-225))) (-15 -1747 ((-225) (-410 (-549)))) (-15 -1748 ((-691 (-225)) (-643 (-225)) (-773)))) -((-1749 (((-643 |#1|) (-643 |#1|)) 10))) -(((-305 |#1|) (-10 -7 (-15 -1749 ((-643 |#1|) (-643 |#1|)))) (-850)) (T -305)) -((-1749 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-850)) (-5 *1 (-305 *3))))) -(-10 -7 (-15 -1749 ((-643 |#1|) (-643 |#1|)))) -((-4390 (((-691 |#2|) (-1 |#2| |#1|) (-691 |#1|)) 17))) -(((-306 |#1| |#2|) (-10 -7 (-15 -4390 ((-691 |#2|) (-1 |#2| |#1|) (-691 |#1|)))) (-1052) (-1052)) (T -306)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-691 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-691 *6)) (-5 *1 (-306 *5 *6))))) -(-10 -7 (-15 -4390 ((-691 |#2|) (-1 |#2| |#1|) (-691 |#1|)))) -((-1753 (((-112) $ $) 14)) (-2964 (($ $ $) 18)) (-2963 (($ $ $) 17)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 50)) (-1750 (((-3 (-643 $) "failed") (-643 $) $) 65)) (-3564 (($ $ $) 25) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3889 (((-3 $ "failed") $ $) 21)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 53))) -(((-307 |#1|) (-10 -8 (-15 -1750 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -1751 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1751 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -1753 ((-112) |#1| |#1|)) (-15 -3143 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -3144 ((-2 (|:| -4386 (-643 |#1|)) (|:| -2572 |#1|)) (-643 |#1|))) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) -NIL -(-10 -8 (-15 -1750 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -1751 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1751 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -1753 ((-112) |#1| |#1|)) (-15 -3143 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -3144 ((-2 (|:| -4386 (-643 |#1|)) (|:| -2572 |#1|)) (-643 |#1|))) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) "failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-308) (-140)) (T -308)) -((-1753 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-773)))) (-3282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-308)))) (-2963 (*1 *1 *1 *1) (-4 *1 (-308))) (-2964 (*1 *1 *1 *1) (-4 *1 (-308))) (-1751 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) (-4 *1 (-308)))) (-1751 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1750 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-308))))) -(-13 (-924) (-10 -8 (-15 -1753 ((-112) $ $)) (-15 -1752 ((-773) $)) (-15 -3282 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2963 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -1751 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $)) (-15 -1751 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1750 ((-3 (-643 $) "failed") (-643 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-4199 (($ $ (-643 |#2|) (-643 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-643 (-294 |#2|))) NIL))) -(((-309 |#1| |#2|) (-10 -8 (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|)))) (-310 |#2|) (-1104)) (T -309)) -NIL -(-10 -8 (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|)))) -((-4199 (($ $ (-643 |#1|) (-643 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-643 (-294 |#1|))) 10))) -(((-310 |#1|) (-140) (-1104)) (T -310)) -((-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1104)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1104))))) -(-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -4199 ($ $ (-294 |t#1|))) (-15 -4199 ($ $ (-643 (-294 |t#1|)))))) -(((-517 |#1| |#1|) . T)) -((-4199 ((|#1| (-1 |#1| (-549)) (-1182 (-410 (-549)))) 25))) -(((-311 |#1|) (-10 -7 (-15 -4199 (|#1| (-1 |#1| (-549)) (-1182 (-410 (-549)))))) (-38 (-410 (-549)))) (T -311)) -((-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1182 (-410 (-549)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-549))))))) -(-10 -7 (-15 -4199 (|#1| (-1 |#1| (-549)) (-1182 (-410 (-549)))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 7)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) -(((-312) (-1104)) (T -312)) -NIL -(-1104) -((-2968 (((-112) $ $) NIL)) (-3929 (((-549) $) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 9)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-313) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3929 ((-549) $))))) (T -313)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-313)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-313))))) -(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3929 ((-549) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 60)) (-3533 (((-1256 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1256 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-3 (-1250 |#2| |#3| |#4|) #2#) $) 26)) (-3576 (((-1256 |#1| |#2| |#3| |#4|) $) NIL) (((-1180) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-549) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-1250 |#2| |#3| |#4|) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-1256 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1269 (-1256 |#1| |#2| |#3| |#4|)))) (-691 $) (-1269 $)) NIL) (((-691 (-1256 |#1| |#2| |#3| |#4|)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-1256 |#1| |#2| |#3| |#4|) $) 22)) (-3868 (((-3 $ "failed") $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1154)))) (-3607 (((-112) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-3260 (($ $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-4390 (($ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) $) NIL)) (-4215 (((-3 (-844 |#2|) "failed") $) 80)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-308)))) (-3534 (((-1256 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-1256 |#1| |#2| |#3| |#4|)) (-643 (-1256 |#1| |#2| |#3| |#4|))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1256 |#1| |#2| |#3| |#4|))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-643 (-294 (-1256 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-643 (-1180)) (-643 (-1256 |#1| |#2| |#3| |#4|))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-517 (-1180) (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-1180) (-1256 |#1| |#2| |#3| |#4|)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-517 (-1180) (-1256 |#1| |#2| |#3| |#4|))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-1256 |#1| |#2| |#3| |#4|)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-287 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1180)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) (-773)) NIL) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-1256 |#1| |#2| |#3| |#4|) $) 19)) (-4402 (((-893 (-549)) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-616 (-538)))) (((-380) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1023))) (((-225) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3| |#4|) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-1256 |#1| |#2| |#3| |#4|)) 30) (($ (-1180)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-1180)))) (($ (-1250 |#2| |#3| |#4|)) 37)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3| |#4|) (-913))) (|has| (-1256 |#1| |#2| |#3| |#4|) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-1256 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1180)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) (-773)) NIL) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-4381 (($ $ $) 35) (($ (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) 32)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-1256 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1256 |#1| |#2| |#3| |#4|)) NIL))) -(((-314 |#1| |#2| |#3| |#4|) (-13 (-994 (-1256 |#1| |#2| |#3| |#4|)) (-1041 (-1250 |#2| |#3| |#4|)) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4378 ($ (-1250 |#2| |#3| |#4|))))) (-13 (-1041 (-549)) (-641 (-549)) (-455)) (-13 (-27) (-1205) (-424 |#1|)) (-1180) |#2|) (T -314)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1250 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4) (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-4215 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4)))) -(-13 (-994 (-1256 |#1| |#2| |#3| |#4|)) (-1041 (-1250 |#2| |#3| |#4|)) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4378 ($ (-1250 |#2| |#3| |#4|))))) -((-2968 (((-112) $ $) NIL)) (-1715 (((-643 $) $ (-1180)) NIL (|has| |#1| (-560))) (((-643 $) $) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $) (-1180)) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $)) NIL (|has| |#1| (-560))) (((-643 $) (-949 $)) NIL (|has| |#1| (-560)))) (-1303 (($ $ (-1180)) NIL (|has| |#1| (-560))) (($ $) NIL (|has| |#1| (-560))) (($ (-1174 $) (-1180)) NIL (|has| |#1| (-560))) (($ (-1174 $)) NIL (|has| |#1| (-560))) (($ (-949 $)) NIL (|has| |#1| (-560)))) (-3608 (((-112) $) 27 (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-3485 (((-643 (-1180)) $) 368)) (-3487 (((-410 (-1174 $)) $ (-613 $)) NIL (|has| |#1| (-560)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1708 (((-643 (-613 $)) $) NIL)) (-3915 (($ $) 171 (|has| |#1| (-560)))) (-4071 (($ $) 147 (|has| |#1| (-560)))) (-1459 (($ $ (-1095 $)) 232 (|has| |#1| (-560))) (($ $ (-1180)) 228 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) 386) (($ $ (-643 (-613 $)) (-643 $)) 430)) (-3110 (((-408 (-1174 $)) (-1174 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-560))))) (-4206 (($ $) NIL (|has| |#1| (-560)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-560)))) (-3438 (($ $) NIL (|has| |#1| (-560)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3913 (($ $) 167 (|has| |#1| (-560)))) (-4070 (($ $) 143 (|has| |#1| (-560)))) (-1754 (($ $ (-549)) 73 (|has| |#1| (-560)))) (-3917 (($ $) 175 (|has| |#1| (-560)))) (-4069 (($ $) 151 (|has| |#1| (-560)))) (-4156 (($) NIL (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))) CONST)) (-1304 (((-643 $) $ (-1180)) NIL (|has| |#1| (-560))) (((-643 $) $) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $) (-1180)) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $)) NIL (|has| |#1| (-560))) (((-643 $) (-949 $)) NIL (|has| |#1| (-560)))) (-3603 (($ $ (-1180)) NIL (|has| |#1| (-560))) (($ $) NIL (|has| |#1| (-560))) (($ (-1174 $) (-1180)) 134 (|has| |#1| (-560))) (($ (-1174 $)) NIL (|has| |#1| (-560))) (($ (-949 $)) NIL (|has| |#1| (-560)))) (-3577 (((-3 (-613 $) #1="failed") $) 18) (((-3 (-1180) #1#) $) NIL) (((-3 |#1| #1#) $) 441) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) (((-3 (-549) #1#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-949 |#1|)) #1#) $) NIL (|has| |#1| (-560))) (((-3 (-949 |#1|) #1#) $) NIL (|has| |#1| (-1052))) (((-3 (-410 (-549)) #1#) $) 46 (-3960 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 (((-613 $) $) 12) (((-1180) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-949 |#1|)) $) NIL (|has| |#1| (-560))) (((-949 |#1|) $) NIL (|has| |#1| (-1052))) (((-410 (-549)) $) 319 (-3960 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-2964 (($ $ $) NIL (|has| |#1| (-560)))) (-2427 (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 125 (|has| |#1| (-1052))) (((-691 |#1|) (-691 $)) 115 (|has| |#1| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (-4274 (($ $) 96 (|has| |#1| (-560)))) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))))) (-2963 (($ $ $) NIL (|has| |#1| (-560)))) (-4376 (($ $ (-1095 $)) 236 (|has| |#1| (-560))) (($ $ (-1180)) 234 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-560)))) (-4155 (((-112) $) NIL (|has| |#1| (-560)))) (-3810 (($ $ $) 202 (|has| |#1| (-560)))) (-4059 (($) 137 (|has| |#1| (-560)))) (-1456 (($ $ $) 222 (|has| |#1| (-560)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 392 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 399 (|has| |#1| (-889 (-380))))) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) 276)) (-2573 (((-112) $) 25 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))))) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-3397 (($ $) 72 (|has| |#1| (-1052)))) (-3399 (((-1128 |#1| (-613 $)) $) 91 (|has| |#1| (-1052)))) (-1755 (((-112) $) 62 (|has| |#1| (-560)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-560)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-560)))) (-1705 (((-1174 $) (-613 $)) 277 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 426)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-4374 (($ $) 141 (|has| |#1| (-560)))) (-2406 (($ $) 247 (|has| |#1| (-560)))) (-2069 (($ (-643 $)) NIL (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) 49)) (-2384 (($ (-113) $) NIL) (($ (-113) (-643 $)) 431)) (-3226 (((-3 (-643 $) #3="failed") $) NIL (|has| |#1| (-1115)))) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) #3#) $) NIL (|has| |#1| (-1052)))) (-3225 (((-3 (-643 $) #3#) $) 436 (|has| |#1| (-25)))) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) #3#) $) 440 (|has| |#1| (-25)))) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $) NIL (|has| |#1| (-1115))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-113)) NIL (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-1180)) NIL (|has| |#1| (-1052)))) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) 51)) (-2806 (($ $) NIL (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-3235 (($ $ (-1180)) 251 (|has| |#1| (-560))) (($ $ (-1095 $)) 253 (|has| |#1| (-560)))) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 43)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 301 (|has| |#1| (-560)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-1460 (($ $ (-1180)) 226 (|has| |#1| (-560))) (($ $) 224 (|has| |#1| (-560)))) (-1454 (($ $) 218 (|has| |#1| (-560)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-560))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-560)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-560))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-560)))) (-4375 (($ $) 139 (|has| |#1| (-560)))) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) 425) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) 379) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1180)) NIL (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-616 (-538)))) (($ $) NIL (|has| |#1| (-616 (-538)))) (($ $ (-113) $ (-1180)) 366 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-113)) (-643 $) (-1180)) 365 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) NIL (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ (-643 $))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ $)) NIL (|has| |#1| (-1052)))) (-1752 (((-773) $) NIL (|has| |#1| (-560)))) (-2404 (($ $) 239 (|has| |#1| (-560)))) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-2405 (($ $) 249 (|has| |#1| (-560)))) (-3809 (($ $) 200 (|has| |#1| (-560)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-1052))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-1052))) (($ $ (-1180)) NIL (|has| |#1| (-1052)))) (-3396 (($ $) 74 (|has| |#1| (-560)))) (-3398 (((-1128 |#1| (-613 $)) $) 93 (|has| |#1| (-560)))) (-3605 (($ $) 317 (|has| $ (-1052)))) (-3918 (($ $) 177 (|has| |#1| (-560)))) (-4068 (($ $) 153 (|has| |#1| (-560)))) (-3916 (($ $) 173 (|has| |#1| (-560)))) (-4067 (($ $) 149 (|has| |#1| (-560)))) (-3914 (($ $) 169 (|has| |#1| (-560)))) (-4066 (($ $) 145 (|has| |#1| (-560)))) (-4402 (((-893 (-549)) $) NIL (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#1| (-616 (-893 (-380))))) (($ (-408 $)) NIL (|has| |#1| (-560))) (((-538) $) 363 (|has| |#1| (-616 (-538))))) (-3410 (($ $ $) NIL (|has| |#1| (-476)))) (-2756 (($ $ $) NIL (|has| |#1| (-476)))) (-4378 (((-865) $) 424) (($ (-613 $)) 415) (($ (-1180)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-560))) (($ (-48)) 312 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) (($ (-1128 |#1| (-613 $))) 95 (|has| |#1| (-1052))) (($ (-410 |#1|)) NIL (|has| |#1| (-560))) (($ (-949 (-410 |#1|))) NIL (|has| |#1| (-560))) (($ (-410 (-949 (-410 |#1|)))) NIL (|has| |#1| (-560))) (($ (-410 (-949 |#1|))) NIL (|has| |#1| (-560))) (($ (-949 |#1|)) NIL (|has| |#1| (-1052))) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-560)) (|has| |#1| (-1041 (-410 (-549)))))) (($ (-549)) 34 (-3960 (|has| |#1| (-1041 (-549))) (|has| |#1| (-1052))))) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL (|has| |#1| (-1052)) CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-3505 (($ $ $) 220 (|has| |#1| (-560)))) (-3813 (($ $ $) 206 (|has| |#1| (-560)))) (-3815 (($ $ $) 210 (|has| |#1| (-560)))) (-3812 (($ $ $) 204 (|has| |#1| (-560)))) (-3814 (($ $ $) 208 (|has| |#1| (-560)))) (-2403 (((-112) (-113)) 10)) (-3662 (((-112) $ $) 86)) (-3921 (($ $) 183 (|has| |#1| (-560)))) (-3909 (($ $) 159 (|has| |#1| (-560)))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 179 (|has| |#1| (-560)))) (-3907 (($ $) 155 (|has| |#1| (-560)))) (-3923 (($ $) 187 (|has| |#1| (-560)))) (-3911 (($ $) 163 (|has| |#1| (-560)))) (-1970 (($ (-1180) $) NIL) (($ (-1180) $ $) NIL) (($ (-1180) $ $ $) NIL) (($ (-1180) $ $ $ $) NIL) (($ (-1180) (-643 $)) NIL)) (-3817 (($ $) 214 (|has| |#1| (-560)))) (-3816 (($ $) 212 (|has| |#1| (-560)))) (-3924 (($ $) 189 (|has| |#1| (-560)))) (-3912 (($ $) 165 (|has| |#1| (-560)))) (-3922 (($ $) 185 (|has| |#1| (-560)))) (-3910 (($ $) 161 (|has| |#1| (-560)))) (-3920 (($ $) 181 (|has| |#1| (-560)))) (-3908 (($ $) 157 (|has| |#1| (-560)))) (-3807 (($ $) 192 (|has| |#1| (-560)))) (-3510 (($) 21 (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) CONST)) (-2408 (($ $) 243 (|has| |#1| (-560)))) (-3067 (($) 23 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))) CONST)) (-3811 (($ $) 194 (|has| |#1| (-560))) (($ $ $) 196 (|has| |#1| (-560)))) (-2409 (($ $) 241 (|has| |#1| (-560)))) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-1052))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-1052))) (($ $ (-1180)) NIL (|has| |#1| (-1052)))) (-2407 (($ $) 245 (|has| |#1| (-560)))) (-3808 (($ $ $) 198 (|has| |#1| (-560)))) (-3455 (((-112) $ $) 88)) (-4381 (($ (-1128 |#1| (-613 $)) (-1128 |#1| (-613 $))) 106 (|has| |#1| (-560))) (($ $ $) 42 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-4269 (($ $ $) 40 (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (($ $) 29 (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-4271 (($ $ $) 38 (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (** (($ $ $) 64 (|has| |#1| (-560))) (($ $ (-410 (-549))) 314 (|has| |#1| (-560))) (($ $ (-549)) 80 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560)))) (($ $ (-773)) 75 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115)))) (($ $ (-922)) 84 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))))) (* (($ (-410 (-549)) $) NIL (|has| |#1| (-560))) (($ $ (-410 (-549))) NIL (|has| |#1| (-560))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115)))) (($ (-549) $) 32 (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (($ (-773) $) NIL (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (($ (-922) $) NIL (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))))) -(((-315 |#1|) (-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-560)) (PROGN (-6 (-29 |#1|)) (-6 (-1205)) (-6 (-160)) (-6 (-632)) (-6 (-1142)) (-15 -4274 ($ $)) (-15 -1755 ((-112) $)) (-15 -1754 ($ $ (-549))) (IF (|has| |#1| (-455)) (PROGN (-15 -3109 ((-408 (-1174 $)) (-1174 $))) (-15 -3110 ((-408 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1041 (-549))) (-6 (-1041 (-48))) |%noBranch|)) |%noBranch|))) (-1104)) (T -315)) -((-4274 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-560)) (-4 *2 (-1104)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) (-3109 (*1 *2 *3) (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104))))) -(-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-560)) (PROGN (-6 (-29 |#1|)) (-6 (-1205)) (-6 (-160)) (-6 (-632)) (-6 (-1142)) (-15 -4274 ($ $)) (-15 -1755 ((-112) $)) (-15 -1754 ($ $ (-549))) (IF (|has| |#1| (-455)) (PROGN (-15 -3109 ((-408 (-1174 $)) (-1174 $))) (-15 -3110 ((-408 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1041 (-549))) (-6 (-1041 (-48))) |%noBranch|)) |%noBranch|))) -((-4390 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13))) -(((-316 |#1| |#2|) (-10 -7 (-15 -4390 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-1104) (-1104)) (T -316)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-315 *6)) (-5 *1 (-316 *5 *6))))) -(-10 -7 (-15 -4390 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) -((-4161 (((-51) |#2| (-294 |#2|) (-773)) 40) (((-51) |#2| (-294 |#2|)) 32) (((-51) |#2| (-773)) 35) (((-51) |#2|) 33) (((-51) (-1180)) 26)) (-4250 (((-51) |#2| (-294 |#2|) (-410 (-549))) 59) (((-51) |#2| (-294 |#2|)) 56) (((-51) |#2| (-410 (-549))) 58) (((-51) |#2|) 57) (((-51) (-1180)) 55)) (-4213 (((-51) |#2| (-294 |#2|) (-410 (-549))) 54) (((-51) |#2| (-294 |#2|)) 51) (((-51) |#2| (-410 (-549))) 53) (((-51) |#2|) 52) (((-51) (-1180)) 50)) (-4210 (((-51) |#2| (-294 |#2|) (-549)) 47) (((-51) |#2| (-294 |#2|)) 44) (((-51) |#2| (-549)) 46) (((-51) |#2|) 45) (((-51) (-1180)) 43))) -(((-317 |#1| |#2|) (-10 -7 (-15 -4161 ((-51) (-1180))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-773))) (-15 -4161 ((-51) |#2| (-294 |#2|))) (-15 -4161 ((-51) |#2| (-294 |#2|) (-773))) (-15 -4210 ((-51) (-1180))) (-15 -4210 ((-51) |#2|)) (-15 -4210 ((-51) |#2| (-549))) (-15 -4210 ((-51) |#2| (-294 |#2|))) (-15 -4210 ((-51) |#2| (-294 |#2|) (-549))) (-15 -4213 ((-51) (-1180))) (-15 -4213 ((-51) |#2|)) (-15 -4213 ((-51) |#2| (-410 (-549)))) (-15 -4213 ((-51) |#2| (-294 |#2|))) (-15 -4213 ((-51) |#2| (-294 |#2|) (-410 (-549)))) (-15 -4250 ((-51) (-1180))) (-15 -4250 ((-51) |#2|)) (-15 -4250 ((-51) |#2| (-410 (-549)))) (-15 -4250 ((-51) |#2| (-294 |#2|))) (-15 -4250 ((-51) |#2| (-294 |#2|) (-410 (-549))))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -317)) -((-4250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4250 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) (-4213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4213 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4213 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4213 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 *5) (-641 *5))) (-5 *5 (-549)) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-13 (-455) (-1041 *4) (-641 *4))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-773)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4)))))) -(-10 -7 (-15 -4161 ((-51) (-1180))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-773))) (-15 -4161 ((-51) |#2| (-294 |#2|))) (-15 -4161 ((-51) |#2| (-294 |#2|) (-773))) (-15 -4210 ((-51) (-1180))) (-15 -4210 ((-51) |#2|)) (-15 -4210 ((-51) |#2| (-549))) (-15 -4210 ((-51) |#2| (-294 |#2|))) (-15 -4210 ((-51) |#2| (-294 |#2|) (-549))) (-15 -4213 ((-51) (-1180))) (-15 -4213 ((-51) |#2|)) (-15 -4213 ((-51) |#2| (-410 (-549)))) (-15 -4213 ((-51) |#2| (-294 |#2|))) (-15 -4213 ((-51) |#2| (-294 |#2|) (-410 (-549)))) (-15 -4250 ((-51) (-1180))) (-15 -4250 ((-51) |#2|)) (-15 -4250 ((-51) |#2| (-410 (-549)))) (-15 -4250 ((-51) |#2| (-294 |#2|))) (-15 -4250 ((-51) |#2| (-294 |#2|) (-410 (-549))))) -((-1756 (((-51) |#2| (-113) (-294 |#2|) (-643 |#2|)) 89) (((-51) |#2| (-113) (-294 |#2|) (-294 |#2|)) 85) (((-51) |#2| (-113) (-294 |#2|) |#2|) 87) (((-51) (-294 |#2|) (-113) (-294 |#2|) |#2|) 88) (((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|))) 81) (((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 |#2|)) 83) (((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 |#2|)) 84) (((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|))) 82) (((-51) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|)) 90) (((-51) (-294 |#2|) (-113) (-294 |#2|) (-294 |#2|)) 86))) -(((-318 |#1| |#2|) (-10 -7 (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-643 |#2|)))) (-13 (-560) (-616 (-538))) (-424 |#1|)) (T -318)) -((-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-5 *6 (-643 *3)) (-4 *3 (-424 *7)) (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *3)))) (-1756 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-1756 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-1756 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *5)))) (-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-113))) (-5 *6 (-643 (-294 *8))) (-4 *8 (-424 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) (-1756 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) (-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-643 (-294 *8))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *8)) (-5 *6 (-643 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) (-1756 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) (-1756 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-643 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) (-1756 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) (-4 *5 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *6))))) -(-10 -7 (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-643 |#2|)))) -((-1758 (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549) (-1162)) 67) (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549)) 68) (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549) (-1162)) 64) (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549)) 65)) (-1757 (((-1 (-225) (-225)) (-225)) 66))) -(((-319) (-10 -7 (-15 -1757 ((-1 (-225) (-225)) (-225))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549) (-1162))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549) (-1162))))) (T -319)) -((-1758 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-225)) (-5 *7 (-549)) (-5 *8 (-1162)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1758 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-225)) (-5 *7 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1758 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-549)) (-5 *7 (-1162)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1758 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1757 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(-10 -7 (-15 -1757 ((-1 (-225) (-225)) (-225))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549) (-1162))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549) (-1162)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 26)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 20)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 36)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) 16)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) NIL) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-1759 (((-410 (-549)) $) 17)) (-3494 (($ (-1250 |#1| |#2| |#3|)) 11)) (-2564 (((-1250 |#1| |#2| |#3|) $) 12)) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 10)) (-4378 (((-865) $) 42) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 34)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) NIL)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 28)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 37)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-320 |#1| |#2| |#3|) (-13 (-1252 |#1|) (-794) (-10 -8 (-15 -3494 ($ (-1250 |#1| |#2| |#3|))) (-15 -2564 ((-1250 |#1| |#2| |#3|) $)) (-15 -1759 ((-410 (-549)) $)))) (-365) (-1180) |#1|) (T -320)) -((-3494 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3)))) -(-13 (-1252 |#1|) (-794) (-10 -8 (-15 -3494 ($ (-1250 |#1| |#2| |#3|))) (-15 -2564 ((-1250 |#1| |#2| |#3|) $)) (-15 -1759 ((-410 (-549)) $)))) -((-3412 (((-2 (|:| -2564 (-773)) (|:| -4386 |#1|) (|:| |radicand| (-643 |#1|))) (-408 |#1|) (-773)) 35)) (-4374 (((-643 (-2 (|:| -4386 (-773)) (|:| |logand| |#1|))) (-408 |#1|)) 40))) -(((-321 |#1|) (-10 -7 (-15 -3412 ((-2 (|:| -2564 (-773)) (|:| -4386 |#1|) (|:| |radicand| (-643 |#1|))) (-408 |#1|) (-773))) (-15 -4374 ((-643 (-2 (|:| -4386 (-773)) (|:| |logand| |#1|))) (-408 |#1|)))) (-560)) (T -321)) -((-4374 (*1 *2 *3) (-12 (-5 *3 (-408 *4)) (-4 *4 (-560)) (-5 *2 (-643 (-2 (|:| -4386 (-773)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-408 *5)) (-4 *5 (-560)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *5) (|:| |radicand| (-643 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-773))))) -(-10 -7 (-15 -3412 ((-2 (|:| -2564 (-773)) (|:| -4386 |#1|) (|:| |radicand| (-643 |#1|))) (-408 |#1|) (-773))) (-15 -4374 ((-643 (-2 (|:| -4386 (-773)) (|:| |logand| |#1|))) (-408 |#1|)))) -((-3485 (((-643 |#2|) (-1174 |#4|)) 44)) (-1764 ((|#3| (-549)) 47)) (-1762 (((-1174 |#4|) (-1174 |#3|)) 30)) (-1763 (((-1174 |#4|) (-1174 |#4|) (-549)) 66)) (-1761 (((-1174 |#3|) (-1174 |#4|)) 21)) (-4380 (((-643 (-773)) (-1174 |#4|) (-643 |#2|)) 41)) (-1760 (((-1174 |#3|) (-1174 |#4|) (-643 |#2|) (-643 |#3|)) 35))) -(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1760 ((-1174 |#3|) (-1174 |#4|) (-643 |#2|) (-643 |#3|))) (-15 -4380 ((-643 (-773)) (-1174 |#4|) (-643 |#2|))) (-15 -3485 ((-643 |#2|) (-1174 |#4|))) (-15 -1761 ((-1174 |#3|) (-1174 |#4|))) (-15 -1762 ((-1174 |#4|) (-1174 |#3|))) (-15 -1763 ((-1174 |#4|) (-1174 |#4|) (-549))) (-15 -1764 (|#3| (-549)))) (-795) (-852) (-1052) (-953 |#3| |#1| |#2|)) (T -322)) -((-1764 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1052)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-953 *2 *4 *5)))) (-1763 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *7)) (-5 *3 (-549)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *1 (-322 *4 *5 *6 *7)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *2 (-1174 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *2 (-643 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-4380 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *8)) (-5 *4 (-643 *6)) (-4 *6 (-852)) (-4 *8 (-953 *7 *5 *6)) (-4 *5 (-795)) (-4 *7 (-1052)) (-5 *2 (-643 (-773))) (-5 *1 (-322 *5 *6 *7 *8)))) (-1760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 *8)) (-4 *7 (-852)) (-4 *8 (-1052)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-5 *2 (-1174 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(-10 -7 (-15 -1760 ((-1174 |#3|) (-1174 |#4|) (-643 |#2|) (-643 |#3|))) (-15 -4380 ((-643 (-773)) (-1174 |#4|) (-643 |#2|))) (-15 -3485 ((-643 |#2|) (-1174 |#4|))) (-15 -1761 ((-1174 |#3|) (-1174 |#4|))) (-15 -1762 ((-1174 |#4|) (-1174 |#3|))) (-15 -1763 ((-1174 |#4|) (-1174 |#4|) (-549))) (-15 -1764 (|#3| (-549)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 19)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $) 21)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2444 ((|#1| $ (-549)) NIL)) (-1767 (((-549) $ (-549)) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2436 (($ (-1 |#1| |#1|) $) NIL)) (-1766 (($ (-1 (-549) (-549)) $) 11)) (-3663 (((-1162) $) NIL)) (-1765 (($ $ $) NIL (|has| (-549) (-794)))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-4109 (((-549) |#1| $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) 29 (|has| |#1| (-852)))) (-4269 (($ $) 12) (($ $ $) 28)) (-4271 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL) (($ (-549) |#1|) 27))) -(((-323 |#1|) (-13 (-21) (-719 (-549)) (-324 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-852)) (-6 (-852)) |%noBranch|))) (-1104)) (T -323)) -NIL -(-13 (-21) (-719 (-549)) (-324 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-852)) (-6 (-852)) |%noBranch|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $) 28)) (-1407 (((-3 $ "failed") $ $) 20)) (-3540 (((-773) $) 29)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| "failed") $) 33)) (-3576 ((|#1| $) 34)) (-2444 ((|#1| $ (-549)) 26)) (-1767 ((|#2| $ (-549)) 27)) (-2436 (($ (-1 |#1| |#1|) $) 23)) (-1766 (($ (-1 |#2| |#2|) $) 24)) (-3663 (((-1162) $) 10)) (-1765 (($ $ $) 22 (|has| |#2| (-794)))) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ |#1|) 32)) (-4109 ((|#2| |#1| $) 25)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ |#2| |#1|) 30))) -(((-324 |#1| |#2|) (-140) (-1104) (-131)) (T -324)) -((-4271 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) (-5 *2 (-773)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))))) (-1767 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1104)) (-4 *2 (-131)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1104)))) (-4109 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) (-1766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)))) (-1765 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)) (-4 *3 (-794))))) -(-13 (-131) (-1041 |t#1|) (-10 -8 (-15 -4271 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3540 ((-773) $)) (-15 -4205 ((-643 (-2 (|:| |gen| |t#1|) (|:| -4375 |t#2|))) $)) (-15 -1767 (|t#2| $ (-549))) (-15 -2444 (|t#1| $ (-549))) (-15 -4109 (|t#2| |t#1| $)) (-15 -1766 ($ (-1 |t#2| |t#2|) $)) (-15 -2436 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-794)) (-15 -1765 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-1041 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2444 ((|#1| $ (-549)) NIL)) (-1767 (((-773) $ (-549)) NIL)) (-2436 (($ (-1 |#1| |#1|) $) NIL)) (-1766 (($ (-1 (-773) (-773)) $) NIL)) (-3663 (((-1162) $) NIL)) (-1765 (($ $ $) NIL (|has| (-773) (-794)))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-4109 (((-773) |#1| $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-773) |#1|) NIL))) -(((-325 |#1|) (-324 |#1| (-773)) (-1104)) (T -325)) -NIL -(-324 |#1| (-773)) -((-3926 (($ $) 72)) (-1769 (($ $ |#2| |#3| $) 14)) (-1770 (($ (-1 |#3| |#3|) $) 51)) (-1972 (((-112) $) 42)) (-1971 ((|#2| $) 44)) (-3889 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3220 ((|#2| $) 68)) (-4249 (((-643 |#2|) $) 56)) (-1768 (($ $ $ (-773)) 37)) (-4381 (($ $ |#2|) 60))) -(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1768 (|#1| |#1| |#1| (-773))) (-15 -1769 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1770 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4381 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1052) (-794)) (T -326)) -NIL -(-10 -8 (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1768 (|#1| |#1| |#1| (-773))) (-15 -1769 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1770 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4381 (|#1| |#1| |#2|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 100 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 98 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 95)) (-3576 (((-549) $) 99 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 97 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 96)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 84 (|has| |#1| (-455)))) (-1769 (($ $ |#1| |#2| $) 88)) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 91)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73)) (-3223 ((|#2| $) 90)) (-1770 (($ (-1 |#2| |#2|) $) 89)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 94)) (-1971 ((|#1| $) 93)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-560)))) (-4380 ((|#2| $) 76)) (-3220 ((|#1| $) 85 (|has| |#1| (-455)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59) (($ (-410 (-549))) 69 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))))) (-4249 (((-643 |#1|) $) 92)) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 87 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-327 |#1| |#2|) (-140) (-1052) (-794)) (T -327)) -((-1972 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-643 *3)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-773)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-1770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) (-1769 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-1768 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *3 (-172)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-560)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)) (-4 *2 (-455)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-455))))) -(-13 (-47 |t#1| |t#2|) (-415 |t#1|) (-10 -8 (-15 -1972 ((-112) $)) (-15 -1971 (|t#1| $)) (-15 -4249 ((-643 |t#1|) $)) (-15 -2581 ((-773) $)) (-15 -3223 (|t#2| $)) (-15 -1770 ($ (-1 |t#2| |t#2|) $)) (-15 -1769 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -1768 ($ $ $ (-773))) |%noBranch|) (IF (|has| |t#1| (-560)) (-15 -3889 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3220 (|t#1| $)) (-15 -3926 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-291) |has| |#1| (-560)) ((-415 |#1|) . T) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-2164 (((-112) (-112)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-2526 (($ $) NIL (|has| |#1| (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2165 (($ $ (-549)) NIL)) (-2166 (((-773) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2167 (($ (-643 |#1|)) NIL)) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4222 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) (-1219)) (T -328)) -((-2167 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) -((-4364 (((-112) $) 50)) (-4361 (((-773)) 26)) (-3754 ((|#2| $) 54) (($ $ (-922)) 124)) (-3540 (((-773)) 125)) (-1967 (($ (-1269 |#2|)) 23)) (-2189 (((-112) $) 138)) (-3536 ((|#2| $) 56) (($ $ (-922)) 121)) (-2192 (((-1174 |#2|) $) NIL) (((-1174 $) $ (-922)) 112)) (-1772 (((-1174 |#2|) $) 98)) (-1771 (((-1174 |#2|) $) 94) (((-3 (-1174 |#2|) "failed") $ $) 91)) (-1773 (($ $ (-1174 |#2|)) 62)) (-4362 (((-834 (-922))) 33) (((-922)) 51)) (-4343 (((-134)) 30)) (-4380 (((-834 (-922)) $) 35) (((-922) $) 141)) (-1774 (($) 131)) (-3644 (((-1269 |#2|) $) NIL) (((-691 |#2|) (-1269 $)) 45)) (-3105 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4365 (((-112) $) 48))) -(((-329 |#1| |#2|) (-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3540 ((-773))) (-15 -3105 (|#1| |#1|)) (-15 -1771 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -1771 ((-1174 |#2|) |#1|)) (-15 -1772 ((-1174 |#2|) |#1|)) (-15 -1773 (|#1| |#1| (-1174 |#2|))) (-15 -2189 ((-112) |#1|)) (-15 -1774 (|#1|)) (-15 -3754 (|#1| |#1| (-922))) (-15 -3536 (|#1| |#1| (-922))) (-15 -2192 ((-1174 |#1|) |#1| (-922))) (-15 -3754 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -4380 ((-922) |#1|)) (-15 -4362 ((-922))) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -4361 ((-773))) (-15 -4362 ((-834 (-922)))) (-15 -4380 ((-834 (-922)) |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|)) (-15 -4343 ((-134)))) (-330 |#2|) (-365)) (T -329)) -((-4343 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4362 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4361 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4362 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3540 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) -(-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3540 ((-773))) (-15 -3105 (|#1| |#1|)) (-15 -1771 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -1771 ((-1174 |#2|) |#1|)) (-15 -1772 ((-1174 |#2|) |#1|)) (-15 -1773 (|#1| |#1| (-1174 |#2|))) (-15 -2189 ((-112) |#1|)) (-15 -1774 (|#1|)) (-15 -3754 (|#1| |#1| (-922))) (-15 -3536 (|#1| |#1| (-922))) (-15 -2192 ((-1174 |#1|) |#1| (-922))) (-15 -3754 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -4380 ((-922) |#1|)) (-15 -4362 ((-922))) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -4361 ((-773))) (-15 -4362 ((-834 (-922)))) (-15 -4380 ((-834 (-922)) |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|)) (-15 -4343 ((-134)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4364 (((-112) $) 104)) (-4361 (((-773)) 100)) (-3754 ((|#1| $) 150) (($ $ (-922)) 147 (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 132 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-3540 (((-773)) 122 (|has| |#1| (-370)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| "failed") $) 111)) (-3576 ((|#1| $) 112)) (-1967 (($ (-1269 |#1|)) 156)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-3395 (($) 119 (|has| |#1| (-370)))) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-3236 (($) 134 (|has| |#1| (-370)))) (-1848 (((-112) $) 135 (|has| |#1| (-370)))) (-1941 (($ $ (-773)) 97 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) 79)) (-4203 (((-922) $) 137 (|has| |#1| (-370))) (((-834 (-922)) $) 94 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) 35)) (-2191 (($) 145 (|has| |#1| (-370)))) (-2189 (((-112) $) 144 (|has| |#1| (-370)))) (-3536 ((|#1| $) 151) (($ $ (-922)) 148 (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2192 (((-1174 |#1|) $) 155) (((-1174 $) $ (-922)) 149 (|has| |#1| (-370)))) (-2188 (((-922) $) 120 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) 141 (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) 142 (|has| |#1| (-370)))) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3869 (($) 124 (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 121 (|has| |#1| (-370)))) (-4363 (((-112) $) 103)) (-3664 (((-1123) $) 11)) (-2572 (($) 143 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 131 (|has| |#1| (-370)))) (-4164 (((-408 $) $) 82)) (-4362 (((-834 (-922))) 101) (((-922)) 153)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-773) $) 136 (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) 95 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) 109)) (-4242 (($ $) 128 (|has| |#1| (-370))) (($ $ (-773)) 126 (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) 102) (((-922) $) 152)) (-3605 (((-1174 |#1|)) 154)) (-1842 (($) 133 (|has| |#1| (-370)))) (-1774 (($) 146 (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 158) (((-691 |#1|) (-1269 $)) 157)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 130 (|has| |#1| (-370)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ |#1|) 110)) (-3105 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 160) (((-1269 $) (-922)) 159)) (-2240 (((-112) $ $) 45)) (-4365 (((-112) $) 105)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-4360 (($ $) 99 (|has| |#1| (-370))) (($ $ (-773)) 98 (|has| |#1| (-370)))) (-3072 (($ $) 127 (|has| |#1| (-370))) (($ $ (-773)) 125 (|has| |#1| (-370)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73) (($ $ |#1|) 108)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-330 |#1|) (-140) (-365)) (T -330)) -((-2190 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *4)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-3605 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-4362 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) (-4 *1 (-330 *4)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-1774 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2191 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-2572 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1773 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-1771 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) -(-13 (-1288 |t#1|) (-1041 |t#1|) (-10 -8 (-15 -2190 ((-1269 $))) (-15 -2190 ((-1269 $) (-922))) (-15 -3644 ((-1269 |t#1|) $)) (-15 -3644 ((-691 |t#1|) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|))) (-15 -2192 ((-1174 |t#1|) $)) (-15 -3605 ((-1174 |t#1|))) (-15 -4362 ((-922))) (-15 -4380 ((-922) $)) (-15 -3536 (|t#1| $)) (-15 -3754 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-352)) (-15 -2192 ((-1174 $) $ (-922))) (-15 -3536 ($ $ (-922))) (-15 -3754 ($ $ (-922))) (-15 -1774 ($)) (-15 -2191 ($)) (-15 -2189 ((-112) $)) (-15 -2572 ($)) (-15 -1773 ($ $ (-1174 |t#1|))) (-15 -1772 ((-1174 |t#1|) $)) (-15 -1771 ((-1174 |t#1|) $)) (-15 -1771 ((-3 (-1174 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1288 |#1|) . T) ((-365) . T) ((-405) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-352) |has| |#1| (-370)) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 |#1|) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-370)) ((-1224) . T) ((-1277 |#1|) . T)) -((-2968 (((-112) $ $) NIL)) (-1792 (($ (-1179) $) 100)) (-1783 (($) 89)) (-1775 (((-1123) (-1123)) 9)) (-1782 (($) 90)) (-1786 (($) 104) (($ (-315 (-701))) 112) (($ (-315 (-703))) 108) (($ (-315 (-696))) 116) (($ (-315 (-380))) 123) (($ (-315 (-549))) 119) (($ (-315 (-168 (-380)))) 127)) (-1791 (($ (-1179) $) 101)) (-1781 (($ (-643 (-865))) 91)) (-1777 (((-1275) $) 87)) (-1779 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1790 (($ (-1123)) 58)) (-1776 (((-1106) $) 30)) (-1793 (($ (-1095 (-949 (-549))) $) 97) (($ (-1095 (-949 (-549))) (-949 (-549)) $) 98)) (-1789 (($ (-1123)) 99)) (-1785 (($ (-1179) $) 129) (($ (-1179) $ $) 130)) (-1780 (($ (-1180) (-643 (-1180))) 88)) (-1788 (($ (-1162)) 94) (($ (-643 (-1162))) 92)) (-4378 (((-865) $) 132)) (-1778 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 $)) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 $))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 $))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865)))) $) 50)) (-1787 (($ (-1162)) 202)) (-1784 (($ (-643 $)) 128)) (-3662 (((-112) $ $) NIL)) (-2986 (($ (-1180) (-1162)) 135) (($ (-1180) (-315 (-703))) 175) (($ (-1180) (-315 (-701))) 176) (($ (-1180) (-315 (-696))) 177) (($ (-1180) (-691 (-703))) 138) (($ (-1180) (-691 (-701))) 141) (($ (-1180) (-691 (-696))) 144) (($ (-1180) (-1269 (-703))) 147) (($ (-1180) (-1269 (-701))) 150) (($ (-1180) (-1269 (-696))) 153) (($ (-1180) (-691 (-315 (-703)))) 156) (($ (-1180) (-691 (-315 (-701)))) 159) (($ (-1180) (-691 (-315 (-696)))) 162) (($ (-1180) (-1269 (-315 (-703)))) 165) (($ (-1180) (-1269 (-315 (-701)))) 168) (($ (-1180) (-1269 (-315 (-696)))) 171) (($ (-1180) (-643 (-949 (-549))) (-315 (-703))) 172) (($ (-1180) (-643 (-949 (-549))) (-315 (-701))) 173) (($ (-1180) (-643 (-949 (-549))) (-315 (-696))) 174) (($ (-1180) (-315 (-549))) 199) (($ (-1180) (-315 (-380))) 200) (($ (-1180) (-315 (-168 (-380)))) 201) (($ (-1180) (-691 (-315 (-549)))) 180) (($ (-1180) (-691 (-315 (-380)))) 183) (($ (-1180) (-691 (-315 (-168 (-380))))) 186) (($ (-1180) (-1269 (-315 (-549)))) 189) (($ (-1180) (-1269 (-315 (-380)))) 192) (($ (-1180) (-1269 (-315 (-168 (-380))))) 195) (($ (-1180) (-643 (-949 (-549))) (-315 (-549))) 196) (($ (-1180) (-643 (-949 (-549))) (-315 (-380))) 197) (($ (-1180) (-643 (-949 (-549))) (-315 (-168 (-380)))) 198)) (-3455 (((-112) $ $) NIL))) -(((-331) (-13 (-1104) (-10 -8 (-15 -1793 ($ (-1095 (-949 (-549))) $)) (-15 -1793 ($ (-1095 (-949 (-549))) (-949 (-549)) $)) (-15 -1792 ($ (-1179) $)) (-15 -1791 ($ (-1179) $)) (-15 -1790 ($ (-1123))) (-15 -1789 ($ (-1123))) (-15 -1788 ($ (-1162))) (-15 -1788 ($ (-643 (-1162)))) (-15 -1787 ($ (-1162))) (-15 -1786 ($)) (-15 -1786 ($ (-315 (-701)))) (-15 -1786 ($ (-315 (-703)))) (-15 -1786 ($ (-315 (-696)))) (-15 -1786 ($ (-315 (-380)))) (-15 -1786 ($ (-315 (-549)))) (-15 -1786 ($ (-315 (-168 (-380))))) (-15 -1785 ($ (-1179) $)) (-15 -1785 ($ (-1179) $ $)) (-15 -2986 ($ (-1180) (-1162))) (-15 -2986 ($ (-1180) (-315 (-703)))) (-15 -2986 ($ (-1180) (-315 (-701)))) (-15 -2986 ($ (-1180) (-315 (-696)))) (-15 -2986 ($ (-1180) (-691 (-703)))) (-15 -2986 ($ (-1180) (-691 (-701)))) (-15 -2986 ($ (-1180) (-691 (-696)))) (-15 -2986 ($ (-1180) (-1269 (-703)))) (-15 -2986 ($ (-1180) (-1269 (-701)))) (-15 -2986 ($ (-1180) (-1269 (-696)))) (-15 -2986 ($ (-1180) (-691 (-315 (-703))))) (-15 -2986 ($ (-1180) (-691 (-315 (-701))))) (-15 -2986 ($ (-1180) (-691 (-315 (-696))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-703))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-701))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-696))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-703)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-701)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-696)))) (-15 -2986 ($ (-1180) (-315 (-549)))) (-15 -2986 ($ (-1180) (-315 (-380)))) (-15 -2986 ($ (-1180) (-315 (-168 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-549))))) (-15 -2986 ($ (-1180) (-691 (-315 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-549))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-380))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-549)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-380)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-168 (-380))))) (-15 -1784 ($ (-643 $))) (-15 -1783 ($)) (-15 -1782 ($)) (-15 -1781 ($ (-643 (-865)))) (-15 -1780 ($ (-1180) (-643 (-1180)))) (-15 -1779 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1778 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 $)) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 $))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 $))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865)))) $)) (-15 -1777 ((-1275) $)) (-15 -1776 ((-1106) $)) (-15 -1775 ((-1123) (-1123)))))) (T -331)) -((-1793 (*1 *1 *2 *1) (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *1 (-331)))) (-1793 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *3 (-949 (-549))) (-5 *1 (-331)))) (-1792 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-1791 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-331)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331)))) (-1786 (*1 *1) (-5 *1 (-331))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-701))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-703))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-696))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-331)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-703)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-701)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-696)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-703)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-701)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-696)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-549))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-380))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-168 (-380)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-549)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-380)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-168 (-380))))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-549)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-380)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-168 (-380))))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-549))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-380))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-168 (-380)))) (-5 *1 (-331)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-5 *1 (-331)))) (-1783 (*1 *1) (-5 *1 (-331))) (-1782 (*1 *1) (-5 *1 (-331))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-331)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-331)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 (-331))) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 (-331)))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 (-331)))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865))))) (-5 *1 (-331)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-331)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) -(-13 (-1104) (-10 -8 (-15 -1793 ($ (-1095 (-949 (-549))) $)) (-15 -1793 ($ (-1095 (-949 (-549))) (-949 (-549)) $)) (-15 -1792 ($ (-1179) $)) (-15 -1791 ($ (-1179) $)) (-15 -1790 ($ (-1123))) (-15 -1789 ($ (-1123))) (-15 -1788 ($ (-1162))) (-15 -1788 ($ (-643 (-1162)))) (-15 -1787 ($ (-1162))) (-15 -1786 ($)) (-15 -1786 ($ (-315 (-701)))) (-15 -1786 ($ (-315 (-703)))) (-15 -1786 ($ (-315 (-696)))) (-15 -1786 ($ (-315 (-380)))) (-15 -1786 ($ (-315 (-549)))) (-15 -1786 ($ (-315 (-168 (-380))))) (-15 -1785 ($ (-1179) $)) (-15 -1785 ($ (-1179) $ $)) (-15 -2986 ($ (-1180) (-1162))) (-15 -2986 ($ (-1180) (-315 (-703)))) (-15 -2986 ($ (-1180) (-315 (-701)))) (-15 -2986 ($ (-1180) (-315 (-696)))) (-15 -2986 ($ (-1180) (-691 (-703)))) (-15 -2986 ($ (-1180) (-691 (-701)))) (-15 -2986 ($ (-1180) (-691 (-696)))) (-15 -2986 ($ (-1180) (-1269 (-703)))) (-15 -2986 ($ (-1180) (-1269 (-701)))) (-15 -2986 ($ (-1180) (-1269 (-696)))) (-15 -2986 ($ (-1180) (-691 (-315 (-703))))) (-15 -2986 ($ (-1180) (-691 (-315 (-701))))) (-15 -2986 ($ (-1180) (-691 (-315 (-696))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-703))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-701))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-696))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-703)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-701)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-696)))) (-15 -2986 ($ (-1180) (-315 (-549)))) (-15 -2986 ($ (-1180) (-315 (-380)))) (-15 -2986 ($ (-1180) (-315 (-168 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-549))))) (-15 -2986 ($ (-1180) (-691 (-315 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-549))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-380))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-549)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-380)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-168 (-380))))) (-15 -1784 ($ (-643 $))) (-15 -1783 ($)) (-15 -1782 ($)) (-15 -1781 ($ (-643 (-865)))) (-15 -1780 ($ (-1180) (-643 (-1180)))) (-15 -1779 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1778 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 $)) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 $))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 $))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865)))) $)) (-15 -1777 ((-1275) $)) (-15 -1776 ((-1106) $)) (-15 -1775 ((-1123) (-1123))))) -((-2968 (((-112) $ $) NIL)) (-1794 (((-112) $) 13)) (-4070 (($ |#1|) 10)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4066 (($ |#1|) 12)) (-4378 (((-865) $) 19)) (-3662 (((-112) $ $) NIL)) (-2385 ((|#1| $) 14)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 21))) -(((-332 |#1|) (-13 (-852) (-10 -8 (-15 -4070 ($ |#1|)) (-15 -4066 ($ |#1|)) (-15 -1794 ((-112) $)) (-15 -2385 (|#1| $)))) (-852)) (T -332)) -((-4070 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) (-4066 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-852)))) (-2385 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852))))) -(-13 (-852) (-10 -8 (-15 -4070 ($ |#1|)) (-15 -4066 ($ |#1|)) (-15 -1794 ((-112) $)) (-15 -2385 (|#1| $)))) -((-1795 (((-331) (-1180) (-949 (-549))) 23)) (-1796 (((-331) (-1180) (-949 (-549))) 27)) (-2479 (((-331) (-1180) (-1095 (-949 (-549))) (-1095 (-949 (-549)))) 26) (((-331) (-1180) (-949 (-549)) (-949 (-549))) 24)) (-1797 (((-331) (-1180) (-949 (-549))) 31))) -(((-333) (-10 -7 (-15 -1795 ((-331) (-1180) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-949 (-549)) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-1095 (-949 (-549))) (-1095 (-949 (-549))))) (-15 -1796 ((-331) (-1180) (-949 (-549)))) (-15 -1797 ((-331) (-1180) (-949 (-549)))))) (T -333)) -((-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2479 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-1095 (-949 (-549)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2479 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) -(-10 -7 (-15 -1795 ((-331) (-1180) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-949 (-549)) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-1095 (-949 (-549))) (-1095 (-949 (-549))))) (-15 -1796 ((-331) (-1180) (-949 (-549)))) (-15 -1797 ((-331) (-1180) (-949 (-549))))) -((-2968 (((-112) $ $) NIL)) (-1798 (((-509) $) 20)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1799 (((-961 (-773)) $) 18)) (-1801 (((-250) $) 7)) (-4378 (((-865) $) 26)) (-2380 (((-961 (-184 (-139))) $) 16)) (-3662 (((-112) $ $) NIL)) (-1800 (((-643 (-875 (-1185) (-773))) $) 12)) (-3455 (((-112) $ $) 22))) -(((-334) (-13 (-1104) (-10 -8 (-15 -1801 ((-250) $)) (-15 -1800 ((-643 (-875 (-1185) (-773))) $)) (-15 -1799 ((-961 (-773)) $)) (-15 -2380 ((-961 (-184 (-139))) $)) (-15 -1798 ((-509) $))))) (T -334)) -((-1801 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-643 (-875 (-1185) (-773)))) (-5 *1 (-334)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-961 (-773))) (-5 *1 (-334)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-961 (-184 (-139)))) (-5 *1 (-334)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) -(-13 (-1104) (-10 -8 (-15 -1801 ((-250) $)) (-15 -1800 ((-643 (-875 (-1185) (-773))) $)) (-15 -1799 ((-961 (-773)) $)) (-15 -2380 ((-961 (-184 (-139))) $)) (-15 -1798 ((-509) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ $) 33)) (-1804 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-1802 (((-1269 |#4|) $) 134)) (-2148 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3664 (((-1123) $) NIL)) (-2572 (((-3 |#4| "failed") $) 36)) (-1803 (((-1269 |#4|) $) 126)) (-1805 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-549)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3859 (((-2 (|:| -2487 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4378 (((-865) $) 17)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 14 T CONST)) (-3455 (((-112) $ $) 20)) (-4269 (($ $) 27) (($ $ $) NIL)) (-4271 (($ $ $) 25)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 23))) -(((-335 |#1| |#2| |#3| |#4|) (-13 (-338 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1803 ((-1269 |#4|) $)) (-15 -1802 ((-1269 |#4|) $)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -335)) -((-1803 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-1802 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) -(-13 (-338 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1803 ((-1269 |#4|) $)) (-15 -1802 ((-1269 |#4|) $)))) -((-4390 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33))) -(((-336 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -336)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-336 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) -(-10 -7 (-15 -4390 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) -((-1804 (((-112) $) 14))) -(((-337 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1804 ((-112) |#1|))) (-338 |#2| |#3| |#4| |#5|) (-365) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -337)) -NIL -(-10 -8 (-15 -1804 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4274 (($ $) 29)) (-1804 (((-112) $) 28)) (-3663 (((-1162) $) 10)) (-2148 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3664 (((-1123) $) 11)) (-2572 (((-3 |#4| "failed") $) 27)) (-1805 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-549)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3859 (((-2 (|:| -2487 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24))) -(((-338 |#1| |#2| |#3| |#4|) (-140) (-365) (-1245 |t#1|) (-1245 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -338)) -((-2148 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-1805 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-338 *3 *4 *5 *6)))) (-1805 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-338 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-1805 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *1 (-338 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-1805 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-338 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -2487 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-4274 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-2572 (*1 *2 *1) (|partial| -12 (-4 *1 (-338 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-1805 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-4 *1 (-338 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2148 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -1805 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -1805 ($ |t#4|)) (-15 -1805 ($ |t#1| |t#1|)) (-15 -1805 ($ |t#1| |t#1| (-549))) (-15 -3859 ((-2 (|:| -2487 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4274 ($ $)) (-15 -1804 ((-112) $)) (-15 -2572 ((-3 |t#4| "failed") $)) (-15 -1805 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1104) . T)) -((-4199 (($ $ (-1180) |#2|) NIL) (($ $ (-643 (-1180)) (-643 |#2|)) 20) (($ $ (-643 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-643 |#2|) (-643 |#2|)) NIL)) (-4231 (($ $ |#2|) 11))) -(((-339 |#1| |#2|) (-10 -8 (-15 -4231 (|#1| |#1| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1180) |#2|))) (-340 |#2|) (-1104)) (T -339)) -NIL -(-10 -8 (-15 -4231 (|#1| |#1| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1180) |#2|))) -((-4390 (($ (-1 |#1| |#1|) $) 6)) (-4199 (($ $ (-1180) |#1|) 17 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 16 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-643 (-294 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-643 |#1|) (-643 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-4231 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) -(((-340 |#1|) (-140) (-1104)) (T -340)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104))))) -(-13 (-10 -8 (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1180) |t#1|)) (-6 (-517 (-1180) |t#1|)) |%noBranch|))) -(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1180)) $) NIL)) (-1806 (((-112)) 96) (((-112) (-112)) 97)) (-1708 (((-643 (-613 $)) $) NIL)) (-3915 (($ $) NIL)) (-4071 (($ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-3438 (($ $) NIL)) (-3913 (($ $) NIL)) (-4070 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-315 |#3|)) 76) (((-3 $ "failed") (-1180)) 103) (((-3 $ "failed") (-315 (-549))) 64 (|has| |#3| (-1041 (-549)))) (((-3 $ "failed") (-410 (-949 (-549)))) 70 (|has| |#3| (-1041 (-549)))) (((-3 $ "failed") (-949 (-549))) 65 (|has| |#3| (-1041 (-549)))) (((-3 $ "failed") (-315 (-380))) 94 (|has| |#3| (-1041 (-380)))) (((-3 $ "failed") (-410 (-949 (-380)))) 88 (|has| |#3| (-1041 (-380)))) (((-3 $ "failed") (-949 (-380))) 83 (|has| |#3| (-1041 (-380))))) (-3576 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 77) (($ (-1180)) 104) (($ (-315 (-549))) 66 (|has| |#3| (-1041 (-549)))) (($ (-410 (-949 (-549)))) 71 (|has| |#3| (-1041 (-549)))) (($ (-949 (-549))) 67 (|has| |#3| (-1041 (-549)))) (($ (-315 (-380))) 95 (|has| |#3| (-1041 (-380)))) (($ (-410 (-949 (-380)))) 89 (|has| |#3| (-1041 (-380)))) (($ (-949 (-380))) 85 (|has| |#3| (-1041 (-380))))) (-3890 (((-3 $ "failed") $) NIL)) (-4059 (($) 101)) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) NIL)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-1705 (((-1174 $) (-613 $)) NIL (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) NIL)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-1910 (($ $) 99)) (-4374 (($ $) NIL)) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) NIL)) (-2384 (($ (-113) $) 98) (($ (-113) (-643 $)) NIL)) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) NIL)) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-4375 (($ $) NIL)) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL)) (-3605 (($ $) NIL (|has| $ (-1052)))) (-3914 (($ $) NIL)) (-4066 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-549)) NIL) (((-315 |#3|) $) 102)) (-3530 (((-773)) NIL T CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-2403 (((-112) (-113)) NIL)) (-3662 (((-112) $ $) NIL)) (-3909 (($ $) NIL)) (-3907 (($ $) NIL)) (-3908 (($ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) 100 T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) -(((-341 |#1| |#2| |#3|) (-13 (-299) (-38 |#3|) (-1041 |#3|) (-903 (-1180)) (-10 -8 (-15 -3576 ($ (-315 |#3|))) (-15 -3577 ((-3 $ "failed") (-315 |#3|))) (-15 -3576 ($ (-1180))) (-15 -3577 ((-3 $ "failed") (-1180))) (-15 -4378 ((-315 |#3|) $)) (IF (|has| |#3| (-1041 (-549))) (PROGN (-15 -3576 ($ (-315 (-549)))) (-15 -3577 ((-3 $ "failed") (-315 (-549)))) (-15 -3576 ($ (-410 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-549))))) (-15 -3576 ($ (-949 (-549)))) (-15 -3577 ((-3 $ "failed") (-949 (-549))))) |%noBranch|) (IF (|has| |#3| (-1041 (-380))) (PROGN (-15 -3576 ($ (-315 (-380)))) (-15 -3577 ((-3 $ "failed") (-315 (-380)))) (-15 -3576 ($ (-410 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-380))))) (-15 -3576 ($ (-949 (-380)))) (-15 -3577 ((-3 $ "failed") (-949 (-380))))) |%noBranch|) (-15 -3807 ($ $)) (-15 -3438 ($ $)) (-15 -4375 ($ $)) (-15 -4374 ($ $)) (-15 -1910 ($ $)) (-15 -4070 ($ $)) (-15 -4066 ($ $)) (-15 -4071 ($ $)) (-15 -3907 ($ $)) (-15 -3908 ($ $)) (-15 -3909 ($ $)) (-15 -3913 ($ $)) (-15 -3914 ($ $)) (-15 -3915 ($ $)) (-15 -4059 ($)) (-15 -3485 ((-643 (-1180)) $)) (-15 -1806 ((-112))) (-15 -1806 ((-112) (-112))))) (-643 (-1180)) (-643 (-1180)) (-390)) (T -341)) -((-3576 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) (-14 *4 (-643 *2)) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) (-14 *4 (-643 *2)) (-4 *5 (-390)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4375 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-1910 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4066 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3907 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3913 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3915 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4059 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-1806 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390))))) -(-13 (-299) (-38 |#3|) (-1041 |#3|) (-903 (-1180)) (-10 -8 (-15 -3576 ($ (-315 |#3|))) (-15 -3577 ((-3 $ "failed") (-315 |#3|))) (-15 -3576 ($ (-1180))) (-15 -3577 ((-3 $ "failed") (-1180))) (-15 -4378 ((-315 |#3|) $)) (IF (|has| |#3| (-1041 (-549))) (PROGN (-15 -3576 ($ (-315 (-549)))) (-15 -3577 ((-3 $ "failed") (-315 (-549)))) (-15 -3576 ($ (-410 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-549))))) (-15 -3576 ($ (-949 (-549)))) (-15 -3577 ((-3 $ "failed") (-949 (-549))))) |%noBranch|) (IF (|has| |#3| (-1041 (-380))) (PROGN (-15 -3576 ($ (-315 (-380)))) (-15 -3577 ((-3 $ "failed") (-315 (-380)))) (-15 -3576 ($ (-410 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-380))))) (-15 -3576 ($ (-949 (-380)))) (-15 -3577 ((-3 $ "failed") (-949 (-380))))) |%noBranch|) (-15 -3807 ($ $)) (-15 -3438 ($ $)) (-15 -4375 ($ $)) (-15 -4374 ($ $)) (-15 -1910 ($ $)) (-15 -4070 ($ $)) (-15 -4066 ($ $)) (-15 -4071 ($ $)) (-15 -3907 ($ $)) (-15 -3908 ($ $)) (-15 -3909 ($ $)) (-15 -3913 ($ $)) (-15 -3914 ($ $)) (-15 -3915 ($ $)) (-15 -4059 ($)) (-15 -3485 ((-643 (-1180)) $)) (-15 -1806 ((-112))) (-15 -1806 ((-112) (-112))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-909 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-909 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-909 |#1|) "failed") $) NIL)) (-3576 (((-909 |#1|) $) NIL)) (-1967 (($ (-1269 (-909 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-909 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-909 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-909 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-909 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-909 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-3536 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-909 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-909 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-909 |#1|) (-370)))) (-1772 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370)))) (-1771 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-1174 (-909 |#1|)) "failed") $ $) NIL (|has| (-909 |#1|) (-370)))) (-1773 (($ $ (-1174 (-909 |#1|))) NIL (|has| (-909 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-909 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| (-909 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-909 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-909 |#1|))) NIL)) (-1842 (($) NIL (|has| (-909 |#1|) (-370)))) (-1774 (($) NIL (|has| (-909 |#1|) (-370)))) (-3644 (((-1269 (-909 |#1|)) $) NIL) (((-691 (-909 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-909 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-909 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-909 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-909 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-909 |#1|)) NIL) (($ (-909 |#1|) $) NIL))) -(((-342 |#1| |#2|) (-330 (-909 |#1|)) (-922) (-922)) (T -342)) -NIL -(-330 (-909 |#1|)) -((-1815 (((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) $) 39)) (-1967 (($ (-1269 (-410 |#3|)) (-1269 $)) NIL) (($ (-1269 (-410 |#3|))) NIL) (($ (-1269 |#3|) |#3|) 177)) (-1820 (((-1269 $) (-1269 $)) 160)) (-1807 (((-643 (-643 |#2|))) 129)) (-1832 (((-112) |#2| |#2|) 76)) (-3926 (($ $) 151)) (-3801 (((-773)) 176)) (-1821 (((-1269 $) (-1269 $)) 222)) (-1808 (((-643 (-949 |#2|)) (-1180)) 118)) (-1824 (((-112) $) 173)) (-1823 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1810 (((-3 |#3| "failed")) 52)) (-1834 (((-773)) 188)) (-4231 ((|#2| $ |#2| |#2|) 143)) (-1811 (((-3 |#3| "failed")) 71)) (-4242 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-773)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-1822 (((-1269 $) (-1269 $)) 166)) (-1809 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1833 (((-112)) 34))) -(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1807 ((-643 (-643 |#2|)))) (-15 -1808 ((-643 (-949 |#2|)) (-1180))) (-15 -1809 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1810 ((-3 |#3| "failed"))) (-15 -1811 ((-3 |#3| "failed"))) (-15 -4231 (|#2| |#1| |#2| |#2|)) (-15 -3926 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1823 ((-112) |#1| |#3|)) (-15 -1823 ((-112) |#1| |#2|)) (-15 -1967 (|#1| (-1269 |#3|) |#3|)) (-15 -1815 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1820 ((-1269 |#1|) (-1269 |#1|))) (-15 -1821 ((-1269 |#1|) (-1269 |#1|))) (-15 -1822 ((-1269 |#1|) (-1269 |#1|))) (-15 -1823 ((-112) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1832 ((-112) |#2| |#2|)) (-15 -1833 ((-112))) (-15 -1834 ((-773))) (-15 -3801 ((-773))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-773))) (-15 -1967 (|#1| (-1269 (-410 |#3|)))) (-15 -1967 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) (-344 |#2| |#3| |#4|) (-1224) (-1245 |#2|) (-1245 (-410 |#3|))) (T -343)) -((-3801 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1834 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1833 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1832 (*1 *2 *3 *3) (-12 (-4 *3 (-1224)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-1811 (*1 *2) (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1810 (*1 *2) (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-643 (-949 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-1807 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-643 (-643 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) -(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1807 ((-643 (-643 |#2|)))) (-15 -1808 ((-643 (-949 |#2|)) (-1180))) (-15 -1809 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1810 ((-3 |#3| "failed"))) (-15 -1811 ((-3 |#3| "failed"))) (-15 -4231 (|#2| |#1| |#2| |#2|)) (-15 -3926 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1823 ((-112) |#1| |#3|)) (-15 -1823 ((-112) |#1| |#2|)) (-15 -1967 (|#1| (-1269 |#3|) |#3|)) (-15 -1815 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1820 ((-1269 |#1|) (-1269 |#1|))) (-15 -1821 ((-1269 |#1|) (-1269 |#1|))) (-15 -1822 ((-1269 |#1|) (-1269 |#1|))) (-15 -1823 ((-112) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1832 ((-112) |#2| |#2|)) (-15 -1833 ((-112))) (-15 -1834 ((-773))) (-15 -3801 ((-773))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-773))) (-15 -1967 (|#1| (-1269 (-410 |#3|)))) (-15 -1967 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1815 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 204)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-2241 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-2239 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-1957 (((-691 (-410 |#2|)) (-1269 $)) 53) (((-691 (-410 |#2|))) 68)) (-3754 (((-410 |#2|) $) 59)) (-1843 (((-1192 (-922) (-773)) (-549)) 155 (|has| (-410 |#2|) (-352)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-4401 (((-408 $) $) 123 (|has| (-410 |#2|) (-365)))) (-1753 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-3540 (((-773)) 96 (|has| (-410 |#2|) (-370)))) (-1829 (((-112)) 221)) (-1828 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 178 (|has| (-410 |#2|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 176 (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-3 (-410 |#2|) #1#) $) 173)) (-3576 (((-549) $) 177 (|has| (-410 |#2|) (-1041 (-549)))) (((-410 (-549)) $) 175 (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-410 |#2|) $) 174)) (-1967 (($ (-1269 (-410 |#2|)) (-1269 $)) 55) (($ (-1269 (-410 |#2|))) 71) (($ (-1269 |#2|) |#2|) 203)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-352)))) (-2964 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-1956 (((-691 (-410 |#2|)) $ (-1269 $)) 60) (((-691 (-410 |#2|)) $) 66)) (-2427 (((-691 (-549)) (-691 $)) 172 (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 171 (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-691 $) (-1269 $)) 170) (((-691 (-410 |#2|)) (-691 $)) 169)) (-1820 (((-1269 $) (-1269 $)) 209)) (-4274 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-3890 (((-3 $ "failed") $) 37)) (-1807 (((-643 (-643 |#1|))) 190 (|has| |#1| (-370)))) (-1832 (((-112) |#1| |#1|) 225)) (-3513 (((-922)) 61)) (-3395 (($) 99 (|has| (-410 |#2|) (-370)))) (-1827 (((-112)) 218)) (-1826 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2963 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111 (|has| (-410 |#2|) (-365)))) (-3926 (($ $) 196)) (-3236 (($) 157 (|has| (-410 |#2|) (-352)))) (-1848 (((-112) $) 158 (|has| (-410 |#2|) (-352)))) (-1941 (($ $ (-773)) 149 (|has| (-410 |#2|) (-352))) (($ $) 148 (|has| (-410 |#2|) (-352)))) (-4155 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-4203 (((-922) $) 160 (|has| (-410 |#2|) (-352))) (((-834 (-922)) $) 146 (|has| (-410 |#2|) (-352)))) (-2573 (((-112) $) 35)) (-3801 (((-773)) 228)) (-1821 (((-1269 $) (-1269 $)) 210)) (-3536 (((-410 |#2|) $) 58)) (-1808 (((-643 (-949 |#1|)) (-1180)) 191 (|has| |#1| (-365)))) (-3868 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120 (|has| (-410 |#2|) (-365)))) (-2192 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-2188 (((-922) $) 98 (|has| (-410 |#2|) (-370)))) (-3481 ((|#3| $) 164)) (-2069 (($ (-643 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-3663 (((-1162) $) 10)) (-1816 (((-691 (-410 |#2|))) 205)) (-1818 (((-691 (-410 |#2|))) 207)) (-2806 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-1813 (($ (-1269 |#2|) |#2|) 201)) (-1817 (((-691 (-410 |#2|))) 206)) (-1819 (((-691 (-410 |#2|))) 208)) (-1812 (((-2 (|:| |num| (-691 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1814 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 202)) (-1825 (((-1269 $)) 214)) (-4350 (((-1269 $)) 215)) (-1824 (((-112) $) 213)) (-1823 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3869 (($) 151 (|has| (-410 |#2|) (-352)) CONST)) (-2563 (($ (-922)) 97 (|has| (-410 |#2|) (-370)))) (-1810 (((-3 |#2| "failed")) 193)) (-3664 (((-1123) $) 11)) (-1834 (((-773)) 227)) (-2572 (($) 168)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| (-410 |#2|) (-365)))) (-3564 (($ (-643 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 154 (|has| (-410 |#2|) (-352)))) (-4164 (((-408 $) $) 121 (|has| (-410 |#2|) (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-3889 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112 (|has| (-410 |#2|) (-365)))) (-1752 (((-773) $) 114 (|has| (-410 |#2|) (-365)))) (-4231 ((|#1| $ |#1| |#1|) 195)) (-1811 (((-3 |#2| "failed")) 194)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-4189 (((-410 |#2|) (-1269 $)) 54) (((-410 |#2|)) 67)) (-1942 (((-773) $) 159 (|has| (-410 |#2|) (-352))) (((-3 (-773) "failed") $ $) 147 (|has| (-410 |#2|) (-352)))) (-4242 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-643 (-1180)) (-643 (-773))) 138 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180) (-773)) 139 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-643 (-1180))) 140 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180)) 141 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-773)) 143 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) 145 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-2571 (((-691 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-3605 ((|#3|) 167)) (-1842 (($) 156 (|has| (-410 |#2|) (-352)))) (-3644 (((-1269 (-410 |#2|)) $ (-1269 $)) 57) (((-691 (-410 |#2|)) (-1269 $) (-1269 $)) 56) (((-1269 (-410 |#2|)) $) 73) (((-691 (-410 |#2|)) (-1269 $)) 72)) (-4402 (((-1269 (-410 |#2|)) $) 70) (($ (-1269 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 153 (|has| (-410 |#2|) (-352)))) (-1822 (((-1269 $) (-1269 $)) 211)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-549))) 95 (-3960 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1041 (-410 (-549)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-3105 (($ $) 152 (|has| (-410 |#2|) (-352))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-2770 ((|#3| $) 52)) (-3530 (((-773)) 32 T CONST)) (-1831 (((-112)) 224)) (-1830 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-2240 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-1809 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1833 (((-112)) 226)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-643 (-1180)) (-643 (-773))) 134 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180) (-773)) 135 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-643 (-1180))) 136 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180)) 137 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-773)) 142 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) 144 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-549)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-549))) 127 (|has| (-410 |#2|) (-365))))) -(((-344 |#1| |#2| |#3|) (-140) (-1224) (-1245 |t#1|) (-1245 (-410 |t#2|))) (T -344)) -((-3801 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773)))) (-1834 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773)))) (-1833 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1832 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1830 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1830 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1828 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1828 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-4350 (*1 *2) (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1825 (*1 *2) (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1819 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1818 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1817 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1816 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-1813 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| (-691 *5)) (|:| |den| *5))))) (-1823 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1823 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-4231 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-1811 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1810 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1809 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1224)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-643 (-949 *4))))) (-1807 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-643 (-643 *3)))))) -(-13 (-726 (-410 |t#2|) |t#3|) (-10 -8 (-15 -3801 ((-773))) (-15 -1834 ((-773))) (-15 -1833 ((-112))) (-15 -1832 ((-112) |t#1| |t#1|)) (-15 -1831 ((-112))) (-15 -1830 ((-112) |t#1|)) (-15 -1830 ((-112) |t#2|)) (-15 -1829 ((-112))) (-15 -1828 ((-112) |t#1|)) (-15 -1828 ((-112) |t#2|)) (-15 -1827 ((-112))) (-15 -1826 ((-112) |t#1|)) (-15 -1826 ((-112) |t#2|)) (-15 -4350 ((-1269 $))) (-15 -1825 ((-1269 $))) (-15 -1824 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -1822 ((-1269 $) (-1269 $))) (-15 -1821 ((-1269 $) (-1269 $))) (-15 -1820 ((-1269 $) (-1269 $))) (-15 -1819 ((-691 (-410 |t#2|)))) (-15 -1818 ((-691 (-410 |t#2|)))) (-15 -1817 ((-691 (-410 |t#2|)))) (-15 -1816 ((-691 (-410 |t#2|)))) (-15 -1815 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1967 ($ (-1269 |t#2|) |t#2|)) (-15 -1814 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1813 ($ (-1269 |t#2|) |t#2|)) (-15 -1812 ((-2 (|:| |num| (-691 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1823 ((-112) $ |t#1|)) (-15 -1823 ((-112) $ |t#2|)) (-15 -4242 ($ $ (-1 |t#2| |t#2|))) (-15 -3926 ($ $)) (-15 -4231 (|t#1| $ |t#1| |t#1|)) (-15 -1811 ((-3 |t#2| "failed"))) (-15 -1810 ((-3 |t#2| "failed"))) (-15 -1809 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -1808 ((-643 (-949 |t#1|)) (-1180))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1807 ((-643 (-643 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-38 #2=(-410 |#2|)) . T) ((-38 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #1# #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-618 #1#) -3960 (|has| (-410 |#2|) (-1041 (-410 (-549)))) (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-618 #2#) . T) ((-618 (-549)) . T) ((-618 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-615 (-865)) . T) ((-172) . T) ((-616 |#3|) . T) ((-231 #2#) |has| (-410 |#2|) (-365)) ((-233) -3960 (|has| (-410 |#2|) (-352)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-291) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-308) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-365) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-352)) ((-370) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-370))) ((-352) |has| (-410 |#2|) (-352)) ((-372 #2# |#3|) . T) ((-413 #2# |#3|) . T) ((-379 #2#) . T) ((-415 #2#) . T) ((-455) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-560) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-648 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-648 #2#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-650 #2#) . T) ((-650 $) . T) ((-642 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-642 #2#) . T) ((-642 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-641 #2#) . T) ((-641 (-549)) |has| (-410 |#2|) (-641 (-549))) ((-719 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-719 #2#) . T) ((-719 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-726 #2# |#3|) . T) ((-728) . T) ((-903 (-1180)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) ((-924) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-1041 (-410 (-549))) |has| (-410 |#2|) (-1041 (-410 (-549)))) ((-1041 #2#) . T) ((-1041 (-549)) |has| (-410 |#2|) (-1041 (-549))) ((-1054 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-1054 #2#) . T) ((-1054 $) . T) ((-1059 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-1059 #2#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| (-410 |#2|) (-352)) ((-1224) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365)))) -((-4390 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|))) (-1224) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1224) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -345)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1224)) (-4 *8 (-1224)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1245 (-410 *9)))))) -(-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-909 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-909 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-909 |#1|) "failed") $) NIL)) (-3576 (((-909 |#1|) $) NIL)) (-1967 (($ (-1269 (-909 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-909 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-909 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-909 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-909 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-909 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-3536 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-909 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-909 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-909 |#1|) (-370)))) (-1772 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370)))) (-1771 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-1174 (-909 |#1|)) "failed") $ $) NIL (|has| (-909 |#1|) (-370)))) (-1773 (($ $ (-1174 (-909 |#1|))) NIL (|has| (-909 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-909 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1835 (((-961 (-1123))) NIL)) (-2572 (($) NIL (|has| (-909 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-909 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-909 |#1|))) NIL)) (-1842 (($) NIL (|has| (-909 |#1|) (-370)))) (-1774 (($) NIL (|has| (-909 |#1|) (-370)))) (-3644 (((-1269 (-909 |#1|)) $) NIL) (((-691 (-909 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-909 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-909 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-909 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-909 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-909 |#1|)) NIL) (($ (-909 |#1|) $) NIL))) -(((-346 |#1| |#2|) (-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1835 ((-961 (-1123)))))) (-922) (-922)) (T -346)) -((-1835 (*1 *2) (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-346 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))) -(-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1835 ((-961 (-1123)))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 58)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 56 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 142)) (-3576 ((|#1| $) 113)) (-1967 (($ (-1269 |#1|)) 130)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) 124 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 160 (|has| |#1| (-370)))) (-1848 (((-112) $) 66 (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) 60 (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) 62)) (-2191 (($) 162 (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) 117) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) 171 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 178)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 96 (|has| |#1| (-370)))) (-4363 (((-112) $) 147)) (-3664 (((-1123) $) NIL)) (-1835 (((-961 (-1123))) 57)) (-2572 (($) 158 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 119 (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) 90) (((-922)) 91)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) 161 (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) 154 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) 122)) (-1842 (($) 159 (|has| |#1| (-370)))) (-1774 (($) 167 (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 77) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) 174) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 100)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 155 T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 144) (((-1269 $) (-922)) 98)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 67 T CONST)) (-3067 (($) 103 T CONST)) (-4360 (($ $) 107 (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) 65)) (-4381 (($ $ $) 176) (($ $ |#1|) 177)) (-4269 (($ $) 157) (($ $ $) NIL)) (-4271 (($ $ $) 86)) (** (($ $ (-922)) 180) (($ $ (-773)) 181) (($ $ (-549)) 179)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 102) (($ $ $) 101) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) (-352) (-1174 |#1|)) (T -347)) -((-1835 (*1 *2) (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-347 *3 *4)) (-4 *3 (-352)) (-14 *4 (-1174 *3))))) -(-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1835 (((-961 (-1123))) NIL)) (-2572 (($) NIL (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) NIL)) (-1842 (($) NIL (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) NIL)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-348 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) (-352) (-922)) (T -348)) -((-1835 (*1 *2) (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-348 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) -(-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) -((-1845 (((-773) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) 61)) (-1836 (((-961 (-1123)) (-1174 |#1|)) 111)) (-1837 (((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) (-1174 |#1|)) 102)) (-1838 (((-691 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) 113)) (-1839 (((-3 (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) "failed") (-922)) 13)) (-1840 (((-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) (-922)) 18))) -(((-349 |#1|) (-10 -7 (-15 -1836 ((-961 (-1123)) (-1174 |#1|))) (-15 -1837 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) (-1174 |#1|))) (-15 -1838 ((-691 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1845 ((-773) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1839 ((-3 (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) "failed") (-922))) (-15 -1840 ((-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) (-922)))) (-352)) (T -349)) -((-1840 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-3 (-1174 *4) (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123))))))) (-5 *1 (-349 *4)) (-4 *4 (-352)))) (-1839 (*1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-5 *1 (-349 *4)) (-4 *4 (-352)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-4 *4 (-352)) (-5 *2 (-773)) (-5 *1 (-349 *4)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-4 *4 (-352)) (-5 *2 (-691 *4)) (-5 *1 (-349 *4)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-5 *1 (-349 *4)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-961 (-1123))) (-5 *1 (-349 *4))))) -(-10 -7 (-15 -1836 ((-961 (-1123)) (-1174 |#1|))) (-15 -1837 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) (-1174 |#1|))) (-15 -1838 ((-691 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1845 ((-773) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1839 ((-3 (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) "failed") (-922))) (-15 -1840 ((-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) (-922)))) -((-4378 ((|#1| |#3|) 106) ((|#3| |#1|) 89))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4378 (|#3| |#1|)) (-15 -4378 (|#1| |#3|))) (-330 |#2|) (-352) (-330 |#2|)) (T -350)) -((-4378 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4378 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *3 *4 *2)) (-4 *3 (-330 *4))))) -(-10 -7 (-15 -4378 (|#3| |#1|)) (-15 -4378 (|#1| |#3|))) -((-1848 (((-112) $) 60)) (-4203 (((-834 (-922)) $) 23) (((-922) $) 66)) (-3868 (((-3 $ "failed") $) 18)) (-3869 (($) 9)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 116)) (-1942 (((-3 (-773) "failed") $ $) 94) (((-773) $) 81)) (-4242 (($ $ (-773)) NIL) (($ $) 8)) (-1842 (($) 53)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 38)) (-3105 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-351 |#1|) (-10 -8 (-15 -4203 ((-922) |#1|)) (-15 -1942 ((-773) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1842 (|#1|)) (-15 -3106 ((-3 (-1269 |#1|) "failed") (-691 |#1|))) (-15 -3105 (|#1| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -1942 ((-3 (-773) "failed") |#1| |#1|)) (-15 -4203 ((-834 (-922)) |#1|)) (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-352)) (T -351)) -NIL -(-10 -8 (-15 -4203 ((-922) |#1|)) (-15 -1942 ((-773) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1842 (|#1|)) (-15 -3106 ((-3 (-1269 |#1|) "failed") (-691 |#1|))) (-15 -3105 (|#1| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -1942 ((-3 (-773) "failed") |#1| |#1|)) (-15 -4203 ((-834 (-922)) |#1|)) (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1843 (((-1192 (-922) (-773)) (-549)) 101)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-3540 (((-773)) 111)) (-4156 (($) 18 T CONST)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-3395 (($) 114)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-3236 (($) 99)) (-1848 (((-112) $) 98)) (-1941 (($ $) 87) (($ $ (-773)) 86)) (-4155 (((-112) $) 79)) (-4203 (((-834 (-922)) $) 89) (((-922) $) 96)) (-2573 (((-112) $) 35)) (-3868 (((-3 $ "failed") $) 110)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2188 (((-922) $) 113)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3869 (($) 109 T CONST)) (-2563 (($ (-922)) 112)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 102)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-3 (-773) "failed") $ $) 88) (((-773) $) 97)) (-4242 (($ $ (-773)) 107) (($ $) 105)) (-1842 (($) 100)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 103)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3105 (((-3 $ "failed") $) 90) (($ $) 104)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-773)) 108) (($ $) 106)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) -(((-352) (-140)) (T -352)) -((-3105 (*1 *1 *1) (-4 *1 (-352))) (-3106 (*1 *2 *3) (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-352)) (-5 *2 (-1269 *1)))) (-1844 (*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))))) (-1843 (*1 *2 *3) (-12 (-4 *1 (-352)) (-5 *3 (-549)) (-5 *2 (-1192 (-922) (-773))))) (-1842 (*1 *1) (-4 *1 (-352))) (-3236 (*1 *1) (-4 *1 (-352))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-112)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-773)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-922)))) (-1841 (*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-405) (-370) (-1154) (-233) (-10 -8 (-15 -3105 ($ $)) (-15 -3106 ((-3 (-1269 $) "failed") (-691 $))) (-15 -1844 ((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549)))))) (-15 -1843 ((-1192 (-922) (-773)) (-549))) (-15 -1842 ($)) (-15 -3236 ($)) (-15 -1848 ((-112) $)) (-15 -1942 ((-773) $)) (-15 -4203 ((-922) $)) (-15 -1841 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) . T) ((-1224) . T)) -((-4351 (((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) |#1|) 55)) (-4350 (((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))) 53))) -(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $)))) (-1245 |#1|) (-413 |#1| |#2|)) (T -353)) -((-4351 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-4350 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) -(-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-909 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1845 (((-773)) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-909 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-909 |#1|) "failed") $) NIL)) (-3576 (((-909 |#1|) $) NIL)) (-1967 (($ (-1269 (-909 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-909 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-909 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-909 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-909 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-909 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-3536 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-909 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-909 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-909 |#1|) (-370)))) (-1772 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370)))) (-1771 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-1174 (-909 |#1|)) "failed") $ $) NIL (|has| (-909 |#1|) (-370)))) (-1773 (($ $ (-1174 (-909 |#1|))) NIL (|has| (-909 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-909 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1847 (((-1269 (-643 (-2 (|:| -3826 (-909 |#1|)) (|:| -2563 (-1123)))))) NIL)) (-1846 (((-691 (-909 |#1|))) NIL)) (-2572 (($) NIL (|has| (-909 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-909 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-909 |#1|))) NIL)) (-1842 (($) NIL (|has| (-909 |#1|) (-370)))) (-1774 (($) NIL (|has| (-909 |#1|) (-370)))) (-3644 (((-1269 (-909 |#1|)) $) NIL) (((-691 (-909 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-909 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-909 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-909 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-909 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-909 |#1|)) NIL) (($ (-909 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 (-909 |#1|)) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 (-909 |#1|)))) (-15 -1845 ((-773))))) (-922) (-922)) (T -354)) -((-1847 (*1 *2) (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 (-909 *3)) (|:| -2563 (-1123)))))) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-1846 (*1 *2) (-12 (-5 *2 (-691 (-909 *3))) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-1845 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))) -(-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 (-909 |#1|)) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 (-909 |#1|)))) (-15 -1845 ((-773))))) -((-2968 (((-112) $ $) 73)) (-3608 (((-112) $) 88)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) 106) (($ $ (-922)) 104 (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 171 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1845 (((-773)) 103)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) 188 (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 128)) (-3576 ((|#1| $) 105)) (-1967 (($ (-1269 |#1|)) 71)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) 183 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 172 (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) 114 (|has| |#1| (-370)))) (-2189 (((-112) $) 201 (|has| |#1| (-370)))) (-3536 ((|#1| $) 108) (($ $ (-922)) 107 (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) 215) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) 149 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) 87 (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) 84 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 96 (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) 83 (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 219)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 151 (|has| |#1| (-370)))) (-4363 (((-112) $) 124)) (-3664 (((-1123) $) NIL)) (-1847 (((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) 97)) (-1846 (((-691 |#1|)) 101)) (-2572 (($) 110 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 174 (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) 175)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) 75)) (-3605 (((-1174 |#1|)) 176)) (-1842 (($) 148 (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 122) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) 141) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 70)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 181 T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 198) (((-1269 $) (-922)) 117)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 187 T CONST)) (-3067 (($) 162 T CONST)) (-4360 (($ $) 123 (|has| |#1| (-370))) (($ $ (-773)) 115 (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) 209)) (-4381 (($ $ $) 120) (($ $ |#1|) 121)) (-4269 (($ $) 203) (($ $ $) 207)) (-4271 (($ $ $) 205)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 154)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 212) (($ $ $) 165) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119))) -(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) (-352) (-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (T -355)) -((-1847 (*1 *2) (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) *2)))) (-1846 (*1 *2) (-12 (-5 *2 (-691 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123))))))))) (-1845 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))))))) -(-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1845 (((-773)) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1847 (((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) NIL)) (-1846 (((-691 |#1|)) NIL)) (-2572 (($) NIL (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) NIL)) (-1842 (($) NIL (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) NIL)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) (-352) (-922)) (T -356)) -((-1847 (*1 *2) (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922)))) (-1846 (*1 *2) (-12 (-5 *2 (-691 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922)))) (-1845 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) -(-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 132 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) 158 (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 106)) (-3576 ((|#1| $) 103)) (-1967 (($ (-1269 |#1|)) 98)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) 95 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 51 (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) 133 (|has| |#1| (-370)))) (-2189 (((-112) $) 87 (|has| |#1| (-370)))) (-3536 ((|#1| $) 47) (($ $ (-922)) 52 (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) 78) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) 110 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 108 (|has| |#1| (-370)))) (-4363 (((-112) $) 160)) (-3664 (((-1123) $) NIL)) (-2572 (($) 44 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 127 (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) 157)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) 70)) (-3605 (((-1174 |#1|)) 101)) (-1842 (($) 138 (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 66) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) 156) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 100)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 162 T CONST)) (-3662 (((-112) $ $) 164)) (-2190 (((-1269 $)) 122) (((-1269 $) (-922)) 60)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 124 T CONST)) (-3067 (($) 40 T CONST)) (-4360 (($ $) 81 (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) 120)) (-4381 (($ $ $) 112) (($ $ |#1|) 113)) (-4269 (($ $) 93) (($ $ $) 118)) (-4271 (($ $ $) 116)) (** (($ $ (-922)) NIL) (($ $ (-773)) 55) (($ $ (-549)) 141)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 91) (($ $ $) 68) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89))) -(((-357 |#1| |#2|) (-330 |#1|) (-352) (-1174 |#1|)) (T -357)) -NIL -(-330 |#1|) -((-1863 (((-961 (-1174 |#1|)) (-1174 |#1|)) 51)) (-3395 (((-1174 |#1|) (-922) (-922)) 158) (((-1174 |#1|) (-922)) 154)) (-1848 (((-112) (-1174 |#1|)) 110)) (-1850 (((-922) (-922)) 88)) (-1851 (((-922) (-922)) 95)) (-1849 (((-922) (-922)) 86)) (-2189 (((-112) (-1174 |#1|)) 114)) (-1858 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 139)) (-1861 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 144)) (-1860 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 143)) (-1859 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 142)) (-1857 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 134)) (-1862 (((-1174 |#1|) (-1174 |#1|)) 74)) (-1853 (((-1174 |#1|) (-922)) 149)) (-1856 (((-1174 |#1|) (-922)) 152)) (-1855 (((-1174 |#1|) (-922)) 151)) (-1854 (((-1174 |#1|) (-922)) 150)) (-1852 (((-1174 |#1|) (-922)) 147))) -(((-358 |#1|) (-10 -7 (-15 -1848 ((-112) (-1174 |#1|))) (-15 -2189 ((-112) (-1174 |#1|))) (-15 -1849 ((-922) (-922))) (-15 -1850 ((-922) (-922))) (-15 -1851 ((-922) (-922))) (-15 -1852 ((-1174 |#1|) (-922))) (-15 -1853 ((-1174 |#1|) (-922))) (-15 -1854 ((-1174 |#1|) (-922))) (-15 -1855 ((-1174 |#1|) (-922))) (-15 -1856 ((-1174 |#1|) (-922))) (-15 -1857 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1858 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1859 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1860 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1861 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3395 ((-1174 |#1|) (-922))) (-15 -3395 ((-1174 |#1|) (-922) (-922))) (-15 -1862 ((-1174 |#1|) (-1174 |#1|))) (-15 -1863 ((-961 (-1174 |#1|)) (-1174 |#1|)))) (-352)) (T -358)) -((-1863 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-961 (-1174 *4))) (-5 *1 (-358 *4)) (-5 *3 (-1174 *4)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1861 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1860 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1859 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1858 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1857 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4))))) -(-10 -7 (-15 -1848 ((-112) (-1174 |#1|))) (-15 -2189 ((-112) (-1174 |#1|))) (-15 -1849 ((-922) (-922))) (-15 -1850 ((-922) (-922))) (-15 -1851 ((-922) (-922))) (-15 -1852 ((-1174 |#1|) (-922))) (-15 -1853 ((-1174 |#1|) (-922))) (-15 -1854 ((-1174 |#1|) (-922))) (-15 -1855 ((-1174 |#1|) (-922))) (-15 -1856 ((-1174 |#1|) (-922))) (-15 -1857 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1858 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1859 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1860 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1861 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3395 ((-1174 |#1|) (-922))) (-15 -3395 ((-1174 |#1|) (-922) (-922))) (-15 -1862 ((-1174 |#1|) (-1174 |#1|))) (-15 -1863 ((-961 (-1174 |#1|)) (-1174 |#1|)))) -((-1864 ((|#1| (-1174 |#2|)) 61))) -(((-359 |#1| |#2|) (-10 -7 (-15 -1864 (|#1| (-1174 |#2|)))) (-13 (-405) (-10 -7 (-15 -4378 (|#1| |#2|)) (-15 -2188 ((-922) |#1|)) (-15 -2190 ((-1269 |#1|) (-922))) (-15 -4360 (|#1| |#1|)))) (-352)) (T -359)) -((-1864 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4378 (*2 *4)) (-15 -2188 ((-922) *2)) (-15 -2190 ((-1269 *2) (-922))) (-15 -4360 (*2 *2))))) (-5 *1 (-359 *2 *4))))) -(-10 -7 (-15 -1864 (|#1| (-1174 |#2|)))) -((-3107 (((-3 (-643 |#3|) "failed") (-643 |#3|) |#3|) 38))) -(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3107 ((-3 (-643 |#3|) "failed") (-643 |#3|) |#3|))) (-352) (-1245 |#1|) (-1245 |#2|)) (T -360)) -((-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-352)) (-5 *1 (-360 *4 *5 *3))))) -(-10 -7 (-15 -3107 ((-3 (-643 |#3|) "failed") (-643 |#3|) |#3|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) NIL)) (-1842 (($) NIL (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) NIL)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-361 |#1| |#2|) (-330 |#1|) (-352) (-922)) (T -361)) -NIL -(-330 |#1|) -((-2398 (((-112) (-643 (-949 |#1|))) 41)) (-2400 (((-643 (-949 |#1|)) (-643 (-949 |#1|))) 53)) (-2399 (((-3 (-643 (-949 |#1|)) "failed") (-643 (-949 |#1|))) 48))) -(((-362 |#1| |#2|) (-10 -7 (-15 -2398 ((-112) (-643 (-949 |#1|)))) (-15 -2399 ((-3 (-643 (-949 |#1|)) "failed") (-643 (-949 |#1|)))) (-15 -2400 ((-643 (-949 |#1|)) (-643 (-949 |#1|))))) (-455) (-643 (-1180))) (T -362)) -((-2400 (*1 *2 *2) (-12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-643 (-1180))))) (-2399 (*1 *2 *2) (|partial| -12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-643 (-1180))))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-643 (-1180)))))) -(-10 -7 (-15 -2398 ((-112) (-643 (-949 |#1|)))) (-15 -2399 ((-3 (-643 (-949 |#1|)) "failed") (-643 (-949 |#1|)))) (-15 -2400 ((-643 (-949 |#1|)) (-643 (-949 |#1|))))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) 17)) (-2444 ((|#1| $ (-549)) NIL)) (-2445 (((-549) $ (-549)) NIL)) (-2436 (($ (-1 |#1| |#1|) $) 34)) (-2437 (($ (-1 (-549) (-549)) $) 26)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 28)) (-3664 (((-1123) $) NIL)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $) 30)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 40) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 11 T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ |#1| (-549)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-363 |#1|) (-13 (-476) (-1041 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3540 ((-773) $)) (-15 -2445 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2437 ($ (-1 (-549) (-549)) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)) (-15 -1954 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $)))) (-1104)) (T -363)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) (-2445 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (-2437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-363 *3)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-549))))) (-5 *1 (-363 *3)) (-4 *3 (-1104))))) -(-13 (-476) (-1041 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3540 ((-773) $)) (-15 -2445 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2437 ($ (-1 (-549) (-549)) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)) (-15 -1954 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $)))) -((-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 13)) (-2241 (($ $) 14)) (-4401 (((-408 $) $) 34)) (-4155 (((-112) $) 30)) (-2806 (($ $) 19)) (-3564 (($ $ $) 25) (($ (-643 $)) NIL)) (-4164 (((-408 $) $) 35)) (-3889 (((-3 $ "failed") $ $) 24)) (-1752 (((-773) $) 28)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 39)) (-2240 (((-112) $ $) 16)) (-4381 (($ $ $) 37))) -(((-364 |#1|) (-10 -8 (-15 -4381 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) -NIL -(-10 -8 (-15 -4381 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) -(((-365) (-140)) (T -365)) -((-4381 (*1 *1 *1 *1) (-4 *1 (-365)))) -(-13 (-308) (-1224) (-243) (-10 -8 (-15 -4381 ($ $ $)) (-6 -4423) (-6 -4417))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-2968 (((-112) $ $) NIL)) (-1865 ((|#1| $ |#1|) 31)) (-1869 (($ $ (-1162)) 23)) (-4051 (((-3 |#1| "failed") $) 30)) (-1866 ((|#1| $) 28)) (-1870 (($ (-391)) 22) (($ (-391) (-1162)) 21)) (-3973 (((-391) $) 25)) (-3663 (((-1162) $) NIL)) (-1867 (((-1162) $) 26)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20)) (-1868 (($ $) 24)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 19))) -(((-366 |#1|) (-13 (-367 (-391) |#1|) (-10 -8 (-15 -4051 ((-3 |#1| "failed") $)))) (-1104)) (T -366)) -((-4051 (*1 *2 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1104))))) -(-13 (-367 (-391) |#1|) (-10 -8 (-15 -4051 ((-3 |#1| "failed") $)))) -((-2968 (((-112) $ $) 7)) (-1865 ((|#2| $ |#2|) 14)) (-1869 (($ $ (-1162)) 19)) (-1866 ((|#2| $) 15)) (-1870 (($ |#1|) 21) (($ |#1| (-1162)) 20)) (-3973 ((|#1| $) 17)) (-3663 (((-1162) $) 10)) (-1867 (((-1162) $) 16)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-1868 (($ $) 18)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-367 |#1| |#2|) (-140) (-1104) (-1104)) (T -367)) -((-1870 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-1870 (*1 *1 *2 *3) (-12 (-5 *3 (-1162)) (-4 *1 (-367 *2 *4)) (-4 *2 (-1104)) (-4 *4 (-1104)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-1868 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-1162)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-1865 (*1 *2 *1 *2) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -1870 ($ |t#1|)) (-15 -1870 ($ |t#1| (-1162))) (-15 -1869 ($ $ (-1162))) (-15 -1868 ($ $)) (-15 -3973 (|t#1| $)) (-15 -1867 ((-1162) $)) (-15 -1866 (|t#2| $)) (-15 -1865 (|t#2| $ |t#2|)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-3643 (((-1269 (-691 |#2|)) (-1269 $)) 70)) (-1963 (((-691 |#2|) (-1269 $)) 141)) (-1895 ((|#2| $) 39)) (-1961 (((-691 |#2|) $ (-1269 $)) 144)) (-2567 (((-3 $ "failed") $) 91)) (-1893 ((|#2| $) 42)) (-1873 (((-1174 |#2|) $) 99)) (-1965 ((|#2| (-1269 $)) 124)) (-1891 (((-1174 |#2|) $) 34)) (-1885 (((-112)) 118)) (-1967 (($ (-1269 |#2|) (-1269 $)) 134)) (-3890 (((-3 $ "failed") $) 95)) (-1878 (((-112)) 112)) (-1876 (((-112)) 107)) (-1880 (((-112)) 61)) (-1964 (((-691 |#2|) (-1269 $)) 139)) (-1896 ((|#2| $) 38)) (-1962 (((-691 |#2|) $ (-1269 $)) 143)) (-2568 (((-3 $ "failed") $) 89)) (-1894 ((|#2| $) 41)) (-1874 (((-1174 |#2|) $) 98)) (-1966 ((|#2| (-1269 $)) 122)) (-1892 (((-1174 |#2|) $) 32)) (-1886 (((-112)) 117)) (-1877 (((-112)) 109)) (-1879 (((-112)) 59)) (-1881 (((-112)) 104)) (-1884 (((-112)) 119)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) 130)) (-1890 (((-112)) 115)) (-1875 (((-643 (-1269 |#2|))) 103)) (-1888 (((-112)) 116)) (-1889 (((-112)) 113)) (-1887 (((-112)) 54)) (-1883 (((-112)) 120))) -(((-368 |#1| |#2|) (-10 -8 (-15 -1873 ((-1174 |#2|) |#1|)) (-15 -1874 ((-1174 |#2|) |#1|)) (-15 -1875 ((-643 (-1269 |#2|)))) (-15 -2567 ((-3 |#1| "failed") |#1|)) (-15 -2568 ((-3 |#1| "failed") |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 -1876 ((-112))) (-15 -1877 ((-112))) (-15 -1878 ((-112))) (-15 -1879 ((-112))) (-15 -1880 ((-112))) (-15 -1881 ((-112))) (-15 -1883 ((-112))) (-15 -1884 ((-112))) (-15 -1885 ((-112))) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-1174 |#2|) |#1|)) (-15 -1892 ((-1174 |#2|) |#1|)) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1893 (|#2| |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|)))) (-369 |#2|) (-172)) (T -368)) -((-1890 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1888 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1885 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1884 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1881 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1880 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1879 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1877 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1876 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1875 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-643 (-1269 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -(-10 -8 (-15 -1873 ((-1174 |#2|) |#1|)) (-15 -1874 ((-1174 |#2|) |#1|)) (-15 -1875 ((-643 (-1269 |#2|)))) (-15 -2567 ((-3 |#1| "failed") |#1|)) (-15 -2568 ((-3 |#1| "failed") |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 -1876 ((-112))) (-15 -1877 ((-112))) (-15 -1878 ((-112))) (-15 -1879 ((-112))) (-15 -1880 ((-112))) (-15 -1881 ((-112))) (-15 -1883 ((-112))) (-15 -1884 ((-112))) (-15 -1885 ((-112))) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-1174 |#2|) |#1|)) (-15 -1892 ((-1174 |#2|) |#1|)) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1893 (|#2| |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1947 (((-3 $ "failed")) 42 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-3643 (((-1269 (-691 |#1|)) (-1269 $)) 83)) (-1897 (((-1269 $)) 86)) (-4156 (($) 18 T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) 45 (|has| |#1| (-560)))) (-1871 (((-3 $ "failed")) 43 (|has| |#1| (-560)))) (-1963 (((-691 |#1|) (-1269 $)) 70)) (-1895 ((|#1| $) 79)) (-1961 (((-691 |#1|) $ (-1269 $)) 81)) (-2567 (((-3 $ "failed") $) 50 (|has| |#1| (-560)))) (-2570 (($ $ (-922)) 31)) (-1893 ((|#1| $) 77)) (-1873 (((-1174 |#1|) $) 47 (|has| |#1| (-560)))) (-1965 ((|#1| (-1269 $)) 72)) (-1891 (((-1174 |#1|) $) 68)) (-1885 (((-112)) 62)) (-1967 (($ (-1269 |#1|) (-1269 $)) 74)) (-3890 (((-3 $ "failed") $) 52 (|has| |#1| (-560)))) (-3513 (((-922)) 85)) (-1882 (((-112)) 59)) (-2594 (($ $ (-922)) 38)) (-1878 (((-112)) 55)) (-1876 (((-112)) 53)) (-1880 (((-112)) 57)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) 46 (|has| |#1| (-560)))) (-1872 (((-3 $ "failed")) 44 (|has| |#1| (-560)))) (-1964 (((-691 |#1|) (-1269 $)) 71)) (-1896 ((|#1| $) 80)) (-1962 (((-691 |#1|) $ (-1269 $)) 82)) (-2568 (((-3 $ "failed") $) 51 (|has| |#1| (-560)))) (-2569 (($ $ (-922)) 32)) (-1894 ((|#1| $) 78)) (-1874 (((-1174 |#1|) $) 48 (|has| |#1| (-560)))) (-1966 ((|#1| (-1269 $)) 73)) (-1892 (((-1174 |#1|) $) 69)) (-1886 (((-112)) 63)) (-3663 (((-1162) $) 10)) (-1877 (((-112)) 54)) (-1879 (((-112)) 56)) (-1881 (((-112)) 58)) (-3664 (((-1123) $) 11)) (-1884 (((-112)) 61)) (-3644 (((-1269 |#1|) $ (-1269 $)) 76) (((-691 |#1|) (-1269 $) (-1269 $)) 75)) (-2070 (((-643 (-949 |#1|)) (-1269 $)) 84)) (-2756 (($ $ $) 28)) (-1890 (((-112)) 67)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-1875 (((-643 (-1269 |#1|))) 49 (|has| |#1| (-560)))) (-2757 (($ $ $ $) 29)) (-1888 (((-112)) 65)) (-2755 (($ $ $) 27)) (-1889 (((-112)) 66)) (-1887 (((-112)) 64)) (-1883 (((-112)) 60)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-369 |#1|) (-140) (-172)) (T -369)) -((-1897 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3)))) (-3513 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-643 (-949 *4))))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 (-691 *4))))) (-1962 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 *4)))) (-3644 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1890 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1889 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1888 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1887 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1886 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1885 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1884 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1883 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1882 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1881 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1880 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1879 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1878 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1877 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1876 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3890 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-2568 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-2567 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-1875 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-643 (-1269 *3))))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3)))) (-2085 (*1 *2) (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) (-2084 (*1 *2) (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) (-1872 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172)))) (-1871 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172)))) (-1947 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172))))) -(-13 (-746 |t#1|) (-10 -8 (-15 -1897 ((-1269 $))) (-15 -3513 ((-922))) (-15 -2070 ((-643 (-949 |t#1|)) (-1269 $))) (-15 -3643 ((-1269 (-691 |t#1|)) (-1269 $))) (-15 -1962 ((-691 |t#1|) $ (-1269 $))) (-15 -1961 ((-691 |t#1|) $ (-1269 $))) (-15 -1896 (|t#1| $)) (-15 -1895 (|t#1| $)) (-15 -1894 (|t#1| $)) (-15 -1893 (|t#1| $)) (-15 -3644 ((-1269 |t#1|) $ (-1269 $))) (-15 -3644 ((-691 |t#1|) (-1269 $) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|) (-1269 $))) (-15 -1966 (|t#1| (-1269 $))) (-15 -1965 (|t#1| (-1269 $))) (-15 -1964 ((-691 |t#1|) (-1269 $))) (-15 -1963 ((-691 |t#1|) (-1269 $))) (-15 -1892 ((-1174 |t#1|) $)) (-15 -1891 ((-1174 |t#1|) $)) (-15 -1890 ((-112))) (-15 -1889 ((-112))) (-15 -1888 ((-112))) (-15 -1887 ((-112))) (-15 -1886 ((-112))) (-15 -1885 ((-112))) (-15 -1884 ((-112))) (-15 -1883 ((-112))) (-15 -1882 ((-112))) (-15 -1881 ((-112))) (-15 -1880 ((-112))) (-15 -1879 ((-112))) (-15 -1878 ((-112))) (-15 -1877 ((-112))) (-15 -1876 ((-112))) (IF (|has| |t#1| (-560)) (PROGN (-15 -3890 ((-3 $ "failed") $)) (-15 -2568 ((-3 $ "failed") $)) (-15 -2567 ((-3 $ "failed") $)) (-15 -1875 ((-643 (-1269 |t#1|)))) (-15 -1874 ((-1174 |t#1|) $)) (-15 -1873 ((-1174 |t#1|) $)) (-15 -2085 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2084 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -1872 ((-3 $ "failed"))) (-15 -1871 ((-3 $ "failed"))) (-15 -1947 ((-3 $ "failed"))) (-6 -4422)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-722) . T) ((-746 |#1|) . T) ((-763) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3540 (((-773)) 17)) (-3395 (($) 14)) (-2188 (((-922) $) 15)) (-3663 (((-1162) $) 10)) (-2563 (($ (-922)) 16)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-370) (-140)) (T -370)) -((-3540 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-773)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) (-3395 (*1 *1) (-4 *1 (-370)))) -(-13 (-1104) (-10 -8 (-15 -3540 ((-773))) (-15 -2563 ($ (-922))) (-15 -2188 ((-922) $)) (-15 -3395 ($)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-1957 (((-691 |#2|) (-1269 $)) 47)) (-1967 (($ (-1269 |#2|) (-1269 $)) 41)) (-1956 (((-691 |#2|) $ (-1269 $)) 49)) (-4189 ((|#2| (-1269 $)) 13)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) 27))) -(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) (-372 |#2| |#3|) (-172) (-1245 |#2|)) (T -371)) -NIL -(-10 -8 (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1957 (((-691 |#1|) (-1269 $)) 53)) (-3754 ((|#1| $) 59)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55)) (-1956 (((-691 |#1|) $ (-1269 $)) 60)) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-922)) 61)) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 58)) (-2192 ((|#2| $) 51 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4189 ((|#1| (-1269 $)) 54)) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44)) (-3105 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2770 ((|#2| $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-372 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -372)) -((-3513 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-922)))) (-1956 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4)))) (-3644 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) (-4 *2 (-172)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1245 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3513 ((-922))) (-15 -1956 ((-691 |t#1|) $ (-1269 $))) (-15 -3754 (|t#1| $)) (-15 -3536 (|t#1| $)) (-15 -3644 ((-1269 |t#1|) $ (-1269 $))) (-15 -3644 ((-691 |t#1|) (-1269 $) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|) (-1269 $))) (-15 -4189 (|t#1| (-1269 $))) (-15 -1957 ((-691 |t#1|) (-1269 $))) (-15 -2770 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -2192 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-1900 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1898 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3310 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2443 (($ $) 25)) (-3843 (((-549) (-1 (-112) |#2|) $) NIL) (((-549) |#2| $) 11) (((-549) |#2| $ (-549)) NIL)) (-3941 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-373 |#1| |#2|) (-10 -8 (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-374 |#2|) (-1219)) (T -373)) -NIL -(-10 -8 (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-374 |#1|) (-140) (-1219)) (T -374)) -((-3941 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-1900 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) (-5 *2 (-549)))) (-3843 (*1 *2 *3 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-549)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-852)) (-5 *2 (-112)))) (-1899 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-2442 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-1898 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852))))) -(-13 (-653 |t#1|) (-10 -8 (-6 -4425) (-15 -3941 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2443 ($ $)) (-15 -3310 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1900 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3843 ((-549) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -3843 ((-549) |t#1| $)) (-15 -3843 ((-549) |t#1| $ (-549)))) |%noBranch|) (IF (|has| |t#1| (-852)) (PROGN (-6 (-852)) (-15 -3941 ($ $ $)) (-15 -3310 ($ $)) (-15 -1900 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -1899 ($ $ $ (-549))) (-15 -2442 ($ $)) (-15 -1898 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-852)) (-15 -1898 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T)) -((-4273 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-4274 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4390 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-375 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1219) (-374 |#1|) (-1219) (-374 |#3|)) (T -375)) -((-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-4 *2 (-374 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-374 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-374 *5)) (-4 *6 (-374 *2)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *2 (-374 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-374 *5))))) -(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4366 (((-643 |#1|) $) 37)) (-4379 (($ $ (-773)) 38)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4371 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 41)) (-4368 (($ $) 39)) (-4372 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 42)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4199 (($ $ |#1| $) 36) (($ $ (-643 |#1|) (-643 $)) 35)) (-4380 (((-773) $) 43)) (-3953 (($ $ $) 34)) (-4378 (((-865) $) 12) (($ |#1|) 46) (((-1285 |#1| |#2|) $) 45) (((-1294 |#1| |#2|) $) 44)) (-4386 ((|#2| (-1294 |#1| |#2|) $) 47)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-1901 (($ (-674 |#1|)) 40)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-376 |#1| |#2|) (-140) (-852) (-172)) (T -376)) -((-4386 (*1 *2 *3 *1) (-12 (-5 *3 (-1294 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-852)) (-4 *2 (-172)))) (-4378 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-1285 *3 *4)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-1294 *3 *4)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-773)))) (-4372 (*1 *2 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4371 (*1 *2 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-4368 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4379 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-643 *3)))) (-4199 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-852)) (-4 *5 (-172))))) -(-13 (-637 |t#2|) (-10 -8 (-15 -4386 (|t#2| (-1294 |t#1| |t#2|) $)) (-15 -4378 ($ |t#1|)) (-15 -4378 ((-1285 |t#1| |t#2|) $)) (-15 -4378 ((-1294 |t#1| |t#2|) $)) (-15 -4380 ((-773) $)) (-15 -4372 ((-1294 |t#1| |t#2|) (-1294 |t#1| |t#2|) $)) (-15 -4371 ((-1294 |t#1| |t#2|) (-1294 |t#1| |t#2|) $)) (-15 -1901 ($ (-674 |t#1|))) (-15 -4368 ($ $)) (-15 -4379 ($ $ (-773))) (-15 -4366 ((-643 |t#1|) $)) (-15 -4199 ($ $ |t#1| $)) (-15 -4199 ($ $ (-643 |t#1|) (-643 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-650 |#2|) . T) ((-637 |#2|) . T) ((-642 |#2|) . T) ((-719 |#2|) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1104) . T)) -((-1904 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1902 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1903 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-377 |#1| |#2|) (-10 -7 (-15 -1902 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1903 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1904 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1219) (-13 (-374 |#1|) (-10 -7 (-6 -4426)))) (T -377)) -((-1904 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))))) (-1903 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))))) (-1902 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) -(-10 -7 (-15 -1902 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1903 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1904 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2427 (((-691 |#2|) (-691 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 22) (((-691 (-549)) (-691 $)) 14))) -(((-378 |#1| |#2|) (-10 -8 (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 |#2|) (-691 |#1|)))) (-379 |#2|) (-1052)) (T -378)) -NIL -(-10 -8 (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 |#2|) (-691 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2427 (((-691 |#1|) (-691 $)) 40) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 39) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 47 (|has| |#1| (-641 (-549)))) (((-691 (-549)) (-691 $)) 46 (|has| |#1| (-641 (-549))))) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-379 |#1|) (-140) (-1052)) (T -379)) -NIL -(-13 (-641 |t#1|) (-10 -7 (IF (|has| |t#1| (-641 (-549))) (-6 (-641 (-549))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 35)) (-3533 (((-549) $) 62)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4202 (($ $) 142)) (-3915 (($ $) 105)) (-4071 (($ $) 93)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) 47)) (-1753 (((-112) $ $) NIL)) (-3913 (($ $) 103)) (-4070 (($ $) 87)) (-4055 (((-549) $) 80)) (-2762 (($ $ (-549)) 75)) (-3917 (($ $) NIL)) (-4069 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3531 (($ $) 144)) (-3577 (((-3 (-549) #1="failed") $) 239) (((-3 (-410 (-549)) #1#) $) 235)) (-3576 (((-549) $) 237) (((-410 (-549)) $) 233)) (-2964 (($ $ $) NIL)) (-1913 (((-549) $ $) 131)) (-3890 (((-3 $ "failed") $) 147)) (-1912 (((-410 (-549)) $ (-773)) 240) (((-410 (-549)) $ (-773) (-773)) 232)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2537 (((-922)) 127) (((-922) (-922)) 128 (|has| $ (-6 -4416)))) (-3606 (((-112) $) 136)) (-4059 (($) 41)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL)) (-1905 (((-1275) (-773)) 199)) (-1906 (((-1275)) 204) (((-1275) (-773)) 205)) (-1908 (((-1275)) 206) (((-1275) (-773)) 207)) (-1907 (((-1275)) 202) (((-1275) (-773)) 203)) (-4203 (((-549) $) 68)) (-2573 (((-112) $) 40)) (-3412 (($ $ (-549)) NIL)) (-2764 (($ $) 51)) (-3536 (($ $) NIL)) (-3607 (((-112) $) 37)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-3260 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2538 (((-549) $) 17)) (-1911 (($) 113) (($ $) 119)) (-1910 (($) 118) (($ $) 120)) (-4374 (($ $) 108)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 149)) (-1944 (((-922) (-549)) 46 (|has| $ (-6 -4416)))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) 60)) (-3534 (($ $) 141)) (-3675 (($ (-549) (-549)) 137) (($ (-549) (-549) (-922)) 138)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2564 (((-549) $) 19)) (-1909 (($) 121)) (-4375 (($ $) 102)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-922)) 129) (((-922) (-922)) 130 (|has| $ (-6 -4416)))) (-4242 (($ $ (-773)) NIL) (($ $) 148)) (-1943 (((-922) (-549)) 50 (|has| $ (-6 -4416)))) (-3918 (($ $) NIL)) (-4068 (($ $) NIL)) (-3916 (($ $) NIL)) (-4067 (($ $) NIL)) (-3914 (($ $) 104)) (-4066 (($ $) 92)) (-4402 (((-380) $) 224) (((-225) $) 226) (((-893 (-380)) $) NIL) (((-1162) $) 210) (((-538) $) 222) (($ (-225)) 231)) (-4378 (((-865) $) 214) (($ (-549)) 236) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-549)) 236) (($ (-410 (-549))) NIL) (((-225) $) 227)) (-3530 (((-773)) NIL T CONST)) (-3535 (($ $) 143)) (-1945 (((-922)) 61) (((-922) (-922)) 82 (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) NIL)) (-3097 (((-922)) 132)) (-3921 (($ $) 111)) (-3909 (($ $) 49) (($ $ $) 59)) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) 109)) (-3907 (($ $) 39)) (-3923 (($ $) NIL)) (-3911 (($ $) NIL)) (-3924 (($ $) NIL)) (-3912 (($ $) NIL)) (-3922 (($ $) NIL)) (-3910 (($ $) NIL)) (-3920 (($ $) 110)) (-3908 (($ $) 52)) (-3807 (($ $) 58)) (-3510 (($) 36 T CONST)) (-3067 (($) 43 T CONST)) (-2900 (((-1162) $) 27) (((-1162) $ (-112)) 29) (((-1275) (-825) $) 30) (((-1275) (-825) $ (-112)) 31)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-2966 (((-112) $ $) 211)) (-2967 (((-112) $ $) 45)) (-3455 (((-112) $ $) 56)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 57)) (-4381 (($ $ $) 48) (($ $ (-549)) 42)) (-4269 (($ $) 38) (($ $ $) 53)) (-4271 (($ $ $) 74)) (** (($ $ (-922)) 85) (($ $ (-773)) NIL) (($ $ (-549)) 114) (($ $ (-410 (-549))) 160) (($ $ $) 151)) (* (($ (-922) $) 81) (($ (-773) $) NIL) (($ (-549) $) 86) (($ $ $) 73) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-380) (-13 (-407) (-233) (-616 (-1162)) (-823) (-615 (-225)) (-1205) (-616 (-538)) (-620 (-225)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -2764 ($ $)) (-15 -1913 ((-549) $ $)) (-15 -2762 ($ $ (-549))) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773))) (-15 -1911 ($)) (-15 -1910 ($)) (-15 -1909 ($)) (-15 -3909 ($ $ $)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -1908 ((-1275))) (-15 -1908 ((-1275) (-773))) (-15 -1907 ((-1275))) (-15 -1907 ((-1275) (-773))) (-15 -1906 ((-1275))) (-15 -1906 ((-1275) (-773))) (-15 -1905 ((-1275) (-773))) (-6 -4416) (-6 -4408)))) (T -380)) -((** (*1 *1 *1 *1) (-5 *1 (-380))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) (-2764 (*1 *1 *1) (-5 *1 (-380))) (-1913 (*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) (-2762 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380)))) (-1912 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380)))) (-1911 (*1 *1) (-5 *1 (-380))) (-1910 (*1 *1) (-5 *1 (-380))) (-1909 (*1 *1) (-5 *1 (-380))) (-3909 (*1 *1 *1 *1) (-5 *1 (-380))) (-1911 (*1 *1 *1) (-5 *1 (-380))) (-1910 (*1 *1 *1) (-5 *1 (-380))) (-1908 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) (-1907 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) (-1906 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380))))) -(-13 (-407) (-233) (-616 (-1162)) (-823) (-615 (-225)) (-1205) (-616 (-538)) (-620 (-225)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -2764 ($ $)) (-15 -1913 ((-549) $ $)) (-15 -2762 ($ $ (-549))) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773))) (-15 -1911 ($)) (-15 -1910 ($)) (-15 -1909 ($)) (-15 -3909 ($ $ $)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -1908 ((-1275))) (-15 -1908 ((-1275) (-773))) (-15 -1907 ((-1275))) (-15 -1907 ((-1275) (-773))) (-15 -1906 ((-1275))) (-15 -1906 ((-1275) (-773))) (-15 -1905 ((-1275) (-773))) (-6 -4416) (-6 -4408))) -((-1914 (((-643 (-294 (-949 (-168 |#1|)))) (-294 (-410 (-949 (-168 (-549))))) |#1|) 51) (((-643 (-294 (-949 (-168 |#1|)))) (-410 (-949 (-168 (-549)))) |#1|) 50) (((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-294 (-410 (-949 (-168 (-549)))))) |#1|) 47) (((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-410 (-949 (-168 (-549))))) |#1|) 41)) (-1915 (((-643 (-643 (-168 |#1|))) (-643 (-410 (-949 (-168 (-549))))) (-643 (-1180)) |#1|) 30) (((-643 (-168 |#1|)) (-410 (-949 (-168 (-549)))) |#1|) 18))) -(((-381 |#1|) (-10 -7 (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-294 (-410 (-949 (-168 (-549)))))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-294 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1915 ((-643 (-168 |#1|)) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1915 ((-643 (-643 (-168 |#1|))) (-643 (-410 (-949 (-168 (-549))))) (-643 (-1180)) |#1|))) (-13 (-365) (-850))) (T -381)) -((-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) (-5 *4 (-643 (-1180))) (-5 *2 (-643 (-643 (-168 *5)))) (-5 *1 (-381 *5)) (-4 *5 (-13 (-365) (-850))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-168 (-549))))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 (-168 (-549)))))) (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-168 (-549))))) (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-294 (-410 (-949 (-168 (-549))))))) (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850)))))) -(-10 -7 (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-294 (-410 (-949 (-168 (-549)))))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-294 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1915 ((-643 (-168 |#1|)) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1915 ((-643 (-643 (-168 |#1|))) (-643 (-410 (-949 (-168 (-549))))) (-643 (-1180)) |#1|))) -((-4004 (((-643 (-294 (-949 |#1|))) (-294 (-410 (-949 (-549)))) |#1|) 46) (((-643 (-294 (-949 |#1|))) (-410 (-949 (-549))) |#1|) 45) (((-643 (-643 (-294 (-949 |#1|)))) (-643 (-294 (-410 (-949 (-549))))) |#1|) 42) (((-643 (-643 (-294 (-949 |#1|)))) (-643 (-410 (-949 (-549)))) |#1|) 36)) (-1916 (((-643 |#1|) (-410 (-949 (-549))) |#1|) 20) (((-643 (-643 |#1|)) (-643 (-410 (-949 (-549)))) (-643 (-1180)) |#1|) 30))) -(((-382 |#1|) (-10 -7 (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-410 (-949 (-549)))) |#1|)) (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-294 (-410 (-949 (-549))))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-410 (-949 (-549))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-294 (-410 (-949 (-549)))) |#1|)) (-15 -1916 ((-643 (-643 |#1|)) (-643 (-410 (-949 (-549)))) (-643 (-1180)) |#1|)) (-15 -1916 ((-643 |#1|) (-410 (-949 (-549))) |#1|))) (-13 (-850) (-365))) (T -382)) -((-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-410 (-949 (-549))))) (-5 *4 (-643 (-1180))) (-5 *2 (-643 (-643 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 (-549))))) (-5 *2 (-643 (-294 (-949 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 (-294 (-949 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-294 (-410 (-949 (-549)))))) (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 (-549))))) (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365)))))) -(-10 -7 (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-410 (-949 (-549)))) |#1|)) (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-294 (-410 (-949 (-549))))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-410 (-949 (-549))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-294 (-410 (-949 (-549)))) |#1|)) (-15 -1916 ((-643 (-643 |#1|)) (-643 (-410 (-949 (-549)))) (-643 (-1180)) |#1|)) (-15 -1916 ((-643 |#1|) (-410 (-949 (-549))) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 33)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 12 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-383 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|))) (-1052) (-852)) (T -383)) -NIL -(-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| "failed") $) 30)) (-3576 ((|#2| $) 32)) (-4391 (($ $) NIL)) (-2581 (((-773) $) 11)) (-3224 (((-643 $) $) 23)) (-4369 (((-112) $) NIL)) (-4370 (($ |#2| |#1|) 21)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1917 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3295 ((|#2| $) 18)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 51) (($ |#2|) 31)) (-4249 (((-643 |#1|) $) 20)) (-4109 ((|#1| $ |#2|) 55)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 33 T CONST)) (-3066 (((-643 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-384 |#1| |#2|) (-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1052) (-852)) (T -384)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-384 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852))))) -(-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-691 (-701))) 14) (($ (-643 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 11))) -(((-385) (-140)) (T -385)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-701))) (-4 *1 (-385)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-385)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-385))))) -(-13 (-399) (-10 -8 (-15 -4378 ($ (-691 (-701)))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))))) -(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#2| "failed") $) 49)) (-3576 ((|#2| $) 50)) (-4391 (($ $) 35)) (-2581 (((-773) $) 39)) (-3224 (((-643 $) $) 40)) (-4369 (((-112) $) 43)) (-4370 (($ |#2| |#1|) 44)) (-4390 (($ (-1 |#1| |#1|) $) 45)) (-1917 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-3295 ((|#2| $) 38)) (-3594 ((|#1| $) 37)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ |#2|) 48)) (-4249 (((-643 |#1|) $) 41)) (-4109 ((|#1| $ |#2|) 46)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3066 (((-643 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-386 |#1| |#2|) (-140) (-1052) (-1104)) (T -386)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104)))) (-4109 (*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)))) (-4370 (*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-112)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-386 *3 *4)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-773)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104))))) -(-13 (-111 |t#1| |t#1|) (-1041 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4109 (|t#1| $ |t#2|)) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -4370 ($ |t#2| |t#1|)) (-15 -4369 ((-112) $)) (-15 -3066 ((-643 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4249 ((-643 |t#1|) $)) (-15 -3224 ((-643 $) $)) (-15 -2581 ((-773) $)) (-15 -3295 (|t#2| $)) (-15 -3594 (|t#1| $)) (-15 -1917 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4391 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-719 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-1041 |#2|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-3577 (((-3 $ "failed") (-691 (-315 (-380)))) 21) (((-3 $ "failed") (-691 (-315 (-549)))) 19) (((-3 $ "failed") (-691 (-949 (-380)))) 17) (((-3 $ "failed") (-691 (-949 (-549)))) 15) (((-3 $ "failed") (-691 (-410 (-949 (-380))))) 13) (((-3 $ "failed") (-691 (-410 (-949 (-549))))) 11)) (-3576 (($ (-691 (-315 (-380)))) 22) (($ (-691 (-315 (-549)))) 20) (($ (-691 (-949 (-380)))) 18) (($ (-691 (-949 (-549)))) 16) (($ (-691 (-410 (-949 (-380))))) 14) (($ (-691 (-410 (-949 (-549))))) 12)) (-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-643 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 23))) -(((-387) (-140)) (T -387)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-387)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-387)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387))))) -(-13 (-399) (-10 -8 (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -3576 ($ (-691 (-315 (-380))))) (-15 -3577 ((-3 $ "failed") (-691 (-315 (-380))))) (-15 -3576 ($ (-691 (-315 (-549))))) (-15 -3577 ((-3 $ "failed") (-691 (-315 (-549))))) (-15 -3576 ($ (-691 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-691 (-949 (-380))))) (-15 -3576 ($ (-691 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-691 (-949 (-549))))) (-15 -3576 ($ (-691 (-410 (-949 (-380)))))) (-15 -3577 ((-3 $ "failed") (-691 (-410 (-949 (-380)))))) (-15 -3576 ($ (-691 (-410 (-949 (-549)))))) (-15 -3577 ((-3 $ "failed") (-691 (-410 (-949 (-549)))))))) -(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) -((-2968 (((-112) $ $) 7)) (-3540 (((-773) $) 34)) (-4156 (($) 19 T CONST)) (-4371 (((-3 $ "failed") $ $) 37)) (-3577 (((-3 |#1| "failed") $) 45)) (-3576 ((|#1| $) 46)) (-3890 (((-3 $ "failed") $) 16)) (-1918 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2573 (((-112) $) 18)) (-2444 ((|#1| $ (-549)) 31)) (-2445 (((-773) $ (-549)) 32)) (-2934 (($ $ $) 28 (|has| |#1| (-852)))) (-3260 (($ $ $) 27 (|has| |#1| (-852)))) (-2436 (($ (-1 |#1| |#1|) $) 29)) (-2437 (($ (-1 (-773) (-773)) $) 30)) (-4372 (((-3 $ "failed") $ $) 38)) (-3663 (((-1162) $) 10)) (-1919 (($ $ $) 39)) (-1920 (($ $ $) 40)) (-3664 (((-1123) $) 11)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) 33)) (-3282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4378 (((-865) $) 12) (($ |#1|) 44)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-2966 (((-112) $ $) 25 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 24 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 26 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 23 (|has| |#1| (-852)))) (** (($ $ (-922)) 14) (($ $ (-773)) 17) (($ |#1| (-773)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-388 |#1|) (-140) (-1104)) (T -388)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-1920 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-1919 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-4372 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-4371 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-3282 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-1918 (*1 *2 *1 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) (-5 *2 (-773)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-773))))))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-388 *4)) (-4 *4 (-1104)) (-5 *2 (-773)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-2437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-773) (-773))) (-4 *1 (-388 *3)) (-4 *3 (-1104)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1104))))) -(-13 (-728) (-1041 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-773))) (-15 -1920 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -4372 ((-3 $ "failed") $ $)) (-15 -4371 ((-3 $ "failed") $ $)) (-15 -3282 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1918 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3540 ((-773) $)) (-15 -1954 ((-643 (-2 (|:| |gen| |t#1|) (|:| -4375 (-773)))) $)) (-15 -2445 ((-773) $ (-549))) (-15 -2444 (|t#1| $ (-549))) (-15 -2437 ($ (-1 (-773) (-773)) $)) (-15 -2436 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|))) -(((-102) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-728) . T) ((-852) |has| |#1| (-852)) ((-1041 |#1|) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773) $) 74)) (-4156 (($) NIL T CONST)) (-4371 (((-3 $ #1="failed") $ $) 77)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-1918 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2573 (((-112) $) 17)) (-2444 ((|#1| $ (-549)) NIL)) (-2445 (((-773) $ (-549)) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2436 (($ (-1 |#1| |#1|) $) 40)) (-2437 (($ (-1 (-773) (-773)) $) 37)) (-4372 (((-3 $ #1#) $ $) 60)) (-3663 (((-1162) $) NIL)) (-1919 (($ $ $) 28)) (-1920 (($ $ $) 26)) (-3664 (((-1123) $) NIL)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) 34)) (-3282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70)) (-4378 (((-865) $) 24) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 11 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) 84 (|has| |#1| (-852)))) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ |#1| (-773)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-389 |#1|) (-388 |#1|) (-1104)) (T -389)) -NIL -(-388 |#1|) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) "failed") $) 53)) (-3576 (((-549) $) 54)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-2934 (($ $ $) 60)) (-3260 (($ $ $) 59)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-549)) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 57)) (-2967 (((-112) $ $) 56)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 58)) (-3088 (((-112) $ $) 55)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-390) (-140)) (T -390)) -NIL -(-13 (-560) (-852) (-1041 (-549))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-852) . T) ((-1041 (-549)) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-1921 (((-112) $) 25)) (-1922 (((-112) $) 22)) (-4046 (($ (-1162) (-1162) (-1162)) 26)) (-3973 (((-1162) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1926 (($ (-1162) (-1162) (-1162)) 14)) (-1924 (((-1162) $) 17)) (-1923 (((-112) $) 18)) (-1925 (((-1162) $) 15)) (-4378 (((-865) $) 12) (($ (-1162)) 13) (((-1162) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 7))) -(((-391) (-392)) (T -391)) -NIL -(-392) -((-2968 (((-112) $ $) 7)) (-1921 (((-112) $) 17)) (-1922 (((-112) $) 18)) (-4046 (($ (-1162) (-1162) (-1162)) 16)) (-3973 (((-1162) $) 21)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-1926 (($ (-1162) (-1162) (-1162)) 23)) (-1924 (((-1162) $) 20)) (-1923 (((-112) $) 19)) (-1925 (((-1162) $) 22)) (-4378 (((-865) $) 12) (($ (-1162)) 25) (((-1162) $) 24)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-392) (-140)) (T -392)) -((-1926 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) (-1923 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-4046 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392))))) -(-13 (-1104) (-493 (-1162)) (-10 -8 (-15 -1926 ($ (-1162) (-1162) (-1162))) (-15 -1925 ((-1162) $)) (-15 -3973 ((-1162) $)) (-15 -1924 ((-1162) $)) (-15 -1923 ((-112) $)) (-15 -1922 ((-112) $)) (-15 -1921 ((-112) $)) (-15 -4046 ($ (-1162) (-1162) (-1162))))) -(((-102) . T) ((-618 #1=(-1162)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1927 (((-865) $) 63)) (-4156 (($) NIL T CONST)) (-2570 (($ $ (-922)) NIL)) (-2594 (($ $ (-922)) NIL)) (-2569 (($ $ (-922)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($ (-773)) 38)) (-4343 (((-773)) 18)) (-1928 (((-865) $) 65)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2757 (($ $ $ $) NIL)) (-2755 (($ $ $) NIL)) (-3510 (($) 24 T CONST)) (-3455 (((-112) $ $) 41)) (-4269 (($ $) 48) (($ $ $) 50)) (-4271 (($ $ $) 51)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-393 |#1| |#2| |#3|) (-13 (-746 |#3|) (-10 -8 (-15 -4343 ((-773))) (-15 -1928 ((-865) $)) (-15 -1927 ((-865) $)) (-15 -2572 ($ (-773))))) (-773) (-773) (-172)) (T -393)) -((-4343 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) (-4 *5 (-172)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) (-4 *5 (-172)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-746 |#3|) (-10 -8 (-15 -4343 ((-773))) (-15 -1928 ((-865) $)) (-15 -1927 ((-865) $)) (-15 -2572 ($ (-773))))) -((-1933 (((-1162)) 12)) (-1930 (((-1150 (-1162))) 30)) (-1932 (((-1275) (-1162)) 27) (((-1275) (-391)) 26)) (-1931 (((-1275)) 28)) (-1929 (((-1150 (-1162))) 29))) -(((-394) (-10 -7 (-15 -1929 ((-1150 (-1162)))) (-15 -1930 ((-1150 (-1162)))) (-15 -1931 ((-1275))) (-15 -1932 ((-1275) (-391))) (-15 -1932 ((-1275) (-1162))) (-15 -1933 ((-1162))))) (T -394)) -((-1933 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-394)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-394)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-394)))) (-1931 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-394)))) (-1930 (*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394)))) (-1929 (*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394))))) -(-10 -7 (-15 -1929 ((-1150 (-1162)))) (-15 -1930 ((-1150 (-1162)))) (-15 -1931 ((-1275))) (-15 -1932 ((-1275) (-391))) (-15 -1932 ((-1275) (-1162))) (-15 -1933 ((-1162)))) -((-4203 (((-773) (-335 |#1| |#2| |#3| |#4|)) 19))) -(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395)) -((-4203 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-773)) (-5 *1 (-395 *4 *5 *6 *7))))) -(-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|)))) -((-2968 (((-112) $ $) NIL)) (-4042 (((-643 (-1162)) $ (-643 (-1162))) 42)) (-1934 (((-643 (-1162)) $ (-643 (-1162))) 43)) (-4044 (((-643 (-1162)) $ (-643 (-1162))) 44)) (-4045 (((-643 (-1162)) $) 39)) (-4046 (($) 30)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1935 (((-643 (-1162)) $) 40)) (-4048 (((-643 (-1162)) $) 41)) (-4049 (((-1275) $ (-549)) 37) (((-1275) $) 38)) (-4402 (($ (-865) (-549)) 35)) (-4378 (((-865) $) 49) (($ (-865)) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-396) (-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -1935 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -1934 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162))))))) (T -396)) -((-4402 (*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-396)))) (-4049 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-396)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-396)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-4046 (*1 *1) (-5 *1 (-396))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-4044 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-1934 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-4042 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396))))) -(-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -1935 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -1934 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162)))))) -((-4378 (((-396) |#1|) 11))) -(((-397 |#1|) (-10 -7 (-15 -4378 ((-396) |#1|))) (-1104)) (T -397)) -((-4378 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-397 *3)) (-4 *3 (-1104))))) -(-10 -7 (-15 -4378 ((-396) |#1|))) -((-1937 (((-643 (-1162)) (-643 (-1162))) 9)) (-3804 (((-1275) (-391)) 26)) (-1936 (((-1106) (-1180) (-643 (-1180)) (-1183) (-643 (-1180))) 59) (((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)) (-1180)) 34) (((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180))) 33))) -(((-398) (-10 -7 (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)))) (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)) (-1180))) (-15 -1936 ((-1106) (-1180) (-643 (-1180)) (-1183) (-643 (-1180)))) (-15 -3804 ((-1275) (-391))) (-15 -1937 ((-643 (-1162)) (-643 (-1162)))))) (T -398)) -((-1937 (*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-398)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-398)))) (-1936 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-643 (-1180))) (-5 *5 (-1183)) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) (-1936 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) (-1936 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398))))) -(-10 -7 (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)))) (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)) (-1180))) (-15 -1936 ((-1106) (-1180) (-643 (-1180)) (-1183) (-643 (-1180)))) (-15 -3804 ((-1275) (-391))) (-15 -1937 ((-643 (-1162)) (-643 (-1162))))) -((-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8))) -(((-399) (-140)) (T -399)) -((-3804 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1275))))) -(-13 (-1219) (-615 (-865)) (-10 -8 (-15 -3804 ((-1275) $)))) -(((-615 (-865)) . T) ((-1219) . T)) -((-3577 (((-3 $ "failed") (-315 (-380))) 21) (((-3 $ "failed") (-315 (-549))) 19) (((-3 $ "failed") (-949 (-380))) 17) (((-3 $ "failed") (-949 (-549))) 15) (((-3 $ "failed") (-410 (-949 (-380)))) 13) (((-3 $ "failed") (-410 (-949 (-549)))) 11)) (-3576 (($ (-315 (-380))) 22) (($ (-315 (-549))) 20) (($ (-949 (-380))) 18) (($ (-949 (-549))) 16) (($ (-410 (-949 (-380)))) 14) (($ (-410 (-949 (-549)))) 12)) (-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-643 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 23))) +((-4376 (($ $) 6)) (-4377 (($ $) 7)) (** (($ $ $) 8))) +(((-286) (-140)) (T -286)) +((** (*1 *1 *1 *1) (-4 *1 (-286))) (-4377 (*1 *1 *1) (-4 *1 (-286))) (-4376 (*1 *1 *1) (-4 *1 (-286)))) +(-13 (-10 -8 (-15 -4376 ($ $)) (-15 -4377 ($ $)) (-15 ** ($ $ $)))) +((-1685 (((-644 (-1158 |#1|)) (-1158 |#1|) |#1|) 35)) (-1682 ((|#2| |#2| |#1|) 39)) (-1684 ((|#2| |#2| |#1|) 41)) (-1683 ((|#2| |#2| |#1|) 40))) +(((-287 |#1| |#2|) (-10 -7 (-15 -1682 (|#2| |#2| |#1|)) (-15 -1683 (|#2| |#2| |#1|)) (-15 -1684 (|#2| |#2| |#1|)) (-15 -1685 ((-644 (-1158 |#1|)) (-1158 |#1|) |#1|))) (-366) (-1263 |#1|)) (T -287)) +((-1685 (*1 *2 *3 *4) (-12 (-4 *4 (-366)) (-5 *2 (-644 (-1158 *4))) (-5 *1 (-287 *4 *5)) (-5 *3 (-1158 *4)) (-4 *5 (-1263 *4)))) (-1684 (*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-287 *3 *2)) (-4 *2 (-1263 *3)))) (-1683 (*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-287 *3 *2)) (-4 *2 (-1263 *3)))) (-1682 (*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-287 *3 *2)) (-4 *2 (-1263 *3))))) +(-10 -7 (-15 -1682 (|#2| |#2| |#1|)) (-15 -1683 (|#2| |#2| |#1|)) (-15 -1684 (|#2| |#2| |#1|)) (-15 -1685 ((-644 (-1158 |#1|)) (-1158 |#1|) |#1|))) +((-4233 ((|#2| $ |#1|) 6))) +(((-288 |#1| |#2|) (-140) (-1105) (-1220)) (T -288)) +((-4233 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220))))) +(-13 (-10 -8 (-15 -4233 (|t#2| $ |t#1|)))) +((-1686 ((|#3| $ |#2| |#3|) 12)) (-3519 ((|#3| $ |#2|) 10))) +(((-289 |#1| |#2| |#3|) (-10 -8 (-15 -1686 (|#3| |#1| |#2| |#3|)) (-15 -3519 (|#3| |#1| |#2|))) (-290 |#2| |#3|) (-1105) (-1220)) (T -289)) +NIL +(-10 -8 (-15 -1686 (|#3| |#1| |#2| |#3|)) (-15 -3519 (|#3| |#1| |#2|))) +((-4221 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4428)))) (-1686 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) 11)) (-4233 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-290 |#1| |#2|) (-140) (-1105) (-1220)) (T -290)) +((-4233 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) (-3519 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) (-4221 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) (-1686 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220))))) +(-13 (-288 |t#1| |t#2|) (-10 -8 (-15 -4233 (|t#2| $ |t#1| |t#2|)) (-15 -3519 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4428)) (PROGN (-15 -4221 (|t#2| $ |t#1| |t#2|)) (-15 -1686 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-288 |#1| |#2|) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 37)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 44)) (-2243 (($ $) 41)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) 35)) (-4276 (($ |#2| |#3|) 18)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-3016 ((|#3| $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 19)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2567 (((-3 $ "failed") $ $) NIL)) (-1754 (((-774) $) 36)) (-4233 ((|#2| $ |#2|) 46)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 23)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 31 T CONST)) (-3069 (($) 39 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 40))) +(((-291 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-309) (-10 -8 (-15 -3016 (|#3| $)) (-15 -4380 (|#2| $)) (-15 -4276 ($ |#2| |#3|)) (-15 -2567 ((-3 $ "failed") $ $)) (-15 -3892 ((-3 $ "failed") $)) (-15 -2808 ($ $)) (-15 -4233 (|#2| $ |#2|)))) (-173) (-1246 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -291)) +((-3892 (*1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-291 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1246 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3016 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-291 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1246 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4380 (*1 *2 *1) (-12 (-4 *2 (-1246 *3)) (-5 *1 (-291 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4276 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-291 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1246 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2567 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-291 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1246 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2808 (*1 *1 *1) (-12 (-4 *2 (-173)) (-5 *1 (-291 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1246 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4233 (*1 *2 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-291 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1246 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) +(-13 (-309) (-10 -8 (-15 -3016 (|#3| $)) (-15 -4380 (|#2| $)) (-15 -4276 ($ |#2| |#3|)) (-15 -2567 ((-3 $ "failed") $ $)) (-15 -3892 ((-3 $ "failed") $)) (-15 -2808 ($ $)) (-15 -4233 (|#2| $ |#2|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-292) (-140)) (T -292)) +NIL +(-13 (-1053) (-111 $ $) (-10 -7 (-6 -4420))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-1692 (($ (-510) (-510) (-1107) $) 19)) (-1690 (($ (-510) (-644 (-969)) $) 23)) (-1694 (((-644 (-1089)) $) 10)) (-1688 (($) 25)) (-1693 (((-694 (-1107)) (-510) (-510) $) 18)) (-1691 (((-644 (-969)) (-510) $) 22)) (-3998 (($) 7)) (-1689 (($) 24)) (-4380 (((-866) $) 29)) (-1687 (($) 26))) +(((-293) (-13 (-616 (-866)) (-10 -8 (-15 -3998 ($)) (-15 -1694 ((-644 (-1089)) $)) (-15 -1693 ((-694 (-1107)) (-510) (-510) $)) (-15 -1692 ($ (-510) (-510) (-1107) $)) (-15 -1691 ((-644 (-969)) (-510) $)) (-15 -1690 ($ (-510) (-644 (-969)) $)) (-15 -1689 ($)) (-15 -1688 ($)) (-15 -1687 ($))))) (T -293)) +((-3998 (*1 *1) (-5 *1 (-293))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-644 (-1089))) (-5 *1 (-293)))) (-1693 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-1107))) (-5 *1 (-293)))) (-1692 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-510)) (-5 *3 (-1107)) (-5 *1 (-293)))) (-1691 (*1 *2 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-644 (-969))) (-5 *1 (-293)))) (-1690 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-969))) (-5 *1 (-293)))) (-1689 (*1 *1) (-5 *1 (-293))) (-1688 (*1 *1) (-5 *1 (-293))) (-1687 (*1 *1) (-5 *1 (-293)))) +(-13 (-616 (-866)) (-10 -8 (-15 -3998 ($)) (-15 -1694 ((-644 (-1089)) $)) (-15 -1693 ((-694 (-1107)) (-510) (-510) $)) (-15 -1692 ($ (-510) (-510) (-1107) $)) (-15 -1691 ((-644 (-969)) (-510) $)) (-15 -1690 ($ (-510) (-644 (-969)) $)) (-15 -1689 ($)) (-15 -1688 ($)) (-15 -1687 ($)))) +((-1698 (((-644 (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |geneigvec| (-644 (-692 (-411 (-950 |#1|))))))) (-692 (-411 (-950 |#1|)))) 104)) (-1697 (((-644 (-692 (-411 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 |#1|)))))) (-692 (-411 (-950 |#1|)))) 99) (((-644 (-692 (-411 (-950 |#1|)))) (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|))) (-692 (-411 (-950 |#1|))) (-774) (-774)) 41)) (-1699 (((-644 (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 |#1|))))))) (-692 (-411 (-950 |#1|)))) 101)) (-1696 (((-644 (-692 (-411 (-950 |#1|)))) (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|))) (-692 (-411 (-950 |#1|)))) 77)) (-1695 (((-644 (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (-692 (-411 (-950 |#1|)))) 76)) (-2772 (((-950 |#1|) (-692 (-411 (-950 |#1|)))) 57) (((-950 |#1|) (-692 (-411 (-950 |#1|))) (-1181)) 58))) +(((-294 |#1|) (-10 -7 (-15 -2772 ((-950 |#1|) (-692 (-411 (-950 |#1|))) (-1181))) (-15 -2772 ((-950 |#1|) (-692 (-411 (-950 |#1|))))) (-15 -1695 ((-644 (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (-692 (-411 (-950 |#1|))))) (-15 -1696 ((-644 (-692 (-411 (-950 |#1|)))) (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|))) (-692 (-411 (-950 |#1|))))) (-15 -1697 ((-644 (-692 (-411 (-950 |#1|)))) (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|))) (-692 (-411 (-950 |#1|))) (-774) (-774))) (-15 -1697 ((-644 (-692 (-411 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 |#1|)))))) (-692 (-411 (-950 |#1|))))) (-15 -1698 ((-644 (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |geneigvec| (-644 (-692 (-411 (-950 |#1|))))))) (-692 (-411 (-950 |#1|))))) (-15 -1699 ((-644 (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 |#1|))))))) (-692 (-411 (-950 |#1|)))))) (-456)) (T -294)) +((-1699 (*1 *2 *3) (-12 (-4 *4 (-456)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-411 (-950 *4)) (-1170 (-1181) (-950 *4)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 *4)))))))) (-5 *1 (-294 *4)) (-5 *3 (-692 (-411 (-950 *4)))))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-456)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-411 (-950 *4)) (-1170 (-1181) (-950 *4)))) (|:| |geneigvec| (-644 (-692 (-411 (-950 *4)))))))) (-5 *1 (-294 *4)) (-5 *3 (-692 (-411 (-950 *4)))))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-411 (-950 *5)) (-1170 (-1181) (-950 *5)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 *4)))) (-4 *5 (-456)) (-5 *2 (-644 (-692 (-411 (-950 *5))))) (-5 *1 (-294 *5)) (-5 *4 (-692 (-411 (-950 *5)))))) (-1697 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-411 (-950 *6)) (-1170 (-1181) (-950 *6)))) (-5 *5 (-774)) (-4 *6 (-456)) (-5 *2 (-644 (-692 (-411 (-950 *6))))) (-5 *1 (-294 *6)) (-5 *4 (-692 (-411 (-950 *6)))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-411 (-950 *5)) (-1170 (-1181) (-950 *5)))) (-4 *5 (-456)) (-5 *2 (-644 (-692 (-411 (-950 *5))))) (-5 *1 (-294 *5)) (-5 *4 (-692 (-411 (-950 *5)))))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-692 (-411 (-950 *4)))) (-4 *4 (-456)) (-5 *2 (-644 (-3 (-411 (-950 *4)) (-1170 (-1181) (-950 *4))))) (-5 *1 (-294 *4)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-692 (-411 (-950 *4)))) (-5 *2 (-950 *4)) (-5 *1 (-294 *4)) (-4 *4 (-456)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-411 (-950 *5)))) (-5 *4 (-1181)) (-5 *2 (-950 *5)) (-5 *1 (-294 *5)) (-4 *5 (-456))))) +(-10 -7 (-15 -2772 ((-950 |#1|) (-692 (-411 (-950 |#1|))) (-1181))) (-15 -2772 ((-950 |#1|) (-692 (-411 (-950 |#1|))))) (-15 -1695 ((-644 (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (-692 (-411 (-950 |#1|))))) (-15 -1696 ((-644 (-692 (-411 (-950 |#1|)))) (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|))) (-692 (-411 (-950 |#1|))))) (-15 -1697 ((-644 (-692 (-411 (-950 |#1|)))) (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|))) (-692 (-411 (-950 |#1|))) (-774) (-774))) (-15 -1697 ((-644 (-692 (-411 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 |#1|)))))) (-692 (-411 (-950 |#1|))))) (-15 -1698 ((-644 (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |geneigvec| (-644 (-692 (-411 (-950 |#1|))))))) (-692 (-411 (-950 |#1|))))) (-15 -1699 ((-644 (-2 (|:| |eigval| (-3 (-411 (-950 |#1|)) (-1170 (-1181) (-950 |#1|)))) (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 |#1|))))))) (-692 (-411 (-950 |#1|)))))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3610 (((-112) $) NIL (|has| |#1| (-21)))) (-1705 (($ $) 12)) (-1408 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1714 (($ $ $) 95 (|has| |#1| (-300)))) (-4158 (($) NIL (-3962 (|has| |#1| (-21)) (|has| |#1| (-729))) CONST)) (-1703 (($ $) 51 (|has| |#1| (-21)))) (-1701 (((-3 $ "failed") $) 62 (|has| |#1| (-729)))) (-3953 ((|#1| $) 11)) (-3892 (((-3 $ "failed") $) 60 (|has| |#1| (-729)))) (-2575 (((-112) $) NIL (|has| |#1| (-729)))) (-4392 (($ (-1 |#1| |#1|) $) 14)) (-3954 ((|#1| $) 10)) (-1704 (($ $) 50 (|has| |#1| (-21)))) (-1702 (((-3 $ "failed") $) 61 (|has| |#1| (-729)))) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2808 (($ $) 64 (-3962 (|has| |#1| (-366)) (|has| |#1| (-477))))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-1700 (((-644 $) $) 85 (|has| |#1| (-561)))) (-4201 (($ $ $) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 $)) 28 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-1181) |#1|) 17 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 21 (|has| |#1| (-518 (-1181) |#1|)))) (-3648 (($ |#1| |#1|) 9)) (-4345 (((-134)) 90 (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) 87 (|has| |#1| (-904 (-1181))))) (-3412 (($ $ $) NIL (|has| |#1| (-477)))) (-2758 (($ $ $) NIL (|has| |#1| (-477)))) (-4380 (($ (-550)) NIL (|has| |#1| (-1053))) (((-112) $) 37 (|has| |#1| (-1105))) (((-866) $) 36 (|has| |#1| (-1105)))) (-3532 (((-774)) 67 (|has| |#1| (-1053)) CONST)) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3512 (($) 47 (|has| |#1| (-21)) CONST)) (-3069 (($) 57 (|has| |#1| (-729)) CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181))))) (-3457 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1105)))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) 92 (-3962 (|has| |#1| (-366)) (|has| |#1| (-477))))) (-4271 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4273 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-550)) NIL (|has| |#1| (-477))) (($ $ (-774)) NIL (|has| |#1| (-729))) (($ $ (-923)) NIL (|has| |#1| (-1116)))) (* (($ $ |#1|) 55 (|has| |#1| (-1116))) (($ |#1| $) 54 (|has| |#1| (-1116))) (($ $ $) 53 (|has| |#1| (-1116))) (($ (-550) $) 70 (|has| |#1| (-21))) (($ (-774) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-25))))) +(((-295 |#1|) (-13 (-1220) (-10 -8 (-15 -3457 ($ |#1| |#1|)) (-15 -3648 ($ |#1| |#1|)) (-15 -1705 ($ $)) (-15 -3954 (|#1| $)) (-15 -3953 (|#1| $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-518 (-1181) |#1|)) (-6 (-518 (-1181) |#1|)) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-6 (-616 (-112))) (IF (|has| |#1| (-311 |#1|)) (PROGN (-15 -4201 ($ $ $)) (-15 -4201 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4273 ($ |#1| $)) (-15 -4273 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1704 ($ $)) (-15 -1703 ($ $)) (-15 -4271 ($ |#1| $)) (-15 -4271 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1116)) (PROGN (-6 (-1116)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-729)) (PROGN (-6 (-729)) (-15 -1702 ((-3 $ "failed") $)) (-15 -1701 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-6 (-477)) (-15 -1702 ((-3 $ "failed") $)) (-15 -1701 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1053)) (PROGN (-6 (-1053)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-720 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -1700 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-904 (-1181))) (-6 (-904 (-1181))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-6 (-1278 |#1|)) (-15 -4383 ($ $ $)) (-15 -2808 ($ $))) |%noBranch|) (IF (|has| |#1| (-300)) (-15 -1714 ($ $ $)) |%noBranch|))) (-1220)) (T -295)) +((-3457 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) (-3648 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) (-1705 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) (-3954 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) (-3953 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-295 *3)))) (-4201 (*1 *1 *1 *1) (-12 (-4 *2 (-311 *2)) (-4 *2 (-1105)) (-4 *2 (-1220)) (-5 *1 (-295 *2)))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-311 *3)) (-4 *3 (-1105)) (-4 *3 (-1220)) (-5 *1 (-295 *3)))) (-4273 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1220)))) (-4273 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1220)))) (-1704 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220)))) (-1703 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220)))) (-4271 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220)))) (-4271 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220)))) (-1702 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-729)) (-4 *2 (-1220)))) (-1701 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-729)) (-4 *2 (-1220)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-561)) (-4 *3 (-1220)))) (-1714 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-300)) (-4 *2 (-1220)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1116)) (-4 *2 (-1220)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1116)) (-4 *2 (-1220)))) (-4383 (*1 *1 *1 *1) (-3962 (-12 (-5 *1 (-295 *2)) (-4 *2 (-366)) (-4 *2 (-1220))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-477)) (-4 *2 (-1220))))) (-2808 (*1 *1 *1) (-3962 (-12 (-5 *1 (-295 *2)) (-4 *2 (-366)) (-4 *2 (-1220))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-477)) (-4 *2 (-1220)))))) +(-13 (-1220) (-10 -8 (-15 -3457 ($ |#1| |#1|)) (-15 -3648 ($ |#1| |#1|)) (-15 -1705 ($ $)) (-15 -3954 (|#1| $)) (-15 -3953 (|#1| $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-518 (-1181) |#1|)) (-6 (-518 (-1181) |#1|)) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-6 (-616 (-112))) (IF (|has| |#1| (-311 |#1|)) (PROGN (-15 -4201 ($ $ $)) (-15 -4201 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4273 ($ |#1| $)) (-15 -4273 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1704 ($ $)) (-15 -1703 ($ $)) (-15 -4271 ($ |#1| $)) (-15 -4271 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1116)) (PROGN (-6 (-1116)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-729)) (PROGN (-6 (-729)) (-15 -1702 ((-3 $ "failed") $)) (-15 -1701 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-6 (-477)) (-15 -1702 ((-3 $ "failed") $)) (-15 -1701 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1053)) (PROGN (-6 (-1053)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-720 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -1700 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-904 (-1181))) (-6 (-904 (-1181))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-6 (-1278 |#1|)) (-15 -4383 ($ $ $)) (-15 -2808 ($ $))) |%noBranch|) (IF (|has| |#1| (-300)) (-15 -1714 ($ $ $)) |%noBranch|))) +((-4392 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) +(((-296 |#1| |#2|) (-10 -7 (-15 -4392 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1220) (-1220)) (T -296)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-295 *6)) (-5 *1 (-296 *5 *6))))) +(-10 -7 (-15 -4392 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#2| $ |#1| |#2|) NIL)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) NIL)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-2818 (((-644 |#1|) $) NIL)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2379 (((-644 |#1|) $) NIL)) (-2380 (((-112) |#1| $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-297 |#1| |#2|) (-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) (-1105) (-1105)) (T -297)) +NIL +(-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) +((-1706 (((-313) (-1163) (-644 (-1163))) 17) (((-313) (-1163) (-1163)) 16) (((-313) (-644 (-1163))) 15) (((-313) (-1163)) 14))) +(((-298) (-10 -7 (-15 -1706 ((-313) (-1163))) (-15 -1706 ((-313) (-644 (-1163)))) (-15 -1706 ((-313) (-1163) (-1163))) (-15 -1706 ((-313) (-1163) (-644 (-1163)))))) (T -298)) +((-1706 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1163))) (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-298)))) (-1706 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-298)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-313)) (-5 *1 (-298)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-298))))) +(-10 -7 (-15 -1706 ((-313) (-1163))) (-15 -1706 ((-313) (-644 (-1163)))) (-15 -1706 ((-313) (-1163) (-1163))) (-15 -1706 ((-313) (-1163) (-644 (-1163))))) +((-1710 (((-644 (-614 $)) $) 27)) (-1714 (($ $ (-295 $)) 78) (($ $ (-644 (-295 $))) 139) (($ $ (-644 (-614 $)) (-644 $)) NIL)) (-3579 (((-3 (-614 $) "failed") $) 127)) (-3578 (((-614 $) $) 126)) (-2975 (($ $) 17) (($ (-644 $)) 54)) (-1709 (((-644 (-113)) $) 35)) (-3450 (((-113) (-113)) 88)) (-3078 (((-112) $) 150)) (-4392 (($ (-1 $ $) (-614 $)) 86)) (-1712 (((-3 (-614 $) "failed") $) 94)) (-2386 (($ (-113) $) 59) (($ (-113) (-644 $)) 110)) (-3037 (((-112) $ (-113)) 132) (((-112) $ (-1181)) 131)) (-3005 (((-774) $) 44)) (-1708 (((-112) $ $) 57) (((-112) $ (-1181)) 49)) (-3079 (((-112) $) 148)) (-4201 (($ $ (-614 $) $) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ $))) 81) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1181) (-1 $ (-644 $))) 67) (($ $ (-1181) (-1 $ $)) 72) (($ $ (-644 (-113)) (-644 (-1 $ $))) 80) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) 82) (($ $ (-113) (-1 $ (-644 $))) 68) (($ $ (-113) (-1 $ $)) 74)) (-4233 (($ (-113) $) 60) (($ (-113) $ $) 61) (($ (-113) $ $ $) 62) (($ (-113) $ $ $ $) 63) (($ (-113) (-644 $)) 123)) (-1713 (($ $) 51) (($ $ $) 135)) (-2992 (($ $) 15) (($ (-644 $)) 53)) (-2405 (((-112) (-113)) 21))) +(((-299 |#1|) (-10 -8 (-15 -3078 ((-112) |#1|)) (-15 -3079 ((-112) |#1|)) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| |#1|)))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| |#1|)))) (-15 -1708 ((-112) |#1| (-1181))) (-15 -1708 ((-112) |#1| |#1|)) (-15 -4392 (|#1| (-1 |#1| |#1|) (-614 |#1|))) (-15 -2386 (|#1| (-113) (-644 |#1|))) (-15 -2386 (|#1| (-113) |#1|)) (-15 -3037 ((-112) |#1| (-1181))) (-15 -3037 ((-112) |#1| (-113))) (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -1709 ((-644 (-113)) |#1|)) (-15 -1710 ((-644 (-614 |#1|)) |#1|)) (-15 -1712 ((-3 (-614 |#1|) "failed") |#1|)) (-15 -3005 ((-774) |#1|)) (-15 -1713 (|#1| |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -2975 (|#1| (-644 |#1|))) (-15 -2975 (|#1| |#1|)) (-15 -2992 (|#1| (-644 |#1|))) (-15 -2992 (|#1| |#1|)) (-15 -1714 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -1714 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1714 (|#1| |#1| (-295 |#1|))) (-15 -4233 (|#1| (-113) (-644 |#1|))) (-15 -4233 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -4201 (|#1| |#1| (-614 |#1|) |#1|)) (-15 -3579 ((-3 (-614 |#1|) "failed") |#1|)) (-15 -3578 ((-614 |#1|) |#1|))) (-300)) (T -299)) +((-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-299 *3)) (-4 *3 (-300)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-299 *4)) (-4 *4 (-300))))) +(-10 -8 (-15 -3078 ((-112) |#1|)) (-15 -3079 ((-112) |#1|)) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| |#1|)))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| |#1|)))) (-15 -1708 ((-112) |#1| (-1181))) (-15 -1708 ((-112) |#1| |#1|)) (-15 -4392 (|#1| (-1 |#1| |#1|) (-614 |#1|))) (-15 -2386 (|#1| (-113) (-644 |#1|))) (-15 -2386 (|#1| (-113) |#1|)) (-15 -3037 ((-112) |#1| (-1181))) (-15 -3037 ((-112) |#1| (-113))) (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -1709 ((-644 (-113)) |#1|)) (-15 -1710 ((-644 (-614 |#1|)) |#1|)) (-15 -1712 ((-3 (-614 |#1|) "failed") |#1|)) (-15 -3005 ((-774) |#1|)) (-15 -1713 (|#1| |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -2975 (|#1| (-644 |#1|))) (-15 -2975 (|#1| |#1|)) (-15 -2992 (|#1| (-644 |#1|))) (-15 -2992 (|#1| |#1|)) (-15 -1714 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -1714 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1714 (|#1| |#1| (-295 |#1|))) (-15 -4233 (|#1| (-113) (-644 |#1|))) (-15 -4233 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -4201 (|#1| |#1| (-614 |#1|) |#1|)) (-15 -3579 ((-3 (-614 |#1|) "failed") |#1|)) (-15 -3578 ((-614 |#1|) |#1|))) +((-2970 (((-112) $ $) 7)) (-1710 (((-644 (-614 $)) $) 39)) (-1714 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-614 $)) (-644 $)) 49)) (-3579 (((-3 (-614 $) "failed") $) 64)) (-3578 (((-614 $) $) 65)) (-2975 (($ $) 46) (($ (-644 $)) 45)) (-1709 (((-644 (-113)) $) 38)) (-3450 (((-113) (-113)) 37)) (-3078 (((-112) $) 17 (|has| $ (-1042 (-550))))) (-1707 (((-1175 $) (-614 $)) 20 (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) 31)) (-1712 (((-3 (-614 $) "failed") $) 41)) (-3665 (((-1163) $) 10)) (-1711 (((-644 (-614 $)) $) 40)) (-2386 (($ (-113) $) 33) (($ (-113) (-644 $)) 32)) (-3037 (((-112) $ (-113)) 35) (((-112) $ (-1181)) 34)) (-3005 (((-774) $) 42)) (-3666 (((-1124) $) 11)) (-1708 (((-112) $ $) 30) (((-112) $ (-1181)) 29)) (-3079 (((-112) $) 18 (|has| $ (-1042 (-550))))) (-4201 (($ $ (-614 $) $) 62) (($ $ (-644 (-614 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1181)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1181) (-1 $ (-644 $))) 26) (($ $ (-1181) (-1 $ $)) 25) (($ $ (-644 (-113)) (-644 (-1 $ $))) 24) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-113) (-1 $ (-644 $))) 22) (($ $ (-113) (-1 $ $)) 21)) (-4233 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-644 $)) 52)) (-1713 (($ $) 44) (($ $ $) 43)) (-3607 (($ $) 19 (|has| $ (-1053)))) (-4380 (((-866) $) 12) (($ (-614 $)) 63)) (-2992 (($ $) 48) (($ (-644 $)) 47)) (-2405 (((-112) (-113)) 36)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-300) (-140)) (T -300)) +((-4233 (*1 *1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) (-4233 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) (-4233 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) (-4233 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) (-4233 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-644 *1)) (-4 *1 (-300)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-300)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-300)))) (-1714 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-614 *1))) (-5 *3 (-644 *1)) (-4 *1 (-300)))) (-2992 (*1 *1 *1) (-4 *1 (-300))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-300)))) (-2975 (*1 *1 *1) (-4 *1 (-300))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-300)))) (-1713 (*1 *1 *1) (-4 *1 (-300))) (-1713 (*1 *1 *1 *1) (-4 *1 (-300))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-774)))) (-1712 (*1 *2 *1) (|partial| -12 (-5 *2 (-614 *1)) (-4 *1 (-300)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-644 (-614 *1))) (-4 *1 (-300)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-644 (-614 *1))) (-4 *1 (-300)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-644 (-113))))) (-3450 (*1 *2 *2) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) (-2405 (*1 *2 *3) (-12 (-4 *1 (-300)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3037 (*1 *2 *1 *3) (-12 (-4 *1 (-300)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3037 (*1 *2 *1 *3) (-12 (-4 *1 (-300)) (-5 *3 (-1181)) (-5 *2 (-112)))) (-2386 (*1 *1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) (-2386 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-644 *1)) (-4 *1 (-300)))) (-4392 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-614 *1)) (-4 *1 (-300)))) (-1708 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-1708 (*1 *2 *1 *3) (-12 (-4 *1 (-300)) (-5 *3 (-1181)) (-5 *2 (-112)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1 *1 *1)) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-113))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-113))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-300)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-300)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-614 *1)) (-4 *1 (-1053)) (-4 *1 (-300)) (-5 *2 (-1175 *1)))) (-3607 (*1 *1 *1) (-12 (-4 *1 (-1053)) (-4 *1 (-300)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-1042 (-550))) (-4 *1 (-300)) (-5 *2 (-112)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-1042 (-550))) (-4 *1 (-300)) (-5 *2 (-112))))) +(-13 (-1105) (-1042 (-614 $)) (-518 (-614 $) $) (-311 $) (-10 -8 (-15 -4233 ($ (-113) $)) (-15 -4233 ($ (-113) $ $)) (-15 -4233 ($ (-113) $ $ $)) (-15 -4233 ($ (-113) $ $ $ $)) (-15 -4233 ($ (-113) (-644 $))) (-15 -1714 ($ $ (-295 $))) (-15 -1714 ($ $ (-644 (-295 $)))) (-15 -1714 ($ $ (-644 (-614 $)) (-644 $))) (-15 -2992 ($ $)) (-15 -2992 ($ (-644 $))) (-15 -2975 ($ $)) (-15 -2975 ($ (-644 $))) (-15 -1713 ($ $)) (-15 -1713 ($ $ $)) (-15 -3005 ((-774) $)) (-15 -1712 ((-3 (-614 $) "failed") $)) (-15 -1711 ((-644 (-614 $)) $)) (-15 -1710 ((-644 (-614 $)) $)) (-15 -1709 ((-644 (-113)) $)) (-15 -3450 ((-113) (-113))) (-15 -2405 ((-112) (-113))) (-15 -3037 ((-112) $ (-113))) (-15 -3037 ((-112) $ (-1181))) (-15 -2386 ($ (-113) $)) (-15 -2386 ($ (-113) (-644 $))) (-15 -4392 ($ (-1 $ $) (-614 $))) (-15 -1708 ((-112) $ $)) (-15 -1708 ((-112) $ (-1181))) (-15 -4201 ($ $ (-644 (-1181)) (-644 (-1 $ $)))) (-15 -4201 ($ $ (-644 (-1181)) (-644 (-1 $ (-644 $))))) (-15 -4201 ($ $ (-1181) (-1 $ (-644 $)))) (-15 -4201 ($ $ (-1181) (-1 $ $))) (-15 -4201 ($ $ (-644 (-113)) (-644 (-1 $ $)))) (-15 -4201 ($ $ (-644 (-113)) (-644 (-1 $ (-644 $))))) (-15 -4201 ($ $ (-113) (-1 $ (-644 $)))) (-15 -4201 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1053)) (PROGN (-15 -1707 ((-1175 $) (-614 $))) (-15 -3607 ($ $))) |%noBranch|) (IF (|has| $ (-1042 (-550))) (PROGN (-15 -3079 ((-112) $)) (-15 -3078 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-619 #1=(-614 $)) . T) ((-616 (-866)) . T) ((-311 $) . T) ((-518 (-614 $) $) . T) ((-518 $ $) . T) ((-1042 #1#) . T) ((-1105) . T)) +((-4392 ((|#2| (-1 |#2| |#1|) (-1163) (-614 |#1|)) 18))) +(((-301 |#1| |#2|) (-10 -7 (-15 -4392 (|#2| (-1 |#2| |#1|) (-1163) (-614 |#1|)))) (-300) (-1220)) (T -301)) +((-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1163)) (-5 *5 (-614 *6)) (-4 *6 (-300)) (-4 *2 (-1220)) (-5 *1 (-301 *6 *2))))) +(-10 -7 (-15 -4392 (|#2| (-1 |#2| |#1|) (-1163) (-614 |#1|)))) +((-4392 ((|#2| (-1 |#2| |#1|) (-614 |#1|)) 17))) +(((-302 |#1| |#2|) (-10 -7 (-15 -4392 (|#2| (-1 |#2| |#1|) (-614 |#1|)))) (-300) (-300)) (T -302)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-614 *5)) (-4 *5 (-300)) (-4 *2 (-300)) (-5 *1 (-302 *5 *2))))) +(-10 -7 (-15 -4392 (|#2| (-1 |#2| |#1|) (-614 |#1|)))) +((-1717 (((-1158 (-226)) (-316 (-226)) (-644 (-1181)) (-1093 (-845 (-226)))) 118)) (-1718 (((-1158 (-226)) (-1270 (-316 (-226))) (-644 (-1181)) (-1093 (-845 (-226)))) 135) (((-1158 (-226)) (-316 (-226)) (-644 (-1181)) (-1093 (-845 (-226)))) 72)) (-1739 (((-644 (-1163)) (-1158 (-226))) NIL)) (-1716 (((-644 (-226)) (-316 (-226)) (-1181) (-1093 (-845 (-226)))) 69)) (-1719 (((-644 (-226)) (-950 (-411 (-550))) (-1181) (-1093 (-845 (-226)))) 59)) (-1738 (((-644 (-1163)) (-644 (-226))) NIL)) (-1740 (((-226) (-1093 (-845 (-226)))) 29)) (-1741 (((-226) (-1093 (-845 (-226)))) 30)) (-1715 (((-112) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 64)) (-1736 (((-1163) (-226)) NIL))) +(((-303) (-10 -7 (-15 -1740 ((-226) (-1093 (-845 (-226))))) (-15 -1741 ((-226) (-1093 (-845 (-226))))) (-15 -1715 ((-112) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1716 ((-644 (-226)) (-316 (-226)) (-1181) (-1093 (-845 (-226))))) (-15 -1717 ((-1158 (-226)) (-316 (-226)) (-644 (-1181)) (-1093 (-845 (-226))))) (-15 -1718 ((-1158 (-226)) (-316 (-226)) (-644 (-1181)) (-1093 (-845 (-226))))) (-15 -1718 ((-1158 (-226)) (-1270 (-316 (-226))) (-644 (-1181)) (-1093 (-845 (-226))))) (-15 -1719 ((-644 (-226)) (-950 (-411 (-550))) (-1181) (-1093 (-845 (-226))))) (-15 -1736 ((-1163) (-226))) (-15 -1738 ((-644 (-1163)) (-644 (-226)))) (-15 -1739 ((-644 (-1163)) (-1158 (-226)))))) (T -303)) +((-1739 (*1 *2 *3) (-12 (-5 *3 (-1158 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-303)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-303)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1163)) (-5 *1 (-303)))) (-1719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-950 (-411 (-550)))) (-5 *4 (-1181)) (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-644 (-226))) (-5 *1 (-303)))) (-1718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *4 (-644 (-1181))) (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-303)))) (-1718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-226))) (-5 *4 (-644 (-1181))) (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-303)))) (-1717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-226))) (-5 *4 (-644 (-1181))) (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-303)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-226))) (-5 *4 (-1181)) (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-644 (-226))) (-5 *1 (-303)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-112)) (-5 *1 (-303)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))) +(-10 -7 (-15 -1740 ((-226) (-1093 (-845 (-226))))) (-15 -1741 ((-226) (-1093 (-845 (-226))))) (-15 -1715 ((-112) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1716 ((-644 (-226)) (-316 (-226)) (-1181) (-1093 (-845 (-226))))) (-15 -1717 ((-1158 (-226)) (-316 (-226)) (-644 (-1181)) (-1093 (-845 (-226))))) (-15 -1718 ((-1158 (-226)) (-316 (-226)) (-644 (-1181)) (-1093 (-845 (-226))))) (-15 -1718 ((-1158 (-226)) (-1270 (-316 (-226))) (-644 (-1181)) (-1093 (-845 (-226))))) (-15 -1719 ((-644 (-226)) (-950 (-411 (-550))) (-1181) (-1093 (-845 (-226))))) (-15 -1736 ((-1163) (-226))) (-15 -1738 ((-644 (-1163)) (-644 (-226)))) (-15 -1739 ((-644 (-1163)) (-1158 (-226))))) +((-2157 (((-112) (-226)) 12))) +(((-304 |#1| |#2|) (-10 -7 (-15 -2157 ((-112) (-226)))) (-226) (-226)) (T -304)) +((-2157 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-304 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2157 ((-112) (-226)))) +((-1735 (((-1270 (-316 (-381))) (-1270 (-316 (-226)))) 112)) (-1723 (((-1093 (-845 (-226))) (-1093 (-845 (-381)))) 45)) (-1739 (((-644 (-1163)) (-1158 (-226))) 94)) (-1746 (((-316 (-381)) (-950 (-226))) 55)) (-1747 (((-226) (-950 (-226))) 51)) (-1742 (((-1163) (-381)) 197)) (-1722 (((-845 (-226)) (-845 (-381))) 39)) (-1728 (((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1270 (-316 (-226)))) 165)) (-1743 (((-1039) (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) 209) (((-1039) (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) 207)) (-1750 (((-692 (-226)) (-644 (-226)) (-774)) 21)) (-1733 (((-1270 (-702)) (-644 (-226))) 101)) (-1738 (((-644 (-1163)) (-644 (-226))) 81)) (-3062 (((-3 (-316 (-226)) "failed") (-316 (-226))) 130)) (-2157 (((-112) (-226) (-1093 (-845 (-226)))) 119)) (-1745 (((-1039) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-1740 (((-226) (-1093 (-845 (-226)))) 114)) (-1741 (((-226) (-1093 (-845 (-226)))) 115)) (-1749 (((-226) (-411 (-550))) 33)) (-1737 (((-1163) (-381)) 79)) (-1720 (((-226) (-381)) 24)) (-1727 (((-381) (-1270 (-316 (-226)))) 179)) (-1721 (((-316 (-226)) (-316 (-381))) 30)) (-1725 (((-411 (-550)) (-316 (-226))) 58)) (-1729 (((-316 (-411 (-550))) (-316 (-226))) 75)) (-1734 (((-316 (-381)) (-316 (-226))) 105)) (-1726 (((-226) (-316 (-226))) 59)) (-1731 (((-644 (-226)) (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) 70)) (-1730 (((-1093 (-845 (-226))) (-1093 (-845 (-226)))) 67)) (-1736 (((-1163) (-226)) 78)) (-1732 (((-702) (-226)) 97)) (-1724 (((-411 (-550)) (-226)) 60)) (-1748 (((-316 (-381)) (-226)) 54)) (-4404 (((-644 (-1093 (-845 (-226)))) (-644 (-1093 (-845 (-381))))) 48)) (-4235 (((-1039) (-644 (-1039))) 193) (((-1039) (-1039) (-1039)) 187)) (-1744 (((-1039) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) +(((-305) (-10 -7 (-15 -1720 ((-226) (-381))) (-15 -1721 ((-316 (-226)) (-316 (-381)))) (-15 -1722 ((-845 (-226)) (-845 (-381)))) (-15 -1723 ((-1093 (-845 (-226))) (-1093 (-845 (-381))))) (-15 -4404 ((-644 (-1093 (-845 (-226)))) (-644 (-1093 (-845 (-381)))))) (-15 -1724 ((-411 (-550)) (-226))) (-15 -1725 ((-411 (-550)) (-316 (-226)))) (-15 -1726 ((-226) (-316 (-226)))) (-15 -3062 ((-3 (-316 (-226)) "failed") (-316 (-226)))) (-15 -1727 ((-381) (-1270 (-316 (-226))))) (-15 -1728 ((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1270 (-316 (-226))))) (-15 -1729 ((-316 (-411 (-550))) (-316 (-226)))) (-15 -1730 ((-1093 (-845 (-226))) (-1093 (-845 (-226))))) (-15 -1731 ((-644 (-226)) (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) (-15 -1732 ((-702) (-226))) (-15 -1733 ((-1270 (-702)) (-644 (-226)))) (-15 -1734 ((-316 (-381)) (-316 (-226)))) (-15 -1735 ((-1270 (-316 (-381))) (-1270 (-316 (-226))))) (-15 -2157 ((-112) (-226) (-1093 (-845 (-226))))) (-15 -1736 ((-1163) (-226))) (-15 -1737 ((-1163) (-381))) (-15 -1738 ((-644 (-1163)) (-644 (-226)))) (-15 -1739 ((-644 (-1163)) (-1158 (-226)))) (-15 -1740 ((-226) (-1093 (-845 (-226))))) (-15 -1741 ((-226) (-1093 (-845 (-226))))) (-15 -4235 ((-1039) (-1039) (-1039))) (-15 -4235 ((-1039) (-644 (-1039)))) (-15 -1742 ((-1163) (-381))) (-15 -1743 ((-1039) (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))))) (-15 -1743 ((-1039) (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))))) (-15 -1744 ((-1039) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1745 ((-1039) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -1746 ((-316 (-381)) (-950 (-226)))) (-15 -1747 ((-226) (-950 (-226)))) (-15 -1748 ((-316 (-381)) (-226))) (-15 -1749 ((-226) (-411 (-550)))) (-15 -1750 ((-692 (-226)) (-644 (-226)) (-774))))) (T -305)) +((-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-226))) (-5 *4 (-774)) (-5 *2 (-692 (-226))) (-5 *1 (-305)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-411 (-550))) (-5 *2 (-226)) (-5 *1 (-305)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-316 (-381))) (-5 *1 (-305)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-950 (-226))) (-5 *2 (-226)) (-5 *1 (-305)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-950 (-226))) (-5 *2 (-316 (-381))) (-5 *1 (-305)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1039)) (-5 *1 (-305)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1039)) (-5 *1 (-305)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) (-5 *2 (-1039)) (-5 *1 (-305)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *2 (-1039)) (-5 *1 (-305)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1163)) (-5 *1 (-305)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-644 (-1039))) (-5 *2 (-1039)) (-5 *1 (-305)))) (-4235 (*1 *2 *2 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-305)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-305)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-305)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1158 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-305)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-305)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1163)) (-5 *1 (-305)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1163)) (-5 *1 (-305)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-845 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-305)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *2 (-1270 (-316 (-381)))) (-5 *1 (-305)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-316 (-381))) (-5 *1 (-305)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-1270 (-702))) (-5 *1 (-305)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-702)) (-5 *1 (-305)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *2 (-644 (-226))) (-5 *1 (-305)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-1093 (-845 (-226)))) (-5 *1 (-305)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-316 (-411 (-550)))) (-5 *1 (-305)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *2 (-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550)))) (-5 *1 (-305)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *2 (-381)) (-5 *1 (-305)))) (-3062 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-226))) (-5 *1 (-305)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-226)) (-5 *1 (-305)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-411 (-550))) (-5 *1 (-305)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-411 (-550))) (-5 *1 (-305)))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-644 (-1093 (-845 (-381))))) (-5 *2 (-644 (-1093 (-845 (-226))))) (-5 *1 (-305)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-381)))) (-5 *2 (-1093 (-845 (-226)))) (-5 *1 (-305)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-845 (-381))) (-5 *2 (-845 (-226))) (-5 *1 (-305)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-316 (-381))) (-5 *2 (-316 (-226))) (-5 *1 (-305)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-226)) (-5 *1 (-305))))) +(-10 -7 (-15 -1720 ((-226) (-381))) (-15 -1721 ((-316 (-226)) (-316 (-381)))) (-15 -1722 ((-845 (-226)) (-845 (-381)))) (-15 -1723 ((-1093 (-845 (-226))) (-1093 (-845 (-381))))) (-15 -4404 ((-644 (-1093 (-845 (-226)))) (-644 (-1093 (-845 (-381)))))) (-15 -1724 ((-411 (-550)) (-226))) (-15 -1725 ((-411 (-550)) (-316 (-226)))) (-15 -1726 ((-226) (-316 (-226)))) (-15 -3062 ((-3 (-316 (-226)) "failed") (-316 (-226)))) (-15 -1727 ((-381) (-1270 (-316 (-226))))) (-15 -1728 ((-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550))) (-1270 (-316 (-226))))) (-15 -1729 ((-316 (-411 (-550))) (-316 (-226)))) (-15 -1730 ((-1093 (-845 (-226))) (-1093 (-845 (-226))))) (-15 -1731 ((-644 (-226)) (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) (-15 -1732 ((-702) (-226))) (-15 -1733 ((-1270 (-702)) (-644 (-226)))) (-15 -1734 ((-316 (-381)) (-316 (-226)))) (-15 -1735 ((-1270 (-316 (-381))) (-1270 (-316 (-226))))) (-15 -2157 ((-112) (-226) (-1093 (-845 (-226))))) (-15 -1736 ((-1163) (-226))) (-15 -1737 ((-1163) (-381))) (-15 -1738 ((-644 (-1163)) (-644 (-226)))) (-15 -1739 ((-644 (-1163)) (-1158 (-226)))) (-15 -1740 ((-226) (-1093 (-845 (-226))))) (-15 -1741 ((-226) (-1093 (-845 (-226))))) (-15 -4235 ((-1039) (-1039) (-1039))) (-15 -4235 ((-1039) (-644 (-1039)))) (-15 -1742 ((-1163) (-381))) (-15 -1743 ((-1039) (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))))) (-15 -1743 ((-1039) (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))))) (-15 -1744 ((-1039) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1745 ((-1039) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -1746 ((-316 (-381)) (-950 (-226)))) (-15 -1747 ((-226) (-950 (-226)))) (-15 -1748 ((-316 (-381)) (-226))) (-15 -1749 ((-226) (-411 (-550)))) (-15 -1750 ((-692 (-226)) (-644 (-226)) (-774)))) +((-1751 (((-644 |#1|) (-644 |#1|)) 10))) +(((-306 |#1|) (-10 -7 (-15 -1751 ((-644 |#1|) (-644 |#1|)))) (-851)) (T -306)) +((-1751 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-851)) (-5 *1 (-306 *3))))) +(-10 -7 (-15 -1751 ((-644 |#1|) (-644 |#1|)))) +((-4392 (((-692 |#2|) (-1 |#2| |#1|) (-692 |#1|)) 17))) +(((-307 |#1| |#2|) (-10 -7 (-15 -4392 ((-692 |#2|) (-1 |#2| |#1|) (-692 |#1|)))) (-1053) (-1053)) (T -307)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-692 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-5 *2 (-692 *6)) (-5 *1 (-307 *5 *6))))) +(-10 -7 (-15 -4392 ((-692 |#2|) (-1 |#2| |#1|) (-692 |#1|)))) +((-1755 (((-112) $ $) 14)) (-2966 (($ $ $) 18)) (-2965 (($ $ $) 17)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 50)) (-1752 (((-3 (-644 $) "failed") (-644 $) $) 65)) (-3566 (($ $ $) 25) (($ (-644 $)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3891 (((-3 $ "failed") $ $) 21)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 53))) +(((-308 |#1|) (-10 -8 (-15 -1752 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -1753 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1753 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2574 |#1|)) |#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -1755 ((-112) |#1| |#1|)) (-15 -3145 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3146 ((-2 (|:| -4388 (-644 |#1|)) (|:| -2574 |#1|)) (-644 |#1|))) (-15 -3566 (|#1| (-644 |#1|))) (-15 -3566 (|#1| |#1| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|))) (-309)) (T -308)) +NIL +(-10 -8 (-15 -1752 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -1753 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1753 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2574 |#1|)) |#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -1755 ((-112) |#1| |#1|)) (-15 -3145 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3146 ((-2 (|:| -4388 (-644 |#1|)) (|:| -2574 |#1|)) (-644 |#1|))) (-15 -3566 (|#1| (-644 |#1|))) (-15 -3566 (|#1| |#1| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-2575 (((-112) $) 35)) (-1752 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-309) (-140)) (T -309)) +((-1755 (*1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-112)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-774)))) (-3284 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-309)))) (-2965 (*1 *1 *1 *1) (-4 *1 (-309))) (-2966 (*1 *1 *1 *1) (-4 *1 (-309))) (-1753 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2574 *1))) (-4 *1 (-309)))) (-1753 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-309)))) (-1752 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-309))))) +(-13 (-925) (-10 -8 (-15 -1755 ((-112) $ $)) (-15 -1754 ((-774) $)) (-15 -3284 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -2965 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -1753 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $)) (-15 -1753 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1752 ((-3 (-644 $) "failed") (-644 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-456) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-4201 (($ $ (-644 |#2|) (-644 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-644 (-295 |#2|))) NIL))) +(((-310 |#1| |#2|) (-10 -8 (-15 -4201 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -4201 (|#1| |#1| (-295 |#2|))) (-15 -4201 (|#1| |#1| |#2| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) (-311 |#2|) (-1105)) (T -310)) +NIL +(-10 -8 (-15 -4201 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -4201 (|#1| |#1| (-295 |#2|))) (-15 -4201 (|#1| |#1| |#2| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) +((-4201 (($ $ (-644 |#1|) (-644 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-644 (-295 |#1|))) 10))) +(((-311 |#1|) (-140) (-1105)) (T -311)) +((-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-311 *3)) (-4 *3 (-1105)))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-311 *3)) (-4 *3 (-1105))))) +(-13 (-518 |t#1| |t#1|) (-10 -8 (-15 -4201 ($ $ (-295 |t#1|))) (-15 -4201 ($ $ (-644 (-295 |t#1|)))))) +(((-518 |#1| |#1|) . T)) +((-4201 ((|#1| (-1 |#1| (-550)) (-1183 (-411 (-550)))) 25))) +(((-312 |#1|) (-10 -7 (-15 -4201 (|#1| (-1 |#1| (-550)) (-1183 (-411 (-550)))))) (-38 (-411 (-550)))) (T -312)) +((-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-550))) (-5 *4 (-1183 (-411 (-550)))) (-5 *1 (-312 *2)) (-4 *2 (-38 (-411 (-550))))))) +(-10 -7 (-15 -4201 (|#1| (-1 |#1| (-550)) (-1183 (-411 (-550)))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 7)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 9))) +(((-313) (-1105)) (T -313)) +NIL +(-1105) +((-2970 (((-112) $ $) NIL)) (-3931 (((-550) $) 12)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3628 (((-1139) $) 9)) (-4380 (((-866) $) 19) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-314) (-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3931 ((-550) $))))) (T -314)) +((-3628 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-314)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-314))))) +(-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3931 ((-550) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 60)) (-3535 (((-1257 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-1257 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-550)))) (((-3 (-1251 |#2| |#3| |#4|) #2#) $) 26)) (-3578 (((-1257 |#1| |#2| |#3| |#4|) $) NIL) (((-1181) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-550)))) (((-550) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-550)))) (((-1251 |#2| |#3| |#4|) $) NIL)) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-1257 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1270 (-1257 |#1| |#2| |#3| |#4|)))) (-692 $) (-1270 $)) NIL) (((-692 (-1257 |#1| |#2| |#3| |#4|)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-1257 |#1| |#2| |#3| |#4|) $) 22)) (-3870 (((-3 $ "failed") $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1155)))) (-3609 (((-112) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-853)))) (-3262 (($ $ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-853)))) (-4392 (($ (-1 (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|)) $) NIL)) (-4217 (((-3 (-845 |#2|) "failed") $) 80)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-309)))) (-3536 (((-1257 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-1257 |#1| |#2| |#3| |#4|)) (-644 (-1257 |#1| |#2| |#3| |#4|))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-311 (-1257 |#1| |#2| |#3| |#4|)))) (($ $ (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-311 (-1257 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1257 |#1| |#2| |#3| |#4|))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-311 (-1257 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-295 (-1257 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-311 (-1257 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-1181)) (-644 (-1257 |#1| |#2| |#3| |#4|))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-518 (-1181) (-1257 |#1| |#2| |#3| |#4|)))) (($ $ (-1181) (-1257 |#1| |#2| |#3| |#4|)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-518 (-1181) (-1257 |#1| |#2| |#3| |#4|))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-1257 |#1| |#2| |#3| |#4|)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-288 (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-774)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1181)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-1 (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|)) (-774)) NIL) (($ $ (-1 (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-1257 |#1| |#2| |#3| |#4|) $) 19)) (-4404 (((-894 (-550)) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-617 (-539)))) (((-381) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1024))) (((-226) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-1257 |#1| |#2| |#3| |#4|) (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-1257 |#1| |#2| |#3| |#4|)) 30) (($ (-1181)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-1042 (-1181)))) (($ (-1251 |#2| |#3| |#4|)) 37)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-1257 |#1| |#2| |#3| |#4|) (-914))) (|has| (-1257 |#1| |#2| |#3| |#4|) (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 (((-1257 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-823)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-774)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1181)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-904 (-1181)))) (($ $ (-1 (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|)) (-774)) NIL) (($ $ (-1 (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-1257 |#1| |#2| |#3| |#4|) (-853)))) (-4383 (($ $ $) 35) (($ (-1257 |#1| |#2| |#3| |#4|) (-1257 |#1| |#2| |#3| |#4|)) 32)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-1257 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1257 |#1| |#2| |#3| |#4|)) NIL))) +(((-315 |#1| |#2| |#3| |#4|) (-13 (-995 (-1257 |#1| |#2| |#3| |#4|)) (-1042 (-1251 |#2| |#3| |#4|)) (-10 -8 (-15 -4217 ((-3 (-845 |#2|) "failed") $)) (-15 -4380 ($ (-1251 |#2| |#3| |#4|))))) (-13 (-1042 (-550)) (-642 (-550)) (-456)) (-13 (-27) (-1206) (-425 |#1|)) (-1181) |#2|) (T -315)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1251 *4 *5 *6)) (-4 *4 (-13 (-27) (-1206) (-425 *3))) (-14 *5 (-1181)) (-14 *6 *4) (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) (-5 *1 (-315 *3 *4 *5 *6)))) (-4217 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) (-5 *2 (-845 *4)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1206) (-425 *3))) (-14 *5 (-1181)) (-14 *6 *4)))) +(-13 (-995 (-1257 |#1| |#2| |#3| |#4|)) (-1042 (-1251 |#2| |#3| |#4|)) (-10 -8 (-15 -4217 ((-3 (-845 |#2|) "failed") $)) (-15 -4380 ($ (-1251 |#2| |#3| |#4|))))) +((-2970 (((-112) $ $) NIL)) (-1717 (((-644 $) $ (-1181)) NIL (|has| |#1| (-561))) (((-644 $) $) NIL (|has| |#1| (-561))) (((-644 $) (-1175 $) (-1181)) NIL (|has| |#1| (-561))) (((-644 $) (-1175 $)) NIL (|has| |#1| (-561))) (((-644 $) (-950 $)) NIL (|has| |#1| (-561)))) (-1304 (($ $ (-1181)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1175 $) (-1181)) NIL (|has| |#1| (-561))) (($ (-1175 $)) NIL (|has| |#1| (-561))) (($ (-950 $)) NIL (|has| |#1| (-561)))) (-3610 (((-112) $) 27 (-3962 (|has| |#1| (-25)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))))) (-3487 (((-644 (-1181)) $) 368)) (-3489 (((-411 (-1175 $)) $ (-614 $)) NIL (|has| |#1| (-561)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-1710 (((-644 (-614 $)) $) NIL)) (-3917 (($ $) 171 (|has| |#1| (-561)))) (-4073 (($ $) 147 (|has| |#1| (-561)))) (-1460 (($ $ (-1096 $)) 232 (|has| |#1| (-561))) (($ $ (-1181)) 228 (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) NIL (-3962 (|has| |#1| (-21)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))))) (-1714 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) 386) (($ $ (-644 (-614 $)) (-644 $)) 430)) (-3112 (((-409 (-1175 $)) (-1175 $)) 308 (-12 (|has| |#1| (-456)) (|has| |#1| (-561))))) (-4208 (($ $) NIL (|has| |#1| (-561)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-561)))) (-3440 (($ $) NIL (|has| |#1| (-561)))) (-1755 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3915 (($ $) 167 (|has| |#1| (-561)))) (-4072 (($ $) 143 (|has| |#1| (-561)))) (-1756 (($ $ (-550)) 73 (|has| |#1| (-561)))) (-3919 (($ $) 175 (|has| |#1| (-561)))) (-4071 (($ $) 151 (|has| |#1| (-561)))) (-4158 (($) NIL (-3962 (|has| |#1| (-25)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116))) CONST)) (-1305 (((-644 $) $ (-1181)) NIL (|has| |#1| (-561))) (((-644 $) $) NIL (|has| |#1| (-561))) (((-644 $) (-1175 $) (-1181)) NIL (|has| |#1| (-561))) (((-644 $) (-1175 $)) NIL (|has| |#1| (-561))) (((-644 $) (-950 $)) NIL (|has| |#1| (-561)))) (-3605 (($ $ (-1181)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1175 $) (-1181)) 134 (|has| |#1| (-561))) (($ (-1175 $)) NIL (|has| |#1| (-561))) (($ (-950 $)) NIL (|has| |#1| (-561)))) (-3579 (((-3 (-614 $) #1="failed") $) 18) (((-3 (-1181) #1#) $) NIL) (((-3 |#1| #1#) $) 441) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550))))) (((-3 (-550) #1#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-950 |#1|)) #1#) $) NIL (|has| |#1| (-561))) (((-3 (-950 |#1|) #1#) $) NIL (|has| |#1| (-1053))) (((-3 (-411 (-550)) #1#) $) 46 (-3962 (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-3578 (((-614 $) $) 12) (((-1181) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-950 |#1|)) $) NIL (|has| |#1| (-561))) (((-950 |#1|) $) NIL (|has| |#1| (-1053))) (((-411 (-550)) $) 319 (-3962 (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-2966 (($ $ $) NIL (|has| |#1| (-561)))) (-2429 (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 125 (|has| |#1| (-1053))) (((-692 |#1|) (-692 $)) 115 (|has| |#1| (-1053))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))) (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))))) (-4276 (($ $) 96 (|has| |#1| (-561)))) (-3892 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116))))) (-2965 (($ $ $) NIL (|has| |#1| (-561)))) (-4378 (($ $ (-1096 $)) 236 (|has| |#1| (-561))) (($ $ (-1181)) 234 (|has| |#1| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-561)))) (-4157 (((-112) $) NIL (|has| |#1| (-561)))) (-3812 (($ $ $) 202 (|has| |#1| (-561)))) (-4061 (($) 137 (|has| |#1| (-561)))) (-1457 (($ $ $) 222 (|has| |#1| (-561)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 392 (|has| |#1| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 399 (|has| |#1| (-890 (-381))))) (-2975 (($ $) NIL) (($ (-644 $)) NIL)) (-1709 (((-644 (-113)) $) NIL)) (-3450 (((-113) (-113)) 276)) (-2575 (((-112) $) 25 (-3962 (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116))))) (-3078 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-3399 (($ $) 72 (|has| |#1| (-1053)))) (-3401 (((-1129 |#1| (-614 $)) $) 91 (|has| |#1| (-1053)))) (-1757 (((-112) $) 62 (|has| |#1| (-561)))) (-3414 (($ $ (-550)) NIL (|has| |#1| (-561)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| |#1| (-561)))) (-1707 (((-1175 $) (-614 $)) 277 (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) 426)) (-1712 (((-3 (-614 $) "failed") $) NIL)) (-4376 (($ $) 141 (|has| |#1| (-561)))) (-2408 (($ $) 247 (|has| |#1| (-561)))) (-2071 (($ (-644 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3665 (((-1163) $) NIL)) (-1711 (((-644 (-614 $)) $) 49)) (-2386 (($ (-113) $) NIL) (($ (-113) (-644 $)) 431)) (-3228 (((-3 (-644 $) #3="failed") $) NIL (|has| |#1| (-1116)))) (-3230 (((-3 (-2 (|:| |val| $) (|:| -2566 (-550))) #3#) $) NIL (|has| |#1| (-1053)))) (-3227 (((-3 (-644 $) #3#) $) 436 (|has| |#1| (-25)))) (-1971 (((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 $))) #3#) $) 440 (|has| |#1| (-25)))) (-3229 (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) #3#) $) NIL (|has| |#1| (-1116))) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) #3#) $ (-113)) NIL (|has| |#1| (-1053))) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) #3#) $ (-1181)) NIL (|has| |#1| (-1053)))) (-3037 (((-112) $ (-113)) NIL) (((-112) $ (-1181)) 51)) (-2808 (($ $) NIL (-3962 (|has| |#1| (-477)) (|has| |#1| (-561))))) (-3237 (($ $ (-1181)) 251 (|has| |#1| (-561))) (($ $ (-1096 $)) 253 (|has| |#1| (-561)))) (-3005 (((-774) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) 43)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 301 (|has| |#1| (-561)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1708 (((-112) $ $) NIL) (((-112) $ (-1181)) NIL)) (-1461 (($ $ (-1181)) 226 (|has| |#1| (-561))) (($ $) 224 (|has| |#1| (-561)))) (-1455 (($ $) 218 (|has| |#1| (-561)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 306 (-12 (|has| |#1| (-456)) (|has| |#1| (-561))))) (-4166 (((-409 $) $) NIL (|has| |#1| (-561)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-561)))) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-561)))) (-4377 (($ $) 139 (|has| |#1| (-561)))) (-3079 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-4201 (($ $ (-614 $) $) NIL) (($ $ (-644 (-614 $)) (-644 $)) 425) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1181) (-1 $ (-644 $))) NIL) (($ $ (-1181) (-1 $ $)) NIL) (($ $ (-644 (-113)) (-644 (-1 $ $))) 379) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-113) (-1 $ (-644 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1181)) NIL (|has| |#1| (-617 (-539)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-617 (-539)))) (($ $) NIL (|has| |#1| (-617 (-539)))) (($ $ (-113) $ (-1181)) 366 (|has| |#1| (-617 (-539)))) (($ $ (-644 (-113)) (-644 $) (-1181)) 365 (|has| |#1| (-617 (-539)))) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ $))) NIL (|has| |#1| (-1053))) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ (-644 $)))) NIL (|has| |#1| (-1053))) (($ $ (-1181) (-774) (-1 $ (-644 $))) NIL (|has| |#1| (-1053))) (($ $ (-1181) (-774) (-1 $ $)) NIL (|has| |#1| (-1053)))) (-1754 (((-774) $) NIL (|has| |#1| (-561)))) (-2406 (($ $) 239 (|has| |#1| (-561)))) (-4233 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-644 $)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-1713 (($ $) NIL) (($ $ $) NIL)) (-2407 (($ $) 249 (|has| |#1| (-561)))) (-3811 (($ $) 200 (|has| |#1| (-561)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-1053))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-1053))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-1053))) (($ $ (-1181)) NIL (|has| |#1| (-1053)))) (-3398 (($ $) 74 (|has| |#1| (-561)))) (-3400 (((-1129 |#1| (-614 $)) $) 93 (|has| |#1| (-561)))) (-3607 (($ $) 317 (|has| $ (-1053)))) (-3920 (($ $) 177 (|has| |#1| (-561)))) (-4070 (($ $) 153 (|has| |#1| (-561)))) (-3918 (($ $) 173 (|has| |#1| (-561)))) (-4069 (($ $) 149 (|has| |#1| (-561)))) (-3916 (($ $) 169 (|has| |#1| (-561)))) (-4068 (($ $) 145 (|has| |#1| (-561)))) (-4404 (((-894 (-550)) $) NIL (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| |#1| (-617 (-894 (-381))))) (($ (-409 $)) NIL (|has| |#1| (-561))) (((-539) $) 363 (|has| |#1| (-617 (-539))))) (-3412 (($ $ $) NIL (|has| |#1| (-477)))) (-2758 (($ $ $) NIL (|has| |#1| (-477)))) (-4380 (((-866) $) 424) (($ (-614 $)) 415) (($ (-1181)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-561))) (($ (-48)) 312 (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550))))) (($ (-1129 |#1| (-614 $))) 95 (|has| |#1| (-1053))) (($ (-411 |#1|)) NIL (|has| |#1| (-561))) (($ (-950 (-411 |#1|))) NIL (|has| |#1| (-561))) (($ (-411 (-950 (-411 |#1|)))) NIL (|has| |#1| (-561))) (($ (-411 (-950 |#1|))) NIL (|has| |#1| (-561))) (($ (-950 |#1|)) NIL (|has| |#1| (-1053))) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-561)) (|has| |#1| (-1042 (-411 (-550)))))) (($ (-550)) 34 (-3962 (|has| |#1| (-1042 (-550))) (|has| |#1| (-1053))))) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL (|has| |#1| (-1053)) CONST)) (-2992 (($ $) NIL) (($ (-644 $)) NIL)) (-3507 (($ $ $) 220 (|has| |#1| (-561)))) (-3815 (($ $ $) 206 (|has| |#1| (-561)))) (-3817 (($ $ $) 210 (|has| |#1| (-561)))) (-3814 (($ $ $) 204 (|has| |#1| (-561)))) (-3816 (($ $ $) 208 (|has| |#1| (-561)))) (-2405 (((-112) (-113)) 10)) (-3664 (((-112) $ $) 86)) (-3923 (($ $) 183 (|has| |#1| (-561)))) (-3911 (($ $) 159 (|has| |#1| (-561)))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) 179 (|has| |#1| (-561)))) (-3909 (($ $) 155 (|has| |#1| (-561)))) (-3925 (($ $) 187 (|has| |#1| (-561)))) (-3913 (($ $) 163 (|has| |#1| (-561)))) (-1972 (($ (-1181) $) NIL) (($ (-1181) $ $) NIL) (($ (-1181) $ $ $) NIL) (($ (-1181) $ $ $ $) NIL) (($ (-1181) (-644 $)) NIL)) (-3819 (($ $) 214 (|has| |#1| (-561)))) (-3818 (($ $) 212 (|has| |#1| (-561)))) (-3926 (($ $) 189 (|has| |#1| (-561)))) (-3914 (($ $) 165 (|has| |#1| (-561)))) (-3924 (($ $) 185 (|has| |#1| (-561)))) (-3912 (($ $) 161 (|has| |#1| (-561)))) (-3922 (($ $) 181 (|has| |#1| (-561)))) (-3910 (($ $) 157 (|has| |#1| (-561)))) (-3809 (($ $) 192 (|has| |#1| (-561)))) (-3512 (($) 21 (-3962 (|has| |#1| (-25)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))) CONST)) (-2410 (($ $) 243 (|has| |#1| (-561)))) (-3069 (($) 23 (-3962 (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116))) CONST)) (-3813 (($ $) 194 (|has| |#1| (-561))) (($ $ $) 196 (|has| |#1| (-561)))) (-2411 (($ $) 241 (|has| |#1| (-561)))) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-1053))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-1053))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-1053))) (($ $ (-1181)) NIL (|has| |#1| (-1053)))) (-2409 (($ $) 245 (|has| |#1| (-561)))) (-3810 (($ $ $) 198 (|has| |#1| (-561)))) (-3457 (((-112) $ $) 88)) (-4383 (($ (-1129 |#1| (-614 $)) (-1129 |#1| (-614 $))) 106 (|has| |#1| (-561))) (($ $ $) 42 (-3962 (|has| |#1| (-477)) (|has| |#1| (-561))))) (-4271 (($ $ $) 40 (-3962 (|has| |#1| (-21)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))))) (($ $) 29 (-3962 (|has| |#1| (-21)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))))) (-4273 (($ $ $) 38 (-3962 (|has| |#1| (-25)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))))) (** (($ $ $) 64 (|has| |#1| (-561))) (($ $ (-411 (-550))) 314 (|has| |#1| (-561))) (($ $ (-550)) 80 (-3962 (|has| |#1| (-477)) (|has| |#1| (-561)))) (($ $ (-774)) 75 (-3962 (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116)))) (($ $ (-923)) 84 (-3962 (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116))))) (* (($ (-411 (-550)) $) NIL (|has| |#1| (-561))) (($ $ (-411 (-550))) NIL (|has| |#1| (-561))) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))) (($ $ $) 36 (-3962 (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) (|has| |#1| (-1116)))) (($ (-550) $) 32 (-3962 (|has| |#1| (-21)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))))) (($ (-774) $) NIL (-3962 (|has| |#1| (-25)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))))) (($ (-923) $) NIL (-3962 (|has| |#1| (-25)) (-12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))))))) +(((-316 |#1|) (-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1206)) (-6 (-160)) (-6 (-633)) (-6 (-1143)) (-15 -4276 ($ $)) (-15 -1757 ((-112) $)) (-15 -1756 ($ $ (-550))) (IF (|has| |#1| (-456)) (PROGN (-15 -3111 ((-409 (-1175 $)) (-1175 $))) (-15 -3112 ((-409 (-1175 $)) (-1175 $)))) |%noBranch|) (IF (|has| |#1| (-1042 (-550))) (-6 (-1042 (-48))) |%noBranch|)) |%noBranch|))) (-1105)) (T -316)) +((-4276 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-561)) (-4 *2 (-1105)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-561)) (-4 *3 (-1105)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-316 *3)) (-4 *3 (-561)) (-4 *3 (-1105)))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-409 (-1175 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1175 *1)) (-4 *4 (-456)) (-4 *4 (-561)) (-4 *4 (-1105)))) (-3112 (*1 *2 *3) (-12 (-5 *2 (-409 (-1175 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1175 *1)) (-4 *4 (-456)) (-4 *4 (-561)) (-4 *4 (-1105))))) +(-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1206)) (-6 (-160)) (-6 (-633)) (-6 (-1143)) (-15 -4276 ($ $)) (-15 -1757 ((-112) $)) (-15 -1756 ($ $ (-550))) (IF (|has| |#1| (-456)) (PROGN (-15 -3111 ((-409 (-1175 $)) (-1175 $))) (-15 -3112 ((-409 (-1175 $)) (-1175 $)))) |%noBranch|) (IF (|has| |#1| (-1042 (-550))) (-6 (-1042 (-48))) |%noBranch|)) |%noBranch|))) +((-4392 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) +(((-317 |#1| |#2|) (-10 -7 (-15 -4392 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-1105) (-1105)) (T -317)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-316 *6)) (-5 *1 (-317 *5 *6))))) +(-10 -7 (-15 -4392 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) +((-4163 (((-51) |#2| (-295 |#2|) (-774)) 40) (((-51) |#2| (-295 |#2|)) 32) (((-51) |#2| (-774)) 35) (((-51) |#2|) 33) (((-51) (-1181)) 26)) (-4252 (((-51) |#2| (-295 |#2|) (-411 (-550))) 59) (((-51) |#2| (-295 |#2|)) 56) (((-51) |#2| (-411 (-550))) 58) (((-51) |#2|) 57) (((-51) (-1181)) 55)) (-4215 (((-51) |#2| (-295 |#2|) (-411 (-550))) 54) (((-51) |#2| (-295 |#2|)) 51) (((-51) |#2| (-411 (-550))) 53) (((-51) |#2|) 52) (((-51) (-1181)) 50)) (-4212 (((-51) |#2| (-295 |#2|) (-550)) 47) (((-51) |#2| (-295 |#2|)) 44) (((-51) |#2| (-550)) 46) (((-51) |#2|) 45) (((-51) (-1181)) 43))) +(((-318 |#1| |#2|) (-10 -7 (-15 -4163 ((-51) (-1181))) (-15 -4163 ((-51) |#2|)) (-15 -4163 ((-51) |#2| (-774))) (-15 -4163 ((-51) |#2| (-295 |#2|))) (-15 -4163 ((-51) |#2| (-295 |#2|) (-774))) (-15 -4212 ((-51) (-1181))) (-15 -4212 ((-51) |#2|)) (-15 -4212 ((-51) |#2| (-550))) (-15 -4212 ((-51) |#2| (-295 |#2|))) (-15 -4212 ((-51) |#2| (-295 |#2|) (-550))) (-15 -4215 ((-51) (-1181))) (-15 -4215 ((-51) |#2|)) (-15 -4215 ((-51) |#2| (-411 (-550)))) (-15 -4215 ((-51) |#2| (-295 |#2|))) (-15 -4215 ((-51) |#2| (-295 |#2|) (-411 (-550)))) (-15 -4252 ((-51) (-1181))) (-15 -4252 ((-51) |#2|)) (-15 -4252 ((-51) |#2| (-411 (-550)))) (-15 -4252 ((-51) |#2| (-295 |#2|))) (-15 -4252 ((-51) |#2| (-295 |#2|) (-411 (-550))))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -318)) +((-4252 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-411 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-4252 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)))) (-4252 (*1 *2 *3 *4) (-12 (-5 *4 (-411 (-550))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-4252 (*1 *2 *3) (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) (-4215 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-411 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *4 (-411 (-550))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) (-4212 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-456) (-1042 *5) (-642 *5))) (-5 *5 (-550)) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *5 (-13 (-456) (-1042 *4) (-642 *4))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-4212 (*1 *2 *3) (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-774)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4)))))) +(-10 -7 (-15 -4163 ((-51) (-1181))) (-15 -4163 ((-51) |#2|)) (-15 -4163 ((-51) |#2| (-774))) (-15 -4163 ((-51) |#2| (-295 |#2|))) (-15 -4163 ((-51) |#2| (-295 |#2|) (-774))) (-15 -4212 ((-51) (-1181))) (-15 -4212 ((-51) |#2|)) (-15 -4212 ((-51) |#2| (-550))) (-15 -4212 ((-51) |#2| (-295 |#2|))) (-15 -4212 ((-51) |#2| (-295 |#2|) (-550))) (-15 -4215 ((-51) (-1181))) (-15 -4215 ((-51) |#2|)) (-15 -4215 ((-51) |#2| (-411 (-550)))) (-15 -4215 ((-51) |#2| (-295 |#2|))) (-15 -4215 ((-51) |#2| (-295 |#2|) (-411 (-550)))) (-15 -4252 ((-51) (-1181))) (-15 -4252 ((-51) |#2|)) (-15 -4252 ((-51) |#2| (-411 (-550)))) (-15 -4252 ((-51) |#2| (-295 |#2|))) (-15 -4252 ((-51) |#2| (-295 |#2|) (-411 (-550))))) +((-1758 (((-51) |#2| (-113) (-295 |#2|) (-644 |#2|)) 89) (((-51) |#2| (-113) (-295 |#2|) (-295 |#2|)) 85) (((-51) |#2| (-113) (-295 |#2|) |#2|) 87) (((-51) (-295 |#2|) (-113) (-295 |#2|) |#2|) 88) (((-51) (-644 |#2|) (-644 (-113)) (-295 |#2|) (-644 (-295 |#2|))) 81) (((-51) (-644 |#2|) (-644 (-113)) (-295 |#2|) (-644 |#2|)) 83) (((-51) (-644 (-295 |#2|)) (-644 (-113)) (-295 |#2|) (-644 |#2|)) 84) (((-51) (-644 (-295 |#2|)) (-644 (-113)) (-295 |#2|) (-644 (-295 |#2|))) 82) (((-51) (-295 |#2|) (-113) (-295 |#2|) (-644 |#2|)) 90) (((-51) (-295 |#2|) (-113) (-295 |#2|) (-295 |#2|)) 86))) +(((-319 |#1| |#2|) (-10 -7 (-15 -1758 ((-51) (-295 |#2|) (-113) (-295 |#2|) (-295 |#2|))) (-15 -1758 ((-51) (-295 |#2|) (-113) (-295 |#2|) (-644 |#2|))) (-15 -1758 ((-51) (-644 (-295 |#2|)) (-644 (-113)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1758 ((-51) (-644 (-295 |#2|)) (-644 (-113)) (-295 |#2|) (-644 |#2|))) (-15 -1758 ((-51) (-644 |#2|) (-644 (-113)) (-295 |#2|) (-644 |#2|))) (-15 -1758 ((-51) (-644 |#2|) (-644 (-113)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1758 ((-51) (-295 |#2|) (-113) (-295 |#2|) |#2|)) (-15 -1758 ((-51) |#2| (-113) (-295 |#2|) |#2|)) (-15 -1758 ((-51) |#2| (-113) (-295 |#2|) (-295 |#2|))) (-15 -1758 ((-51) |#2| (-113) (-295 |#2|) (-644 |#2|)))) (-13 (-561) (-617 (-539))) (-425 |#1|)) (T -319)) +((-1758 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) (-4 *3 (-425 *7)) (-4 *7 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *7 *3)))) (-1758 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-295 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) (-1758 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-295 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) (-1758 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-113)) (-4 *5 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *5)))) (-1758 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-113))) (-5 *6 (-644 (-295 *8))) (-4 *8 (-425 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *7 *8)))) (-1758 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-113))) (-5 *5 (-295 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *7)))) (-1758 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-113))) (-5 *5 (-295 *8)) (-5 *6 (-644 *8)) (-4 *8 (-425 *7)) (-4 *7 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *7 *8)))) (-1758 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-113))) (-5 *5 (-295 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *7)))) (-1758 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-113)) (-5 *5 (-644 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *7)))) (-1758 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-113)) (-4 *6 (-425 *5)) (-4 *5 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *6))))) +(-10 -7 (-15 -1758 ((-51) (-295 |#2|) (-113) (-295 |#2|) (-295 |#2|))) (-15 -1758 ((-51) (-295 |#2|) (-113) (-295 |#2|) (-644 |#2|))) (-15 -1758 ((-51) (-644 (-295 |#2|)) (-644 (-113)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1758 ((-51) (-644 (-295 |#2|)) (-644 (-113)) (-295 |#2|) (-644 |#2|))) (-15 -1758 ((-51) (-644 |#2|) (-644 (-113)) (-295 |#2|) (-644 |#2|))) (-15 -1758 ((-51) (-644 |#2|) (-644 (-113)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1758 ((-51) (-295 |#2|) (-113) (-295 |#2|) |#2|)) (-15 -1758 ((-51) |#2| (-113) (-295 |#2|) |#2|)) (-15 -1758 ((-51) |#2| (-113) (-295 |#2|) (-295 |#2|))) (-15 -1758 ((-51) |#2| (-113) (-295 |#2|) (-644 |#2|)))) +((-1760 (((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-226) (-550) (-1163)) 67) (((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-226) (-550)) 68) (((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-1 (-226) (-226)) (-550) (-1163)) 64) (((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-1 (-226) (-226)) (-550)) 65)) (-1759 (((-1 (-226) (-226)) (-226)) 66))) +(((-320) (-10 -7 (-15 -1759 ((-1 (-226) (-226)) (-226))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-1 (-226) (-226)) (-550))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-1 (-226) (-226)) (-550) (-1163))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-226) (-550))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-226) (-550) (-1163))))) (T -320)) +((-1760 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) (-5 *6 (-226)) (-5 *7 (-550)) (-5 *8 (-1163)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) (-1760 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) (-5 *6 (-226)) (-5 *7 (-550)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) (-1760 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) (-5 *6 (-550)) (-5 *7 (-1163)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) (-1760 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) (-5 *6 (-550)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-320)) (-5 *3 (-226))))) +(-10 -7 (-15 -1759 ((-1 (-226) (-226)) (-226))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-1 (-226) (-226)) (-550))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-1 (-226) (-226)) (-550) (-1163))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-226) (-550))) (-15 -1760 ((-1216 (-931)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-226) (-550) (-1163)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 26)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) NIL) (($ $ (-411 (-550)) (-411 (-550))) NIL)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) 20)) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) NIL)) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) 36)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) NIL) (((-411 (-550)) $ (-411 (-550))) 16)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) NIL) (($ $ (-411 (-550))) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-411 (-550))) NIL) (($ $ (-1086) (-411 (-550))) NIL) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-4246 (($ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))))))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) NIL)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-1761 (((-411 (-550)) $) 17)) (-3496 (($ (-1251 |#1| |#2| |#3|)) 11)) (-2566 (((-1251 |#1| |#2| |#3|) $) 12)) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) NIL) (($ $ $) NIL (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-4382 (((-411 (-550)) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 10)) (-4380 (((-866) $) 42) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) 34)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) NIL)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 28)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 37)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-321 |#1| |#2| |#3|) (-13 (-1253 |#1|) (-795) (-10 -8 (-15 -3496 ($ (-1251 |#1| |#2| |#3|))) (-15 -2566 ((-1251 |#1| |#2| |#3|) $)) (-15 -1761 ((-411 (-550)) $)))) (-366) (-1181) |#1|) (T -321)) +((-3496 (*1 *1 *2) (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-366)) (-14 *4 (-1181)) (-14 *5 *3) (-5 *1 (-321 *3 *4 *5)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-1251 *3 *4 *5)) (-5 *1 (-321 *3 *4 *5)) (-4 *3 (-366)) (-14 *4 (-1181)) (-14 *5 *3))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-321 *3 *4 *5)) (-4 *3 (-366)) (-14 *4 (-1181)) (-14 *5 *3)))) +(-13 (-1253 |#1|) (-795) (-10 -8 (-15 -3496 ($ (-1251 |#1| |#2| |#3|))) (-15 -2566 ((-1251 |#1| |#2| |#3|) $)) (-15 -1761 ((-411 (-550)) $)))) +((-3414 (((-2 (|:| -2566 (-774)) (|:| -4388 |#1|) (|:| |radicand| (-644 |#1|))) (-409 |#1|) (-774)) 35)) (-4376 (((-644 (-2 (|:| -4388 (-774)) (|:| |logand| |#1|))) (-409 |#1|)) 40))) +(((-322 |#1|) (-10 -7 (-15 -3414 ((-2 (|:| -2566 (-774)) (|:| -4388 |#1|) (|:| |radicand| (-644 |#1|))) (-409 |#1|) (-774))) (-15 -4376 ((-644 (-2 (|:| -4388 (-774)) (|:| |logand| |#1|))) (-409 |#1|)))) (-561)) (T -322)) +((-4376 (*1 *2 *3) (-12 (-5 *3 (-409 *4)) (-4 *4 (-561)) (-5 *2 (-644 (-2 (|:| -4388 (-774)) (|:| |logand| *4)))) (-5 *1 (-322 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *5)) (-4 *5 (-561)) (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *5) (|:| |radicand| (-644 *5)))) (-5 *1 (-322 *5)) (-5 *4 (-774))))) +(-10 -7 (-15 -3414 ((-2 (|:| -2566 (-774)) (|:| -4388 |#1|) (|:| |radicand| (-644 |#1|))) (-409 |#1|) (-774))) (-15 -4376 ((-644 (-2 (|:| -4388 (-774)) (|:| |logand| |#1|))) (-409 |#1|)))) +((-3487 (((-644 |#2|) (-1175 |#4|)) 44)) (-1766 ((|#3| (-550)) 47)) (-1764 (((-1175 |#4|) (-1175 |#3|)) 30)) (-1765 (((-1175 |#4|) (-1175 |#4|) (-550)) 66)) (-1763 (((-1175 |#3|) (-1175 |#4|)) 21)) (-4382 (((-644 (-774)) (-1175 |#4|) (-644 |#2|)) 41)) (-1762 (((-1175 |#3|) (-1175 |#4|) (-644 |#2|) (-644 |#3|)) 35))) +(((-323 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1762 ((-1175 |#3|) (-1175 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -4382 ((-644 (-774)) (-1175 |#4|) (-644 |#2|))) (-15 -3487 ((-644 |#2|) (-1175 |#4|))) (-15 -1763 ((-1175 |#3|) (-1175 |#4|))) (-15 -1764 ((-1175 |#4|) (-1175 |#3|))) (-15 -1765 ((-1175 |#4|) (-1175 |#4|) (-550))) (-15 -1766 (|#3| (-550)))) (-796) (-853) (-1053) (-954 |#3| |#1| |#2|)) (T -323)) +((-1766 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1053)) (-5 *1 (-323 *4 *5 *2 *6)) (-4 *6 (-954 *2 *4 *5)))) (-1765 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *7)) (-5 *3 (-550)) (-4 *7 (-954 *6 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-5 *1 (-323 *4 *5 *6 *7)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-1175 *6)) (-4 *6 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-1175 *7)) (-5 *1 (-323 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1175 *7)) (-4 *7 (-954 *6 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-5 *2 (-1175 *6)) (-5 *1 (-323 *4 *5 *6 *7)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-1175 *7)) (-4 *7 (-954 *6 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-5 *2 (-644 *5)) (-5 *1 (-323 *4 *5 *6 *7)))) (-4382 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *8)) (-5 *4 (-644 *6)) (-4 *6 (-853)) (-4 *8 (-954 *7 *5 *6)) (-4 *5 (-796)) (-4 *7 (-1053)) (-5 *2 (-644 (-774))) (-5 *1 (-323 *5 *6 *7 *8)))) (-1762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) (-4 *7 (-853)) (-4 *8 (-1053)) (-4 *9 (-954 *8 *6 *7)) (-4 *6 (-796)) (-5 *2 (-1175 *8)) (-5 *1 (-323 *6 *7 *8 *9))))) +(-10 -7 (-15 -1762 ((-1175 |#3|) (-1175 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -4382 ((-644 (-774)) (-1175 |#4|) (-644 |#2|))) (-15 -3487 ((-644 |#2|) (-1175 |#4|))) (-15 -1763 ((-1175 |#3|) (-1175 |#4|))) (-15 -1764 ((-1175 |#4|) (-1175 |#3|))) (-15 -1765 ((-1175 |#4|) (-1175 |#4|) (-550))) (-15 -1766 (|#3| (-550)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 19)) (-4207 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-550)))) $) 21)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3542 (((-774) $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-2446 ((|#1| $ (-550)) NIL)) (-1769 (((-550) $ (-550)) NIL)) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2438 (($ (-1 |#1| |#1|) $) NIL)) (-1768 (($ (-1 (-550) (-550)) $) 11)) (-3665 (((-1163) $) NIL)) (-1767 (($ $ $) NIL (|has| (-550) (-795)))) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ |#1|) NIL)) (-4111 (((-550) |#1| $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) 29 (|has| |#1| (-853)))) (-4271 (($ $) 12) (($ $ $) 28)) (-4273 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL) (($ (-550) |#1|) 27))) +(((-324 |#1|) (-13 (-21) (-720 (-550)) (-325 |#1| (-550)) (-10 -7 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|))) (-1105)) (T -324)) +NIL +(-13 (-21) (-720 (-550)) (-325 |#1| (-550)) (-10 -7 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4207 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))) $) 28)) (-1408 (((-3 $ "failed") $ $) 20)) (-3542 (((-774) $) 29)) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| "failed") $) 33)) (-3578 ((|#1| $) 34)) (-2446 ((|#1| $ (-550)) 26)) (-1769 ((|#2| $ (-550)) 27)) (-2438 (($ (-1 |#1| |#1|) $) 23)) (-1768 (($ (-1 |#2| |#2|) $) 24)) (-3665 (((-1163) $) 10)) (-1767 (($ $ $) 22 (|has| |#2| (-795)))) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ |#1|) 32)) (-4111 ((|#2| |#1| $) 25)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4273 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ |#2| |#1|) 30))) +(((-325 |#1| |#2|) (-140) (-1105) (-131)) (T -325)) +((-4273 (*1 *1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-131)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)) (-5 *2 (-774)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)) (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 *4)))))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-325 *4 *2)) (-4 *4 (-1105)) (-4 *2 (-131)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-325 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1105)))) (-4111 (*1 *2 *3 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-131)))) (-1768 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)))) (-2438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-131)) (-4 *3 (-795))))) +(-13 (-131) (-1042 |t#1|) (-10 -8 (-15 -4273 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3542 ((-774) $)) (-15 -4207 ((-644 (-2 (|:| |gen| |t#1|) (|:| -4377 |t#2|))) $)) (-15 -1769 (|t#2| $ (-550))) (-15 -2446 (|t#1| $ (-550))) (-15 -4111 (|t#2| |t#1| $)) (-15 -1768 ($ (-1 |t#2| |t#2|) $)) (-15 -2438 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-795)) (-15 -1767 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-1042 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4207 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-774)))) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3542 (((-774) $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-2446 ((|#1| $ (-550)) NIL)) (-1769 (((-774) $ (-550)) NIL)) (-2438 (($ (-1 |#1| |#1|) $) NIL)) (-1768 (($ (-1 (-774) (-774)) $) NIL)) (-3665 (((-1163) $) NIL)) (-1767 (($ $ $) NIL (|has| (-774) (-795)))) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ |#1|) NIL)) (-4111 (((-774) |#1| $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4273 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-774) |#1|) NIL))) +(((-326 |#1|) (-325 |#1| (-774)) (-1105)) (T -326)) +NIL +(-325 |#1| (-774)) +((-3928 (($ $) 72)) (-1771 (($ $ |#2| |#3| $) 14)) (-1772 (($ (-1 |#3| |#3|) $) 51)) (-1974 (((-112) $) 42)) (-1973 ((|#2| $) 44)) (-3891 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3222 ((|#2| $) 68)) (-4251 (((-644 |#2|) $) 56)) (-1770 (($ $ $ (-774)) 37)) (-4383 (($ $ |#2|) 60))) +(((-327 |#1| |#2| |#3|) (-10 -8 (-15 -3928 (|#1| |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1770 (|#1| |#1| |#1| (-774))) (-15 -1771 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1772 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4251 ((-644 |#2|) |#1|)) (-15 -1973 (|#2| |#1|)) (-15 -1974 ((-112) |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4383 (|#1| |#1| |#2|))) (-328 |#2| |#3|) (-1053) (-795)) (T -327)) +NIL +(-10 -8 (-15 -3928 (|#1| |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1770 (|#1| |#1| |#1| (-774))) (-15 -1771 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1772 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4251 ((-644 |#2|) |#1|)) (-15 -1973 (|#2| |#1|)) (-15 -1974 ((-112) |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4383 (|#1| |#1| |#2|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 100 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 98 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 95)) (-3578 (((-550) $) 99 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 97 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 96)) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-3928 (($ $) 84 (|has| |#1| (-456)))) (-1771 (($ $ |#1| |#2| $) 88)) (-2575 (((-112) $) 35)) (-2583 (((-774) $) 91)) (-4371 (((-112) $) 74)) (-3296 (($ |#1| |#2|) 73)) (-3225 ((|#2| $) 90)) (-1772 (($ (-1 |#2| |#2|) $) 89)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-1974 (((-112) $) 94)) (-1973 ((|#1| $) 93)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-561)))) (-4382 ((|#2| $) 76)) (-3222 ((|#1| $) 85 (|has| |#1| (-456)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59) (($ (-411 (-550))) 69 (-3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))))) (-4251 (((-644 |#1|) $) 92)) (-4111 ((|#1| $ |#2|) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-1770 (($ $ $ (-774)) 87 (|has| |#1| (-173)))) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-328 |#1| |#2|) (-140) (-1053) (-795)) (T -328)) +((-1974 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-112)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-644 *3)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-774)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)))) (-1771 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) (-1770 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-4 *3 (-173)))) (-3891 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-328 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *2 (-561)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)) (-4 *2 (-456)))) (-3928 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *2 (-456))))) +(-13 (-47 |t#1| |t#2|) (-416 |t#1|) (-10 -8 (-15 -1974 ((-112) $)) (-15 -1973 (|t#1| $)) (-15 -4251 ((-644 |t#1|) $)) (-15 -2583 ((-774) $)) (-15 -3225 (|t#2| $)) (-15 -1772 ($ (-1 |t#2| |t#2|) $)) (-15 -1771 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-173)) (-15 -1770 ($ $ $ (-774))) |%noBranch|) (IF (|has| |t#1| (-561)) (-15 -3891 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-456)) (PROGN (-15 -3222 (|t#1| $)) (-15 -3928 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-292) |has| |#1| (-561)) ((-416 |#1|) . T) ((-561) |has| |#1| (-561)) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) . T) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-2166 (((-112) (-112)) NIL)) (-4221 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) |#1|) $) NIL)) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-1105)))) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) NIL (|has| |#1| (-1105))) (($ (-1 (-112) |#1|) $) NIL)) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2167 (($ $ (-550)) NIL)) (-2168 (((-774) $) NIL)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3261 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4041 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2169 (($ (-644 |#1|)) NIL)) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-1681 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) NIL)) (-4224 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-329 |#1|) (-13 (-19 |#1|) (-284 |#1|) (-10 -8 (-15 -2169 ($ (-644 |#1|))) (-15 -2168 ((-774) $)) (-15 -2167 ($ $ (-550))) (-15 -2166 ((-112) (-112))))) (-1220)) (T -329)) +((-2169 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-329 *3)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-329 *3)) (-4 *3 (-1220)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-329 *3)) (-4 *3 (-1220)))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-329 *3)) (-4 *3 (-1220))))) +(-13 (-19 |#1|) (-284 |#1|) (-10 -8 (-15 -2169 ($ (-644 |#1|))) (-15 -2168 ((-774) $)) (-15 -2167 ($ $ (-550))) (-15 -2166 ((-112) (-112))))) +((-4366 (((-112) $) 50)) (-4363 (((-774)) 26)) (-3756 ((|#2| $) 54) (($ $ (-923)) 124)) (-3542 (((-774)) 125)) (-1969 (($ (-1270 |#2|)) 23)) (-2191 (((-112) $) 138)) (-3538 ((|#2| $) 56) (($ $ (-923)) 121)) (-2194 (((-1175 |#2|) $) NIL) (((-1175 $) $ (-923)) 112)) (-1774 (((-1175 |#2|) $) 98)) (-1773 (((-1175 |#2|) $) 94) (((-3 (-1175 |#2|) "failed") $ $) 91)) (-1775 (($ $ (-1175 |#2|)) 62)) (-4364 (((-835 (-923))) 33) (((-923)) 51)) (-4345 (((-134)) 30)) (-4382 (((-835 (-923)) $) 35) (((-923) $) 141)) (-1776 (($) 131)) (-3646 (((-1270 |#2|) $) NIL) (((-692 |#2|) (-1270 $)) 45)) (-3107 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4367 (((-112) $) 48))) +(((-330 |#1| |#2|) (-10 -8 (-15 -3107 ((-3 |#1| "failed") |#1|)) (-15 -3542 ((-774))) (-15 -3107 (|#1| |#1|)) (-15 -1773 ((-3 (-1175 |#2|) "failed") |#1| |#1|)) (-15 -1773 ((-1175 |#2|) |#1|)) (-15 -1774 ((-1175 |#2|) |#1|)) (-15 -1775 (|#1| |#1| (-1175 |#2|))) (-15 -2191 ((-112) |#1|)) (-15 -1776 (|#1|)) (-15 -3756 (|#1| |#1| (-923))) (-15 -3538 (|#1| |#1| (-923))) (-15 -2194 ((-1175 |#1|) |#1| (-923))) (-15 -3756 (|#2| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -4382 ((-923) |#1|)) (-15 -4364 ((-923))) (-15 -2194 ((-1175 |#2|) |#1|)) (-15 -1969 (|#1| (-1270 |#2|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -4363 ((-774))) (-15 -4364 ((-835 (-923)))) (-15 -4382 ((-835 (-923)) |#1|)) (-15 -4366 ((-112) |#1|)) (-15 -4367 ((-112) |#1|)) (-15 -4345 ((-134)))) (-331 |#2|) (-366)) (T -330)) +((-4345 (*1 *2) (-12 (-4 *4 (-366)) (-5 *2 (-134)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) (-4364 (*1 *2) (-12 (-4 *4 (-366)) (-5 *2 (-835 (-923))) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) (-4363 (*1 *2) (-12 (-4 *4 (-366)) (-5 *2 (-774)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) (-4364 (*1 *2) (-12 (-4 *4 (-366)) (-5 *2 (-923)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) (-3542 (*1 *2) (-12 (-4 *4 (-366)) (-5 *2 (-774)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4))))) +(-10 -8 (-15 -3107 ((-3 |#1| "failed") |#1|)) (-15 -3542 ((-774))) (-15 -3107 (|#1| |#1|)) (-15 -1773 ((-3 (-1175 |#2|) "failed") |#1| |#1|)) (-15 -1773 ((-1175 |#2|) |#1|)) (-15 -1774 ((-1175 |#2|) |#1|)) (-15 -1775 (|#1| |#1| (-1175 |#2|))) (-15 -2191 ((-112) |#1|)) (-15 -1776 (|#1|)) (-15 -3756 (|#1| |#1| (-923))) (-15 -3538 (|#1| |#1| (-923))) (-15 -2194 ((-1175 |#1|) |#1| (-923))) (-15 -3756 (|#2| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -4382 ((-923) |#1|)) (-15 -4364 ((-923))) (-15 -2194 ((-1175 |#2|) |#1|)) (-15 -1969 (|#1| (-1270 |#2|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -4363 ((-774))) (-15 -4364 ((-835 (-923)))) (-15 -4382 ((-835 (-923)) |#1|)) (-15 -4366 ((-112) |#1|)) (-15 -4367 ((-112) |#1|)) (-15 -4345 ((-134)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-4366 (((-112) $) 104)) (-4363 (((-774)) 100)) (-3756 ((|#1| $) 150) (($ $ (-923)) 147 (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) 132 (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-1755 (((-112) $ $) 65)) (-3542 (((-774)) 122 (|has| |#1| (-371)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| "failed") $) 111)) (-3578 ((|#1| $) 112)) (-1969 (($ (-1270 |#1|)) 156)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-371)))) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-3397 (($) 119 (|has| |#1| (-371)))) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-3238 (($) 134 (|has| |#1| (-371)))) (-1850 (((-112) $) 135 (|has| |#1| (-371)))) (-1943 (($ $ (-774)) 97 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) 96 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) 79)) (-4205 (((-923) $) 137 (|has| |#1| (-371))) (((-835 (-923)) $) 94 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) 35)) (-2193 (($) 145 (|has| |#1| (-371)))) (-2191 (((-112) $) 144 (|has| |#1| (-371)))) (-3538 ((|#1| $) 151) (($ $ (-923)) 148 (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) 123 (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-2194 (((-1175 |#1|) $) 155) (((-1175 $) $ (-923)) 149 (|has| |#1| (-371)))) (-2190 (((-923) $) 120 (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) 141 (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) 140 (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) 139 (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) 142 (|has| |#1| (-371)))) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3871 (($) 124 (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) 121 (|has| |#1| (-371)))) (-4365 (((-112) $) 103)) (-3666 (((-1124) $) 11)) (-2574 (($) 143 (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 131 (|has| |#1| (-371)))) (-4166 (((-409 $) $) 82)) (-4364 (((-835 (-923))) 101) (((-923)) 153)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-1944 (((-774) $) 136 (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) 95 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) 109)) (-4244 (($ $) 128 (|has| |#1| (-371))) (($ $ (-774)) 126 (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) 102) (((-923) $) 152)) (-3607 (((-1175 |#1|)) 154)) (-1844 (($) 133 (|has| |#1| (-371)))) (-1776 (($) 146 (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) 158) (((-692 |#1|) (-1270 $)) 157)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 130 (|has| |#1| (-371)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74) (($ |#1|) 110)) (-3107 (($ $) 129 (|has| |#1| (-371))) (((-3 $ "failed") $) 93 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2192 (((-1270 $)) 160) (((-1270 $) (-923)) 159)) (-2242 (((-112) $ $) 45)) (-4367 (((-112) $) 105)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-4362 (($ $) 99 (|has| |#1| (-371))) (($ $ (-774)) 98 (|has| |#1| (-371)))) (-3074 (($ $) 127 (|has| |#1| (-371))) (($ $ (-774)) 125 (|has| |#1| (-371)))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73) (($ $ |#1|) 108)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-331 |#1|) (-140) (-366)) (T -331)) +((-2192 (*1 *2) (-12 (-4 *3 (-366)) (-5 *2 (-1270 *1)) (-4 *1 (-331 *3)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-366)) (-5 *2 (-1270 *1)) (-4 *1 (-331 *4)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-1270 *3)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-331 *4)) (-4 *4 (-366)) (-5 *2 (-692 *4)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-366)) (-4 *1 (-331 *3)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-1175 *3)))) (-3607 (*1 *2) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-1175 *3)))) (-4364 (*1 *2) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-923)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-923)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-366)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-366)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-4 *4 (-371)) (-4 *4 (-366)) (-5 *2 (-1175 *1)) (-4 *1 (-331 *4)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)))) (-1776 (*1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-371)) (-4 *2 (-366)))) (-2193 (*1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-371)) (-4 *2 (-366)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-112)))) (-2574 (*1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-371)) (-4 *2 (-366)))) (-1775 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-371)) (-4 *1 (-331 *3)) (-4 *3 (-366)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-1175 *3)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-1175 *3)))) (-1773 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-1175 *3))))) +(-13 (-1289 |t#1|) (-1042 |t#1|) (-10 -8 (-15 -2192 ((-1270 $))) (-15 -2192 ((-1270 $) (-923))) (-15 -3646 ((-1270 |t#1|) $)) (-15 -3646 ((-692 |t#1|) (-1270 $))) (-15 -1969 ($ (-1270 |t#1|))) (-15 -2194 ((-1175 |t#1|) $)) (-15 -3607 ((-1175 |t#1|))) (-15 -4364 ((-923))) (-15 -4382 ((-923) $)) (-15 -3538 (|t#1| $)) (-15 -3756 (|t#1| $)) (IF (|has| |t#1| (-371)) (PROGN (-6 (-353)) (-15 -2194 ((-1175 $) $ (-923))) (-15 -3538 ($ $ (-923))) (-15 -3756 ($ $ (-923))) (-15 -1776 ($)) (-15 -2193 ($)) (-15 -2191 ((-112) $)) (-15 -2574 ($)) (-15 -1775 ($ $ (-1175 |t#1|))) (-15 -1774 ((-1175 |t#1|) $)) (-15 -1773 ((-1175 |t#1|) $)) (-15 -1773 ((-3 (-1175 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3962 (|has| |#1| (-371)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-234) |has| |#1| (-371)) ((-244) . T) ((-292) . T) ((-309) . T) ((-1289 |#1|) . T) ((-366) . T) ((-406) -3962 (|has| |#1| (-371)) (|has| |#1| (-145))) ((-371) |has| |#1| (-371)) ((-353) |has| |#1| (-371)) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 |#1|) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1042 |#1|) . T) ((-1055 #1#) . T) ((-1055 |#1|) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) |has| |#1| (-371)) ((-1225) . T) ((-1278 |#1|) . T)) +((-2970 (((-112) $ $) NIL)) (-1794 (($ (-1180) $) 100)) (-1785 (($) 89)) (-1777 (((-1124) (-1124)) 9)) (-1784 (($) 90)) (-1788 (($) 104) (($ (-316 (-702))) 112) (($ (-316 (-704))) 108) (($ (-316 (-697))) 116) (($ (-316 (-381))) 123) (($ (-316 (-550))) 119) (($ (-316 (-169 (-381)))) 127)) (-1793 (($ (-1180) $) 101)) (-1783 (($ (-644 (-866))) 91)) (-1779 (((-1276) $) 87)) (-1781 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1792 (($ (-1124)) 58)) (-1778 (((-1107) $) 30)) (-1795 (($ (-1096 (-950 (-550))) $) 97) (($ (-1096 (-950 (-550))) (-950 (-550)) $) 98)) (-1791 (($ (-1124)) 99)) (-1787 (($ (-1180) $) 129) (($ (-1180) $ $) 130)) (-1782 (($ (-1181) (-644 (-1181))) 88)) (-1790 (($ (-1163)) 94) (($ (-644 (-1163))) 92)) (-4380 (((-866) $) 132)) (-1780 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1181)) (|:| |arrayIndex| (-644 (-950 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1181)) (|:| |rand| (-866)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1180)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3829 (-112)) (|:| -3828 (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1163))) (|:| |callBranch| (-1163)) (|:| |forBranch| (-2 (|:| -1609 (-1096 (-950 (-550)))) (|:| |span| (-950 (-550))) (|:| -3655 $))) (|:| |labelBranch| (-1124)) (|:| |loopBranch| (-2 (|:| |switch| (-1180)) (|:| -3655 $))) (|:| |commonBranch| (-2 (|:| -3975 (-1181)) (|:| |contents| (-644 (-1181))))) (|:| |printBranch| (-644 (-866)))) $) 50)) (-1789 (($ (-1163)) 202)) (-1786 (($ (-644 $)) 128)) (-3664 (((-112) $ $) NIL)) (-2988 (($ (-1181) (-1163)) 135) (($ (-1181) (-316 (-704))) 175) (($ (-1181) (-316 (-702))) 176) (($ (-1181) (-316 (-697))) 177) (($ (-1181) (-692 (-704))) 138) (($ (-1181) (-692 (-702))) 141) (($ (-1181) (-692 (-697))) 144) (($ (-1181) (-1270 (-704))) 147) (($ (-1181) (-1270 (-702))) 150) (($ (-1181) (-1270 (-697))) 153) (($ (-1181) (-692 (-316 (-704)))) 156) (($ (-1181) (-692 (-316 (-702)))) 159) (($ (-1181) (-692 (-316 (-697)))) 162) (($ (-1181) (-1270 (-316 (-704)))) 165) (($ (-1181) (-1270 (-316 (-702)))) 168) (($ (-1181) (-1270 (-316 (-697)))) 171) (($ (-1181) (-644 (-950 (-550))) (-316 (-704))) 172) (($ (-1181) (-644 (-950 (-550))) (-316 (-702))) 173) (($ (-1181) (-644 (-950 (-550))) (-316 (-697))) 174) (($ (-1181) (-316 (-550))) 199) (($ (-1181) (-316 (-381))) 200) (($ (-1181) (-316 (-169 (-381)))) 201) (($ (-1181) (-692 (-316 (-550)))) 180) (($ (-1181) (-692 (-316 (-381)))) 183) (($ (-1181) (-692 (-316 (-169 (-381))))) 186) (($ (-1181) (-1270 (-316 (-550)))) 189) (($ (-1181) (-1270 (-316 (-381)))) 192) (($ (-1181) (-1270 (-316 (-169 (-381))))) 195) (($ (-1181) (-644 (-950 (-550))) (-316 (-550))) 196) (($ (-1181) (-644 (-950 (-550))) (-316 (-381))) 197) (($ (-1181) (-644 (-950 (-550))) (-316 (-169 (-381)))) 198)) (-3457 (((-112) $ $) NIL))) +(((-332) (-13 (-1105) (-10 -8 (-15 -1795 ($ (-1096 (-950 (-550))) $)) (-15 -1795 ($ (-1096 (-950 (-550))) (-950 (-550)) $)) (-15 -1794 ($ (-1180) $)) (-15 -1793 ($ (-1180) $)) (-15 -1792 ($ (-1124))) (-15 -1791 ($ (-1124))) (-15 -1790 ($ (-1163))) (-15 -1790 ($ (-644 (-1163)))) (-15 -1789 ($ (-1163))) (-15 -1788 ($)) (-15 -1788 ($ (-316 (-702)))) (-15 -1788 ($ (-316 (-704)))) (-15 -1788 ($ (-316 (-697)))) (-15 -1788 ($ (-316 (-381)))) (-15 -1788 ($ (-316 (-550)))) (-15 -1788 ($ (-316 (-169 (-381))))) (-15 -1787 ($ (-1180) $)) (-15 -1787 ($ (-1180) $ $)) (-15 -2988 ($ (-1181) (-1163))) (-15 -2988 ($ (-1181) (-316 (-704)))) (-15 -2988 ($ (-1181) (-316 (-702)))) (-15 -2988 ($ (-1181) (-316 (-697)))) (-15 -2988 ($ (-1181) (-692 (-704)))) (-15 -2988 ($ (-1181) (-692 (-702)))) (-15 -2988 ($ (-1181) (-692 (-697)))) (-15 -2988 ($ (-1181) (-1270 (-704)))) (-15 -2988 ($ (-1181) (-1270 (-702)))) (-15 -2988 ($ (-1181) (-1270 (-697)))) (-15 -2988 ($ (-1181) (-692 (-316 (-704))))) (-15 -2988 ($ (-1181) (-692 (-316 (-702))))) (-15 -2988 ($ (-1181) (-692 (-316 (-697))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-704))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-702))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-697))))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-704)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-702)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-697)))) (-15 -2988 ($ (-1181) (-316 (-550)))) (-15 -2988 ($ (-1181) (-316 (-381)))) (-15 -2988 ($ (-1181) (-316 (-169 (-381))))) (-15 -2988 ($ (-1181) (-692 (-316 (-550))))) (-15 -2988 ($ (-1181) (-692 (-316 (-381))))) (-15 -2988 ($ (-1181) (-692 (-316 (-169 (-381)))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-550))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-381))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-169 (-381)))))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-550)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-381)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-169 (-381))))) (-15 -1786 ($ (-644 $))) (-15 -1785 ($)) (-15 -1784 ($)) (-15 -1783 ($ (-644 (-866)))) (-15 -1782 ($ (-1181) (-644 (-1181)))) (-15 -1781 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1780 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1181)) (|:| |arrayIndex| (-644 (-950 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1181)) (|:| |rand| (-866)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1180)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3829 (-112)) (|:| -3828 (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1163))) (|:| |callBranch| (-1163)) (|:| |forBranch| (-2 (|:| -1609 (-1096 (-950 (-550)))) (|:| |span| (-950 (-550))) (|:| -3655 $))) (|:| |labelBranch| (-1124)) (|:| |loopBranch| (-2 (|:| |switch| (-1180)) (|:| -3655 $))) (|:| |commonBranch| (-2 (|:| -3975 (-1181)) (|:| |contents| (-644 (-1181))))) (|:| |printBranch| (-644 (-866)))) $)) (-15 -1779 ((-1276) $)) (-15 -1778 ((-1107) $)) (-15 -1777 ((-1124) (-1124)))))) (T -332)) +((-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1096 (-950 (-550)))) (-5 *1 (-332)))) (-1795 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1096 (-950 (-550)))) (-5 *3 (-950 (-550))) (-5 *1 (-332)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332)))) (-1793 (*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-332)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-332)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-332)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-332)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-332)))) (-1788 (*1 *1) (-5 *1 (-332))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-316 (-702))) (-5 *1 (-332)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-316 (-704))) (-5 *1 (-332)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-332)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-316 (-381))) (-5 *1 (-332)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-316 (-550))) (-5 *1 (-332)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-381)))) (-5 *1 (-332)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1163)) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-704))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-702))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-697))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-704))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-702))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-697))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-704))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-702))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-697))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-704)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-702)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-697)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-704)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-702)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-697)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-704))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-702))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-697))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-550))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-381))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-169 (-381)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-550)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-381)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-169 (-381))))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-550)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-381)))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-169 (-381))))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-550))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-381))) (-5 *1 (-332)))) (-2988 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-169 (-381)))) (-5 *1 (-332)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-5 *1 (-332)))) (-1785 (*1 *1) (-5 *1 (-332))) (-1784 (*1 *1) (-5 *1 (-332))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-332)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1181)) (-5 *1 (-332)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-332)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1181)) (|:| |arrayIndex| (-644 (-950 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1181)) (|:| |rand| (-866)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1180)) (|:| |thenClause| (-332)) (|:| |elseClause| (-332)))) (|:| |returnBranch| (-2 (|:| -3829 (-112)) (|:| -3828 (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |blockBranch| (-644 (-332))) (|:| |commentBranch| (-644 (-1163))) (|:| |callBranch| (-1163)) (|:| |forBranch| (-2 (|:| -1609 (-1096 (-950 (-550)))) (|:| |span| (-950 (-550))) (|:| -3655 (-332)))) (|:| |labelBranch| (-1124)) (|:| |loopBranch| (-2 (|:| |switch| (-1180)) (|:| -3655 (-332)))) (|:| |commonBranch| (-2 (|:| -3975 (-1181)) (|:| |contents| (-644 (-1181))))) (|:| |printBranch| (-644 (-866))))) (-5 *1 (-332)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-332)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-332)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-332))))) +(-13 (-1105) (-10 -8 (-15 -1795 ($ (-1096 (-950 (-550))) $)) (-15 -1795 ($ (-1096 (-950 (-550))) (-950 (-550)) $)) (-15 -1794 ($ (-1180) $)) (-15 -1793 ($ (-1180) $)) (-15 -1792 ($ (-1124))) (-15 -1791 ($ (-1124))) (-15 -1790 ($ (-1163))) (-15 -1790 ($ (-644 (-1163)))) (-15 -1789 ($ (-1163))) (-15 -1788 ($)) (-15 -1788 ($ (-316 (-702)))) (-15 -1788 ($ (-316 (-704)))) (-15 -1788 ($ (-316 (-697)))) (-15 -1788 ($ (-316 (-381)))) (-15 -1788 ($ (-316 (-550)))) (-15 -1788 ($ (-316 (-169 (-381))))) (-15 -1787 ($ (-1180) $)) (-15 -1787 ($ (-1180) $ $)) (-15 -2988 ($ (-1181) (-1163))) (-15 -2988 ($ (-1181) (-316 (-704)))) (-15 -2988 ($ (-1181) (-316 (-702)))) (-15 -2988 ($ (-1181) (-316 (-697)))) (-15 -2988 ($ (-1181) (-692 (-704)))) (-15 -2988 ($ (-1181) (-692 (-702)))) (-15 -2988 ($ (-1181) (-692 (-697)))) (-15 -2988 ($ (-1181) (-1270 (-704)))) (-15 -2988 ($ (-1181) (-1270 (-702)))) (-15 -2988 ($ (-1181) (-1270 (-697)))) (-15 -2988 ($ (-1181) (-692 (-316 (-704))))) (-15 -2988 ($ (-1181) (-692 (-316 (-702))))) (-15 -2988 ($ (-1181) (-692 (-316 (-697))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-704))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-702))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-697))))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-704)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-702)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-697)))) (-15 -2988 ($ (-1181) (-316 (-550)))) (-15 -2988 ($ (-1181) (-316 (-381)))) (-15 -2988 ($ (-1181) (-316 (-169 (-381))))) (-15 -2988 ($ (-1181) (-692 (-316 (-550))))) (-15 -2988 ($ (-1181) (-692 (-316 (-381))))) (-15 -2988 ($ (-1181) (-692 (-316 (-169 (-381)))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-550))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-381))))) (-15 -2988 ($ (-1181) (-1270 (-316 (-169 (-381)))))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-550)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-381)))) (-15 -2988 ($ (-1181) (-644 (-950 (-550))) (-316 (-169 (-381))))) (-15 -1786 ($ (-644 $))) (-15 -1785 ($)) (-15 -1784 ($)) (-15 -1783 ($ (-644 (-866)))) (-15 -1782 ($ (-1181) (-644 (-1181)))) (-15 -1781 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1780 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1181)) (|:| |arrayIndex| (-644 (-950 (-550)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1181)) (|:| |rand| (-866)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1180)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3829 (-112)) (|:| -3828 (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1163))) (|:| |callBranch| (-1163)) (|:| |forBranch| (-2 (|:| -1609 (-1096 (-950 (-550)))) (|:| |span| (-950 (-550))) (|:| -3655 $))) (|:| |labelBranch| (-1124)) (|:| |loopBranch| (-2 (|:| |switch| (-1180)) (|:| -3655 $))) (|:| |commonBranch| (-2 (|:| -3975 (-1181)) (|:| |contents| (-644 (-1181))))) (|:| |printBranch| (-644 (-866)))) $)) (-15 -1779 ((-1276) $)) (-15 -1778 ((-1107) $)) (-15 -1777 ((-1124) (-1124))))) +((-2970 (((-112) $ $) NIL)) (-1796 (((-112) $) 13)) (-4072 (($ |#1|) 10)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4068 (($ |#1|) 12)) (-4380 (((-866) $) 19)) (-3664 (((-112) $ $) NIL)) (-2387 ((|#1| $) 14)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 21))) +(((-333 |#1|) (-13 (-853) (-10 -8 (-15 -4072 ($ |#1|)) (-15 -4068 ($ |#1|)) (-15 -1796 ((-112) $)) (-15 -2387 (|#1| $)))) (-853)) (T -333)) +((-4072 (*1 *1 *2) (-12 (-5 *1 (-333 *2)) (-4 *2 (-853)))) (-4068 (*1 *1 *2) (-12 (-5 *1 (-333 *2)) (-4 *2 (-853)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-333 *3)) (-4 *3 (-853)))) (-2387 (*1 *2 *1) (-12 (-5 *1 (-333 *2)) (-4 *2 (-853))))) +(-13 (-853) (-10 -8 (-15 -4072 ($ |#1|)) (-15 -4068 ($ |#1|)) (-15 -1796 ((-112) $)) (-15 -2387 (|#1| $)))) +((-1797 (((-332) (-1181) (-950 (-550))) 23)) (-1798 (((-332) (-1181) (-950 (-550))) 27)) (-2481 (((-332) (-1181) (-1096 (-950 (-550))) (-1096 (-950 (-550)))) 26) (((-332) (-1181) (-950 (-550)) (-950 (-550))) 24)) (-1799 (((-332) (-1181) (-950 (-550))) 31))) +(((-334) (-10 -7 (-15 -1797 ((-332) (-1181) (-950 (-550)))) (-15 -2481 ((-332) (-1181) (-950 (-550)) (-950 (-550)))) (-15 -2481 ((-332) (-1181) (-1096 (-950 (-550))) (-1096 (-950 (-550))))) (-15 -1798 ((-332) (-1181) (-950 (-550)))) (-15 -1799 ((-332) (-1181) (-950 (-550)))))) (T -334)) +((-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334)))) (-2481 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-1096 (-950 (-550)))) (-5 *2 (-332)) (-5 *1 (-334)))) (-2481 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334))))) +(-10 -7 (-15 -1797 ((-332) (-1181) (-950 (-550)))) (-15 -2481 ((-332) (-1181) (-950 (-550)) (-950 (-550)))) (-15 -2481 ((-332) (-1181) (-1096 (-950 (-550))) (-1096 (-950 (-550))))) (-15 -1798 ((-332) (-1181) (-950 (-550)))) (-15 -1799 ((-332) (-1181) (-950 (-550))))) +((-2970 (((-112) $ $) NIL)) (-1800 (((-510) $) 20)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1801 (((-962 (-774)) $) 18)) (-1803 (((-251) $) 7)) (-4380 (((-866) $) 26)) (-2382 (((-962 (-185 (-139))) $) 16)) (-3664 (((-112) $ $) NIL)) (-1802 (((-644 (-876 (-1186) (-774))) $) 12)) (-3457 (((-112) $ $) 22))) +(((-335) (-13 (-1105) (-10 -8 (-15 -1803 ((-251) $)) (-15 -1802 ((-644 (-876 (-1186) (-774))) $)) (-15 -1801 ((-962 (-774)) $)) (-15 -2382 ((-962 (-185 (-139))) $)) (-15 -1800 ((-510) $))))) (T -335)) +((-1803 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-335)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-644 (-876 (-1186) (-774)))) (-5 *1 (-335)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-962 (-774))) (-5 *1 (-335)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-962 (-185 (-139)))) (-5 *1 (-335)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-335))))) +(-13 (-1105) (-10 -8 (-15 -1803 ((-251) $)) (-15 -1802 ((-644 (-876 (-1186) (-774))) $)) (-15 -1801 ((-962 (-774)) $)) (-15 -2382 ((-962 (-185 (-139))) $)) (-15 -1800 ((-510) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4276 (($ $) 33)) (-1806 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-1804 (((-1270 |#4|) $) 134)) (-2150 (((-417 |#2| (-411 |#2|) |#3| |#4|) $) 31)) (-3666 (((-1124) $) NIL)) (-2574 (((-3 |#4| "failed") $) 36)) (-1805 (((-1270 |#4|) $) 126)) (-1807 (($ (-417 |#2| (-411 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-550)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3861 (((-2 (|:| -2489 (-417 |#2| (-411 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4380 (((-866) $) 17)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 14 T CONST)) (-3457 (((-112) $ $) 20)) (-4271 (($ $) 27) (($ $ $) NIL)) (-4273 (($ $ $) 25)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 23))) +(((-336 |#1| |#2| |#3| |#4|) (-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1805 ((-1270 |#4|) $)) (-15 -1804 ((-1270 |#4|) $)))) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|)) (T -336)) +((-1805 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-1270 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-345 *3 *4 *5)))) (-1804 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-1270 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-345 *3 *4 *5))))) +(-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1805 ((-1270 |#4|) $)) (-15 -1804 ((-1270 |#4|) $)))) +((-4392 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) +(((-337 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4392 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|) (-366) (-1246 |#5|) (-1246 (-411 |#6|)) (-345 |#5| |#6| |#7|)) (T -337)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-366)) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) (-4 *9 (-366)) (-4 *10 (-1246 *9)) (-4 *11 (-1246 (-411 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-345 *9 *10 *11))))) +(-10 -7 (-15 -4392 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) +((-1806 (((-112) $) 14))) +(((-338 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1806 ((-112) |#1|))) (-339 |#2| |#3| |#4| |#5|) (-366) (-1246 |#2|) (-1246 (-411 |#3|)) (-345 |#2| |#3| |#4|)) (T -338)) +NIL +(-10 -8 (-15 -1806 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-4276 (($ $) 29)) (-1806 (((-112) $) 28)) (-3665 (((-1163) $) 10)) (-2150 (((-417 |#2| (-411 |#2|) |#3| |#4|) $) 35)) (-3666 (((-1124) $) 11)) (-2574 (((-3 |#4| "failed") $) 27)) (-1807 (($ (-417 |#2| (-411 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-550)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3861 (((-2 (|:| -2489 (-417 |#2| (-411 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24))) +(((-339 |#1| |#2| |#3| |#4|) (-140) (-366) (-1246 |t#1|) (-1246 (-411 |t#2|)) (-345 |t#1| |t#2| |t#3|)) (T -339)) +((-2150 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-5 *2 (-417 *4 (-411 *4) *5 *6)))) (-1807 (*1 *1 *2) (-12 (-5 *2 (-417 *4 (-411 *4) *5 *6)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-4 *3 (-366)) (-4 *1 (-339 *3 *4 *5 *6)))) (-1807 (*1 *1 *2) (-12 (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-345 *3 *4 *5)))) (-1807 (*1 *1 *2 *2) (-12 (-4 *2 (-366)) (-4 *3 (-1246 *2)) (-4 *4 (-1246 (-411 *3))) (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-345 *2 *3 *4)))) (-1807 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-550)) (-4 *2 (-366)) (-4 *4 (-1246 *2)) (-4 *5 (-1246 (-411 *4))) (-4 *1 (-339 *2 *4 *5 *6)) (-4 *6 (-345 *2 *4 *5)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-5 *2 (-2 (|:| -2489 (-417 *4 (-411 *4) *5 *6)) (|:| |principalPart| *6))))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-366)) (-4 *3 (-1246 *2)) (-4 *4 (-1246 (-411 *3))) (-4 *5 (-345 *2 *3 *4)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-5 *2 (-112)))) (-2574 (*1 *2 *1) (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *2 (-345 *3 *4 *5)))) (-1807 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-366)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 (-411 *3))) (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-345 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2150 ((-417 |t#2| (-411 |t#2|) |t#3| |t#4|) $)) (-15 -1807 ($ (-417 |t#2| (-411 |t#2|) |t#3| |t#4|))) (-15 -1807 ($ |t#4|)) (-15 -1807 ($ |t#1| |t#1|)) (-15 -1807 ($ |t#1| |t#1| (-550))) (-15 -3861 ((-2 (|:| -2489 (-417 |t#2| (-411 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4276 ($ $)) (-15 -1806 ((-112) $)) (-15 -2574 ((-3 |t#4| "failed") $)) (-15 -1807 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-1105) . T)) +((-4201 (($ $ (-1181) |#2|) NIL) (($ $ (-644 (-1181)) (-644 |#2|)) 20) (($ $ (-644 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-4233 (($ $ |#2|) 11))) +(((-340 |#1| |#2|) (-10 -8 (-15 -4233 (|#1| |#1| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#2| |#2|)) (-15 -4201 (|#1| |#1| (-295 |#2|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 |#2|))) (-15 -4201 (|#1| |#1| (-1181) |#2|))) (-341 |#2|) (-1105)) (T -340)) +NIL +(-10 -8 (-15 -4233 (|#1| |#1| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#2| |#2|)) (-15 -4201 (|#1| |#1| (-295 |#2|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 |#2|))) (-15 -4201 (|#1| |#1| (-1181) |#2|))) +((-4392 (($ (-1 |#1| |#1|) $) 6)) (-4201 (($ $ (-1181) |#1|) 17 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 16 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-644 (-295 |#1|))) 15 (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-311 |#1|))) (($ $ (-644 |#1|) (-644 |#1|)) 12 (|has| |#1| (-311 |#1|)))) (-4233 (($ $ |#1|) 11 (|has| |#1| (-288 |#1| |#1|))))) +(((-341 |#1|) (-140) (-1105)) (T -341)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-341 *3)) (-4 *3 (-1105))))) +(-13 (-10 -8 (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-288 |t#1| |t#1|)) (-6 (-288 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-311 |t#1|)) (-6 (-311 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-518 (-1181) |t#1|)) (-6 (-518 (-1181) |t#1|)) |%noBranch|))) +(((-288 |#1| $) |has| |#1| (-288 |#1| |#1|)) ((-311 |#1|) |has| |#1| (-311 |#1|)) ((-518 (-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((-518 |#1| |#1|) |has| |#1| (-311 |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1181)) $) NIL)) (-1808 (((-112)) 96) (((-112) (-112)) 97)) (-1710 (((-644 (-614 $)) $) NIL)) (-3917 (($ $) NIL)) (-4073 (($ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-1714 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL)) (-3440 (($ $) NIL)) (-3915 (($ $) NIL)) (-4072 (($ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-614 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-316 |#3|)) 76) (((-3 $ "failed") (-1181)) 103) (((-3 $ "failed") (-316 (-550))) 64 (|has| |#3| (-1042 (-550)))) (((-3 $ "failed") (-411 (-950 (-550)))) 70 (|has| |#3| (-1042 (-550)))) (((-3 $ "failed") (-950 (-550))) 65 (|has| |#3| (-1042 (-550)))) (((-3 $ "failed") (-316 (-381))) 94 (|has| |#3| (-1042 (-381)))) (((-3 $ "failed") (-411 (-950 (-381)))) 88 (|has| |#3| (-1042 (-381)))) (((-3 $ "failed") (-950 (-381))) 83 (|has| |#3| (-1042 (-381))))) (-3578 (((-614 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 77) (($ (-1181)) 104) (($ (-316 (-550))) 66 (|has| |#3| (-1042 (-550)))) (($ (-411 (-950 (-550)))) 71 (|has| |#3| (-1042 (-550)))) (($ (-950 (-550))) 67 (|has| |#3| (-1042 (-550)))) (($ (-316 (-381))) 95 (|has| |#3| (-1042 (-381)))) (($ (-411 (-950 (-381)))) 89 (|has| |#3| (-1042 (-381)))) (($ (-950 (-381))) 85 (|has| |#3| (-1042 (-381))))) (-3892 (((-3 $ "failed") $) NIL)) (-4061 (($) 101)) (-2975 (($ $) NIL) (($ (-644 $)) NIL)) (-1709 (((-644 (-113)) $) NIL)) (-3450 (((-113) (-113)) NIL)) (-2575 (((-112) $) NIL)) (-3078 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-1707 (((-1175 $) (-614 $)) NIL (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) NIL)) (-1712 (((-3 (-614 $) "failed") $) NIL)) (-1912 (($ $) 99)) (-4376 (($ $) NIL)) (-3665 (((-1163) $) NIL)) (-1711 (((-644 (-614 $)) $) NIL)) (-2386 (($ (-113) $) 98) (($ (-113) (-644 $)) NIL)) (-3037 (((-112) $ (-113)) NIL) (((-112) $ (-1181)) NIL)) (-3005 (((-774) $) NIL)) (-3666 (((-1124) $) NIL)) (-1708 (((-112) $ $) NIL) (((-112) $ (-1181)) NIL)) (-4377 (($ $) NIL)) (-3079 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-4201 (($ $ (-614 $) $) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1181) (-1 $ (-644 $))) NIL) (($ $ (-1181) (-1 $ $)) NIL) (($ $ (-644 (-113)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-113) (-1 $ (-644 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4233 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-644 $)) NIL)) (-1713 (($ $) NIL) (($ $ $) NIL)) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL)) (-3607 (($ $) NIL (|has| $ (-1053)))) (-3916 (($ $) NIL)) (-4068 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-614 $)) NIL) (($ |#3|) NIL) (($ (-550)) NIL) (((-316 |#3|) $) 102)) (-3532 (((-774)) NIL T CONST)) (-2992 (($ $) NIL) (($ (-644 $)) NIL)) (-2405 (((-112) (-113)) NIL)) (-3664 (((-112) $ $) NIL)) (-3911 (($ $) NIL)) (-3909 (($ $) NIL)) (-3910 (($ $) NIL)) (-3809 (($ $) NIL)) (-3512 (($) 100 T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL) (($ $ (-923)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-774) $) NIL) (($ (-923) $) NIL))) +(((-342 |#1| |#2| |#3|) (-13 (-300) (-38 |#3|) (-1042 |#3|) (-904 (-1181)) (-10 -8 (-15 -3578 ($ (-316 |#3|))) (-15 -3579 ((-3 $ "failed") (-316 |#3|))) (-15 -3578 ($ (-1181))) (-15 -3579 ((-3 $ "failed") (-1181))) (-15 -4380 ((-316 |#3|) $)) (IF (|has| |#3| (-1042 (-550))) (PROGN (-15 -3578 ($ (-316 (-550)))) (-15 -3579 ((-3 $ "failed") (-316 (-550)))) (-15 -3578 ($ (-411 (-950 (-550))))) (-15 -3579 ((-3 $ "failed") (-411 (-950 (-550))))) (-15 -3578 ($ (-950 (-550)))) (-15 -3579 ((-3 $ "failed") (-950 (-550))))) |%noBranch|) (IF (|has| |#3| (-1042 (-381))) (PROGN (-15 -3578 ($ (-316 (-381)))) (-15 -3579 ((-3 $ "failed") (-316 (-381)))) (-15 -3578 ($ (-411 (-950 (-381))))) (-15 -3579 ((-3 $ "failed") (-411 (-950 (-381))))) (-15 -3578 ($ (-950 (-381)))) (-15 -3579 ((-3 $ "failed") (-950 (-381))))) |%noBranch|) (-15 -3809 ($ $)) (-15 -3440 ($ $)) (-15 -4377 ($ $)) (-15 -4376 ($ $)) (-15 -1912 ($ $)) (-15 -4072 ($ $)) (-15 -4068 ($ $)) (-15 -4073 ($ $)) (-15 -3909 ($ $)) (-15 -3910 ($ $)) (-15 -3911 ($ $)) (-15 -3915 ($ $)) (-15 -3916 ($ $)) (-15 -3917 ($ $)) (-15 -4061 ($)) (-15 -3487 ((-644 (-1181)) $)) (-15 -1808 ((-112))) (-15 -1808 ((-112) (-112))))) (-644 (-1181)) (-644 (-1181)) (-391)) (T -342)) +((-3578 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-391)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-391)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-391)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-316 (-550))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-550))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-550)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-411 (-950 (-550)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-950 (-550))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-550))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-316 (-381))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-381))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-381)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-411 (-950 (-381)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-950 (-381))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-381))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-4377 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-4376 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-1912 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-4072 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-4068 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3915 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3917 (*1 *1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-4061 (*1 *1) (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) (-4 *4 (-391)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-342 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-391)))) (-1808 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391))))) +(-13 (-300) (-38 |#3|) (-1042 |#3|) (-904 (-1181)) (-10 -8 (-15 -3578 ($ (-316 |#3|))) (-15 -3579 ((-3 $ "failed") (-316 |#3|))) (-15 -3578 ($ (-1181))) (-15 -3579 ((-3 $ "failed") (-1181))) (-15 -4380 ((-316 |#3|) $)) (IF (|has| |#3| (-1042 (-550))) (PROGN (-15 -3578 ($ (-316 (-550)))) (-15 -3579 ((-3 $ "failed") (-316 (-550)))) (-15 -3578 ($ (-411 (-950 (-550))))) (-15 -3579 ((-3 $ "failed") (-411 (-950 (-550))))) (-15 -3578 ($ (-950 (-550)))) (-15 -3579 ((-3 $ "failed") (-950 (-550))))) |%noBranch|) (IF (|has| |#3| (-1042 (-381))) (PROGN (-15 -3578 ($ (-316 (-381)))) (-15 -3579 ((-3 $ "failed") (-316 (-381)))) (-15 -3578 ($ (-411 (-950 (-381))))) (-15 -3579 ((-3 $ "failed") (-411 (-950 (-381))))) (-15 -3578 ($ (-950 (-381)))) (-15 -3579 ((-3 $ "failed") (-950 (-381))))) |%noBranch|) (-15 -3809 ($ $)) (-15 -3440 ($ $)) (-15 -4377 ($ $)) (-15 -4376 ($ $)) (-15 -1912 ($ $)) (-15 -4072 ($ $)) (-15 -4068 ($ $)) (-15 -4073 ($ $)) (-15 -3909 ($ $)) (-15 -3910 ($ $)) (-15 -3911 ($ $)) (-15 -3915 ($ $)) (-15 -3916 ($ $)) (-15 -3917 ($ $)) (-15 -4061 ($)) (-15 -3487 ((-644 (-1181)) $)) (-15 -1808 ((-112))) (-15 -1808 ((-112) (-112))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 (((-910 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-910 |#1|) (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| (-910 |#1|) (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-910 |#1|) "failed") $) NIL)) (-3578 (((-910 |#1|) $) NIL)) (-1969 (($ (-1270 (-910 |#1|))) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-910 |#1|) (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| (-910 |#1|) (-371)))) (-1850 (((-112) $) NIL (|has| (-910 |#1|) (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371)))) (($ $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| (-910 |#1|) (-371))) (((-835 (-923)) $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| (-910 |#1|) (-371)))) (-2191 (((-112) $) NIL (|has| (-910 |#1|) (-371)))) (-3538 (((-910 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 (-910 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-2190 (((-923) $) NIL (|has| (-910 |#1|) (-371)))) (-1774 (((-1175 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-371)))) (-1773 (((-1175 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-371))) (((-3 (-1175 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-371)))) (-1775 (($ $ (-1175 (-910 |#1|))) NIL (|has| (-910 |#1|) (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-910 |#1|) (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-2574 (($) NIL (|has| (-910 |#1|) (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-910 |#1|) (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| (-910 |#1|) (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 (-910 |#1|))) NIL)) (-1844 (($) NIL (|has| (-910 |#1|) (-371)))) (-1776 (($) NIL (|has| (-910 |#1|) (-371)))) (-3646 (((-1270 (-910 |#1|)) $) NIL) (((-692 (-910 |#1|)) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| (-910 |#1|) (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-910 |#1|)) NIL)) (-3107 (($ $) NIL (|has| (-910 |#1|) (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-3074 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-343 |#1| |#2|) (-331 (-910 |#1|)) (-923) (-923)) (T -343)) +NIL +(-331 (-910 |#1|)) +((-1817 (((-2 (|:| |num| (-1270 |#3|)) (|:| |den| |#3|)) $) 39)) (-1969 (($ (-1270 (-411 |#3|)) (-1270 $)) NIL) (($ (-1270 (-411 |#3|))) NIL) (($ (-1270 |#3|) |#3|) 177)) (-1822 (((-1270 $) (-1270 $)) 160)) (-1809 (((-644 (-644 |#2|))) 129)) (-1834 (((-112) |#2| |#2|) 76)) (-3928 (($ $) 151)) (-3803 (((-774)) 176)) (-1823 (((-1270 $) (-1270 $)) 222)) (-1810 (((-644 (-950 |#2|)) (-1181)) 118)) (-1826 (((-112) $) 173)) (-1825 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1812 (((-3 |#3| "failed")) 52)) (-1836 (((-774)) 188)) (-4233 ((|#2| $ |#2| |#2|) 143)) (-1813 (((-3 |#3| "failed")) 71)) (-4244 (($ $ (-1 (-411 |#3|) (-411 |#3|)) (-774)) NIL) (($ $ (-1 (-411 |#3|) (-411 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL) (($ $ (-774)) NIL) (($ $) NIL)) (-1824 (((-1270 $) (-1270 $)) 166)) (-1811 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1835 (((-112)) 34))) +(((-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -1809 ((-644 (-644 |#2|)))) (-15 -1810 ((-644 (-950 |#2|)) (-1181))) (-15 -1811 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1812 ((-3 |#3| "failed"))) (-15 -1813 ((-3 |#3| "failed"))) (-15 -4233 (|#2| |#1| |#2| |#2|)) (-15 -3928 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1825 ((-112) |#1| |#3|)) (-15 -1825 ((-112) |#1| |#2|)) (-15 -1969 (|#1| (-1270 |#3|) |#3|)) (-15 -1817 ((-2 (|:| |num| (-1270 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1822 ((-1270 |#1|) (-1270 |#1|))) (-15 -1823 ((-1270 |#1|) (-1270 |#1|))) (-15 -1824 ((-1270 |#1|) (-1270 |#1|))) (-15 -1825 ((-112) |#1|)) (-15 -1826 ((-112) |#1|)) (-15 -1834 ((-112) |#2| |#2|)) (-15 -1835 ((-112))) (-15 -1836 ((-774))) (-15 -3803 ((-774))) (-15 -4244 (|#1| |#1| (-1 (-411 |#3|) (-411 |#3|)))) (-15 -4244 (|#1| |#1| (-1 (-411 |#3|) (-411 |#3|)) (-774))) (-15 -1969 (|#1| (-1270 (-411 |#3|)))) (-15 -1969 (|#1| (-1270 (-411 |#3|)) (-1270 |#1|)))) (-345 |#2| |#3| |#4|) (-1225) (-1246 |#2|) (-1246 (-411 |#3|))) (T -344)) +((-3803 (*1 *2) (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-774)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6)))) (-1836 (*1 *2) (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-774)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6)))) (-1835 (*1 *2) (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6)))) (-1834 (*1 *2 *3 *3) (-12 (-4 *3 (-1225)) (-4 *5 (-1246 *3)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-112)) (-5 *1 (-344 *4 *3 *5 *6)) (-4 *4 (-345 *3 *5 *6)))) (-1813 (*1 *2) (|partial| -12 (-4 *4 (-1225)) (-4 *5 (-1246 (-411 *2))) (-4 *2 (-1246 *4)) (-5 *1 (-344 *3 *4 *2 *5)) (-4 *3 (-345 *4 *2 *5)))) (-1812 (*1 *2) (|partial| -12 (-4 *4 (-1225)) (-4 *5 (-1246 (-411 *2))) (-4 *2 (-1246 *4)) (-5 *1 (-344 *3 *4 *2 *5)) (-4 *3 (-345 *4 *2 *5)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *5 (-1225)) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-5 *2 (-644 (-950 *5))) (-5 *1 (-344 *4 *5 *6 *7)) (-4 *4 (-345 *5 *6 *7)))) (-1809 (*1 *2) (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6))))) +(-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -1809 ((-644 (-644 |#2|)))) (-15 -1810 ((-644 (-950 |#2|)) (-1181))) (-15 -1811 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1812 ((-3 |#3| "failed"))) (-15 -1813 ((-3 |#3| "failed"))) (-15 -4233 (|#2| |#1| |#2| |#2|)) (-15 -3928 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1825 ((-112) |#1| |#3|)) (-15 -1825 ((-112) |#1| |#2|)) (-15 -1969 (|#1| (-1270 |#3|) |#3|)) (-15 -1817 ((-2 (|:| |num| (-1270 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1822 ((-1270 |#1|) (-1270 |#1|))) (-15 -1823 ((-1270 |#1|) (-1270 |#1|))) (-15 -1824 ((-1270 |#1|) (-1270 |#1|))) (-15 -1825 ((-112) |#1|)) (-15 -1826 ((-112) |#1|)) (-15 -1834 ((-112) |#2| |#2|)) (-15 -1835 ((-112))) (-15 -1836 ((-774))) (-15 -3803 ((-774))) (-15 -4244 (|#1| |#1| (-1 (-411 |#3|) (-411 |#3|)))) (-15 -4244 (|#1| |#1| (-1 (-411 |#3|) (-411 |#3|)) (-774))) (-15 -1969 (|#1| (-1270 (-411 |#3|)))) (-15 -1969 (|#1| (-1270 (-411 |#3|)) (-1270 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1817 (((-2 (|:| |num| (-1270 |#2|)) (|:| |den| |#2|)) $) 204)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 102 (|has| (-411 |#2|) (-366)))) (-2243 (($ $) 103 (|has| (-411 |#2|) (-366)))) (-2241 (((-112) $) 105 (|has| (-411 |#2|) (-366)))) (-1959 (((-692 (-411 |#2|)) (-1270 $)) 53) (((-692 (-411 |#2|))) 68)) (-3756 (((-411 |#2|) $) 59)) (-1845 (((-1193 (-923) (-774)) (-550)) 155 (|has| (-411 |#2|) (-353)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 122 (|has| (-411 |#2|) (-366)))) (-4403 (((-409 $) $) 123 (|has| (-411 |#2|) (-366)))) (-1755 (((-112) $ $) 113 (|has| (-411 |#2|) (-366)))) (-3542 (((-774)) 96 (|has| (-411 |#2|) (-371)))) (-1831 (((-112)) 221)) (-1830 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 178 (|has| (-411 |#2|) (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 176 (|has| (-411 |#2|) (-1042 (-411 (-550))))) (((-3 (-411 |#2|) #1#) $) 173)) (-3578 (((-550) $) 177 (|has| (-411 |#2|) (-1042 (-550)))) (((-411 (-550)) $) 175 (|has| (-411 |#2|) (-1042 (-411 (-550))))) (((-411 |#2|) $) 174)) (-1969 (($ (-1270 (-411 |#2|)) (-1270 $)) 55) (($ (-1270 (-411 |#2|))) 71) (($ (-1270 |#2|) |#2|) 203)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-411 |#2|) (-353)))) (-2966 (($ $ $) 117 (|has| (-411 |#2|) (-366)))) (-1958 (((-692 (-411 |#2|)) $ (-1270 $)) 60) (((-692 (-411 |#2|)) $) 66)) (-2429 (((-692 (-550)) (-692 $)) 172 (|has| (-411 |#2|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 171 (|has| (-411 |#2|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-411 |#2|))) (|:| |vec| (-1270 (-411 |#2|)))) (-692 $) (-1270 $)) 170) (((-692 (-411 |#2|)) (-692 $)) 169)) (-1822 (((-1270 $) (-1270 $)) 209)) (-4276 (($ |#3|) 166) (((-3 $ "failed") (-411 |#3|)) 163 (|has| (-411 |#2|) (-366)))) (-3892 (((-3 $ "failed") $) 37)) (-1809 (((-644 (-644 |#1|))) 190 (|has| |#1| (-371)))) (-1834 (((-112) |#1| |#1|) 225)) (-3515 (((-923)) 61)) (-3397 (($) 99 (|has| (-411 |#2|) (-371)))) (-1829 (((-112)) 218)) (-1828 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2965 (($ $ $) 116 (|has| (-411 |#2|) (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 111 (|has| (-411 |#2|) (-366)))) (-3928 (($ $) 196)) (-3238 (($) 157 (|has| (-411 |#2|) (-353)))) (-1850 (((-112) $) 158 (|has| (-411 |#2|) (-353)))) (-1943 (($ $ (-774)) 149 (|has| (-411 |#2|) (-353))) (($ $) 148 (|has| (-411 |#2|) (-353)))) (-4157 (((-112) $) 124 (|has| (-411 |#2|) (-366)))) (-4205 (((-923) $) 160 (|has| (-411 |#2|) (-353))) (((-835 (-923)) $) 146 (|has| (-411 |#2|) (-353)))) (-2575 (((-112) $) 35)) (-3803 (((-774)) 228)) (-1823 (((-1270 $) (-1270 $)) 210)) (-3538 (((-411 |#2|) $) 58)) (-1810 (((-644 (-950 |#1|)) (-1181)) 191 (|has| |#1| (-366)))) (-3870 (((-3 $ "failed") $) 150 (|has| (-411 |#2|) (-353)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 120 (|has| (-411 |#2|) (-366)))) (-2194 ((|#3| $) 51 (|has| (-411 |#2|) (-366)))) (-2190 (((-923) $) 98 (|has| (-411 |#2|) (-371)))) (-3483 ((|#3| $) 164)) (-2071 (($ (-644 $)) 109 (|has| (-411 |#2|) (-366))) (($ $ $) 108 (|has| (-411 |#2|) (-366)))) (-3665 (((-1163) $) 10)) (-1818 (((-692 (-411 |#2|))) 205)) (-1820 (((-692 (-411 |#2|))) 207)) (-2808 (($ $) 125 (|has| (-411 |#2|) (-366)))) (-1815 (($ (-1270 |#2|) |#2|) 201)) (-1819 (((-692 (-411 |#2|))) 206)) (-1821 (((-692 (-411 |#2|))) 208)) (-1814 (((-2 (|:| |num| (-692 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1816 (((-2 (|:| |num| (-1270 |#2|)) (|:| |den| |#2|)) $) 202)) (-1827 (((-1270 $)) 214)) (-4352 (((-1270 $)) 215)) (-1826 (((-112) $) 213)) (-1825 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3871 (($) 151 (|has| (-411 |#2|) (-353)) CONST)) (-2565 (($ (-923)) 97 (|has| (-411 |#2|) (-371)))) (-1812 (((-3 |#2| "failed")) 193)) (-3666 (((-1124) $) 11)) (-1836 (((-774)) 227)) (-2574 (($) 168)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 110 (|has| (-411 |#2|) (-366)))) (-3566 (($ (-644 $)) 107 (|has| (-411 |#2|) (-366))) (($ $ $) 106 (|has| (-411 |#2|) (-366)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 154 (|has| (-411 |#2|) (-353)))) (-4166 (((-409 $) $) 121 (|has| (-411 |#2|) (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| (-411 |#2|) (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 118 (|has| (-411 |#2|) (-366)))) (-3891 (((-3 $ "failed") $ $) 101 (|has| (-411 |#2|) (-366)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| (-411 |#2|) (-366)))) (-1754 (((-774) $) 114 (|has| (-411 |#2|) (-366)))) (-4233 ((|#1| $ |#1| |#1|) 195)) (-1813 (((-3 |#2| "failed")) 194)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 115 (|has| (-411 |#2|) (-366)))) (-4191 (((-411 |#2|) (-1270 $)) 54) (((-411 |#2|)) 67)) (-1944 (((-774) $) 159 (|has| (-411 |#2|) (-353))) (((-3 (-774) "failed") $ $) 147 (|has| (-411 |#2|) (-353)))) (-4244 (($ $ (-1 (-411 |#2|) (-411 |#2|)) (-774)) 131 (|has| (-411 |#2|) (-366))) (($ $ (-1 (-411 |#2|) (-411 |#2|))) 130 (|has| (-411 |#2|) (-366))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-644 (-1181)) (-644 (-774))) 138 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-1181) (-774)) 139 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-644 (-1181))) 140 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-1181)) 141 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-774)) 143 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-234))) (-3258 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353)))) (($ $) 145 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-234))) (-3258 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353))))) (-2573 (((-692 (-411 |#2|)) (-1270 $) (-1 (-411 |#2|) (-411 |#2|))) 162 (|has| (-411 |#2|) (-366)))) (-3607 ((|#3|) 167)) (-1844 (($) 156 (|has| (-411 |#2|) (-353)))) (-3646 (((-1270 (-411 |#2|)) $ (-1270 $)) 57) (((-692 (-411 |#2|)) (-1270 $) (-1270 $)) 56) (((-1270 (-411 |#2|)) $) 73) (((-692 (-411 |#2|)) (-1270 $)) 72)) (-4404 (((-1270 (-411 |#2|)) $) 70) (($ (-1270 (-411 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 153 (|has| (-411 |#2|) (-353)))) (-1824 (((-1270 $) (-1270 $)) 211)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 |#2|)) 44) (($ (-411 (-550))) 95 (-3962 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-1042 (-411 (-550)))))) (($ $) 100 (|has| (-411 |#2|) (-366)))) (-3107 (($ $) 152 (|has| (-411 |#2|) (-353))) (((-3 $ "failed") $) 50 (|has| (-411 |#2|) (-145)))) (-2772 ((|#3| $) 52)) (-3532 (((-774)) 32 T CONST)) (-1833 (((-112)) 224)) (-1832 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3664 (((-112) $ $) 9)) (-2192 (((-1270 $)) 74)) (-2242 (((-112) $ $) 104 (|has| (-411 |#2|) (-366)))) (-1811 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1835 (((-112)) 226)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1 (-411 |#2|) (-411 |#2|)) (-774)) 133 (|has| (-411 |#2|) (-366))) (($ $ (-1 (-411 |#2|) (-411 |#2|))) 132 (|has| (-411 |#2|) (-366))) (($ $ (-644 (-1181)) (-644 (-774))) 134 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-1181) (-774)) 135 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-644 (-1181))) 136 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-1181)) 137 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) (-3258 (|has| (-411 |#2|) (-904 (-1181))) (|has| (-411 |#2|) (-366))))) (($ $ (-774)) 142 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-234))) (-3258 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353)))) (($ $) 144 (-3962 (-3258 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-234))) (-3258 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 129 (|has| (-411 |#2|) (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 126 (|has| (-411 |#2|) (-366)))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 |#2|)) 46) (($ (-411 |#2|) $) 45) (($ (-411 (-550)) $) 128 (|has| (-411 |#2|) (-366))) (($ $ (-411 (-550))) 127 (|has| (-411 |#2|) (-366))))) +(((-345 |#1| |#2| |#3|) (-140) (-1225) (-1246 |t#1|) (-1246 (-411 |t#2|))) (T -345)) +((-3803 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-774)))) (-1836 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-774)))) (-1835 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1834 (*1 *2 *3 *3) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1833 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1832 (*1 *2 *3) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1832 (*1 *2 *3) (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1830 (*1 *2 *3) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1830 (*1 *2 *3) (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1828 (*1 *2 *3) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1828 (*1 *2 *3) (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) (-4352 (*1 *2) (-12 (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)))) (-1827 (*1 *2) (-12 (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))))) (-1821 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4))))) (-1820 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4))))) (-1819 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4))))) (-1818 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4))))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-2 (|:| |num| (-1270 *4)) (|:| |den| *4))))) (-1969 (*1 *1 *2 *3) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1246 *4)) (-4 *4 (-1225)) (-4 *1 (-345 *4 *3 *5)) (-4 *5 (-1246 (-411 *3))))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-2 (|:| |num| (-1270 *4)) (|:| |den| *4))))) (-1815 (*1 *1 *2 *3) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1246 *4)) (-4 *4 (-1225)) (-4 *1 (-345 *4 *3 *5)) (-4 *5 (-1246 (-411 *3))))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-345 *4 *5 *6)) (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-2 (|:| |num| (-692 *5)) (|:| |den| *5))))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))))) (-3928 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-1246 *2)) (-4 *4 (-1246 (-411 *3))))) (-4233 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-345 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-1246 *2)) (-4 *4 (-1246 (-411 *3))))) (-1813 (*1 *2) (|partial| -12 (-4 *1 (-345 *3 *2 *4)) (-4 *3 (-1225)) (-4 *4 (-1246 (-411 *2))) (-4 *2 (-1246 *3)))) (-1812 (*1 *2) (|partial| -12 (-4 *1 (-345 *3 *2 *4)) (-4 *3 (-1225)) (-4 *4 (-1246 (-411 *2))) (-4 *2 (-1246 *3)))) (-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-1225)) (-4 *6 (-1246 (-411 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-345 *4 *5 *6)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *1 (-345 *4 *5 *6)) (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-4 *4 (-366)) (-5 *2 (-644 (-950 *4))))) (-1809 (*1 *2) (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) (-4 *3 (-371)) (-5 *2 (-644 (-644 *3)))))) +(-13 (-727 (-411 |t#2|) |t#3|) (-10 -8 (-15 -3803 ((-774))) (-15 -1836 ((-774))) (-15 -1835 ((-112))) (-15 -1834 ((-112) |t#1| |t#1|)) (-15 -1833 ((-112))) (-15 -1832 ((-112) |t#1|)) (-15 -1832 ((-112) |t#2|)) (-15 -1831 ((-112))) (-15 -1830 ((-112) |t#1|)) (-15 -1830 ((-112) |t#2|)) (-15 -1829 ((-112))) (-15 -1828 ((-112) |t#1|)) (-15 -1828 ((-112) |t#2|)) (-15 -4352 ((-1270 $))) (-15 -1827 ((-1270 $))) (-15 -1826 ((-112) $)) (-15 -1825 ((-112) $)) (-15 -1824 ((-1270 $) (-1270 $))) (-15 -1823 ((-1270 $) (-1270 $))) (-15 -1822 ((-1270 $) (-1270 $))) (-15 -1821 ((-692 (-411 |t#2|)))) (-15 -1820 ((-692 (-411 |t#2|)))) (-15 -1819 ((-692 (-411 |t#2|)))) (-15 -1818 ((-692 (-411 |t#2|)))) (-15 -1817 ((-2 (|:| |num| (-1270 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1969 ($ (-1270 |t#2|) |t#2|)) (-15 -1816 ((-2 (|:| |num| (-1270 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1815 ($ (-1270 |t#2|) |t#2|)) (-15 -1814 ((-2 (|:| |num| (-692 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1825 ((-112) $ |t#1|)) (-15 -1825 ((-112) $ |t#2|)) (-15 -4244 ($ $ (-1 |t#2| |t#2|))) (-15 -3928 ($ $)) (-15 -4233 (|t#1| $ |t#1| |t#1|)) (-15 -1813 ((-3 |t#2| "failed"))) (-15 -1812 ((-3 |t#2| "failed"))) (-15 -1811 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-366)) (-15 -1810 ((-644 (-950 |t#1|)) (-1181))) |%noBranch|) (IF (|has| |t#1| (-371)) (-15 -1809 ((-644 (-644 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-38 #2=(-411 |#2|)) . T) ((-38 $) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-102) . T) ((-111 #1# #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-145))) ((-147) |has| (-411 |#2|) (-147)) ((-619 #1#) -3962 (|has| (-411 |#2|) (-1042 (-411 (-550)))) (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-619 #2#) . T) ((-619 (-550)) . T) ((-619 $) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-616 (-866)) . T) ((-173) . T) ((-617 |#3|) . T) ((-232 #2#) |has| (-411 |#2|) (-366)) ((-234) -3962 (|has| (-411 |#2|) (-353)) (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366)))) ((-244) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-292) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-309) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-366) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-406) |has| (-411 |#2|) (-353)) ((-371) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-371))) ((-353) |has| (-411 |#2|) (-353)) ((-373 #2# |#3|) . T) ((-414 #2# |#3|) . T) ((-380 #2#) . T) ((-416 #2#) . T) ((-456) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-561) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-649 #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-649 #2#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-651 #2#) . T) ((-651 $) . T) ((-643 #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-643 #2#) . T) ((-643 $) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-642 #2#) . T) ((-642 (-550)) |has| (-411 |#2|) (-642 (-550))) ((-720 #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-720 #2#) . T) ((-720 $) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-727 #2# |#3|) . T) ((-729) . T) ((-904 (-1181)) -12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181)))) ((-925) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-1042 (-411 (-550))) |has| (-411 |#2|) (-1042 (-411 (-550)))) ((-1042 #2#) . T) ((-1042 (-550)) |has| (-411 |#2|) (-1042 (-550))) ((-1055 #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-1055 #2#) . T) ((-1055 $) . T) ((-1060 #1#) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366))) ((-1060 #2#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) |has| (-411 |#2|) (-353)) ((-1225) -3962 (|has| (-411 |#2|) (-353)) (|has| (-411 |#2|) (-366)))) +((-4392 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-346 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4392 (|#8| (-1 |#5| |#1|) |#4|))) (-1225) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|) (-1225) (-1246 |#5|) (-1246 (-411 |#6|)) (-345 |#5| |#6| |#7|)) (T -346)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1225)) (-4 *8 (-1225)) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *9 (-1246 *8)) (-4 *2 (-345 *8 *9 *10)) (-5 *1 (-346 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-345 *5 *6 *7)) (-4 *10 (-1246 (-411 *9)))))) +(-10 -7 (-15 -4392 (|#8| (-1 |#5| |#1|) |#4|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 (((-910 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-910 |#1|) (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| (-910 |#1|) (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-910 |#1|) "failed") $) NIL)) (-3578 (((-910 |#1|) $) NIL)) (-1969 (($ (-1270 (-910 |#1|))) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-910 |#1|) (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| (-910 |#1|) (-371)))) (-1850 (((-112) $) NIL (|has| (-910 |#1|) (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371)))) (($ $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| (-910 |#1|) (-371))) (((-835 (-923)) $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| (-910 |#1|) (-371)))) (-2191 (((-112) $) NIL (|has| (-910 |#1|) (-371)))) (-3538 (((-910 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 (-910 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-2190 (((-923) $) NIL (|has| (-910 |#1|) (-371)))) (-1774 (((-1175 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-371)))) (-1773 (((-1175 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-371))) (((-3 (-1175 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-371)))) (-1775 (($ $ (-1175 (-910 |#1|))) NIL (|has| (-910 |#1|) (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-910 |#1|) (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-1837 (((-962 (-1124))) NIL)) (-2574 (($) NIL (|has| (-910 |#1|) (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-910 |#1|) (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| (-910 |#1|) (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 (-910 |#1|))) NIL)) (-1844 (($) NIL (|has| (-910 |#1|) (-371)))) (-1776 (($) NIL (|has| (-910 |#1|) (-371)))) (-3646 (((-1270 (-910 |#1|)) $) NIL) (((-692 (-910 |#1|)) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| (-910 |#1|) (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-910 |#1|)) NIL)) (-3107 (($ $) NIL (|has| (-910 |#1|) (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-3074 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-347 |#1| |#2|) (-13 (-331 (-910 |#1|)) (-10 -7 (-15 -1837 ((-962 (-1124)))))) (-923) (-923)) (T -347)) +((-1837 (*1 *2) (-12 (-5 *2 (-962 (-1124))) (-5 *1 (-347 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))) +(-13 (-331 (-910 |#1|)) (-10 -7 (-15 -1837 ((-962 (-1124)))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 58)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) 56 (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) 142)) (-3578 ((|#1| $) 113)) (-1969 (($ (-1270 |#1|)) 130)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) 124 (|has| |#1| (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) 160 (|has| |#1| (-371)))) (-1850 (((-112) $) 66 (|has| |#1| (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) 60 (|has| |#1| (-371))) (((-835 (-923)) $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) 62)) (-2193 (($) 162 (|has| |#1| (-371)))) (-2191 (((-112) $) NIL (|has| |#1| (-371)))) (-3538 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 |#1|) $) 117) (((-1175 $) $ (-923)) NIL (|has| |#1| (-371)))) (-2190 (((-923) $) 171 (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) NIL (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) NIL (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 178)) (-3871 (($) NIL (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) 96 (|has| |#1| (-371)))) (-4365 (((-112) $) 147)) (-3666 (((-1124) $) NIL)) (-1837 (((-962 (-1124))) 57)) (-2574 (($) 158 (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 119 (|has| |#1| (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) 90) (((-923)) 91)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) 161 (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) 154 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 |#1|)) 122)) (-1844 (($) 159 (|has| |#1| (-371)))) (-1776 (($) 167 (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) 77) (((-692 |#1|) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) 174) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) 100)) (-3107 (($ $) NIL (|has| |#1| (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) 155 T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) 144) (((-1270 $) (-923)) 98)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) 67 T CONST)) (-3069 (($) 103 T CONST)) (-4362 (($ $) 107 (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3074 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3457 (((-112) $ $) 65)) (-4383 (($ $ $) 176) (($ $ |#1|) 177)) (-4271 (($ $) 157) (($ $ $) NIL)) (-4273 (($ $ $) 86)) (** (($ $ (-923)) 180) (($ $ (-774)) 181) (($ $ (-550)) 179)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 102) (($ $ $) 101) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-348 |#1| |#2|) (-13 (-331 |#1|) (-10 -7 (-15 -1837 ((-962 (-1124)))))) (-353) (-1175 |#1|)) (T -348)) +((-1837 (*1 *2) (-12 (-5 *2 (-962 (-1124))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) (-14 *4 (-1175 *3))))) +(-13 (-331 |#1|) (-10 -7 (-15 -1837 ((-962 (-1124)))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-1969 (($ (-1270 |#1|)) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| |#1| (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| |#1| (-371)))) (-1850 (((-112) $) NIL (|has| |#1| (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| |#1| (-371))) (((-835 (-923)) $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| |#1| (-371)))) (-2191 (((-112) $) NIL (|has| |#1| (-371)))) (-3538 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-371)))) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) NIL (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) NIL (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-1837 (((-962 (-1124))) NIL)) (-2574 (($) NIL (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| |#1| (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 |#1|)) NIL)) (-1844 (($) NIL (|has| |#1| (-371)))) (-1776 (($) NIL (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) NIL) (((-692 |#1|) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) NIL)) (-3107 (($ $) NIL (|has| |#1| (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3074 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-349 |#1| |#2|) (-13 (-331 |#1|) (-10 -7 (-15 -1837 ((-962 (-1124)))))) (-353) (-923)) (T -349)) +((-1837 (*1 *2) (-12 (-5 *2 (-962 (-1124))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923))))) +(-13 (-331 |#1|) (-10 -7 (-15 -1837 ((-962 (-1124)))))) +((-1847 (((-774) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) 61)) (-1838 (((-962 (-1124)) (-1175 |#1|)) 111)) (-1839 (((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) (-1175 |#1|)) 102)) (-1840 (((-692 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) 113)) (-1841 (((-3 (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) "failed") (-923)) 13)) (-1842 (((-3 (-1175 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) (-923)) 18))) +(((-350 |#1|) (-10 -7 (-15 -1838 ((-962 (-1124)) (-1175 |#1|))) (-15 -1839 ((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) (-1175 |#1|))) (-15 -1840 ((-692 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1847 ((-774) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1841 ((-3 (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) "failed") (-923))) (-15 -1842 ((-3 (-1175 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) (-923)))) (-353)) (T -350)) +((-1842 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-3 (-1175 *4) (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124))))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-1841 (*1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-5 *2 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) (-4 *4 (-353)) (-5 *2 (-774)) (-5 *1 (-350 *4)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) (-4 *4 (-353)) (-5 *2 (-692 *4)) (-5 *1 (-350 *4)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) (-5 *1 (-350 *4)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-962 (-1124))) (-5 *1 (-350 *4))))) +(-10 -7 (-15 -1838 ((-962 (-1124)) (-1175 |#1|))) (-15 -1839 ((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) (-1175 |#1|))) (-15 -1840 ((-692 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1847 ((-774) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1841 ((-3 (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) "failed") (-923))) (-15 -1842 ((-3 (-1175 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) (-923)))) +((-4380 ((|#1| |#3|) 106) ((|#3| |#1|) 89))) +(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -4380 (|#3| |#1|)) (-15 -4380 (|#1| |#3|))) (-331 |#2|) (-353) (-331 |#2|)) (T -351)) +((-4380 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-331 *4)) (-5 *1 (-351 *2 *4 *3)) (-4 *3 (-331 *4)))) (-4380 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-331 *4)) (-5 *1 (-351 *3 *4 *2)) (-4 *3 (-331 *4))))) +(-10 -7 (-15 -4380 (|#3| |#1|)) (-15 -4380 (|#1| |#3|))) +((-1850 (((-112) $) 60)) (-4205 (((-835 (-923)) $) 23) (((-923) $) 66)) (-3870 (((-3 $ "failed") $) 18)) (-3871 (($) 9)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 116)) (-1944 (((-3 (-774) "failed") $ $) 94) (((-774) $) 81)) (-4244 (($ $ (-774)) NIL) (($ $) 8)) (-1844 (($) 53)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 38)) (-3107 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-352 |#1|) (-10 -8 (-15 -4205 ((-923) |#1|)) (-15 -1944 ((-774) |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -1844 (|#1|)) (-15 -3108 ((-3 (-1270 |#1|) "failed") (-692 |#1|))) (-15 -3107 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -1944 ((-3 (-774) "failed") |#1| |#1|)) (-15 -4205 ((-835 (-923)) |#1|)) (-15 -3107 ((-3 |#1| "failed") |#1|)) (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) (-353)) (T -352)) +NIL +(-10 -8 (-15 -4205 ((-923) |#1|)) (-15 -1944 ((-774) |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -1844 (|#1|)) (-15 -3108 ((-3 (-1270 |#1|) "failed") (-692 |#1|))) (-15 -3107 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -1944 ((-3 (-774) "failed") |#1| |#1|)) (-15 -4205 ((-835 (-923)) |#1|)) (-15 -3107 ((-3 |#1| "failed") |#1|)) (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1845 (((-1193 (-923) (-774)) (-550)) 101)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-1755 (((-112) $ $) 65)) (-3542 (((-774)) 111)) (-4158 (($) 18 T CONST)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-3397 (($) 114)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-3238 (($) 99)) (-1850 (((-112) $) 98)) (-1943 (($ $) 87) (($ $ (-774)) 86)) (-4157 (((-112) $) 79)) (-4205 (((-835 (-923)) $) 89) (((-923) $) 96)) (-2575 (((-112) $) 35)) (-3870 (((-3 $ "failed") $) 110)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-2190 (((-923) $) 113)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3871 (($) 109 T CONST)) (-2565 (($ (-923)) 112)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 102)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-1944 (((-3 (-774) "failed") $ $) 88) (((-774) $) 97)) (-4244 (($ $ (-774)) 107) (($ $) 105)) (-1844 (($) 100)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 103)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74)) (-3107 (((-3 $ "failed") $) 90) (($ $) 104)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-774)) 108) (($ $) 106)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75))) +(((-353) (-140)) (T -353)) +((-3107 (*1 *1 *1) (-4 *1 (-353))) (-3108 (*1 *2 *3) (|partial| -12 (-5 *3 (-692 *1)) (-4 *1 (-353)) (-5 *2 (-1270 *1)))) (-1846 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))))) (-1845 (*1 *2 *3) (-12 (-4 *1 (-353)) (-5 *3 (-550)) (-5 *2 (-1193 (-923) (-774))))) (-1844 (*1 *1) (-4 *1 (-353))) (-3238 (*1 *1) (-4 *1 (-353))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-774)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-923)))) (-1843 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-406) (-371) (-1155) (-234) (-10 -8 (-15 -3107 ($ $)) (-15 -3108 ((-3 (-1270 $) "failed") (-692 $))) (-15 -1846 ((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550)))))) (-15 -1845 ((-1193 (-923) (-774)) (-550))) (-15 -1844 ($)) (-15 -3238 ($)) (-15 -1850 ((-112) $)) (-15 -1944 ((-774) $)) (-15 -4205 ((-923) $)) (-15 -1843 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-234) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-406) . T) ((-371) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) . T) ((-1225) . T)) +((-4353 (((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) |#1|) 55)) (-4352 (((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|)))) 53))) +(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -4352 ((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))))) (-15 -4353 ((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) |#1|))) (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $)))) (-1246 |#1|) (-414 |#1| |#2|)) (T -354)) +((-4353 (*1 *2 *3) (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *2 (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4352 (*1 *2) (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *2 (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) +(-10 -7 (-15 -4352 ((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))))) (-15 -4353 ((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 (((-910 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-910 |#1|) (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1847 (((-774)) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| (-910 |#1|) (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-910 |#1|) "failed") $) NIL)) (-3578 (((-910 |#1|) $) NIL)) (-1969 (($ (-1270 (-910 |#1|))) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-910 |#1|) (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| (-910 |#1|) (-371)))) (-1850 (((-112) $) NIL (|has| (-910 |#1|) (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371)))) (($ $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| (-910 |#1|) (-371))) (((-835 (-923)) $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| (-910 |#1|) (-371)))) (-2191 (((-112) $) NIL (|has| (-910 |#1|) (-371)))) (-3538 (((-910 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 (-910 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-2190 (((-923) $) NIL (|has| (-910 |#1|) (-371)))) (-1774 (((-1175 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-371)))) (-1773 (((-1175 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-371))) (((-3 (-1175 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-371)))) (-1775 (($ $ (-1175 (-910 |#1|))) NIL (|has| (-910 |#1|) (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-910 |#1|) (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| (-910 |#1|) (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-1849 (((-1270 (-644 (-2 (|:| -3828 (-910 |#1|)) (|:| -2565 (-1124)))))) NIL)) (-1848 (((-692 (-910 |#1|))) NIL)) (-2574 (($) NIL (|has| (-910 |#1|) (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-910 |#1|) (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| (-910 |#1|) (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 (-910 |#1|))) NIL)) (-1844 (($) NIL (|has| (-910 |#1|) (-371)))) (-1776 (($) NIL (|has| (-910 |#1|) (-371)))) (-3646 (((-1270 (-910 |#1|)) $) NIL) (((-692 (-910 |#1|)) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| (-910 |#1|) (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-910 |#1|)) NIL)) (-3107 (($ $) NIL (|has| (-910 |#1|) (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-3074 (($ $) NIL (|has| (-910 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-910 |#1|) (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-355 |#1| |#2|) (-13 (-331 (-910 |#1|)) (-10 -7 (-15 -1849 ((-1270 (-644 (-2 (|:| -3828 (-910 |#1|)) (|:| -2565 (-1124))))))) (-15 -1848 ((-692 (-910 |#1|)))) (-15 -1847 ((-774))))) (-923) (-923)) (T -355)) +((-1849 (*1 *2) (-12 (-5 *2 (-1270 (-644 (-2 (|:| -3828 (-910 *3)) (|:| -2565 (-1124)))))) (-5 *1 (-355 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1848 (*1 *2) (-12 (-5 *2 (-692 (-910 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1847 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-355 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))) +(-13 (-331 (-910 |#1|)) (-10 -7 (-15 -1849 ((-1270 (-644 (-2 (|:| -3828 (-910 |#1|)) (|:| -2565 (-1124))))))) (-15 -1848 ((-692 (-910 |#1|)))) (-15 -1847 ((-774))))) +((-2970 (((-112) $ $) 73)) (-3610 (((-112) $) 88)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 ((|#1| $) 106) (($ $ (-923)) 104 (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) 171 (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1847 (((-774)) 103)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) 188 (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) 128)) (-3578 ((|#1| $) 105)) (-1969 (($ (-1270 |#1|)) 71)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) 183 (|has| |#1| (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) 172 (|has| |#1| (-371)))) (-1850 (((-112) $) NIL (|has| |#1| (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| |#1| (-371))) (((-835 (-923)) $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) 114 (|has| |#1| (-371)))) (-2191 (((-112) $) 201 (|has| |#1| (-371)))) (-3538 ((|#1| $) 108) (($ $ (-923)) 107 (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 |#1|) $) 215) (((-1175 $) $ (-923)) NIL (|has| |#1| (-371)))) (-2190 (((-923) $) 149 (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) 87 (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) 84 (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) 96 (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) 83 (|has| |#1| (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 219)) (-3871 (($) NIL (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) 151 (|has| |#1| (-371)))) (-4365 (((-112) $) 124)) (-3666 (((-1124) $) NIL)) (-1849 (((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) 97)) (-1848 (((-692 |#1|)) 101)) (-2574 (($) 110 (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 174 (|has| |#1| (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) 175)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) 75)) (-3607 (((-1175 |#1|)) 176)) (-1844 (($) 148 (|has| |#1| (-371)))) (-1776 (($) NIL (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) 122) (((-692 |#1|) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) 141) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) 70)) (-3107 (($ $) NIL (|has| |#1| (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) 181 T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) 198) (((-1270 $) (-923)) 117)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) 187 T CONST)) (-3069 (($) 162 T CONST)) (-4362 (($ $) 123 (|has| |#1| (-371))) (($ $ (-774)) 115 (|has| |#1| (-371)))) (-3074 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3457 (((-112) $ $) 209)) (-4383 (($ $ $) 120) (($ $ |#1|) 121)) (-4271 (($ $) 203) (($ $ $) 207)) (-4273 (($ $ $) 205)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 154)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 212) (($ $ $) 165) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119))) +(((-356 |#1| |#2|) (-13 (-331 |#1|) (-10 -7 (-15 -1849 ((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1848 ((-692 |#1|))) (-15 -1847 ((-774))))) (-353) (-3 (-1175 |#1|) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (T -356)) +((-1849 (*1 *2) (-12 (-5 *2 (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1175 *3) *2)))) (-1848 (*1 *2) (-12 (-5 *2 (-692 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1175 *3) (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124))))))))) (-1847 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1175 *3) (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124)))))))))) +(-13 (-331 |#1|) (-10 -7 (-15 -1849 ((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1848 ((-692 |#1|))) (-15 -1847 ((-774))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1847 (((-774)) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-1969 (($ (-1270 |#1|)) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| |#1| (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| |#1| (-371)))) (-1850 (((-112) $) NIL (|has| |#1| (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| |#1| (-371))) (((-835 (-923)) $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| |#1| (-371)))) (-2191 (((-112) $) NIL (|has| |#1| (-371)))) (-3538 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-371)))) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) NIL (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) NIL (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-1849 (((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124)))))) NIL)) (-1848 (((-692 |#1|)) NIL)) (-2574 (($) NIL (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| |#1| (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 |#1|)) NIL)) (-1844 (($) NIL (|has| |#1| (-371)))) (-1776 (($) NIL (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) NIL) (((-692 |#1|) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) NIL)) (-3107 (($ $) NIL (|has| |#1| (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3074 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-357 |#1| |#2|) (-13 (-331 |#1|) (-10 -7 (-15 -1849 ((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1848 ((-692 |#1|))) (-15 -1847 ((-774))))) (-353) (-923)) (T -357)) +((-1849 (*1 *2) (-12 (-5 *2 (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923)))) (-1848 (*1 *2) (-12 (-5 *2 (-692 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923)))) (-1847 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923))))) +(-13 (-331 |#1|) (-10 -7 (-15 -1849 ((-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))))) (-15 -1848 ((-692 |#1|))) (-15 -1847 ((-774))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) 132 (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) 158 (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) 106)) (-3578 ((|#1| $) 103)) (-1969 (($ (-1270 |#1|)) 98)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) 95 (|has| |#1| (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) 51 (|has| |#1| (-371)))) (-1850 (((-112) $) NIL (|has| |#1| (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| |#1| (-371))) (((-835 (-923)) $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) 133 (|has| |#1| (-371)))) (-2191 (((-112) $) 87 (|has| |#1| (-371)))) (-3538 ((|#1| $) 47) (($ $ (-923)) 52 (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 |#1|) $) 78) (((-1175 $) $ (-923)) NIL (|has| |#1| (-371)))) (-2190 (((-923) $) 110 (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) NIL (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) NIL (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) 108 (|has| |#1| (-371)))) (-4365 (((-112) $) 160)) (-3666 (((-1124) $) NIL)) (-2574 (($) 44 (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 127 (|has| |#1| (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) 157)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) 70)) (-3607 (((-1175 |#1|)) 101)) (-1844 (($) 138 (|has| |#1| (-371)))) (-1776 (($) NIL (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) 66) (((-692 |#1|) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) 156) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) 100)) (-3107 (($ $) NIL (|has| |#1| (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) 162 T CONST)) (-3664 (((-112) $ $) 164)) (-2192 (((-1270 $)) 122) (((-1270 $) (-923)) 60)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) 124 T CONST)) (-3069 (($) 40 T CONST)) (-4362 (($ $) 81 (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3074 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3457 (((-112) $ $) 120)) (-4383 (($ $ $) 112) (($ $ |#1|) 113)) (-4271 (($ $) 93) (($ $ $) 118)) (-4273 (($ $ $) 116)) (** (($ $ (-923)) NIL) (($ $ (-774)) 55) (($ $ (-550)) 141)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 91) (($ $ $) 68) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89))) +(((-358 |#1| |#2|) (-331 |#1|) (-353) (-1175 |#1|)) (T -358)) +NIL +(-331 |#1|) +((-1865 (((-962 (-1175 |#1|)) (-1175 |#1|)) 51)) (-3397 (((-1175 |#1|) (-923) (-923)) 158) (((-1175 |#1|) (-923)) 154)) (-1850 (((-112) (-1175 |#1|)) 110)) (-1852 (((-923) (-923)) 88)) (-1853 (((-923) (-923)) 95)) (-1851 (((-923) (-923)) 86)) (-2191 (((-112) (-1175 |#1|)) 114)) (-1860 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 139)) (-1863 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 144)) (-1862 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 143)) (-1861 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 142)) (-1859 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 134)) (-1864 (((-1175 |#1|) (-1175 |#1|)) 74)) (-1855 (((-1175 |#1|) (-923)) 149)) (-1858 (((-1175 |#1|) (-923)) 152)) (-1857 (((-1175 |#1|) (-923)) 151)) (-1856 (((-1175 |#1|) (-923)) 150)) (-1854 (((-1175 |#1|) (-923)) 147))) +(((-359 |#1|) (-10 -7 (-15 -1850 ((-112) (-1175 |#1|))) (-15 -2191 ((-112) (-1175 |#1|))) (-15 -1851 ((-923) (-923))) (-15 -1852 ((-923) (-923))) (-15 -1853 ((-923) (-923))) (-15 -1854 ((-1175 |#1|) (-923))) (-15 -1855 ((-1175 |#1|) (-923))) (-15 -1856 ((-1175 |#1|) (-923))) (-15 -1857 ((-1175 |#1|) (-923))) (-15 -1858 ((-1175 |#1|) (-923))) (-15 -1859 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1860 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1861 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1862 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1863 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -3397 ((-1175 |#1|) (-923))) (-15 -3397 ((-1175 |#1|) (-923) (-923))) (-15 -1864 ((-1175 |#1|) (-1175 |#1|))) (-15 -1865 ((-962 (-1175 |#1|)) (-1175 |#1|)))) (-353)) (T -359)) +((-1865 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-962 (-1175 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1175 *4)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3)))) (-3397 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-1863 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3)))) (-1862 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3)))) (-1861 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3)))) (-1860 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3)))) (-1859 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-353)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-353)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-353)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) +(-10 -7 (-15 -1850 ((-112) (-1175 |#1|))) (-15 -2191 ((-112) (-1175 |#1|))) (-15 -1851 ((-923) (-923))) (-15 -1852 ((-923) (-923))) (-15 -1853 ((-923) (-923))) (-15 -1854 ((-1175 |#1|) (-923))) (-15 -1855 ((-1175 |#1|) (-923))) (-15 -1856 ((-1175 |#1|) (-923))) (-15 -1857 ((-1175 |#1|) (-923))) (-15 -1858 ((-1175 |#1|) (-923))) (-15 -1859 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1860 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1861 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1862 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1863 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -3397 ((-1175 |#1|) (-923))) (-15 -3397 ((-1175 |#1|) (-923) (-923))) (-15 -1864 ((-1175 |#1|) (-1175 |#1|))) (-15 -1865 ((-962 (-1175 |#1|)) (-1175 |#1|)))) +((-1866 ((|#1| (-1175 |#2|)) 61))) +(((-360 |#1| |#2|) (-10 -7 (-15 -1866 (|#1| (-1175 |#2|)))) (-13 (-406) (-10 -7 (-15 -4380 (|#1| |#2|)) (-15 -2190 ((-923) |#1|)) (-15 -2192 ((-1270 |#1|) (-923))) (-15 -4362 (|#1| |#1|)))) (-353)) (T -360)) +((-1866 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-4 *2 (-13 (-406) (-10 -7 (-15 -4380 (*2 *4)) (-15 -2190 ((-923) *2)) (-15 -2192 ((-1270 *2) (-923))) (-15 -4362 (*2 *2))))) (-5 *1 (-360 *2 *4))))) +(-10 -7 (-15 -1866 (|#1| (-1175 |#2|)))) +((-3109 (((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|) 38))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3109 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) (-353) (-1246 |#1|) (-1246 |#2|)) (T -361)) +((-3109 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-353)) (-5 *1 (-361 *4 *5 *3))))) +(-10 -7 (-15 -3109 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| |#1| (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-1969 (($ (-1270 |#1|)) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| |#1| (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| |#1| (-371)))) (-1850 (((-112) $) NIL (|has| |#1| (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| |#1| (-371))) (((-835 (-923)) $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| |#1| (-371)))) (-2191 (((-112) $) NIL (|has| |#1| (-371)))) (-3538 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-371)))) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-1774 (((-1175 |#1|) $) NIL (|has| |#1| (-371)))) (-1773 (((-1175 |#1|) $) NIL (|has| |#1| (-371))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-371)))) (-1775 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| |#1| (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-2574 (($) NIL (|has| |#1| (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| |#1| (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| |#1| (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 |#1|)) NIL)) (-1844 (($) NIL (|has| |#1| (-371)))) (-1776 (($) NIL (|has| |#1| (-371)))) (-3646 (((-1270 |#1|) $) NIL) (((-692 |#1|) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) NIL)) (-3107 (($ $) NIL (|has| |#1| (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3074 (($ $) NIL (|has| |#1| (-371))) (($ $ (-774)) NIL (|has| |#1| (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-362 |#1| |#2|) (-331 |#1|) (-353) (-923)) (T -362)) +NIL +(-331 |#1|) +((-2400 (((-112) (-644 (-950 |#1|))) 41)) (-2402 (((-644 (-950 |#1|)) (-644 (-950 |#1|))) 53)) (-2401 (((-3 (-644 (-950 |#1|)) "failed") (-644 (-950 |#1|))) 48))) +(((-363 |#1| |#2|) (-10 -7 (-15 -2400 ((-112) (-644 (-950 |#1|)))) (-15 -2401 ((-3 (-644 (-950 |#1|)) "failed") (-644 (-950 |#1|)))) (-15 -2402 ((-644 (-950 |#1|)) (-644 (-950 |#1|))))) (-456) (-644 (-1181))) (T -363)) +((-2402 (*1 *2 *2) (-12 (-5 *2 (-644 (-950 *3))) (-4 *3 (-456)) (-5 *1 (-363 *3 *4)) (-14 *4 (-644 (-1181))))) (-2401 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-950 *3))) (-4 *3 (-456)) (-5 *1 (-363 *3 *4)) (-14 *4 (-644 (-1181))))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-456)) (-5 *2 (-112)) (-5 *1 (-363 *4 *5)) (-14 *5 (-644 (-1181)))))) +(-10 -7 (-15 -2400 ((-112) (-644 (-950 |#1|)))) (-15 -2401 ((-3 (-644 (-950 |#1|)) "failed") (-644 (-950 |#1|)))) (-15 -2402 ((-644 (-950 |#1|)) (-644 (-950 |#1|))))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774) $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) 17)) (-2446 ((|#1| $ (-550)) NIL)) (-2447 (((-550) $ (-550)) NIL)) (-2438 (($ (-1 |#1| |#1|) $) 34)) (-2439 (($ (-1 (-550) (-550)) $) 26)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 28)) (-3666 (((-1124) $) NIL)) (-1956 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-550)))) $) 30)) (-3412 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-4380 (((-866) $) 40) (($ |#1|) NIL)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 11 T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL) (($ |#1| (-550)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-364 |#1|) (-13 (-477) (-1042 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-550))) (-15 -3542 ((-774) $)) (-15 -2447 ((-550) $ (-550))) (-15 -2446 (|#1| $ (-550))) (-15 -2439 ($ (-1 (-550) (-550)) $)) (-15 -2438 ($ (-1 |#1| |#1|) $)) (-15 -1956 ((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-550)))) $)))) (-1105)) (T -364)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1105)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1105)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-364 *2)) (-4 *2 (-1105)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-364 *3)) (-4 *3 (-1105)))) (-2447 (*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-364 *3)) (-4 *3 (-1105)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-364 *2)) (-4 *2 (-1105)))) (-2439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-550) (-550))) (-5 *1 (-364 *3)) (-4 *3 (-1105)))) (-2438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1105)) (-5 *1 (-364 *3)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 (-550))))) (-5 *1 (-364 *3)) (-4 *3 (-1105))))) +(-13 (-477) (-1042 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-550))) (-15 -3542 ((-774) $)) (-15 -2447 ((-550) $ (-550))) (-15 -2446 (|#1| $ (-550))) (-15 -2439 ($ (-1 (-550) (-550)) $)) (-15 -2438 ($ (-1 |#1| |#1|) $)) (-15 -1956 ((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-550)))) $)))) +((-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 13)) (-2243 (($ $) 14)) (-4403 (((-409 $) $) 34)) (-4157 (((-112) $) 30)) (-2808 (($ $) 19)) (-3566 (($ $ $) 25) (($ (-644 $)) NIL)) (-4166 (((-409 $) $) 35)) (-3891 (((-3 $ "failed") $ $) 24)) (-1754 (((-774) $) 28)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 39)) (-2242 (((-112) $ $) 16)) (-4383 (($ $ $) 37))) +(((-365 |#1|) (-10 -8 (-15 -4383 (|#1| |#1| |#1|)) (-15 -2808 (|#1| |#1|)) (-15 -4157 ((-112) |#1|)) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3284 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -1754 ((-774) |#1|)) (-15 -3566 (|#1| (-644 |#1|))) (-15 -3566 (|#1| |#1| |#1|)) (-15 -2242 ((-112) |#1| |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -2244 ((-2 (|:| -1949 |#1|) (|:| -4414 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|))) (-366)) (T -365)) +NIL +(-10 -8 (-15 -4383 (|#1| |#1| |#1|)) (-15 -2808 (|#1| |#1|)) (-15 -4157 ((-112) |#1|)) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3284 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -1754 ((-774) |#1|)) (-15 -3566 (|#1| (-644 |#1|))) (-15 -3566 (|#1| |#1| |#1|)) (-15 -2242 ((-112) |#1| |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -2244 ((-2 (|:| -1949 |#1|) (|:| -4414 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4157 (((-112) $) 79)) (-2575 (((-112) $) 35)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75))) +(((-366) (-140)) (T -366)) +((-4383 (*1 *1 *1 *1) (-4 *1 (-366)))) +(-13 (-309) (-1225) (-244) (-10 -8 (-15 -4383 ($ $ $)) (-6 -4425) (-6 -4419))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-2970 (((-112) $ $) NIL)) (-1867 ((|#1| $ |#1|) 31)) (-1871 (($ $ (-1163)) 23)) (-4053 (((-3 |#1| "failed") $) 30)) (-1868 ((|#1| $) 28)) (-1872 (($ (-392)) 22) (($ (-392) (-1163)) 21)) (-3975 (((-392) $) 25)) (-3665 (((-1163) $) NIL)) (-1869 (((-1163) $) 26)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 20)) (-1870 (($ $) 24)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 19))) +(((-367 |#1|) (-13 (-368 (-392) |#1|) (-10 -8 (-15 -4053 ((-3 |#1| "failed") $)))) (-1105)) (T -367)) +((-4053 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1105))))) +(-13 (-368 (-392) |#1|) (-10 -8 (-15 -4053 ((-3 |#1| "failed") $)))) +((-2970 (((-112) $ $) 7)) (-1867 ((|#2| $ |#2|) 14)) (-1871 (($ $ (-1163)) 19)) (-1868 ((|#2| $) 15)) (-1872 (($ |#1|) 21) (($ |#1| (-1163)) 20)) (-3975 ((|#1| $) 17)) (-3665 (((-1163) $) 10)) (-1869 (((-1163) $) 16)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-1870 (($ $) 18)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-368 |#1| |#2|) (-140) (-1105) (-1105)) (T -368)) +((-1872 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-1872 (*1 *1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1105)) (-4 *4 (-1105)))) (-1871 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-1870 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1105)) (-4 *2 (-1105)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-1163)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105)))) (-1867 (*1 *2 *1 *2) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105))))) +(-13 (-1105) (-10 -8 (-15 -1872 ($ |t#1|)) (-15 -1872 ($ |t#1| (-1163))) (-15 -1871 ($ $ (-1163))) (-15 -1870 ($ $)) (-15 -3975 (|t#1| $)) (-15 -1869 ((-1163) $)) (-15 -1868 (|t#2| $)) (-15 -1867 (|t#2| $ |t#2|)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-3645 (((-1270 (-692 |#2|)) (-1270 $)) 70)) (-1965 (((-692 |#2|) (-1270 $)) 141)) (-1897 ((|#2| $) 39)) (-1963 (((-692 |#2|) $ (-1270 $)) 144)) (-2569 (((-3 $ "failed") $) 91)) (-1895 ((|#2| $) 42)) (-1875 (((-1175 |#2|) $) 99)) (-1967 ((|#2| (-1270 $)) 124)) (-1893 (((-1175 |#2|) $) 34)) (-1887 (((-112)) 118)) (-1969 (($ (-1270 |#2|) (-1270 $)) 134)) (-3892 (((-3 $ "failed") $) 95)) (-1880 (((-112)) 112)) (-1878 (((-112)) 107)) (-1882 (((-112)) 61)) (-1966 (((-692 |#2|) (-1270 $)) 139)) (-1898 ((|#2| $) 38)) (-1964 (((-692 |#2|) $ (-1270 $)) 143)) (-2570 (((-3 $ "failed") $) 89)) (-1896 ((|#2| $) 41)) (-1876 (((-1175 |#2|) $) 98)) (-1968 ((|#2| (-1270 $)) 122)) (-1894 (((-1175 |#2|) $) 32)) (-1888 (((-112)) 117)) (-1879 (((-112)) 109)) (-1881 (((-112)) 59)) (-1883 (((-112)) 104)) (-1886 (((-112)) 119)) (-3646 (((-1270 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) (-1270 $) (-1270 $)) 130)) (-1892 (((-112)) 115)) (-1877 (((-644 (-1270 |#2|))) 103)) (-1890 (((-112)) 116)) (-1891 (((-112)) 113)) (-1889 (((-112)) 54)) (-1885 (((-112)) 120))) +(((-369 |#1| |#2|) (-10 -8 (-15 -1875 ((-1175 |#2|) |#1|)) (-15 -1876 ((-1175 |#2|) |#1|)) (-15 -1877 ((-644 (-1270 |#2|)))) (-15 -2569 ((-3 |#1| "failed") |#1|)) (-15 -2570 ((-3 |#1| "failed") |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-112))) (-15 -1879 ((-112))) (-15 -1880 ((-112))) (-15 -1881 ((-112))) (-15 -1882 ((-112))) (-15 -1883 ((-112))) (-15 -1885 ((-112))) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-112))) (-15 -1892 ((-112))) (-15 -1893 ((-1175 |#2|) |#1|)) (-15 -1894 ((-1175 |#2|) |#1|)) (-15 -1965 ((-692 |#2|) (-1270 |#1|))) (-15 -1966 ((-692 |#2|) (-1270 |#1|))) (-15 -1967 (|#2| (-1270 |#1|))) (-15 -1968 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1895 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -1897 (|#2| |#1|)) (-15 -1898 (|#2| |#1|)) (-15 -1963 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -1964 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -3645 ((-1270 (-692 |#2|)) (-1270 |#1|)))) (-370 |#2|) (-173)) (T -369)) +((-1892 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1891 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1890 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1888 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1885 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1882 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1881 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1880 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1879 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) (-1877 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-644 (-1270 *4))) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4))))) +(-10 -8 (-15 -1875 ((-1175 |#2|) |#1|)) (-15 -1876 ((-1175 |#2|) |#1|)) (-15 -1877 ((-644 (-1270 |#2|)))) (-15 -2569 ((-3 |#1| "failed") |#1|)) (-15 -2570 ((-3 |#1| "failed") |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-112))) (-15 -1879 ((-112))) (-15 -1880 ((-112))) (-15 -1881 ((-112))) (-15 -1882 ((-112))) (-15 -1883 ((-112))) (-15 -1885 ((-112))) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-112))) (-15 -1892 ((-112))) (-15 -1893 ((-1175 |#2|) |#1|)) (-15 -1894 ((-1175 |#2|) |#1|)) (-15 -1965 ((-692 |#2|) (-1270 |#1|))) (-15 -1966 ((-692 |#2|) (-1270 |#1|))) (-15 -1967 (|#2| (-1270 |#1|))) (-15 -1968 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1895 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -1897 (|#2| |#1|)) (-15 -1898 (|#2| |#1|)) (-15 -1963 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -1964 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -3645 ((-1270 (-692 |#2|)) (-1270 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1949 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) 20)) (-3645 (((-1270 (-692 |#1|)) (-1270 $)) 83)) (-1899 (((-1270 $)) 86)) (-4158 (($) 18 T CONST)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed")) 45 (|has| |#1| (-561)))) (-1873 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-1965 (((-692 |#1|) (-1270 $)) 70)) (-1897 ((|#1| $) 79)) (-1963 (((-692 |#1|) $ (-1270 $)) 81)) (-2569 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-2572 (($ $ (-923)) 31)) (-1895 ((|#1| $) 77)) (-1875 (((-1175 |#1|) $) 47 (|has| |#1| (-561)))) (-1967 ((|#1| (-1270 $)) 72)) (-1893 (((-1175 |#1|) $) 68)) (-1887 (((-112)) 62)) (-1969 (($ (-1270 |#1|) (-1270 $)) 74)) (-3892 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3515 (((-923)) 85)) (-1884 (((-112)) 59)) (-2596 (($ $ (-923)) 38)) (-1880 (((-112)) 55)) (-1878 (((-112)) 53)) (-1882 (((-112)) 57)) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed")) 46 (|has| |#1| (-561)))) (-1874 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-1966 (((-692 |#1|) (-1270 $)) 71)) (-1898 ((|#1| $) 80)) (-1964 (((-692 |#1|) $ (-1270 $)) 82)) (-2570 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-2571 (($ $ (-923)) 32)) (-1896 ((|#1| $) 78)) (-1876 (((-1175 |#1|) $) 48 (|has| |#1| (-561)))) (-1968 ((|#1| (-1270 $)) 73)) (-1894 (((-1175 |#1|) $) 69)) (-1888 (((-112)) 63)) (-3665 (((-1163) $) 10)) (-1879 (((-112)) 54)) (-1881 (((-112)) 56)) (-1883 (((-112)) 58)) (-3666 (((-1124) $) 11)) (-1886 (((-112)) 61)) (-3646 (((-1270 |#1|) $ (-1270 $)) 76) (((-692 |#1|) (-1270 $) (-1270 $)) 75)) (-2072 (((-644 (-950 |#1|)) (-1270 $)) 84)) (-2758 (($ $ $) 28)) (-1892 (((-112)) 67)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-1877 (((-644 (-1270 |#1|))) 49 (|has| |#1| (-561)))) (-2759 (($ $ $ $) 29)) (-1890 (((-112)) 65)) (-2757 (($ $ $) 27)) (-1891 (((-112)) 66)) (-1889 (((-112)) 64)) (-1885 (((-112)) 60)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-370 |#1|) (-140) (-173)) (T -370)) +((-1899 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1270 *1)) (-4 *1 (-370 *3)))) (-3515 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-923)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-644 (-950 *4))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-1270 (-692 *4))))) (-1964 (*1 *2 *1 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) (-1963 (*1 *2 *1 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) (-1898 (*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173)))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-1270 *4)))) (-3646 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) (-1969 (*1 *1 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-1270 *1)) (-4 *4 (-173)) (-4 *1 (-370 *4)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *2)) (-4 *2 (-173)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *2)) (-4 *2 (-173)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-1175 *3)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-1175 *3)))) (-1892 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1891 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1890 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1889 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1888 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1887 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1886 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1885 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1884 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1883 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1882 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1881 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1880 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1879 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1878 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3892 (*1 *1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2570 (*1 *1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2569 (*1 *1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-1877 (*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-644 (-1270 *3))))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1175 *3)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1175 *3)))) (-2087 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2192 (-644 *1)))) (-4 *1 (-370 *3)))) (-2086 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2192 (-644 *1)))) (-4 *1 (-370 *3)))) (-1874 (*1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-1873 (*1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-1949 (*1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-561)) (-4 *2 (-173))))) +(-13 (-747 |t#1|) (-10 -8 (-15 -1899 ((-1270 $))) (-15 -3515 ((-923))) (-15 -2072 ((-644 (-950 |t#1|)) (-1270 $))) (-15 -3645 ((-1270 (-692 |t#1|)) (-1270 $))) (-15 -1964 ((-692 |t#1|) $ (-1270 $))) (-15 -1963 ((-692 |t#1|) $ (-1270 $))) (-15 -1898 (|t#1| $)) (-15 -1897 (|t#1| $)) (-15 -1896 (|t#1| $)) (-15 -1895 (|t#1| $)) (-15 -3646 ((-1270 |t#1|) $ (-1270 $))) (-15 -3646 ((-692 |t#1|) (-1270 $) (-1270 $))) (-15 -1969 ($ (-1270 |t#1|) (-1270 $))) (-15 -1968 (|t#1| (-1270 $))) (-15 -1967 (|t#1| (-1270 $))) (-15 -1966 ((-692 |t#1|) (-1270 $))) (-15 -1965 ((-692 |t#1|) (-1270 $))) (-15 -1894 ((-1175 |t#1|) $)) (-15 -1893 ((-1175 |t#1|) $)) (-15 -1892 ((-112))) (-15 -1891 ((-112))) (-15 -1890 ((-112))) (-15 -1889 ((-112))) (-15 -1888 ((-112))) (-15 -1887 ((-112))) (-15 -1886 ((-112))) (-15 -1885 ((-112))) (-15 -1884 ((-112))) (-15 -1883 ((-112))) (-15 -1882 ((-112))) (-15 -1881 ((-112))) (-15 -1880 ((-112))) (-15 -1879 ((-112))) (-15 -1878 ((-112))) (IF (|has| |t#1| (-561)) (PROGN (-15 -3892 ((-3 $ "failed") $)) (-15 -2570 ((-3 $ "failed") $)) (-15 -2569 ((-3 $ "failed") $)) (-15 -1877 ((-644 (-1270 |t#1|)))) (-15 -1876 ((-1175 |t#1|) $)) (-15 -1875 ((-1175 |t#1|) $)) (-15 -2087 ((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed"))) (-15 -2086 ((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed"))) (-15 -1874 ((-3 $ "failed"))) (-15 -1873 ((-3 $ "failed"))) (-15 -1949 ((-3 $ "failed"))) (-6 -4424)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-723) . T) ((-747 |#1|) . T) ((-764) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3542 (((-774)) 17)) (-3397 (($) 14)) (-2190 (((-923) $) 15)) (-3665 (((-1163) $) 10)) (-2565 (($ (-923)) 16)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-371) (-140)) (T -371)) +((-3542 (*1 *2) (-12 (-4 *1 (-371)) (-5 *2 (-774)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-371)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-923)))) (-3397 (*1 *1) (-4 *1 (-371)))) +(-13 (-1105) (-10 -8 (-15 -3542 ((-774))) (-15 -2565 ($ (-923))) (-15 -2190 ((-923) $)) (-15 -3397 ($)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-1959 (((-692 |#2|) (-1270 $)) 47)) (-1969 (($ (-1270 |#2|) (-1270 $)) 41)) (-1958 (((-692 |#2|) $ (-1270 $)) 49)) (-4191 ((|#2| (-1270 $)) 13)) (-3646 (((-1270 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) (-1270 $) (-1270 $)) 27))) +(((-372 |#1| |#2| |#3|) (-10 -8 (-15 -1959 ((-692 |#2|) (-1270 |#1|))) (-15 -4191 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1958 ((-692 |#2|) |#1| (-1270 |#1|)))) (-373 |#2| |#3|) (-173) (-1246 |#2|)) (T -372)) +NIL +(-10 -8 (-15 -1959 ((-692 |#2|) (-1270 |#1|))) (-15 -4191 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1958 ((-692 |#2|) |#1| (-1270 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1959 (((-692 |#1|) (-1270 $)) 53)) (-3756 ((|#1| $) 59)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-1969 (($ (-1270 |#1|) (-1270 $)) 55)) (-1958 (((-692 |#1|) $ (-1270 $)) 60)) (-3892 (((-3 $ "failed") $) 37)) (-3515 (((-923)) 61)) (-2575 (((-112) $) 35)) (-3538 ((|#1| $) 58)) (-2194 ((|#2| $) 51 (|has| |#1| (-366)))) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4191 ((|#1| (-1270 $)) 54)) (-3646 (((-1270 |#1|) $ (-1270 $)) 57) (((-692 |#1|) (-1270 $) (-1270 $)) 56)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44)) (-3107 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2772 ((|#2| $) 52)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-373 |#1| |#2|) (-140) (-173) (-1246 |t#1|)) (T -373)) +((-3515 (*1 *2) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-923)))) (-1958 (*1 *2 *1 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1246 *2)) (-4 *2 (-173)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1246 *2)) (-4 *2 (-173)))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *4)))) (-3646 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) (-1969 (*1 *1 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-1270 *1)) (-4 *4 (-173)) (-4 *1 (-373 *4 *5)) (-4 *5 (-1246 *4)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *2 *4)) (-4 *4 (-1246 *2)) (-4 *2 (-173)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1246 *3)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-173)) (-4 *3 (-366)) (-4 *2 (-1246 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3515 ((-923))) (-15 -1958 ((-692 |t#1|) $ (-1270 $))) (-15 -3756 (|t#1| $)) (-15 -3538 (|t#1| $)) (-15 -3646 ((-1270 |t#1|) $ (-1270 $))) (-15 -3646 ((-692 |t#1|) (-1270 $) (-1270 $))) (-15 -1969 ($ (-1270 |t#1|) (-1270 $))) (-15 -4191 (|t#1| (-1270 $))) (-15 -1959 ((-692 |t#1|) (-1270 $))) (-15 -2772 (|t#2| $)) (IF (|has| |t#1| (-366)) (-15 -2194 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-729) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-1902 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1900 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3312 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2445 (($ $) 25)) (-3845 (((-550) (-1 (-112) |#2|) $) NIL) (((-550) |#2| $) 11) (((-550) |#2| $ (-550)) NIL)) (-3943 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-374 |#1| |#2|) (-10 -8 (-15 -1900 (|#1| |#1|)) (-15 -1900 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3845 ((-550) |#2| |#1| (-550))) (-15 -3845 ((-550) |#2| |#1|)) (-15 -3845 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1902 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3312 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2445 (|#1| |#1|)) (-15 -3943 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1220)) (T -374)) +NIL +(-10 -8 (-15 -1900 (|#1| |#1|)) (-15 -1900 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3845 ((-550) |#2| |#1| (-550))) (-15 -3845 ((-550) |#2| |#1|)) (-15 -3845 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -1902 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3312 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2445 (|#1| |#1|)) (-15 -3943 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4428))) (($ $) 89 (-12 (|has| |#1| (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2444 (($ $) 91 (|has| $ (-6 -4428)))) (-2445 (($ $) 101)) (-1441 (($ $) 79 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 78 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 52)) (-3845 (((-550) (-1 (-112) |#1|) $) 98) (((-550) |#1| $) 97 (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) 96 (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 88 (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 87 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 43 (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2375 (($ $ |#1|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) 51) ((|#1| $ (-550)) 50) (($ $ (-1237 (-550))) 64)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 92 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 71)) (-4235 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 84 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-3089 (((-112) $ $) 86 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 83 (|has| |#1| (-853)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-375 |#1|) (-140) (-1220)) (T -375)) +((-3943 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1220)))) (-2445 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1220)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1220)))) (-1902 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1220)) (-5 *2 (-112)))) (-3845 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1220)) (-5 *2 (-550)))) (-3845 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-550)))) (-3845 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-375 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1220)) (-4 *2 (-853)))) (-3312 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1220)) (-4 *2 (-853)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1220)) (-4 *3 (-853)) (-5 *2 (-112)))) (-1901 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (|has| *1 (-6 -4428)) (-4 *1 (-375 *3)) (-4 *3 (-1220)))) (-2444 (*1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-375 *2)) (-4 *2 (-1220)))) (-1900 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4428)) (-4 *1 (-375 *3)) (-4 *3 (-1220)))) (-1900 (*1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-375 *2)) (-4 *2 (-1220)) (-4 *2 (-853))))) +(-13 (-654 |t#1|) (-10 -8 (-6 -4427) (-15 -3943 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2445 ($ $)) (-15 -3312 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1902 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3845 ((-550) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1105)) (PROGN (-15 -3845 ((-550) |t#1| $)) (-15 -3845 ((-550) |t#1| $ (-550)))) |%noBranch|) (IF (|has| |t#1| (-853)) (PROGN (-6 (-853)) (-15 -3943 ($ $ $)) (-15 -3312 ($ $)) (-15 -1902 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4428)) (PROGN (-15 -1901 ($ $ $ (-550))) (-15 -2444 ($ $)) (-15 -1900 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-853)) (-15 -1900 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-853) |has| |#1| (-853)) ((-1105) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-1220) . T)) +((-4275 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-4276 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4392 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4276 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4275 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1220) (-375 |#1|) (-1220) (-375 |#3|)) (T -376)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-4 *2 (-375 *5)) (-5 *1 (-376 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-376 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-4 *2 (-375 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) +(-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4276 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4275 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4368 (((-644 |#1|) $) 37)) (-4381 (($ $ (-774)) 38)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-4373 (((-1295 |#1| |#2|) (-1295 |#1| |#2|) $) 41)) (-4370 (($ $) 39)) (-4374 (((-1295 |#1| |#2|) (-1295 |#1| |#2|) $) 42)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4201 (($ $ |#1| $) 36) (($ $ (-644 |#1|) (-644 $)) 35)) (-4382 (((-774) $) 43)) (-3955 (($ $ $) 34)) (-4380 (((-866) $) 12) (($ |#1|) 46) (((-1286 |#1| |#2|) $) 45) (((-1295 |#1| |#2|) $) 44)) (-4388 ((|#2| (-1295 |#1| |#2|) $) 47)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-1903 (($ (-675 |#1|)) 40)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#2|) 33 (|has| |#2| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-377 |#1| |#2|) (-140) (-853) (-173)) (T -377)) +((-4388 (*1 *2 *3 *1) (-12 (-5 *3 (-1295 *4 *2)) (-4 *1 (-377 *4 *2)) (-4 *4 (-853)) (-4 *2 (-173)))) (-4380 (*1 *1 *2) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-853)) (-4 *3 (-173)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *2 (-1286 *3 *4)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *2 (-1295 *3 *4)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *2 (-774)))) (-4374 (*1 *2 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-4373 (*1 *2 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-4 *1 (-377 *3 *4)) (-4 *4 (-173)))) (-4370 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-853)) (-4 *3 (-173)))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *2 (-644 *3)))) (-4201 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-853)) (-4 *3 (-173)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-853)) (-4 *5 (-173))))) +(-13 (-638 |t#2|) (-10 -8 (-15 -4388 (|t#2| (-1295 |t#1| |t#2|) $)) (-15 -4380 ($ |t#1|)) (-15 -4380 ((-1286 |t#1| |t#2|) $)) (-15 -4380 ((-1295 |t#1| |t#2|) $)) (-15 -4382 ((-774) $)) (-15 -4374 ((-1295 |t#1| |t#2|) (-1295 |t#1| |t#2|) $)) (-15 -4373 ((-1295 |t#1| |t#2|) (-1295 |t#1| |t#2|) $)) (-15 -1903 ($ (-675 |t#1|))) (-15 -4370 ($ $)) (-15 -4381 ($ $ (-774))) (-15 -4368 ((-644 |t#1|) $)) (-15 -4201 ($ $ |t#1| $)) (-15 -4201 ($ $ (-644 |t#1|) (-644 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#2|) . T) ((-651 |#2|) . T) ((-638 |#2|) . T) ((-643 |#2|) . T) ((-720 |#2|) . T) ((-1055 |#2|) . T) ((-1060 |#2|) . T) ((-1105) . T)) +((-1906 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1904 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1905 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-378 |#1| |#2|) (-10 -7 (-15 -1904 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1905 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1906 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1220) (-13 (-375 |#1|) (-10 -7 (-6 -4428)))) (T -378)) +((-1906 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-378 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428)))))) (-1905 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-378 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428)))))) (-1904 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-378 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428))))))) +(-10 -7 (-15 -1904 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1905 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1906 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2429 (((-692 |#2|) (-692 $)) NIL) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 22) (((-692 (-550)) (-692 $)) 14))) +(((-379 |#1| |#2|) (-10 -8 (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 |#2|) (-692 |#1|)))) (-380 |#2|) (-1053)) (T -379)) +NIL +(-10 -8 (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 |#2|) (-692 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2429 (((-692 |#1|) (-692 $)) 40) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 39) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 47 (|has| |#1| (-642 (-550)))) (((-692 (-550)) (-692 $)) 46 (|has| |#1| (-642 (-550))))) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-380 |#1|) (-140) (-1053)) (T -380)) +NIL +(-13 (-642 |t#1|) (-10 -7 (IF (|has| |t#1| (-642 (-550))) (-6 (-642 (-550))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 35)) (-3535 (((-550) $) 62)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4204 (($ $) 142)) (-3917 (($ $) 105)) (-4073 (($ $) 93)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3440 (($ $) 47)) (-1755 (((-112) $ $) NIL)) (-3915 (($ $) 103)) (-4072 (($ $) 87)) (-4057 (((-550) $) 80)) (-2764 (($ $ (-550)) 75)) (-3919 (($ $) NIL)) (-4071 (($ $) NIL)) (-4158 (($) NIL T CONST)) (-3533 (($ $) 144)) (-3579 (((-3 (-550) #1="failed") $) 239) (((-3 (-411 (-550)) #1#) $) 235)) (-3578 (((-550) $) 237) (((-411 (-550)) $) 233)) (-2966 (($ $ $) NIL)) (-1915 (((-550) $ $) 131)) (-3892 (((-3 $ "failed") $) 147)) (-1914 (((-411 (-550)) $ (-774)) 240) (((-411 (-550)) $ (-774) (-774)) 232)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2539 (((-923)) 127) (((-923) (-923)) 128 (|has| $ (-6 -4418)))) (-3608 (((-112) $) 136)) (-4061 (($) 41)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL)) (-1907 (((-1276) (-774)) 199)) (-1908 (((-1276)) 204) (((-1276) (-774)) 205)) (-1910 (((-1276)) 206) (((-1276) (-774)) 207)) (-1909 (((-1276)) 202) (((-1276) (-774)) 203)) (-4205 (((-550) $) 68)) (-2575 (((-112) $) 40)) (-3414 (($ $ (-550)) NIL)) (-2766 (($ $) 51)) (-3538 (($ $) NIL)) (-3609 (((-112) $) 37)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL) (($) NIL (-12 (-3748 (|has| $ (-6 -4410))) (-3748 (|has| $ (-6 -4418)))))) (-3262 (($ $ $) NIL) (($) NIL (-12 (-3748 (|has| $ (-6 -4410))) (-3748 (|has| $ (-6 -4418)))))) (-2540 (((-550) $) 17)) (-1913 (($) 113) (($ $) 119)) (-1912 (($) 118) (($ $) 120)) (-4376 (($ $) 108)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 149)) (-1946 (((-923) (-550)) 46 (|has| $ (-6 -4418)))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) 60)) (-3536 (($ $) 141)) (-3677 (($ (-550) (-550)) 137) (($ (-550) (-550) (-923)) 138)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2566 (((-550) $) 19)) (-1911 (($) 121)) (-4377 (($ $) 102)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3017 (((-923)) 129) (((-923) (-923)) 130 (|has| $ (-6 -4418)))) (-4244 (($ $ (-774)) NIL) (($ $) 148)) (-1945 (((-923) (-550)) 50 (|has| $ (-6 -4418)))) (-3920 (($ $) NIL)) (-4070 (($ $) NIL)) (-3918 (($ $) NIL)) (-4069 (($ $) NIL)) (-3916 (($ $) 104)) (-4068 (($ $) 92)) (-4404 (((-381) $) 224) (((-226) $) 226) (((-894 (-381)) $) NIL) (((-1163) $) 210) (((-539) $) 222) (($ (-226)) 231)) (-4380 (((-866) $) 214) (($ (-550)) 236) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-550)) 236) (($ (-411 (-550))) NIL) (((-226) $) 227)) (-3532 (((-774)) NIL T CONST)) (-3537 (($ $) 143)) (-1947 (((-923)) 61) (((-923) (-923)) 82 (|has| $ (-6 -4418)))) (-3664 (((-112) $ $) NIL)) (-3099 (((-923)) 132)) (-3923 (($ $) 111)) (-3911 (($ $) 49) (($ $ $) 59)) (-2242 (((-112) $ $) NIL)) (-3921 (($ $) 109)) (-3909 (($ $) 39)) (-3925 (($ $) NIL)) (-3913 (($ $) NIL)) (-3926 (($ $) NIL)) (-3914 (($ $) NIL)) (-3924 (($ $) NIL)) (-3912 (($ $) NIL)) (-3922 (($ $) 110)) (-3910 (($ $) 52)) (-3809 (($ $) 58)) (-3512 (($) 36 T CONST)) (-3069 (($) 43 T CONST)) (-2902 (((-1163) $) 27) (((-1163) $ (-112)) 29) (((-1276) (-826) $) 30) (((-1276) (-826) $ (-112)) 31)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) 211)) (-2969 (((-112) $ $) 45)) (-3457 (((-112) $ $) 56)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 57)) (-4383 (($ $ $) 48) (($ $ (-550)) 42)) (-4271 (($ $) 38) (($ $ $) 53)) (-4273 (($ $ $) 74)) (** (($ $ (-923)) 85) (($ $ (-774)) NIL) (($ $ (-550)) 114) (($ $ (-411 (-550))) 160) (($ $ $) 151)) (* (($ (-923) $) 81) (($ (-774) $) NIL) (($ (-550) $) 86) (($ $ $) 73) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-381) (-13 (-408) (-234) (-617 (-1163)) (-824) (-616 (-226)) (-1206) (-617 (-539)) (-621 (-226)) (-10 -8 (-15 -4383 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -2766 ($ $)) (-15 -1915 ((-550) $ $)) (-15 -2764 ($ $ (-550))) (-15 -1914 ((-411 (-550)) $ (-774))) (-15 -1914 ((-411 (-550)) $ (-774) (-774))) (-15 -1913 ($)) (-15 -1912 ($)) (-15 -1911 ($)) (-15 -3911 ($ $ $)) (-15 -1913 ($ $)) (-15 -1912 ($ $)) (-15 -1910 ((-1276))) (-15 -1910 ((-1276) (-774))) (-15 -1909 ((-1276))) (-15 -1909 ((-1276) (-774))) (-15 -1908 ((-1276))) (-15 -1908 ((-1276) (-774))) (-15 -1907 ((-1276) (-774))) (-6 -4418) (-6 -4410)))) (T -381)) +((** (*1 *1 *1 *1) (-5 *1 (-381))) (-4383 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-381)))) (-2766 (*1 *1 *1) (-5 *1 (-381))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-550)) (-5 *1 (-381)))) (-2764 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-381)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-381)))) (-1914 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-381)))) (-1913 (*1 *1) (-5 *1 (-381))) (-1912 (*1 *1) (-5 *1 (-381))) (-1911 (*1 *1) (-5 *1 (-381))) (-3911 (*1 *1 *1 *1) (-5 *1 (-381))) (-1913 (*1 *1 *1) (-5 *1 (-381))) (-1912 (*1 *1 *1) (-5 *1 (-381))) (-1910 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-381)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381)))) (-1909 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-381)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381)))) (-1908 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-381)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381))))) +(-13 (-408) (-234) (-617 (-1163)) (-824) (-616 (-226)) (-1206) (-617 (-539)) (-621 (-226)) (-10 -8 (-15 -4383 ($ $ (-550))) (-15 ** ($ $ $)) (-15 -2766 ($ $)) (-15 -1915 ((-550) $ $)) (-15 -2764 ($ $ (-550))) (-15 -1914 ((-411 (-550)) $ (-774))) (-15 -1914 ((-411 (-550)) $ (-774) (-774))) (-15 -1913 ($)) (-15 -1912 ($)) (-15 -1911 ($)) (-15 -3911 ($ $ $)) (-15 -1913 ($ $)) (-15 -1912 ($ $)) (-15 -1910 ((-1276))) (-15 -1910 ((-1276) (-774))) (-15 -1909 ((-1276))) (-15 -1909 ((-1276) (-774))) (-15 -1908 ((-1276))) (-15 -1908 ((-1276) (-774))) (-15 -1907 ((-1276) (-774))) (-6 -4418) (-6 -4410))) +((-1916 (((-644 (-295 (-950 (-169 |#1|)))) (-295 (-411 (-950 (-169 (-550))))) |#1|) 51) (((-644 (-295 (-950 (-169 |#1|)))) (-411 (-950 (-169 (-550)))) |#1|) 50) (((-644 (-644 (-295 (-950 (-169 |#1|))))) (-644 (-295 (-411 (-950 (-169 (-550)))))) |#1|) 47) (((-644 (-644 (-295 (-950 (-169 |#1|))))) (-644 (-411 (-950 (-169 (-550))))) |#1|) 41)) (-1917 (((-644 (-644 (-169 |#1|))) (-644 (-411 (-950 (-169 (-550))))) (-644 (-1181)) |#1|) 30) (((-644 (-169 |#1|)) (-411 (-950 (-169 (-550)))) |#1|) 18))) +(((-382 |#1|) (-10 -7 (-15 -1916 ((-644 (-644 (-295 (-950 (-169 |#1|))))) (-644 (-411 (-950 (-169 (-550))))) |#1|)) (-15 -1916 ((-644 (-644 (-295 (-950 (-169 |#1|))))) (-644 (-295 (-411 (-950 (-169 (-550)))))) |#1|)) (-15 -1916 ((-644 (-295 (-950 (-169 |#1|)))) (-411 (-950 (-169 (-550)))) |#1|)) (-15 -1916 ((-644 (-295 (-950 (-169 |#1|)))) (-295 (-411 (-950 (-169 (-550))))) |#1|)) (-15 -1917 ((-644 (-169 |#1|)) (-411 (-950 (-169 (-550)))) |#1|)) (-15 -1917 ((-644 (-644 (-169 |#1|))) (-644 (-411 (-950 (-169 (-550))))) (-644 (-1181)) |#1|))) (-13 (-366) (-851))) (T -382)) +((-1917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-411 (-950 (-169 (-550)))))) (-5 *4 (-644 (-1181))) (-5 *2 (-644 (-644 (-169 *5)))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-366) (-851))))) (-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 (-169 (-550))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-366) (-851))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-411 (-950 (-169 (-550)))))) (-5 *2 (-644 (-295 (-950 (-169 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-366) (-851))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 (-169 (-550))))) (-5 *2 (-644 (-295 (-950 (-169 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-366) (-851))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-411 (-950 (-169 (-550))))))) (-5 *2 (-644 (-644 (-295 (-950 (-169 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-366) (-851))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-411 (-950 (-169 (-550)))))) (-5 *2 (-644 (-644 (-295 (-950 (-169 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-366) (-851)))))) +(-10 -7 (-15 -1916 ((-644 (-644 (-295 (-950 (-169 |#1|))))) (-644 (-411 (-950 (-169 (-550))))) |#1|)) (-15 -1916 ((-644 (-644 (-295 (-950 (-169 |#1|))))) (-644 (-295 (-411 (-950 (-169 (-550)))))) |#1|)) (-15 -1916 ((-644 (-295 (-950 (-169 |#1|)))) (-411 (-950 (-169 (-550)))) |#1|)) (-15 -1916 ((-644 (-295 (-950 (-169 |#1|)))) (-295 (-411 (-950 (-169 (-550))))) |#1|)) (-15 -1917 ((-644 (-169 |#1|)) (-411 (-950 (-169 (-550)))) |#1|)) (-15 -1917 ((-644 (-644 (-169 |#1|))) (-644 (-411 (-950 (-169 (-550))))) (-644 (-1181)) |#1|))) +((-4006 (((-644 (-295 (-950 |#1|))) (-295 (-411 (-950 (-550)))) |#1|) 46) (((-644 (-295 (-950 |#1|))) (-411 (-950 (-550))) |#1|) 45) (((-644 (-644 (-295 (-950 |#1|)))) (-644 (-295 (-411 (-950 (-550))))) |#1|) 42) (((-644 (-644 (-295 (-950 |#1|)))) (-644 (-411 (-950 (-550)))) |#1|) 36)) (-1918 (((-644 |#1|) (-411 (-950 (-550))) |#1|) 20) (((-644 (-644 |#1|)) (-644 (-411 (-950 (-550)))) (-644 (-1181)) |#1|) 30))) +(((-383 |#1|) (-10 -7 (-15 -4006 ((-644 (-644 (-295 (-950 |#1|)))) (-644 (-411 (-950 (-550)))) |#1|)) (-15 -4006 ((-644 (-644 (-295 (-950 |#1|)))) (-644 (-295 (-411 (-950 (-550))))) |#1|)) (-15 -4006 ((-644 (-295 (-950 |#1|))) (-411 (-950 (-550))) |#1|)) (-15 -4006 ((-644 (-295 (-950 |#1|))) (-295 (-411 (-950 (-550)))) |#1|)) (-15 -1918 ((-644 (-644 |#1|)) (-644 (-411 (-950 (-550)))) (-644 (-1181)) |#1|)) (-15 -1918 ((-644 |#1|) (-411 (-950 (-550))) |#1|))) (-13 (-851) (-366))) (T -383)) +((-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 (-550)))) (-5 *2 (-644 *4)) (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366))))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-411 (-950 (-550))))) (-5 *4 (-644 (-1181))) (-5 *2 (-644 (-644 *5))) (-5 *1 (-383 *5)) (-4 *5 (-13 (-851) (-366))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-411 (-950 (-550))))) (-5 *2 (-644 (-295 (-950 *4)))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 (-550)))) (-5 *2 (-644 (-295 (-950 *4)))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-411 (-950 (-550)))))) (-5 *2 (-644 (-644 (-295 (-950 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-411 (-950 (-550))))) (-5 *2 (-644 (-644 (-295 (-950 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366)))))) +(-10 -7 (-15 -4006 ((-644 (-644 (-295 (-950 |#1|)))) (-644 (-411 (-950 (-550)))) |#1|)) (-15 -4006 ((-644 (-644 (-295 (-950 |#1|)))) (-644 (-295 (-411 (-950 (-550))))) |#1|)) (-15 -4006 ((-644 (-295 (-950 |#1|))) (-411 (-950 (-550))) |#1|)) (-15 -4006 ((-644 (-295 (-950 |#1|))) (-295 (-411 (-950 (-550)))) |#1|)) (-15 -1918 ((-644 (-644 |#1|)) (-644 (-411 (-950 (-550)))) (-644 (-1181)) |#1|)) (-15 -1918 ((-644 |#1|) (-411 (-950 (-550))) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3296 (($ |#1| |#2|) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2165 ((|#2| $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 33)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 12 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-513 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-720 |#1|)) |%noBranch|))) (-1053) (-853)) (T -384)) +NIL +(-13 (-111 |#1| |#1|) (-513 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-720 |#1|)) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| "failed") $) 30)) (-3578 ((|#2| $) 32)) (-4393 (($ $) NIL)) (-2583 (((-774) $) 11)) (-3226 (((-644 $) $) 23)) (-4371 (((-112) $) NIL)) (-4372 (($ |#2| |#1|) 21)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-1919 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3297 ((|#2| $) 18)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 51) (($ |#2|) 31)) (-4251 (((-644 |#1|) $) 20)) (-4111 ((|#1| $ |#2|) 55)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 33 T CONST)) (-3068 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-385 |#1| |#2|) (-13 (-387 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1053) (-853)) (T -385)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-853))))) +(-13 (-387 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3806 (((-1276) $) 7)) (-4380 (((-866) $) 8) (($ (-692 (-702))) 14) (($ (-644 (-332))) 13) (($ (-332)) 12) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 11))) +(((-386) (-140)) (T -386)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-692 (-702))) (-4 *1 (-386)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-386)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-386)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-4 *1 (-386))))) +(-13 (-400) (-10 -8 (-15 -4380 ($ (-692 (-702)))) (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-332))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))))) +(((-616 (-866)) . T) ((-400) . T) ((-1220) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#2| "failed") $) 49)) (-3578 ((|#2| $) 50)) (-4393 (($ $) 35)) (-2583 (((-774) $) 39)) (-3226 (((-644 $) $) 40)) (-4371 (((-112) $) 43)) (-4372 (($ |#2| |#1|) 44)) (-4392 (($ (-1 |#1| |#1|) $) 45)) (-1919 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-3297 ((|#2| $) 38)) (-3596 ((|#1| $) 37)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ |#2|) 48)) (-4251 (((-644 |#1|) $) 41)) (-4111 ((|#1| $ |#2|) 46)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3068 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-387 |#1| |#2|) (-140) (-1053) (-1105)) (T -387)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-1105)))) (-4111 (*1 *2 *1 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1105)) (-4 *2 (-1053)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)))) (-4372 (*1 *1 *2 *3) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1105)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-112)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-644 *3)))) (-3226 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-644 *1)) (-4 *1 (-387 *3 *4)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-774)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1105)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1105)) (-4 *2 (-1053)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4393 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-1105))))) +(-13 (-111 |t#1| |t#1|) (-1042 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4111 (|t#1| $ |t#2|)) (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (-15 -4372 ($ |t#2| |t#1|)) (-15 -4371 ((-112) $)) (-15 -3068 ((-644 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4251 ((-644 |t#1|) $)) (-15 -3226 ((-644 $) $)) (-15 -2583 ((-774) $)) (-15 -3297 (|t#2| $)) (-15 -3596 (|t#1| $)) (-15 -1919 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4393 ($ $)) (IF (|has| |t#1| (-173)) (-6 (-720 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-619 |#2|) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) |has| |#1| (-173)) ((-720 |#1|) |has| |#1| (-173)) ((-1042 |#2|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-3579 (((-3 $ "failed") (-692 (-316 (-381)))) 21) (((-3 $ "failed") (-692 (-316 (-550)))) 19) (((-3 $ "failed") (-692 (-950 (-381)))) 17) (((-3 $ "failed") (-692 (-950 (-550)))) 15) (((-3 $ "failed") (-692 (-411 (-950 (-381))))) 13) (((-3 $ "failed") (-692 (-411 (-950 (-550))))) 11)) (-3578 (($ (-692 (-316 (-381)))) 22) (($ (-692 (-316 (-550)))) 20) (($ (-692 (-950 (-381)))) 18) (($ (-692 (-950 (-550)))) 16) (($ (-692 (-411 (-950 (-381))))) 14) (($ (-692 (-411 (-950 (-550))))) 12)) (-3806 (((-1276) $) 7)) (-4380 (((-866) $) 8) (($ (-644 (-332))) 25) (($ (-332)) 24) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 23))) +(((-388) (-140)) (T -388)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-388)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-388)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-4 *1 (-388)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-692 (-316 (-381)))) (-4 *1 (-388)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-316 (-381)))) (-4 *1 (-388)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-692 (-316 (-550)))) (-4 *1 (-388)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-316 (-550)))) (-4 *1 (-388)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-692 (-950 (-381)))) (-4 *1 (-388)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-950 (-381)))) (-4 *1 (-388)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-692 (-950 (-550)))) (-4 *1 (-388)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-950 (-550)))) (-4 *1 (-388)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-692 (-411 (-950 (-381))))) (-4 *1 (-388)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-411 (-950 (-381))))) (-4 *1 (-388)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-692 (-411 (-950 (-550))))) (-4 *1 (-388)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-411 (-950 (-550))))) (-4 *1 (-388))))) +(-13 (-400) (-10 -8 (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-332))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))) (-15 -3578 ($ (-692 (-316 (-381))))) (-15 -3579 ((-3 $ "failed") (-692 (-316 (-381))))) (-15 -3578 ($ (-692 (-316 (-550))))) (-15 -3579 ((-3 $ "failed") (-692 (-316 (-550))))) (-15 -3578 ($ (-692 (-950 (-381))))) (-15 -3579 ((-3 $ "failed") (-692 (-950 (-381))))) (-15 -3578 ($ (-692 (-950 (-550))))) (-15 -3579 ((-3 $ "failed") (-692 (-950 (-550))))) (-15 -3578 ($ (-692 (-411 (-950 (-381)))))) (-15 -3579 ((-3 $ "failed") (-692 (-411 (-950 (-381)))))) (-15 -3578 ($ (-692 (-411 (-950 (-550)))))) (-15 -3579 ((-3 $ "failed") (-692 (-411 (-950 (-550)))))))) +(((-616 (-866)) . T) ((-400) . T) ((-1220) . T)) +((-2970 (((-112) $ $) 7)) (-3542 (((-774) $) 34)) (-4158 (($) 19 T CONST)) (-4373 (((-3 $ "failed") $ $) 37)) (-3579 (((-3 |#1| "failed") $) 45)) (-3578 ((|#1| $) 46)) (-3892 (((-3 $ "failed") $) 16)) (-1920 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2575 (((-112) $) 18)) (-2446 ((|#1| $ (-550)) 31)) (-2447 (((-774) $ (-550)) 32)) (-2936 (($ $ $) 28 (|has| |#1| (-853)))) (-3262 (($ $ $) 27 (|has| |#1| (-853)))) (-2438 (($ (-1 |#1| |#1|) $) 29)) (-2439 (($ (-1 (-774) (-774)) $) 30)) (-4374 (((-3 $ "failed") $ $) 38)) (-3665 (((-1163) $) 10)) (-1921 (($ $ $) 39)) (-1922 (($ $ $) 40)) (-3666 (((-1124) $) 11)) (-1956 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-774)))) $) 33)) (-3284 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4380 (((-866) $) 12) (($ |#1|) 44)) (-3664 (((-112) $ $) 9)) (-3069 (($) 20 T CONST)) (-2968 (((-112) $ $) 25 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 24 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 26 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 23 (|has| |#1| (-853)))) (** (($ $ (-923)) 14) (($ $ (-774)) 17) (($ |#1| (-774)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-389 |#1|) (-140) (-1105)) (T -389)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (-1922 (*1 *1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (-1921 (*1 *1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (-4374 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (-4373 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (-3284 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1105)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-389 *3)))) (-1920 (*1 *2 *1 *1) (-12 (-4 *3 (-1105)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-389 *3)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-1105)) (-5 *2 (-774)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-1105)) (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 (-774))))))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-389 *4)) (-4 *4 (-1105)) (-5 *2 (-774)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-389 *2)) (-4 *2 (-1105)))) (-2439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-774) (-774))) (-4 *1 (-389 *3)) (-4 *3 (-1105)))) (-2438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-389 *3)) (-4 *3 (-1105))))) +(-13 (-729) (-1042 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-774))) (-15 -1922 ($ $ $)) (-15 -1921 ($ $ $)) (-15 -4374 ((-3 $ "failed") $ $)) (-15 -4373 ((-3 $ "failed") $ $)) (-15 -3284 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1920 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3542 ((-774) $)) (-15 -1956 ((-644 (-2 (|:| |gen| |t#1|) (|:| -4377 (-774)))) $)) (-15 -2447 ((-774) $ (-550))) (-15 -2446 (|t#1| $ (-550))) (-15 -2439 ($ (-1 (-774) (-774)) $)) (-15 -2438 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-853)) (-6 (-853)) |%noBranch|))) +(((-102) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-729) . T) ((-853) |has| |#1| (-853)) ((-1042 |#1|) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774) $) 74)) (-4158 (($) NIL T CONST)) (-4373 (((-3 $ #1="failed") $ $) 77)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-1920 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2575 (((-112) $) 17)) (-2446 ((|#1| $ (-550)) NIL)) (-2447 (((-774) $ (-550)) NIL)) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2438 (($ (-1 |#1| |#1|) $) 40)) (-2439 (($ (-1 (-774) (-774)) $) 37)) (-4374 (((-3 $ #1#) $ $) 60)) (-3665 (((-1163) $) NIL)) (-1921 (($ $ $) 28)) (-1922 (($ $ $) 26)) (-3666 (((-1124) $) NIL)) (-1956 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-774)))) $) 34)) (-3284 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70)) (-4380 (((-866) $) 24) (($ |#1|) NIL)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 11 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) 84 (|has| |#1| (-853)))) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ |#1| (-774)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-390 |#1|) (-389 |#1|) (-1105)) (T -390)) +NIL +(-389 |#1|) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) "failed") $) 53)) (-3578 (((-550) $) 54)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-2936 (($ $ $) 60)) (-3262 (($ $ $) 59)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ $) 48)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-550)) 52)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 57)) (-2969 (((-112) $ $) 56)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 58)) (-3090 (((-112) $ $) 55)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-391) (-140)) (T -391)) +NIL +(-13 (-561) (-853) (-1042 (-550))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-853) . T) ((-1042 (-550)) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-1923 (((-112) $) 25)) (-1924 (((-112) $) 22)) (-4048 (($ (-1163) (-1163) (-1163)) 26)) (-3975 (((-1163) $) 16)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1928 (($ (-1163) (-1163) (-1163)) 14)) (-1926 (((-1163) $) 17)) (-1925 (((-112) $) 18)) (-1927 (((-1163) $) 15)) (-4380 (((-866) $) 12) (($ (-1163)) 13) (((-1163) $) 9)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 7))) +(((-392) (-393)) (T -392)) +NIL +(-393) +((-2970 (((-112) $ $) 7)) (-1923 (((-112) $) 17)) (-1924 (((-112) $) 18)) (-4048 (($ (-1163) (-1163) (-1163)) 16)) (-3975 (((-1163) $) 21)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-1928 (($ (-1163) (-1163) (-1163)) 23)) (-1926 (((-1163) $) 20)) (-1925 (((-112) $) 19)) (-1927 (((-1163) $) 22)) (-4380 (((-866) $) 12) (($ (-1163)) 25) (((-1163) $) 24)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-393) (-140)) (T -393)) +((-1928 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-393)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-1163)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-1163)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-1163)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-112)))) (-1923 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-112)))) (-4048 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-393))))) +(-13 (-1105) (-494 (-1163)) (-10 -8 (-15 -1928 ($ (-1163) (-1163) (-1163))) (-15 -1927 ((-1163) $)) (-15 -3975 ((-1163) $)) (-15 -1926 ((-1163) $)) (-15 -1925 ((-112) $)) (-15 -1924 ((-112) $)) (-15 -1923 ((-112) $)) (-15 -4048 ($ (-1163) (-1163) (-1163))))) +(((-102) . T) ((-619 #1=(-1163)) . T) ((-616 (-866)) . T) ((-616 #1#) . T) ((-494 #1#) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-1929 (((-866) $) 63)) (-4158 (($) NIL T CONST)) (-2572 (($ $ (-923)) NIL)) (-2596 (($ $ (-923)) NIL)) (-2571 (($ $ (-923)) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2574 (($ (-774)) 38)) (-4345 (((-774)) 18)) (-1930 (((-866) $) 65)) (-2758 (($ $ $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2759 (($ $ $ $) NIL)) (-2757 (($ $ $) NIL)) (-3512 (($) 24 T CONST)) (-3457 (((-112) $ $) 41)) (-4271 (($ $) 48) (($ $ $) 50)) (-4273 (($ $ $) 51)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-394 |#1| |#2| |#3|) (-13 (-747 |#3|) (-10 -8 (-15 -4345 ((-774))) (-15 -1930 ((-866) $)) (-15 -1929 ((-866) $)) (-15 -2574 ($ (-774))))) (-774) (-774) (-173)) (T -394)) +((-4345 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 (-774)) (-14 *4 (-774)) (-4 *5 (-173)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 (-774)) (-14 *4 (-774)) (-4 *5 (-173)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173))))) +(-13 (-747 |#3|) (-10 -8 (-15 -4345 ((-774))) (-15 -1930 ((-866) $)) (-15 -1929 ((-866) $)) (-15 -2574 ($ (-774))))) +((-1935 (((-1163)) 12)) (-1932 (((-1151 (-1163))) 30)) (-1934 (((-1276) (-1163)) 27) (((-1276) (-392)) 26)) (-1933 (((-1276)) 28)) (-1931 (((-1151 (-1163))) 29))) +(((-395) (-10 -7 (-15 -1931 ((-1151 (-1163)))) (-15 -1932 ((-1151 (-1163)))) (-15 -1933 ((-1276))) (-15 -1934 ((-1276) (-392))) (-15 -1934 ((-1276) (-1163))) (-15 -1935 ((-1163))))) (T -395)) +((-1935 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-395)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-395)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1276)) (-5 *1 (-395)))) (-1933 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-395)))) (-1932 (*1 *2) (-12 (-5 *2 (-1151 (-1163))) (-5 *1 (-395)))) (-1931 (*1 *2) (-12 (-5 *2 (-1151 (-1163))) (-5 *1 (-395))))) +(-10 -7 (-15 -1931 ((-1151 (-1163)))) (-15 -1932 ((-1151 (-1163)))) (-15 -1933 ((-1276))) (-15 -1934 ((-1276) (-392))) (-15 -1934 ((-1276) (-1163))) (-15 -1935 ((-1163)))) +((-4205 (((-774) (-336 |#1| |#2| |#3| |#4|)) 19))) +(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-774) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-371) (-366)) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|)) (T -396)) +((-4205 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-371) (-366))) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-4 *7 (-345 *4 *5 *6)) (-5 *2 (-774)) (-5 *1 (-396 *4 *5 *6 *7))))) +(-10 -7 (-15 -4205 ((-774) (-336 |#1| |#2| |#3| |#4|)))) +((-2970 (((-112) $ $) NIL)) (-4044 (((-644 (-1163)) $ (-644 (-1163))) 42)) (-1936 (((-644 (-1163)) $ (-644 (-1163))) 43)) (-4046 (((-644 (-1163)) $ (-644 (-1163))) 44)) (-4047 (((-644 (-1163)) $) 39)) (-4048 (($) 30)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1937 (((-644 (-1163)) $) 40)) (-4050 (((-644 (-1163)) $) 41)) (-4051 (((-1276) $ (-550)) 37) (((-1276) $) 38)) (-4404 (($ (-866) (-550)) 35)) (-4380 (((-866) $) 49) (($ (-866)) 32)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-397) (-13 (-1105) (-619 (-866)) (-10 -8 (-15 -4404 ($ (-866) (-550))) (-15 -4051 ((-1276) $ (-550))) (-15 -4051 ((-1276) $)) (-15 -4050 ((-644 (-1163)) $)) (-15 -1937 ((-644 (-1163)) $)) (-15 -4048 ($)) (-15 -4047 ((-644 (-1163)) $)) (-15 -4046 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -1936 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -4044 ((-644 (-1163)) $ (-644 (-1163))))))) (T -397)) +((-4404 (*1 *1 *2 *3) (-12 (-5 *2 (-866)) (-5 *3 (-550)) (-5 *1 (-397)))) (-4051 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-397)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-397)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) (-4048 (*1 *1) (-5 *1 (-397))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) (-4046 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) (-1936 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) (-4044 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397))))) +(-13 (-1105) (-619 (-866)) (-10 -8 (-15 -4404 ($ (-866) (-550))) (-15 -4051 ((-1276) $ (-550))) (-15 -4051 ((-1276) $)) (-15 -4050 ((-644 (-1163)) $)) (-15 -1937 ((-644 (-1163)) $)) (-15 -4048 ($)) (-15 -4047 ((-644 (-1163)) $)) (-15 -4046 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -1936 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -4044 ((-644 (-1163)) $ (-644 (-1163)))))) +((-4380 (((-397) |#1|) 11))) +(((-398 |#1|) (-10 -7 (-15 -4380 ((-397) |#1|))) (-1105)) (T -398)) +((-4380 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-398 *3)) (-4 *3 (-1105))))) +(-10 -7 (-15 -4380 ((-397) |#1|))) +((-1939 (((-644 (-1163)) (-644 (-1163))) 9)) (-3806 (((-1276) (-392)) 26)) (-1938 (((-1107) (-1181) (-644 (-1181)) (-1184) (-644 (-1181))) 59) (((-1107) (-1181) (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181)))) (-644 (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181))))) (-644 (-1181)) (-1181)) 34) (((-1107) (-1181) (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181)))) (-644 (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181))))) (-644 (-1181))) 33))) +(((-399) (-10 -7 (-15 -1938 ((-1107) (-1181) (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181)))) (-644 (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181))))) (-644 (-1181)))) (-15 -1938 ((-1107) (-1181) (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181)))) (-644 (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181))))) (-644 (-1181)) (-1181))) (-15 -1938 ((-1107) (-1181) (-644 (-1181)) (-1184) (-644 (-1181)))) (-15 -3806 ((-1276) (-392))) (-15 -1939 ((-644 (-1163)) (-644 (-1163)))))) (T -399)) +((-1939 (*1 *2 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-399)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1276)) (-5 *1 (-399)))) (-1938 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-644 (-1181))) (-5 *5 (-1184)) (-5 *3 (-1181)) (-5 *2 (-1107)) (-5 *1 (-399)))) (-1938 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1181))))) (-5 *6 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1107)) (-5 *1 (-399)))) (-1938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1181))))) (-5 *6 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1107)) (-5 *1 (-399))))) +(-10 -7 (-15 -1938 ((-1107) (-1181) (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181)))) (-644 (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181))))) (-644 (-1181)))) (-15 -1938 ((-1107) (-1181) (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181)))) (-644 (-644 (-3 (|:| |array| (-644 (-1181))) (|:| |scalar| (-1181))))) (-644 (-1181)) (-1181))) (-15 -1938 ((-1107) (-1181) (-644 (-1181)) (-1184) (-644 (-1181)))) (-15 -3806 ((-1276) (-392))) (-15 -1939 ((-644 (-1163)) (-644 (-1163))))) +((-3806 (((-1276) $) 7)) (-4380 (((-866) $) 8))) (((-400) (-140)) (T -400)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-400)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-400)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400))))) -(-13 (-399) (-10 -8 (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -3576 ($ (-315 (-380)))) (-15 -3577 ((-3 $ "failed") (-315 (-380)))) (-15 -3576 ($ (-315 (-549)))) (-15 -3577 ((-3 $ "failed") (-315 (-549)))) (-15 -3576 ($ (-949 (-380)))) (-15 -3577 ((-3 $ "failed") (-949 (-380)))) (-15 -3576 ($ (-949 (-549)))) (-15 -3577 ((-3 $ "failed") (-949 (-549)))) (-15 -3576 ($ (-410 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-380))))) (-15 -3576 ($ (-410 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-549))))))) -(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) -((-3804 (((-1275) $) 35)) (-4378 (((-865) $) 97) (($ (-331)) 99) (($ (-643 (-331))) 98) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 96) (($ (-315 (-703))) 52) (($ (-315 (-701))) 72) (($ (-315 (-696))) 85) (($ (-294 (-315 (-703)))) 67) (($ (-294 (-315 (-701)))) 80) (($ (-294 (-315 (-696)))) 93) (($ (-315 (-549))) 104) (($ (-315 (-380))) 117) (($ (-315 (-168 (-380)))) 130) (($ (-294 (-315 (-549)))) 112) (($ (-294 (-315 (-380)))) 125) (($ (-294 (-315 (-168 (-380))))) 138))) -(((-401 |#1| |#2| |#3| |#4|) (-13 (-399) (-10 -8 (-15 -4378 ($ (-331))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -4378 ($ (-315 (-703)))) (-15 -4378 ($ (-315 (-701)))) (-15 -4378 ($ (-315 (-696)))) (-15 -4378 ($ (-294 (-315 (-703))))) (-15 -4378 ($ (-294 (-315 (-701))))) (-15 -4378 ($ (-294 (-315 (-696))))) (-15 -4378 ($ (-315 (-549)))) (-15 -4378 ($ (-315 (-380)))) (-15 -4378 ($ (-315 (-168 (-380))))) (-15 -4378 ($ (-294 (-315 (-549))))) (-15 -4378 ($ (-294 (-315 (-380))))) (-15 -4378 ($ (-294 (-315 (-168 (-380)))))))) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 "void")) (-643 (-1180)) (-1184)) (T -401)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-703))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-701))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-696))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-703)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-701)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-696)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-549)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-168 (-380))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184))))) -(-13 (-399) (-10 -8 (-15 -4378 ($ (-331))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -4378 ($ (-315 (-703)))) (-15 -4378 ($ (-315 (-701)))) (-15 -4378 ($ (-315 (-696)))) (-15 -4378 ($ (-294 (-315 (-703))))) (-15 -4378 ($ (-294 (-315 (-701))))) (-15 -4378 ($ (-294 (-315 (-696))))) (-15 -4378 ($ (-315 (-549)))) (-15 -4378 ($ (-315 (-380)))) (-15 -4378 ($ (-315 (-168 (-380))))) (-15 -4378 ($ (-294 (-315 (-549))))) (-15 -4378 ($ (-294 (-315 (-380))))) (-15 -4378 ($ (-294 (-315 (-168 (-380)))))))) -((-2968 (((-112) $ $) NIL)) (-1939 ((|#2| $) 38)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1940 (($ (-410 |#2|)) 95)) (-1938 (((-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))) $) 39)) (-4242 (($ $) 34) (($ $ (-773)) 36)) (-4402 (((-410 |#2|) $) 51)) (-3953 (($ (-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|)))) 33)) (-4378 (((-865) $) 132)) (-3662 (((-112) $ $) NIL)) (-3072 (($ $) 35) (($ $ (-773)) 37)) (-3455 (((-112) $ $) NIL)) (-4271 (($ |#2| $) 41))) -(((-402 |#1| |#2|) (-13 (-1104) (-616 (-410 |#2|)) (-10 -8 (-15 -4271 ($ |#2| $)) (-15 -1940 ($ (-410 |#2|))) (-15 -1939 (|#2| $)) (-15 -1938 ((-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))))) (-15 -4242 ($ $)) (-15 -3072 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -3072 ($ $ (-773))))) (-13 (-365) (-147)) (-1245 |#1|)) (T -402)) -((-4271 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1245 *3)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1939 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-1938 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-4242 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-3072 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3))))) -(-13 (-1104) (-616 (-410 |#2|)) (-10 -8 (-15 -4271 ($ |#2| $)) (-15 -1940 ($ (-410 |#2|))) (-15 -1939 (|#2| $)) (-15 -1938 ((-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))))) (-15 -4242 ($ $)) (-15 -3072 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -3072 ($ $ (-773))))) -((-2968 (((-112) $ $) 9 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 16 (|has| |#1| (-889 (-380)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 15 (|has| |#1| (-889 (-549))))) (-3663 (((-1162) $) 13 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3664 (((-1123) $) 12 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-4378 (((-865) $) 11 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3662 (((-112) $ $) 14 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3455 (((-112) $ $) 10 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380))))))) -(((-403 |#1|) (-140) (-1219)) (T -403)) -NIL -(-13 (-1219) (-10 -7 (IF (|has| |t#1| (-889 (-549))) (-6 (-889 (-549))) |%noBranch|) (IF (|has| |t#1| (-889 (-380))) (-6 (-889 (-380))) |%noBranch|))) -(((-102) -3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))) ((-615 (-865)) -3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-1104) -3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))) ((-1219) . T)) -((-1941 (($ $) 10) (($ $ (-773)) 12))) -(((-404 |#1|) (-10 -8 (-15 -1941 (|#1| |#1| (-773))) (-15 -1941 (|#1| |#1|))) (-405)) (T -404)) -NIL -(-10 -8 (-15 -1941 (|#1| |#1| (-773))) (-15 -1941 (|#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-1941 (($ $) 87) (($ $ (-773)) 86)) (-4155 (((-112) $) 79)) (-4203 (((-834 (-922)) $) 89)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-3 (-773) "failed") $ $) 88)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3105 (((-3 $ "failed") $) 90)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) -(((-405) (-140)) (T -405)) -((-4203 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) (-1942 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-773)))) (-1941 (*1 *1 *1) (-4 *1 (-405))) (-1941 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-773))))) -(-13 (-365) (-145) (-10 -8 (-15 -4203 ((-834 (-922)) $)) (-15 -1942 ((-3 (-773) "failed") $ $)) (-15 -1941 ($ $)) (-15 -1941 ($ $ (-773))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-3675 (($ (-549) (-549)) 11) (($ (-549) (-549) (-922)) NIL)) (-3015 (((-922)) 19) (((-922) (-922)) NIL))) -(((-406 |#1|) (-10 -8 (-15 -3015 ((-922) (-922))) (-15 -3015 ((-922))) (-15 -3675 (|#1| (-549) (-549) (-922))) (-15 -3675 (|#1| (-549) (-549)))) (-407)) (T -406)) -((-3015 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407))))) -(-10 -8 (-15 -3015 ((-922) (-922))) (-15 -3015 ((-922))) (-15 -3675 (|#1| (-549) (-549) (-922))) (-15 -3675 (|#1| (-549) (-549)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 (((-549) $) 97)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4202 (($ $) 95)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 105)) (-1753 (((-112) $ $) 65)) (-4055 (((-549) $) 122)) (-4156 (($) 18 T CONST)) (-3531 (($ $) 94)) (-3577 (((-3 (-549) #1="failed") $) 110) (((-3 (-410 (-549)) #1#) $) 107)) (-3576 (((-549) $) 111) (((-410 (-549)) $) 108)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-2537 (((-922)) 138) (((-922) (-922)) 135 (|has| $ (-6 -4416)))) (-3606 (((-112) $) 120)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 101)) (-4203 (((-549) $) 144)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 104)) (-3536 (($ $) 100)) (-3607 (((-112) $) 121)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 58)) (-2934 (($ $ $) 119) (($) 132 (-12 (-3746 (|has| $ (-6 -4416))) (-3746 (|has| $ (-6 -4408)))))) (-3260 (($ $ $) 118) (($) 131 (-12 (-3746 (|has| $ (-6 -4416))) (-3746 (|has| $ (-6 -4408)))))) (-2538 (((-549) $) 141)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-1944 (((-922) (-549)) 134 (|has| $ (-6 -4416)))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3532 (($ $) 96)) (-3534 (($ $) 98)) (-3675 (($ (-549) (-549)) 146) (($ (-549) (-549) (-922)) 145)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-2564 (((-549) $) 142)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-3015 (((-922)) 139) (((-922) (-922)) 136 (|has| $ (-6 -4416)))) (-1943 (((-922) (-549)) 133 (|has| $ (-6 -4416)))) (-4402 (((-380) $) 113) (((-225) $) 112) (((-893 (-380)) $) 102)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ (-549)) 109) (($ (-410 (-549))) 106)) (-3530 (((-773)) 32 T CONST)) (-3535 (($ $) 99)) (-1945 (((-922)) 140) (((-922) (-922)) 137 (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) 9)) (-3097 (((-922)) 143)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 123)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 116)) (-2967 (((-112) $ $) 115)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 117)) (-3088 (((-112) $ $) 114)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 103)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) -(((-407) (-140)) (T -407)) -((-3675 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-407)))) (-3675 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-4 *1 (-407)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) (-3097 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) (-1945 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-3015 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-2537 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922)))) (-2934 (*1 *1) (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) (-3746 (|has| *1 (-6 -4408))))) (-3260 (*1 *1) (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) (-3746 (|has| *1 (-6 -4408)))))) -(-13 (-1063) (-10 -8 (-6 -4201) (-15 -3675 ($ (-549) (-549))) (-15 -3675 ($ (-549) (-549) (-922))) (-15 -4203 ((-549) $)) (-15 -3097 ((-922))) (-15 -2564 ((-549) $)) (-15 -2538 ((-549) $)) (-15 -1945 ((-922))) (-15 -3015 ((-922))) (-15 -2537 ((-922))) (IF (|has| $ (-6 -4416)) (PROGN (-15 -1945 ((-922) (-922))) (-15 -3015 ((-922) (-922))) (-15 -2537 ((-922) (-922))) (-15 -1944 ((-922) (-549))) (-15 -1943 ((-922) (-549)))) |%noBranch|) (IF (|has| $ (-6 -4408)) |%noBranch| (IF (|has| $ (-6 -4416)) |%noBranch| (PROGN (-15 -2934 ($)) (-15 -3260 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-225)) . T) ((-616 (-380)) . T) ((-616 (-893 (-380))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-889 (-380)) . T) ((-924) . T) ((-1005) . T) ((-1023) . T) ((-1063) . T) ((-1041 (-410 (-549))) . T) ((-1041 (-549)) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 60)) (-1946 (($ $) 78)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 191)) (-2241 (($ $) NIL)) (-2239 (((-112) $) 48)) (-1947 ((|#1| $) 16)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-1224)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-1224)))) (-1949 (($ |#1| (-549)) 42)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 148)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 74)) (-3890 (((-3 $ "failed") $) 164)) (-3425 (((-3 (-410 (-549)) "failed") $) 84 (|has| |#1| (-548)))) (-3424 (((-112) $) 80 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 91 (|has| |#1| (-548)))) (-1950 (($ |#1| (-549)) 44)) (-4155 (((-112) $) 213 (|has| |#1| (-1224)))) (-2573 (((-112) $) 62)) (-2012 (((-773) $) 51)) (-1951 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-549)) 175)) (-2444 ((|#1| $ (-549)) 174)) (-1952 (((-549) $ (-549)) 173)) (-1955 (($ |#1| (-549)) 41)) (-4390 (($ (-1 |#1| |#1|) $) 183)) (-2009 (($ |#1| (-643 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549))))) 79)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1953 (($ |#1| (-549)) 43)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-1948 (($ |#1| (-549) (-3 #2# #3# #4# #5#)) 40)) (-1954 (((-643 (-2 (|:| -4164 |#1|) (|:| -2564 (-549)))) $) 73)) (-2131 (((-643 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $) 12)) (-4164 (((-408 $) $) NIL (|has| |#1| (-1224)))) (-3889 (((-3 $ "failed") $ $) 176)) (-2564 (((-549) $) 167)) (-4395 ((|#1| $) 75)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 106 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) $) NIL (|has| |#1| (-517 (-1180) $))) (($ $ (-643 (-1180)) (-643 $)) 107 (|has| |#1| (-517 (-1180) $))) (($ $ (-643 (-294 $))) 103 (|has| |#1| (-310 $))) (($ $ (-294 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-643 $) (-643 $)) NIL (|has| |#1| (-310 $)))) (-4231 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-4242 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-4402 (((-538) $) 39 (|has| |#1| (-616 (-538)))) (((-380) $) 113 (|has| |#1| (-1023))) (((-225) $) 119 (|has| |#1| (-1023)))) (-4378 (((-865) $) 146) (($ (-549)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549)))))) (-3530 (((-773)) 67 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 53 T CONST)) (-3067 (($) 52 T CONST)) (-3072 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) 159)) (-4269 (($ $) 161) (($ $ $) NIL)) (-4271 (($ $ $) 180)) (** (($ $ (-922)) NIL) (($ $ (-773)) 125)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-408 |#1|) (-13 (-560) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-415 |#1|) (-10 -8 (-15 -4395 (|#1| $)) (-15 -2564 ((-549) $)) (-15 -2009 ($ |#1| (-643 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -2131 ((-643 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -1955 ($ |#1| (-549))) (-15 -1954 ((-643 (-2 (|:| -4164 |#1|) (|:| -2564 (-549)))) $)) (-15 -1953 ($ |#1| (-549))) (-15 -1952 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -1951 ((-3 #1# #2# #3# #4#) $ (-549))) (-15 -2012 ((-773) $)) (-15 -1950 ($ |#1| (-549))) (-15 -1949 ($ |#1| (-549))) (-15 -1948 ($ |#1| (-549) (-3 #1# #2# #3# #4#))) (-15 -1947 (|#1| $)) (-15 -1946 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1224)) (-6 (-1224)) |%noBranch|) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1180) $)) (-6 (-517 (-1180) $)) |%noBranch|))) (-560)) (T -408)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-560)) (-5 *1 (-408 *3)))) (-4395 (*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-2009 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-549))))) (-4 *2 (-560)) (-5 *1 (-408 *2)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-549))))) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -2564 (-549))))) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1952 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-408 *4)) (-4 *4 (-560)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-1950 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1948 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1947 (*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1946 (*1 *1 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560))))) -(-13 (-560) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-415 |#1|) (-10 -8 (-15 -4395 (|#1| $)) (-15 -2564 ((-549) $)) (-15 -2009 ($ |#1| (-643 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -2131 ((-643 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -1955 ($ |#1| (-549))) (-15 -1954 ((-643 (-2 (|:| -4164 |#1|) (|:| -2564 (-549)))) $)) (-15 -1953 ($ |#1| (-549))) (-15 -1952 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -1951 ((-3 #1# #2# #3# #4#) $ (-549))) (-15 -2012 ((-773) $)) (-15 -1950 ($ |#1| (-549))) (-15 -1949 ($ |#1| (-549))) (-15 -1948 ($ |#1| (-549) (-3 #1# #2# #3# #4#))) (-15 -1947 (|#1| $)) (-15 -1946 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1224)) (-6 (-1224)) |%noBranch|) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1180) $)) (-6 (-517 (-1180) $)) |%noBranch|))) -((-4390 (((-408 |#2|) (-1 |#2| |#1|) (-408 |#1|)) 20))) -(((-409 |#1| |#2|) (-10 -7 (-15 -4390 ((-408 |#2|) (-1 |#2| |#1|) (-408 |#1|)))) (-560) (-560)) (T -409)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-408 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-5 *2 (-408 *6)) (-5 *1 (-409 *5 *6))))) -(-10 -7 (-15 -4390 ((-408 |#2|) (-1 |#2| |#1|) (-408 |#1|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 13)) (-3533 ((|#1| $) 21 (|has| |#1| (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| |#1| (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) 17) (((-3 (-1180) #2#) $) NIL (|has| |#1| (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) 72 (|has| |#1| (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549))))) (-3576 ((|#1| $) 15) (((-1180) $) NIL (|has| |#1| (-1041 (-1180)))) (((-410 (-549)) $) 69 (|has| |#1| (-1041 (-549)))) (((-549) $) NIL (|has| |#1| (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 51)) (-3395 (($) NIL (|has| |#1| (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| |#1| (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| |#1| (-889 (-380))))) (-2573 (((-112) $) 57)) (-3397 (($ $) NIL)) (-3399 ((|#1| $) 73)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3607 (((-112) $) NIL (|has| |#1| (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 100)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| |#1| (-308)))) (-3534 ((|#1| $) 28 (|has| |#1| (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 148 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) NIL)) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3396 (($ $) NIL)) (-3398 ((|#1| $) 75)) (-4402 (((-893 (-549)) $) NIL (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#1| (-616 (-893 (-380))))) (((-538) $) NIL (|has| |#1| (-616 (-538)))) (((-380) $) NIL (|has| |#1| (-1023))) (((-225) $) NIL (|has| |#1| (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 10) (($ (-1180)) NIL (|has| |#1| (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) 102 (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 103 T CONST)) (-3535 ((|#1| $) 26 (|has| |#1| (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-822)))) (-3510 (($) 22 T CONST)) (-3067 (($) 8 T CONST)) (-2900 (((-1162) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-823)))) (((-1162) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-823)))) (((-1275) (-825) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-823)))) (((-1275) (-825) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-823))))) (-3072 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) 66)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) 24 (|has| |#1| (-852)))) (-4381 (($ $ $) 136) (($ |#1| |#1|) 53)) (-4269 (($ $) 25) (($ $ $) 56)) (-4271 (($ $ $) 54)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 135)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 61) (($ $ $) 58) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-410 |#1|) (-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4423)) (-6 -4412) |%noBranch|) |%noBranch|) |%noBranch|))) (-560)) (T -410)) -NIL -(-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4423)) (-6 -4412) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4390 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13))) -(((-411 |#1| |#2|) (-10 -7 (-15 -4390 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-560) (-560)) (T -411)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-5 *2 (-410 *6)) (-5 *1 (-411 *5 *6))))) -(-10 -7 (-15 -4390 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) -((-1957 (((-691 |#2|) (-1269 $)) NIL) (((-691 |#2|)) 18)) (-1967 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 24)) (-1956 (((-691 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) $) 40)) (-2192 ((|#3| $) 73)) (-4189 ((|#2| (-1269 $)) NIL) ((|#2|) 20)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 22) (((-691 |#2|) (-1269 $)) 38)) (-4402 (((-1269 |#2|) $) 11) (($ (-1269 |#2|)) 13)) (-2770 ((|#3| $) 55))) -(((-412 |#1| |#2| |#3|) (-10 -8 (-15 -1956 ((-691 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -1957 ((-691 |#2|))) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 (|#3| |#1|)) (-15 -2770 (|#3| |#1|)) (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) (-413 |#2| |#3|) (-172) (-1245 |#2|)) (T -412)) -((-1957 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)) (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-413 *4 *5)))) (-4189 (*1 *2) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-412 *3 *2 *4)) (-4 *3 (-413 *2 *4))))) -(-10 -8 (-15 -1956 ((-691 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -1957 ((-691 |#2|))) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 (|#3| |#1|)) (-15 -2770 (|#3| |#1|)) (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1957 (((-691 |#1|) (-1269 $)) 53) (((-691 |#1|)) 68)) (-3754 ((|#1| $) 59)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-1956 (((-691 |#1|) $ (-1269 $)) 60) (((-691 |#1|) $) 66)) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-922)) 61)) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 58)) (-2192 ((|#2| $) 51 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4189 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-691 |#1|) (-1269 $)) 72)) (-4402 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44)) (-3105 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2770 ((|#2| $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-413 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -413)) -((-2190 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) (-4 *1 (-413 *3 *4)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-413 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) (-4 *4 (-1245 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) (-4 *4 (-1245 *3)))) (-1957 (*1 *2) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-691 *3)))) (-4189 (*1 *2) (-12 (-4 *1 (-413 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-691 *3))))) -(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2190 ((-1269 $))) (-15 -3644 ((-1269 |t#1|) $)) (-15 -3644 ((-691 |t#1|) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|))) (-15 -4402 ((-1269 |t#1|) $)) (-15 -4402 ($ (-1269 |t#1|))) (-15 -1957 ((-691 |t#1|))) (-15 -4189 (|t#1|)) (-15 -1956 ((-691 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-372 |#1| |#2|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) 27) (((-3 (-549) #1#) $) 19)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) 24) (((-549) $) 14)) (-4378 (($ |#2|) NIL) (($ (-410 (-549))) 22) (($ (-549)) 11))) -(((-414 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| (-549))) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|))) (-415 |#2|) (-1219)) (T -414)) -NIL -(-10 -8 (-15 -4378 (|#1| (-549))) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|))) -((-3577 (((-3 |#1| #1="failed") $) 9) (((-3 (-410 (-549)) #1#) $) 16 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #1#) $) 13 (|has| |#1| (-1041 (-549))))) (-3576 ((|#1| $) 8) (((-410 (-549)) $) 17 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 14 (|has| |#1| (-1041 (-549))))) (-4378 (($ |#1|) 6) (($ (-410 (-549))) 15 (|has| |#1| (-1041 (-410 (-549))))) (($ (-549)) 12 (|has| |#1| (-1041 (-549)))))) -(((-415 |#1|) (-140) (-1219)) (T -415)) -NIL -(-13 (-1041 |t#1|) (-10 -7 (IF (|has| |t#1| (-1041 (-549))) (-6 (-1041 (-549))) |%noBranch|) (IF (|has| |t#1| (-1041 (-410 (-549)))) (-6 (-1041 (-410 (-549)))) |%noBranch|))) -(((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 #2=(-549)) |has| |#1| (-1041 (-549))) ((-618 |#1|) . T) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 #2#) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T)) -((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-1958 ((|#4| (-773) (-1269 |#4|)) 58)) (-2573 (((-112) $) NIL)) (-3399 (((-1269 |#4|) $) 15)) (-3536 ((|#2| $) 53)) (-1959 (($ $) 161)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 106)) (-2148 (($ (-1269 |#4|)) 105)) (-3664 (((-1123) $) NIL)) (-3398 ((|#1| $) 16)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 151)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 |#4|) $) 144)) (-3067 (($) 11 T CONST)) (-3455 (((-112) $ $) 39)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 137)) (* (($ $ $) 133))) -(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -2148 ($ (-1269 |#4|))) (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -3399 ((-1269 |#4|) $)) (-15 -3398 (|#1| $)) (-15 -1959 ($ $)) (-15 -1958 (|#4| (-773) (-1269 |#4|))))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-413 |#2| |#3|) (-1041 |#2|))) (T -416)) -((-2148 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) (-3536 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-413 *2 *4) (-1041 *2))))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3))))) (-1959 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3))))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *2 (-13 (-413 *6 *7) (-1041 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1245 *6))))) -(-13 (-476) (-10 -8 (-15 -2148 ($ (-1269 |#4|))) (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -3399 ((-1269 |#4|) $)) (-15 -3398 (|#1| $)) (-15 -1959 ($ $)) (-15 -1958 (|#4| (-773) (-1269 |#4|))))) -((-4390 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35))) -(((-417 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-413 |#2| |#3|) (-1041 |#2|)) (-308) (-994 |#5|) (-1245 |#6|) (-13 (-413 |#6| |#7|) (-1041 |#6|))) (T -417)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) (-4 *8 (-13 (-413 *6 *7) (-1041 *6))) (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-413 *10 *11) (-1041 *10)))))) -(-10 -7 (-15 -4390 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) -((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3536 ((|#2| $) 71)) (-1960 (($ (-1269 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1041 |#2|)))) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 37)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 |#4|) $) 28)) (-3067 (($) 25 T CONST)) (-3455 (((-112) $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ $ $) 82))) -(((-418 |#1| |#2| |#3| |#4| |#5|) (-13 (-728) (-10 -8 (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -1960 ($ (-1269 |#4|))) (IF (|has| |#4| (-1041 |#2|)) (-15 -1960 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-994 |#1|) (-1245 |#2|) (-413 |#2| |#3|) (-1269 |#4|)) (T -418)) -((-2190 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-418 *3 *4 *5 *6 *7)) (-4 *6 (-413 *4 *5)) (-14 *7 *2))) (-3536 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-418 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-413 *2 *4)) (-14 *6 (-1269 *5)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-413 *4 *5)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-418 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1041 *4)) (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-413 *4 *5)) (-14 *7 (-1269 *6)) (-5 *1 (-418 *3 *4 *5 *6 *7))))) -(-13 (-728) (-10 -8 (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -1960 ($ (-1269 |#4|))) (IF (|has| |#4| (-1041 |#2|)) (-15 -1960 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4390 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) (-421 |#2|) (-172) (-421 |#4|) (-172)) (T -419)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-421 *6)) (-5 *1 (-419 *4 *5 *2 *6)) (-4 *4 (-421 *5))))) -(-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) -((-1947 (((-3 $ #1="failed")) 99)) (-3643 (((-1269 (-691 |#2|)) (-1269 $)) NIL) (((-1269 (-691 |#2|))) 104)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 97)) (-1871 (((-3 $ #1#)) 96)) (-1963 (((-691 |#2|) (-1269 $)) NIL) (((-691 |#2|)) 115)) (-1961 (((-691 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) $) 123)) (-2078 (((-1174 (-949 |#2|))) 65)) (-1965 ((|#2| (-1269 $)) NIL) ((|#2|) 119)) (-1967 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 125)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 95)) (-1872 (((-3 $ #1#)) 87)) (-1964 (((-691 |#2|) (-1269 $)) NIL) (((-691 |#2|)) 113)) (-1962 (((-691 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) $) 121)) (-2082 (((-1174 (-949 |#2|))) 64)) (-1966 ((|#2| (-1269 $)) NIL) ((|#2|) 117)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 124) (((-691 |#2|) (-1269 $)) 133)) (-4402 (((-1269 |#2|) $) 109) (($ (-1269 |#2|)) 111)) (-2070 (((-643 (-949 |#2|)) (-1269 $)) NIL) (((-643 (-949 |#2|))) 107)) (-2948 (($ (-691 |#2|) $) 103))) -(((-420 |#1| |#2|) (-10 -8 (-15 -2948 (|#1| (-691 |#2|) |#1|)) (-15 -2078 ((-1174 (-949 |#2|)))) (-15 -2082 ((-1174 (-949 |#2|)))) (-15 -1961 ((-691 |#2|) |#1|)) (-15 -1962 ((-691 |#2|) |#1|)) (-15 -1963 ((-691 |#2|))) (-15 -1964 ((-691 |#2|))) (-15 -1965 (|#2|)) (-15 -1966 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -2070 ((-643 (-949 |#2|)))) (-15 -3643 ((-1269 (-691 |#2|)))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -1947 ((-3 |#1| #1="failed"))) (-15 -1871 ((-3 |#1| #1#))) (-15 -1872 ((-3 |#1| #1#))) (-15 -2084 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -2085 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|))) (-15 -2070 ((-643 (-949 |#2|)) (-1269 |#1|)))) (-421 |#2|) (-172)) (T -420)) -((-3643 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2070 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-643 (-949 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-1966 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) (-1965 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) (-1964 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-1963 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2082 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2078 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))) -(-10 -8 (-15 -2948 (|#1| (-691 |#2|) |#1|)) (-15 -2078 ((-1174 (-949 |#2|)))) (-15 -2082 ((-1174 (-949 |#2|)))) (-15 -1961 ((-691 |#2|) |#1|)) (-15 -1962 ((-691 |#2|) |#1|)) (-15 -1963 ((-691 |#2|))) (-15 -1964 ((-691 |#2|))) (-15 -1965 (|#2|)) (-15 -1966 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -2070 ((-643 (-949 |#2|)))) (-15 -3643 ((-1269 (-691 |#2|)))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -1947 ((-3 |#1| #1="failed"))) (-15 -1871 ((-3 |#1| #1#))) (-15 -1872 ((-3 |#1| #1#))) (-15 -2084 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -2085 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|))) (-15 -2070 ((-643 (-949 |#2|)) (-1269 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1947 (((-3 $ #1="failed")) 42 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-3643 (((-1269 (-691 |#1|)) (-1269 $)) 83) (((-1269 (-691 |#1|))) 105)) (-1897 (((-1269 $)) 86)) (-4156 (($) 18 T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 45 (|has| |#1| (-560)))) (-1871 (((-3 $ #1#)) 43 (|has| |#1| (-560)))) (-1963 (((-691 |#1|) (-1269 $)) 70) (((-691 |#1|)) 97)) (-1895 ((|#1| $) 79)) (-1961 (((-691 |#1|) $ (-1269 $)) 81) (((-691 |#1|) $) 95)) (-2567 (((-3 $ #1#) $) 50 (|has| |#1| (-560)))) (-2078 (((-1174 (-949 |#1|))) 93 (|has| |#1| (-365)))) (-2570 (($ $ (-922)) 31)) (-1893 ((|#1| $) 77)) (-1873 (((-1174 |#1|) $) 47 (|has| |#1| (-560)))) (-1965 ((|#1| (-1269 $)) 72) ((|#1|) 99)) (-1891 (((-1174 |#1|) $) 68)) (-1885 (((-112)) 62)) (-1967 (($ (-1269 |#1|) (-1269 $)) 74) (($ (-1269 |#1|)) 103)) (-3890 (((-3 $ #1#) $) 52 (|has| |#1| (-560)))) (-3513 (((-922)) 85)) (-1882 (((-112)) 59)) (-2594 (($ $ (-922)) 38)) (-1878 (((-112)) 55)) (-1876 (((-112)) 53)) (-1880 (((-112)) 57)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 46 (|has| |#1| (-560)))) (-1872 (((-3 $ #1#)) 44 (|has| |#1| (-560)))) (-1964 (((-691 |#1|) (-1269 $)) 71) (((-691 |#1|)) 98)) (-1896 ((|#1| $) 80)) (-1962 (((-691 |#1|) $ (-1269 $)) 82) (((-691 |#1|) $) 96)) (-2568 (((-3 $ #1#) $) 51 (|has| |#1| (-560)))) (-2082 (((-1174 (-949 |#1|))) 94 (|has| |#1| (-365)))) (-2569 (($ $ (-922)) 32)) (-1894 ((|#1| $) 78)) (-1874 (((-1174 |#1|) $) 48 (|has| |#1| (-560)))) (-1966 ((|#1| (-1269 $)) 73) ((|#1|) 100)) (-1892 (((-1174 |#1|) $) 69)) (-1886 (((-112)) 63)) (-3663 (((-1162) $) 10)) (-1877 (((-112)) 54)) (-1879 (((-112)) 56)) (-1881 (((-112)) 58)) (-3664 (((-1123) $) 11)) (-1884 (((-112)) 61)) (-4231 ((|#1| $ (-549)) 106)) (-3644 (((-1269 |#1|) $ (-1269 $)) 76) (((-691 |#1|) (-1269 $) (-1269 $)) 75) (((-1269 |#1|) $) 108) (((-691 |#1|) (-1269 $)) 107)) (-4402 (((-1269 |#1|) $) 102) (($ (-1269 |#1|)) 101)) (-2070 (((-643 (-949 |#1|)) (-1269 $)) 84) (((-643 (-949 |#1|))) 104)) (-2756 (($ $ $) 28)) (-1890 (((-112)) 67)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 109)) (-1875 (((-643 (-1269 |#1|))) 49 (|has| |#1| (-560)))) (-2757 (($ $ $ $) 29)) (-1888 (((-112)) 65)) (-2948 (($ (-691 |#1|) $) 92)) (-2755 (($ $ $) 27)) (-1889 (((-112)) 66)) (-1887 (((-112)) 64)) (-1883 (((-112)) 60)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-421 |#1|) (-140) (-172)) (T -421)) -((-2190 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-421 *3)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-421 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-421 *2)) (-4 *2 (-172)))) (-3643 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-691 *3))))) (-2070 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-643 (-949 *3))))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3)))) (-1966 (*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172)))) (-1965 (*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172)))) (-1964 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-1963 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-2082 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-949 *3))))) (-2078 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-949 *3))))) (-2948 (*1 *1 *2 *1) (-12 (-5 *2 (-691 *3)) (-4 *1 (-421 *3)) (-4 *3 (-172))))) -(-13 (-369 |t#1|) (-10 -8 (-15 -2190 ((-1269 $))) (-15 -3644 ((-1269 |t#1|) $)) (-15 -3644 ((-691 |t#1|) (-1269 $))) (-15 -4231 (|t#1| $ (-549))) (-15 -3643 ((-1269 (-691 |t#1|)))) (-15 -2070 ((-643 (-949 |t#1|)))) (-15 -1967 ($ (-1269 |t#1|))) (-15 -4402 ((-1269 |t#1|) $)) (-15 -4402 ($ (-1269 |t#1|))) (-15 -1966 (|t#1|)) (-15 -1965 (|t#1|)) (-15 -1964 ((-691 |t#1|))) (-15 -1963 ((-691 |t#1|))) (-15 -1962 ((-691 |t#1|) $)) (-15 -1961 ((-691 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2082 ((-1174 (-949 |t#1|)))) (-15 -2078 ((-1174 (-949 |t#1|))))) |%noBranch|) (-15 -2948 ($ (-691 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-369 |#1|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-722) . T) ((-746 |#1|) . T) ((-763) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-3538 (((-408 |#1|) (-408 |#1|) (-1 (-408 |#1|) |#1|)) 28)) (-1968 (((-408 |#1|) (-408 |#1|) (-408 |#1|)) 17))) -(((-422 |#1|) (-10 -7 (-15 -3538 ((-408 |#1|) (-408 |#1|) (-1 (-408 |#1|) |#1|))) (-15 -1968 ((-408 |#1|) (-408 |#1|) (-408 |#1|)))) (-560)) (T -422)) -((-1968 (*1 *2 *2 *2) (-12 (-5 *2 (-408 *3)) (-4 *3 (-560)) (-5 *1 (-422 *3)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-408 *4) *4)) (-4 *4 (-560)) (-5 *2 (-408 *4)) (-5 *1 (-422 *4))))) -(-10 -7 (-15 -3538 ((-408 |#1|) (-408 |#1|) (-1 (-408 |#1|) |#1|))) (-15 -1968 ((-408 |#1|) (-408 |#1|) (-408 |#1|)))) -((-3485 (((-643 (-1180)) $) 81)) (-3487 (((-410 (-1174 $)) $ (-613 $)) 314)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) 278)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 (-1180) #1#) $) 84) (((-3 (-549) #1#) $) NIL) (((-3 |#2| #1#) $) 274) (((-3 (-410 (-949 |#2|)) #1#) $) 364) (((-3 (-949 |#2|) #1#) $) 276) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-613 $) $) NIL) (((-1180) $) 28) (((-549) $) NIL) ((|#2| $) 272) (((-410 (-949 |#2|)) $) 346) (((-949 |#2|) $) 273) (((-410 (-549)) $) NIL)) (-3448 (((-113) (-113)) 47)) (-3397 (($ $) 99)) (-1710 (((-3 (-613 $) "failed") $) 269)) (-1709 (((-643 (-613 $)) $) 270)) (-3226 (((-3 (-643 $) "failed") $) 288)) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) "failed") $) 295)) (-3225 (((-3 (-643 $) "failed") $) 286)) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) "failed") $) 305)) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-113)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-1180)) 258)) (-1972 (((-112) $) 17)) (-1971 ((|#2| $) 19)) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) 277) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 109) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1180)) 62) (($ $ (-643 (-1180))) 281) (($ $) 282) (($ $ (-113) $ (-1180)) 65) (($ $ (-643 (-113)) (-643 $) (-1180)) 72) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) 120) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) 283) (($ $ (-1180) (-773) (-1 $ (-643 $))) 105) (($ $ (-1180) (-773) (-1 $ $)) 104)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) 119)) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) 279)) (-3396 (($ $) 325)) (-4402 (((-893 (-549)) $) 298) (((-893 (-380)) $) 302) (($ (-408 $)) 360) (((-538) $) NIL)) (-4378 (((-865) $) 280) (($ (-613 $)) 93) (($ (-1180)) 24) (($ |#2|) NIL) (($ (-1128 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-949 (-410 |#2|))) 369) (($ (-410 (-949 (-410 |#2|)))) 342) (($ (-410 (-949 |#2|))) 336) (($ $) NIL) (($ (-949 |#2|)) 218) (($ (-410 (-549))) 374) (($ (-549)) NIL)) (-3530 (((-773)) 88)) (-2403 (((-112) (-113)) 42)) (-1970 (($ (-1180) $) 31) (($ (-1180) $ $) 32) (($ (-1180) $ $ $) 33) (($ (-1180) $ $ $ $) 34) (($ (-1180) (-643 $)) 39)) (* (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) -(((-423 |#1| |#2|) (-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4378 (|#1| (-549))) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1="failed") |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-949 |#2|))) (-15 -3577 ((-3 (-949 |#2|) #1#) |#1|)) (-15 -3576 ((-949 |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-949 |#2|)))) (-15 -3577 ((-3 (-410 (-949 |#2|)) #1#) |#1|)) (-15 -3576 ((-410 (-949 |#2|)) |#1|)) (-15 -3487 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4378 (|#1| (-410 (-949 (-410 |#2|))))) (-15 -4378 (|#1| (-949 (-410 |#2|)))) (-15 -4378 (|#1| (-410 |#2|))) (-15 -3396 (|#1| |#1|)) (-15 -4402 (|#1| (-408 |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| |#1|)))) (-15 -3228 ((-3 (-2 (|:| |val| |#1|) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-1180))) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-113))) (-15 -3397 (|#1| |#1|)) (-15 -4378 (|#1| (-1128 |#2| (-613 |#1|)))) (-15 -1969 ((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 |#1|) (-1180))) (-15 -4199 (|#1| |#1| (-113) |#1| (-1180))) (-15 -4199 (|#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1180)))) (-15 -4199 (|#1| |#1| (-1180))) (-15 -1970 (|#1| (-1180) (-643 |#1|))) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1|)) (-15 -3485 ((-643 (-1180)) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1709 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4378 (|#1| (-613 |#1|))) (-15 -3577 ((-3 (-613 |#1|) #1#) |#1|)) (-15 -3576 ((-613 |#1|) |#1|)) (-15 -4378 ((-865) |#1|))) (-424 |#2|) (-1104)) (T -423)) -((-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-1104)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) (-3530 (*1 *2) (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) -(-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4378 (|#1| (-549))) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1="failed") |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-949 |#2|))) (-15 -3577 ((-3 (-949 |#2|) #1#) |#1|)) (-15 -3576 ((-949 |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-949 |#2|)))) (-15 -3577 ((-3 (-410 (-949 |#2|)) #1#) |#1|)) (-15 -3576 ((-410 (-949 |#2|)) |#1|)) (-15 -3487 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4378 (|#1| (-410 (-949 (-410 |#2|))))) (-15 -4378 (|#1| (-949 (-410 |#2|)))) (-15 -4378 (|#1| (-410 |#2|))) (-15 -3396 (|#1| |#1|)) (-15 -4402 (|#1| (-408 |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| |#1|)))) (-15 -3228 ((-3 (-2 (|:| |val| |#1|) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-1180))) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-113))) (-15 -3397 (|#1| |#1|)) (-15 -4378 (|#1| (-1128 |#2| (-613 |#1|)))) (-15 -1969 ((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 |#1|) (-1180))) (-15 -4199 (|#1| |#1| (-113) |#1| (-1180))) (-15 -4199 (|#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1180)))) (-15 -4199 (|#1| |#1| (-1180))) (-15 -1970 (|#1| (-1180) (-643 |#1|))) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1|)) (-15 -3485 ((-643 (-1180)) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1709 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4378 (|#1| (-613 |#1|))) (-15 -3577 ((-3 (-613 |#1|) #1#) |#1|)) (-15 -3576 ((-613 |#1|) |#1|)) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 116 (|has| |#1| (-25)))) (-3485 (((-643 (-1180)) $) 203)) (-3487 (((-410 (-1174 $)) $ (-613 $)) 171 (|has| |#1| (-560)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 143 (|has| |#1| (-560)))) (-2241 (($ $) 144 (|has| |#1| (-560)))) (-2239 (((-112) $) 146 (|has| |#1| (-560)))) (-1708 (((-643 (-613 $)) $) 39)) (-1407 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1712 (($ $ (-294 $)) 51) (($ $ (-643 (-294 $))) 50) (($ $ (-643 (-613 $)) (-643 $)) 49)) (-4206 (($ $) 163 (|has| |#1| (-560)))) (-4401 (((-408 $) $) 164 (|has| |#1| (-560)))) (-1753 (((-112) $ $) 154 (|has| |#1| (-560)))) (-4156 (($) 104 (-3960 (|has| |#1| (-1115)) (|has| |#1| (-25))) CONST)) (-3577 (((-3 (-613 $) #1="failed") $) 64) (((-3 (-1180) #1#) $) 216) (((-3 (-549) #1#) $) 210 (|has| |#1| (-1041 (-549)))) (((-3 |#1| #1#) $) 207) (((-3 (-410 (-949 |#1|)) #1#) $) 169 (|has| |#1| (-560))) (((-3 (-949 |#1|) #1#) $) 123 (|has| |#1| (-1052))) (((-3 (-410 (-549)) #1#) $) 98 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 (((-613 $) $) 65) (((-1180) $) 217) (((-549) $) 209 (|has| |#1| (-1041 (-549)))) ((|#1| $) 208) (((-410 (-949 |#1|)) $) 170 (|has| |#1| (-560))) (((-949 |#1|) $) 124 (|has| |#1| (-1052))) (((-410 (-549)) $) 99 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-2964 (($ $ $) 158 (|has| |#1| (-560)))) (-2427 (((-691 (-549)) (-691 $)) 137 (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 136 (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 135 (|has| |#1| (-1052))) (((-691 |#1|) (-691 $)) 134 (|has| |#1| (-1052)))) (-3890 (((-3 $ "failed") $) 106 (|has| |#1| (-1115)))) (-2963 (($ $ $) 157 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 152 (|has| |#1| (-560)))) (-4155 (((-112) $) 165 (|has| |#1| (-560)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 212 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 211 (|has| |#1| (-889 (-380))))) (-2973 (($ $) 46) (($ (-643 $)) 45)) (-1707 (((-643 (-113)) $) 38)) (-3448 (((-113) (-113)) 37)) (-2573 (((-112) $) 105 (|has| |#1| (-1115)))) (-3076 (((-112) $) 17 (|has| $ (-1041 (-549))))) (-3397 (($ $) 186 (|has| |#1| (-1052)))) (-3399 (((-1128 |#1| (-613 $)) $) 187 (|has| |#1| (-1052)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 161 (|has| |#1| (-560)))) (-1705 (((-1174 $) (-613 $)) 20 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 31)) (-1710 (((-3 (-613 $) "failed") $) 41)) (-2069 (($ (-643 $)) 150 (|has| |#1| (-560))) (($ $ $) 149 (|has| |#1| (-560)))) (-3663 (((-1162) $) 10)) (-1709 (((-643 (-613 $)) $) 40)) (-2384 (($ (-113) $) 33) (($ (-113) (-643 $)) 32)) (-3226 (((-3 (-643 $) "failed") $) 192 (|has| |#1| (-1115)))) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) "failed") $) 183 (|has| |#1| (-1052)))) (-3225 (((-3 (-643 $) "failed") $) 190 (|has| |#1| (-25)))) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $) 191 (|has| |#1| (-1115))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-113)) 185 (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-1180)) 184 (|has| |#1| (-1052)))) (-3035 (((-112) $ (-113)) 35) (((-112) $ (-1180)) 34)) (-2806 (($ $) 108 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-3003 (((-773) $) 42)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 205)) (-1971 ((|#1| $) 204)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 151 (|has| |#1| (-560)))) (-3564 (($ (-643 $)) 148 (|has| |#1| (-560))) (($ $ $) 147 (|has| |#1| (-560)))) (-1706 (((-112) $ $) 30) (((-112) $ (-1180)) 29)) (-4164 (((-408 $) $) 162 (|has| |#1| (-560)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 160 (|has| |#1| (-560))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 159 (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ $) 142 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 153 (|has| |#1| (-560)))) (-3077 (((-112) $) 18 (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) 62) (($ $ (-643 (-613 $)) (-643 $)) 61) (($ $ (-643 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-643 $) (-643 $)) 57) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 28) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 27) (($ $ (-1180) (-1 $ (-643 $))) 26) (($ $ (-1180) (-1 $ $)) 25) (($ $ (-643 (-113)) (-643 (-1 $ $))) 24) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 23) (($ $ (-113) (-1 $ (-643 $))) 22) (($ $ (-113) (-1 $ $)) 21) (($ $ (-1180)) 197 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180))) 196 (|has| |#1| (-616 (-538)))) (($ $) 195 (|has| |#1| (-616 (-538)))) (($ $ (-113) $ (-1180)) 194 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-113)) (-643 $) (-1180)) 193 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) 182 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) 181 (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ (-643 $))) 180 (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ $)) 179 (|has| |#1| (-1052)))) (-1752 (((-773) $) 155 (|has| |#1| (-560)))) (-4231 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-643 $)) 52)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 156 (|has| |#1| (-560)))) (-1711 (($ $) 44) (($ $ $) 43)) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 128 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 127 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 126 (|has| |#1| (-1052))) (($ $ (-1180)) 125 (|has| |#1| (-1052)))) (-3396 (($ $) 176 (|has| |#1| (-560)))) (-3398 (((-1128 |#1| (-613 $)) $) 177 (|has| |#1| (-560)))) (-3605 (($ $) 19 (|has| $ (-1052)))) (-4402 (((-893 (-549)) $) 214 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 213 (|has| |#1| (-616 (-893 (-380))))) (($ (-408 $)) 178 (|has| |#1| (-560))) (((-538) $) 100 (|has| |#1| (-616 (-538))))) (-3410 (($ $ $) 111 (|has| |#1| (-476)))) (-2756 (($ $ $) 112 (|has| |#1| (-476)))) (-4378 (((-865) $) 12) (($ (-613 $)) 63) (($ (-1180)) 215) (($ |#1|) 206) (($ (-1128 |#1| (-613 $))) 188 (|has| |#1| (-1052))) (($ (-410 |#1|)) 174 (|has| |#1| (-560))) (($ (-949 (-410 |#1|))) 173 (|has| |#1| (-560))) (($ (-410 (-949 (-410 |#1|)))) 172 (|has| |#1| (-560))) (($ (-410 (-949 |#1|))) 168 (|has| |#1| (-560))) (($ $) 141 (|has| |#1| (-560))) (($ (-949 |#1|)) 122 (|has| |#1| (-1052))) (($ (-410 (-549))) 97 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549)))))) (($ (-549)) 96 (-3960 (|has| |#1| (-1052)) (|has| |#1| (-1041 (-549)))))) (-3105 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3530 (((-773)) 133 (|has| |#1| (-1052)) CONST)) (-2990 (($ $) 48) (($ (-643 $)) 47)) (-2403 (((-112) (-113)) 36)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 145 (|has| |#1| (-560)))) (-1970 (($ (-1180) $) 202) (($ (-1180) $ $) 201) (($ (-1180) $ $ $) 200) (($ (-1180) $ $ $ $) 199) (($ (-1180) (-643 $)) 198)) (-3510 (($) 115 (|has| |#1| (-25)) CONST)) (-3067 (($) 103 (|has| |#1| (-1115)) CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 132 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 131 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 130 (|has| |#1| (-1052))) (($ $ (-1180)) 129 (|has| |#1| (-1052)))) (-3455 (((-112) $ $) 6)) (-4381 (($ (-1128 |#1| (-613 $)) (-1128 |#1| (-613 $))) 175 (|has| |#1| (-560))) (($ $ $) 109 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-4269 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-4271 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-549)) 110 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560)))) (($ $ (-773)) 107 (|has| |#1| (-1115))) (($ $ (-922)) 102 (|has| |#1| (-1115)))) (* (($ (-410 (-549)) $) 167 (|has| |#1| (-560))) (($ $ (-410 (-549))) 166 (|has| |#1| (-560))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-549) $) 119 (|has| |#1| (-21))) (($ (-773) $) 117 (|has| |#1| (-25))) (($ (-922) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1115))))) -(((-424 |#1|) (-140) (-1104)) (T -424)) -((-1972 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-1180))))) (-1970 (*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-643 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-616 (-538))))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1180))) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-616 (-538))))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-616 (-538))))) (-4199 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1180)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) (-4 *4 (-616 (-538))))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 *1)) (-5 *4 (-1180)) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-616 (-538))))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-424 *3)))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-424 *3)))) (-1969 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| -4386 (-549)) (|:| |var| (-613 *1)))) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-1052)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) (-4 *1 (-424 *3)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-1052)))) (-3227 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1052)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) (-3227 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-1052)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |val| *1) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) (-5 *4 (-643 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) (-5 *4 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 (-643 *1))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-408 *1)) (-4 *1 (-424 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) (-4 *1 (-424 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-560)))) (-4381 (*1 *1 *2 *2) (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-949 (-410 *3))) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-410 *3)))) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-3487 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) (-4 *4 (-560)) (-5 *2 (-410 (-1174 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-1115))))) -(-13 (-299) (-1041 (-1180)) (-887 |t#1|) (-403 |t#1|) (-415 |t#1|) (-10 -8 (-15 -1972 ((-112) $)) (-15 -1971 (|t#1| $)) (-15 -3485 ((-643 (-1180)) $)) (-15 -1970 ($ (-1180) $)) (-15 -1970 ($ (-1180) $ $)) (-15 -1970 ($ (-1180) $ $ $)) (-15 -1970 ($ (-1180) $ $ $ $)) (-15 -1970 ($ (-1180) (-643 $))) (IF (|has| |t#1| (-616 (-538))) (PROGN (-6 (-616 (-538))) (-15 -4199 ($ $ (-1180))) (-15 -4199 ($ $ (-643 (-1180)))) (-15 -4199 ($ $)) (-15 -4199 ($ $ (-113) $ (-1180))) (-15 -4199 ($ $ (-643 (-113)) (-643 $) (-1180)))) |%noBranch|) (IF (|has| |t#1| (-1115)) (PROGN (-6 (-728)) (-15 ** ($ $ (-773))) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -1969 ((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-1041 (-949 |t#1|))) (-6 (-903 (-1180))) (-6 (-379 |t#1|)) (-15 -4378 ($ (-1128 |t#1| (-613 $)))) (-15 -3399 ((-1128 |t#1| (-613 $)) $)) (-15 -3397 ($ $)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-113))) (-15 -3227 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-1180))) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) "failed") $)) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $)))) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $))))) (-15 -4199 ($ $ (-1180) (-773) (-1 $ (-643 $)))) (-15 -4199 ($ $ (-1180) (-773) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-6 (-365)) (-6 (-1041 (-410 (-949 |t#1|)))) (-15 -4402 ($ (-408 $))) (-15 -3398 ((-1128 |t#1| (-613 $)) $)) (-15 -3396 ($ $)) (-15 -4381 ($ (-1128 |t#1| (-613 $)) (-1128 |t#1| (-613 $)))) (-15 -4378 ($ (-410 |t#1|))) (-15 -4378 ($ (-949 (-410 |t#1|)))) (-15 -4378 ($ (-410 (-949 (-410 |t#1|))))) (-15 -3487 ((-410 (-1174 $)) $ (-613 $))) (IF (|has| |t#1| (-1041 (-549))) (-6 (-1041 (-410 (-549)))) |%noBranch|)) |%noBranch|))) -(((-21) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-410 (-549))) |has| |#1| (-560)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-560)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-560)) ((-131) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-560))) ((-618 #2=(-410 (-949 |#1|))) |has| |#1| (-560)) ((-618 (-549)) -3960 (|has| |#1| (-1052)) (|has| |#1| (-1041 (-549))) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-618 #3=(-613 $)) . T) ((-618 #4=(-949 |#1|)) |has| |#1| (-1052)) ((-618 #5=(-1180)) . T) ((-618 |#1|) . T) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) |has| |#1| (-560)) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-243) |has| |#1| (-560)) ((-291) |has| |#1| (-560)) ((-308) |has| |#1| (-560)) ((-310 $) . T) ((-299) . T) ((-365) |has| |#1| (-560)) ((-379 |#1|) |has| |#1| (-1052)) ((-403 |#1|) . T) ((-415 |#1|) . T) ((-455) |has| |#1| (-560)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-560)) ((-648 (-549)) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-650 #1#) |has| |#1| (-560)) ((-650 |#1|) |has| |#1| (-172)) ((-650 $) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-642 #1#) |has| |#1| (-560)) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-641 (-549)) -12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) ((-641 |#1|) |has| |#1| (-1052)) ((-719 #1#) |has| |#1| (-560)) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) -3960 (|has| |#1| (-1115)) (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-903 (-1180)) |has| |#1| (-1052)) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-924) |has| |#1| (-560)) ((-1041 (-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) ((-1041 #2#) |has| |#1| (-560)) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #3#) . T) ((-1041 #4#) |has| |#1| (-1052)) ((-1041 #5#) . T) ((-1041 |#1|) . T) ((-1054 #1#) |has| |#1| (-560)) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) |has| |#1| (-560)) ((-1059 #1#) |has| |#1| (-560)) ((-1059 |#1|) |has| |#1| (-172)) ((-1059 $) |has| |#1| (-560)) ((-1052) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1060) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1115) -3960 (|has| |#1| (-1115)) (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1104) . T) ((-1219) . T) ((-1224) |has| |#1| (-560))) -((-4390 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) (-1052) (-424 |#1|) (-1052) (-424 |#3|)) (T -425)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-424 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) -(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) -((-1976 ((|#2| |#2|) 183)) (-1973 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112)) 60))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1973 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112))) (-15 -1976 (|#2| |#2|))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|)) (-1180) |#2|) (T -426)) -((-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1205) (-424 *3))) (-14 *4 (-1180)) (-14 *5 *2))) (-1973 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-14 *6 (-1180)) (-14 *7 *3)))) -(-10 -7 (-15 -1973 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112))) (-15 -1976 (|#2| |#2|))) -((-1976 ((|#2| |#2|) 106)) (-1974 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162)) 52)) (-1975 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162)) 170))) -(((-427 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1974 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1975 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1976 (|#2| |#2|))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|) (-10 -8 (-15 -4378 ($ |#3|)))) (-850) (-13 (-1248 |#2| |#3|) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $)))) (-986 |#4|) (-1180)) (T -427)) -((-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *2 (-13 (-27) (-1205) (-424 *3) (-10 -8 (-15 -4378 ($ *4))))) (-4 *4 (-850)) (-4 *5 (-13 (-1248 *2 *4) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-986 *5)) (-14 *7 (-1180)))) (-1975 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) (-4 *7 (-850)) (-4 *8 (-13 (-1248 *3 *7) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) (-14 *10 (-1180)))) (-1974 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) (-4 *7 (-850)) (-4 *8 (-13 (-1248 *3 *7) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) (-14 *10 (-1180))))) -(-10 -7 (-15 -1974 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1975 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1976 (|#2| |#2|))) -((-1977 (($) 52)) (-3654 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3656 (($ $ $) 45)) (-3655 (((-112) $ $) 34)) (-3540 (((-773)) 56)) (-3659 (($ (-643 |#2|)) 23) (($) NIL)) (-3395 (($) 67)) (-3661 (((-112) $ $) 15)) (-2934 ((|#2| $) 78)) (-3260 ((|#2| $) 76)) (-2188 (((-922) $) 71)) (-3658 (($ $ $) 41)) (-2563 (($ (-922)) 61)) (-3657 (($ $ |#2|) NIL) (($ $ $) 44)) (-2125 (((-773) (-1 (-112) |#2|) $) NIL) (((-773) |#2| $) 31)) (-3953 (($ (-643 |#2|)) 27)) (-1978 (($ $) 54)) (-4378 (((-865) $) 39)) (-1979 (((-773) $) 24)) (-3660 (($ (-643 |#2|)) 22) (($) NIL)) (-3455 (((-112) $ $) 19))) -(((-428 |#1| |#2|) (-10 -8 (-15 -3540 ((-773))) (-15 -2563 (|#1| (-922))) (-15 -2188 ((-922) |#1|)) (-15 -3395 (|#1|)) (-15 -2934 (|#2| |#1|)) (-15 -3260 (|#2| |#1|)) (-15 -1977 (|#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1979 ((-773) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3661 ((-112) |#1| |#1|)) (-15 -3660 (|#1|)) (-15 -3660 (|#1| (-643 |#2|))) (-15 -3659 (|#1|)) (-15 -3659 (|#1| (-643 |#2|))) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3655 ((-112) |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#2| |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|))) (-429 |#2|) (-1104)) (T -428)) -((-3540 (*1 *2) (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -3540 ((-773))) (-15 -2563 (|#1| (-922))) (-15 -2188 ((-922) |#1|)) (-15 -3395 (|#1|)) (-15 -2934 (|#2| |#1|)) (-15 -3260 (|#2| |#1|)) (-15 -1977 (|#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1979 ((-773) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3661 ((-112) |#1| |#1|)) (-15 -3660 (|#1|)) (-15 -3660 (|#1| (-643 |#2|))) (-15 -3659 (|#1|)) (-15 -3659 (|#1| (-643 |#2|))) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3655 ((-112) |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#2| |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|))) -((-2968 (((-112) $ $) 19)) (-1977 (($) 68 (|has| |#1| (-370)))) (-3654 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3656 (($ $ $) 79)) (-3655 (((-112) $ $) 80)) (-1309 (((-112) $ (-773)) 8)) (-3540 (((-773)) 62 (|has| |#1| (-370)))) (-3659 (($ (-643 |#1|)) 75) (($) 74)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-3395 (($) 65 (|has| |#1| (-370)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 71)) (-4151 (((-112) $ (-773)) 9)) (-2934 ((|#1| $) 66 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3260 ((|#1| $) 67 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-2188 (((-922) $) 64 (|has| |#1| (-370)))) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22)) (-3658 (($ $ $) 76)) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-2563 (($ (-922)) 63 (|has| |#1| (-370)))) (-3664 (((-1123) $) 21)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3657 (($ $ |#1|) 78) (($ $ $) 77)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-1978 (($ $) 69 (|has| |#1| (-370)))) (-4378 (((-865) $) 18)) (-1979 (((-773) $) 70)) (-3660 (($ (-643 |#1|)) 73) (($) 72)) (-3662 (((-112) $ $) 23)) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-429 |#1|) (-140) (-1104)) (T -429)) -((-1979 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-1104)) (-5 *2 (-773)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-370)))) (-1977 (*1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-370)) (-4 *2 (-1104)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852))))) -(-13 (-229 |t#1|) (-1102 |t#1|) (-10 -8 (-6 -4425) (-15 -1979 ((-773) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -1978 ($ $)) (-15 -1977 ($))) |%noBranch|) (IF (|has| |t#1| (-852)) (PROGN (-15 -3260 (|t#1| $)) (-15 -2934 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1102 |#1|) . T) ((-1104) . T) ((-1219) . T)) -((-4273 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4274 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4390 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1104) (-429 |#1|) (-1104) (-429 |#3|)) (T -430)) -((-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-429 *5)) (-5 *1 (-430 *6 *4 *5 *2)) (-4 *4 (-429 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-430 *5 *4 *2 *6)) (-4 *4 (-429 *5)) (-4 *6 (-429 *2)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-429 *6)) (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1980 (((-586 |#2|) |#2| (-1180)) 36)) (-2283 (((-586 |#2|) |#2| (-1180)) 21)) (-2328 ((|#2| |#2| (-1180)) 26))) -(((-431 |#1| |#2|) (-10 -7 (-15 -2283 ((-586 |#2|) |#2| (-1180))) (-15 -1980 ((-586 |#2|) |#2| (-1180))) (-15 -2328 (|#2| |#2| (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-29 |#1|))) (T -431)) -((-2328 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1205) (-29 *4))))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5))))) (-2283 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5)))))) -(-10 -7 (-15 -2283 ((-586 |#2|) |#2| (-1180))) (-15 -1980 ((-586 |#2|) |#2| (-1180))) (-15 -2328 (|#2| |#2| (-1180)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-1982 (($ |#2| |#1|) 37)) (-1981 (($ |#2| |#1|) 35)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 10 T CONST)) (-3067 (($) 16 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 36)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-432 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4412)) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (-15 -4378 ($ |#1|)) (-15 -4378 ($ (-332 |#2|))) (-15 -1982 ($ |#2| |#1|)) (-15 -1981 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-549)))) (-13 (-852) (-21))) (T -432)) -((-4378 (*1 *1 *2) (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-549))))) (-4 *3 (-13 (-852) (-21))))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-852) (-21))) (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))))) (-1982 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) (-4 *2 (-13 (-852) (-21))))) (-1981 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) (-4 *2 (-13 (-852) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4412)) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (-15 -4378 ($ |#1|)) (-15 -4378 ($ (-332 |#2|))) (-15 -1982 ($ |#2| |#1|)) (-15 -1981 ($ |#2| |#1|)))) -((-4244 (((-3 |#2| (-643 |#2|)) |#2| (-1180)) 115))) -(((-433 |#1| |#2|) (-10 -7 (-15 -4244 ((-3 |#2| (-643 |#2|)) |#2| (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-29 |#1|))) (T -433)) -((-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 *3 (-643 *3))) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1205) (-963) (-29 *5)))))) -(-10 -7 (-15 -4244 ((-3 |#2| (-643 |#2|)) |#2| (-1180)))) -((-3810 ((|#2| |#2| |#2|) 31)) (-3448 (((-113) (-113)) 43)) (-1984 ((|#2| |#2|) 63)) (-1983 ((|#2| |#2|) 66)) (-3809 ((|#2| |#2|) 30)) (-3813 ((|#2| |#2| |#2|) 33)) (-3815 ((|#2| |#2| |#2|) 35)) (-3812 ((|#2| |#2| |#2|) 32)) (-3814 ((|#2| |#2| |#2|) 34)) (-2403 (((-112) (-113)) 41)) (-3817 ((|#2| |#2|) 37)) (-3816 ((|#2| |#2|) 36)) (-3807 ((|#2| |#2|) 25)) (-3811 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3808 ((|#2| |#2| |#2|) 29))) -(((-434 |#1| |#2|) (-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -3807 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3811 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3812 (|#2| |#2| |#2|)) (-15 -3813 (|#2| |#2| |#2|)) (-15 -3814 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -1984 (|#2| |#2|))) (-560) (-424 |#1|)) (T -434)) -((-1984 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3815 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3814 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3813 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3812 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3810 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3811 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-434 *3 *4)) (-4 *4 (-424 *3)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-424 *4))))) -(-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -3807 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3811 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3812 (|#2| |#2| |#2|)) (-15 -3813 (|#2| |#2| |#2|)) (-15 -3814 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -1984 (|#2| |#2|))) -((-3236 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-643 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-643 |#2|)) 68))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-643 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-643 |#2|))) (IF (|has| |#2| (-27)) (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-560) (-147)) (-424 |#1|)) (T -435)) -((-3236 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) (|:| |pol2| (-1174 *3)) (|:| |prim| (-1174 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-560) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-643 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-435 *4 *5))))) -(-10 -7 (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-643 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-643 |#2|))) (IF (|has| |#2| (-27)) (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1986 (((-1275)) 18)) (-1985 (((-1174 (-410 (-549))) |#2| (-613 |#2|)) 40) (((-410 (-549)) |#2|) 24))) -(((-436 |#1| |#2|) (-10 -7 (-15 -1985 ((-410 (-549)) |#2|)) (-15 -1985 ((-1174 (-410 (-549))) |#2| (-613 |#2|))) (-15 -1986 ((-1275)))) (-13 (-560) (-1041 (-549))) (-424 |#1|)) (T -436)) -((-1986 (*1 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *2 (-1275)) (-5 *1 (-436 *3 *4)) (-4 *4 (-424 *3)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-436 *5 *3)))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-436 *4 *3)) (-4 *3 (-424 *4))))) -(-10 -7 (-15 -1985 ((-410 (-549)) |#2|)) (-15 -1985 ((-1174 (-410 (-549))) |#2| (-613 |#2|))) (-15 -1986 ((-1275)))) -((-4077 (((-112) $) 32)) (-1987 (((-112) $) 34)) (-3680 (((-112) $) 35)) (-1989 (((-112) $) 38)) (-1991 (((-112) $) 33)) (-1990 (((-112) $) 37)) (-4378 (((-865) $) 20) (($ (-1162)) 31) (($ (-1180)) 26) (((-1180) $) 24) (((-1106) $) 23)) (-1988 (((-112) $) 36)) (-3455 (((-112) $ $) 17))) -(((-437) (-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1162))) (-15 -4378 ($ (-1180))) (-15 -4378 ((-1180) $)) (-15 -4378 ((-1106) $)) (-15 -4077 ((-112) $)) (-15 -1991 ((-112) $)) (-15 -3680 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -1988 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -3455 ((-112) $ $))))) (T -437)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-437)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3455 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1162))) (-15 -4378 ($ (-1180))) (-15 -4378 ((-1180) $)) (-15 -4378 ((-1106) $)) (-15 -4077 ((-112) $)) (-15 -1991 ((-112) $)) (-15 -3680 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -1988 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -3455 ((-112) $ $)))) -((-1993 (((-3 (-408 (-1174 (-410 (-549)))) "failed") |#3|) 72)) (-1992 (((-408 |#3|) |#3|) 34)) (-1995 (((-3 (-408 (-1174 (-48))) "failed") |#3|) 46 (|has| |#2| (-1041 (-48))))) (-1994 (((-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112))) |#3|) 37))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1992 ((-408 |#3|) |#3|)) (-15 -1993 ((-3 (-408 (-1174 (-410 (-549)))) "failed") |#3|)) (-15 -1994 ((-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112))) |#3|)) (IF (|has| |#2| (-1041 (-48))) (-15 -1995 ((-3 (-408 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-560) (-1041 (-549))) (-424 |#1|) (-1245 |#2|)) (T -438)) -((-1995 (*1 *2 *3) (|partial| -12 (-4 *5 (-1041 (-48))) (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1993 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 (-1174 (-410 (-549))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1992 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -1992 ((-408 |#3|) |#3|)) (-15 -1993 ((-3 (-408 (-1174 (-410 (-549)))) "failed") |#3|)) (-15 -1994 ((-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112))) |#3|)) (IF (|has| |#2| (-1041 (-48))) (-15 -1995 ((-3 (-408 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-2004 (((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $) 11)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2002 (($) 35)) (-1999 (($) 41)) (-2000 (($) 37)) (-1997 (($) 39)) (-2001 (($) 36)) (-1998 (($) 38)) (-1996 (($) 40)) (-2003 (((-112) $) 8)) (-2752 (((-643 (-949 (-549))) $) 19)) (-3953 (($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-1180)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-949 (-549))) (-112)) 30)) (-4378 (((-865) $) 24) (($ (-437)) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-439) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-437))) (-15 -2004 ((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -2752 ((-643 (-949 (-549))) $)) (-15 -2003 ((-112) $)) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-1180)) (-112))) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-949 (-549))) (-112))) (-15 -2002 ($)) (-15 -2001 ($)) (-15 -2000 ($)) (-15 -1999 ($)) (-15 -1998 ($)) (-15 -1997 ($)) (-15 -1996 ($))))) (T -439)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-439)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-5 *1 (-439)))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-643 (-949 (-549)))) (-5 *1 (-439)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *3 (-643 (-1180))) (-5 *4 (-112)) (-5 *1 (-439)))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-112)) (-5 *1 (-439)))) (-2002 (*1 *1) (-5 *1 (-439))) (-2001 (*1 *1) (-5 *1 (-439))) (-2000 (*1 *1) (-5 *1 (-439))) (-1999 (*1 *1) (-5 *1 (-439))) (-1998 (*1 *1) (-5 *1 (-439))) (-1997 (*1 *1) (-5 *1 (-439))) (-1996 (*1 *1) (-5 *1 (-439)))) -(-13 (-1104) (-10 -8 (-15 -4378 ($ (-437))) (-15 -2004 ((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -2752 ((-643 (-949 (-549))) $)) (-15 -2003 ((-112) $)) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-1180)) (-112))) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-949 (-549))) (-112))) (-15 -2002 ($)) (-15 -2001 ($)) (-15 -2000 ($)) (-15 -1999 ($)) (-15 -1998 ($)) (-15 -1997 ($)) (-15 -1996 ($)))) -((-2968 (((-112) $ $) NIL)) (-1865 (((-1162) $ (-1162)) NIL)) (-1869 (($ $ (-1162)) NIL)) (-1866 (((-1162) $) NIL)) (-2008 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-1870 (($ (-391)) NIL) (($ (-391) (-1162)) NIL)) (-3973 (((-391) $) NIL)) (-3663 (((-1162) $) NIL)) (-1867 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2007 (((-1275) (-1162)) 9)) (-2006 (((-1275) (-1162)) 10)) (-2005 (((-1275)) 11)) (-4378 (((-865) $) NIL)) (-1868 (($ $) 39)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-440) (-13 (-367 (-391) (-1162)) (-10 -7 (-15 -2008 ((-391) (-391) (-391))) (-15 -2008 ((-391) (-391))) (-15 -2007 ((-1275) (-1162))) (-15 -2006 ((-1275) (-1162))) (-15 -2005 ((-1275)))))) (T -440)) -((-2008 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440)))) (-2005 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-440))))) -(-13 (-367 (-391) (-1162)) (-10 -7 (-15 -2008 ((-391) (-391) (-391))) (-15 -2008 ((-391) (-391))) (-15 -2007 ((-1275) (-1162))) (-15 -2006 ((-1275) (-1162))) (-15 -2005 ((-1275))))) -((-2968 (((-112) $ $) NIL)) (-3973 (((-1180) $) 8)) (-3663 (((-1162) $) 17)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 14))) -(((-441 |#1|) (-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) (-1180)) (T -441)) -((-3973 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-441 *3)) (-14 *3 *2)))) -(-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) -((-2968 (((-112) $ $) NIL)) (-3740 (((-1118) $) 7)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 13)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) -(((-442) (-13 (-1104) (-10 -8 (-15 -3740 ((-1118) $))))) (T -442)) -((-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-442))))) -(-13 (-1104) (-10 -8 (-15 -3740 ((-1118) $)))) -((-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-1269 (-701))) 14) (($ (-643 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 11))) -(((-443) (-140)) (T -443)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-701))) (-4 *1 (-443)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-443)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-443))))) -(-13 (-399) (-10 -8 (-15 -4378 ($ (-1269 (-701)))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))))) -(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) -((-3577 (((-3 $ "failed") (-1269 (-315 (-380)))) 21) (((-3 $ "failed") (-1269 (-315 (-549)))) 19) (((-3 $ "failed") (-1269 (-949 (-380)))) 17) (((-3 $ "failed") (-1269 (-949 (-549)))) 15) (((-3 $ "failed") (-1269 (-410 (-949 (-380))))) 13) (((-3 $ "failed") (-1269 (-410 (-949 (-549))))) 11)) (-3576 (($ (-1269 (-315 (-380)))) 22) (($ (-1269 (-315 (-549)))) 20) (($ (-1269 (-949 (-380)))) 18) (($ (-1269 (-949 (-549)))) 16) (($ (-1269 (-410 (-949 (-380))))) 14) (($ (-1269 (-410 (-949 (-549))))) 12)) (-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-643 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 23))) +((-3806 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1276))))) +(-13 (-1220) (-616 (-866)) (-10 -8 (-15 -3806 ((-1276) $)))) +(((-616 (-866)) . T) ((-1220) . T)) +((-3579 (((-3 $ "failed") (-316 (-381))) 21) (((-3 $ "failed") (-316 (-550))) 19) (((-3 $ "failed") (-950 (-381))) 17) (((-3 $ "failed") (-950 (-550))) 15) (((-3 $ "failed") (-411 (-950 (-381)))) 13) (((-3 $ "failed") (-411 (-950 (-550)))) 11)) (-3578 (($ (-316 (-381))) 22) (($ (-316 (-550))) 20) (($ (-950 (-381))) 18) (($ (-950 (-550))) 16) (($ (-411 (-950 (-381)))) 14) (($ (-411 (-950 (-550)))) 12)) (-3806 (((-1276) $) 7)) (-4380 (((-866) $) 8) (($ (-644 (-332))) 25) (($ (-332)) 24) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 23))) +(((-401) (-140)) (T -401)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-401)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-401)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-4 *1 (-401)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-316 (-381))) (-4 *1 (-401)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-381))) (-4 *1 (-401)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-316 (-550))) (-4 *1 (-401)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-550))) (-4 *1 (-401)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-950 (-381))) (-4 *1 (-401)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-381))) (-4 *1 (-401)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-950 (-550))) (-4 *1 (-401)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-550))) (-4 *1 (-401)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-381)))) (-4 *1 (-401)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-411 (-950 (-381)))) (-4 *1 (-401)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-550)))) (-4 *1 (-401)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-411 (-950 (-550)))) (-4 *1 (-401))))) +(-13 (-400) (-10 -8 (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-332))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))) (-15 -3578 ($ (-316 (-381)))) (-15 -3579 ((-3 $ "failed") (-316 (-381)))) (-15 -3578 ($ (-316 (-550)))) (-15 -3579 ((-3 $ "failed") (-316 (-550)))) (-15 -3578 ($ (-950 (-381)))) (-15 -3579 ((-3 $ "failed") (-950 (-381)))) (-15 -3578 ($ (-950 (-550)))) (-15 -3579 ((-3 $ "failed") (-950 (-550)))) (-15 -3578 ($ (-411 (-950 (-381))))) (-15 -3579 ((-3 $ "failed") (-411 (-950 (-381))))) (-15 -3578 ($ (-411 (-950 (-550))))) (-15 -3579 ((-3 $ "failed") (-411 (-950 (-550))))))) +(((-616 (-866)) . T) ((-400) . T) ((-1220) . T)) +((-3806 (((-1276) $) 35)) (-4380 (((-866) $) 97) (($ (-332)) 99) (($ (-644 (-332))) 98) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 96) (($ (-316 (-704))) 52) (($ (-316 (-702))) 72) (($ (-316 (-697))) 85) (($ (-295 (-316 (-704)))) 67) (($ (-295 (-316 (-702)))) 80) (($ (-295 (-316 (-697)))) 93) (($ (-316 (-550))) 104) (($ (-316 (-381))) 117) (($ (-316 (-169 (-381)))) 130) (($ (-295 (-316 (-550)))) 112) (($ (-295 (-316 (-381)))) 125) (($ (-295 (-316 (-169 (-381))))) 138))) +(((-402 |#1| |#2| |#3| |#4|) (-13 (-400) (-10 -8 (-15 -4380 ($ (-332))) (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))) (-15 -4380 ($ (-316 (-704)))) (-15 -4380 ($ (-316 (-702)))) (-15 -4380 ($ (-316 (-697)))) (-15 -4380 ($ (-295 (-316 (-704))))) (-15 -4380 ($ (-295 (-316 (-702))))) (-15 -4380 ($ (-295 (-316 (-697))))) (-15 -4380 ($ (-316 (-550)))) (-15 -4380 ($ (-316 (-381)))) (-15 -4380 ($ (-316 (-169 (-381))))) (-15 -4380 ($ (-295 (-316 (-550))))) (-15 -4380 ($ (-295 (-316 (-381))))) (-15 -4380 ($ (-295 (-316 (-169 (-381)))))))) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 "void")) (-644 (-1181)) (-1185)) (T -402)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1="void"))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-316 (-704))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-316 (-702))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-295 (-316 (-704)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-295 (-316 (-702)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-295 (-316 (-697)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-316 (-550))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-316 (-381))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-381)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-295 (-316 (-550)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-295 (-316 (-381)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-295 (-316 (-169 (-381))))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) (-14 *6 (-1185))))) +(-13 (-400) (-10 -8 (-15 -4380 ($ (-332))) (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))) (-15 -4380 ($ (-316 (-704)))) (-15 -4380 ($ (-316 (-702)))) (-15 -4380 ($ (-316 (-697)))) (-15 -4380 ($ (-295 (-316 (-704))))) (-15 -4380 ($ (-295 (-316 (-702))))) (-15 -4380 ($ (-295 (-316 (-697))))) (-15 -4380 ($ (-316 (-550)))) (-15 -4380 ($ (-316 (-381)))) (-15 -4380 ($ (-316 (-169 (-381))))) (-15 -4380 ($ (-295 (-316 (-550))))) (-15 -4380 ($ (-295 (-316 (-381))))) (-15 -4380 ($ (-295 (-316 (-169 (-381)))))))) +((-2970 (((-112) $ $) NIL)) (-1941 ((|#2| $) 38)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1942 (($ (-411 |#2|)) 95)) (-1940 (((-644 (-2 (|:| -2566 (-774)) (|:| -4206 |#2|) (|:| |num| |#2|))) $) 39)) (-4244 (($ $) 34) (($ $ (-774)) 36)) (-4404 (((-411 |#2|) $) 51)) (-3955 (($ (-644 (-2 (|:| -2566 (-774)) (|:| -4206 |#2|) (|:| |num| |#2|)))) 33)) (-4380 (((-866) $) 132)) (-3664 (((-112) $ $) NIL)) (-3074 (($ $) 35) (($ $ (-774)) 37)) (-3457 (((-112) $ $) NIL)) (-4273 (($ |#2| $) 41))) +(((-403 |#1| |#2|) (-13 (-1105) (-617 (-411 |#2|)) (-10 -8 (-15 -4273 ($ |#2| $)) (-15 -1942 ($ (-411 |#2|))) (-15 -1941 (|#2| $)) (-15 -1940 ((-644 (-2 (|:| -2566 (-774)) (|:| -4206 |#2|) (|:| |num| |#2|))) $)) (-15 -3955 ($ (-644 (-2 (|:| -2566 (-774)) (|:| -4206 |#2|) (|:| |num| |#2|))))) (-15 -4244 ($ $)) (-15 -3074 ($ $)) (-15 -4244 ($ $ (-774))) (-15 -3074 ($ $ (-774))))) (-13 (-366) (-147)) (-1246 |#1|)) (T -403)) +((-4273 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *2)) (-4 *2 (-1246 *3)))) (-1942 (*1 *1 *2) (-12 (-5 *2 (-411 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)))) (-1941 (*1 *2 *1) (-12 (-4 *2 (-1246 *3)) (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-366) (-147))))) (-1940 (*1 *2 *1) (-12 (-4 *3 (-13 (-366) (-147))) (-5 *2 (-644 (-2 (|:| -2566 (-774)) (|:| -4206 *4) (|:| |num| *4)))) (-5 *1 (-403 *3 *4)) (-4 *4 (-1246 *3)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2566 (-774)) (|:| -4206 *4) (|:| |num| *4)))) (-4 *4 (-1246 *3)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)))) (-4244 (*1 *1 *1) (-12 (-4 *2 (-13 (-366) (-147))) (-5 *1 (-403 *2 *3)) (-4 *3 (-1246 *2)))) (-3074 (*1 *1 *1) (-12 (-4 *2 (-13 (-366) (-147))) (-5 *1 (-403 *2 *3)) (-4 *3 (-1246 *2)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)) (-4 *4 (-1246 *3)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)) (-4 *4 (-1246 *3))))) +(-13 (-1105) (-617 (-411 |#2|)) (-10 -8 (-15 -4273 ($ |#2| $)) (-15 -1942 ($ (-411 |#2|))) (-15 -1941 (|#2| $)) (-15 -1940 ((-644 (-2 (|:| -2566 (-774)) (|:| -4206 |#2|) (|:| |num| |#2|))) $)) (-15 -3955 ($ (-644 (-2 (|:| -2566 (-774)) (|:| -4206 |#2|) (|:| |num| |#2|))))) (-15 -4244 ($ $)) (-15 -3074 ($ $)) (-15 -4244 ($ $ (-774))) (-15 -3074 ($ $ (-774))))) +((-2970 (((-112) $ $) 9 (-3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))))) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 16 (|has| |#1| (-890 (-381)))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 15 (|has| |#1| (-890 (-550))))) (-3665 (((-1163) $) 13 (-3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))))) (-3666 (((-1124) $) 12 (-3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))))) (-4380 (((-866) $) 11 (-3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))))) (-3664 (((-112) $ $) 14 (-3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))))) (-3457 (((-112) $ $) 10 (-3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381))))))) +(((-404 |#1|) (-140) (-1220)) (T -404)) +NIL +(-13 (-1220) (-10 -7 (IF (|has| |t#1| (-890 (-550))) (-6 (-890 (-550))) |%noBranch|) (IF (|has| |t#1| (-890 (-381))) (-6 (-890 (-381))) |%noBranch|))) +(((-102) -3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))) ((-616 (-866)) -3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))) ((-890 (-381)) |has| |#1| (-890 (-381))) ((-890 (-550)) |has| |#1| (-890 (-550))) ((-1105) -3962 (|has| |#1| (-890 (-550))) (|has| |#1| (-890 (-381)))) ((-1220) . T)) +((-1943 (($ $) 10) (($ $ (-774)) 12))) +(((-405 |#1|) (-10 -8 (-15 -1943 (|#1| |#1| (-774))) (-15 -1943 (|#1| |#1|))) (-406)) (T -405)) +NIL +(-10 -8 (-15 -1943 (|#1| |#1| (-774))) (-15 -1943 (|#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-1943 (($ $) 87) (($ $ (-774)) 86)) (-4157 (((-112) $) 79)) (-4205 (((-835 (-923)) $) 89)) (-2575 (((-112) $) 35)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-1944 (((-3 (-774) "failed") $ $) 88)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74)) (-3107 (((-3 $ "failed") $) 90)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75))) +(((-406) (-140)) (T -406)) +((-4205 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-835 (-923))))) (-1944 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-406)) (-5 *2 (-774)))) (-1943 (*1 *1 *1) (-4 *1 (-406))) (-1943 (*1 *1 *1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-774))))) +(-13 (-366) (-145) (-10 -8 (-15 -4205 ((-835 (-923)) $)) (-15 -1944 ((-3 (-774) "failed") $ $)) (-15 -1943 ($ $)) (-15 -1943 ($ $ (-774))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-3677 (($ (-550) (-550)) 11) (($ (-550) (-550) (-923)) NIL)) (-3017 (((-923)) 19) (((-923) (-923)) NIL))) +(((-407 |#1|) (-10 -8 (-15 -3017 ((-923) (-923))) (-15 -3017 ((-923))) (-15 -3677 (|#1| (-550) (-550) (-923))) (-15 -3677 (|#1| (-550) (-550)))) (-408)) (T -407)) +((-3017 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-407 *3)) (-4 *3 (-408)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-407 *3)) (-4 *3 (-408))))) +(-10 -8 (-15 -3017 ((-923) (-923))) (-15 -3017 ((-923))) (-15 -3677 (|#1| (-550) (-550) (-923))) (-15 -3677 (|#1| (-550) (-550)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3535 (((-550) $) 97)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-4204 (($ $) 95)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-3440 (($ $) 105)) (-1755 (((-112) $ $) 65)) (-4057 (((-550) $) 122)) (-4158 (($) 18 T CONST)) (-3533 (($ $) 94)) (-3579 (((-3 (-550) #1="failed") $) 110) (((-3 (-411 (-550)) #1#) $) 107)) (-3578 (((-550) $) 111) (((-411 (-550)) $) 108)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4157 (((-112) $) 79)) (-2539 (((-923)) 138) (((-923) (-923)) 135 (|has| $ (-6 -4418)))) (-3608 (((-112) $) 120)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 101)) (-4205 (((-550) $) 144)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 104)) (-3538 (($ $) 100)) (-3609 (((-112) $) 121)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 58)) (-2936 (($ $ $) 119) (($) 132 (-12 (-3748 (|has| $ (-6 -4418))) (-3748 (|has| $ (-6 -4410)))))) (-3262 (($ $ $) 118) (($) 131 (-12 (-3748 (|has| $ (-6 -4418))) (-3748 (|has| $ (-6 -4410)))))) (-2540 (((-550) $) 141)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-1946 (((-923) (-550)) 134 (|has| $ (-6 -4418)))) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3534 (($ $) 96)) (-3536 (($ $) 98)) (-3677 (($ (-550) (-550)) 146) (($ (-550) (-550) (-923)) 145)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2566 (((-550) $) 142)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-3017 (((-923)) 139) (((-923) (-923)) 136 (|has| $ (-6 -4418)))) (-1945 (((-923) (-550)) 133 (|has| $ (-6 -4418)))) (-4404 (((-381) $) 113) (((-226) $) 112) (((-894 (-381)) $) 102)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74) (($ (-550)) 109) (($ (-411 (-550))) 106)) (-3532 (((-774)) 32 T CONST)) (-3537 (($ $) 99)) (-1947 (((-923)) 140) (((-923) (-923)) 137 (|has| $ (-6 -4418)))) (-3664 (((-112) $ $) 9)) (-3099 (((-923)) 143)) (-2242 (((-112) $ $) 45)) (-3809 (($ $) 123)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 116)) (-2969 (((-112) $ $) 115)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 117)) (-3090 (((-112) $ $) 114)) (-4383 (($ $ $) 73)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77) (($ $ (-411 (-550))) 103)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75))) +(((-408) (-140)) (T -408)) +((-3677 (*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-408)))) (-3677 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-923)) (-4 *1 (-408)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-550)))) (-3099 (*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-550)))) (-2540 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-550)))) (-1947 (*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) (-3017 (*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) (-2539 (*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4418)) (-4 *1 (-408)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4418)) (-4 *1 (-408)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4418)) (-4 *1 (-408)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-550)) (|has| *1 (-6 -4418)) (-4 *1 (-408)) (-5 *2 (-923)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-550)) (|has| *1 (-6 -4418)) (-4 *1 (-408)) (-5 *2 (-923)))) (-2936 (*1 *1) (-12 (-4 *1 (-408)) (-3748 (|has| *1 (-6 -4418))) (-3748 (|has| *1 (-6 -4410))))) (-3262 (*1 *1) (-12 (-4 *1 (-408)) (-3748 (|has| *1 (-6 -4418))) (-3748 (|has| *1 (-6 -4410)))))) +(-13 (-1064) (-10 -8 (-6 -4203) (-15 -3677 ($ (-550) (-550))) (-15 -3677 ($ (-550) (-550) (-923))) (-15 -4205 ((-550) $)) (-15 -3099 ((-923))) (-15 -2566 ((-550) $)) (-15 -2540 ((-550) $)) (-15 -1947 ((-923))) (-15 -3017 ((-923))) (-15 -2539 ((-923))) (IF (|has| $ (-6 -4418)) (PROGN (-15 -1947 ((-923) (-923))) (-15 -3017 ((-923) (-923))) (-15 -2539 ((-923) (-923))) (-15 -1946 ((-923) (-550))) (-15 -1945 ((-923) (-550)))) |%noBranch|) (IF (|has| $ (-6 -4410)) |%noBranch| (IF (|has| $ (-6 -4418)) |%noBranch| (PROGN (-15 -2936 ($)) (-15 -3262 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-617 (-226)) . T) ((-617 (-381)) . T) ((-617 (-894 (-381))) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 $) . T) ((-729) . T) ((-794) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-851) . T) ((-853) . T) ((-890 (-381)) . T) ((-925) . T) ((-1006) . T) ((-1024) . T) ((-1064) . T) ((-1042 (-411 (-550))) . T) ((-1042 (-550)) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 60)) (-1948 (($ $) 78)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 191)) (-2243 (($ $) NIL)) (-2241 (((-112) $) 48)) (-1949 ((|#1| $) 16)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-1225)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-1225)))) (-1951 (($ |#1| (-550)) 42)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 148)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 74)) (-3892 (((-3 $ "failed") $) 164)) (-3427 (((-3 (-411 (-550)) "failed") $) 84 (|has| |#1| (-549)))) (-3426 (((-112) $) 80 (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) 91 (|has| |#1| (-549)))) (-1952 (($ |#1| (-550)) 44)) (-4157 (((-112) $) 213 (|has| |#1| (-1225)))) (-2575 (((-112) $) 62)) (-2014 (((-774) $) 51)) (-1953 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-550)) 175)) (-2446 ((|#1| $ (-550)) 174)) (-1954 (((-550) $ (-550)) 173)) (-1957 (($ |#1| (-550)) 41)) (-4392 (($ (-1 |#1| |#1|) $) 183)) (-2011 (($ |#1| (-644 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-550))))) 79)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-1955 (($ |#1| (-550)) 43)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) 192 (|has| |#1| (-456)))) (-1950 (($ |#1| (-550) (-3 #2# #3# #4# #5#)) 40)) (-1956 (((-644 (-2 (|:| -4166 |#1|) (|:| -2566 (-550)))) $) 73)) (-2133 (((-644 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $) 12)) (-4166 (((-409 $) $) NIL (|has| |#1| (-1225)))) (-3891 (((-3 $ "failed") $ $) 176)) (-2566 (((-550) $) 167)) (-4397 ((|#1| $) 75)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) 100 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 106 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) $) NIL (|has| |#1| (-518 (-1181) $))) (($ $ (-644 (-1181)) (-644 $)) 107 (|has| |#1| (-518 (-1181) $))) (($ $ (-644 (-295 $))) 103 (|has| |#1| (-311 $))) (($ $ (-295 $)) NIL (|has| |#1| (-311 $))) (($ $ $ $) NIL (|has| |#1| (-311 $))) (($ $ (-644 $) (-644 $)) NIL (|has| |#1| (-311 $)))) (-4233 (($ $ |#1|) 92 (|has| |#1| (-288 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-288 $ $)))) (-4244 (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-4404 (((-539) $) 39 (|has| |#1| (-617 (-539)))) (((-381) $) 113 (|has| |#1| (-1024))) (((-226) $) 119 (|has| |#1| (-1024)))) (-4380 (((-866) $) 146) (($ (-550)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550)))))) (-3532 (((-774)) 67 T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 53 T CONST)) (-3069 (($) 52 T CONST)) (-3074 (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3457 (((-112) $ $) 159)) (-4271 (($ $) 161) (($ $ $) NIL)) (-4273 (($ $ $) 180)) (** (($ $ (-923)) NIL) (($ $ (-774)) 125)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-409 |#1|) (-13 (-561) (-232 |#1|) (-38 |#1|) (-341 |#1|) (-416 |#1|) (-10 -8 (-15 -4397 (|#1| $)) (-15 -2566 ((-550) $)) (-15 -2011 ($ |#1| (-644 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))))) (-15 -2133 ((-644 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $)) (-15 -1957 ($ |#1| (-550))) (-15 -1956 ((-644 (-2 (|:| -4166 |#1|) (|:| -2566 (-550)))) $)) (-15 -1955 ($ |#1| (-550))) (-15 -1954 ((-550) $ (-550))) (-15 -2446 (|#1| $ (-550))) (-15 -1953 ((-3 #1# #2# #3# #4#) $ (-550))) (-15 -2014 ((-774) $)) (-15 -1952 ($ |#1| (-550))) (-15 -1951 ($ |#1| (-550))) (-15 -1950 ($ |#1| (-550) (-3 #1# #2# #3# #4#))) (-15 -1949 (|#1| $)) (-15 -1948 ($ $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-456)) (-6 (-456)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1225)) (-6 (-1225)) |%noBranch|) (IF (|has| |#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-288 $ $)) (-6 (-288 $ $)) |%noBranch|) (IF (|has| |#1| (-311 $)) (-6 (-311 $)) |%noBranch|) (IF (|has| |#1| (-518 (-1181) $)) (-6 (-518 (-1181) $)) |%noBranch|))) (-561)) (T -409)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-409 *3)))) (-4397 (*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-409 *3)) (-4 *3 (-561)))) (-2011 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-550))))) (-4 *2 (-561)) (-5 *1 (-409 *2)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-550))))) (-5 *1 (-409 *3)) (-4 *3 (-561)))) (-1957 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -4166 *3) (|:| -2566 (-550))))) (-5 *1 (-409 *3)) (-4 *3 (-561)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1954 (*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-409 *3)) (-4 *3 (-561)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1953 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-409 *4)) (-4 *4 (-561)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-409 *3)) (-4 *3 (-561)))) (-1952 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1951 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1950 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1949 (*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-1948 (*1 *1 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-561)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-409 *3)) (-4 *3 (-549)) (-4 *3 (-561)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-409 *3)) (-4 *3 (-549)) (-4 *3 (-561)))) (-3427 (*1 *2 *1) (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-409 *3)) (-4 *3 (-549)) (-4 *3 (-561))))) +(-13 (-561) (-232 |#1|) (-38 |#1|) (-341 |#1|) (-416 |#1|) (-10 -8 (-15 -4397 (|#1| $)) (-15 -2566 ((-550) $)) (-15 -2011 ($ |#1| (-644 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))))) (-15 -2133 ((-644 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-550)))) $)) (-15 -1957 ($ |#1| (-550))) (-15 -1956 ((-644 (-2 (|:| -4166 |#1|) (|:| -2566 (-550)))) $)) (-15 -1955 ($ |#1| (-550))) (-15 -1954 ((-550) $ (-550))) (-15 -2446 (|#1| $ (-550))) (-15 -1953 ((-3 #1# #2# #3# #4#) $ (-550))) (-15 -2014 ((-774) $)) (-15 -1952 ($ |#1| (-550))) (-15 -1951 ($ |#1| (-550))) (-15 -1950 ($ |#1| (-550) (-3 #1# #2# #3# #4#))) (-15 -1949 (|#1| $)) (-15 -1948 ($ $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-456)) (-6 (-456)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1225)) (-6 (-1225)) |%noBranch|) (IF (|has| |#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-288 $ $)) (-6 (-288 $ $)) |%noBranch|) (IF (|has| |#1| (-311 $)) (-6 (-311 $)) |%noBranch|) (IF (|has| |#1| (-518 (-1181) $)) (-6 (-518 (-1181) $)) |%noBranch|))) +((-4392 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 20))) +(((-410 |#1| |#2|) (-10 -7 (-15 -4392 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-561) (-561)) (T -410)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-409 *6)) (-5 *1 (-410 *5 *6))))) +(-10 -7 (-15 -4392 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 13)) (-3535 ((|#1| $) 21 (|has| |#1| (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| |#1| (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) 17) (((-3 (-1181) #2#) $) NIL (|has| |#1| (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) 72 (|has| |#1| (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550))))) (-3578 ((|#1| $) 15) (((-1181) $) NIL (|has| |#1| (-1042 (-1181)))) (((-411 (-550)) $) 69 (|has| |#1| (-1042 (-550)))) (((-550) $) NIL (|has| |#1| (-1042 (-550))))) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) 51)) (-3397 (($) NIL (|has| |#1| (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| |#1| (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| |#1| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| |#1| (-890 (-381))))) (-2575 (((-112) $) 57)) (-3399 (($ $) NIL)) (-3401 ((|#1| $) 73)) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-1155)))) (-3609 (((-112) $) NIL (|has| |#1| (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| |#1| (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 100)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| |#1| (-309)))) (-3536 ((|#1| $) 28 (|has| |#1| (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 148 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 141 (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) NIL (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-518 (-1181) |#1|)))) (-1754 (((-774) $) NIL)) (-4233 (($ $ |#1|) NIL (|has| |#1| (-288 |#1| |#1|)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3398 (($ $) NIL)) (-3400 ((|#1| $) 75)) (-4404 (((-894 (-550)) $) NIL (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| |#1| (-617 (-894 (-381))))) (((-539) $) NIL (|has| |#1| (-617 (-539)))) (((-381) $) NIL (|has| |#1| (-1024))) (((-226) $) NIL (|has| |#1| (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) 10) (($ (-1181)) NIL (|has| |#1| (-1042 (-1181))))) (-3107 (((-3 $ #1#) $) 102 (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) 103 T CONST)) (-3537 ((|#1| $) 26 (|has| |#1| (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-823)))) (-3512 (($) 22 T CONST)) (-3069 (($) 8 T CONST)) (-2902 (((-1163) $) 44 (-12 (|has| |#1| (-549)) (|has| |#1| (-824)))) (((-1163) $ (-112)) 45 (-12 (|has| |#1| (-549)) (|has| |#1| (-824)))) (((-1276) (-826) $) 46 (-12 (|has| |#1| (-549)) (|has| |#1| (-824)))) (((-1276) (-826) $ (-112)) 47 (-12 (|has| |#1| (-549)) (|has| |#1| (-824))))) (-3074 (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) 66)) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) 24 (|has| |#1| (-853)))) (-4383 (($ $ $) 136) (($ |#1| |#1|) 53)) (-4271 (($ $) 25) (($ $ $) 56)) (-4273 (($ $ $) 54)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 135)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 61) (($ $ $) 58) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-411 |#1|) (-13 (-995 |#1|) (-10 -7 (IF (|has| |#1| (-549)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (IF (|has| |#1| (-456)) (IF (|has| |#1| (-6 -4425)) (-6 -4414) |%noBranch|) |%noBranch|) |%noBranch|))) (-561)) (T -411)) +NIL +(-13 (-995 |#1|) (-10 -7 (IF (|has| |#1| (-549)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (IF (|has| |#1| (-456)) (IF (|has| |#1| (-6 -4425)) (-6 -4414) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4392 (((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)) 13))) +(((-412 |#1| |#2|) (-10 -7 (-15 -4392 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) (-561) (-561)) (T -412)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-411 *6)) (-5 *1 (-412 *5 *6))))) +(-10 -7 (-15 -4392 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) +((-1959 (((-692 |#2|) (-1270 $)) NIL) (((-692 |#2|)) 18)) (-1969 (($ (-1270 |#2|) (-1270 $)) NIL) (($ (-1270 |#2|)) 24)) (-1958 (((-692 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) $) 40)) (-2194 ((|#3| $) 73)) (-4191 ((|#2| (-1270 $)) NIL) ((|#2|) 20)) (-3646 (((-1270 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) (-1270 $) (-1270 $)) NIL) (((-1270 |#2|) $) 22) (((-692 |#2|) (-1270 $)) 38)) (-4404 (((-1270 |#2|) $) 11) (($ (-1270 |#2|)) 13)) (-2772 ((|#3| $) 55))) +(((-413 |#1| |#2| |#3|) (-10 -8 (-15 -1958 ((-692 |#2|) |#1|)) (-15 -4191 (|#2|)) (-15 -1959 ((-692 |#2|))) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -1969 (|#1| (-1270 |#2|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -2194 (|#3| |#1|)) (-15 -2772 (|#3| |#1|)) (-15 -1959 ((-692 |#2|) (-1270 |#1|))) (-15 -4191 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1958 ((-692 |#2|) |#1| (-1270 |#1|)))) (-414 |#2| |#3|) (-173) (-1246 |#2|)) (T -413)) +((-1959 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) (-4191 (*1 *2) (-12 (-4 *4 (-1246 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) (-4 *3 (-414 *2 *4))))) +(-10 -8 (-15 -1958 ((-692 |#2|) |#1|)) (-15 -4191 (|#2|)) (-15 -1959 ((-692 |#2|))) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -1969 (|#1| (-1270 |#2|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -2194 (|#3| |#1|)) (-15 -2772 (|#3| |#1|)) (-15 -1959 ((-692 |#2|) (-1270 |#1|))) (-15 -4191 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1958 ((-692 |#2|) |#1| (-1270 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1959 (((-692 |#1|) (-1270 $)) 53) (((-692 |#1|)) 68)) (-3756 ((|#1| $) 59)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-1969 (($ (-1270 |#1|) (-1270 $)) 55) (($ (-1270 |#1|)) 71)) (-1958 (((-692 |#1|) $ (-1270 $)) 60) (((-692 |#1|) $) 66)) (-3892 (((-3 $ "failed") $) 37)) (-3515 (((-923)) 61)) (-2575 (((-112) $) 35)) (-3538 ((|#1| $) 58)) (-2194 ((|#2| $) 51 (|has| |#1| (-366)))) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4191 ((|#1| (-1270 $)) 54) ((|#1|) 67)) (-3646 (((-1270 |#1|) $ (-1270 $)) 57) (((-692 |#1|) (-1270 $) (-1270 $)) 56) (((-1270 |#1|) $) 73) (((-692 |#1|) (-1270 $)) 72)) (-4404 (((-1270 |#1|) $) 70) (($ (-1270 |#1|)) 69)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44)) (-3107 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2772 ((|#2| $) 52)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2192 (((-1270 $)) 74)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-414 |#1| |#2|) (-140) (-173) (-1246 |t#1|)) (T -414)) +((-2192 (*1 *2) (-12 (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-1270 *1)) (-4 *1 (-414 *3 *4)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-1270 *3)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1246 *3)))) (-4404 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-1270 *3)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1246 *3)))) (-1959 (*1 *2) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-692 *3)))) (-4191 (*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1246 *2)) (-4 *2 (-173)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-692 *3))))) +(-13 (-373 |t#1| |t#2|) (-10 -8 (-15 -2192 ((-1270 $))) (-15 -3646 ((-1270 |t#1|) $)) (-15 -3646 ((-692 |t#1|) (-1270 $))) (-15 -1969 ($ (-1270 |t#1|))) (-15 -4404 ((-1270 |t#1|) $)) (-15 -4404 ($ (-1270 |t#1|))) (-15 -1959 ((-692 |t#1|))) (-15 -4191 (|t#1|)) (-15 -1958 ((-692 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-373 |#1| |#2|) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-729) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-3579 (((-3 |#2| #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) 27) (((-3 (-550) #1#) $) 19)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) 24) (((-550) $) 14)) (-4380 (($ |#2|) NIL) (($ (-411 (-550))) 22) (($ (-550)) 11))) +(((-415 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| (-550))) (-15 -3579 ((-3 (-550) #1="failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|))) (-416 |#2|) (-1220)) (T -415)) +NIL +(-10 -8 (-15 -4380 (|#1| (-550))) (-15 -3579 ((-3 (-550) #1="failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|))) +((-3579 (((-3 |#1| #1="failed") $) 9) (((-3 (-411 (-550)) #1#) $) 16 (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #1#) $) 13 (|has| |#1| (-1042 (-550))))) (-3578 ((|#1| $) 8) (((-411 (-550)) $) 17 (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) 14 (|has| |#1| (-1042 (-550))))) (-4380 (($ |#1|) 6) (($ (-411 (-550))) 15 (|has| |#1| (-1042 (-411 (-550))))) (($ (-550)) 12 (|has| |#1| (-1042 (-550)))))) +(((-416 |#1|) (-140) (-1220)) (T -416)) +NIL +(-13 (-1042 |t#1|) (-10 -7 (IF (|has| |t#1| (-1042 (-550))) (-6 (-1042 (-550))) |%noBranch|) (IF (|has| |t#1| (-1042 (-411 (-550)))) (-6 (-1042 (-411 (-550)))) |%noBranch|))) +(((-619 #1=(-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-619 #2=(-550)) |has| |#1| (-1042 (-550))) ((-619 |#1|) . T) ((-1042 #1#) |has| |#1| (-1042 (-411 (-550)))) ((-1042 #2#) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T)) +((-2970 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-1960 ((|#4| (-774) (-1270 |#4|)) 58)) (-2575 (((-112) $) NIL)) (-3401 (((-1270 |#4|) $) 15)) (-3538 ((|#2| $) 53)) (-1961 (($ $) 161)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 106)) (-2150 (($ (-1270 |#4|)) 105)) (-3666 (((-1124) $) NIL)) (-3400 ((|#1| $) 16)) (-3412 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-4380 (((-866) $) 151)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 |#4|) $) 144)) (-3069 (($) 11 T CONST)) (-3457 (((-112) $ $) 39)) (-4383 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 137)) (* (($ $ $) 133))) +(((-417 |#1| |#2| |#3| |#4|) (-13 (-477) (-10 -8 (-15 -2150 ($ (-1270 |#4|))) (-15 -2192 ((-1270 |#4|) $)) (-15 -3538 (|#2| $)) (-15 -3401 ((-1270 |#4|) $)) (-15 -3400 (|#1| $)) (-15 -1961 ($ $)) (-15 -1960 (|#4| (-774) (-1270 |#4|))))) (-309) (-995 |#1|) (-1246 |#2|) (-13 (-414 |#2| |#3|) (-1042 |#2|))) (T -417)) +((-2150 (*1 *1 *2) (-12 (-5 *2 (-1270 *6)) (-4 *6 (-13 (-414 *4 *5) (-1042 *4))) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-4 *3 (-309)) (-5 *1 (-417 *3 *4 *5 *6)))) (-2192 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *6)) (-5 *1 (-417 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1042 *4))))) (-3538 (*1 *2 *1) (-12 (-4 *4 (-1246 *2)) (-4 *2 (-995 *3)) (-5 *1 (-417 *3 *2 *4 *5)) (-4 *3 (-309)) (-4 *5 (-13 (-414 *2 *4) (-1042 *2))))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *6)) (-5 *1 (-417 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1042 *4))))) (-3400 (*1 *2 *1) (-12 (-4 *3 (-995 *2)) (-4 *4 (-1246 *3)) (-4 *2 (-309)) (-5 *1 (-417 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1042 *3))))) (-1961 (*1 *1 *1) (-12 (-4 *2 (-309)) (-4 *3 (-995 *2)) (-4 *4 (-1246 *3)) (-5 *1 (-417 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1042 *3))))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1270 *2)) (-4 *5 (-309)) (-4 *6 (-995 *5)) (-4 *2 (-13 (-414 *6 *7) (-1042 *6))) (-5 *1 (-417 *5 *6 *7 *2)) (-4 *7 (-1246 *6))))) +(-13 (-477) (-10 -8 (-15 -2150 ($ (-1270 |#4|))) (-15 -2192 ((-1270 |#4|) $)) (-15 -3538 (|#2| $)) (-15 -3401 ((-1270 |#4|) $)) (-15 -3400 (|#1| $)) (-15 -1961 ($ $)) (-15 -1960 (|#4| (-774) (-1270 |#4|))))) +((-4392 (((-417 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-417 |#1| |#2| |#3| |#4|)) 35))) +(((-418 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4392 ((-417 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-417 |#1| |#2| |#3| |#4|)))) (-309) (-995 |#1|) (-1246 |#2|) (-13 (-414 |#2| |#3|) (-1042 |#2|)) (-309) (-995 |#5|) (-1246 |#6|) (-13 (-414 |#6| |#7|) (-1042 |#6|))) (T -418)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-417 *5 *6 *7 *8)) (-4 *5 (-309)) (-4 *6 (-995 *5)) (-4 *7 (-1246 *6)) (-4 *8 (-13 (-414 *6 *7) (-1042 *6))) (-4 *9 (-309)) (-4 *10 (-995 *9)) (-4 *11 (-1246 *10)) (-5 *2 (-417 *9 *10 *11 *12)) (-5 *1 (-418 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-414 *10 *11) (-1042 *10)))))) +(-10 -7 (-15 -4392 ((-417 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-417 |#1| |#2| |#3| |#4|)))) +((-2970 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-3538 ((|#2| $) 71)) (-1962 (($ (-1270 |#4|)) 27) (($ (-417 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1042 |#2|)))) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 37)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 |#4|) $) 28)) (-3069 (($) 25 T CONST)) (-3457 (((-112) $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ $ $) 82))) +(((-419 |#1| |#2| |#3| |#4| |#5|) (-13 (-729) (-10 -8 (-15 -2192 ((-1270 |#4|) $)) (-15 -3538 (|#2| $)) (-15 -1962 ($ (-1270 |#4|))) (IF (|has| |#4| (-1042 |#2|)) (-15 -1962 ($ (-417 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-309) (-995 |#1|) (-1246 |#2|) (-414 |#2| |#3|) (-1270 |#4|)) (T -419)) +((-2192 (*1 *2 *1) (-12 (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-4 *6 (-414 *4 *5)) (-14 *7 *2))) (-3538 (*1 *2 *1) (-12 (-4 *4 (-1246 *2)) (-4 *2 (-995 *3)) (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-309)) (-4 *5 (-414 *2 *4)) (-14 *6 (-1270 *5)))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-1270 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-4 *3 (-309)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-417 *3 *4 *5 *6)) (-4 *6 (-1042 *4)) (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-4 *6 (-414 *4 *5)) (-14 *7 (-1270 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))))) +(-13 (-729) (-10 -8 (-15 -2192 ((-1270 |#4|) $)) (-15 -3538 (|#2| $)) (-15 -1962 ($ (-1270 |#4|))) (IF (|has| |#4| (-1042 |#2|)) (-15 -1962 ($ (-417 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4392 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#3| (-1 |#4| |#2|) |#1|))) (-422 |#2|) (-173) (-422 |#4|) (-173)) (T -420)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5))))) +(-10 -7 (-15 -4392 (|#3| (-1 |#4| |#2|) |#1|))) +((-1949 (((-3 $ #1="failed")) 99)) (-3645 (((-1270 (-692 |#2|)) (-1270 $)) NIL) (((-1270 (-692 |#2|))) 104)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) 97)) (-1873 (((-3 $ #1#)) 96)) (-1965 (((-692 |#2|) (-1270 $)) NIL) (((-692 |#2|)) 115)) (-1963 (((-692 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) $) 123)) (-2080 (((-1175 (-950 |#2|))) 65)) (-1967 ((|#2| (-1270 $)) NIL) ((|#2|) 119)) (-1969 (($ (-1270 |#2|) (-1270 $)) NIL) (($ (-1270 |#2|)) 125)) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) 95)) (-1874 (((-3 $ #1#)) 87)) (-1966 (((-692 |#2|) (-1270 $)) NIL) (((-692 |#2|)) 113)) (-1964 (((-692 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) $) 121)) (-2084 (((-1175 (-950 |#2|))) 64)) (-1968 ((|#2| (-1270 $)) NIL) ((|#2|) 117)) (-3646 (((-1270 |#2|) $ (-1270 $)) NIL) (((-692 |#2|) (-1270 $) (-1270 $)) NIL) (((-1270 |#2|) $) 124) (((-692 |#2|) (-1270 $)) 133)) (-4404 (((-1270 |#2|) $) 109) (($ (-1270 |#2|)) 111)) (-2072 (((-644 (-950 |#2|)) (-1270 $)) NIL) (((-644 (-950 |#2|))) 107)) (-2950 (($ (-692 |#2|) $) 103))) +(((-421 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| (-692 |#2|) |#1|)) (-15 -2080 ((-1175 (-950 |#2|)))) (-15 -2084 ((-1175 (-950 |#2|)))) (-15 -1963 ((-692 |#2|) |#1|)) (-15 -1964 ((-692 |#2|) |#1|)) (-15 -1965 ((-692 |#2|))) (-15 -1966 ((-692 |#2|))) (-15 -1967 (|#2|)) (-15 -1968 (|#2|)) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -1969 (|#1| (-1270 |#2|))) (-15 -2072 ((-644 (-950 |#2|)))) (-15 -3645 ((-1270 (-692 |#2|)))) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -1949 ((-3 |#1| #1="failed"))) (-15 -1873 ((-3 |#1| #1#))) (-15 -1874 ((-3 |#1| #1#))) (-15 -2086 ((-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) #1#))) (-15 -2087 ((-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) #1#))) (-15 -1965 ((-692 |#2|) (-1270 |#1|))) (-15 -1966 ((-692 |#2|) (-1270 |#1|))) (-15 -1967 (|#2| (-1270 |#1|))) (-15 -1968 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1963 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -1964 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -3645 ((-1270 (-692 |#2|)) (-1270 |#1|))) (-15 -2072 ((-644 (-950 |#2|)) (-1270 |#1|)))) (-422 |#2|) (-173)) (T -421)) +((-3645 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1270 (-692 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2072 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-644 (-950 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1968 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-1967 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-1966 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-692 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1965 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-692 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2084 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1175 (-950 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2080 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1175 (-950 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4))))) +(-10 -8 (-15 -2950 (|#1| (-692 |#2|) |#1|)) (-15 -2080 ((-1175 (-950 |#2|)))) (-15 -2084 ((-1175 (-950 |#2|)))) (-15 -1963 ((-692 |#2|) |#1|)) (-15 -1964 ((-692 |#2|) |#1|)) (-15 -1965 ((-692 |#2|))) (-15 -1966 ((-692 |#2|))) (-15 -1967 (|#2|)) (-15 -1968 (|#2|)) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -1969 (|#1| (-1270 |#2|))) (-15 -2072 ((-644 (-950 |#2|)))) (-15 -3645 ((-1270 (-692 |#2|)))) (-15 -3646 ((-692 |#2|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1|)) (-15 -1949 ((-3 |#1| #1="failed"))) (-15 -1873 ((-3 |#1| #1#))) (-15 -1874 ((-3 |#1| #1#))) (-15 -2086 ((-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) #1#))) (-15 -2087 ((-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) #1#))) (-15 -1965 ((-692 |#2|) (-1270 |#1|))) (-15 -1966 ((-692 |#2|) (-1270 |#1|))) (-15 -1967 (|#2| (-1270 |#1|))) (-15 -1968 (|#2| (-1270 |#1|))) (-15 -1969 (|#1| (-1270 |#2|) (-1270 |#1|))) (-15 -3646 ((-692 |#2|) (-1270 |#1|) (-1270 |#1|))) (-15 -3646 ((-1270 |#2|) |#1| (-1270 |#1|))) (-15 -1963 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -1964 ((-692 |#2|) |#1| (-1270 |#1|))) (-15 -3645 ((-1270 (-692 |#2|)) (-1270 |#1|))) (-15 -2072 ((-644 (-950 |#2|)) (-1270 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1949 (((-3 $ #1="failed")) 42 (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) 20)) (-3645 (((-1270 (-692 |#1|)) (-1270 $)) 83) (((-1270 (-692 |#1|))) 105)) (-1899 (((-1270 $)) 86)) (-4158 (($) 18 T CONST)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) 45 (|has| |#1| (-561)))) (-1873 (((-3 $ #1#)) 43 (|has| |#1| (-561)))) (-1965 (((-692 |#1|) (-1270 $)) 70) (((-692 |#1|)) 97)) (-1897 ((|#1| $) 79)) (-1963 (((-692 |#1|) $ (-1270 $)) 81) (((-692 |#1|) $) 95)) (-2569 (((-3 $ #1#) $) 50 (|has| |#1| (-561)))) (-2080 (((-1175 (-950 |#1|))) 93 (|has| |#1| (-366)))) (-2572 (($ $ (-923)) 31)) (-1895 ((|#1| $) 77)) (-1875 (((-1175 |#1|) $) 47 (|has| |#1| (-561)))) (-1967 ((|#1| (-1270 $)) 72) ((|#1|) 99)) (-1893 (((-1175 |#1|) $) 68)) (-1887 (((-112)) 62)) (-1969 (($ (-1270 |#1|) (-1270 $)) 74) (($ (-1270 |#1|)) 103)) (-3892 (((-3 $ #1#) $) 52 (|has| |#1| (-561)))) (-3515 (((-923)) 85)) (-1884 (((-112)) 59)) (-2596 (($ $ (-923)) 38)) (-1880 (((-112)) 55)) (-1878 (((-112)) 53)) (-1882 (((-112)) 57)) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) 46 (|has| |#1| (-561)))) (-1874 (((-3 $ #1#)) 44 (|has| |#1| (-561)))) (-1966 (((-692 |#1|) (-1270 $)) 71) (((-692 |#1|)) 98)) (-1898 ((|#1| $) 80)) (-1964 (((-692 |#1|) $ (-1270 $)) 82) (((-692 |#1|) $) 96)) (-2570 (((-3 $ #1#) $) 51 (|has| |#1| (-561)))) (-2084 (((-1175 (-950 |#1|))) 94 (|has| |#1| (-366)))) (-2571 (($ $ (-923)) 32)) (-1896 ((|#1| $) 78)) (-1876 (((-1175 |#1|) $) 48 (|has| |#1| (-561)))) (-1968 ((|#1| (-1270 $)) 73) ((|#1|) 100)) (-1894 (((-1175 |#1|) $) 69)) (-1888 (((-112)) 63)) (-3665 (((-1163) $) 10)) (-1879 (((-112)) 54)) (-1881 (((-112)) 56)) (-1883 (((-112)) 58)) (-3666 (((-1124) $) 11)) (-1886 (((-112)) 61)) (-4233 ((|#1| $ (-550)) 106)) (-3646 (((-1270 |#1|) $ (-1270 $)) 76) (((-692 |#1|) (-1270 $) (-1270 $)) 75) (((-1270 |#1|) $) 108) (((-692 |#1|) (-1270 $)) 107)) (-4404 (((-1270 |#1|) $) 102) (($ (-1270 |#1|)) 101)) (-2072 (((-644 (-950 |#1|)) (-1270 $)) 84) (((-644 (-950 |#1|))) 104)) (-2758 (($ $ $) 28)) (-1892 (((-112)) 67)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2192 (((-1270 $)) 109)) (-1877 (((-644 (-1270 |#1|))) 49 (|has| |#1| (-561)))) (-2759 (($ $ $ $) 29)) (-1890 (((-112)) 65)) (-2950 (($ (-692 |#1|) $) 92)) (-2757 (($ $ $) 27)) (-1891 (((-112)) 66)) (-1889 (((-112)) 64)) (-1885 (((-112)) 60)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-422 |#1|) (-140) (-173)) (T -422)) +((-2192 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1270 *1)) (-4 *1 (-422 *3)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1270 *3)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-3645 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1270 (-692 *3))))) (-2072 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-644 (-950 *3))))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-4404 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1270 *3)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-1968 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-1967 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-1966 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3)))) (-1965 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3)))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3)))) (-2084 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-366)) (-5 *2 (-1175 (-950 *3))))) (-2080 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-366)) (-5 *2 (-1175 (-950 *3))))) (-2950 (*1 *1 *2 *1) (-12 (-5 *2 (-692 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173))))) +(-13 (-370 |t#1|) (-10 -8 (-15 -2192 ((-1270 $))) (-15 -3646 ((-1270 |t#1|) $)) (-15 -3646 ((-692 |t#1|) (-1270 $))) (-15 -4233 (|t#1| $ (-550))) (-15 -3645 ((-1270 (-692 |t#1|)))) (-15 -2072 ((-644 (-950 |t#1|)))) (-15 -1969 ($ (-1270 |t#1|))) (-15 -4404 ((-1270 |t#1|) $)) (-15 -4404 ($ (-1270 |t#1|))) (-15 -1968 (|t#1|)) (-15 -1967 (|t#1|)) (-15 -1966 ((-692 |t#1|))) (-15 -1965 ((-692 |t#1|))) (-15 -1964 ((-692 |t#1|) $)) (-15 -1963 ((-692 |t#1|) $)) (IF (|has| |t#1| (-366)) (PROGN (-15 -2084 ((-1175 (-950 |t#1|)))) (-15 -2080 ((-1175 (-950 |t#1|))))) |%noBranch|) (-15 -2950 ($ (-692 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-866)) . T) ((-370 |#1|) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-723) . T) ((-747 |#1|) . T) ((-764) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-3540 (((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|)) 28)) (-1970 (((-409 |#1|) (-409 |#1|) (-409 |#1|)) 17))) +(((-423 |#1|) (-10 -7 (-15 -3540 ((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|))) (-15 -1970 ((-409 |#1|) (-409 |#1|) (-409 |#1|)))) (-561)) (T -423)) +((-1970 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3)))) (-3540 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-409 *4) *4)) (-4 *4 (-561)) (-5 *2 (-409 *4)) (-5 *1 (-423 *4))))) +(-10 -7 (-15 -3540 ((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|))) (-15 -1970 ((-409 |#1|) (-409 |#1|) (-409 |#1|)))) +((-3487 (((-644 (-1181)) $) 81)) (-3489 (((-411 (-1175 $)) $ (-614 $)) 314)) (-1714 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-614 $)) (-644 $)) 278)) (-3579 (((-3 (-614 $) #1="failed") $) NIL) (((-3 (-1181) #1#) $) 84) (((-3 (-550) #1#) $) NIL) (((-3 |#2| #1#) $) 274) (((-3 (-411 (-950 |#2|)) #1#) $) 364) (((-3 (-950 |#2|) #1#) $) 276) (((-3 (-411 (-550)) #1#) $) NIL)) (-3578 (((-614 $) $) NIL) (((-1181) $) 28) (((-550) $) NIL) ((|#2| $) 272) (((-411 (-950 |#2|)) $) 346) (((-950 |#2|) $) 273) (((-411 (-550)) $) NIL)) (-3450 (((-113) (-113)) 47)) (-3399 (($ $) 99)) (-1712 (((-3 (-614 $) "failed") $) 269)) (-1711 (((-644 (-614 $)) $) 270)) (-3228 (((-3 (-644 $) "failed") $) 288)) (-3230 (((-3 (-2 (|:| |val| $) (|:| -2566 (-550))) "failed") $) 295)) (-3227 (((-3 (-644 $) "failed") $) 286)) (-1971 (((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 $))) "failed") $) 305)) (-3229 (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $) 292) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $ (-113)) 256) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $ (-1181)) 258)) (-1974 (((-112) $) 17)) (-1973 ((|#2| $) 19)) (-4201 (($ $ (-614 $) $) NIL) (($ $ (-644 (-614 $)) (-644 $)) 277) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) 109) (($ $ (-1181) (-1 $ (-644 $))) NIL) (($ $ (-1181) (-1 $ $)) NIL) (($ $ (-644 (-113)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-113) (-1 $ (-644 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1181)) 62) (($ $ (-644 (-1181))) 281) (($ $) 282) (($ $ (-113) $ (-1181)) 65) (($ $ (-644 (-113)) (-644 $) (-1181)) 72) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ $))) 120) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ (-644 $)))) 283) (($ $ (-1181) (-774) (-1 $ (-644 $))) 105) (($ $ (-1181) (-774) (-1 $ $)) 104)) (-4233 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-644 $)) 119)) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) 279)) (-3398 (($ $) 325)) (-4404 (((-894 (-550)) $) 298) (((-894 (-381)) $) 302) (($ (-409 $)) 360) (((-539) $) NIL)) (-4380 (((-866) $) 280) (($ (-614 $)) 93) (($ (-1181)) 24) (($ |#2|) NIL) (($ (-1129 |#2| (-614 $))) NIL) (($ (-411 |#2|)) 330) (($ (-950 (-411 |#2|))) 369) (($ (-411 (-950 (-411 |#2|)))) 342) (($ (-411 (-950 |#2|))) 336) (($ $) NIL) (($ (-950 |#2|)) 218) (($ (-411 (-550))) 374) (($ (-550)) NIL)) (-3532 (((-774)) 88)) (-2405 (((-112) (-113)) 42)) (-1972 (($ (-1181) $) 31) (($ (-1181) $ $) 32) (($ (-1181) $ $ $) 33) (($ (-1181) $ $ $ $) 34) (($ (-1181) (-644 $)) 39)) (* (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-550) $) NIL) (($ (-774) $) NIL) (($ (-923) $) NIL))) +(((-424 |#1| |#2|) (-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4380 (|#1| (-550))) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3579 ((-3 (-411 (-550)) #1="failed") |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4380 (|#1| (-950 |#2|))) (-15 -3579 ((-3 (-950 |#2|) #1#) |#1|)) (-15 -3578 ((-950 |#2|) |#1|)) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4380 (|#1| |#1|)) (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4380 (|#1| (-411 (-950 |#2|)))) (-15 -3579 ((-3 (-411 (-950 |#2|)) #1#) |#1|)) (-15 -3578 ((-411 (-950 |#2|)) |#1|)) (-15 -3489 ((-411 (-1175 |#1|)) |#1| (-614 |#1|))) (-15 -4380 (|#1| (-411 (-950 (-411 |#2|))))) (-15 -4380 (|#1| (-950 (-411 |#2|)))) (-15 -4380 (|#1| (-411 |#2|))) (-15 -3398 (|#1| |#1|)) (-15 -4404 (|#1| (-409 |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-774) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-774) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-774)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-774)) (-644 (-1 |#1| |#1|)))) (-15 -3230 ((-3 (-2 (|:| |val| |#1|) (|:| -2566 (-550))) "failed") |#1|)) (-15 -3229 ((-3 (-2 (|:| |var| (-614 |#1|)) (|:| -2566 (-550))) "failed") |#1| (-1181))) (-15 -3229 ((-3 (-2 (|:| |var| (-614 |#1|)) (|:| -2566 (-550))) "failed") |#1| (-113))) (-15 -3399 (|#1| |#1|)) (-15 -4380 (|#1| (-1129 |#2| (-614 |#1|)))) (-15 -1971 ((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 |#1|))) "failed") |#1|)) (-15 -3227 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3229 ((-3 (-2 (|:| |var| (-614 |#1|)) (|:| -2566 (-550))) "failed") |#1|)) (-15 -3228 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 |#1|) (-1181))) (-15 -4201 (|#1| |#1| (-113) |#1| (-1181))) (-15 -4201 (|#1| |#1|)) (-15 -4201 (|#1| |#1| (-644 (-1181)))) (-15 -4201 (|#1| |#1| (-1181))) (-15 -1972 (|#1| (-1181) (-644 |#1|))) (-15 -1972 (|#1| (-1181) |#1| |#1| |#1| |#1|)) (-15 -1972 (|#1| (-1181) |#1| |#1| |#1|)) (-15 -1972 (|#1| (-1181) |#1| |#1|)) (-15 -1972 (|#1| (-1181) |#1|)) (-15 -3487 ((-644 (-1181)) |#1|)) (-15 -1973 (|#2| |#1|)) (-15 -1974 ((-112) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4380 (|#1| (-1181))) (-15 -3579 ((-3 (-1181) #1#) |#1|)) (-15 -3578 ((-1181) |#1|)) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| |#1|)))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| |#1|)))) (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -1711 ((-644 (-614 |#1|)) |#1|)) (-15 -1712 ((-3 (-614 |#1|) "failed") |#1|)) (-15 -1714 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -1714 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1714 (|#1| |#1| (-295 |#1|))) (-15 -4233 (|#1| (-113) (-644 |#1|))) (-15 -4233 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -4201 (|#1| |#1| (-614 |#1|) |#1|)) (-15 -4380 (|#1| (-614 |#1|))) (-15 -3579 ((-3 (-614 |#1|) #1#) |#1|)) (-15 -3578 ((-614 |#1|) |#1|)) (-15 -4380 ((-866) |#1|))) (-425 |#2|) (-1105)) (T -424)) +((-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-1105)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) (-3532 (*1 *2) (-12 (-4 *4 (-1105)) (-5 *2 (-774)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) +(-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4380 (|#1| (-550))) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3579 ((-3 (-411 (-550)) #1="failed") |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4380 (|#1| (-950 |#2|))) (-15 -3579 ((-3 (-950 |#2|) #1#) |#1|)) (-15 -3578 ((-950 |#2|) |#1|)) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4380 (|#1| |#1|)) (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4380 (|#1| (-411 (-950 |#2|)))) (-15 -3579 ((-3 (-411 (-950 |#2|)) #1#) |#1|)) (-15 -3578 ((-411 (-950 |#2|)) |#1|)) (-15 -3489 ((-411 (-1175 |#1|)) |#1| (-614 |#1|))) (-15 -4380 (|#1| (-411 (-950 (-411 |#2|))))) (-15 -4380 (|#1| (-950 (-411 |#2|)))) (-15 -4380 (|#1| (-411 |#2|))) (-15 -3398 (|#1| |#1|)) (-15 -4404 (|#1| (-409 |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-774) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-774) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-774)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-774)) (-644 (-1 |#1| |#1|)))) (-15 -3230 ((-3 (-2 (|:| |val| |#1|) (|:| -2566 (-550))) "failed") |#1|)) (-15 -3229 ((-3 (-2 (|:| |var| (-614 |#1|)) (|:| -2566 (-550))) "failed") |#1| (-1181))) (-15 -3229 ((-3 (-2 (|:| |var| (-614 |#1|)) (|:| -2566 (-550))) "failed") |#1| (-113))) (-15 -3399 (|#1| |#1|)) (-15 -4380 (|#1| (-1129 |#2| (-614 |#1|)))) (-15 -1971 ((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 |#1|))) "failed") |#1|)) (-15 -3227 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3229 ((-3 (-2 (|:| |var| (-614 |#1|)) (|:| -2566 (-550))) "failed") |#1|)) (-15 -3228 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 |#1|) (-1181))) (-15 -4201 (|#1| |#1| (-113) |#1| (-1181))) (-15 -4201 (|#1| |#1|)) (-15 -4201 (|#1| |#1| (-644 (-1181)))) (-15 -4201 (|#1| |#1| (-1181))) (-15 -1972 (|#1| (-1181) (-644 |#1|))) (-15 -1972 (|#1| (-1181) |#1| |#1| |#1| |#1|)) (-15 -1972 (|#1| (-1181) |#1| |#1| |#1|)) (-15 -1972 (|#1| (-1181) |#1| |#1|)) (-15 -1972 (|#1| (-1181) |#1|)) (-15 -3487 ((-644 (-1181)) |#1|)) (-15 -1973 (|#2| |#1|)) (-15 -1974 ((-112) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4380 (|#1| (-1181))) (-15 -3579 ((-3 (-1181) #1#) |#1|)) (-15 -3578 ((-1181) |#1|)) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-113) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-113)) (-644 (-1 |#1| |#1|)))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| |#1|))) (-15 -4201 (|#1| |#1| (-1181) (-1 |#1| (-644 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -4201 (|#1| |#1| (-644 (-1181)) (-644 (-1 |#1| |#1|)))) (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -1711 ((-644 (-614 |#1|)) |#1|)) (-15 -1712 ((-3 (-614 |#1|) "failed") |#1|)) (-15 -1714 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -1714 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1714 (|#1| |#1| (-295 |#1|))) (-15 -4233 (|#1| (-113) (-644 |#1|))) (-15 -4233 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1| |#1|)) (-15 -4233 (|#1| (-113) |#1|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4201 (|#1| |#1| (-644 (-614 |#1|)) (-644 |#1|))) (-15 -4201 (|#1| |#1| (-614 |#1|) |#1|)) (-15 -4380 (|#1| (-614 |#1|))) (-15 -3579 ((-3 (-614 |#1|) #1#) |#1|)) (-15 -3578 ((-614 |#1|) |#1|)) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 116 (|has| |#1| (-25)))) (-3487 (((-644 (-1181)) $) 203)) (-3489 (((-411 (-1175 $)) $ (-614 $)) 171 (|has| |#1| (-561)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 143 (|has| |#1| (-561)))) (-2243 (($ $) 144 (|has| |#1| (-561)))) (-2241 (((-112) $) 146 (|has| |#1| (-561)))) (-1710 (((-644 (-614 $)) $) 39)) (-1408 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1714 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-614 $)) (-644 $)) 49)) (-4208 (($ $) 163 (|has| |#1| (-561)))) (-4403 (((-409 $) $) 164 (|has| |#1| (-561)))) (-1755 (((-112) $ $) 154 (|has| |#1| (-561)))) (-4158 (($) 104 (-3962 (|has| |#1| (-1116)) (|has| |#1| (-25))) CONST)) (-3579 (((-3 (-614 $) #1="failed") $) 64) (((-3 (-1181) #1#) $) 216) (((-3 (-550) #1#) $) 210 (|has| |#1| (-1042 (-550)))) (((-3 |#1| #1#) $) 207) (((-3 (-411 (-950 |#1|)) #1#) $) 169 (|has| |#1| (-561))) (((-3 (-950 |#1|) #1#) $) 123 (|has| |#1| (-1053))) (((-3 (-411 (-550)) #1#) $) 98 (-3962 (-12 (|has| |#1| (-1042 (-550))) (|has| |#1| (-561))) (|has| |#1| (-1042 (-411 (-550))))))) (-3578 (((-614 $) $) 65) (((-1181) $) 217) (((-550) $) 209 (|has| |#1| (-1042 (-550)))) ((|#1| $) 208) (((-411 (-950 |#1|)) $) 170 (|has| |#1| (-561))) (((-950 |#1|) $) 124 (|has| |#1| (-1053))) (((-411 (-550)) $) 99 (-3962 (-12 (|has| |#1| (-1042 (-550))) (|has| |#1| (-561))) (|has| |#1| (-1042 (-411 (-550))))))) (-2966 (($ $ $) 158 (|has| |#1| (-561)))) (-2429 (((-692 (-550)) (-692 $)) 137 (-3258 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 136 (-3258 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 135 (|has| |#1| (-1053))) (((-692 |#1|) (-692 $)) 134 (|has| |#1| (-1053)))) (-3892 (((-3 $ "failed") $) 106 (|has| |#1| (-1116)))) (-2965 (($ $ $) 157 (|has| |#1| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 152 (|has| |#1| (-561)))) (-4157 (((-112) $) 165 (|has| |#1| (-561)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 212 (|has| |#1| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 211 (|has| |#1| (-890 (-381))))) (-2975 (($ $) 46) (($ (-644 $)) 45)) (-1709 (((-644 (-113)) $) 38)) (-3450 (((-113) (-113)) 37)) (-2575 (((-112) $) 105 (|has| |#1| (-1116)))) (-3078 (((-112) $) 17 (|has| $ (-1042 (-550))))) (-3399 (($ $) 186 (|has| |#1| (-1053)))) (-3401 (((-1129 |#1| (-614 $)) $) 187 (|has| |#1| (-1053)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 161 (|has| |#1| (-561)))) (-1707 (((-1175 $) (-614 $)) 20 (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) 31)) (-1712 (((-3 (-614 $) "failed") $) 41)) (-2071 (($ (-644 $)) 150 (|has| |#1| (-561))) (($ $ $) 149 (|has| |#1| (-561)))) (-3665 (((-1163) $) 10)) (-1711 (((-644 (-614 $)) $) 40)) (-2386 (($ (-113) $) 33) (($ (-113) (-644 $)) 32)) (-3228 (((-3 (-644 $) "failed") $) 192 (|has| |#1| (-1116)))) (-3230 (((-3 (-2 (|:| |val| $) (|:| -2566 (-550))) "failed") $) 183 (|has| |#1| (-1053)))) (-3227 (((-3 (-644 $) "failed") $) 190 (|has| |#1| (-25)))) (-1971 (((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3229 (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $) 191 (|has| |#1| (-1116))) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $ (-113)) 185 (|has| |#1| (-1053))) (((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $ (-1181)) 184 (|has| |#1| (-1053)))) (-3037 (((-112) $ (-113)) 35) (((-112) $ (-1181)) 34)) (-2808 (($ $) 108 (-3962 (|has| |#1| (-477)) (|has| |#1| (-561))))) (-3005 (((-774) $) 42)) (-3666 (((-1124) $) 11)) (-1974 (((-112) $) 205)) (-1973 ((|#1| $) 204)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 151 (|has| |#1| (-561)))) (-3566 (($ (-644 $)) 148 (|has| |#1| (-561))) (($ $ $) 147 (|has| |#1| (-561)))) (-1708 (((-112) $ $) 30) (((-112) $ (-1181)) 29)) (-4166 (((-409 $) $) 162 (|has| |#1| (-561)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 160 (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 159 (|has| |#1| (-561)))) (-3891 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 153 (|has| |#1| (-561)))) (-3079 (((-112) $) 18 (|has| $ (-1042 (-550))))) (-4201 (($ $ (-614 $) $) 62) (($ $ (-644 (-614 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1181)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1181) (-1 $ (-644 $))) 26) (($ $ (-1181) (-1 $ $)) 25) (($ $ (-644 (-113)) (-644 (-1 $ $))) 24) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-113) (-1 $ (-644 $))) 22) (($ $ (-113) (-1 $ $)) 21) (($ $ (-1181)) 197 (|has| |#1| (-617 (-539)))) (($ $ (-644 (-1181))) 196 (|has| |#1| (-617 (-539)))) (($ $) 195 (|has| |#1| (-617 (-539)))) (($ $ (-113) $ (-1181)) 194 (|has| |#1| (-617 (-539)))) (($ $ (-644 (-113)) (-644 $) (-1181)) 193 (|has| |#1| (-617 (-539)))) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ $))) 182 (|has| |#1| (-1053))) (($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ (-644 $)))) 181 (|has| |#1| (-1053))) (($ $ (-1181) (-774) (-1 $ (-644 $))) 180 (|has| |#1| (-1053))) (($ $ (-1181) (-774) (-1 $ $)) 179 (|has| |#1| (-1053)))) (-1754 (((-774) $) 155 (|has| |#1| (-561)))) (-4233 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-644 $)) 52)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 156 (|has| |#1| (-561)))) (-1713 (($ $) 44) (($ $ $) 43)) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) 128 (|has| |#1| (-1053))) (($ $ (-1181) (-774)) 127 (|has| |#1| (-1053))) (($ $ (-644 (-1181))) 126 (|has| |#1| (-1053))) (($ $ (-1181)) 125 (|has| |#1| (-1053)))) (-3398 (($ $) 176 (|has| |#1| (-561)))) (-3400 (((-1129 |#1| (-614 $)) $) 177 (|has| |#1| (-561)))) (-3607 (($ $) 19 (|has| $ (-1053)))) (-4404 (((-894 (-550)) $) 214 (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) 213 (|has| |#1| (-617 (-894 (-381))))) (($ (-409 $)) 178 (|has| |#1| (-561))) (((-539) $) 100 (|has| |#1| (-617 (-539))))) (-3412 (($ $ $) 111 (|has| |#1| (-477)))) (-2758 (($ $ $) 112 (|has| |#1| (-477)))) (-4380 (((-866) $) 12) (($ (-614 $)) 63) (($ (-1181)) 215) (($ |#1|) 206) (($ (-1129 |#1| (-614 $))) 188 (|has| |#1| (-1053))) (($ (-411 |#1|)) 174 (|has| |#1| (-561))) (($ (-950 (-411 |#1|))) 173 (|has| |#1| (-561))) (($ (-411 (-950 (-411 |#1|)))) 172 (|has| |#1| (-561))) (($ (-411 (-950 |#1|))) 168 (|has| |#1| (-561))) (($ $) 141 (|has| |#1| (-561))) (($ (-950 |#1|)) 122 (|has| |#1| (-1053))) (($ (-411 (-550))) 97 (-3962 (|has| |#1| (-561)) (-12 (|has| |#1| (-1042 (-550))) (|has| |#1| (-561))) (|has| |#1| (-1042 (-411 (-550)))))) (($ (-550)) 96 (-3962 (|has| |#1| (-1053)) (|has| |#1| (-1042 (-550)))))) (-3107 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3532 (((-774)) 133 (|has| |#1| (-1053)) CONST)) (-2992 (($ $) 48) (($ (-644 $)) 47)) (-2405 (((-112) (-113)) 36)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 145 (|has| |#1| (-561)))) (-1972 (($ (-1181) $) 202) (($ (-1181) $ $) 201) (($ (-1181) $ $ $) 200) (($ (-1181) $ $ $ $) 199) (($ (-1181) (-644 $)) 198)) (-3512 (($) 115 (|has| |#1| (-25)) CONST)) (-3069 (($) 103 (|has| |#1| (-1116)) CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) 132 (|has| |#1| (-1053))) (($ $ (-1181) (-774)) 131 (|has| |#1| (-1053))) (($ $ (-644 (-1181))) 130 (|has| |#1| (-1053))) (($ $ (-1181)) 129 (|has| |#1| (-1053)))) (-3457 (((-112) $ $) 6)) (-4383 (($ (-1129 |#1| (-614 $)) (-1129 |#1| (-614 $))) 175 (|has| |#1| (-561))) (($ $ $) 109 (-3962 (|has| |#1| (-477)) (|has| |#1| (-561))))) (-4271 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-4273 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-550)) 110 (-3962 (|has| |#1| (-477)) (|has| |#1| (-561)))) (($ $ (-774)) 107 (|has| |#1| (-1116))) (($ $ (-923)) 102 (|has| |#1| (-1116)))) (* (($ (-411 (-550)) $) 167 (|has| |#1| (-561))) (($ $ (-411 (-550))) 166 (|has| |#1| (-561))) (($ |#1| $) 140 (|has| |#1| (-173))) (($ $ |#1|) 139 (|has| |#1| (-173))) (($ (-550) $) 119 (|has| |#1| (-21))) (($ (-774) $) 117 (|has| |#1| (-25))) (($ (-923) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1116))))) +(((-425 |#1|) (-140) (-1105)) (T -425)) +((-1974 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-5 *2 (-112)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-5 *2 (-644 (-1181))))) (-1972 (*1 *1 *2 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) (-1972 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) (-1972 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) (-1972 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) (-1972 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-644 *1)) (-4 *1 (-425 *4)) (-4 *4 (-1105)))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-4 *3 (-617 (-539))))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1181))) (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-4 *3 (-617 (-539))))) (-4201 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)) (-4 *2 (-617 (-539))))) (-4201 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1181)) (-4 *1 (-425 *4)) (-4 *4 (-1105)) (-4 *4 (-617 (-539))))) (-4201 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-113))) (-5 *3 (-644 *1)) (-5 *4 (-1181)) (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-617 (-539))))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *3 (-1116)) (-4 *3 (-1105)) (-5 *2 (-644 *1)) (-4 *1 (-425 *3)))) (-3229 (*1 *2 *1) (|partial| -12 (-4 *3 (-1116)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| |var| (-614 *1)) (|:| -2566 (-550)))) (-4 *1 (-425 *3)))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1105)) (-5 *2 (-644 *1)) (-4 *1 (-425 *3)))) (-1971 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| -4388 (-550)) (|:| |var| (-614 *1)))) (-4 *1 (-425 *3)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1129 *3 (-614 *1))) (-4 *3 (-1053)) (-4 *3 (-1105)) (-4 *1 (-425 *3)))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *3 (-1105)) (-5 *2 (-1129 *3 (-614 *1))) (-4 *1 (-425 *3)))) (-3399 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)) (-4 *2 (-1053)))) (-3229 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1053)) (-4 *4 (-1105)) (-5 *2 (-2 (|:| |var| (-614 *1)) (|:| -2566 (-550)))) (-4 *1 (-425 *4)))) (-3229 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1181)) (-4 *4 (-1053)) (-4 *4 (-1105)) (-5 *2 (-2 (|:| |var| (-614 *1)) (|:| -2566 (-550)))) (-4 *1 (-425 *4)))) (-3230 (*1 *2 *1) (|partial| -12 (-4 *3 (-1053)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| |val| *1) (|:| -2566 (-550)))) (-4 *1 (-425 *3)))) (-4201 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-774))) (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-1053)))) (-4201 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-774))) (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-1053)))) (-4201 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-774)) (-5 *4 (-1 *1 (-644 *1))) (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-1053)))) (-4201 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-774)) (-5 *4 (-1 *1 *1)) (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-1053)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-425 *3)) (-4 *3 (-561)) (-4 *3 (-1105)))) (-3400 (*1 *2 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1105)) (-5 *2 (-1129 *3 (-614 *1))) (-4 *1 (-425 *3)))) (-3398 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)) (-4 *2 (-561)))) (-4383 (*1 *1 *2 *2) (-12 (-5 *2 (-1129 *3 (-614 *1))) (-4 *3 (-561)) (-4 *3 (-1105)) (-4 *1 (-425 *3)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-561)) (-4 *3 (-1105)) (-4 *1 (-425 *3)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-950 (-411 *3))) (-4 *3 (-561)) (-4 *3 (-1105)) (-4 *1 (-425 *3)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-411 *3)))) (-4 *3 (-561)) (-4 *3 (-1105)) (-4 *1 (-425 *3)))) (-3489 (*1 *2 *1 *3) (-12 (-5 *3 (-614 *1)) (-4 *1 (-425 *4)) (-4 *4 (-1105)) (-4 *4 (-561)) (-5 *2 (-411 (-1175 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-4 *3 (-1116))))) +(-13 (-300) (-1042 (-1181)) (-888 |t#1|) (-404 |t#1|) (-416 |t#1|) (-10 -8 (-15 -1974 ((-112) $)) (-15 -1973 (|t#1| $)) (-15 -3487 ((-644 (-1181)) $)) (-15 -1972 ($ (-1181) $)) (-15 -1972 ($ (-1181) $ $)) (-15 -1972 ($ (-1181) $ $ $)) (-15 -1972 ($ (-1181) $ $ $ $)) (-15 -1972 ($ (-1181) (-644 $))) (IF (|has| |t#1| (-617 (-539))) (PROGN (-6 (-617 (-539))) (-15 -4201 ($ $ (-1181))) (-15 -4201 ($ $ (-644 (-1181)))) (-15 -4201 ($ $)) (-15 -4201 ($ $ (-113) $ (-1181))) (-15 -4201 ($ $ (-644 (-113)) (-644 $) (-1181)))) |%noBranch|) (IF (|has| |t#1| (-1116)) (PROGN (-6 (-729)) (-15 ** ($ $ (-774))) (-15 -3228 ((-3 (-644 $) "failed") $)) (-15 -3229 ((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-477)) (-6 (-477)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3227 ((-3 (-644 $) "failed") $)) (-15 -1971 ((-3 (-2 (|:| -4388 (-550)) (|:| |var| (-614 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1053)) (PROGN (-6 (-1053)) (-6 (-1042 (-950 |t#1|))) (-6 (-904 (-1181))) (-6 (-380 |t#1|)) (-15 -4380 ($ (-1129 |t#1| (-614 $)))) (-15 -3401 ((-1129 |t#1| (-614 $)) $)) (-15 -3399 ($ $)) (-15 -3229 ((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $ (-113))) (-15 -3229 ((-3 (-2 (|:| |var| (-614 $)) (|:| -2566 (-550))) "failed") $ (-1181))) (-15 -3230 ((-3 (-2 (|:| |val| $) (|:| -2566 (-550))) "failed") $)) (-15 -4201 ($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ $)))) (-15 -4201 ($ $ (-644 (-1181)) (-644 (-774)) (-644 (-1 $ (-644 $))))) (-15 -4201 ($ $ (-1181) (-774) (-1 $ (-644 $)))) (-15 -4201 ($ $ (-1181) (-774) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-366)) (-6 (-1042 (-411 (-950 |t#1|)))) (-15 -4404 ($ (-409 $))) (-15 -3400 ((-1129 |t#1| (-614 $)) $)) (-15 -3398 ($ $)) (-15 -4383 ($ (-1129 |t#1| (-614 $)) (-1129 |t#1| (-614 $)))) (-15 -4380 ($ (-411 |t#1|))) (-15 -4380 ($ (-950 (-411 |t#1|)))) (-15 -4380 ($ (-411 (-950 (-411 |t#1|))))) (-15 -3489 ((-411 (-1175 $)) $ (-614 $))) (IF (|has| |t#1| (-1042 (-550))) (-6 (-1042 (-411 (-550)))) |%noBranch|)) |%noBranch|))) +(((-21) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-411 (-550))) |has| |#1| (-561)) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-561)) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) |has| |#1| (-561)) ((-131) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-561))) ((-619 #2=(-411 (-950 |#1|))) |has| |#1| (-561)) ((-619 (-550)) -3962 (|has| |#1| (-1053)) (|has| |#1| (-1042 (-550))) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-619 #3=(-614 $)) . T) ((-619 #4=(-950 |#1|)) |has| |#1| (-1053)) ((-619 #5=(-1181)) . T) ((-619 |#1|) . T) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) |has| |#1| (-561)) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-617 (-894 (-381))) |has| |#1| (-617 (-894 (-381)))) ((-617 (-894 (-550))) |has| |#1| (-617 (-894 (-550)))) ((-244) |has| |#1| (-561)) ((-292) |has| |#1| (-561)) ((-309) |has| |#1| (-561)) ((-311 $) . T) ((-300) . T) ((-366) |has| |#1| (-561)) ((-380 |#1|) |has| |#1| (-1053)) ((-404 |#1|) . T) ((-416 |#1|) . T) ((-456) |has| |#1| (-561)) ((-477) |has| |#1| (-477)) ((-518 (-614 $) $) . T) ((-518 $ $) . T) ((-561) |has| |#1| (-561)) ((-649 #1#) |has| |#1| (-561)) ((-649 (-550)) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-649 |#1|) |has| |#1| (-173)) ((-649 $) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-651 #1#) |has| |#1| (-561)) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-643 #1#) |has| |#1| (-561)) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-642 (-550)) -12 (|has| |#1| (-642 (-550))) (|has| |#1| (-1053))) ((-642 |#1|) |has| |#1| (-1053)) ((-720 #1#) |has| |#1| (-561)) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) -3962 (|has| |#1| (-1116)) (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-477)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-904 (-1181)) |has| |#1| (-1053)) ((-890 (-381)) |has| |#1| (-890 (-381))) ((-890 (-550)) |has| |#1| (-890 (-550))) ((-888 |#1|) . T) ((-925) |has| |#1| (-561)) ((-1042 (-411 (-550))) -3962 (|has| |#1| (-1042 (-411 (-550)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1042 (-550))))) ((-1042 #2#) |has| |#1| (-561)) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 #3#) . T) ((-1042 #4#) |has| |#1| (-1053)) ((-1042 #5#) . T) ((-1042 |#1|) . T) ((-1055 #1#) |has| |#1| (-561)) ((-1055 |#1|) |has| |#1| (-173)) ((-1055 $) |has| |#1| (-561)) ((-1060 #1#) |has| |#1| (-561)) ((-1060 |#1|) |has| |#1| (-173)) ((-1060 $) |has| |#1| (-561)) ((-1053) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1061) -3962 (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1116) -3962 (|has| |#1| (-1116)) (|has| |#1| (-1053)) (|has| |#1| (-561)) (|has| |#1| (-477)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1105) . T) ((-1220) . T) ((-1225) |has| |#1| (-561))) +((-4392 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|))) (-1053) (-425 |#1|) (-1053) (-425 |#3|)) (T -426)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *2 (-425 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) +(-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|))) +((-1978 ((|#2| |#2|) 183)) (-1975 (((-3 (|:| |%expansion| (-315 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112)) 60))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1975 ((-3 (|:| |%expansion| (-315 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112))) (-15 -1978 (|#2| |#2|))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|)) (-1181) |#2|) (T -427)) +((-1978 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-427 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1206) (-425 *3))) (-14 *4 (-1181)) (-14 *5 *2))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (|:| |%expansion| (-315 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163)))))) (-5 *1 (-427 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) (-14 *6 (-1181)) (-14 *7 *3)))) +(-10 -7 (-15 -1975 ((-3 (|:| |%expansion| (-315 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112))) (-15 -1978 (|#2| |#2|))) +((-1978 ((|#2| |#2|) 106)) (-1976 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112) (-1163)) 52)) (-1977 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112) (-1163)) 170))) +(((-428 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1976 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112) (-1163))) (-15 -1977 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112) (-1163))) (-15 -1978 (|#2| |#2|))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|) (-10 -8 (-15 -4380 ($ |#3|)))) (-851) (-13 (-1249 |#2| |#3|) (-366) (-1206) (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $)))) (-987 |#4|) (-1181)) (T -428)) +((-1978 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-4 *2 (-13 (-27) (-1206) (-425 *3) (-10 -8 (-15 -4380 ($ *4))))) (-4 *4 (-851)) (-4 *5 (-13 (-1249 *2 *4) (-366) (-1206) (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $))))) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *6 (-987 *5)) (-14 *7 (-1181)))) (-1977 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-4 *3 (-13 (-27) (-1206) (-425 *6) (-10 -8 (-15 -4380 ($ *7))))) (-4 *7 (-851)) (-4 *8 (-13 (-1249 *3 *7) (-366) (-1206) (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163)))))) (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1163)) (-4 *9 (-987 *8)) (-14 *10 (-1181)))) (-1976 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-4 *3 (-13 (-27) (-1206) (-425 *6) (-10 -8 (-15 -4380 ($ *7))))) (-4 *7 (-851)) (-4 *8 (-13 (-1249 *3 *7) (-366) (-1206) (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163)))))) (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1163)) (-4 *9 (-987 *8)) (-14 *10 (-1181))))) +(-10 -7 (-15 -1976 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112) (-1163))) (-15 -1977 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163))))) |#2| (-112) (-1163))) (-15 -1978 (|#2| |#2|))) +((-1979 (($) 52)) (-3656 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3658 (($ $ $) 45)) (-3657 (((-112) $ $) 34)) (-3542 (((-774)) 56)) (-3661 (($ (-644 |#2|)) 23) (($) NIL)) (-3397 (($) 67)) (-3663 (((-112) $ $) 15)) (-2936 ((|#2| $) 78)) (-3262 ((|#2| $) 76)) (-2190 (((-923) $) 71)) (-3660 (($ $ $) 41)) (-2565 (($ (-923)) 61)) (-3659 (($ $ |#2|) NIL) (($ $ $) 44)) (-2127 (((-774) (-1 (-112) |#2|) $) NIL) (((-774) |#2| $) 31)) (-3955 (($ (-644 |#2|)) 27)) (-1980 (($ $) 54)) (-4380 (((-866) $) 39)) (-1981 (((-774) $) 24)) (-3662 (($ (-644 |#2|)) 22) (($) NIL)) (-3457 (((-112) $ $) 19))) +(((-429 |#1| |#2|) (-10 -8 (-15 -3542 ((-774))) (-15 -2565 (|#1| (-923))) (-15 -2190 ((-923) |#1|)) (-15 -3397 (|#1|)) (-15 -2936 (|#2| |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -1979 (|#1|)) (-15 -1980 (|#1| |#1|)) (-15 -1981 ((-774) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3663 ((-112) |#1| |#1|)) (-15 -3662 (|#1|)) (-15 -3662 (|#1| (-644 |#2|))) (-15 -3661 (|#1|)) (-15 -3661 (|#1| (-644 |#2|))) (-15 -3660 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3657 ((-112) |#1| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#2| |#1|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|))) (-430 |#2|) (-1105)) (T -429)) +((-3542 (*1 *2) (-12 (-4 *4 (-1105)) (-5 *2 (-774)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 -3542 ((-774))) (-15 -2565 (|#1| (-923))) (-15 -2190 ((-923) |#1|)) (-15 -3397 (|#1|)) (-15 -2936 (|#2| |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -1979 (|#1|)) (-15 -1980 (|#1| |#1|)) (-15 -1981 ((-774) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3663 ((-112) |#1| |#1|)) (-15 -3662 (|#1|)) (-15 -3662 (|#1| (-644 |#2|))) (-15 -3661 (|#1|)) (-15 -3661 (|#1| (-644 |#2|))) (-15 -3660 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3657 ((-112) |#1| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#2| |#1|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -2127 ((-774) |#2| |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|))) +((-2970 (((-112) $ $) 19)) (-1979 (($) 68 (|has| |#1| (-371)))) (-3656 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3658 (($ $ $) 79)) (-3657 (((-112) $ $) 80)) (-1310 (((-112) $ (-774)) 8)) (-3542 (((-774)) 62 (|has| |#1| (-371)))) (-3661 (($ (-644 |#1|)) 75) (($) 74)) (-1680 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-1441 (($ $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4427)))) (-3397 (($) 65 (|has| |#1| (-371)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) 71)) (-4153 (((-112) $ (-774)) 9)) (-2936 ((|#1| $) 66 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3262 ((|#1| $) 67 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-2190 (((-923) $) 64 (|has| |#1| (-371)))) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22)) (-3660 (($ $ $) 76)) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-2565 (($ (-923)) 63 (|has| |#1| (-371)))) (-3666 (((-1124) $) 21)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-3659 (($ $ |#1|) 78) (($ $ $) 77)) (-1569 (($) 50) (($ (-644 |#1|)) 49)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 51)) (-1980 (($ $) 69 (|has| |#1| (-371)))) (-4380 (((-866) $) 18)) (-1981 (((-774) $) 70)) (-3662 (($ (-644 |#1|)) 73) (($) 72)) (-3664 (((-112) $ $) 23)) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20)) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-430 |#1|) (-140) (-1105)) (T -430)) +((-1981 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1105)) (-5 *2 (-774)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1105)) (-4 *2 (-371)))) (-1979 (*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-371)) (-4 *2 (-1105)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1105)) (-4 *2 (-853)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1105)) (-4 *2 (-853))))) +(-13 (-230 |t#1|) (-1103 |t#1|) (-10 -8 (-6 -4427) (-15 -1981 ((-774) $)) (IF (|has| |t#1| (-371)) (PROGN (-6 (-371)) (-15 -1980 ($ $)) (-15 -1979 ($))) |%noBranch|) (IF (|has| |t#1| (-853)) (PROGN (-15 -3262 (|t#1| $)) (-15 -2936 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-616 (-866)) . T) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-230 |#1|) . T) ((-236 |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-371) |has| |#1| (-371)) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1103 |#1|) . T) ((-1105) . T) ((-1220) . T)) +((-4275 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4276 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4392 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4276 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4275 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1105) (-430 |#1|) (-1105) (-430 |#3|)) (T -431)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1105)) (-4 *5 (-1105)) (-4 *2 (-430 *5)) (-5 *1 (-431 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1105)) (-4 *2 (-1105)) (-5 *1 (-431 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-430 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4276 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4275 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1982 (((-587 |#2|) |#2| (-1181)) 36)) (-2285 (((-587 |#2|) |#2| (-1181)) 21)) (-2330 ((|#2| |#2| (-1181)) 26))) +(((-432 |#1| |#2|) (-10 -7 (-15 -2285 ((-587 |#2|) |#2| (-1181))) (-15 -1982 ((-587 |#2|) |#2| (-1181))) (-15 -2330 (|#2| |#2| (-1181)))) (-13 (-309) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-29 |#1|))) (T -432)) +((-2330 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-432 *4 *2)) (-4 *2 (-13 (-1206) (-29 *4))))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-587 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1206) (-29 *5))))) (-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-587 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1206) (-29 *5)))))) +(-10 -7 (-15 -2285 ((-587 |#2|) |#2| (-1181))) (-15 -1982 ((-587 |#2|) |#2| (-1181))) (-15 -2330 (|#2| |#2| (-1181)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-1984 (($ |#2| |#1|) 37)) (-1983 (($ |#2| |#1|) 35)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-333 |#2|)) 25)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 10 T CONST)) (-3069 (($) 16 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 36)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-433 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4414)) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|) |%noBranch|) (-15 -4380 ($ |#1|)) (-15 -4380 ($ (-333 |#2|))) (-15 -1984 ($ |#2| |#1|)) (-15 -1983 ($ |#2| |#1|)))) (-13 (-173) (-38 (-411 (-550)))) (-13 (-853) (-21))) (T -433)) +((-4380 (*1 *1 *2) (-12 (-5 *1 (-433 *2 *3)) (-4 *2 (-13 (-173) (-38 (-411 (-550))))) (-4 *3 (-13 (-853) (-21))))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-333 *4)) (-4 *4 (-13 (-853) (-21))) (-5 *1 (-433 *3 *4)) (-4 *3 (-13 (-173) (-38 (-411 (-550))))))) (-1984 (*1 *1 *2 *3) (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-173) (-38 (-411 (-550))))) (-4 *2 (-13 (-853) (-21))))) (-1983 (*1 *1 *2 *3) (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-173) (-38 (-411 (-550))))) (-4 *2 (-13 (-853) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4414)) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|) |%noBranch|) (-15 -4380 ($ |#1|)) (-15 -4380 ($ (-333 |#2|))) (-15 -1984 ($ |#2| |#1|)) (-15 -1983 ($ |#2| |#1|)))) +((-4246 (((-3 |#2| (-644 |#2|)) |#2| (-1181)) 115))) +(((-434 |#1| |#2|) (-10 -7 (-15 -4246 ((-3 |#2| (-644 |#2|)) |#2| (-1181)))) (-13 (-309) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-964) (-29 |#1|))) (T -434)) +((-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1206) (-964) (-29 *5)))))) +(-10 -7 (-15 -4246 ((-3 |#2| (-644 |#2|)) |#2| (-1181)))) +((-3812 ((|#2| |#2| |#2|) 31)) (-3450 (((-113) (-113)) 43)) (-1986 ((|#2| |#2|) 63)) (-1985 ((|#2| |#2|) 66)) (-3811 ((|#2| |#2|) 30)) (-3815 ((|#2| |#2| |#2|) 33)) (-3817 ((|#2| |#2| |#2|) 35)) (-3814 ((|#2| |#2| |#2|) 32)) (-3816 ((|#2| |#2| |#2|) 34)) (-2405 (((-112) (-113)) 41)) (-3819 ((|#2| |#2|) 37)) (-3818 ((|#2| |#2|) 36)) (-3809 ((|#2| |#2|) 25)) (-3813 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3810 ((|#2| |#2| |#2|) 29))) +(((-435 |#1| |#2|) (-10 -7 (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -3809 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3813 (|#2| |#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2| |#2|)) (-15 -3814 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -3816 (|#2| |#2| |#2|)) (-15 -3817 (|#2| |#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -1985 (|#2| |#2|)) (-15 -1986 (|#2| |#2|))) (-561) (-425 |#1|)) (T -435)) +((-1986 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-1985 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3819 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3817 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3816 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3815 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3814 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3812 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3810 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3813 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-435 *3 *4)) (-4 *4 (-425 *3)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-435 *4 *5)) (-4 *5 (-425 *4))))) +(-10 -7 (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -3809 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3813 (|#2| |#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2| |#2|)) (-15 -3814 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -3816 (|#2| |#2| |#2|)) (-15 -3817 (|#2| |#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -1985 (|#2| |#2|)) (-15 -1986 (|#2| |#2|))) +((-3238 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-644 |#2|)) 68))) +(((-436 |#1| |#2|) (-10 -7 (-15 -3238 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -3238 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-561) (-147)) (-425 |#1|)) (T -436)) +((-3238 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1175 *3)) (|:| |pol2| (-1175 *3)) (|:| |prim| (-1175 *3)))) (-5 *1 (-436 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1175 *5))) (|:| |prim| (-1175 *5)))) (-5 *1 (-436 *4 *5))))) +(-10 -7 (-15 -3238 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -3238 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1988 (((-1276)) 18)) (-1987 (((-1175 (-411 (-550))) |#2| (-614 |#2|)) 40) (((-411 (-550)) |#2|) 24))) +(((-437 |#1| |#2|) (-10 -7 (-15 -1987 ((-411 (-550)) |#2|)) (-15 -1987 ((-1175 (-411 (-550))) |#2| (-614 |#2|))) (-15 -1988 ((-1276)))) (-13 (-561) (-1042 (-550))) (-425 |#1|)) (T -437)) +((-1988 (*1 *2) (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *2 (-1276)) (-5 *1 (-437 *3 *4)) (-4 *4 (-425 *3)))) (-1987 (*1 *2 *3 *4) (-12 (-5 *4 (-614 *3)) (-4 *3 (-425 *5)) (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-437 *5 *3)))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-411 (-550))) (-5 *1 (-437 *4 *3)) (-4 *3 (-425 *4))))) +(-10 -7 (-15 -1987 ((-411 (-550)) |#2|)) (-15 -1987 ((-1175 (-411 (-550))) |#2| (-614 |#2|))) (-15 -1988 ((-1276)))) +((-4079 (((-112) $) 32)) (-1989 (((-112) $) 34)) (-3682 (((-112) $) 35)) (-1991 (((-112) $) 38)) (-1993 (((-112) $) 33)) (-1992 (((-112) $) 37)) (-4380 (((-866) $) 20) (($ (-1163)) 31) (($ (-1181)) 26) (((-1181) $) 24) (((-1107) $) 23)) (-1990 (((-112) $) 36)) (-3457 (((-112) $ $) 17))) +(((-438) (-13 (-616 (-866)) (-10 -8 (-15 -4380 ($ (-1163))) (-15 -4380 ($ (-1181))) (-15 -4380 ((-1181) $)) (-15 -4380 ((-1107) $)) (-15 -4079 ((-112) $)) (-15 -1993 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -1992 ((-112) $)) (-15 -1991 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -3457 ((-112) $ $))))) (T -438)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-438)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-438)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-438)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-438)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) (-3457 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438))))) +(-13 (-616 (-866)) (-10 -8 (-15 -4380 ($ (-1163))) (-15 -4380 ($ (-1181))) (-15 -4380 ((-1181) $)) (-15 -4380 ((-1107) $)) (-15 -4079 ((-112) $)) (-15 -1993 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -1992 ((-112) $)) (-15 -1991 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -3457 ((-112) $ $)))) +((-1995 (((-3 (-409 (-1175 (-411 (-550)))) "failed") |#3|) 72)) (-1994 (((-409 |#3|) |#3|) 34)) (-1997 (((-3 (-409 (-1175 (-48))) "failed") |#3|) 46 (|has| |#2| (-1042 (-48))))) (-1996 (((-3 (|:| |overq| (-1175 (-411 (-550)))) (|:| |overan| (-1175 (-48))) (|:| -3043 (-112))) |#3|) 37))) +(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -1994 ((-409 |#3|) |#3|)) (-15 -1995 ((-3 (-409 (-1175 (-411 (-550)))) "failed") |#3|)) (-15 -1996 ((-3 (|:| |overq| (-1175 (-411 (-550)))) (|:| |overan| (-1175 (-48))) (|:| -3043 (-112))) |#3|)) (IF (|has| |#2| (-1042 (-48))) (-15 -1997 ((-3 (-409 (-1175 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-561) (-1042 (-550))) (-425 |#1|) (-1246 |#2|)) (T -439)) +((-1997 (*1 *2 *3) (|partial| -12 (-4 *5 (-1042 (-48))) (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) (-5 *2 (-409 (-1175 (-48)))) (-5 *1 (-439 *4 *5 *3)) (-4 *3 (-1246 *5)))) (-1996 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) (-5 *2 (-3 (|:| |overq| (-1175 (-411 (-550)))) (|:| |overan| (-1175 (-48))) (|:| -3043 (-112)))) (-5 *1 (-439 *4 *5 *3)) (-4 *3 (-1246 *5)))) (-1995 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) (-5 *2 (-409 (-1175 (-411 (-550))))) (-5 *1 (-439 *4 *5 *3)) (-4 *3 (-1246 *5)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) (-5 *2 (-409 *3)) (-5 *1 (-439 *4 *5 *3)) (-4 *3 (-1246 *5))))) +(-10 -7 (-15 -1994 ((-409 |#3|) |#3|)) (-15 -1995 ((-3 (-409 (-1175 (-411 (-550)))) "failed") |#3|)) (-15 -1996 ((-3 (|:| |overq| (-1175 (-411 (-550)))) (|:| |overan| (-1175 (-48))) (|:| -3043 (-112))) |#3|)) (IF (|has| |#2| (-1042 (-48))) (-15 -1997 ((-3 (-409 (-1175 (-48))) "failed") |#3|)) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-2006 (((-3 (|:| |fst| (-438)) (|:| -4344 #1="void")) $) 11)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2004 (($) 35)) (-2001 (($) 41)) (-2002 (($) 37)) (-1999 (($) 39)) (-2003 (($) 36)) (-2000 (($) 38)) (-1998 (($) 40)) (-2005 (((-112) $) 8)) (-2754 (((-644 (-950 (-550))) $) 19)) (-3955 (($ (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-644 (-1181)) (-112)) 29) (($ (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-644 (-950 (-550))) (-112)) 30)) (-4380 (((-866) $) 24) (($ (-438)) 32)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-440) (-13 (-1105) (-10 -8 (-15 -4380 ($ (-438))) (-15 -2006 ((-3 (|:| |fst| (-438)) (|:| -4344 #1="void")) $)) (-15 -2754 ((-644 (-950 (-550))) $)) (-15 -2005 ((-112) $)) (-15 -3955 ($ (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-644 (-1181)) (-112))) (-15 -3955 ($ (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-644 (-950 (-550))) (-112))) (-15 -2004 ($)) (-15 -2003 ($)) (-15 -2002 ($)) (-15 -2001 ($)) (-15 -2000 ($)) (-15 -1999 ($)) (-15 -1998 ($))))) (T -440)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-438)) (-5 *1 (-440)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 #1="void"))) (-5 *1 (-440)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-644 (-950 (-550)))) (-5 *1 (-440)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3955 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-5 *3 (-644 (-1181))) (-5 *4 (-112)) (-5 *1 (-440)))) (-3955 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-2004 (*1 *1) (-5 *1 (-440))) (-2003 (*1 *1) (-5 *1 (-440))) (-2002 (*1 *1) (-5 *1 (-440))) (-2001 (*1 *1) (-5 *1 (-440))) (-2000 (*1 *1) (-5 *1 (-440))) (-1999 (*1 *1) (-5 *1 (-440))) (-1998 (*1 *1) (-5 *1 (-440)))) +(-13 (-1105) (-10 -8 (-15 -4380 ($ (-438))) (-15 -2006 ((-3 (|:| |fst| (-438)) (|:| -4344 #1="void")) $)) (-15 -2754 ((-644 (-950 (-550))) $)) (-15 -2005 ((-112) $)) (-15 -3955 ($ (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-644 (-1181)) (-112))) (-15 -3955 ($ (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-644 (-950 (-550))) (-112))) (-15 -2004 ($)) (-15 -2003 ($)) (-15 -2002 ($)) (-15 -2001 ($)) (-15 -2000 ($)) (-15 -1999 ($)) (-15 -1998 ($)))) +((-2970 (((-112) $ $) NIL)) (-1867 (((-1163) $ (-1163)) NIL)) (-1871 (($ $ (-1163)) NIL)) (-1868 (((-1163) $) NIL)) (-2010 (((-392) (-392) (-392)) 17) (((-392) (-392)) 15)) (-1872 (($ (-392)) NIL) (($ (-392) (-1163)) NIL)) (-3975 (((-392) $) NIL)) (-3665 (((-1163) $) NIL)) (-1869 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2009 (((-1276) (-1163)) 9)) (-2008 (((-1276) (-1163)) 10)) (-2007 (((-1276)) 11)) (-4380 (((-866) $) NIL)) (-1870 (($ $) 39)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-441) (-13 (-368 (-392) (-1163)) (-10 -7 (-15 -2010 ((-392) (-392) (-392))) (-15 -2010 ((-392) (-392))) (-15 -2009 ((-1276) (-1163))) (-15 -2008 ((-1276) (-1163))) (-15 -2007 ((-1276)))))) (T -441)) +((-2010 (*1 *2 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-441)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-441)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-441)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-441)))) (-2007 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-441))))) +(-13 (-368 (-392) (-1163)) (-10 -7 (-15 -2010 ((-392) (-392) (-392))) (-15 -2010 ((-392) (-392))) (-15 -2009 ((-1276) (-1163))) (-15 -2008 ((-1276) (-1163))) (-15 -2007 ((-1276))))) +((-2970 (((-112) $ $) NIL)) (-3975 (((-1181) $) 8)) (-3665 (((-1163) $) 17)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 11)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 14))) +(((-442 |#1|) (-13 (-1105) (-10 -8 (-15 -3975 ((-1181) $)))) (-1181)) (T -442)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-442 *3)) (-14 *3 *2)))) +(-13 (-1105) (-10 -8 (-15 -3975 ((-1181) $)))) +((-2970 (((-112) $ $) NIL)) (-3742 (((-1119) $) 7)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 13)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 9))) +(((-443) (-13 (-1105) (-10 -8 (-15 -3742 ((-1119) $))))) (T -443)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-443))))) +(-13 (-1105) (-10 -8 (-15 -3742 ((-1119) $)))) +((-3806 (((-1276) $) 7)) (-4380 (((-866) $) 8) (($ (-1270 (-702))) 14) (($ (-644 (-332))) 13) (($ (-332)) 12) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 11))) (((-444) (-140)) (T -444)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-444)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444))))) -(-13 (-399) (-10 -8 (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -3576 ($ (-1269 (-315 (-380))))) (-15 -3577 ((-3 $ "failed") (-1269 (-315 (-380))))) (-15 -3576 ($ (-1269 (-315 (-549))))) (-15 -3577 ((-3 $ "failed") (-1269 (-315 (-549))))) (-15 -3576 ($ (-1269 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-1269 (-949 (-380))))) (-15 -3576 ($ (-1269 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-1269 (-949 (-549))))) (-15 -3576 ($ (-1269 (-410 (-949 (-380)))))) (-15 -3577 ((-3 $ "failed") (-1269 (-410 (-949 (-380)))))) (-15 -3576 ($ (-1269 (-410 (-949 (-549)))))) (-15 -3577 ((-3 $ "failed") (-1269 (-410 (-949 (-549)))))))) -(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) -((-2014 (((-112)) 18)) (-2015 (((-112) (-112)) 19)) (-2016 (((-112)) 14)) (-2017 (((-112) (-112)) 15)) (-2019 (((-112)) 16)) (-2020 (((-112) (-112)) 17)) (-2011 (((-922) (-922)) 22) (((-922)) 21)) (-2012 (((-773) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549))))) 52)) (-2010 (((-922) (-922)) 24) (((-922)) 23)) (-2013 (((-2 (|:| -2978 (-549)) (|:| -1954 (-643 |#1|))) |#1|) 97)) (-2009 (((-408 |#1|) (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549))))))) 178)) (-4166 (((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)) 211)) (-4165 (((-408 |#1|) |#1| (-773) (-773)) 226) (((-408 |#1|) |#1| (-643 (-773)) (-773)) 223) (((-408 |#1|) |#1| (-643 (-773))) 225) (((-408 |#1|) |#1| (-773)) 224) (((-408 |#1|) |#1|) 222)) (-2031 (((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773) (-112)) 228) (((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773)) 229) (((-3 |#1| "failed") (-922) |#1| (-643 (-773))) 231) (((-3 |#1| "failed") (-922) |#1| (-773)) 230) (((-3 |#1| "failed") (-922) |#1|) 232)) (-4164 (((-408 |#1|) |#1| (-773) (-773)) 221) (((-408 |#1|) |#1| (-643 (-773)) (-773)) 217) (((-408 |#1|) |#1| (-643 (-773))) 219) (((-408 |#1|) |#1| (-773)) 218) (((-408 |#1|) |#1|) 216)) (-2018 (((-112) |#1|) 44)) (-2030 (((-738 (-773)) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549))))) 102)) (-2021 (((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112) (-1100 (-773)) (-773)) 215))) -(((-445 |#1|) (-10 -7 (-15 -2009 ((-408 |#1|) (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))))) (-15 -2030 ((-738 (-773)) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2010 ((-922))) (-15 -2010 ((-922) (-922))) (-15 -2011 ((-922))) (-15 -2011 ((-922) (-922))) (-15 -2012 ((-773) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2013 ((-2 (|:| -2978 (-549)) (|:| -1954 (-643 |#1|))) |#1|)) (-15 -2014 ((-112))) (-15 -2015 ((-112) (-112))) (-15 -2016 ((-112))) (-15 -2017 ((-112) (-112))) (-15 -2018 ((-112) |#1|)) (-15 -2019 ((-112))) (-15 -2020 ((-112) (-112))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1| (-773))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4164 ((-408 |#1|) |#1| (-773) (-773))) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1| (-773))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4165 ((-408 |#1|) |#1| (-773) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1|)) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773) (-112))) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112))) (-15 -2021 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112) (-1100 (-773)) (-773)))) (-1245 (-549))) (T -445)) -((-2021 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1100 (-773))) (-5 *6 (-773)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-773)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-4165 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2019 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2018 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2016 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2014 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2013 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2978 (-549)) (|:| -1954 (-643 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) (-4 *4 (-1245 (-549))) (-5 *2 (-773)) (-5 *1 (-445 *4)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2011 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2010 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) (-4 *4 (-1245 (-549))) (-5 *2 (-738 (-773))) (-5 *1 (-445 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *4) (|:| -2558 (-549))))))) (-4 *4 (-1245 (-549))) (-5 *2 (-408 *4)) (-5 *1 (-445 *4))))) -(-10 -7 (-15 -2009 ((-408 |#1|) (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))))) (-15 -2030 ((-738 (-773)) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2010 ((-922))) (-15 -2010 ((-922) (-922))) (-15 -2011 ((-922))) (-15 -2011 ((-922) (-922))) (-15 -2012 ((-773) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2013 ((-2 (|:| -2978 (-549)) (|:| -1954 (-643 |#1|))) |#1|)) (-15 -2014 ((-112))) (-15 -2015 ((-112) (-112))) (-15 -2016 ((-112))) (-15 -2017 ((-112) (-112))) (-15 -2018 ((-112) |#1|)) (-15 -2019 ((-112))) (-15 -2020 ((-112) (-112))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1| (-773))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4164 ((-408 |#1|) |#1| (-773) (-773))) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1| (-773))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4165 ((-408 |#1|) |#1| (-773) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1|)) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773) (-112))) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112))) (-15 -2021 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112) (-1100 (-773)) (-773)))) -((-2025 (((-549) |#2|) 52) (((-549) |#2| (-773)) 51)) (-2024 (((-549) |#2|) 67)) (-2026 ((|#3| |#2|) 26)) (-3536 ((|#3| |#2| (-922)) 15)) (-4265 ((|#3| |#2|) 16)) (-2027 ((|#3| |#2|) 9)) (-3003 ((|#3| |#2|) 10)) (-2023 ((|#3| |#2| (-922)) 74) ((|#3| |#2|) 34)) (-2022 (((-549) |#2|) 69))) -(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-549) |#2|)) (-15 -2023 (|#3| |#2|)) (-15 -2023 (|#3| |#2| (-922))) (-15 -2024 ((-549) |#2|)) (-15 -2025 ((-549) |#2| (-773))) (-15 -2025 ((-549) |#2|)) (-15 -3536 (|#3| |#2| (-922))) (-15 -2026 (|#3| |#2|)) (-15 -2027 (|#3| |#2|)) (-15 -3003 (|#3| |#2|)) (-15 -4265 (|#3| |#2|))) (-1052) (-1245 |#1|) (-13 (-407) (-1041 |#1|) (-365) (-1205) (-285))) (T -446)) -((-4265 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3003 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1245 *5)) (-4 *6 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-2023 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2022 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) -(-10 -7 (-15 -2022 ((-549) |#2|)) (-15 -2023 (|#3| |#2|)) (-15 -2023 (|#3| |#2| (-922))) (-15 -2024 ((-549) |#2|)) (-15 -2025 ((-549) |#2| (-773))) (-15 -2025 ((-549) |#2|)) (-15 -3536 (|#3| |#2| (-922))) (-15 -2026 (|#3| |#2|)) (-15 -2027 (|#3| |#2|)) (-15 -3003 (|#3| |#2|)) (-15 -4265 (|#3| |#2|))) -((-3778 ((|#2| (-1269 |#1|)) 45)) (-2029 ((|#2| |#2| |#1|) 61)) (-2028 ((|#2| |#2| |#1|) 53)) (-2443 ((|#2| |#2|) 49)) (-3593 (((-112) |#2|) 36)) (-2032 (((-643 |#2|) (-922) (-408 |#2|)) 24)) (-2031 ((|#2| (-922) (-408 |#2|)) 28)) (-2030 (((-738 (-773)) (-408 |#2|)) 33))) -(((-447 |#1| |#2|) (-10 -7 (-15 -3593 ((-112) |#2|)) (-15 -3778 (|#2| (-1269 |#1|))) (-15 -2443 (|#2| |#2|)) (-15 -2028 (|#2| |#2| |#1|)) (-15 -2029 (|#2| |#2| |#1|)) (-15 -2030 ((-738 (-773)) (-408 |#2|))) (-15 -2031 (|#2| (-922) (-408 |#2|))) (-15 -2032 ((-643 |#2|) (-922) (-408 |#2|)))) (-1052) (-1245 |#1|)) (T -447)) -((-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-408 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-1052)) (-5 *2 (-643 *6)) (-5 *1 (-447 *5 *6)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-408 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1052)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-408 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1052)) (-5 *2 (-738 (-773))) (-5 *1 (-447 *4 *5)))) (-2029 (*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-2028 (*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1052)) (-4 *2 (-1245 *4)) (-5 *1 (-447 *4 *2)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3593 ((-112) |#2|)) (-15 -3778 (|#2| (-1269 |#1|))) (-15 -2443 (|#2| |#2|)) (-15 -2028 (|#2| |#2| |#1|)) (-15 -2029 (|#2| |#2| |#1|)) (-15 -2030 ((-738 (-773)) (-408 |#2|))) (-15 -2031 (|#2| (-922) (-408 |#2|))) (-15 -2032 ((-643 |#2|) (-922) (-408 |#2|)))) -((-2035 (((-773)) 59)) (-2039 (((-773)) 29 (|has| |#1| (-407))) (((-773) (-773)) 28 (|has| |#1| (-407)))) (-2038 (((-549) |#1|) 25 (|has| |#1| (-407)))) (-2037 (((-549) |#1|) 27 (|has| |#1| (-407)))) (-2034 (((-773)) 58) (((-773) (-773)) 57)) (-2033 ((|#1| (-773) (-549)) 37)) (-2036 (((-1275)) 61))) -(((-448 |#1|) (-10 -7 (-15 -2033 (|#1| (-773) (-549))) (-15 -2034 ((-773) (-773))) (-15 -2034 ((-773))) (-15 -2035 ((-773))) (-15 -2036 ((-1275))) (IF (|has| |#1| (-407)) (PROGN (-15 -2037 ((-549) |#1|)) (-15 -2038 ((-549) |#1|)) (-15 -2039 ((-773) (-773))) (-15 -2039 ((-773)))) |%noBranch|)) (-1052)) (T -448)) -((-2039 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2038 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2037 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2036 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2035 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2034 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2034 (*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-549)) (-5 *1 (-448 *2)) (-4 *2 (-1052))))) -(-10 -7 (-15 -2033 (|#1| (-773) (-549))) (-15 -2034 ((-773) (-773))) (-15 -2034 ((-773))) (-15 -2035 ((-773))) (-15 -2036 ((-1275))) (IF (|has| |#1| (-407)) (PROGN (-15 -2037 ((-549) |#1|)) (-15 -2038 ((-549) |#1|)) (-15 -2039 ((-773) (-773))) (-15 -2039 ((-773)))) |%noBranch|)) -((-2040 (((-643 (-549)) (-549)) 76)) (-4155 (((-112) (-168 (-549))) 82)) (-4164 (((-408 (-168 (-549))) (-168 (-549))) 75))) -(((-449) (-10 -7 (-15 -4164 ((-408 (-168 (-549))) (-168 (-549)))) (-15 -2040 ((-643 (-549)) (-549))) (-15 -4155 ((-112) (-168 (-549)))))) (T -449)) -((-4155 (*1 *2 *3) (-12 (-5 *3 (-168 (-549))) (-5 *2 (-112)) (-5 *1 (-449)))) (-2040 (*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-449)) (-5 *3 (-549)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 (-168 (-549)))) (-5 *1 (-449)) (-5 *3 (-168 (-549)))))) -(-10 -7 (-15 -4164 ((-408 (-168 (-549))) (-168 (-549)))) (-15 -2040 ((-643 (-549)) (-549))) (-15 -4155 ((-112) (-168 (-549))))) -((-3347 ((|#4| |#4| (-643 |#4|)) 20 (|has| |#1| (-365)))) (-2400 (((-643 |#4|) (-643 |#4|) (-1162) (-1162)) 46) (((-643 |#4|) (-643 |#4|) (-1162)) 45) (((-643 |#4|) (-643 |#4|)) 34))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2400 ((-643 |#4|) (-643 |#4|))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162) (-1162))) (IF (|has| |#1| (-365)) (-15 -3347 (|#4| |#4| (-643 |#4|))) |%noBranch|)) (-455) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -450)) -((-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2400 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2400 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-450 *3 *4 *5 *6))))) -(-10 -7 (-15 -2400 ((-643 |#4|) (-643 |#4|))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162) (-1162))) (IF (|has| |#1| (-365)) (-15 -3347 (|#4| |#4| (-643 |#4|))) |%noBranch|)) -((-2041 ((|#4| |#4| (-643 |#4|)) 82)) (-2042 (((-643 |#4|) (-643 |#4|) (-1162) (-1162)) 22) (((-643 |#4|) (-643 |#4|) (-1162)) 21) (((-643 |#4|) (-643 |#4|)) 13))) -(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2041 (|#4| |#4| (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162) (-1162)))) (-308) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -451)) -((-2042 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-451 *3 *4 *5 *6)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *2))))) -(-10 -7 (-15 -2041 (|#4| |#4| (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162) (-1162)))) -((-2044 (((-643 (-643 |#4|)) (-643 |#4|) (-112)) 89) (((-643 (-643 |#4|)) (-643 |#4|)) 88) (((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|) (-112)) 82) (((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|)) 83)) (-2043 (((-643 (-643 |#4|)) (-643 |#4|) (-112)) 55) (((-643 (-643 |#4|)) (-643 |#4|)) 77))) -(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-112)))) (-13 (-308) (-147)) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -452)) -((-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) (-2044 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-2044 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) (-2044 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) (-2043 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) -(-10 -7 (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-112)))) -((-2068 (((-773) |#4|) 12)) (-2056 (((-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))) |#4| (-773) (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)))) 39)) (-2058 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2057 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2046 ((|#4| |#4| (-643 |#4|)) 54)) (-2054 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-643 |#4|)) 96)) (-2061 (((-1275) |#4|) 59)) (-2064 (((-1275) (-643 |#4|)) 69)) (-2062 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549)) 66)) (-2065 (((-1275) (-549)) 112)) (-2059 (((-643 |#4|) (-643 |#4|)) 104)) (-2067 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)) |#4| (-773)) 31)) (-2060 (((-549) |#4|) 109)) (-2055 ((|#4| |#4|) 37)) (-2047 (((-643 |#4|) (-643 |#4|) (-549) (-549)) 74)) (-2063 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549)) 125)) (-2066 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2048 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2053 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2052 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2049 (((-112) |#2| |#2|) 75)) (-2051 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2050 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2045 ((|#4| |#4| (-643 |#4|)) 97))) -(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2045 (|#4| |#4| (-643 |#4|))) (-15 -2046 (|#4| |#4| (-643 |#4|))) (-15 -2047 ((-643 |#4|) (-643 |#4|) (-549) (-549))) (-15 -2048 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2049 ((-112) |#2| |#2|)) (-15 -2050 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2051 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2052 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2053 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2054 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-643 |#4|))) (-15 -2055 (|#4| |#4|)) (-15 -2056 ((-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))) |#4| (-773) (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))))) (-15 -2057 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2058 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2059 ((-643 |#4|) (-643 |#4|))) (-15 -2060 ((-549) |#4|)) (-15 -2061 ((-1275) |#4|)) (-15 -2062 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -2063 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -2064 ((-1275) (-643 |#4|))) (-15 -2065 ((-1275) (-549))) (-15 -2066 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2067 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)) |#4| (-773))) (-15 -2068 ((-773) |#4|))) (-455) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -453)) -((-2068 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-773)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-773)) (|:| -2182 *4))) (-5 *5 (-773)) (-4 *4 (-953 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-453 *6 *7 *8 *4)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2063 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) (-5 *1 (-453 *5 *6 *7 *4)))) (-2062 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) (-5 *1 (-453 *5 *6 *7 *4)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2060 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-549)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2058 (*1 *2 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-795)) (-4 *2 (-953 *4 *5 *6)) (-5 *1 (-453 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-852)))) (-2056 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 *3)))) (-5 *4 (-773)) (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-453 *5 *6 *7 *3)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-953 *3 *4 *5)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-453 *5 *6 *7 *3)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-773)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-795)) (-4 *6 (-953 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-852)) (-5 *1 (-453 *4 *3 *5 *6)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2051 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-795)) (-4 *3 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *3)))) (-2050 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5)))) (-2049 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2047 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-549)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2)))) (-2045 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2))))) -(-10 -7 (-15 -2045 (|#4| |#4| (-643 |#4|))) (-15 -2046 (|#4| |#4| (-643 |#4|))) (-15 -2047 ((-643 |#4|) (-643 |#4|) (-549) (-549))) (-15 -2048 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2049 ((-112) |#2| |#2|)) (-15 -2050 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2051 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2052 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2053 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2054 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-643 |#4|))) (-15 -2055 (|#4| |#4|)) (-15 -2056 ((-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))) |#4| (-773) (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))))) (-15 -2057 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2058 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2059 ((-643 |#4|) (-643 |#4|))) (-15 -2060 ((-549) |#4|)) (-15 -2061 ((-1275) |#4|)) (-15 -2062 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -2063 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -2064 ((-1275) (-643 |#4|))) (-15 -2065 ((-1275) (-549))) (-15 -2066 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2067 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)) |#4| (-773))) (-15 -2068 ((-773) |#4|))) -((-2069 (($ $ $) 14) (($ (-643 $)) 21)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 46)) (-3564 (($ $ $) NIL) (($ (-643 $)) 22))) -(((-454 |#1|) (-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2069 (|#1| (-643 |#1|))) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|))) (-455)) (T -454)) -NIL -(-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2069 (|#1| (-643 |#1|))) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-455) (-140)) (T -455)) -((-3564 (*1 *1 *1 *1) (-4 *1 (-455))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) (-2069 (*1 *1 *1 *1) (-4 *1 (-455))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) (-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455))))) -(-13 (-560) (-10 -8 (-15 -3564 ($ $ $)) (-15 -3564 ($ (-643 $))) (-15 -2069 ($ $ $)) (-15 -2069 ($ (-643 $))) (-15 -3111 ((-1174 $) (-1174 $) (-1174 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 (-410 (-949 |#1|)))) (-1269 $)) NIL) (((-1269 (-691 (-410 (-949 |#1|))))) NIL)) (-1897 (((-1269 $)) NIL)) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) NIL)) (-1871 (((-3 $ #1#)) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-1963 (((-691 (-410 (-949 |#1|))) (-1269 $)) NIL) (((-691 (-410 (-949 |#1|)))) NIL)) (-1895 (((-410 (-949 |#1|)) $) NIL)) (-1961 (((-691 (-410 (-949 |#1|))) $ (-1269 $)) NIL) (((-691 (-410 (-949 |#1|))) $) NIL)) (-2567 (((-3 $ #1#) $) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-2078 (((-1174 (-949 (-410 (-949 |#1|))))) NIL (|has| (-410 (-949 |#1|)) (-365))) (((-1174 (-410 (-949 |#1|)))) 92 (|has| |#1| (-560)))) (-2570 (($ $ (-922)) NIL)) (-1893 (((-410 (-949 |#1|)) $) NIL)) (-1873 (((-1174 (-410 (-949 |#1|))) $) 90 (|has| (-410 (-949 |#1|)) (-560)))) (-1965 (((-410 (-949 |#1|)) (-1269 $)) NIL) (((-410 (-949 |#1|))) NIL)) (-1891 (((-1174 (-410 (-949 |#1|))) $) NIL)) (-1885 (((-112)) NIL)) (-1967 (($ (-1269 (-410 (-949 |#1|))) (-1269 $)) 116) (($ (-1269 (-410 (-949 |#1|)))) NIL)) (-3890 (((-3 $ #1#) $) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-3513 (((-922)) NIL)) (-1882 (((-112)) NIL)) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL)) (-1876 (((-112)) NIL)) (-1880 (((-112)) NIL)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) NIL)) (-1872 (((-3 $ #1#)) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-1964 (((-691 (-410 (-949 |#1|))) (-1269 $)) NIL) (((-691 (-410 (-949 |#1|)))) NIL)) (-1896 (((-410 (-949 |#1|)) $) NIL)) (-1962 (((-691 (-410 (-949 |#1|))) $ (-1269 $)) NIL) (((-691 (-410 (-949 |#1|))) $) NIL)) (-2568 (((-3 $ #1#) $) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-2082 (((-1174 (-949 (-410 (-949 |#1|))))) NIL (|has| (-410 (-949 |#1|)) (-365))) (((-1174 (-410 (-949 |#1|)))) 91 (|has| |#1| (-560)))) (-2569 (($ $ (-922)) NIL)) (-1894 (((-410 (-949 |#1|)) $) NIL)) (-1874 (((-1174 (-410 (-949 |#1|))) $) 87 (|has| (-410 (-949 |#1|)) (-560)))) (-1966 (((-410 (-949 |#1|)) (-1269 $)) NIL) (((-410 (-949 |#1|))) NIL)) (-1892 (((-1174 (-410 (-949 |#1|))) $) NIL)) (-1886 (((-112)) NIL)) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL)) (-1879 (((-112)) NIL)) (-1881 (((-112)) NIL)) (-3664 (((-1123) $) NIL)) (-2072 (((-410 (-949 |#1|)) $ $) 78 (|has| |#1| (-560)))) (-2076 (((-410 (-949 |#1|)) $) 102 (|has| |#1| (-560)))) (-2075 (((-410 (-949 |#1|)) $) 106 (|has| |#1| (-560)))) (-2077 (((-1174 (-410 (-949 |#1|))) $) 96 (|has| |#1| (-560)))) (-2071 (((-410 (-949 |#1|))) 79 (|has| |#1| (-560)))) (-2074 (((-410 (-949 |#1|)) $ $) 71 (|has| |#1| (-560)))) (-2080 (((-410 (-949 |#1|)) $) 101 (|has| |#1| (-560)))) (-2079 (((-410 (-949 |#1|)) $) 105 (|has| |#1| (-560)))) (-2081 (((-1174 (-410 (-949 |#1|))) $) 95 (|has| |#1| (-560)))) (-2073 (((-410 (-949 |#1|))) 75 (|has| |#1| (-560)))) (-2083 (($) 112) (($ (-1180)) 120) (($ (-1269 (-1180))) 119) (($ (-1269 $)) 107) (($ (-1180) (-1269 $)) 118) (($ (-1269 (-1180)) (-1269 $)) 117)) (-1884 (((-112)) NIL)) (-4231 (((-410 (-949 |#1|)) $ (-549)) NIL)) (-3644 (((-1269 (-410 (-949 |#1|))) $ (-1269 $)) 109) (((-691 (-410 (-949 |#1|))) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 (-949 |#1|))) $) 45) (((-691 (-410 (-949 |#1|))) (-1269 $)) NIL)) (-4402 (((-1269 (-410 (-949 |#1|))) $) NIL) (($ (-1269 (-410 (-949 |#1|)))) 42)) (-2070 (((-643 (-949 (-410 (-949 |#1|)))) (-1269 $)) NIL) (((-643 (-949 (-410 (-949 |#1|))))) NIL) (((-643 (-949 |#1|)) (-1269 $)) 110 (|has| |#1| (-560))) (((-643 (-949 |#1|))) 111 (|has| |#1| (-560)))) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL)) (-4378 (((-865) $) NIL) (($ (-1269 (-410 (-949 |#1|)))) NIL)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 67)) (-1875 (((-643 (-1269 (-410 (-949 |#1|))))) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL)) (-2948 (($ (-691 (-410 (-949 |#1|))) $) NIL)) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL)) (-1887 (((-112)) NIL)) (-1883 (((-112)) NIL)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) 108)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 63) (($ $ (-410 (-949 |#1|))) NIL) (($ (-410 (-949 |#1|)) $) NIL) (($ (-1145 |#2| (-410 (-949 |#1|))) $) NIL))) -(((-456 |#1| |#2| |#3| |#4|) (-13 (-421 (-410 (-949 |#1|))) (-650 (-1145 |#2| (-410 (-949 |#1|)))) (-10 -8 (-15 -4378 ($ (-1269 (-410 (-949 |#1|))))) (-15 -2085 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2084 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2083 ($)) (-15 -2083 ($ (-1180))) (-15 -2083 ($ (-1269 (-1180)))) (-15 -2083 ($ (-1269 $))) (-15 -2083 ($ (-1180) (-1269 $))) (-15 -2083 ($ (-1269 (-1180)) (-1269 $))) (IF (|has| |#1| (-560)) (PROGN (-15 -2082 ((-1174 (-410 (-949 |#1|))))) (-15 -2081 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2080 ((-410 (-949 |#1|)) $)) (-15 -2079 ((-410 (-949 |#1|)) $)) (-15 -2078 ((-1174 (-410 (-949 |#1|))))) (-15 -2077 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2076 ((-410 (-949 |#1|)) $)) (-15 -2075 ((-410 (-949 |#1|)) $)) (-15 -2074 ((-410 (-949 |#1|)) $ $)) (-15 -2073 ((-410 (-949 |#1|)))) (-15 -2072 ((-410 (-949 |#1|)) $ $)) (-15 -2071 ((-410 (-949 |#1|)))) (-15 -2070 ((-643 (-949 |#1|)) (-1269 $))) (-15 -2070 ((-643 (-949 |#1|))))) |%noBranch|))) (-172) (-922) (-643 (-1180)) (-1269 (-691 |#1|))) (T -456)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 *3)))) (-4 *3 (-172)) (-14 *6 (-1269 (-691 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))))) (-2085 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2084 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) (-14 *4 (-643 (-1180))) (-14 *5 (-1269 (-691 *2))))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 *2)) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1180))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 *2)) (-14 *7 (-1269 (-691 *4))))) (-2083 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 (-1180))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4))))) (-2082 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2078 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2074 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2073 (*1 *2) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2072 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2071 (*1 *2) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-643 (-949 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-560)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4))))) (-2070 (*1 *2) (-12 (-5 *2 (-643 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3)))))) -(-13 (-421 (-410 (-949 |#1|))) (-650 (-1145 |#2| (-410 (-949 |#1|)))) (-10 -8 (-15 -4378 ($ (-1269 (-410 (-949 |#1|))))) (-15 -2085 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2084 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2083 ($)) (-15 -2083 ($ (-1180))) (-15 -2083 ($ (-1269 (-1180)))) (-15 -2083 ($ (-1269 $))) (-15 -2083 ($ (-1180) (-1269 $))) (-15 -2083 ($ (-1269 (-1180)) (-1269 $))) (IF (|has| |#1| (-560)) (PROGN (-15 -2082 ((-1174 (-410 (-949 |#1|))))) (-15 -2081 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2080 ((-410 (-949 |#1|)) $)) (-15 -2079 ((-410 (-949 |#1|)) $)) (-15 -2078 ((-1174 (-410 (-949 |#1|))))) (-15 -2077 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2076 ((-410 (-949 |#1|)) $)) (-15 -2075 ((-410 (-949 |#1|)) $)) (-15 -2074 ((-410 (-949 |#1|)) $ $)) (-15 -2073 ((-410 (-949 |#1|)))) (-15 -2072 ((-410 (-949 |#1|)) $ $)) (-15 -2071 ((-410 (-949 |#1|)))) (-15 -2070 ((-643 (-949 |#1|)) (-1269 $))) (-15 -2070 ((-643 (-949 |#1|))))) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 18)) (-3485 (((-643 (-866 |#1|)) $) 90)) (-3487 (((-1174 $) $ (-866 |#1|)) 55) (((-1174 |#2|) $) 140)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) 27) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) 53) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) 51) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-2115 (($ $ (-643 (-549))) 96)) (-4391 (($ $) 83)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| |#3| $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 68)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) 145) (($ (-1174 $) (-866 |#1|)) 61)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) 71)) (-3294 (($ |#2| |#3|) 38) (($ $ (-866 |#1|) (-773)) 40) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 ((|#3| $) NIL) (((-773) $ (-866 |#1|)) 59) (((-643 (-773)) $ (-643 (-866 |#1|))) 66)) (-1770 (($ (-1 |#3| |#3|) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) 48)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) 50)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 49)) (-1971 ((|#2| $) 138)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) 151 (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) 103) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) 109) (($ $ (-866 |#1|) $) 101) (($ $ (-643 (-866 |#1|)) (-643 $)) 127)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) 62) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 ((|#3| $) 82) (((-773) $ (-866 |#1|)) 45) (((-643 (-773)) $ (-643 (-866 |#1|))) 65)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) 147 (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) 175) (($ (-549)) NIL) (($ |#2|) 102) (($ (-866 |#1|)) 42) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ |#3|) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) 22 T CONST)) (-3067 (($) 31 T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) 79 (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 133)) (** (($ $ (-922)) NIL) (($ $ (-773)) 131)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 39) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) 78) (($ $ |#2|) NIL))) -(((-457 |#1| |#2| |#3|) (-13 (-953 |#2| |#3| (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) (-643 (-1180)) (-1052) (-238 (-4389 |#1|) (-773))) (T -457)) -((-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-14 *3 (-643 (-1180))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-238 (-4389 *3) (-773)))))) -(-13 (-953 |#2| |#3| (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) -((-2089 (((-112) |#1| (-643 |#2|)) 93)) (-2087 (((-3 (-1269 (-643 |#2|)) "failed") (-773) |#1| (-643 |#2|)) 102)) (-2088 (((-3 (-643 |#2|) "failed") |#2| |#1| (-1269 (-643 |#2|))) 104)) (-2215 ((|#2| |#2| |#1|) 35)) (-2086 (((-773) |#2| (-643 |#2|)) 26))) -(((-458 |#1| |#2|) (-10 -7 (-15 -2215 (|#2| |#2| |#1|)) (-15 -2086 ((-773) |#2| (-643 |#2|))) (-15 -2087 ((-3 (-1269 (-643 |#2|)) "failed") (-773) |#1| (-643 |#2|))) (-15 -2088 ((-3 (-643 |#2|) "failed") |#2| |#1| (-1269 (-643 |#2|)))) (-15 -2089 ((-112) |#1| (-643 |#2|)))) (-308) (-1245 |#1|)) (T -458)) -((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-2088 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1269 (-643 *3))) (-4 *4 (-308)) (-5 *2 (-643 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4)))) (-2087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-773)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) (-5 *2 (-1269 (-643 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-643 *6)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) (-5 *2 (-773)) (-5 *1 (-458 *5 *3)))) (-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -2215 (|#2| |#2| |#1|)) (-15 -2086 ((-773) |#2| (-643 |#2|))) (-15 -2087 ((-3 (-1269 (-643 |#2|)) "failed") (-773) |#1| (-643 |#2|))) (-15 -2088 ((-3 (-643 |#2|) "failed") |#2| |#1| (-1269 (-643 |#2|)))) (-15 -2089 ((-112) |#1| (-643 |#2|)))) -((-4164 (((-408 |#5|) |#5|) 24))) -(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4164 ((-408 |#5|) |#5|))) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180))))) (-795) (-560) (-560) (-953 |#4| |#2| |#1|)) (T -459)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) (-4 *5 (-795)) (-4 *7 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-560)) (-4 *3 (-953 *7 *5 *4))))) -(-10 -7 (-15 -4164 ((-408 |#5|) |#5|))) -((-3103 ((|#3|) 38)) (-3111 (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 34))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3111 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3103 (|#3|))) (-795) (-852) (-913) (-953 |#3| |#1| |#2|)) (T -460)) -((-3103 (*1 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-953 *2 *3 *4)))) (-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-913)) (-5 *1 (-460 *3 *4 *5 *6))))) -(-10 -7 (-15 -3111 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3103 (|#3|))) -((-4164 (((-408 (-1174 |#1|)) (-1174 |#1|)) 43))) -(((-461 |#1|) (-10 -7 (-15 -4164 ((-408 (-1174 |#1|)) (-1174 |#1|)))) (-308)) (T -461)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-408 (-1174 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1174 *4))))) -(-10 -7 (-15 -4164 ((-408 (-1174 |#1|)) (-1174 |#1|)))) -((-4161 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-773))) 44) (((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-773))) 43) (((-51) |#2| (-1180) (-294 |#2|)) 36) (((-51) (-1 |#2| (-549)) (-294 |#2|)) 29)) (-4250 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 88) (((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 87) (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549))) 86) (((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549))) 85) (((-51) |#2| (-1180) (-294 |#2|)) 80) (((-51) (-1 |#2| (-549)) (-294 |#2|)) 79)) (-4213 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 74) (((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 72)) (-4210 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549))) 51) (((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549))) 50))) -(((-462 |#1| |#2|) (-10 -7 (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-773)))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-773)))) (-15 -4210 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4210 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4213 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4213 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))))) (-13 (-560) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -462)) -((-4250 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *8 *3)))) (-4250 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) (-4 *8 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *8)))) (-4250 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *3)))) (-4250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) (-4 *7 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *7)))) (-4250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *3)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *5 *6)))) (-4213 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *8 *3)))) (-4213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) (-4 *8 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *8)))) (-4210 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *3)))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) (-4 *7 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *7)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-773))) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *3)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-773))) (-4 *7 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *7)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *5 *6))))) -(-10 -7 (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-773)))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-773)))) (-15 -4210 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4210 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4213 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4213 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))))) -((-2215 ((|#2| |#2| |#1|) 15)) (-2091 (((-643 |#2|) |#2| (-643 |#2|) |#1| (-922)) 82)) (-2090 (((-2 (|:| |plist| (-643 |#2|)) (|:| |modulo| |#1|)) |#2| (-643 |#2|) |#1| (-922)) 72))) -(((-463 |#1| |#2|) (-10 -7 (-15 -2090 ((-2 (|:| |plist| (-643 |#2|)) (|:| |modulo| |#1|)) |#2| (-643 |#2|) |#1| (-922))) (-15 -2091 ((-643 |#2|) |#2| (-643 |#2|) |#1| (-922))) (-15 -2215 (|#2| |#2| |#1|))) (-308) (-1245 |#1|)) (T -463)) -((-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) (-2091 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-643 *3)) (-5 *5 (-922)) (-4 *3 (-1245 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-2090 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) (-5 *2 (-2 (|:| |plist| (-643 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-643 *3))))) -(-10 -7 (-15 -2090 ((-2 (|:| |plist| (-643 |#2|)) (|:| |modulo| |#1|)) |#2| (-643 |#2|) |#1| (-922))) (-15 -2091 ((-643 |#2|) |#2| (-643 |#2|) |#1| (-922))) (-15 -2215 (|#2| |#2| |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 28)) (-4139 (($ |#3|) 25)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) 32)) (-2092 (($ |#2| |#4| $) 33)) (-3294 (($ |#2| (-715 |#3| |#4| |#5|)) 24)) (-3295 (((-715 |#3| |#4| |#5|) $) 15)) (-2094 ((|#3| $) 19)) (-2095 ((|#4| $) 17)) (-3594 ((|#2| $) 29)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-2093 (($ |#2| |#3| |#4|) 26)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 36 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 34)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-719 |#6|) (-719 |#2|) (-10 -8 (-15 -3594 (|#2| $)) (-15 -3295 ((-715 |#3| |#4| |#5|) $)) (-15 -2095 (|#4| $)) (-15 -2094 (|#3| $)) (-15 -4391 ($ $)) (-15 -3294 ($ |#2| (-715 |#3| |#4| |#5|))) (-15 -4139 ($ |#3|)) (-15 -2093 ($ |#2| |#3| |#4|)) (-15 -2092 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-643 (-1180)) (-172) (-852) (-238 (-4389 |#1|) (-773)) (-1 (-112) (-2 (|:| -2563 |#3|) (|:| -2564 |#4|)) (-2 (|:| -2563 |#3|) (|:| -2564 |#4|))) (-953 |#2| |#4| (-866 |#1|))) (T -464)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) (-14 *7 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) (-2 (|:| -2563 *5) (|:| -2564 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-852)) (-4 *2 (-953 *4 *6 (-866 *3))))) (-3594 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *5 (-238 (-4389 *3) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) (-2 (|:| -2563 *4) (|:| -2564 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-852)) (-4 *7 (-953 *2 *5 (-866 *3))))) (-3295 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) (-14 *7 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) (-2 (|:| -2563 *5) (|:| -2564 *6)))) (-5 *2 (-715 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-852)) (-4 *8 (-953 *4 *6 (-866 *3))))) (-2095 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *2)) (-2 (|:| -2563 *5) (|:| -2564 *2)))) (-4 *2 (-238 (-4389 *3) (-773))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-852)) (-4 *7 (-953 *4 *2 (-866 *3))))) (-2094 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) (-2 (|:| -2563 *2) (|:| -2564 *5)))) (-4 *2 (-852)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-953 *4 *5 (-866 *3))))) (-4391 (*1 *1 *1) (-12 (-14 *2 (-643 (-1180))) (-4 *3 (-172)) (-4 *5 (-238 (-4389 *2) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) (-2 (|:| -2563 *4) (|:| -2564 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-852)) (-4 *7 (-953 *3 *5 (-866 *2))))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-715 *5 *6 *7)) (-4 *5 (-852)) (-4 *6 (-238 (-4389 *4) (-773))) (-14 *7 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) (-2 (|:| -2563 *5) (|:| -2564 *6)))) (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-953 *2 *6 (-866 *4))))) (-4139 (*1 *1 *2) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) (-2 (|:| -2563 *2) (|:| -2564 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-852)) (-4 *7 (-953 *4 *5 (-866 *3))))) (-2093 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-643 (-1180))) (-4 *2 (-172)) (-4 *4 (-238 (-4389 *5) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *4)) (-2 (|:| -2563 *3) (|:| -2564 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-852)) (-4 *7 (-953 *2 *4 (-866 *5))))) (-2092 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-4 *3 (-238 (-4389 *4) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *3)) (-2 (|:| -2563 *5) (|:| -2564 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-852)) (-4 *7 (-953 *2 *3 (-866 *4)))))) -(-13 (-719 |#6|) (-719 |#2|) (-10 -8 (-15 -3594 (|#2| $)) (-15 -3295 ((-715 |#3| |#4| |#5|) $)) (-15 -2095 (|#4| $)) (-15 -2094 (|#3| $)) (-15 -4391 ($ $)) (-15 -3294 ($ |#2| (-715 |#3| |#4| |#5|))) (-15 -4139 ($ |#3|)) (-15 -2093 ($ |#2| |#3| |#4|)) (-15 -2092 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2096 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2096 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-795) (-852) (-560) (-953 |#3| |#1| |#2|) (-13 (-1041 (-410 (-549))) (-365) (-10 -8 (-15 -4378 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -465)) -((-2096 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-852)) (-4 *5 (-795)) (-4 *6 (-560)) (-4 *7 (-953 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1041 (-410 (-549))) (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) -(-10 -7 (-15 -2096 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3485 (((-643 |#3|) $) 41)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) NIL (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 49)) (-3576 (($ (-643 |#4|)) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)))) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-3600 ((|#3| $) 47)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 14 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 21)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-3664 (((-1123) $) NIL)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 39)) (-3996 (($) 17)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 16)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538)))) (($ (-643 |#4|)) 51)) (-3953 (($ (-643 |#4|)) 13)) (-3311 (($ $ |#3|) NIL)) (-3313 (($ $ |#3|) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 38) (((-643 |#4|) $) 50)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 30)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-466 |#1| |#2| |#3| |#4|) (-13 (-979 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4402 ($ (-643 |#4|))) (-6 -4425) (-6 -4426))) (-1052) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -466)) -((-4402 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-466 *3 *4 *5 *6))))) -(-13 (-979 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4402 ($ (-643 |#4|))) (-6 -4425) (-6 -4426))) -((-3510 (($) 11)) (-3067 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -3067 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3510 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467)) -NIL -(-10 -8 (-15 -3067 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3510 (|#1|))) -((-2968 (((-112) $ $) 7)) (-3577 (((-3 |#1| "failed") $) 27)) (-3576 ((|#1| $) 28)) (-4376 (($ $ $) 24)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 ((|#2| $) 20)) (-4378 (((-865) $) 12) (($ |#1|) 26)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 25 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 16) (($ $ $) 14)) (-4271 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-468 |#1| |#2|) (-140) (-172) (-23)) (T -468)) -((-3067 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4376 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-473 |t#1| |t#2|) (-1041 |t#1|) (-10 -8 (-15 (-3067) ($) -4384) (-15 -4376 ($ $ $)))) -(((-102) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-473 |#1| |#2|) . T) ((-1041 |#1|) . T) ((-1104) . T)) -((-2097 (((-1269 (-1269 (-549))) (-1269 (-1269 (-549))) (-922)) 28)) (-2098 (((-1269 (-1269 (-549))) (-922)) 23))) -(((-469) (-10 -7 (-15 -2097 ((-1269 (-1269 (-549))) (-1269 (-1269 (-549))) (-922))) (-15 -2098 ((-1269 (-1269 (-549))) (-922))))) (T -469)) -((-2098 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 (-549)))) (-5 *1 (-469)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 (-1269 (-549)))) (-5 *3 (-922)) (-5 *1 (-469))))) -(-10 -7 (-15 -2097 ((-1269 (-1269 (-549))) (-1269 (-1269 (-549))) (-922))) (-15 -2098 ((-1269 (-1269 (-549))) (-922)))) -((-3173 (((-549) (-549)) 32) (((-549)) 24)) (-3177 (((-549) (-549)) 28) (((-549)) 20)) (-3175 (((-549) (-549)) 30) (((-549)) 22)) (-2100 (((-112) (-112)) 14) (((-112)) 12)) (-2099 (((-112) (-112)) 13) (((-112)) 11)) (-2101 (((-112) (-112)) 26) (((-112)) 17))) -(((-470) (-10 -7 (-15 -2099 ((-112))) (-15 -2100 ((-112))) (-15 -2099 ((-112) (-112))) (-15 -2100 ((-112) (-112))) (-15 -2101 ((-112))) (-15 -3175 ((-549))) (-15 -3177 ((-549))) (-15 -3173 ((-549))) (-15 -2101 ((-112) (-112))) (-15 -3175 ((-549) (-549))) (-15 -3177 ((-549) (-549))) (-15 -3173 ((-549) (-549))))) (T -470)) -((-3173 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3173 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3177 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3175 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-2101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2100 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2099 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(-10 -7 (-15 -2099 ((-112))) (-15 -2100 ((-112))) (-15 -2099 ((-112) (-112))) (-15 -2100 ((-112) (-112))) (-15 -2101 ((-112))) (-15 -3175 ((-549))) (-15 -3177 ((-549))) (-15 -3173 ((-549))) (-15 -2101 ((-112) (-112))) (-15 -3175 ((-549) (-549))) (-15 -3177 ((-549) (-549))) (-15 -3173 ((-549) (-549)))) -((-2968 (((-112) $ $) NIL)) (-4283 (((-643 (-380)) $) 34) (((-643 (-380)) $ (-643 (-380))) 146)) (-2106 (((-643 (-1092 (-380))) $) 16) (((-643 (-1092 (-380))) $ (-643 (-1092 (-380)))) 142)) (-2103 (((-643 (-643 (-946 (-225)))) (-643 (-643 (-946 (-225)))) (-643 (-876))) 58)) (-2107 (((-643 (-643 (-946 (-225)))) $) 137)) (-4138 (((-1275) $ (-946 (-225)) (-876)) 163)) (-2108 (($ $) 136) (($ (-643 (-643 (-946 (-225))))) 149) (($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922))) 148) (($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)) (-643 (-262))) 150)) (-3663 (((-1162) $) NIL)) (-4292 (((-549) $) 110)) (-3664 (((-1123) $) NIL)) (-2109 (($) 147)) (-2102 (((-643 (-225)) (-643 (-643 (-946 (-225))))) 89)) (-2105 (((-1275) $ (-643 (-946 (-225))) (-876) (-876) (-922)) 155) (((-1275) $ (-946 (-225))) 157) (((-1275) $ (-946 (-225)) (-876) (-876) (-922)) 156)) (-4378 (((-865) $) 169) (($ (-643 (-643 (-946 (-225))))) 164)) (-3662 (((-112) $ $) NIL)) (-2104 (((-1275) $ (-946 (-225))) 162)) (-3455 (((-112) $ $) NIL))) -(((-471) (-13 (-1104) (-10 -8 (-15 -2109 ($)) (-15 -2108 ($ $)) (-15 -2108 ($ (-643 (-643 (-946 (-225)))))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)) (-643 (-262)))) (-15 -2107 ((-643 (-643 (-946 (-225)))) $)) (-15 -4292 ((-549) $)) (-15 -2106 ((-643 (-1092 (-380))) $)) (-15 -2106 ((-643 (-1092 (-380))) $ (-643 (-1092 (-380))))) (-15 -4283 ((-643 (-380)) $)) (-15 -4283 ((-643 (-380)) $ (-643 (-380)))) (-15 -2105 ((-1275) $ (-643 (-946 (-225))) (-876) (-876) (-922))) (-15 -2105 ((-1275) $ (-946 (-225)))) (-15 -2105 ((-1275) $ (-946 (-225)) (-876) (-876) (-922))) (-15 -2104 ((-1275) $ (-946 (-225)))) (-15 -4138 ((-1275) $ (-946 (-225)) (-876))) (-15 -4378 ($ (-643 (-643 (-946 (-225)))))) (-15 -4378 ((-865) $)) (-15 -2103 ((-643 (-643 (-946 (-225)))) (-643 (-643 (-946 (-225)))) (-643 (-876)))) (-15 -2102 ((-643 (-225)) (-643 (-643 (-946 (-225))))))))) (T -471)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-471)))) (-2109 (*1 *1) (-5 *1 (-471))) (-2108 (*1 *1 *1) (-5 *1 (-471))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) (-2108 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) (-5 *4 (-643 (-922))) (-5 *1 (-471)))) (-2108 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) (-5 *4 (-643 (-922))) (-5 *5 (-643 (-262))) (-5 *1 (-471)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-471)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471)))) (-2106 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) (-4283 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) (-2105 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *2 (-1275)) (-5 *1 (-471)))) (-2105 (*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471)))) (-2105 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *2 (-1275)) (-5 *1 (-471)))) (-2104 (*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471)))) (-4138 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-471)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) (-5 *1 (-471)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-225))) (-5 *1 (-471))))) -(-13 (-1104) (-10 -8 (-15 -2109 ($)) (-15 -2108 ($ $)) (-15 -2108 ($ (-643 (-643 (-946 (-225)))))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)) (-643 (-262)))) (-15 -2107 ((-643 (-643 (-946 (-225)))) $)) (-15 -4292 ((-549) $)) (-15 -2106 ((-643 (-1092 (-380))) $)) (-15 -2106 ((-643 (-1092 (-380))) $ (-643 (-1092 (-380))))) (-15 -4283 ((-643 (-380)) $)) (-15 -4283 ((-643 (-380)) $ (-643 (-380)))) (-15 -2105 ((-1275) $ (-643 (-946 (-225))) (-876) (-876) (-922))) (-15 -2105 ((-1275) $ (-946 (-225)))) (-15 -2105 ((-1275) $ (-946 (-225)) (-876) (-876) (-922))) (-15 -2104 ((-1275) $ (-946 (-225)))) (-15 -4138 ((-1275) $ (-946 (-225)) (-876))) (-15 -4378 ($ (-643 (-643 (-946 (-225)))))) (-15 -4378 ((-865) $)) (-15 -2103 ((-643 (-643 (-946 (-225)))) (-643 (-643 (-946 (-225)))) (-643 (-876)))) (-15 -2102 ((-643 (-225)) (-643 (-643 (-946 (-225)))))))) -((-4269 (($ $) NIL) (($ $ $) 11))) -(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472)) -NIL -(-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 ((|#2| $) 20)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 16) (($ $ $) 14)) (-4271 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-473 |#1| |#2|) (-140) (-172) (-23)) (T -473)) -((-4380 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-3510 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1104) (-10 -8 (-15 -4380 (|t#2| $)) (-15 (-3510) ($) -4384) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4269 ($ $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2111 (((-3 (-643 (-484 |#1| |#2|)) "failed") (-643 (-484 |#1| |#2|)) (-643 (-866 |#1|))) 134)) (-2110 (((-643 (-643 (-247 |#1| |#2|))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))) 131)) (-2112 (((-2 (|:| |dpolys| (-643 (-247 |#1| |#2|))) (|:| |coords| (-643 (-549)))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))) 86))) -(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -2110 ((-643 (-643 (-247 |#1| |#2|))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2111 ((-3 (-643 (-484 |#1| |#2|)) "failed") (-643 (-484 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2112 ((-2 (|:| |dpolys| (-643 (-247 |#1| |#2|))) (|:| |coords| (-643 (-549)))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))))) (-643 (-1180)) (-455) (-455)) (T -474)) -((-2112 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-643 (-247 *5 *6))) (|:| |coords| (-643 (-549))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455)))) (-2111 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-643 (-866 *4))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-643 (-643 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455))))) -(-10 -7 (-15 -2110 ((-643 (-643 (-247 |#1| |#2|))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2111 ((-3 (-643 (-484 |#1| |#2|)) "failed") (-643 (-484 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2112 ((-2 (|:| |dpolys| (-643 (-247 |#1| |#2|))) (|:| |coords| (-643 (-549)))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))))) -((-3890 (((-3 $ "failed") $) 11)) (-3410 (($ $ $) 23)) (-2756 (($ $ $) 24)) (-4381 (($ $ $) 9)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 22))) -(((-475 |#1|) (-10 -8 (-15 -2756 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) (-476)) (T -475)) -NIL -(-10 -8 (-15 -2756 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-4156 (($) 19 T CONST)) (-3890 (((-3 $ "failed") $) 16)) (-2573 (((-112) $) 18)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 25)) (-3664 (((-1123) $) 11)) (-3410 (($ $ $) 22)) (-2756 (($ $ $) 21)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-773)) 17) (($ $ (-549)) 23)) (* (($ $ $) 15))) -(((-476) (-140)) (T -476)) -((-2806 (*1 *1 *1) (-4 *1 (-476))) (-4381 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-549)))) (-3410 (*1 *1 *1 *1) (-4 *1 (-476))) (-2756 (*1 *1 *1 *1) (-4 *1 (-476)))) -(-13 (-728) (-10 -8 (-15 -2806 ($ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ (-549))) (-6 -4422) (-15 -3410 ($ $ $)) (-15 -2756 ($ $ $)))) -(((-102) . T) ((-615 (-865)) . T) ((-728) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 18)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) NIL) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 25)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 29 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 35 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 30 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 28 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $ (-1266 |#2|)) 16)) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1266 |#2|)) NIL) (($ (-1250 |#1| |#2| |#3|)) 9) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 21)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 27)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-477 |#1| |#2| |#3|) (-13 (-1252 |#1|) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4378 ($ (-1250 |#1| |#2| |#3|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -477)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1252 |#1|) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4378 ($ (-1250 |#1| |#2| |#3|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) 18)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) 19)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) 16)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-478 |#1| |#2| |#3| |#4|) (-1196 |#1| |#2|) (-1104) (-1104) (-1196 |#1| |#2|) |#2|) (T -478)) -NIL -(-1196 |#1| |#2|) -((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) NIL)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) 29 (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 45)) (-4117 ((|#4| |#4| $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 19 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 23)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-4229 (((-3 |#4| #1#) $) 42)) (-4129 (((-643 |#4|) $) NIL)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 40)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) 58)) (-4200 (($ $ |#4|) NIL)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 14)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-3313 (($ $ |#3|) 54)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 35) (((-643 |#4|) $) 46)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-4365 (((-112) |#3| $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-479 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|) (-560) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -479)) -NIL -(-1214 |#1| |#2| |#3| |#4|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-4059 (($) 17)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4402 (((-380) $) 21) (((-225) $) 24) (((-410 (-1174 (-549))) $) 18) (((-538) $) 53)) (-4378 (((-865) $) 51) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (((-225) $) 23) (((-380) $) 20)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 37 T CONST)) (-3067 (($) 8 T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-480) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))) (-1023) (-615 (-225)) (-615 (-380)) (-616 (-410 (-1174 (-549)))) (-616 (-538)) (-10 -8 (-15 -4059 ($))))) (T -480)) -((-4059 (*1 *1) (-5 *1 (-480)))) -(-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))) (-1023) (-615 (-225)) (-615 (-380)) (-616 (-410 (-1174 (-549)))) (-616 (-538)) (-10 -8 (-15 -4059 ($)))) -((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-481) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -481)) -((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481))))) -(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) 16)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) 20)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) 18)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) 13)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 19)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 11 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) 15 (|has| $ (-6 -4425))))) -(((-482 |#1| |#2| |#3|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104) (-1162)) (T -482)) -NIL -(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) -((-2113 (((-549) (-549) (-549)) 19)) (-2114 (((-112) (-549) (-549) (-549) (-549)) 28)) (-3880 (((-1269 (-643 (-549))) (-773) (-773)) 44))) -(((-483) (-10 -7 (-15 -2113 ((-549) (-549) (-549))) (-15 -2114 ((-112) (-549) (-549) (-549) (-549))) (-15 -3880 ((-1269 (-643 (-549))) (-773) (-773))))) (T -483)) -((-3880 (*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1269 (-643 (-549)))) (-5 *1 (-483)))) (-2114 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-483)))) (-2113 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-483))))) -(-10 -7 (-15 -2113 ((-549) (-549) (-549))) (-15 -2114 ((-112) (-549) (-549) (-549) (-549))) (-15 -3880 ((-1269 (-643 (-549))) (-773) (-773)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-866 |#1|)) $) NIL)) (-3487 (((-1174 $) $ (-866 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-2115 (($ $ (-643 (-549))) NIL)) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-485 (-4389 |#1|) (-773)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) NIL) (($ (-1174 $) (-866 |#1|)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-485 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 (((-485 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-1770 (($ (-1 (-485 (-4389 |#1|) (-773)) (-485 (-4389 |#1|) (-773))) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) NIL) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) NIL) (($ $ (-866 |#1|) $) NIL) (($ $ (-643 (-866 |#1|)) (-643 $)) NIL)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 (((-485 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-866 |#1|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-485 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-484 |#1| |#2|) (-13 (-953 |#2| (-485 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) (-643 (-1180)) (-1052)) (T -484)) -((-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-484 *3 *4)) (-14 *3 (-643 (-1180))) (-4 *4 (-1052))))) -(-13 (-953 |#2| (-485 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) -((-2968 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3608 (((-112) $) NIL (|has| |#2| (-131)))) (-4139 (($ (-922)) NIL (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#2| (-370)))) (-4055 (((-549) $) NIL (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) NIL (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) NIL (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) NIL (|has| |#2| (-728)))) (-3395 (($) NIL (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) 15)) (-3606 (((-112) $) NIL (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#2| (-728)))) (-3607 (((-112) $) NIL (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#2| (-370)))) (-3664 (((-1123) $) NIL (|has| |#2| (-1104)))) (-4232 ((|#2| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-4268 ((|#2| $ $) NIL (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) NIL)) (-4343 (((-134)) NIL (|has| |#2| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#2|) $) NIL) (($ (-549)) NIL (-3960 (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) NIL (|has| |#2| (-1104))) (((-865) $) NIL (|has| |#2| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#2| (-850)))) (-3510 (($) NIL (|has| |#2| (-131)) CONST)) (-3067 (($) NIL (|has| |#2| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3455 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3088 (((-112) $ $) 21 (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $ $) NIL (|has| |#2| (-1052))) (($ $) NIL (|has| |#2| (-1052)))) (-4271 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-773)) NIL (|has| |#2| (-728))) (($ $ (-922)) NIL (|has| |#2| (-728)))) (* (($ (-549) $) NIL (|has| |#2| (-1052))) (($ $ $) NIL (|has| |#2| (-728))) (($ $ |#2|) NIL (|has| |#2| (-728))) (($ |#2| $) NIL (|has| |#2| (-728))) (($ (-773) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-485 |#1| |#2|) (-238 |#1| |#2|) (-773) (-795)) (T -485)) -NIL -(-238 |#1| |#2|) -((-2968 (((-112) $ $) NIL)) (-2116 (((-643 (-878)) $) 15)) (-3973 (((-509) $) 13)) (-3663 (((-1162) $) NIL)) (-2117 (($ (-509) (-643 (-878))) 11)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 22) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-486) (-13 (-1086) (-10 -8 (-15 -2117 ($ (-509) (-643 (-878)))) (-15 -3973 ((-509) $)) (-15 -2116 ((-643 (-878)) $))))) (T -486)) -((-2117 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-878))) (-5 *1 (-486)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-643 (-878))) (-5 *1 (-486))))) -(-13 (-1086) (-10 -8 (-15 -2117 ($ (-509) (-643 (-878)))) (-15 -3973 ((-509) $)) (-15 -2116 ((-643 (-878)) $)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3259 (($ $ $) 50)) (-3941 (($ $ $) 49)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3260 ((|#1| $) 40)) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 41)) (-4039 (($ |#1| $) 18)) (-2118 (($ (-643 |#1|)) 19)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1370 ((|#1| $) 34)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 11)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 47)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) 29 (|has| $ (-6 -4425))))) -(((-487 |#1|) (-13 (-971 |#1|) (-10 -8 (-15 -2118 ($ (-643 |#1|))))) (-852)) (T -487)) -((-2118 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-487 *3))))) -(-13 (-971 |#1|) (-10 -8 (-15 -2118 ($ (-643 |#1|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ $) 71)) (-1804 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-2148 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3664 (((-1123) $) NIL)) (-2572 (((-3 |#4| "failed") $) 117)) (-1805 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-549)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3859 (((-2 (|:| -2487 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4378 (((-865) $) 110)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 32 T CONST)) (-3455 (((-112) $ $) 121)) (-4269 (($ $) 77) (($ $ $) NIL)) (-4271 (($ $ $) 72)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 78))) -(((-488 |#1| |#2| |#3| |#4|) (-338 |#1| |#2| |#3| |#4|) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488)) -NIL -(-338 |#1| |#2| |#3| |#4|) -((-2122 (((-549) (-643 (-549))) 55)) (-2119 ((|#1| (-643 |#1|)) 96)) (-2121 (((-643 |#1|) (-643 |#1|)) 97)) (-2120 (((-643 |#1|) (-643 |#1|)) 99)) (-3564 ((|#1| (-643 |#1|)) 98)) (-3220 (((-643 (-549)) (-643 |#1|)) 58))) -(((-489 |#1|) (-10 -7 (-15 -3564 (|#1| (-643 |#1|))) (-15 -2119 (|#1| (-643 |#1|))) (-15 -2120 ((-643 |#1|) (-643 |#1|))) (-15 -2121 ((-643 |#1|) (-643 |#1|))) (-15 -3220 ((-643 (-549)) (-643 |#1|))) (-15 -2122 ((-549) (-643 (-549))))) (-1245 (-549))) (T -489)) -((-2122 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-549)) (-5 *1 (-489 *4)) (-4 *4 (-1245 *2)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1245 (-549))) (-5 *2 (-643 (-549))) (-5 *1 (-489 *4)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549))))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549)))))) -(-10 -7 (-15 -3564 (|#1| (-643 |#1|))) (-15 -2119 (|#1| (-643 |#1|))) (-15 -2120 ((-643 |#1|) (-643 |#1|))) (-15 -2121 ((-643 |#1|) (-643 |#1|))) (-15 -3220 ((-643 (-549)) (-643 |#1|))) (-15 -2122 ((-549) (-643 (-549))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-549) $) NIL (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-2123 (($ (-410 (-549))) 9)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) NIL)) (-3534 (((-549) $) NIL (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 8) (($ (-549)) NIL) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL) (((-1007 16) $) 10)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-549) $) NIL (|has| (-549) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-549) (-852)))) (-4381 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL))) -(((-490) (-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 16)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2123 ($ (-410 (-549))))))) (T -490)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490))))) -(-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 16)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2123 ($ (-410 (-549)))))) -((-3008 (((-643 |#2|) $) 29)) (-3666 (((-112) |#2| $) 34)) (-2126 (((-112) (-1 (-112) |#2|) $) 24)) (-4199 (($ $ (-643 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-643 |#2|) (-643 |#2|)) NIL)) (-2125 (((-773) (-1 (-112) |#2|) $) 28) (((-773) |#2| $) 32)) (-4378 (((-865) $) 43)) (-2127 (((-112) (-1 (-112) |#2|) $) 23)) (-3455 (((-112) $ $) 37)) (-4389 (((-773) $) 18))) -(((-491 |#1| |#2|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -3008 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) (-492 |#2|) (-1219)) (T -491)) -NIL -(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -3008 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-492 |#1|) (-140) (-1219)) (T -492)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-2128 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-2127 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2126 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2125 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-773)))) (-2124 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3)))) (-3008 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3)))) (-2125 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-773)))) (-3666 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) (IF (|has| |t#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4426)) (-15 -2128 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4425)) (PROGN (-15 -2127 ((-112) (-1 (-112) |t#1|) $)) (-15 -2126 ((-112) (-1 (-112) |t#1|) $)) (-15 -2125 ((-773) (-1 (-112) |t#1|) $)) (-15 -2124 ((-643 |t#1|) $)) (-15 -3008 ((-643 |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -2125 ((-773) |t#1| $)) (-15 -3666 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-4378 ((|#1| $) 6) (($ |#1|) 9))) -(((-493 |#1|) (-140) (-1219)) (T -493)) -NIL -(-13 (-615 |t#1|) (-618 |t#1|)) -(((-618 |#1|) . T) ((-615 |#1|) . T)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2129 (($ (-1162)) 8)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (((-1162) $) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 11))) -(((-494) (-13 (-1104) (-615 (-1162)) (-10 -8 (-15 -2129 ($ (-1162)))))) (T -494)) -((-2129 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-494))))) -(-13 (-1104) (-615 (-1162)) (-10 -8 (-15 -2129 ($ (-1162))))) -((-3915 (($ $) 15)) (-3913 (($ $) 24)) (-3917 (($ $) 12)) (-3918 (($ $) 10)) (-3916 (($ $) 17)) (-3914 (($ $) 22))) -(((-495 |#1|) (-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) (-496)) (T -495)) -NIL -(-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) -((-3915 (($ $) 11)) (-3913 (($ $) 10)) (-3917 (($ $) 9)) (-3918 (($ $) 8)) (-3916 (($ $) 7)) (-3914 (($ $) 6))) -(((-496) (-140)) (T -496)) -((-3915 (*1 *1 *1) (-4 *1 (-496))) (-3913 (*1 *1 *1) (-4 *1 (-496))) (-3917 (*1 *1 *1) (-4 *1 (-496))) (-3918 (*1 *1 *1) (-4 *1 (-496))) (-3916 (*1 *1 *1) (-4 *1 (-496))) (-3914 (*1 *1 *1) (-4 *1 (-496)))) -(-13 (-10 -8 (-15 -3914 ($ $)) (-15 -3916 ($ $)) (-15 -3918 ($ $)) (-15 -3917 ($ $)) (-15 -3913 ($ $)) (-15 -3915 ($ $)))) -((-4164 (((-408 |#4|) |#4| (-1 (-408 |#2|) |#2|)) 54))) -(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 |#2|) |#2|)))) (-365) (-1245 |#1|) (-13 (-365) (-147) (-726 |#1| |#2|)) (-1245 |#3|)) (T -497)) -((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-726 *5 *6))) (-5 *2 (-408 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7))))) -(-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 |#2|) |#2|)))) -((-2968 (((-112) $ $) NIL)) (-1715 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-1303 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3608 (((-112) $) 39)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2130 (((-112) $ $) 73)) (-1708 (((-643 (-613 $)) $) 50)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-1304 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-3603 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-613 $) $) NIL) (((-549) $) NIL) (((-410 (-549)) $) 55)) (-2964 (($ $ $) NIL)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-410 (-549)))) (|:| |vec| (-1269 (-410 (-549))))) (-691 $) (-1269 $)) NIL) (((-691 (-410 (-549))) (-691 $)) NIL)) (-4274 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) NIL)) (-2573 (((-112) $) 42)) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-3399 (((-1128 (-549) (-613 $)) $) 37)) (-3412 (($ $ (-549)) NIL)) (-3536 (((-1174 $) (-1174 $) (-613 $)) 87) (((-1174 $) (-1174 $) (-643 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-643 (-613 $))) 77)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-1705 (((-1174 $) (-613 $)) 74 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) NIL)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) NIL)) (-2384 (($ (-113) $) NIL) (($ (-113) (-643 $)) NIL)) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) NIL)) (-2806 (($ $) NIL)) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1752 (((-773) $) NIL)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) 36)) (-3398 (((-1128 (-549) (-613 $)) $) 20)) (-3605 (($ $) NIL (|has| $ (-1052)))) (-4402 (((-380) $) 101) (((-225) $) 109) (((-168 (-380)) $) 117)) (-4378 (((-865) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1128 (-549) (-613 $))) 21)) (-3530 (((-773)) NIL T CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-2403 (((-112) (-113)) 93)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 10 T CONST)) (-3067 (($) 22 T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) 24)) (-4381 (($ $ $) 44)) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-410 (-549))) NIL) (($ $ (-549)) 48) (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ $ $) 27) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) -(((-498) (-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -2130 ((-112) $ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $))))))) (T -498)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) (-4274 (*1 *1 *1) (-5 *1 (-498))) (-2130 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-643 (-613 (-498)))) (-5 *1 (-498)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-498)))) (-5 *1 (-498))))) -(-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -2130 ((-112) $ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $)))))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) 47 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 42 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 41)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 21)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 17 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) 44 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) 15 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 19)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 46) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 24)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 11 (|has| $ (-6 -4425))))) -(((-499 |#1| |#2|) (-19 |#1|) (-1219) (-549)) (T -499)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-702))) (-4 *1 (-444)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-444)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-444)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-4 *1 (-444))))) +(-13 (-400) (-10 -8 (-15 -4380 ($ (-1270 (-702)))) (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-332))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))))) +(((-616 (-866)) . T) ((-400) . T) ((-1220) . T)) +((-3579 (((-3 $ "failed") (-1270 (-316 (-381)))) 21) (((-3 $ "failed") (-1270 (-316 (-550)))) 19) (((-3 $ "failed") (-1270 (-950 (-381)))) 17) (((-3 $ "failed") (-1270 (-950 (-550)))) 15) (((-3 $ "failed") (-1270 (-411 (-950 (-381))))) 13) (((-3 $ "failed") (-1270 (-411 (-950 (-550))))) 11)) (-3578 (($ (-1270 (-316 (-381)))) 22) (($ (-1270 (-316 (-550)))) 20) (($ (-1270 (-950 (-381)))) 18) (($ (-1270 (-950 (-550)))) 16) (($ (-1270 (-411 (-950 (-381))))) 14) (($ (-1270 (-411 (-950 (-550))))) 12)) (-3806 (((-1276) $) 7)) (-4380 (((-866) $) 8) (($ (-644 (-332))) 25) (($ (-332)) 24) (($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) 23))) +(((-445) (-140)) (T -445)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-445)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-445)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-4 *1 (-445)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1270 (-316 (-381)))) (-4 *1 (-445)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-316 (-381)))) (-4 *1 (-445)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1270 (-316 (-550)))) (-4 *1 (-445)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-316 (-550)))) (-4 *1 (-445)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1270 (-950 (-381)))) (-4 *1 (-445)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-950 (-381)))) (-4 *1 (-445)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1270 (-950 (-550)))) (-4 *1 (-445)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-950 (-550)))) (-4 *1 (-445)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1270 (-411 (-950 (-381))))) (-4 *1 (-445)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-411 (-950 (-381))))) (-4 *1 (-445)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1270 (-411 (-950 (-550))))) (-4 *1 (-445)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-411 (-950 (-550))))) (-4 *1 (-445))))) +(-13 (-400) (-10 -8 (-15 -4380 ($ (-644 (-332)))) (-15 -4380 ($ (-332))) (-15 -4380 ($ (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332)))))) (-15 -3578 ($ (-1270 (-316 (-381))))) (-15 -3579 ((-3 $ "failed") (-1270 (-316 (-381))))) (-15 -3578 ($ (-1270 (-316 (-550))))) (-15 -3579 ((-3 $ "failed") (-1270 (-316 (-550))))) (-15 -3578 ($ (-1270 (-950 (-381))))) (-15 -3579 ((-3 $ "failed") (-1270 (-950 (-381))))) (-15 -3578 ($ (-1270 (-950 (-550))))) (-15 -3579 ((-3 $ "failed") (-1270 (-950 (-550))))) (-15 -3578 ($ (-1270 (-411 (-950 (-381)))))) (-15 -3579 ((-3 $ "failed") (-1270 (-411 (-950 (-381)))))) (-15 -3578 ($ (-1270 (-411 (-950 (-550)))))) (-15 -3579 ((-3 $ "failed") (-1270 (-411 (-950 (-550)))))))) +(((-616 (-866)) . T) ((-400) . T) ((-1220) . T)) +((-2016 (((-112)) 18)) (-2017 (((-112) (-112)) 19)) (-2018 (((-112)) 14)) (-2019 (((-112) (-112)) 15)) (-2021 (((-112)) 16)) (-2022 (((-112) (-112)) 17)) (-2013 (((-923) (-923)) 22) (((-923)) 21)) (-2014 (((-774) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550))))) 52)) (-2012 (((-923) (-923)) 24) (((-923)) 23)) (-2015 (((-2 (|:| -2980 (-550)) (|:| -1956 (-644 |#1|))) |#1|) 97)) (-2011 (((-409 |#1|) (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550))))))) 178)) (-4168 (((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112)) 211)) (-4167 (((-409 |#1|) |#1| (-774) (-774)) 226) (((-409 |#1|) |#1| (-644 (-774)) (-774)) 223) (((-409 |#1|) |#1| (-644 (-774))) 225) (((-409 |#1|) |#1| (-774)) 224) (((-409 |#1|) |#1|) 222)) (-2033 (((-3 |#1| "failed") (-923) |#1| (-644 (-774)) (-774) (-112)) 228) (((-3 |#1| "failed") (-923) |#1| (-644 (-774)) (-774)) 229) (((-3 |#1| "failed") (-923) |#1| (-644 (-774))) 231) (((-3 |#1| "failed") (-923) |#1| (-774)) 230) (((-3 |#1| "failed") (-923) |#1|) 232)) (-4166 (((-409 |#1|) |#1| (-774) (-774)) 221) (((-409 |#1|) |#1| (-644 (-774)) (-774)) 217) (((-409 |#1|) |#1| (-644 (-774))) 219) (((-409 |#1|) |#1| (-774)) 218) (((-409 |#1|) |#1|) 216)) (-2020 (((-112) |#1|) 44)) (-2032 (((-739 (-774)) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550))))) 102)) (-2023 (((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112) (-1101 (-774)) (-774)) 215))) +(((-446 |#1|) (-10 -7 (-15 -2011 ((-409 |#1|) (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))))) (-15 -2032 ((-739 (-774)) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))))) (-15 -2012 ((-923))) (-15 -2012 ((-923) (-923))) (-15 -2013 ((-923))) (-15 -2013 ((-923) (-923))) (-15 -2014 ((-774) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))))) (-15 -2015 ((-2 (|:| -2980 (-550)) (|:| -1956 (-644 |#1|))) |#1|)) (-15 -2016 ((-112))) (-15 -2017 ((-112) (-112))) (-15 -2018 ((-112))) (-15 -2019 ((-112) (-112))) (-15 -2020 ((-112) |#1|)) (-15 -2021 ((-112))) (-15 -2022 ((-112) (-112))) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4166 ((-409 |#1|) |#1| (-774))) (-15 -4166 ((-409 |#1|) |#1| (-644 (-774)))) (-15 -4166 ((-409 |#1|) |#1| (-644 (-774)) (-774))) (-15 -4166 ((-409 |#1|) |#1| (-774) (-774))) (-15 -4167 ((-409 |#1|) |#1|)) (-15 -4167 ((-409 |#1|) |#1| (-774))) (-15 -4167 ((-409 |#1|) |#1| (-644 (-774)))) (-15 -4167 ((-409 |#1|) |#1| (-644 (-774)) (-774))) (-15 -4167 ((-409 |#1|) |#1| (-774) (-774))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1|)) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-774))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-644 (-774)))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-644 (-774)) (-774))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-644 (-774)) (-774) (-112))) (-15 -4168 ((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112))) (-15 -2023 ((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112) (-1101 (-774)) (-774)))) (-1246 (-550))) (T -446)) +((-2023 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-774))) (-5 *6 (-774)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4168 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2033 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-644 (-774))) (-5 *5 (-774)) (-5 *6 (-112)) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) (-2033 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-644 (-774))) (-5 *5 (-774)) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) (-2033 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-644 (-774))) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) (-2033 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-774)) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) (-2033 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-923)) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-774))) (-5 *5 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-774))) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4167 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4166 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-774))) (-5 *5 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-774))) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2021 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2020 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2019 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2018 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2016 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2015 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2980 (-550)) (|:| -1956 (-644 *3)))) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4166 *4) (|:| -4382 (-550))))) (-4 *4 (-1246 (-550))) (-5 *2 (-774)) (-5 *1 (-446 *4)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2013 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2012 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4166 *4) (|:| -4382 (-550))))) (-4 *4 (-1246 (-550))) (-5 *2 (-739 (-774))) (-5 *1 (-446 *4)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| *4) (|:| -2560 (-550))))))) (-4 *4 (-1246 (-550))) (-5 *2 (-409 *4)) (-5 *1 (-446 *4))))) +(-10 -7 (-15 -2011 ((-409 |#1|) (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))))) (-15 -2032 ((-739 (-774)) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))))) (-15 -2012 ((-923))) (-15 -2012 ((-923) (-923))) (-15 -2013 ((-923))) (-15 -2013 ((-923) (-923))) (-15 -2014 ((-774) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))))) (-15 -2015 ((-2 (|:| -2980 (-550)) (|:| -1956 (-644 |#1|))) |#1|)) (-15 -2016 ((-112))) (-15 -2017 ((-112) (-112))) (-15 -2018 ((-112))) (-15 -2019 ((-112) (-112))) (-15 -2020 ((-112) |#1|)) (-15 -2021 ((-112))) (-15 -2022 ((-112) (-112))) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4166 ((-409 |#1|) |#1| (-774))) (-15 -4166 ((-409 |#1|) |#1| (-644 (-774)))) (-15 -4166 ((-409 |#1|) |#1| (-644 (-774)) (-774))) (-15 -4166 ((-409 |#1|) |#1| (-774) (-774))) (-15 -4167 ((-409 |#1|) |#1|)) (-15 -4167 ((-409 |#1|) |#1| (-774))) (-15 -4167 ((-409 |#1|) |#1| (-644 (-774)))) (-15 -4167 ((-409 |#1|) |#1| (-644 (-774)) (-774))) (-15 -4167 ((-409 |#1|) |#1| (-774) (-774))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1|)) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-774))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-644 (-774)))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-644 (-774)) (-774))) (-15 -2033 ((-3 |#1| "failed") (-923) |#1| (-644 (-774)) (-774) (-112))) (-15 -4168 ((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112))) (-15 -2023 ((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112) (-1101 (-774)) (-774)))) +((-2027 (((-550) |#2|) 52) (((-550) |#2| (-774)) 51)) (-2026 (((-550) |#2|) 67)) (-2028 ((|#3| |#2|) 26)) (-3538 ((|#3| |#2| (-923)) 15)) (-4267 ((|#3| |#2|) 16)) (-2029 ((|#3| |#2|) 9)) (-3005 ((|#3| |#2|) 10)) (-2025 ((|#3| |#2| (-923)) 74) ((|#3| |#2|) 34)) (-2024 (((-550) |#2|) 69))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2024 ((-550) |#2|)) (-15 -2025 (|#3| |#2|)) (-15 -2025 (|#3| |#2| (-923))) (-15 -2026 ((-550) |#2|)) (-15 -2027 ((-550) |#2| (-774))) (-15 -2027 ((-550) |#2|)) (-15 -3538 (|#3| |#2| (-923))) (-15 -2028 (|#3| |#2|)) (-15 -2029 (|#3| |#2|)) (-15 -3005 (|#3| |#2|)) (-15 -4267 (|#3| |#2|))) (-1053) (-1246 |#1|) (-13 (-408) (-1042 |#1|) (-366) (-1206) (-286))) (T -447)) +((-4267 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) (-3005 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) (-2029 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *2 (-13 (-408) (-1042 *5) (-366) (-1206) (-286))) (-5 *1 (-447 *5 *3 *2)) (-4 *3 (-1246 *5)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *4 *3 *5)) (-4 *3 (-1246 *4)) (-4 *5 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))))) (-2027 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *5 *3 *6)) (-4 *3 (-1246 *5)) (-4 *6 (-13 (-408) (-1042 *5) (-366) (-1206) (-286))))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *4 *3 *5)) (-4 *3 (-1246 *4)) (-4 *5 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *2 (-13 (-408) (-1042 *5) (-366) (-1206) (-286))) (-5 *1 (-447 *5 *3 *2)) (-4 *3 (-1246 *5)))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *4 *3 *5)) (-4 *3 (-1246 *4)) (-4 *5 (-13 (-408) (-1042 *4) (-366) (-1206) (-286)))))) +(-10 -7 (-15 -2024 ((-550) |#2|)) (-15 -2025 (|#3| |#2|)) (-15 -2025 (|#3| |#2| (-923))) (-15 -2026 ((-550) |#2|)) (-15 -2027 ((-550) |#2| (-774))) (-15 -2027 ((-550) |#2|)) (-15 -3538 (|#3| |#2| (-923))) (-15 -2028 (|#3| |#2|)) (-15 -2029 (|#3| |#2|)) (-15 -3005 (|#3| |#2|)) (-15 -4267 (|#3| |#2|))) +((-3780 ((|#2| (-1270 |#1|)) 45)) (-2031 ((|#2| |#2| |#1|) 61)) (-2030 ((|#2| |#2| |#1|) 53)) (-2445 ((|#2| |#2|) 49)) (-3595 (((-112) |#2|) 36)) (-2034 (((-644 |#2|) (-923) (-409 |#2|)) 24)) (-2033 ((|#2| (-923) (-409 |#2|)) 28)) (-2032 (((-739 (-774)) (-409 |#2|)) 33))) +(((-448 |#1| |#2|) (-10 -7 (-15 -3595 ((-112) |#2|)) (-15 -3780 (|#2| (-1270 |#1|))) (-15 -2445 (|#2| |#2|)) (-15 -2030 (|#2| |#2| |#1|)) (-15 -2031 (|#2| |#2| |#1|)) (-15 -2032 ((-739 (-774)) (-409 |#2|))) (-15 -2033 (|#2| (-923) (-409 |#2|))) (-15 -2034 ((-644 |#2|) (-923) (-409 |#2|)))) (-1053) (-1246 |#1|)) (T -448)) +((-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-409 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-1053)) (-5 *2 (-644 *6)) (-5 *1 (-448 *5 *6)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-409 *2)) (-4 *2 (-1246 *5)) (-5 *1 (-448 *5 *2)) (-4 *5 (-1053)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-1053)) (-5 *2 (-739 (-774))) (-5 *1 (-448 *4 *5)))) (-2031 (*1 *2 *2 *3) (-12 (-4 *3 (-1053)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1246 *3)))) (-2030 (*1 *2 *2 *3) (-12 (-4 *3 (-1053)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1246 *3)))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1246 *3)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1270 *4)) (-4 *4 (-1053)) (-4 *2 (-1246 *4)) (-5 *1 (-448 *4 *2)))) (-3595 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -3595 ((-112) |#2|)) (-15 -3780 (|#2| (-1270 |#1|))) (-15 -2445 (|#2| |#2|)) (-15 -2030 (|#2| |#2| |#1|)) (-15 -2031 (|#2| |#2| |#1|)) (-15 -2032 ((-739 (-774)) (-409 |#2|))) (-15 -2033 (|#2| (-923) (-409 |#2|))) (-15 -2034 ((-644 |#2|) (-923) (-409 |#2|)))) +((-2037 (((-774)) 59)) (-2041 (((-774)) 29 (|has| |#1| (-408))) (((-774) (-774)) 28 (|has| |#1| (-408)))) (-2040 (((-550) |#1|) 25 (|has| |#1| (-408)))) (-2039 (((-550) |#1|) 27 (|has| |#1| (-408)))) (-2036 (((-774)) 58) (((-774) (-774)) 57)) (-2035 ((|#1| (-774) (-550)) 37)) (-2038 (((-1276)) 61))) +(((-449 |#1|) (-10 -7 (-15 -2035 (|#1| (-774) (-550))) (-15 -2036 ((-774) (-774))) (-15 -2036 ((-774))) (-15 -2037 ((-774))) (-15 -2038 ((-1276))) (IF (|has| |#1| (-408)) (PROGN (-15 -2039 ((-550) |#1|)) (-15 -2040 ((-550) |#1|)) (-15 -2041 ((-774) (-774))) (-15 -2041 ((-774)))) |%noBranch|)) (-1053)) (T -449)) +((-2041 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053)))) (-2040 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053)))) (-2039 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053)))) (-2038 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-449 *3)) (-4 *3 (-1053)))) (-2037 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-1053)))) (-2036 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-1053)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-1053)))) (-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-550)) (-5 *1 (-449 *2)) (-4 *2 (-1053))))) +(-10 -7 (-15 -2035 (|#1| (-774) (-550))) (-15 -2036 ((-774) (-774))) (-15 -2036 ((-774))) (-15 -2037 ((-774))) (-15 -2038 ((-1276))) (IF (|has| |#1| (-408)) (PROGN (-15 -2039 ((-550) |#1|)) (-15 -2040 ((-550) |#1|)) (-15 -2041 ((-774) (-774))) (-15 -2041 ((-774)))) |%noBranch|)) +((-2042 (((-644 (-550)) (-550)) 76)) (-4157 (((-112) (-169 (-550))) 82)) (-4166 (((-409 (-169 (-550))) (-169 (-550))) 75))) +(((-450) (-10 -7 (-15 -4166 ((-409 (-169 (-550))) (-169 (-550)))) (-15 -2042 ((-644 (-550)) (-550))) (-15 -4157 ((-112) (-169 (-550)))))) (T -450)) +((-4157 (*1 *2 *3) (-12 (-5 *3 (-169 (-550))) (-5 *2 (-112)) (-5 *1 (-450)))) (-2042 (*1 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-450)) (-5 *3 (-550)))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-409 (-169 (-550)))) (-5 *1 (-450)) (-5 *3 (-169 (-550)))))) +(-10 -7 (-15 -4166 ((-409 (-169 (-550))) (-169 (-550)))) (-15 -2042 ((-644 (-550)) (-550))) (-15 -4157 ((-112) (-169 (-550))))) +((-3349 ((|#4| |#4| (-644 |#4|)) 20 (|has| |#1| (-366)))) (-2402 (((-644 |#4|) (-644 |#4|) (-1163) (-1163)) 46) (((-644 |#4|) (-644 |#4|) (-1163)) 45) (((-644 |#4|) (-644 |#4|)) 34))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-644 |#4|) (-644 |#4|))) (-15 -2402 ((-644 |#4|) (-644 |#4|) (-1163))) (-15 -2402 ((-644 |#4|) (-644 |#4|) (-1163) (-1163))) (IF (|has| |#1| (-366)) (-15 -3349 (|#4| |#4| (-644 |#4|))) |%noBranch|)) (-456) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -451)) +((-3349 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-366)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-451 *4 *5 *6 *2)))) (-2402 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-451 *3 *4 *5 *6))))) +(-10 -7 (-15 -2402 ((-644 |#4|) (-644 |#4|))) (-15 -2402 ((-644 |#4|) (-644 |#4|) (-1163))) (-15 -2402 ((-644 |#4|) (-644 |#4|) (-1163) (-1163))) (IF (|has| |#1| (-366)) (-15 -3349 (|#4| |#4| (-644 |#4|))) |%noBranch|)) +((-2043 ((|#4| |#4| (-644 |#4|)) 82)) (-2044 (((-644 |#4|) (-644 |#4|) (-1163) (-1163)) 22) (((-644 |#4|) (-644 |#4|) (-1163)) 21) (((-644 |#4|) (-644 |#4|)) 13))) +(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2043 (|#4| |#4| (-644 |#4|))) (-15 -2044 ((-644 |#4|) (-644 |#4|))) (-15 -2044 ((-644 |#4|) (-644 |#4|) (-1163))) (-15 -2044 ((-644 |#4|) (-644 |#4|) (-1163) (-1163)))) (-309) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -452)) +((-2044 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-309)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2044 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-309)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2043 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-309)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-452 *4 *5 *6 *2))))) +(-10 -7 (-15 -2043 (|#4| |#4| (-644 |#4|))) (-15 -2044 ((-644 |#4|) (-644 |#4|))) (-15 -2044 ((-644 |#4|) (-644 |#4|) (-1163))) (-15 -2044 ((-644 |#4|) (-644 |#4|) (-1163) (-1163)))) +((-2046 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 89) (((-644 (-644 |#4|)) (-644 |#4|)) 88) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112)) 82) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|)) 83)) (-2045 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 55) (((-644 (-644 |#4|)) (-644 |#4|)) 77))) +(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2045 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2045 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) (-13 (-309) (-147)) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -453)) +((-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2046 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-2046 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-2045 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(-10 -7 (-15 -2045 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2045 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2046 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) +((-2070 (((-774) |#4|) 12)) (-2058 (((-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|))) |#4| (-774) (-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|)))) 39)) (-2060 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2059 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2048 ((|#4| |#4| (-644 |#4|)) 54)) (-2056 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|)) 96)) (-2063 (((-1276) |#4|) 59)) (-2066 (((-1276) (-644 |#4|)) 69)) (-2064 (((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550)) 66)) (-2067 (((-1276) (-550)) 112)) (-2061 (((-644 |#4|) (-644 |#4|)) 104)) (-2069 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|)) |#4| (-774)) 31)) (-2062 (((-550) |#4|) 109)) (-2057 ((|#4| |#4|) 37)) (-2049 (((-644 |#4|) (-644 |#4|) (-550) (-550)) 74)) (-2065 (((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550)) 125)) (-2068 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2050 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2055 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2054 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2051 (((-112) |#2| |#2|) 75)) (-2053 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2052 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2047 ((|#4| |#4| (-644 |#4|)) 97))) +(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2047 (|#4| |#4| (-644 |#4|))) (-15 -2048 (|#4| |#4| (-644 |#4|))) (-15 -2049 ((-644 |#4|) (-644 |#4|) (-550) (-550))) (-15 -2050 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2051 ((-112) |#2| |#2|)) (-15 -2052 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2053 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2054 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2055 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2056 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -2057 (|#4| |#4|)) (-15 -2058 ((-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|))) |#4| (-774) (-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|))))) (-15 -2059 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2060 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2061 ((-644 |#4|) (-644 |#4|))) (-15 -2062 ((-550) |#4|)) (-15 -2063 ((-1276) |#4|)) (-15 -2064 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550))) (-15 -2065 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550))) (-15 -2066 ((-1276) (-644 |#4|))) (-15 -2067 ((-1276) (-550))) (-15 -2068 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2069 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|)) |#4| (-774))) (-15 -2070 ((-774) |#4|))) (-456) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -454)) +((-2070 (*1 *2 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-774)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-774)) (|:| -2184 *4))) (-5 *5 (-774)) (-4 *4 (-954 *6 *7 *8)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-454 *6 *7 *8 *4)))) (-2068 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-796)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1276)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1276)) (-5 *1 (-454 *4 *5 *6 *7)))) (-2065 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-774)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-796)) (-4 *4 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *7 (-853)) (-5 *1 (-454 *5 *6 *7 *4)))) (-2064 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-774)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-796)) (-4 *4 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *7 (-853)) (-5 *1 (-454 *5 *6 *7 *4)))) (-2063 (*1 *2 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1276)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-550)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2060 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-774)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-796)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *5 (-853)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-796)) (-4 *2 (-954 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) (-4 *4 (-456)) (-4 *6 (-853)))) (-2058 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 *3)))) (-5 *4 (-774)) (-4 *3 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-454 *5 *6 *7 *3)))) (-2057 (*1 *2 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-954 *3 *4 *5)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-454 *5 *6 *7 *3)))) (-2055 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-774)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-796)) (-4 *6 (-954 *4 *3 *5)) (-4 *4 (-456)) (-4 *5 (-853)) (-5 *1 (-454 *4 *3 *5 *6)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-774)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-796)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *5 (-853)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-796)) (-4 *3 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *3)))) (-2052 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-456)) (-4 *3 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-954 *4 *3 *5)))) (-2051 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *3 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-954 *4 *3 *5)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-796)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-2049 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-550)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *7)))) (-2048 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *2)))) (-2047 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *2))))) +(-10 -7 (-15 -2047 (|#4| |#4| (-644 |#4|))) (-15 -2048 (|#4| |#4| (-644 |#4|))) (-15 -2049 ((-644 |#4|) (-644 |#4|) (-550) (-550))) (-15 -2050 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2051 ((-112) |#2| |#2|)) (-15 -2052 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2053 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2054 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2055 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2056 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -2057 (|#4| |#4|)) (-15 -2058 ((-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|))) |#4| (-774) (-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|))))) (-15 -2059 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2060 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2061 ((-644 |#4|) (-644 |#4|))) (-15 -2062 ((-550) |#4|)) (-15 -2063 ((-1276) |#4|)) (-15 -2064 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550))) (-15 -2065 ((-550) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-550) (-550) (-550) (-550))) (-15 -2066 ((-1276) (-644 |#4|))) (-15 -2067 ((-1276) (-550))) (-15 -2068 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2069 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-774)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-774)) (|:| -2184 |#4|)) |#4| (-774))) (-15 -2070 ((-774) |#4|))) +((-2071 (($ $ $) 14) (($ (-644 $)) 21)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 46)) (-3566 (($ $ $) NIL) (($ (-644 $)) 22))) +(((-455 |#1|) (-10 -8 (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2071 (|#1| (-644 |#1|))) (-15 -2071 (|#1| |#1| |#1|)) (-15 -3566 (|#1| (-644 |#1|))) (-15 -3566 (|#1| |#1| |#1|))) (-456)) (T -455)) +NIL +(-10 -8 (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2071 (|#1| (-644 |#1|))) (-15 -2071 (|#1| |#1| |#1|)) (-15 -3566 (|#1| (-644 |#1|))) (-15 -3566 (|#1| |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3891 (((-3 $ "failed") $ $) 48)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-456) (-140)) (T -456)) +((-3566 (*1 *1 *1 *1) (-4 *1 (-456))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-456)))) (-2071 (*1 *1 *1 *1) (-4 *1 (-456))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-456)))) (-3113 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-456))))) +(-13 (-561) (-10 -8 (-15 -3566 ($ $ $)) (-15 -3566 ($ (-644 $))) (-15 -2071 ($ $ $)) (-15 -2071 ($ (-644 $))) (-15 -3113 ((-1175 $) (-1175 $) (-1175 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1949 (((-3 $ #1="failed")) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3645 (((-1270 (-692 (-411 (-950 |#1|)))) (-1270 $)) NIL) (((-1270 (-692 (-411 (-950 |#1|))))) NIL)) (-1899 (((-1270 $)) NIL)) (-4158 (($) NIL T CONST)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed")) NIL)) (-1873 (((-3 $ #1#)) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-1965 (((-692 (-411 (-950 |#1|))) (-1270 $)) NIL) (((-692 (-411 (-950 |#1|)))) NIL)) (-1897 (((-411 (-950 |#1|)) $) NIL)) (-1963 (((-692 (-411 (-950 |#1|))) $ (-1270 $)) NIL) (((-692 (-411 (-950 |#1|))) $) NIL)) (-2569 (((-3 $ #1#) $) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-2080 (((-1175 (-950 (-411 (-950 |#1|))))) NIL (|has| (-411 (-950 |#1|)) (-366))) (((-1175 (-411 (-950 |#1|)))) 92 (|has| |#1| (-561)))) (-2572 (($ $ (-923)) NIL)) (-1895 (((-411 (-950 |#1|)) $) NIL)) (-1875 (((-1175 (-411 (-950 |#1|))) $) 90 (|has| (-411 (-950 |#1|)) (-561)))) (-1967 (((-411 (-950 |#1|)) (-1270 $)) NIL) (((-411 (-950 |#1|))) NIL)) (-1893 (((-1175 (-411 (-950 |#1|))) $) NIL)) (-1887 (((-112)) NIL)) (-1969 (($ (-1270 (-411 (-950 |#1|))) (-1270 $)) 116) (($ (-1270 (-411 (-950 |#1|)))) NIL)) (-3892 (((-3 $ #1#) $) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-3515 (((-923)) NIL)) (-1884 (((-112)) NIL)) (-2596 (($ $ (-923)) NIL)) (-1880 (((-112)) NIL)) (-1878 (((-112)) NIL)) (-1882 (((-112)) NIL)) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed")) NIL)) (-1874 (((-3 $ #1#)) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-1966 (((-692 (-411 (-950 |#1|))) (-1270 $)) NIL) (((-692 (-411 (-950 |#1|)))) NIL)) (-1898 (((-411 (-950 |#1|)) $) NIL)) (-1964 (((-692 (-411 (-950 |#1|))) $ (-1270 $)) NIL) (((-692 (-411 (-950 |#1|))) $) NIL)) (-2570 (((-3 $ #1#) $) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-2084 (((-1175 (-950 (-411 (-950 |#1|))))) NIL (|has| (-411 (-950 |#1|)) (-366))) (((-1175 (-411 (-950 |#1|)))) 91 (|has| |#1| (-561)))) (-2571 (($ $ (-923)) NIL)) (-1896 (((-411 (-950 |#1|)) $) NIL)) (-1876 (((-1175 (-411 (-950 |#1|))) $) 87 (|has| (-411 (-950 |#1|)) (-561)))) (-1968 (((-411 (-950 |#1|)) (-1270 $)) NIL) (((-411 (-950 |#1|))) NIL)) (-1894 (((-1175 (-411 (-950 |#1|))) $) NIL)) (-1888 (((-112)) NIL)) (-3665 (((-1163) $) NIL)) (-1879 (((-112)) NIL)) (-1881 (((-112)) NIL)) (-1883 (((-112)) NIL)) (-3666 (((-1124) $) NIL)) (-2074 (((-411 (-950 |#1|)) $ $) 78 (|has| |#1| (-561)))) (-2078 (((-411 (-950 |#1|)) $) 102 (|has| |#1| (-561)))) (-2077 (((-411 (-950 |#1|)) $) 106 (|has| |#1| (-561)))) (-2079 (((-1175 (-411 (-950 |#1|))) $) 96 (|has| |#1| (-561)))) (-2073 (((-411 (-950 |#1|))) 79 (|has| |#1| (-561)))) (-2076 (((-411 (-950 |#1|)) $ $) 71 (|has| |#1| (-561)))) (-2082 (((-411 (-950 |#1|)) $) 101 (|has| |#1| (-561)))) (-2081 (((-411 (-950 |#1|)) $) 105 (|has| |#1| (-561)))) (-2083 (((-1175 (-411 (-950 |#1|))) $) 95 (|has| |#1| (-561)))) (-2075 (((-411 (-950 |#1|))) 75 (|has| |#1| (-561)))) (-2085 (($) 112) (($ (-1181)) 120) (($ (-1270 (-1181))) 119) (($ (-1270 $)) 107) (($ (-1181) (-1270 $)) 118) (($ (-1270 (-1181)) (-1270 $)) 117)) (-1886 (((-112)) NIL)) (-4233 (((-411 (-950 |#1|)) $ (-550)) NIL)) (-3646 (((-1270 (-411 (-950 |#1|))) $ (-1270 $)) 109) (((-692 (-411 (-950 |#1|))) (-1270 $) (-1270 $)) NIL) (((-1270 (-411 (-950 |#1|))) $) 45) (((-692 (-411 (-950 |#1|))) (-1270 $)) NIL)) (-4404 (((-1270 (-411 (-950 |#1|))) $) NIL) (($ (-1270 (-411 (-950 |#1|)))) 42)) (-2072 (((-644 (-950 (-411 (-950 |#1|)))) (-1270 $)) NIL) (((-644 (-950 (-411 (-950 |#1|))))) NIL) (((-644 (-950 |#1|)) (-1270 $)) 110 (|has| |#1| (-561))) (((-644 (-950 |#1|))) 111 (|has| |#1| (-561)))) (-2758 (($ $ $) NIL)) (-1892 (((-112)) NIL)) (-4380 (((-866) $) NIL) (($ (-1270 (-411 (-950 |#1|)))) NIL)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) 67)) (-1877 (((-644 (-1270 (-411 (-950 |#1|))))) NIL (|has| (-411 (-950 |#1|)) (-561)))) (-2759 (($ $ $ $) NIL)) (-1890 (((-112)) NIL)) (-2950 (($ (-692 (-411 (-950 |#1|))) $) NIL)) (-2757 (($ $ $) NIL)) (-1891 (((-112)) NIL)) (-1889 (((-112)) NIL)) (-1885 (((-112)) NIL)) (-3512 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) 108)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 63) (($ $ (-411 (-950 |#1|))) NIL) (($ (-411 (-950 |#1|)) $) NIL) (($ (-1146 |#2| (-411 (-950 |#1|))) $) NIL))) +(((-457 |#1| |#2| |#3| |#4|) (-13 (-422 (-411 (-950 |#1|))) (-651 (-1146 |#2| (-411 (-950 |#1|)))) (-10 -8 (-15 -4380 ($ (-1270 (-411 (-950 |#1|))))) (-15 -2087 ((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed"))) (-15 -2086 ((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed"))) (-15 -2085 ($)) (-15 -2085 ($ (-1181))) (-15 -2085 ($ (-1270 (-1181)))) (-15 -2085 ($ (-1270 $))) (-15 -2085 ($ (-1181) (-1270 $))) (-15 -2085 ($ (-1270 (-1181)) (-1270 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -2084 ((-1175 (-411 (-950 |#1|))))) (-15 -2083 ((-1175 (-411 (-950 |#1|))) $)) (-15 -2082 ((-411 (-950 |#1|)) $)) (-15 -2081 ((-411 (-950 |#1|)) $)) (-15 -2080 ((-1175 (-411 (-950 |#1|))))) (-15 -2079 ((-1175 (-411 (-950 |#1|))) $)) (-15 -2078 ((-411 (-950 |#1|)) $)) (-15 -2077 ((-411 (-950 |#1|)) $)) (-15 -2076 ((-411 (-950 |#1|)) $ $)) (-15 -2075 ((-411 (-950 |#1|)))) (-15 -2074 ((-411 (-950 |#1|)) $ $)) (-15 -2073 ((-411 (-950 |#1|)))) (-15 -2072 ((-644 (-950 |#1|)) (-1270 $))) (-15 -2072 ((-644 (-950 |#1|))))) |%noBranch|))) (-173) (-923) (-644 (-1181)) (-1270 (-692 |#1|))) (T -457)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1270 (-411 (-950 *3)))) (-4 *3 (-173)) (-14 *6 (-1270 (-692 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))))) (-2087 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-457 *3 *4 *5 *6)) (|:| -2192 (-644 (-457 *3 *4 *5 *6))))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2086 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-457 *3 *4 *5 *6)) (|:| -2192 (-644 (-457 *3 *4 *5 *6))))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2085 (*1 *1) (-12 (-5 *1 (-457 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-923)) (-14 *4 (-644 (-1181))) (-14 *5 (-1270 (-692 *2))))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 *2)) (-14 *6 (-1270 (-692 *3))))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1270 (-1181))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1270 (-457 *3 *4 *5 *6))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-457 *4 *5 *6 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-923)) (-14 *6 (-644 *2)) (-14 *7 (-1270 (-692 *4))))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1270 (-1181))) (-5 *3 (-1270 (-457 *4 *5 *6 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-923)) (-14 *6 (-644 (-1181))) (-14 *7 (-1270 (-692 *4))))) (-2084 (*1 *2) (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2080 (*1 *2) (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2075 (*1 *2) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2074 (*1 *2 *1 *1) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2073 (*1 *2) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1270 (-457 *4 *5 *6 *7))) (-5 *2 (-644 (-950 *4))) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) (-14 *5 (-923)) (-14 *6 (-644 (-1181))) (-14 *7 (-1270 (-692 *4))))) (-2072 (*1 *2) (-12 (-5 *2 (-644 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3)))))) +(-13 (-422 (-411 (-950 |#1|))) (-651 (-1146 |#2| (-411 (-950 |#1|)))) (-10 -8 (-15 -4380 ($ (-1270 (-411 (-950 |#1|))))) (-15 -2087 ((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed"))) (-15 -2086 ((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) "failed"))) (-15 -2085 ($)) (-15 -2085 ($ (-1181))) (-15 -2085 ($ (-1270 (-1181)))) (-15 -2085 ($ (-1270 $))) (-15 -2085 ($ (-1181) (-1270 $))) (-15 -2085 ($ (-1270 (-1181)) (-1270 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -2084 ((-1175 (-411 (-950 |#1|))))) (-15 -2083 ((-1175 (-411 (-950 |#1|))) $)) (-15 -2082 ((-411 (-950 |#1|)) $)) (-15 -2081 ((-411 (-950 |#1|)) $)) (-15 -2080 ((-1175 (-411 (-950 |#1|))))) (-15 -2079 ((-1175 (-411 (-950 |#1|))) $)) (-15 -2078 ((-411 (-950 |#1|)) $)) (-15 -2077 ((-411 (-950 |#1|)) $)) (-15 -2076 ((-411 (-950 |#1|)) $ $)) (-15 -2075 ((-411 (-950 |#1|)))) (-15 -2074 ((-411 (-950 |#1|)) $ $)) (-15 -2073 ((-411 (-950 |#1|)))) (-15 -2072 ((-644 (-950 |#1|)) (-1270 $))) (-15 -2072 ((-644 (-950 |#1|))))) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 18)) (-3487 (((-644 (-867 |#1|)) $) 90)) (-3489 (((-1175 $) $ (-867 |#1|)) 55) (((-1175 |#2|) $) 140)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2243 (($ $) NIL (|has| |#2| (-561)))) (-2241 (((-112) $) NIL (|has| |#2| (-561)))) (-3224 (((-774) $) 27) (((-774) $ (-644 (-867 |#1|))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4208 (($ $) NIL (|has| |#2| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#2| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) 53) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-867 |#1|) #2#) $) NIL)) (-3578 ((|#2| $) 51) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-867 |#1|) $) NIL)) (-4190 (($ $ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-2117 (($ $ (-644 (-550))) 96)) (-4393 (($ $) 83)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#2| (-914)))) (-1771 (($ $ |#2| |#3| $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) 68)) (-3490 (($ (-1175 |#2|) (-867 |#1|)) 145) (($ (-1175 $) (-867 |#1|)) 61)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) 71)) (-3296 (($ |#2| |#3|) 38) (($ $ (-867 |#1|) (-774)) 40) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-867 |#1|)) NIL)) (-3225 ((|#3| $) NIL) (((-774) $ (-867 |#1|)) 59) (((-644 (-774)) $ (-644 (-867 |#1|))) 66)) (-1772 (($ (-1 |#3| |#3|) $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-3488 (((-3 (-867 |#1|) #3="failed") $) 48)) (-3297 (($ $) NIL)) (-3596 ((|#2| $) 50)) (-2071 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-867 |#1|)) (|:| -2566 (-774))) #3#) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) 49)) (-1973 ((|#2| $) 138)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) 151 (|has| |#2| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#2| (-914)))) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-867 |#1|) |#2|) 103) (($ $ (-644 (-867 |#1|)) (-644 |#2|)) 109) (($ $ (-867 |#1|) $) 101) (($ $ (-644 (-867 |#1|)) (-644 $)) 127)) (-4191 (($ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-4244 (($ $ (-867 |#1|)) 62) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4382 ((|#3| $) 82) (((-774) $ (-867 |#1|)) 45) (((-644 (-774)) $ (-644 (-867 |#1|))) 65)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-867 |#1|) (-617 (-539))) (|has| |#2| (-617 (-539)))))) (-3222 ((|#2| $) 147 (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-914))))) (-4380 (((-866) $) 175) (($ (-550)) NIL) (($ |#2|) 102) (($ (-867 |#1|)) 42) (($ (-411 (-550))) NIL (-3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#2| (-561)))) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ |#3|) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#2| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#2| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#2| (-561)))) (-3512 (($) 22 T CONST)) (-3069 (($) 31 T CONST)) (-3074 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) 79 (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 133)) (** (($ $ (-923)) NIL) (($ $ (-774)) 131)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 39) (($ $ (-411 (-550))) NIL (|has| |#2| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#2| (-38 (-411 (-550))))) (($ |#2| $) 78) (($ $ |#2|) NIL))) +(((-458 |#1| |#2| |#3|) (-13 (-954 |#2| |#3| (-867 |#1|)) (-10 -8 (-15 -2117 ($ $ (-644 (-550)))))) (-644 (-1181)) (-1053) (-239 (-4391 |#1|) (-774))) (T -458)) +((-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-14 *3 (-644 (-1181))) (-5 *1 (-458 *3 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-239 (-4391 *3) (-774)))))) +(-13 (-954 |#2| |#3| (-867 |#1|)) (-10 -8 (-15 -2117 ($ $ (-644 (-550)))))) +((-2091 (((-112) |#1| (-644 |#2|)) 93)) (-2089 (((-3 (-1270 (-644 |#2|)) "failed") (-774) |#1| (-644 |#2|)) 102)) (-2090 (((-3 (-644 |#2|) "failed") |#2| |#1| (-1270 (-644 |#2|))) 104)) (-2217 ((|#2| |#2| |#1|) 35)) (-2088 (((-774) |#2| (-644 |#2|)) 26))) +(((-459 |#1| |#2|) (-10 -7 (-15 -2217 (|#2| |#2| |#1|)) (-15 -2088 ((-774) |#2| (-644 |#2|))) (-15 -2089 ((-3 (-1270 (-644 |#2|)) "failed") (-774) |#1| (-644 |#2|))) (-15 -2090 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1270 (-644 |#2|)))) (-15 -2091 ((-112) |#1| (-644 |#2|)))) (-309) (-1246 |#1|)) (T -459)) +((-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-1246 *3)) (-4 *3 (-309)) (-5 *2 (-112)) (-5 *1 (-459 *3 *5)))) (-2090 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1270 (-644 *3))) (-4 *4 (-309)) (-5 *2 (-644 *3)) (-5 *1 (-459 *4 *3)) (-4 *3 (-1246 *4)))) (-2089 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-774)) (-4 *4 (-309)) (-4 *6 (-1246 *4)) (-5 *2 (-1270 (-644 *6))) (-5 *1 (-459 *4 *6)) (-5 *5 (-644 *6)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-309)) (-5 *2 (-774)) (-5 *1 (-459 *5 *3)))) (-2217 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-459 *3 *2)) (-4 *2 (-1246 *3))))) +(-10 -7 (-15 -2217 (|#2| |#2| |#1|)) (-15 -2088 ((-774) |#2| (-644 |#2|))) (-15 -2089 ((-3 (-1270 (-644 |#2|)) "failed") (-774) |#1| (-644 |#2|))) (-15 -2090 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1270 (-644 |#2|)))) (-15 -2091 ((-112) |#1| (-644 |#2|)))) +((-4166 (((-409 |#5|) |#5|) 24))) +(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4166 ((-409 |#5|) |#5|))) (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181))))) (-796) (-561) (-561) (-954 |#4| |#2| |#1|)) (T -460)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181)))))) (-4 *5 (-796)) (-4 *7 (-561)) (-5 *2 (-409 *3)) (-5 *1 (-460 *4 *5 *6 *7 *3)) (-4 *6 (-561)) (-4 *3 (-954 *7 *5 *4))))) +(-10 -7 (-15 -4166 ((-409 |#5|) |#5|))) +((-3105 ((|#3|) 38)) (-3113 (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 34))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3113 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3105 (|#3|))) (-796) (-853) (-914) (-954 |#3| |#1| |#2|)) (T -461)) +((-3105 (*1 *2) (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-914)) (-5 *1 (-461 *3 *4 *2 *5)) (-4 *5 (-954 *2 *3 *4)))) (-3113 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-954 *5 *3 *4)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-914)) (-5 *1 (-461 *3 *4 *5 *6))))) +(-10 -7 (-15 -3113 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3105 (|#3|))) +((-4166 (((-409 (-1175 |#1|)) (-1175 |#1|)) 43))) +(((-462 |#1|) (-10 -7 (-15 -4166 ((-409 (-1175 |#1|)) (-1175 |#1|)))) (-309)) (T -462)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-309)) (-5 *2 (-409 (-1175 *4))) (-5 *1 (-462 *4)) (-5 *3 (-1175 *4))))) +(-10 -7 (-15 -4166 ((-409 (-1175 |#1|)) (-1175 |#1|)))) +((-4163 (((-51) |#2| (-1181) (-295 |#2|) (-1237 (-774))) 44) (((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-774))) 43) (((-51) |#2| (-1181) (-295 |#2|)) 36) (((-51) (-1 |#2| (-550)) (-295 |#2|)) 29)) (-4252 (((-51) |#2| (-1181) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550))) 88) (((-51) (-1 |#2| (-411 (-550))) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550))) 87) (((-51) |#2| (-1181) (-295 |#2|) (-1237 (-550))) 86) (((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-550))) 85) (((-51) |#2| (-1181) (-295 |#2|)) 80) (((-51) (-1 |#2| (-550)) (-295 |#2|)) 79)) (-4215 (((-51) |#2| (-1181) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550))) 74) (((-51) (-1 |#2| (-411 (-550))) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550))) 72)) (-4212 (((-51) |#2| (-1181) (-295 |#2|) (-1237 (-550))) 51) (((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-550))) 50))) +(((-463 |#1| |#2|) (-10 -7 (-15 -4163 ((-51) (-1 |#2| (-550)) (-295 |#2|))) (-15 -4163 ((-51) |#2| (-1181) (-295 |#2|))) (-15 -4163 ((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-774)))) (-15 -4163 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-774)))) (-15 -4212 ((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-550)))) (-15 -4212 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-550)))) (-15 -4215 ((-51) (-1 |#2| (-411 (-550))) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550)))) (-15 -4215 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550)))) (-15 -4252 ((-51) (-1 |#2| (-550)) (-295 |#2|))) (-15 -4252 ((-51) |#2| (-1181) (-295 |#2|))) (-15 -4252 ((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-550)))) (-15 -4252 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-550)))) (-15 -4252 ((-51) (-1 |#2| (-411 (-550))) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550)))) (-15 -4252 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550))))) (-13 (-561) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -463)) +((-4252 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-411 (-550)))) (-5 *7 (-411 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *8))) (-4 *8 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *8 *3)))) (-4252 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-411 (-550)))) (-5 *4 (-295 *8)) (-5 *5 (-1237 (-411 (-550)))) (-5 *6 (-411 (-550))) (-4 *8 (-13 (-27) (-1206) (-425 *7))) (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *7 *8)))) (-4252 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *7))) (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *7 *3)))) (-4252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-295 *7)) (-5 *5 (-1237 (-550))) (-4 *7 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *6 *7)))) (-4252 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *6 *3)))) (-4252 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *5 *6)))) (-4215 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-411 (-550)))) (-5 *7 (-411 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *8))) (-4 *8 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *8 *3)))) (-4215 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-411 (-550)))) (-5 *4 (-295 *8)) (-5 *5 (-1237 (-411 (-550)))) (-5 *6 (-411 (-550))) (-4 *8 (-13 (-27) (-1206) (-425 *7))) (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *7 *8)))) (-4212 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *7))) (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *7 *3)))) (-4212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-295 *7)) (-5 *5 (-1237 (-550))) (-4 *7 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *6 *7)))) (-4163 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-774))) (-4 *3 (-13 (-27) (-1206) (-425 *7))) (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *7 *3)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-295 *7)) (-5 *5 (-1237 (-774))) (-4 *7 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *6 *7)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *6 *3)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) (-5 *1 (-463 *5 *6))))) +(-10 -7 (-15 -4163 ((-51) (-1 |#2| (-550)) (-295 |#2|))) (-15 -4163 ((-51) |#2| (-1181) (-295 |#2|))) (-15 -4163 ((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-774)))) (-15 -4163 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-774)))) (-15 -4212 ((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-550)))) (-15 -4212 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-550)))) (-15 -4215 ((-51) (-1 |#2| (-411 (-550))) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550)))) (-15 -4215 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550)))) (-15 -4252 ((-51) (-1 |#2| (-550)) (-295 |#2|))) (-15 -4252 ((-51) |#2| (-1181) (-295 |#2|))) (-15 -4252 ((-51) (-1 |#2| (-550)) (-295 |#2|) (-1237 (-550)))) (-15 -4252 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-550)))) (-15 -4252 ((-51) (-1 |#2| (-411 (-550))) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550)))) (-15 -4252 ((-51) |#2| (-1181) (-295 |#2|) (-1237 (-411 (-550))) (-411 (-550))))) +((-2217 ((|#2| |#2| |#1|) 15)) (-2093 (((-644 |#2|) |#2| (-644 |#2|) |#1| (-923)) 82)) (-2092 (((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-923)) 72))) +(((-464 |#1| |#2|) (-10 -7 (-15 -2092 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-923))) (-15 -2093 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-923))) (-15 -2217 (|#2| |#2| |#1|))) (-309) (-1246 |#1|)) (T -464)) +((-2217 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-464 *3 *2)) (-4 *2 (-1246 *3)))) (-2093 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-644 *3)) (-5 *5 (-923)) (-4 *3 (-1246 *4)) (-4 *4 (-309)) (-5 *1 (-464 *4 *3)))) (-2092 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-923)) (-4 *5 (-309)) (-4 *3 (-1246 *5)) (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) (-5 *1 (-464 *5 *3)) (-5 *4 (-644 *3))))) +(-10 -7 (-15 -2092 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-923))) (-15 -2093 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-923))) (-15 -2217 (|#2| |#2| |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 28)) (-4141 (($ |#3|) 25)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4393 (($ $) 32)) (-2094 (($ |#2| |#4| $) 33)) (-3296 (($ |#2| (-716 |#3| |#4| |#5|)) 24)) (-3297 (((-716 |#3| |#4| |#5|) $) 15)) (-2096 ((|#3| $) 19)) (-2097 ((|#4| $) 17)) (-3596 ((|#2| $) 29)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-2095 (($ |#2| |#3| |#4|) 26)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 36 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 34)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-465 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-720 |#6|) (-720 |#2|) (-10 -8 (-15 -3596 (|#2| $)) (-15 -3297 ((-716 |#3| |#4| |#5|) $)) (-15 -2097 (|#4| $)) (-15 -2096 (|#3| $)) (-15 -4393 ($ $)) (-15 -3296 ($ |#2| (-716 |#3| |#4| |#5|))) (-15 -4141 ($ |#3|)) (-15 -2095 ($ |#2| |#3| |#4|)) (-15 -2094 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-644 (-1181)) (-173) (-853) (-239 (-4391 |#1|) (-774)) (-1 (-112) (-2 (|:| -2565 |#3|) (|:| -2566 |#4|)) (-2 (|:| -2565 |#3|) (|:| -2566 |#4|))) (-954 |#2| |#4| (-867 |#1|))) (T -465)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *6 (-239 (-4391 *3) (-774))) (-14 *7 (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *6)) (-2 (|:| -2565 *5) (|:| -2566 *6)))) (-5 *1 (-465 *3 *4 *5 *6 *7 *2)) (-4 *5 (-853)) (-4 *2 (-954 *4 *6 (-867 *3))))) (-3596 (*1 *2 *1) (-12 (-14 *3 (-644 (-1181))) (-4 *5 (-239 (-4391 *3) (-774))) (-14 *6 (-1 (-112) (-2 (|:| -2565 *4) (|:| -2566 *5)) (-2 (|:| -2565 *4) (|:| -2566 *5)))) (-4 *2 (-173)) (-5 *1 (-465 *3 *2 *4 *5 *6 *7)) (-4 *4 (-853)) (-4 *7 (-954 *2 *5 (-867 *3))))) (-3297 (*1 *2 *1) (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *6 (-239 (-4391 *3) (-774))) (-14 *7 (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *6)) (-2 (|:| -2565 *5) (|:| -2566 *6)))) (-5 *2 (-716 *5 *6 *7)) (-5 *1 (-465 *3 *4 *5 *6 *7 *8)) (-4 *5 (-853)) (-4 *8 (-954 *4 *6 (-867 *3))))) (-2097 (*1 *2 *1) (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-14 *6 (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *2)) (-2 (|:| -2565 *5) (|:| -2566 *2)))) (-4 *2 (-239 (-4391 *3) (-774))) (-5 *1 (-465 *3 *4 *5 *2 *6 *7)) (-4 *5 (-853)) (-4 *7 (-954 *4 *2 (-867 *3))))) (-2096 (*1 *2 *1) (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *5 (-239 (-4391 *3) (-774))) (-14 *6 (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *5)) (-2 (|:| -2565 *2) (|:| -2566 *5)))) (-4 *2 (-853)) (-5 *1 (-465 *3 *4 *2 *5 *6 *7)) (-4 *7 (-954 *4 *5 (-867 *3))))) (-4393 (*1 *1 *1) (-12 (-14 *2 (-644 (-1181))) (-4 *3 (-173)) (-4 *5 (-239 (-4391 *2) (-774))) (-14 *6 (-1 (-112) (-2 (|:| -2565 *4) (|:| -2566 *5)) (-2 (|:| -2565 *4) (|:| -2566 *5)))) (-5 *1 (-465 *2 *3 *4 *5 *6 *7)) (-4 *4 (-853)) (-4 *7 (-954 *3 *5 (-867 *2))))) (-3296 (*1 *1 *2 *3) (-12 (-5 *3 (-716 *5 *6 *7)) (-4 *5 (-853)) (-4 *6 (-239 (-4391 *4) (-774))) (-14 *7 (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *6)) (-2 (|:| -2565 *5) (|:| -2566 *6)))) (-14 *4 (-644 (-1181))) (-4 *2 (-173)) (-5 *1 (-465 *4 *2 *5 *6 *7 *8)) (-4 *8 (-954 *2 *6 (-867 *4))))) (-4141 (*1 *1 *2) (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *5 (-239 (-4391 *3) (-774))) (-14 *6 (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *5)) (-2 (|:| -2565 *2) (|:| -2566 *5)))) (-5 *1 (-465 *3 *4 *2 *5 *6 *7)) (-4 *2 (-853)) (-4 *7 (-954 *4 *5 (-867 *3))))) (-2095 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-644 (-1181))) (-4 *2 (-173)) (-4 *4 (-239 (-4391 *5) (-774))) (-14 *6 (-1 (-112) (-2 (|:| -2565 *3) (|:| -2566 *4)) (-2 (|:| -2565 *3) (|:| -2566 *4)))) (-5 *1 (-465 *5 *2 *3 *4 *6 *7)) (-4 *3 (-853)) (-4 *7 (-954 *2 *4 (-867 *5))))) (-2094 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-644 (-1181))) (-4 *2 (-173)) (-4 *3 (-239 (-4391 *4) (-774))) (-14 *6 (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *3)) (-2 (|:| -2565 *5) (|:| -2566 *3)))) (-5 *1 (-465 *4 *2 *5 *3 *6 *7)) (-4 *5 (-853)) (-4 *7 (-954 *2 *3 (-867 *4)))))) +(-13 (-720 |#6|) (-720 |#2|) (-10 -8 (-15 -3596 (|#2| $)) (-15 -3297 ((-716 |#3| |#4| |#5|) $)) (-15 -2097 (|#4| $)) (-15 -2096 (|#3| $)) (-15 -4393 ($ $)) (-15 -3296 ($ |#2| (-716 |#3| |#4| |#5|))) (-15 -4141 ($ |#3|)) (-15 -2095 ($ |#2| |#3| |#4|)) (-15 -2094 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2098 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2098 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-796) (-853) (-561) (-954 |#3| |#1| |#2|) (-13 (-1042 (-411 (-550))) (-366) (-10 -8 (-15 -4380 ($ |#4|)) (-15 -3401 (|#4| $)) (-15 -3400 (|#4| $))))) (T -466)) +((-2098 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-853)) (-4 *5 (-796)) (-4 *6 (-561)) (-4 *7 (-954 *6 *5 *3)) (-5 *1 (-466 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1042 (-411 (-550))) (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) +(-10 -7 (-15 -2098 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3487 (((-644 |#3|) $) 41)) (-3311 (((-112) $) NIL)) (-3302 (((-112) $) NIL (|has| |#1| (-561)))) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4144 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-3307 (((-112) $) NIL (|has| |#1| (-561)))) (-3309 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3308 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3310 (((-112) $) NIL (|has| |#1| (-561)))) (-3303 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 49)) (-3578 (($ (-644 |#4|)) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-3832 (($ |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4427)))) (-2126 (((-644 |#4|) $) 18 (|has| $ (-6 -4427)))) (-3602 ((|#3| $) 47)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#4|) $) 14 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-2130 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 21)) (-3317 (((-644 |#3|) $) NIL)) (-3316 (((-112) |#3| $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3666 (((-1124) $) NIL)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2128 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 39)) (-3998 (($) 17)) (-2127 (((-774) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (((-774) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) 16)) (-4404 (((-539) $) NIL (|has| |#4| (-617 (-539)))) (($ (-644 |#4|)) 51)) (-3955 (($ (-644 |#4|)) 13)) (-3313 (($ $ |#3|) NIL)) (-3315 (($ $ |#3|) NIL)) (-3314 (($ $ |#3|) NIL)) (-4380 (((-866) $) 38) (((-644 |#4|) $) 50)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 30)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-467 |#1| |#2| |#3| |#4|) (-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4404 ($ (-644 |#4|))) (-6 -4427) (-6 -4428))) (-1053) (-796) (-853) (-1069 |#1| |#2| |#3|)) (T -467)) +((-4404 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-467 *3 *4 *5 *6))))) +(-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4404 ($ (-644 |#4|))) (-6 -4427) (-6 -4428))) +((-3512 (($) 11)) (-3069 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-468 |#1| |#2| |#3|) (-10 -8 (-15 -3069 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3512 (|#1|))) (-469 |#2| |#3|) (-173) (-23)) (T -468)) +NIL +(-10 -8 (-15 -3069 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3512 (|#1|))) +((-2970 (((-112) $ $) 7)) (-3579 (((-3 |#1| "failed") $) 27)) (-3578 ((|#1| $) 28)) (-4378 (($ $ $) 24)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4382 ((|#2| $) 20)) (-4380 (((-866) $) 12) (($ |#1|) 26)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 25 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 16) (($ $ $) 14)) (-4273 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-469 |#1| |#2|) (-140) (-173) (-23)) (T -469)) +((-3069 (*1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4378 (*1 *1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))) +(-13 (-474 |t#1| |t#2|) (-1042 |t#1|) (-10 -8 (-15 (-3069) ($) -4386) (-15 -4378 ($ $ $)))) +(((-102) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-474 |#1| |#2|) . T) ((-1042 |#1|) . T) ((-1105) . T)) +((-2099 (((-1270 (-1270 (-550))) (-1270 (-1270 (-550))) (-923)) 28)) (-2100 (((-1270 (-1270 (-550))) (-923)) 23))) +(((-470) (-10 -7 (-15 -2099 ((-1270 (-1270 (-550))) (-1270 (-1270 (-550))) (-923))) (-15 -2100 ((-1270 (-1270 (-550))) (-923))))) (T -470)) +((-2100 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1270 (-1270 (-550)))) (-5 *1 (-470)))) (-2099 (*1 *2 *2 *3) (-12 (-5 *2 (-1270 (-1270 (-550)))) (-5 *3 (-923)) (-5 *1 (-470))))) +(-10 -7 (-15 -2099 ((-1270 (-1270 (-550))) (-1270 (-1270 (-550))) (-923))) (-15 -2100 ((-1270 (-1270 (-550))) (-923)))) +((-3175 (((-550) (-550)) 32) (((-550)) 24)) (-3179 (((-550) (-550)) 28) (((-550)) 20)) (-3177 (((-550) (-550)) 30) (((-550)) 22)) (-2102 (((-112) (-112)) 14) (((-112)) 12)) (-2101 (((-112) (-112)) 13) (((-112)) 11)) (-2103 (((-112) (-112)) 26) (((-112)) 17))) +(((-471) (-10 -7 (-15 -2101 ((-112))) (-15 -2102 ((-112))) (-15 -2101 ((-112) (-112))) (-15 -2102 ((-112) (-112))) (-15 -2103 ((-112))) (-15 -3177 ((-550))) (-15 -3179 ((-550))) (-15 -3175 ((-550))) (-15 -2103 ((-112) (-112))) (-15 -3177 ((-550) (-550))) (-15 -3179 ((-550) (-550))) (-15 -3175 ((-550) (-550))))) (T -471)) +((-3175 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) (-3175 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) (-3179 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) (-3177 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) (-2103 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) (-2102 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) (-2101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471))))) +(-10 -7 (-15 -2101 ((-112))) (-15 -2102 ((-112))) (-15 -2101 ((-112) (-112))) (-15 -2102 ((-112) (-112))) (-15 -2103 ((-112))) (-15 -3177 ((-550))) (-15 -3179 ((-550))) (-15 -3175 ((-550))) (-15 -2103 ((-112) (-112))) (-15 -3177 ((-550) (-550))) (-15 -3179 ((-550) (-550))) (-15 -3175 ((-550) (-550)))) +((-2970 (((-112) $ $) NIL)) (-4285 (((-644 (-381)) $) 34) (((-644 (-381)) $ (-644 (-381))) 146)) (-2108 (((-644 (-1093 (-381))) $) 16) (((-644 (-1093 (-381))) $ (-644 (-1093 (-381)))) 142)) (-2105 (((-644 (-644 (-947 (-226)))) (-644 (-644 (-947 (-226)))) (-644 (-877))) 58)) (-2109 (((-644 (-644 (-947 (-226)))) $) 137)) (-4140 (((-1276) $ (-947 (-226)) (-877)) 163)) (-2110 (($ $) 136) (($ (-644 (-644 (-947 (-226))))) 149) (($ (-644 (-644 (-947 (-226)))) (-644 (-877)) (-644 (-877)) (-644 (-923))) 148) (($ (-644 (-644 (-947 (-226)))) (-644 (-877)) (-644 (-877)) (-644 (-923)) (-644 (-263))) 150)) (-3665 (((-1163) $) NIL)) (-4294 (((-550) $) 110)) (-3666 (((-1124) $) NIL)) (-2111 (($) 147)) (-2104 (((-644 (-226)) (-644 (-644 (-947 (-226))))) 89)) (-2107 (((-1276) $ (-644 (-947 (-226))) (-877) (-877) (-923)) 155) (((-1276) $ (-947 (-226))) 157) (((-1276) $ (-947 (-226)) (-877) (-877) (-923)) 156)) (-4380 (((-866) $) 169) (($ (-644 (-644 (-947 (-226))))) 164)) (-3664 (((-112) $ $) NIL)) (-2106 (((-1276) $ (-947 (-226))) 162)) (-3457 (((-112) $ $) NIL))) +(((-472) (-13 (-1105) (-10 -8 (-15 -2111 ($)) (-15 -2110 ($ $)) (-15 -2110 ($ (-644 (-644 (-947 (-226)))))) (-15 -2110 ($ (-644 (-644 (-947 (-226)))) (-644 (-877)) (-644 (-877)) (-644 (-923)))) (-15 -2110 ($ (-644 (-644 (-947 (-226)))) (-644 (-877)) (-644 (-877)) (-644 (-923)) (-644 (-263)))) (-15 -2109 ((-644 (-644 (-947 (-226)))) $)) (-15 -4294 ((-550) $)) (-15 -2108 ((-644 (-1093 (-381))) $)) (-15 -2108 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -4285 ((-644 (-381)) $)) (-15 -4285 ((-644 (-381)) $ (-644 (-381)))) (-15 -2107 ((-1276) $ (-644 (-947 (-226))) (-877) (-877) (-923))) (-15 -2107 ((-1276) $ (-947 (-226)))) (-15 -2107 ((-1276) $ (-947 (-226)) (-877) (-877) (-923))) (-15 -2106 ((-1276) $ (-947 (-226)))) (-15 -4140 ((-1276) $ (-947 (-226)) (-877))) (-15 -4380 ($ (-644 (-644 (-947 (-226)))))) (-15 -4380 ((-866) $)) (-15 -2105 ((-644 (-644 (-947 (-226)))) (-644 (-644 (-947 (-226)))) (-644 (-877)))) (-15 -2104 ((-644 (-226)) (-644 (-644 (-947 (-226))))))))) (T -472)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-472)))) (-2111 (*1 *1) (-5 *1 (-472))) (-2110 (*1 *1 *1) (-5 *1 (-472))) (-2110 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-472)))) (-2110 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *3 (-644 (-877))) (-5 *4 (-644 (-923))) (-5 *1 (-472)))) (-2110 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *3 (-644 (-877))) (-5 *4 (-644 (-923))) (-5 *5 (-644 (-263))) (-5 *1 (-472)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-472)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-472)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-472)))) (-2108 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-472)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-472)))) (-4285 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-472)))) (-2107 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-644 (-947 (-226)))) (-5 *4 (-877)) (-5 *5 (-923)) (-5 *2 (-1276)) (-5 *1 (-472)))) (-2107 (*1 *2 *1 *3) (-12 (-5 *3 (-947 (-226))) (-5 *2 (-1276)) (-5 *1 (-472)))) (-2107 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-947 (-226))) (-5 *4 (-877)) (-5 *5 (-923)) (-5 *2 (-1276)) (-5 *1 (-472)))) (-2106 (*1 *2 *1 *3) (-12 (-5 *3 (-947 (-226))) (-5 *2 (-1276)) (-5 *1 (-472)))) (-4140 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947 (-226))) (-5 *4 (-877)) (-5 *2 (-1276)) (-5 *1 (-472)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-472)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *3 (-644 (-877))) (-5 *1 (-472)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *2 (-644 (-226))) (-5 *1 (-472))))) +(-13 (-1105) (-10 -8 (-15 -2111 ($)) (-15 -2110 ($ $)) (-15 -2110 ($ (-644 (-644 (-947 (-226)))))) (-15 -2110 ($ (-644 (-644 (-947 (-226)))) (-644 (-877)) (-644 (-877)) (-644 (-923)))) (-15 -2110 ($ (-644 (-644 (-947 (-226)))) (-644 (-877)) (-644 (-877)) (-644 (-923)) (-644 (-263)))) (-15 -2109 ((-644 (-644 (-947 (-226)))) $)) (-15 -4294 ((-550) $)) (-15 -2108 ((-644 (-1093 (-381))) $)) (-15 -2108 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -4285 ((-644 (-381)) $)) (-15 -4285 ((-644 (-381)) $ (-644 (-381)))) (-15 -2107 ((-1276) $ (-644 (-947 (-226))) (-877) (-877) (-923))) (-15 -2107 ((-1276) $ (-947 (-226)))) (-15 -2107 ((-1276) $ (-947 (-226)) (-877) (-877) (-923))) (-15 -2106 ((-1276) $ (-947 (-226)))) (-15 -4140 ((-1276) $ (-947 (-226)) (-877))) (-15 -4380 ($ (-644 (-644 (-947 (-226)))))) (-15 -4380 ((-866) $)) (-15 -2105 ((-644 (-644 (-947 (-226)))) (-644 (-644 (-947 (-226)))) (-644 (-877)))) (-15 -2104 ((-644 (-226)) (-644 (-644 (-947 (-226)))))))) +((-4271 (($ $) NIL) (($ $ $) 11))) +(((-473 |#1| |#2| |#3|) (-10 -8 (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|))) (-474 |#2| |#3|) (-173) (-23)) (T -473)) +NIL +(-10 -8 (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4382 ((|#2| $) 20)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 16) (($ $ $) 14)) (-4273 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-474 |#1| |#2|) (-140) (-173) (-23)) (T -474)) +((-4382 (*1 *2 *1) (-12 (-4 *1 (-474 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) (-3512 (*1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4271 (*1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4273 (*1 *1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))) +(-13 (-1105) (-10 -8 (-15 -4382 (|t#2| $)) (-15 (-3512) ($) -4386) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4271 ($ $)) (-15 -4273 ($ $ $)) (-15 -4271 ($ $ $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2113 (((-3 (-644 (-485 |#1| |#2|)) "failed") (-644 (-485 |#1| |#2|)) (-644 (-867 |#1|))) 134)) (-2112 (((-644 (-644 (-248 |#1| |#2|))) (-644 (-248 |#1| |#2|)) (-644 (-867 |#1|))) 131)) (-2114 (((-2 (|:| |dpolys| (-644 (-248 |#1| |#2|))) (|:| |coords| (-644 (-550)))) (-644 (-248 |#1| |#2|)) (-644 (-867 |#1|))) 86))) +(((-475 |#1| |#2| |#3|) (-10 -7 (-15 -2112 ((-644 (-644 (-248 |#1| |#2|))) (-644 (-248 |#1| |#2|)) (-644 (-867 |#1|)))) (-15 -2113 ((-3 (-644 (-485 |#1| |#2|)) "failed") (-644 (-485 |#1| |#2|)) (-644 (-867 |#1|)))) (-15 -2114 ((-2 (|:| |dpolys| (-644 (-248 |#1| |#2|))) (|:| |coords| (-644 (-550)))) (-644 (-248 |#1| |#2|)) (-644 (-867 |#1|))))) (-644 (-1181)) (-456) (-456)) (T -475)) +((-2114 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-867 *5))) (-14 *5 (-644 (-1181))) (-4 *6 (-456)) (-5 *2 (-2 (|:| |dpolys| (-644 (-248 *5 *6))) (|:| |coords| (-644 (-550))))) (-5 *1 (-475 *5 *6 *7)) (-5 *3 (-644 (-248 *5 *6))) (-4 *7 (-456)))) (-2113 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-485 *4 *5))) (-5 *3 (-644 (-867 *4))) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *1 (-475 *4 *5 *6)) (-4 *6 (-456)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-867 *5))) (-14 *5 (-644 (-1181))) (-4 *6 (-456)) (-5 *2 (-644 (-644 (-248 *5 *6)))) (-5 *1 (-475 *5 *6 *7)) (-5 *3 (-644 (-248 *5 *6))) (-4 *7 (-456))))) +(-10 -7 (-15 -2112 ((-644 (-644 (-248 |#1| |#2|))) (-644 (-248 |#1| |#2|)) (-644 (-867 |#1|)))) (-15 -2113 ((-3 (-644 (-485 |#1| |#2|)) "failed") (-644 (-485 |#1| |#2|)) (-644 (-867 |#1|)))) (-15 -2114 ((-2 (|:| |dpolys| (-644 (-248 |#1| |#2|))) (|:| |coords| (-644 (-550)))) (-644 (-248 |#1| |#2|)) (-644 (-867 |#1|))))) +((-3892 (((-3 $ "failed") $) 11)) (-3412 (($ $ $) 23)) (-2758 (($ $ $) 24)) (-4383 (($ $ $) 9)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 22))) +(((-476 |#1|) (-10 -8 (-15 -2758 (|#1| |#1| |#1|)) (-15 -3412 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -4383 (|#1| |#1| |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923)))) (-477)) (T -476)) +NIL +(-10 -8 (-15 -2758 (|#1| |#1| |#1|)) (-15 -3412 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -4383 (|#1| |#1| |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-4158 (($) 19 T CONST)) (-3892 (((-3 $ "failed") $) 16)) (-2575 (((-112) $) 18)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 25)) (-3666 (((-1124) $) 11)) (-3412 (($ $ $) 22)) (-2758 (($ $ $) 21)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3069 (($) 20 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-774)) 17) (($ $ (-550)) 23)) (* (($ $ $) 15))) +(((-477) (-140)) (T -477)) +((-2808 (*1 *1 *1) (-4 *1 (-477))) (-4383 (*1 *1 *1 *1) (-4 *1 (-477))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-477)) (-5 *2 (-550)))) (-3412 (*1 *1 *1 *1) (-4 *1 (-477))) (-2758 (*1 *1 *1 *1) (-4 *1 (-477)))) +(-13 (-729) (-10 -8 (-15 -2808 ($ $)) (-15 -4383 ($ $ $)) (-15 ** ($ $ (-550))) (-6 -4424) (-15 -3412 ($ $ $)) (-15 -2758 ($ $ $)))) +(((-102) . T) ((-616 (-866)) . T) ((-729) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 18)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) NIL) (($ $ (-411 (-550)) (-411 (-550))) NIL)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) NIL)) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) NIL) (((-411 (-550)) $ (-411 (-550))) NIL)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) NIL) (($ $ (-411 (-550))) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-411 (-550))) NIL) (($ $ (-1086) (-411 (-550))) NIL) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) 25)) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-4246 (($ $) 29 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 35 (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 30 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) NIL)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) NIL) (($ $ $) NIL (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) 28 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $ (-1267 |#2|)) 16)) (-4382 (((-411 (-550)) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1267 |#2|)) NIL) (($ (-1251 |#1| |#2| |#3|)) 9) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 21)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) 27)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-478 |#1| |#2| |#3|) (-13 (-1253 |#1|) (-10 -8 (-15 -4380 ($ (-1267 |#2|))) (-15 -4380 ($ (-1251 |#1| |#2| |#3|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -478)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-478 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3) (-5 *1 (-478 *3 *4 *5)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-478 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-478 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1253 |#1|) (-10 -8 (-15 -4380 ($ (-1267 |#2|))) (-15 -4380 ($ (-1251 |#1| |#2| |#3|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#2| $ |#1| |#2|) 18)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) 19)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) 16)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-2818 (((-644 |#1|) $) NIL)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2379 (((-644 |#1|) $) NIL)) (-2380 (((-112) |#1| $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-479 |#1| |#2| |#3| |#4|) (-1197 |#1| |#2|) (-1105) (-1105) (-1197 |#1| |#2|) |#2|) (T -479)) +NIL +(-1197 |#1| |#2|) +((-2970 (((-112) $ $) NIL)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) NIL)) (-4116 (((-644 $) (-644 |#4|)) NIL)) (-3487 (((-644 |#3|) $) NIL)) (-3311 (((-112) $) NIL)) (-3302 (((-112) $) NIL (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4122 ((|#4| |#4| $) NIL)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4144 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4158 (($) NIL T CONST)) (-3307 (((-112) $) 29 (|has| |#1| (-561)))) (-3309 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3308 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3310 (((-112) $) NIL (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3303 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3578 (($ (-644 |#4|)) NIL)) (-4232 (((-3 $ #1#) $) 45)) (-4119 ((|#4| |#4| $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-3832 (($ |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4117 ((|#4| |#4| $) NIL)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) NIL)) (-2126 (((-644 |#4|) $) 18 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3602 ((|#3| $) 38)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#4|) $) 19 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-2130 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 23)) (-3317 (((-644 |#3|) $) NIL)) (-3316 (((-112) |#3| $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-4231 (((-3 |#4| #1#) $) 42)) (-4131 (((-644 |#4|) $) NIL)) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4133 (((-112) $ $) NIL)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4121 ((|#4| |#4| $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-3 |#4| #1#) $) 40)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4113 (((-3 $ #1#) $ |#4|) 58)) (-4202 (($ $ |#4|) NIL)) (-2128 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 17)) (-3998 (($) 14)) (-4382 (((-774) $) NIL)) (-2127 (((-774) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (((-774) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) 13)) (-4404 (((-539) $) NIL (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 22)) (-3313 (($ $ |#3|) 52)) (-3315 (($ $ |#3|) 54)) (-4118 (($ $) NIL)) (-3314 (($ $ |#3|) NIL)) (-4380 (((-866) $) 35) (((-644 |#4|) $) 46)) (-4112 (((-774) $) NIL (|has| |#3| (-371)))) (-3664 (((-112) $ $) NIL)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-2129 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) NIL)) (-4367 (((-112) |#3| $) NIL)) (-3457 (((-112) $ $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-480 |#1| |#2| |#3| |#4|) (-1215 |#1| |#2| |#3| |#4|) (-561) (-796) (-853) (-1069 |#1| |#2| |#3|)) (T -480)) +NIL +(-1215 |#1| |#2| |#3| |#4|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL)) (-3578 (((-550) $) NIL) (((-411 (-550)) $) NIL)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-4061 (($) 17)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4404 (((-381) $) 21) (((-226) $) 24) (((-411 (-1175 (-550))) $) 18) (((-539) $) 53)) (-4380 (((-866) $) 51) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (((-226) $) 23) (((-381) $) 20)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 37 T CONST)) (-3069 (($) 8 T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-481) (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))) (-1024) (-616 (-226)) (-616 (-381)) (-617 (-411 (-1175 (-550)))) (-617 (-539)) (-10 -8 (-15 -4061 ($))))) (T -481)) +((-4061 (*1 *1) (-5 *1 (-481)))) +(-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))) (-1024) (-616 (-226)) (-616 (-381)) (-617 (-411 (-1175 (-550)))) (-617 (-539)) (-10 -8 (-15 -4061 ($)))) +((-2970 (((-112) $ $) NIL)) (-3953 (((-1139) $) 11)) (-3954 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 17) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-482) (-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $))))) (T -482)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-482)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-482))))) +(-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $)))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#2| $ |#1| |#2|) 16)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) 20)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) 18)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-2818 (((-644 |#1|) $) 13)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2379 (((-644 |#1|) $) NIL)) (-2380 (((-112) |#1| $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 19)) (-4233 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 11 (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4391 (((-774) $) 15 (|has| $ (-6 -4427))))) +(((-483 |#1| |#2| |#3|) (-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) (-1105) (-1105) (-1163)) (T -483)) +NIL +(-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) +((-2115 (((-550) (-550) (-550)) 19)) (-2116 (((-112) (-550) (-550) (-550) (-550)) 28)) (-3882 (((-1270 (-644 (-550))) (-774) (-774)) 44))) +(((-484) (-10 -7 (-15 -2115 ((-550) (-550) (-550))) (-15 -2116 ((-112) (-550) (-550) (-550) (-550))) (-15 -3882 ((-1270 (-644 (-550))) (-774) (-774))))) (T -484)) +((-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1270 (-644 (-550)))) (-5 *1 (-484)))) (-2116 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-484)))) (-2115 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-484))))) +(-10 -7 (-15 -2115 ((-550) (-550) (-550))) (-15 -2116 ((-112) (-550) (-550) (-550) (-550))) (-15 -3882 ((-1270 (-644 (-550))) (-774) (-774)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-867 |#1|)) $) NIL)) (-3489 (((-1175 $) $ (-867 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2243 (($ $) NIL (|has| |#2| (-561)))) (-2241 (((-112) $) NIL (|has| |#2| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-867 |#1|))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4208 (($ $) NIL (|has| |#2| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#2| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-867 |#1|) #2#) $) NIL)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-867 |#1|) $) NIL)) (-4190 (($ $ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-2117 (($ $ (-644 (-550))) NIL)) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#2| (-914)))) (-1771 (($ $ |#2| (-486 (-4391 |#1|) (-774)) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#2|) (-867 |#1|)) NIL) (($ (-1175 $) (-867 |#1|)) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#2| (-486 (-4391 |#1|) (-774))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-867 |#1|)) NIL)) (-3225 (((-486 (-4391 |#1|) (-774)) $) NIL) (((-774) $ (-867 |#1|)) NIL) (((-644 (-774)) $ (-644 (-867 |#1|))) NIL)) (-1772 (($ (-1 (-486 (-4391 |#1|) (-774)) (-486 (-4391 |#1|) (-774))) $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-3488 (((-3 (-867 |#1|) #3="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#2| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-867 |#1|)) (|:| -2566 (-774))) #3#) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#2| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#2| (-914)))) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-867 |#1|) |#2|) NIL) (($ $ (-644 (-867 |#1|)) (-644 |#2|)) NIL) (($ $ (-867 |#1|) $) NIL) (($ $ (-644 (-867 |#1|)) (-644 $)) NIL)) (-4191 (($ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-4244 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4382 (((-486 (-4391 |#1|) (-774)) $) NIL) (((-774) $ (-867 |#1|)) NIL) (((-644 (-774)) $ (-644 (-867 |#1|))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-867 |#1|) (-617 (-539))) (|has| |#2| (-617 (-539)))))) (-3222 ((|#2| $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-867 |#1|)) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#2| (-561)))) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-486 (-4391 |#1|) (-774))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#2| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#2| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#2| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#2| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#2| (-38 (-411 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-485 |#1| |#2|) (-13 (-954 |#2| (-486 (-4391 |#1|) (-774)) (-867 |#1|)) (-10 -8 (-15 -2117 ($ $ (-644 (-550)))))) (-644 (-1181)) (-1053)) (T -485)) +((-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-485 *3 *4)) (-14 *3 (-644 (-1181))) (-4 *4 (-1053))))) +(-13 (-954 |#2| (-486 (-4391 |#1|) (-774)) (-867 |#1|)) (-10 -8 (-15 -2117 ($ $ (-644 (-550)))))) +((-2970 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-3610 (((-112) $) NIL (|has| |#2| (-131)))) (-4141 (($ (-923)) NIL (|has| |#2| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-2807 (($ $ $) NIL (|has| |#2| (-796)))) (-1408 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| |#2| (-371)))) (-4057 (((-550) $) NIL (|has| |#2| (-851)))) (-4221 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-3 (-411 (-550)) #1#) $) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1105)))) (-3578 (((-550) $) NIL (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-411 (-550)) $) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) ((|#2| $) NIL (|has| |#2| (-1105)))) (-2429 (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL (|has| |#2| (-1053))) (((-692 |#2|) (-692 $)) NIL (|has| |#2| (-1053)))) (-3892 (((-3 $ "failed") $) NIL (|has| |#2| (-729)))) (-3397 (($) NIL (|has| |#2| (-371)))) (-1686 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ (-550)) 15)) (-3608 (((-112) $) NIL (|has| |#2| (-851)))) (-2126 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL (|has| |#2| (-729)))) (-3609 (((-112) $) NIL (|has| |#2| (-851)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3010 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-2130 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#2| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#2| (-1105)))) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-2565 (($ (-923)) NIL (|has| |#2| (-371)))) (-3666 (((-1124) $) NIL (|has| |#2| (-1105)))) (-4234 ((|#2| $) NIL (|has| (-550) (-853)))) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL)) (-4270 ((|#2| $ $) NIL (|has| |#2| (-1053)))) (-1571 (($ (-1270 |#2|)) NIL)) (-4345 (((-134)) NIL (|has| |#2| (-366)))) (-4244 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1053)))) (-2127 (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1270 |#2|) $) NIL) (($ (-550)) NIL (-3962 (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053)))) (($ (-411 (-550))) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (($ |#2|) NIL (|has| |#2| (-1105))) (((-866) $) NIL (|has| |#2| (-616 (-866))))) (-3532 (((-774)) NIL (|has| |#2| (-1053)) CONST)) (-3664 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-2129 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3809 (($ $) NIL (|has| |#2| (-851)))) (-3512 (($) NIL (|has| |#2| (-131)) CONST)) (-3069 (($) NIL (|has| |#2| (-729)) CONST)) (-3074 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1053)))) (-2968 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3457 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-3089 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3090 (((-112) $ $) 21 (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $ $) NIL (|has| |#2| (-1053))) (($ $) NIL (|has| |#2| (-1053)))) (-4273 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-774)) NIL (|has| |#2| (-729))) (($ $ (-923)) NIL (|has| |#2| (-729)))) (* (($ (-550) $) NIL (|has| |#2| (-1053))) (($ $ $) NIL (|has| |#2| (-729))) (($ $ |#2|) NIL (|has| |#2| (-729))) (($ |#2| $) NIL (|has| |#2| (-729))) (($ (-774) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-486 |#1| |#2|) (-239 |#1| |#2|) (-774) (-796)) (T -486)) +NIL +(-239 |#1| |#2|) +((-2970 (((-112) $ $) NIL)) (-2118 (((-644 (-879)) $) 15)) (-3975 (((-510) $) 13)) (-3665 (((-1163) $) NIL)) (-2119 (($ (-510) (-644 (-879))) 11)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 22) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-487) (-13 (-1087) (-10 -8 (-15 -2119 ($ (-510) (-644 (-879)))) (-15 -3975 ((-510) $)) (-15 -2118 ((-644 (-879)) $))))) (T -487)) +((-2119 (*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-879))) (-5 *1 (-487)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-487)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-644 (-879))) (-5 *1 (-487))))) +(-13 (-1087) (-10 -8 (-15 -2119 ($ (-510) (-644 (-879)))) (-15 -3975 ((-510) $)) (-15 -2118 ((-644 (-879)) $)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) NIL)) (-4158 (($) NIL T CONST)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3261 (($ $ $) 50)) (-3943 (($ $ $) 49)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3262 ((|#1| $) 40)) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1370 ((|#1| $) 41)) (-4041 (($ |#1| $) 18)) (-2120 (($ (-644 |#1|)) 19)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-1371 ((|#1| $) 34)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 11)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 47)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) 29 (|has| $ (-6 -4427))))) +(((-488 |#1|) (-13 (-972 |#1|) (-10 -8 (-15 -2120 ($ (-644 |#1|))))) (-853)) (T -488)) +((-2120 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-488 *3))))) +(-13 (-972 |#1|) (-10 -8 (-15 -2120 ($ (-644 |#1|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4276 (($ $) 71)) (-1806 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-2150 (((-417 |#2| (-411 |#2|) |#3| |#4|) $) 45)) (-3666 (((-1124) $) NIL)) (-2574 (((-3 |#4| "failed") $) 117)) (-1807 (($ (-417 |#2| (-411 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-550)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3861 (((-2 (|:| -2489 (-417 |#2| (-411 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4380 (((-866) $) 110)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 32 T CONST)) (-3457 (((-112) $ $) 121)) (-4271 (($ $) 77) (($ $ $) NIL)) (-4273 (($ $ $) 72)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 78))) +(((-489 |#1| |#2| |#3| |#4|) (-339 |#1| |#2| |#3| |#4|) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|)) (T -489)) +NIL +(-339 |#1| |#2| |#3| |#4|) +((-2124 (((-550) (-644 (-550))) 55)) (-2121 ((|#1| (-644 |#1|)) 96)) (-2123 (((-644 |#1|) (-644 |#1|)) 97)) (-2122 (((-644 |#1|) (-644 |#1|)) 99)) (-3566 ((|#1| (-644 |#1|)) 98)) (-3222 (((-644 (-550)) (-644 |#1|)) 58))) +(((-490 |#1|) (-10 -7 (-15 -3566 (|#1| (-644 |#1|))) (-15 -2121 (|#1| (-644 |#1|))) (-15 -2122 ((-644 |#1|) (-644 |#1|))) (-15 -2123 ((-644 |#1|) (-644 |#1|))) (-15 -3222 ((-644 (-550)) (-644 |#1|))) (-15 -2124 ((-550) (-644 (-550))))) (-1246 (-550))) (T -490)) +((-2124 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-550)) (-5 *1 (-490 *4)) (-4 *4 (-1246 *2)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1246 (-550))) (-5 *2 (-644 (-550))) (-5 *1 (-490 *4)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1246 (-550))) (-5 *1 (-490 *3)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1246 (-550))) (-5 *1 (-490 *3)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-490 *2)) (-4 *2 (-1246 (-550))))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-490 *2)) (-4 *2 (-1246 (-550)))))) +(-10 -7 (-15 -3566 (|#1| (-644 |#1|))) (-15 -2121 (|#1| (-644 |#1|))) (-15 -2122 ((-644 |#1|) (-644 |#1|))) (-15 -2123 ((-644 |#1|) (-644 |#1|))) (-15 -3222 ((-644 (-550)) (-644 |#1|))) (-15 -2124 ((-550) (-644 (-550))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-550) $) NIL (|has| (-550) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-550) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| (-550) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-550) (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| (-550) (-1042 (-550))))) (-3578 (((-550) $) NIL) (((-1181) $) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-550) (-1042 (-550)))) (((-550) $) NIL (|has| (-550) (-1042 (-550))))) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-550) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| (-550) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-550) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-550) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-550) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| (-550) (-1155)))) (-3609 (((-112) $) NIL (|has| (-550) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-550) (-853)))) (-4392 (($ (-1 (-550) (-550)) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-550) (-1155)) CONST)) (-2125 (($ (-411 (-550))) 9)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-550) (-309))) (((-411 (-550)) $) NIL)) (-3536 (((-550) $) NIL (|has| (-550) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-550)) (-644 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-311 (-550)))) (($ $ (-295 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-295 (-550)))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-1181)) (-644 (-550))) NIL (|has| (-550) (-518 (-1181) (-550)))) (($ $ (-1181) (-550)) NIL (|has| (-550) (-518 (-1181) (-550))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-550)) NIL (|has| (-550) (-288 (-550) (-550))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-550) $) NIL)) (-4404 (((-894 (-550)) $) NIL (|has| (-550) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-550) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-550) (-617 (-539)))) (((-381) $) NIL (|has| (-550) (-1024))) (((-226) $) NIL (|has| (-550) (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-550) (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) 8) (($ (-550)) NIL) (($ (-1181)) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL) (((-1008 16) $) 10)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-550) (-914))) (|has| (-550) (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 (((-550) $) NIL (|has| (-550) (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| (-550) (-823)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-550) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-550) (-853)))) (-4383 (($ $ $) NIL) (($ (-550) (-550)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-550) $) NIL) (($ $ (-550)) NIL))) +(((-491) (-13 (-995 (-550)) (-616 (-411 (-550))) (-616 (-1008 16)) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -2125 ($ (-411 (-550))))))) (T -491)) +((-3534 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-491)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-491))))) +(-13 (-995 (-550)) (-616 (-411 (-550))) (-616 (-1008 16)) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -2125 ($ (-411 (-550)))))) +((-3010 (((-644 |#2|) $) 29)) (-3668 (((-112) |#2| $) 34)) (-2128 (((-112) (-1 (-112) |#2|) $) 24)) (-4201 (($ $ (-644 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-2127 (((-774) (-1 (-112) |#2|) $) 28) (((-774) |#2| $) 32)) (-4380 (((-866) $) 43)) (-2129 (((-112) (-1 (-112) |#2|) $) 23)) (-3457 (((-112) $ $) 37)) (-4391 (((-774) $) 18))) +(((-492 |#1| |#2|) (-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#2| |#2|)) (-15 -4201 (|#1| |#1| (-295 |#2|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3668 ((-112) |#2| |#1|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -3010 ((-644 |#2|) |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4391 ((-774) |#1|))) (-493 |#2|) (-1220)) (T -492)) +NIL +(-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#2| |#2|)) (-15 -4201 (|#1| |#1| (-295 |#2|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3668 ((-112) |#2| |#1|)) (-15 -2127 ((-774) |#2| |#1|)) (-15 -3010 ((-644 |#2|) |#1|)) (-15 -2127 ((-774) (-1 (-112) |#2|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4391 ((-774) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-493 |#1|) (-140) (-1220)) (T -493)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-493 *3)) (-4 *3 (-1220)))) (-2130 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4428)) (-4 *1 (-493 *3)) (-4 *3 (-1220)))) (-2129 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4427)) (-4 *1 (-493 *4)) (-4 *4 (-1220)) (-5 *2 (-112)))) (-2128 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4427)) (-4 *1 (-493 *4)) (-4 *4 (-1220)) (-5 *2 (-112)))) (-2127 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4427)) (-4 *1 (-493 *4)) (-4 *4 (-1220)) (-5 *2 (-774)))) (-2126 (*1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) (-5 *2 (-644 *3)))) (-3010 (*1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) (-5 *2 (-644 *3)))) (-2127 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-774)))) (-3668 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-616 (-866))) (-6 (-616 (-866))) |%noBranch|) (IF (|has| |t#1| (-1105)) (-6 (-1105)) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-311 |t#1|)) (-6 (-311 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4428)) (-15 -2130 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4427)) (PROGN (-15 -2129 ((-112) (-1 (-112) |t#1|) $)) (-15 -2128 ((-112) (-1 (-112) |t#1|) $)) (-15 -2127 ((-774) (-1 (-112) |t#1|) $)) (-15 -2126 ((-644 |t#1|) $)) (-15 -3010 ((-644 |t#1|) $)) (IF (|has| |t#1| (-1105)) (PROGN (-15 -2127 ((-774) |t#1| $)) (-15 -3668 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-4380 ((|#1| $) 6) (($ |#1|) 9))) +(((-494 |#1|) (-140) (-1220)) (T -494)) +NIL +(-13 (-616 |t#1|) (-619 |t#1|)) +(((-619 |#1|) . T) ((-616 |#1|) . T)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2131 (($ (-1163)) 8)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 15) (((-1163) $) 12)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 11))) +(((-495) (-13 (-1105) (-616 (-1163)) (-10 -8 (-15 -2131 ($ (-1163)))))) (T -495)) +((-2131 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-495))))) +(-13 (-1105) (-616 (-1163)) (-10 -8 (-15 -2131 ($ (-1163))))) +((-3917 (($ $) 15)) (-3915 (($ $) 24)) (-3919 (($ $) 12)) (-3920 (($ $) 10)) (-3918 (($ $) 17)) (-3916 (($ $) 22))) +(((-496 |#1|) (-10 -8 (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|))) (-497)) (T -496)) +NIL +(-10 -8 (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|))) +((-3917 (($ $) 11)) (-3915 (($ $) 10)) (-3919 (($ $) 9)) (-3920 (($ $) 8)) (-3918 (($ $) 7)) (-3916 (($ $) 6))) +(((-497) (-140)) (T -497)) +((-3917 (*1 *1 *1) (-4 *1 (-497))) (-3915 (*1 *1 *1) (-4 *1 (-497))) (-3919 (*1 *1 *1) (-4 *1 (-497))) (-3920 (*1 *1 *1) (-4 *1 (-497))) (-3918 (*1 *1 *1) (-4 *1 (-497))) (-3916 (*1 *1 *1) (-4 *1 (-497)))) +(-13 (-10 -8 (-15 -3916 ($ $)) (-15 -3918 ($ $)) (-15 -3920 ($ $)) (-15 -3919 ($ $)) (-15 -3915 ($ $)) (-15 -3917 ($ $)))) +((-4166 (((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)) 54))) +(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)))) (-366) (-1246 |#1|) (-13 (-366) (-147) (-727 |#1| |#2|)) (-1246 |#3|)) (T -498)) +((-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-4 *7 (-13 (-366) (-147) (-727 *5 *6))) (-5 *2 (-409 *3)) (-5 *1 (-498 *5 *6 *7 *3)) (-4 *3 (-1246 *7))))) +(-10 -7 (-15 -4166 ((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)))) +((-2970 (((-112) $ $) NIL)) (-1717 (((-644 $) (-1175 $) (-1181)) NIL) (((-644 $) (-1175 $)) NIL) (((-644 $) (-950 $)) NIL)) (-1304 (($ (-1175 $) (-1181)) NIL) (($ (-1175 $)) NIL) (($ (-950 $)) NIL)) (-3610 (((-112) $) 39)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-2132 (((-112) $ $) 73)) (-1710 (((-644 (-614 $)) $) 50)) (-1408 (((-3 $ "failed") $ $) NIL)) (-1714 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3440 (($ $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-1305 (((-644 $) (-1175 $) (-1181)) NIL) (((-644 $) (-1175 $)) NIL) (((-644 $) (-950 $)) NIL)) (-3605 (($ (-1175 $) (-1181)) NIL) (($ (-1175 $)) NIL) (($ (-950 $)) NIL)) (-3579 (((-3 (-614 $) #1="failed") $) NIL) (((-3 (-550) #1#) $) NIL) (((-3 (-411 (-550)) #1#) $) NIL)) (-3578 (((-614 $) $) NIL) (((-550) $) NIL) (((-411 (-550)) $) 55)) (-2966 (($ $ $) NIL)) (-2429 (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-411 (-550)))) (|:| |vec| (-1270 (-411 (-550))))) (-692 $) (-1270 $)) NIL) (((-692 (-411 (-550))) (-692 $)) NIL)) (-4276 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2975 (($ $) NIL) (($ (-644 $)) NIL)) (-1709 (((-644 (-113)) $) NIL)) (-3450 (((-113) (-113)) NIL)) (-2575 (((-112) $) 42)) (-3078 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-3401 (((-1129 (-550) (-614 $)) $) 37)) (-3414 (($ $ (-550)) NIL)) (-3538 (((-1175 $) (-1175 $) (-614 $)) 87) (((-1175 $) (-1175 $) (-644 (-614 $))) 62) (($ $ (-614 $)) 76) (($ $ (-644 (-614 $))) 77)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL)) (-1707 (((-1175 $) (-614 $)) 74 (|has| $ (-1053)))) (-4392 (($ (-1 $ $) (-614 $)) NIL)) (-1712 (((-3 (-614 $) "failed") $) NIL)) (-2071 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-1711 (((-644 (-614 $)) $) NIL)) (-2386 (($ (-113) $) NIL) (($ (-113) (-644 $)) NIL)) (-3037 (((-112) $ (-113)) NIL) (((-112) $ (-1181)) NIL)) (-2808 (($ $) NIL)) (-3005 (((-774) $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1708 (((-112) $ $) NIL) (((-112) $ (-1181)) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3079 (((-112) $) NIL (|has| $ (-1042 (-550))))) (-4201 (($ $ (-614 $) $) NIL) (($ $ (-644 (-614 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1181)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1181) (-1 $ (-644 $))) NIL) (($ $ (-1181) (-1 $ $)) NIL) (($ $ (-644 (-113)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-113)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-113) (-1 $ (-644 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1754 (((-774) $) NIL)) (-4233 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-644 $)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1713 (($ $) NIL) (($ $ $) NIL)) (-4244 (($ $ (-774)) NIL) (($ $) 36)) (-3400 (((-1129 (-550) (-614 $)) $) 20)) (-3607 (($ $) NIL (|has| $ (-1053)))) (-4404 (((-381) $) 101) (((-226) $) 109) (((-169 (-381)) $) 117)) (-4380 (((-866) $) NIL) (($ (-614 $)) NIL) (($ (-411 (-550))) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-1129 (-550) (-614 $))) 21)) (-3532 (((-774)) NIL T CONST)) (-2992 (($ $) NIL) (($ (-644 $)) NIL)) (-2405 (((-112) (-113)) 93)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 10 T CONST)) (-3069 (($) 22 T CONST)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3457 (((-112) $ $) 24)) (-4383 (($ $ $) 44)) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-411 (-550))) NIL) (($ $ (-550)) 48) (($ $ (-774)) NIL) (($ $ (-923)) NIL)) (* (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL) (($ $ $) 27) (($ (-550) $) NIL) (($ (-774) $) NIL) (($ (-923) $) NIL))) +(((-499) (-13 (-300) (-27) (-1042 (-550)) (-1042 (-411 (-550))) (-642 (-550)) (-1024) (-642 (-411 (-550))) (-147) (-617 (-169 (-381))) (-234) (-10 -8 (-15 -4380 ($ (-1129 (-550) (-614 $)))) (-15 -3401 ((-1129 (-550) (-614 $)) $)) (-15 -3400 ((-1129 (-550) (-614 $)) $)) (-15 -4276 ($ $)) (-15 -2132 ((-112) $ $)) (-15 -3538 ((-1175 $) (-1175 $) (-614 $))) (-15 -3538 ((-1175 $) (-1175 $) (-644 (-614 $)))) (-15 -3538 ($ $ (-614 $))) (-15 -3538 ($ $ (-644 (-614 $))))))) (T -499)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1129 (-550) (-614 (-499)))) (-5 *1 (-499)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-499)))) (-5 *1 (-499)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-499)))) (-5 *1 (-499)))) (-4276 (*1 *1 *1) (-5 *1 (-499))) (-2132 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-499)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-499))) (-5 *3 (-614 (-499))) (-5 *1 (-499)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-499))) (-5 *3 (-644 (-614 (-499)))) (-5 *1 (-499)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-614 (-499))) (-5 *1 (-499)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-614 (-499)))) (-5 *1 (-499))))) +(-13 (-300) (-27) (-1042 (-550)) (-1042 (-411 (-550))) (-642 (-550)) (-1024) (-642 (-411 (-550))) (-147) (-617 (-169 (-381))) (-234) (-10 -8 (-15 -4380 ($ (-1129 (-550) (-614 $)))) (-15 -3401 ((-1129 (-550) (-614 $)) $)) (-15 -3400 ((-1129 (-550) (-614 $)) $)) (-15 -4276 ($ $)) (-15 -2132 ((-112) $ $)) (-15 -3538 ((-1175 $) (-1175 $) (-614 $))) (-15 -3538 ((-1175 $) (-1175 $) (-644 (-614 $)))) (-15 -3538 ($ $ (-614 $))) (-15 -3538 ($ $ (-644 (-614 $)))))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) |#1|) 47 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 42 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 41)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 21)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 17 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) 44 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) 15 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 19)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 46) (($ $ (-1237 (-550))) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 24)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) 11 (|has| $ (-6 -4427))))) +(((-500 |#1| |#2|) (-19 |#1|) (-1220) (-550)) (T -500)) NIL (-19 |#1|) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1345 (($ $ (-549) (-499 |#1| |#3|)) NIL)) (-1344 (($ $ (-549) (-499 |#1| |#2|)) NIL)) (-4156 (($) NIL T CONST)) (-3516 (((-499 |#1| |#3|) $ (-549)) NIL)) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-499 |#1| |#2|) $ (-549)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1219) (-549) (-549)) (T -500)) -NIL -(-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) -((-2132 (((-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-773) (-773)) 33)) (-2131 (((-643 (-1174 |#1|)) |#1| (-773) (-773) (-773)) 43)) (-2260 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-643 |#3|) (-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-773)) 110))) -(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2131 ((-643 (-1174 |#1|)) |#1| (-773) (-773) (-773))) (-15 -2132 ((-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-773) (-773))) (-15 -2260 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-643 |#3|) (-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-773)))) (-352) (-1245 |#1|) (-1245 |#2|)) (T -501)) -((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-691 *7))))) (-5 *5 (-773)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-352)) (-5 *2 (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-691 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-2132 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-773)) (-4 *5 (-352)) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-691 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-691 *6)))) (-4 *7 (-1245 *6)))) (-2131 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-773)) (-4 *3 (-352)) (-4 *5 (-1245 *3)) (-5 *2 (-643 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1245 *5))))) -(-10 -7 (-15 -2131 ((-643 (-1174 |#1|)) |#1| (-773) (-773) (-773))) (-15 -2132 ((-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-773) (-773))) (-15 -2260 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-643 |#3|) (-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-773)))) -((-2138 (((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))) 74)) (-2133 ((|#1| (-691 |#1|) |#1| (-773)) 27)) (-2135 (((-773) (-773) (-773)) 36)) (-2137 (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 54)) (-2136 (((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|) 62) (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 59)) (-2134 ((|#1| (-691 |#1|) (-691 |#1|) |#1| (-549)) 31)) (-3753 ((|#1| (-691 |#1|)) 18))) -(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -3753 (|#1| (-691 |#1|))) (-15 -2133 (|#1| (-691 |#1|) |#1| (-773))) (-15 -2134 (|#1| (-691 |#1|) (-691 |#1|) |#1| (-549))) (-15 -2135 ((-773) (-773) (-773))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2137 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2138 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))))) (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $)))) (-1245 |#1|) (-413 |#1| |#2|)) (T -502)) -((-2138 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2137 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2136 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2136 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2135 (*1 *2 *2 *2) (-12 (-5 *2 (-773)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2134 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-691 *2)) (-5 *4 (-549)) (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5)))) (-2133 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-691 *2)) (-5 *4 (-773)) (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-691 *2)) (-4 *4 (-1245 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-413 *2 *4))))) -(-10 -7 (-15 -3753 (|#1| (-691 |#1|))) (-15 -2133 (|#1| (-691 |#1|) |#1| (-773))) (-15 -2134 (|#1| (-691 |#1|) (-691 |#1|) |#1| (-549))) (-15 -2135 ((-773) (-773) (-773))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2137 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2138 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))))) -((-2968 (((-112) $ $) NIL)) (-2458 (($ $) NIL)) (-3745 (($ $ $) 40)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| (-112) (-852))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-112) (-852)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-112) $ (-1236 (-549)) (-112)) NIL (|has| $ (-6 -4426))) (((-112) $ (-549) (-112)) 42 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-3830 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-4274 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-1684 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4426)))) (-3517 (((-112) $ (-549)) NIL)) (-3843 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1104))) (((-549) (-112) $) NIL (|has| (-112) (-1104))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2124 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3255 (($ $ $) 38)) (-3746 (($ $) NIL)) (-1395 (($ $ $) NIL)) (-4046 (($ (-773) (-112)) 27)) (-1396 (($ $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 8 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL)) (-3941 (($ $ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3008 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL)) (-2128 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-112) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2373 (($ $ (-112)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-112)) (-643 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-643 (-294 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2379 (((-643 (-112)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 28)) (-4231 (($ $ (-1236 (-549))) NIL) (((-112) $ (-549)) 22) (((-112) $ (-549) (-112)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2125 (((-773) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104)))) (((-773) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 29)) (-4402 (((-538) $) NIL (|has| (-112) (-616 (-538))))) (-3953 (($ (-643 (-112))) NIL)) (-4233 (($ (-643 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4378 (((-865) $) 26)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-3256 (($ $ $) 36)) (-2456 (($ $ $) NIL)) (-3742 (($ $ $) 45)) (-3744 (($ $) 43)) (-3743 (($ $ $) 44)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 30)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 31)) (-2457 (($ $ $) NIL)) (-4389 (((-773) $) 13 (|has| $ (-6 -4425))))) -(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -3744 ($ $)) (-15 -3742 ($ $ $)) (-15 -3743 ($ $ $)))) (-549)) (T -503)) -((-3744 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) (-3742 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) (-3743 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549))))) -(-13 (-123) (-10 -8 (-15 -3744 ($ $)) (-15 -3742 ($ $ $)) (-15 -3743 ($ $ $)))) -((-2140 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|)) 35)) (-2139 (((-1174 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1174 |#4|)) 22)) (-2141 (((-3 (-691 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-691 (-1174 |#4|))) 49)) (-2142 (((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|) 58))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2139 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -2139 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2140 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2141 ((-3 (-691 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-691 (-1174 |#4|)))) (-15 -2142 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) (-1052) (-1245 |#1|) (-1245 |#2|) (-1052)) (T -504)) -((-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *6 (-1245 *5)) (-5 *2 (-1174 (-1174 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6)))) (-2141 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-691 (-1174 *8))) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1245 *6)))) (-2140 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *4 (-1245 *5)) (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1245 *4)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2))))) -(-10 -7 (-15 -2139 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -2139 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2140 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2141 ((-3 (-691 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-691 (-1174 |#4|)))) (-15 -2142 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2143 (((-1275) $) 25)) (-4231 (((-1162) $ (-1180)) 30)) (-4049 (((-1275) $) 17)) (-4378 (((-865) $) 27) (($ (-1162)) 26)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 11)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 9))) -(((-505) (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -4378 ($ (-1162)))))) (T -505)) -((-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1162)) (-5 *1 (-505)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-505))))) -(-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -4378 ($ (-1162))))) -((-4173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4171 ((|#1| |#4|) 10)) (-4172 ((|#3| |#4|) 17))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4171 (|#1| |#4|)) (-15 -4172 (|#3| |#4|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-560) (-994 |#1|) (-374 |#1|) (-374 |#2|)) (T -506)) -((-4173 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-374 *4)) (-4 *3 (-374 *5)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-4 *2 (-374 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-374 *5)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-374 *2)) (-4 *3 (-374 *4))))) -(-10 -7 (-15 -4171 (|#1| |#4|)) (-15 -4172 (|#3| |#4|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2968 (((-112) $ $) NIL)) (-2153 (((-112) $ (-643 |#3|)) 124) (((-112) $) 125)) (-3608 (((-112) $) 176)) (-2145 (($ $ |#4|) 115) (($ $ |#4| (-643 |#3|)) 119)) (-2144 (((-1169 (-643 (-949 |#1|)) (-643 (-294 (-949 |#1|)))) (-643 |#4|)) 169 (|has| |#3| (-616 (-1180))))) (-2152 (($ $ $) 105) (($ $ |#4|) 103)) (-2573 (((-112) $) 175)) (-2149 (($ $) 129)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 97) (($ (-643 $)) 99)) (-2154 (((-112) |#4| $) 127)) (-2155 (((-112) $ $) 82)) (-2148 (($ (-643 |#4|)) 104)) (-3664 (((-1123) $) NIL)) (-2147 (($ (-643 |#4|)) 173)) (-2146 (((-112) $) 174)) (-2400 (($ $) 85)) (-3098 (((-643 |#4|) $) 73)) (-2151 (((-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)) $ (-643 |#3|)) NIL)) (-2156 (((-112) |#4| $) 89)) (-4343 (((-549) $ (-643 |#3|)) 131) (((-549) $) 132)) (-4378 (((-865) $) 172) (($ (-643 |#4|)) 100)) (-3662 (((-112) $ $) NIL)) (-2150 (($ (-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $))) NIL)) (-3455 (((-112) $ $) 84)) (-4271 (($ $ $) 107)) (** (($ $ (-773)) 113)) (* (($ $ $) 111))) -(((-507 |#1| |#2| |#3| |#4|) (-13 (-1104) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 -4271 ($ $ $)) (-15 -2573 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -2156 ((-112) |#4| $)) (-15 -2155 ((-112) $ $)) (-15 -2154 ((-112) |#4| $)) (-15 -2153 ((-112) $ (-643 |#3|))) (-15 -2153 ((-112) $)) (-15 -3658 ($ $ $)) (-15 -3658 ($ (-643 $))) (-15 -2152 ($ $ $)) (-15 -2152 ($ $ |#4|)) (-15 -2400 ($ $)) (-15 -2151 ((-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)) $ (-643 |#3|))) (-15 -2150 ($ (-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)))) (-15 -4343 ((-549) $ (-643 |#3|))) (-15 -4343 ((-549) $)) (-15 -2149 ($ $)) (-15 -2148 ($ (-643 |#4|))) (-15 -2147 ($ (-643 |#4|))) (-15 -2146 ((-112) $)) (-15 -3098 ((-643 |#4|) $)) (-15 -4378 ($ (-643 |#4|))) (-15 -2145 ($ $ |#4|)) (-15 -2145 ($ $ |#4| (-643 |#3|))) (IF (|has| |#3| (-616 (-1180))) (-15 -2144 ((-1169 (-643 (-949 |#1|)) (-643 (-294 (-949 |#1|)))) (-643 |#4|))) |%noBranch|))) (-365) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -507)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2573 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2156 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2155 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2154 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-643 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2152 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2152 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-953 *3 *4 *5)))) (-2400 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2151 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |mval| (-691 *4)) (|:| |invmval| (-691 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-691 *3)) (|:| |invmval| (-691 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-4343 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *2 (-549)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-4343 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2149 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2146 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-3098 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2145 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-953 *3 *4 *5)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-953 *4 *5 *6)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *6 (-616 (-1180))) (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1169 (-643 (-949 *4)) (-643 (-294 (-949 *4))))) (-5 *1 (-507 *4 *5 *6 *7))))) -(-13 (-1104) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 -4271 ($ $ $)) (-15 -2573 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -2156 ((-112) |#4| $)) (-15 -2155 ((-112) $ $)) (-15 -2154 ((-112) |#4| $)) (-15 -2153 ((-112) $ (-643 |#3|))) (-15 -2153 ((-112) $)) (-15 -3658 ($ $ $)) (-15 -3658 ($ (-643 $))) (-15 -2152 ($ $ $)) (-15 -2152 ($ $ |#4|)) (-15 -2400 ($ $)) (-15 -2151 ((-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)) $ (-643 |#3|))) (-15 -2150 ($ (-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)))) (-15 -4343 ((-549) $ (-643 |#3|))) (-15 -4343 ((-549) $)) (-15 -2149 ($ $)) (-15 -2148 ($ (-643 |#4|))) (-15 -2147 ($ (-643 |#4|))) (-15 -2146 ((-112) $)) (-15 -3098 ((-643 |#4|) $)) (-15 -4378 ($ (-643 |#4|))) (-15 -2145 ($ $ |#4|)) (-15 -2145 ($ $ |#4| (-643 |#3|))) (IF (|has| |#3| (-616 (-1180))) (-15 -2144 ((-1169 (-643 (-949 |#1|)) (-643 (-294 (-949 |#1|)))) (-643 |#4|))) |%noBranch|))) -((-2157 (((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 176)) (-2158 (((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 177)) (-2159 (((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 129)) (-4155 (((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) NIL)) (-2160 (((-643 (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 179)) (-2161 (((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-643 (-866 |#1|))) 195))) -(((-508 |#1| |#2|) (-10 -7 (-15 -2157 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2158 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -4155 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2159 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2160 ((-643 (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2161 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-643 (-866 |#1|))))) (-643 (-1180)) (-773)) (T -508)) -((-2161 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-5 *3 (-643 (-866 *4))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *1 (-508 *4 *5)))) (-2160 (*1 *2 *3) (-12 (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-643 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-549)) (-239 *4 (-773)) (-866 *3) (-247 *3 (-410 (-549))))) (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-508 *3 *4)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5))))) -(-10 -7 (-15 -2157 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2158 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -4155 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2159 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2160 ((-643 (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2161 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-643 (-866 |#1|))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2162 (($) 6)) (-4378 (((-865) $) 12) (((-1180) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 8))) -(((-509) (-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -2162 ($))))) (T -509)) -((-2162 (*1 *1) (-5 *1 (-509)))) -(-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -2162 ($)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 12 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) 11) (($ $ $) 35)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 21))) -(((-510 |#1| |#2|) (-13 (-21) (-512 |#1| |#2|)) (-21) (-852)) (T -510)) -NIL -(-13 (-21) (-512 |#1| |#2|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 13)) (-4156 (($) NIL T CONST)) (-4391 (($ $) 41)) (-3294 (($ |#1| |#2|) 38)) (-4390 (($ (-1 |#1| |#1|) $) 40)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) 42)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 10 T CONST)) (-3455 (((-112) $ $) NIL)) (-4271 (($ $ $) 26)) (* (($ (-922) $) NIL) (($ (-773) $) 36))) -(((-511 |#1| |#2|) (-13 (-23) (-512 |#1| |#2|)) (-23) (-852)) (T -511)) -NIL -(-13 (-23) (-512 |#1| |#2|)) -((-2968 (((-112) $ $) 7)) (-4391 (($ $) 14)) (-3294 (($ |#1| |#2|) 17)) (-4390 (($ (-1 |#1| |#1|) $) 18)) (-2163 ((|#2| $) 15)) (-3594 ((|#1| $) 16)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-512 |#1| |#2|) (-140) (-1104) (-852)) (T -512)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-852)))) (-3294 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1104)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-852)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852))))) -(-13 (-1104) (-10 -8 (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -3294 ($ |t#1| |t#2|)) (-15 -3594 (|t#1| $)) (-15 -2163 (|t#2| $)) (-15 -4391 ($ $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-4391 (($ $) 32)) (-3294 (($ |#1| |#2|) 28)) (-4390 (($ (-1 |#1| |#1|) $) 30)) (-2163 ((|#2| $) 34)) (-3594 ((|#1| $) 33)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 20))) -(((-513 |#1| |#2|) (-512 |#1| |#2|) (-1104) (-852)) (T -513)) -NIL -(-512 |#1| |#2|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 22)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL))) -(((-514 |#1| |#2|) (-13 (-794) (-512 |#1| |#2|)) (-794) (-852)) (T -514)) -NIL -(-13 (-794) (-512 |#1| |#2|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2805 (($ $ $) 23)) (-1407 (((-3 $ "failed") $ $) 19)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL))) -(((-515 |#1| |#2|) (-13 (-795) (-512 |#1| |#2|)) (-795) (-852)) (T -515)) -NIL -(-13 (-795) (-512 |#1| |#2|)) -((-4199 (($ $ (-643 |#2|) (-643 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -4199 (|#1| |#1| |#2| |#3|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#3|)))) (-517 |#2| |#3|) (-1104) (-1219)) (T -516)) -NIL -(-10 -8 (-15 -4199 (|#1| |#1| |#2| |#3|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#3|)))) -((-4199 (($ $ (-643 |#1|) (-643 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-517 |#1| |#2|) (-140) (-1104) (-1219)) (T -517)) -((-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1219)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1219))))) -(-13 (-10 -8 (-15 -4199 ($ $ |t#1| |t#2|)) (-15 -4199 ($ $ (-643 |t#1|) (-643 |t#2|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 17)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $) 19)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2444 ((|#1| $ (-549)) 24)) (-1767 ((|#2| $ (-549)) 22)) (-2436 (($ (-1 |#1| |#1|) $) 48)) (-1766 (($ (-1 |#2| |#2|) $) 45)) (-3663 (((-1162) $) NIL)) (-1765 (($ $ $) 55 (|has| |#2| (-794)))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 44) (($ |#1|) NIL)) (-4109 ((|#2| |#1| $) 51)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 11 T CONST)) (-3455 (((-112) $ $) 30)) (-4271 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-922) $) NIL) (($ (-773) $) 37) (($ |#2| |#1|) 32))) -(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1104) (-131) |#2|) (T -518)) -NIL -(-324 |#1| |#2|) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-2164 (((-112) (-112)) 32)) (-4219 ((|#1| $ (-549) |#1|) 42 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) 80)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-2526 (($ $) 84 (|has| |#1| (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) 67)) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2165 (($ $ (-549)) 19)) (-2166 (((-773) $) 13)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 31)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 29 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) 28 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4039 (($ $ $ (-549)) 76) (($ |#1| $ (-549)) 60)) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2167 (($ (-643 |#1|)) 43)) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) 24 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 63)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 21)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 56) (($ $ (-1236 (-549))) NIL)) (-1679 (($ $ (-1236 (-549))) 74) (($ $ (-549)) 68)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) 64 (|has| $ (-6 -4426)))) (-3824 (($ $) 54)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4222 (($ $ $) 65) (($ $ |#1|) 62)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 22 (|has| $ (-6 -4425))))) -(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) (-1219) (-549)) (T -519)) -((-2167 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) (-14 *4 (-549)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) -((-2968 (((-112) $ $) NIL)) (-2169 (((-1138) $) 11)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2168 (((-1138) $) 13)) (-4354 (((-1138) $) 9)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-520) (-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $)) (-15 -2169 ((-1138) $)) (-15 -2168 ((-1138) $))))) (T -520)) -((-4354 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520))))) -(-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $)) (-15 -2169 ((-1138) $)) (-15 -2168 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-584 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-584 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-584 |#1|) "failed") $) NIL)) (-3576 (((-584 |#1|) $) NIL)) (-1967 (($ (-1269 (-584 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-584 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-584 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-584 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-3536 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-584 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-584 |#1|) (-370)))) (-1772 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-1771 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1174 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-1773 (($ $ (-1174 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| (-584 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-584 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-584 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-584 |#1|))) NIL)) (-1842 (($) NIL (|has| (-584 |#1|) (-370)))) (-1774 (($) NIL (|has| (-584 |#1|) (-370)))) (-3644 (((-1269 (-584 |#1|)) $) NIL) (((-691 (-584 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-584 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-584 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-584 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-584 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL))) -(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-922) (-922)) (T -521)) -NIL -(-330 (-584 |#1|)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) 51)) (-1345 (($ $ (-549) |#4|) NIL)) (-1344 (($ $ (-549) |#5|) NIL)) (-4156 (($) NIL T CONST)) (-3516 ((|#4| $ (-549)) NIL)) (-1684 ((|#1| $ (-549) (-549) |#1|) 50)) (-3517 ((|#1| $ (-549) (-549)) 45)) (-2124 (((-643 |#1|) $) NIL)) (-3519 (((-773) $) 33)) (-4046 (($ (-773) (-773) |#1|) 30)) (-3518 (((-773) $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) 31)) (-3521 (((-549) $) 32)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) 37)) (-3520 (((-549) $) 39)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) 55 (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 14)) (-3996 (($) 16)) (-4231 ((|#1| $ (-549) (-549)) 48) ((|#1| $ (-549) (-549) |#1|) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 ((|#5| $ (-549)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1219) (-549) (-549) (-374 |#1|) (-374 |#1|)) (T -522)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) (-550) |#1|) NIL)) (-1346 (($ $ (-550) (-500 |#1| |#3|)) NIL)) (-1345 (($ $ (-550) (-500 |#1| |#2|)) NIL)) (-4158 (($) NIL T CONST)) (-3518 (((-500 |#1| |#3|) $ (-550)) NIL)) (-1686 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3519 ((|#1| $ (-550) (-550)) NIL)) (-2126 (((-644 |#1|) $) NIL)) (-3521 (((-774) $) NIL)) (-4048 (($ (-774) (-774) |#1|) NIL)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3525 (((-550) $) NIL)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3524 (((-550) $) NIL)) (-3522 (((-550) $) NIL)) (-2130 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-3517 (((-500 |#1| |#2|) $ (-550)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-501 |#1| |#2| |#3|) (-57 |#1| (-500 |#1| |#3|) (-500 |#1| |#2|)) (-1220) (-550) (-550)) (T -501)) +NIL +(-57 |#1| (-500 |#1| |#3|) (-500 |#1| |#2|)) +((-2134 (((-644 (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) (-774) (-774)) 33)) (-2133 (((-644 (-1175 |#1|)) |#1| (-774) (-774) (-774)) 43)) (-2262 (((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) (-774)) 110))) +(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2133 ((-644 (-1175 |#1|)) |#1| (-774) (-774) (-774))) (-15 -2134 ((-644 (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) (-774) (-774))) (-15 -2262 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) (-774)))) (-353) (-1246 |#1|) (-1246 |#2|)) (T -502)) +((-2262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-2 (|:| -2192 (-692 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-692 *7))))) (-5 *5 (-774)) (-4 *8 (-1246 *7)) (-4 *7 (-1246 *6)) (-4 *6 (-353)) (-5 *2 (-2 (|:| -2192 (-692 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-692 *7)))) (-5 *1 (-502 *6 *7 *8)))) (-2134 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-774)) (-4 *5 (-353)) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-2 (|:| -2192 (-692 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-692 *6))))) (-5 *1 (-502 *5 *6 *7)) (-5 *3 (-2 (|:| -2192 (-692 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-692 *6)))) (-4 *7 (-1246 *6)))) (-2133 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-774)) (-4 *3 (-353)) (-4 *5 (-1246 *3)) (-5 *2 (-644 (-1175 *3))) (-5 *1 (-502 *3 *5 *6)) (-4 *6 (-1246 *5))))) +(-10 -7 (-15 -2133 ((-644 (-1175 |#1|)) |#1| (-774) (-774) (-774))) (-15 -2134 ((-644 (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) (-774) (-774))) (-15 -2262 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) (-774)))) +((-2140 (((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) (-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) (-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|)))) 74)) (-2135 ((|#1| (-692 |#1|) |#1| (-774)) 27)) (-2137 (((-774) (-774) (-774)) 36)) (-2139 (((-692 |#1|) (-692 |#1|) (-692 |#1|)) 54)) (-2138 (((-692 |#1|) (-692 |#1|) (-692 |#1|) |#1|) 62) (((-692 |#1|) (-692 |#1|) (-692 |#1|)) 59)) (-2136 ((|#1| (-692 |#1|) (-692 |#1|) |#1| (-550)) 31)) (-3755 ((|#1| (-692 |#1|)) 18))) +(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -3755 (|#1| (-692 |#1|))) (-15 -2135 (|#1| (-692 |#1|) |#1| (-774))) (-15 -2136 (|#1| (-692 |#1|) (-692 |#1|) |#1| (-550))) (-15 -2137 ((-774) (-774) (-774))) (-15 -2138 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2138 ((-692 |#1|) (-692 |#1|) (-692 |#1|) |#1|)) (-15 -2139 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2140 ((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) (-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) (-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|)))))) (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $)))) (-1246 |#1|) (-414 |#1| |#2|)) (T -503)) +((-2140 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2139 (*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2138 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2138 (*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2137 (*1 *2 *2 *2) (-12 (-5 *2 (-774)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2136 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-692 *2)) (-5 *4 (-550)) (-4 *2 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *5 (-1246 *2)) (-5 *1 (-503 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-2135 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-692 *2)) (-5 *4 (-774)) (-4 *2 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *5 (-1246 *2)) (-5 *1 (-503 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-692 *2)) (-4 *4 (-1246 *2)) (-4 *2 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-5 *1 (-503 *2 *4 *5)) (-4 *5 (-414 *2 *4))))) +(-10 -7 (-15 -3755 (|#1| (-692 |#1|))) (-15 -2135 (|#1| (-692 |#1|) |#1| (-774))) (-15 -2136 (|#1| (-692 |#1|) (-692 |#1|) |#1| (-550))) (-15 -2137 ((-774) (-774) (-774))) (-15 -2138 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2138 ((-692 |#1|) (-692 |#1|) (-692 |#1|) |#1|)) (-15 -2139 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2140 ((-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) (-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|))) (-2 (|:| -2192 (-692 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-692 |#1|)))))) +((-2970 (((-112) $ $) NIL)) (-2460 (($ $) NIL)) (-3747 (($ $ $) 40)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) $) NIL (|has| (-112) (-853))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1900 (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| (-112) (-853)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4428)))) (-3312 (($ $) NIL (|has| (-112) (-853))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4221 (((-112) $ (-1237 (-550)) (-112)) NIL (|has| $ (-6 -4428))) (((-112) $ (-550) (-112)) 42 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-3832 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-4276 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-1686 (((-112) $ (-550) (-112)) NIL (|has| $ (-6 -4428)))) (-3519 (((-112) $ (-550)) NIL)) (-3845 (((-550) (-112) $ (-550)) NIL (|has| (-112) (-1105))) (((-550) (-112) $) NIL (|has| (-112) (-1105))) (((-550) (-1 (-112) (-112)) $) NIL)) (-2126 (((-644 (-112)) $) NIL (|has| $ (-6 -4427)))) (-3257 (($ $ $) 38)) (-3748 (($ $) NIL)) (-1396 (($ $ $) NIL)) (-4048 (($ (-774) (-112)) 27)) (-1397 (($ $ $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 8 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL)) (-3943 (($ $ $) NIL (|has| (-112) (-853))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3010 (((-644 (-112)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL)) (-2130 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-2451 (($ $ $ (-550)) NIL) (($ (-112) $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-112) $) NIL (|has| (-550) (-853)))) (-1442 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2375 (($ $ (-112)) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-311 (-112))) (|has| (-112) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105))))) (-2381 (((-644 (-112)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 28)) (-4233 (($ $ (-1237 (-550))) NIL) (((-112) $ (-550)) 22) (((-112) $ (-550) (-112)) NIL)) (-2452 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-2127 (((-774) (-112) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-112) (-1105)))) (((-774) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) 29)) (-4404 (((-539) $) NIL (|has| (-112) (-617 (-539))))) (-3955 (($ (-644 (-112))) NIL)) (-4235 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4380 (((-866) $) 26)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4427)))) (-3258 (($ $ $) 36)) (-2458 (($ $ $) NIL)) (-3744 (($ $ $) 45)) (-3746 (($ $) 43)) (-3745 (($ $ $) 44)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 30)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 31)) (-2459 (($ $ $) NIL)) (-4391 (((-774) $) 13 (|has| $ (-6 -4427))))) +(((-504 |#1|) (-13 (-123) (-10 -8 (-15 -3746 ($ $)) (-15 -3744 ($ $ $)) (-15 -3745 ($ $ $)))) (-550)) (T -504)) +((-3746 (*1 *1 *1) (-12 (-5 *1 (-504 *2)) (-14 *2 (-550)))) (-3744 (*1 *1 *1 *1) (-12 (-5 *1 (-504 *2)) (-14 *2 (-550)))) (-3745 (*1 *1 *1 *1) (-12 (-5 *1 (-504 *2)) (-14 *2 (-550))))) +(-13 (-123) (-10 -8 (-15 -3746 ($ $)) (-15 -3744 ($ $ $)) (-15 -3745 ($ $ $)))) +((-2142 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|)) 35)) (-2141 (((-1175 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1175 |#4|)) 22)) (-2143 (((-3 (-692 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-692 (-1175 |#4|))) 49)) (-2144 (((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|) 58))) +(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2141 (|#2| (-1 |#1| |#4|) (-1175 |#4|))) (-15 -2141 ((-1175 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2142 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|))) (-15 -2143 ((-3 (-692 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-692 (-1175 |#4|)))) (-15 -2144 ((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|))) (-1053) (-1246 |#1|) (-1246 |#2|) (-1053)) (T -505)) +((-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *6 (-1246 *5)) (-5 *2 (-1175 (-1175 *7))) (-5 *1 (-505 *5 *6 *4 *7)) (-4 *4 (-1246 *6)))) (-2143 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-692 (-1175 *8))) (-4 *5 (-1053)) (-4 *8 (-1053)) (-4 *6 (-1246 *5)) (-5 *2 (-692 *6)) (-5 *1 (-505 *5 *6 *7 *8)) (-4 *7 (-1246 *6)))) (-2142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *2 (-1246 *5)) (-5 *1 (-505 *5 *2 *6 *7)) (-4 *6 (-1246 *2)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *4 (-1246 *5)) (-5 *2 (-1175 *7)) (-5 *1 (-505 *5 *4 *6 *7)) (-4 *6 (-1246 *4)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *2 (-1246 *5)) (-5 *1 (-505 *5 *2 *6 *7)) (-4 *6 (-1246 *2))))) +(-10 -7 (-15 -2141 (|#2| (-1 |#1| |#4|) (-1175 |#4|))) (-15 -2141 ((-1175 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2142 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|))) (-15 -2143 ((-3 (-692 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-692 (-1175 |#4|)))) (-15 -2144 ((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2970 (((-112) $ $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2145 (((-1276) $) 25)) (-4233 (((-1163) $ (-1181)) 30)) (-4051 (((-1276) $) 17)) (-4380 (((-866) $) 27) (($ (-1163)) 26)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 11)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 9))) +(((-506) (-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $)) (-15 -4380 ($ (-1163)))))) (T -506)) +((-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1163)) (-5 *1 (-506)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-506)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-506)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-506))))) +(-13 (-853) (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) (-15 -2145 ((-1276) $)) (-15 -4380 ($ (-1163))))) +((-4175 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4173 ((|#1| |#4|) 10)) (-4174 ((|#3| |#4|) 17))) +(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4173 (|#1| |#4|)) (-15 -4174 (|#3| |#4|)) (-15 -4175 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-561) (-995 |#1|) (-375 |#1|) (-375 |#2|)) (T -507)) +((-4175 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-4174 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) (-4 *2 (-375 *4)) (-5 *1 (-507 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-507 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -4173 (|#1| |#4|)) (-15 -4174 (|#3| |#4|)) (-15 -4175 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2970 (((-112) $ $) NIL)) (-2155 (((-112) $ (-644 |#3|)) 124) (((-112) $) 125)) (-3610 (((-112) $) 176)) (-2147 (($ $ |#4|) 115) (($ $ |#4| (-644 |#3|)) 119)) (-2146 (((-1170 (-644 (-950 |#1|)) (-644 (-295 (-950 |#1|)))) (-644 |#4|)) 169 (|has| |#3| (-617 (-1181))))) (-2154 (($ $ $) 105) (($ $ |#4|) 103)) (-2575 (((-112) $) 175)) (-2151 (($ $) 129)) (-3665 (((-1163) $) NIL)) (-3660 (($ $ $) 97) (($ (-644 $)) 99)) (-2156 (((-112) |#4| $) 127)) (-2157 (((-112) $ $) 82)) (-2150 (($ (-644 |#4|)) 104)) (-3666 (((-1124) $) NIL)) (-2149 (($ (-644 |#4|)) 173)) (-2148 (((-112) $) 174)) (-2402 (($ $) 85)) (-3100 (((-644 |#4|) $) 73)) (-2153 (((-2 (|:| |mval| (-692 |#1|)) (|:| |invmval| (-692 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|)) NIL)) (-2158 (((-112) |#4| $) 89)) (-4345 (((-550) $ (-644 |#3|)) 131) (((-550) $) 132)) (-4380 (((-866) $) 172) (($ (-644 |#4|)) 100)) (-3664 (((-112) $ $) NIL)) (-2152 (($ (-2 (|:| |mval| (-692 |#1|)) (|:| |invmval| (-692 |#1|)) (|:| |genIdeal| $))) NIL)) (-3457 (((-112) $ $) 84)) (-4273 (($ $ $) 107)) (** (($ $ (-774)) 113)) (* (($ $ $) 111))) +(((-508 |#1| |#2| |#3| |#4|) (-13 (-1105) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-774))) (-15 -4273 ($ $ $)) (-15 -2575 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -2158 ((-112) |#4| $)) (-15 -2157 ((-112) $ $)) (-15 -2156 ((-112) |#4| $)) (-15 -2155 ((-112) $ (-644 |#3|))) (-15 -2155 ((-112) $)) (-15 -3660 ($ $ $)) (-15 -3660 ($ (-644 $))) (-15 -2154 ($ $ $)) (-15 -2154 ($ $ |#4|)) (-15 -2402 ($ $)) (-15 -2153 ((-2 (|:| |mval| (-692 |#1|)) (|:| |invmval| (-692 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -2152 ($ (-2 (|:| |mval| (-692 |#1|)) (|:| |invmval| (-692 |#1|)) (|:| |genIdeal| $)))) (-15 -4345 ((-550) $ (-644 |#3|))) (-15 -4345 ((-550) $)) (-15 -2151 ($ $)) (-15 -2150 ($ (-644 |#4|))) (-15 -2149 ($ (-644 |#4|))) (-15 -2148 ((-112) $)) (-15 -3100 ((-644 |#4|) $)) (-15 -4380 ($ (-644 |#4|))) (-15 -2147 ($ $ |#4|)) (-15 -2147 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-617 (-1181))) (-15 -2146 ((-1170 (-644 (-950 |#1|)) (-644 (-295 (-950 |#1|)))) (-644 |#4|))) |%noBranch|))) (-366) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -508)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-4273 (*1 *1 *1 *1) (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (-2575 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-3610 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-2158 (*1 *2 *3 *1) (-12 (-4 *4 (-366)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6)))) (-2157 (*1 *2 *1 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-2156 (*1 *2 *3 *1) (-12 (-4 *4 (-366)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6)))) (-2155 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6)))) (-2155 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-644 (-508 *3 *4 *5 *6))) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-2154 (*1 *1 *1 *1) (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (-2154 (*1 *1 *1 *2) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *2)) (-4 *2 (-954 *3 *4 *5)))) (-2402 (*1 *1 *1) (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) (-5 *2 (-2 (|:| |mval| (-692 *4)) (|:| |invmval| (-692 *4)) (|:| |genIdeal| (-508 *4 *5 *6 *7)))) (-5 *1 (-508 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6)))) (-2152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-692 *3)) (|:| |invmval| (-692 *3)) (|:| |genIdeal| (-508 *3 *4 *5 *6)))) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-4345 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) (-5 *2 (-550)) (-5 *1 (-508 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6)))) (-4345 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-550)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-2151 (*1 *1 *1) (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)))) (-2148 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-3100 (*1 *2 *1) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *6)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *2)) (-4 *2 (-954 *3 *4 *5)))) (-2147 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) (-5 *1 (-508 *4 *5 *6 *2)) (-4 *2 (-954 *4 *5 *6)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *5 *6)) (-4 *6 (-617 (-1181))) (-4 *4 (-366)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1170 (-644 (-950 *4)) (-644 (-295 (-950 *4))))) (-5 *1 (-508 *4 *5 *6 *7))))) +(-13 (-1105) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-774))) (-15 -4273 ($ $ $)) (-15 -2575 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -2158 ((-112) |#4| $)) (-15 -2157 ((-112) $ $)) (-15 -2156 ((-112) |#4| $)) (-15 -2155 ((-112) $ (-644 |#3|))) (-15 -2155 ((-112) $)) (-15 -3660 ($ $ $)) (-15 -3660 ($ (-644 $))) (-15 -2154 ($ $ $)) (-15 -2154 ($ $ |#4|)) (-15 -2402 ($ $)) (-15 -2153 ((-2 (|:| |mval| (-692 |#1|)) (|:| |invmval| (-692 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -2152 ($ (-2 (|:| |mval| (-692 |#1|)) (|:| |invmval| (-692 |#1|)) (|:| |genIdeal| $)))) (-15 -4345 ((-550) $ (-644 |#3|))) (-15 -4345 ((-550) $)) (-15 -2151 ($ $)) (-15 -2150 ($ (-644 |#4|))) (-15 -2149 ($ (-644 |#4|))) (-15 -2148 ((-112) $)) (-15 -3100 ((-644 |#4|) $)) (-15 -4380 ($ (-644 |#4|))) (-15 -2147 ($ $ |#4|)) (-15 -2147 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-617 (-1181))) (-15 -2146 ((-1170 (-644 (-950 |#1|)) (-644 (-295 (-950 |#1|)))) (-644 |#4|))) |%noBranch|))) +((-2159 (((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) 176)) (-2160 (((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) 177)) (-2161 (((-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) 129)) (-4157 (((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) NIL)) (-2162 (((-644 (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) 179)) (-2163 (((-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-644 (-867 |#1|))) 195))) +(((-509 |#1| |#2|) (-10 -7 (-15 -2159 ((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2160 ((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -4157 ((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2161 ((-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2162 ((-644 (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2163 ((-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-644 (-867 |#1|))))) (-644 (-1181)) (-774)) (T -509)) +((-2163 (*1 *2 *2 *3) (-12 (-5 *2 (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) (-5 *3 (-644 (-867 *4))) (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *1 (-509 *4 *5)))) (-2162 (*1 *2 *3) (-12 (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-644 (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550)))))) (-5 *1 (-509 *4 *5)) (-5 *3 (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-508 (-411 (-550)) (-240 *4 (-774)) (-867 *3) (-248 *3 (-411 (-550))))) (-14 *3 (-644 (-1181))) (-14 *4 (-774)) (-5 *1 (-509 *3 *4)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5))))) +(-10 -7 (-15 -2159 ((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2160 ((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -4157 ((-112) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2161 ((-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2162 ((-644 (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550))))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))))) (-15 -2163 ((-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-508 (-411 (-550)) (-240 |#2| (-774)) (-867 |#1|) (-248 |#1| (-411 (-550)))) (-644 (-867 |#1|))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2164 (($) 6)) (-4380 (((-866) $) 12) (((-1181) $) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 8))) +(((-510) (-13 (-1105) (-616 (-1181)) (-10 -8 (-15 -2164 ($))))) (T -510)) +((-2164 (*1 *1) (-5 *1 (-510)))) +(-13 (-1105) (-616 (-1181)) (-10 -8 (-15 -2164 ($)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3296 (($ |#1| |#2|) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2165 ((|#2| $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 12 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) 11) (($ $ $) 35)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 21))) +(((-511 |#1| |#2|) (-13 (-21) (-513 |#1| |#2|)) (-21) (-853)) (T -511)) +NIL +(-13 (-21) (-513 |#1| |#2|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 13)) (-4158 (($) NIL T CONST)) (-4393 (($ $) 41)) (-3296 (($ |#1| |#2|) 38)) (-4392 (($ (-1 |#1| |#1|) $) 40)) (-2165 ((|#2| $) NIL)) (-3596 ((|#1| $) 42)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 10 T CONST)) (-3457 (((-112) $ $) NIL)) (-4273 (($ $ $) 26)) (* (($ (-923) $) NIL) (($ (-774) $) 36))) +(((-512 |#1| |#2|) (-13 (-23) (-513 |#1| |#2|)) (-23) (-853)) (T -512)) +NIL +(-13 (-23) (-513 |#1| |#2|)) +((-2970 (((-112) $ $) 7)) (-4393 (($ $) 14)) (-3296 (($ |#1| |#2|) 17)) (-4392 (($ (-1 |#1| |#1|) $) 18)) (-2165 ((|#2| $) 15)) (-3596 ((|#1| $) 16)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-513 |#1| |#2|) (-140) (-1105) (-853)) (T -513)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-513 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-853)))) (-3296 (*1 *1 *2 *3) (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-853)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-513 *2 *3)) (-4 *3 (-853)) (-4 *2 (-1105)))) (-2165 (*1 *2 *1) (-12 (-4 *1 (-513 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-853)))) (-4393 (*1 *1 *1) (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-853))))) +(-13 (-1105) (-10 -8 (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (-15 -3296 ($ |t#1| |t#2|)) (-15 -3596 (|t#1| $)) (-15 -2165 (|t#2| $)) (-15 -4393 ($ $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-4393 (($ $) 32)) (-3296 (($ |#1| |#2|) 28)) (-4392 (($ (-1 |#1| |#1|) $) 30)) (-2165 ((|#2| $) 34)) (-3596 ((|#1| $) 33)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 27)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 20))) +(((-514 |#1| |#2|) (-513 |#1| |#2|) (-1105) (-853)) (T -514)) +NIL +(-513 |#1| |#2|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3296 (($ |#1| |#2|) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2165 ((|#2| $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 22)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL))) +(((-515 |#1| |#2|) (-13 (-795) (-513 |#1| |#2|)) (-795) (-853)) (T -515)) +NIL +(-13 (-795) (-513 |#1| |#2|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2807 (($ $ $) 23)) (-1408 (((-3 $ "failed") $ $) 19)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3296 (($ |#1| |#2|) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2165 ((|#2| $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL))) +(((-516 |#1| |#2|) (-13 (-796) (-513 |#1| |#2|)) (-796) (-853)) (T -516)) +NIL +(-13 (-796) (-513 |#1| |#2|)) +((-4201 (($ $ (-644 |#2|) (-644 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-517 |#1| |#2| |#3|) (-10 -8 (-15 -4201 (|#1| |#1| |#2| |#3|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) (-518 |#2| |#3|) (-1105) (-1220)) (T -517)) +NIL +(-10 -8 (-15 -4201 (|#1| |#1| |#2| |#3|)) (-15 -4201 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) +((-4201 (($ $ (-644 |#1|) (-644 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-518 |#1| |#2|) (-140) (-1105) (-1220)) (T -518)) +((-4201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-518 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1220)))) (-4201 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1220))))) +(-13 (-10 -8 (-15 -4201 ($ $ |t#1| |t#2|)) (-15 -4201 ($ $ (-644 |t#1|) (-644 |t#2|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 17)) (-4207 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))) $) 19)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3542 (((-774) $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-2446 ((|#1| $ (-550)) 24)) (-1769 ((|#2| $ (-550)) 22)) (-2438 (($ (-1 |#1| |#1|) $) 48)) (-1768 (($ (-1 |#2| |#2|) $) 45)) (-3665 (((-1163) $) NIL)) (-1767 (($ $ $) 55 (|has| |#2| (-795)))) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 44) (($ |#1|) NIL)) (-4111 ((|#2| |#1| $) 51)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 11 T CONST)) (-3457 (((-112) $ $) 30)) (-4273 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-923) $) NIL) (($ (-774) $) 37) (($ |#2| |#1|) 32))) +(((-519 |#1| |#2| |#3|) (-325 |#1| |#2|) (-1105) (-131) |#2|) (T -519)) +NIL +(-325 |#1| |#2|) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-2166 (((-112) (-112)) 32)) (-4221 ((|#1| $ (-550) |#1|) 42 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) |#1|) $) 80)) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-2528 (($ $) 84 (|has| |#1| (-1105)))) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) NIL (|has| |#1| (-1105))) (($ (-1 (-112) |#1|) $) 67)) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2167 (($ $ (-550)) 19)) (-2168 (((-774) $) 13)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 31)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 29 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3261 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) 28 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4041 (($ $ $ (-550)) 76) (($ |#1| $ (-550)) 60)) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2169 (($ (-644 |#1|)) 43)) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) 24 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 63)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 21)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 56) (($ $ (-1237 (-550))) NIL)) (-1681 (($ $ (-1237 (-550))) 74) (($ $ (-550)) 68)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) 64 (|has| $ (-6 -4428)))) (-3826 (($ $) 54)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) NIL)) (-4224 (($ $ $) 65) (($ $ |#1|) 62)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) 22 (|has| $ (-6 -4427))))) +(((-520 |#1| |#2|) (-13 (-19 |#1|) (-284 |#1|) (-10 -8 (-15 -2169 ($ (-644 |#1|))) (-15 -2168 ((-774) $)) (-15 -2167 ($ $ (-550))) (-15 -2166 ((-112) (-112))))) (-1220) (-550)) (T -520)) +((-2169 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-520 *3 *4)) (-14 *4 (-550)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-520 *3 *4)) (-4 *3 (-1220)) (-14 *4 (-550)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-520 *3 *4)) (-4 *3 (-1220)) (-14 *4 *2))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-520 *3 *4)) (-4 *3 (-1220)) (-14 *4 (-550))))) +(-13 (-19 |#1|) (-284 |#1|) (-10 -8 (-15 -2169 ($ (-644 |#1|))) (-15 -2168 ((-774) $)) (-15 -2167 ($ $ (-550))) (-15 -2166 ((-112) (-112))))) +((-2970 (((-112) $ $) NIL)) (-2171 (((-1139) $) 11)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2170 (((-1139) $) 13)) (-4356 (((-1139) $) 9)) (-4380 (((-866) $) 19) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-521) (-13 (-1087) (-10 -8 (-15 -4356 ((-1139) $)) (-15 -2171 ((-1139) $)) (-15 -2170 ((-1139) $))))) (T -521)) +((-4356 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-521)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-521)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-521))))) +(-13 (-1087) (-10 -8 (-15 -4356 ((-1139) $)) (-15 -2171 ((-1139) $)) (-15 -2170 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 (((-585 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-585 |#1|) (-371)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-585 |#1|) (-371)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL (|has| (-585 |#1|) (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-585 |#1|) "failed") $) NIL)) (-3578 (((-585 |#1|) $) NIL)) (-1969 (($ (-1270 (-585 |#1|))) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-585 |#1|) (-371)))) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-585 |#1|) (-371)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL (|has| (-585 |#1|) (-371)))) (-1850 (((-112) $) NIL (|has| (-585 |#1|) (-371)))) (-1943 (($ $ (-774)) NIL (-3962 (|has| (-585 |#1|) (-145)) (|has| (-585 |#1|) (-371)))) (($ $) NIL (-3962 (|has| (-585 |#1|) (-145)) (|has| (-585 |#1|) (-371))))) (-4157 (((-112) $) NIL)) (-4205 (((-923) $) NIL (|has| (-585 |#1|) (-371))) (((-835 (-923)) $) NIL (-3962 (|has| (-585 |#1|) (-145)) (|has| (-585 |#1|) (-371))))) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| (-585 |#1|) (-371)))) (-2191 (((-112) $) NIL (|has| (-585 |#1|) (-371)))) (-3538 (((-585 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-585 |#1|) (-371)))) (-3870 (((-3 $ "failed") $) NIL (|has| (-585 |#1|) (-371)))) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 (-585 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-585 |#1|) (-371)))) (-2190 (((-923) $) NIL (|has| (-585 |#1|) (-371)))) (-1774 (((-1175 (-585 |#1|)) $) NIL (|has| (-585 |#1|) (-371)))) (-1773 (((-1175 (-585 |#1|)) $) NIL (|has| (-585 |#1|) (-371))) (((-3 (-1175 (-585 |#1|)) "failed") $ $) NIL (|has| (-585 |#1|) (-371)))) (-1775 (($ $ (-1175 (-585 |#1|))) NIL (|has| (-585 |#1|) (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-585 |#1|) (-371)) CONST)) (-2565 (($ (-923)) NIL (|has| (-585 |#1|) (-371)))) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-2574 (($) NIL (|has| (-585 |#1|) (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-585 |#1|) (-371)))) (-4166 (((-409 $) $) NIL)) (-4364 (((-835 (-923))) NIL) (((-923)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-774) $) NIL (|has| (-585 |#1|) (-371))) (((-3 (-774) "failed") $ $) NIL (-3962 (|has| (-585 |#1|) (-145)) (|has| (-585 |#1|) (-371))))) (-4345 (((-134)) NIL)) (-4244 (($ $) NIL (|has| (-585 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-585 |#1|) (-371)))) (-4382 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-3607 (((-1175 (-585 |#1|))) NIL)) (-1844 (($) NIL (|has| (-585 |#1|) (-371)))) (-1776 (($) NIL (|has| (-585 |#1|) (-371)))) (-3646 (((-1270 (-585 |#1|)) $) NIL) (((-692 (-585 |#1|)) (-1270 $)) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| (-585 |#1|) (-371)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-585 |#1|)) NIL)) (-3107 (($ $) NIL (|has| (-585 |#1|) (-371))) (((-3 $ "failed") $) NIL (-3962 (|has| (-585 |#1|) (-145)) (|has| (-585 |#1|) (-371))))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL) (((-1270 $) (-923)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $) NIL (|has| (-585 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-585 |#1|) (-371)))) (-3074 (($ $) NIL (|has| (-585 |#1|) (-371))) (($ $ (-774)) NIL (|has| (-585 |#1|) (-371)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL) (($ $ (-585 |#1|)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ $ (-585 |#1|)) NIL) (($ (-585 |#1|) $) NIL))) +(((-522 |#1| |#2|) (-331 (-585 |#1|)) (-923) (-923)) (T -522)) +NIL +(-331 (-585 |#1|)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) (-550) |#1|) 51)) (-1346 (($ $ (-550) |#4|) NIL)) (-1345 (($ $ (-550) |#5|) NIL)) (-4158 (($) NIL T CONST)) (-3518 ((|#4| $ (-550)) NIL)) (-1686 ((|#1| $ (-550) (-550) |#1|) 50)) (-3519 ((|#1| $ (-550) (-550)) 45)) (-2126 (((-644 |#1|) $) NIL)) (-3521 (((-774) $) 33)) (-4048 (($ (-774) (-774) |#1|) 30)) (-3520 (((-774) $) 38)) (-4153 (((-112) $ (-774)) NIL)) (-3525 (((-550) $) 31)) (-3523 (((-550) $) 32)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3524 (((-550) $) 37)) (-3522 (((-550) $) 39)) (-2130 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) 55 (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 14)) (-3998 (($) 16)) (-4233 ((|#1| $ (-550) (-550)) 48) ((|#1| $ (-550) (-550) |#1|) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-3517 ((|#5| $ (-550)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-523 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1220) (-550) (-550) (-375 |#1|) (-375 |#1|)) (T -523)) NIL (-57 |#1| |#4| |#5|) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 73 (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) 23 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 21 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2442 (($ $) 28 (|has| $ (-6 -4426)))) (-2443 (($ $) 29)) (-4230 (($ $) 18) (($ $ (-773)) 35)) (-2526 (($ $) 66 (|has| |#1| (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104))) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2124 (((-643 |#1|) $) 27 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 31 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3941 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3965 (($ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) 62 (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) 13) (($ $ (-773)) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 12)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 16)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL)) (-3430 (((-549) $ $) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-4065 (((-112) $) 39)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) 44)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 40)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 26)) (-4222 (($ $ $) 65) (($ $ |#1|) NIL)) (-4233 (($ $ $) NIL) (($ |#1| $) 10) (($ (-643 $)) NIL) (($ $ |#1|) NIL)) (-4378 (((-865) $) 54 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) 58 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 9 (|has| $ (-6 -4425))))) -(((-523 |#1| |#2|) (-668 |#1|) (-1219) (-549)) (T -523)) -NIL -(-668 |#1|) -((-3514 ((|#4| |#4|) 37)) (-3513 (((-773) |#4|) 45)) (-3512 (((-773) |#4|) 46)) (-3511 (((-643 |#3|) |#4|) 56 (|has| |#3| (-6 -4426)))) (-4021 (((-3 |#4| "failed") |#4|) 70)) (-2170 ((|#4| |#4|) 62)) (-3752 ((|#1| |#4|) 61))) -(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3514 (|#4| |#4|)) (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (IF (|has| |#3| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|) (-15 -3752 (|#1| |#4|)) (-15 -2170 (|#4| |#4|)) (-15 -4021 ((-3 |#4| "failed") |#4|))) (-365) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -524)) -((-4021 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3511 (*1 *2 *3) (-12 (|has| *6 (-6 -4426)) (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-643 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3514 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -3514 (|#4| |#4|)) (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (IF (|has| |#3| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|) (-15 -3752 (|#1| |#4|)) (-15 -2170 (|#4| |#4|)) (-15 -4021 ((-3 |#4| "failed") |#4|))) -((-3514 ((|#8| |#4|) 20)) (-3511 (((-643 |#3|) |#4|) 29 (|has| |#7| (-6 -4426)))) (-4021 (((-3 |#8| "failed") |#4|) 23))) -(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3514 (|#8| |#4|)) (-15 -4021 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|)) (-560) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|) (-994 |#1|) (-374 |#5|) (-374 |#5|) (-688 |#5| |#6| |#7|)) (T -525)) -((-3511 (*1 *2 *3) (-12 (|has| *9 (-6 -4426)) (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)) (-5 *2 (-643 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-4021 (*1 *2 *3) (|partial| -12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7))))) -(-10 -7 (-15 -3514 (|#8| |#4|)) (-15 -4021 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) NIL)) (-2501 (($ $ $) NIL)) (-3838 (($ (-604 |#1| |#3|)) NIL) (($ $) NIL)) (-3525 (((-112) $) NIL)) (-2500 (($ $ (-549) (-549)) 21)) (-2499 (($ $ (-549) (-549)) NIL)) (-2498 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-2503 (($ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-2497 (($ $ (-549) (-549) $) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) NIL)) (-1345 (($ $ (-549) (-604 |#1| |#3|)) NIL)) (-1344 (($ $ (-549) (-604 |#1| |#2|)) NIL)) (-3757 (($ (-773) |#1|) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 30 (|has| |#1| (-308)))) (-3516 (((-604 |#1| |#3|) $ (-549)) NIL)) (-3513 (((-773) $) 33 (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3512 (((-773) $) 35 (|has| |#1| (-560)))) (-3511 (((-643 (-604 |#1| |#2|)) $) 38 (|has| |#1| (-560)))) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#1| $) 28 (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) 10)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) 13)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#1|))) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4025 (((-643 (-643 |#1|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4021 (((-3 $ #2="failed") $) 42 (|has| |#1| (-365)))) (-2502 (($ $ $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-3889 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549))) NIL)) (-3756 (($ (-643 |#1|)) NIL) (($ (-643 $)) NIL)) (-3526 (((-112) $) NIL)) (-3752 ((|#1| $) 26 (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-604 |#1| |#2|) $ (-549)) NIL)) (-4378 (($ (-604 |#1| |#2|)) NIL) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-604 |#1| |#2|) $ (-604 |#1| |#2|)) NIL) (((-604 |#1| |#3|) (-604 |#1| |#3|) $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-526 |#1| |#2| |#3|) (-688 |#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) (-1052) (-549) (-549)) (T -526)) -NIL -(-688 |#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2171 (((-643 (-1220)) $) 13)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL) (($ (-643 (-1220))) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-527) (-13 (-1086) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2171 ((-643 (-1220)) $))))) (T -527)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527))))) -(-13 (-1086) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2171 ((-643 (-1220)) $)))) -((-2968 (((-112) $ $) NIL)) (-2172 (((-1138) $) 14)) (-3663 (((-1162) $) NIL)) (-3873 (((-509) $) 11)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 21) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-528) (-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -2172 ((-1138) $))))) (T -528)) -((-3873 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-528))))) -(-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -2172 ((-1138) $)))) -((-2178 (((-693 (-1228)) $) 15)) (-2174 (((-693 (-1226)) $) 38)) (-2176 (((-693 (-1225)) $) 29)) (-2179 (((-693 (-553)) $) 12)) (-2175 (((-693 (-551)) $) 42)) (-2177 (((-693 (-550)) $) 33)) (-2173 (((-773) $ (-129)) 54))) -(((-529 |#1|) (-10 -8 (-15 -2173 ((-773) |#1| (-129))) (-15 -2174 ((-693 (-1226)) |#1|)) (-15 -2175 ((-693 (-551)) |#1|)) (-15 -2176 ((-693 (-1225)) |#1|)) (-15 -2177 ((-693 (-550)) |#1|)) (-15 -2178 ((-693 (-1228)) |#1|)) (-15 -2179 ((-693 (-553)) |#1|))) (-530)) (T -529)) -NIL -(-10 -8 (-15 -2173 ((-773) |#1| (-129))) (-15 -2174 ((-693 (-1226)) |#1|)) (-15 -2175 ((-693 (-551)) |#1|)) (-15 -2176 ((-693 (-1225)) |#1|)) (-15 -2177 ((-693 (-550)) |#1|)) (-15 -2178 ((-693 (-1228)) |#1|)) (-15 -2179 ((-693 (-553)) |#1|))) -((-2178 (((-693 (-1228)) $) 12)) (-2174 (((-693 (-1226)) $) 8)) (-2176 (((-693 (-1225)) $) 10)) (-2179 (((-693 (-553)) $) 13)) (-2175 (((-693 (-551)) $) 9)) (-2177 (((-693 (-550)) $) 11)) (-2173 (((-773) $ (-129)) 7)) (-2180 (((-693 (-128)) $) 14)) (-1868 (($ $) 6))) -(((-530) (-140)) (T -530)) -((-2180 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-128))))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-553))))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1228))))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-550))))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1225))))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-551))))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1226))))) (-2173 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-129)) (-5 *2 (-773))))) -(-13 (-173) (-10 -8 (-15 -2180 ((-693 (-128)) $)) (-15 -2179 ((-693 (-553)) $)) (-15 -2178 ((-693 (-1228)) $)) (-15 -2177 ((-693 (-550)) $)) (-15 -2176 ((-693 (-1225)) $)) (-15 -2175 ((-693 (-551)) $)) (-15 -2174 ((-693 (-1226)) $)) (-15 -2173 ((-773) $ (-129))))) -(((-173) . T)) -((-2183 (((-1174 |#1|) (-773)) 114)) (-3754 (((-1269 |#1|) (-1269 |#1|) (-922)) 107)) (-2181 (((-1275) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) |#1|) 122)) (-2185 (((-1269 |#1|) (-1269 |#1|) (-773)) 53)) (-3395 (((-1269 |#1|) (-922)) 109)) (-2187 (((-1269 |#1|) (-1269 |#1|) (-549)) 30)) (-2182 (((-1174 |#1|) (-1269 |#1|)) 115)) (-2191 (((-1269 |#1|) (-922)) 135)) (-2189 (((-112) (-1269 |#1|)) 119)) (-3536 (((-1269 |#1|) (-1269 |#1|) (-922)) 99)) (-2192 (((-1174 |#1|) (-1269 |#1|)) 129)) (-2188 (((-922) (-1269 |#1|)) 95)) (-2806 (((-1269 |#1|) (-1269 |#1|)) 38)) (-2563 (((-1269 |#1|) (-922) (-922)) 138)) (-2186 (((-1269 |#1|) (-1269 |#1|) (-1123) (-1123)) 29)) (-2184 (((-1269 |#1|) (-1269 |#1|) (-773) (-1123)) 54)) (-2190 (((-1269 (-1269 |#1|)) (-922)) 134)) (-4381 (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 120)) (** (((-1269 |#1|) (-1269 |#1|) (-549)) 67)) (* (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 31))) -(((-531 |#1|) (-10 -7 (-15 -2181 ((-1275) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) |#1|)) (-15 -3395 ((-1269 |#1|) (-922))) (-15 -2563 ((-1269 |#1|) (-922) (-922))) (-15 -2182 ((-1174 |#1|) (-1269 |#1|))) (-15 -2183 ((-1174 |#1|) (-773))) (-15 -2184 ((-1269 |#1|) (-1269 |#1|) (-773) (-1123))) (-15 -2185 ((-1269 |#1|) (-1269 |#1|) (-773))) (-15 -2186 ((-1269 |#1|) (-1269 |#1|) (-1123) (-1123))) (-15 -2187 ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -4381 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3536 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -3754 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -2806 ((-1269 |#1|) (-1269 |#1|))) (-15 -2188 ((-922) (-1269 |#1|))) (-15 -2189 ((-112) (-1269 |#1|))) (-15 -2190 ((-1269 (-1269 |#1|)) (-922))) (-15 -2191 ((-1269 |#1|) (-922))) (-15 -2192 ((-1174 |#1|) (-1269 |#1|)))) (-352)) (T -531)) -((-2192 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-922)) (-5 *1 (-531 *4)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) (-3754 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2187 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2186 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1123)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2185 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2184 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1269 *5)) (-5 *3 (-773)) (-5 *4 (-1123)) (-4 *5 (-352)) (-5 *1 (-531 *5)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-2563 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-4 *4 (-352)) (-5 *2 (-1275)) (-5 *1 (-531 *4))))) -(-10 -7 (-15 -2181 ((-1275) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) |#1|)) (-15 -3395 ((-1269 |#1|) (-922))) (-15 -2563 ((-1269 |#1|) (-922) (-922))) (-15 -2182 ((-1174 |#1|) (-1269 |#1|))) (-15 -2183 ((-1174 |#1|) (-773))) (-15 -2184 ((-1269 |#1|) (-1269 |#1|) (-773) (-1123))) (-15 -2185 ((-1269 |#1|) (-1269 |#1|) (-773))) (-15 -2186 ((-1269 |#1|) (-1269 |#1|) (-1123) (-1123))) (-15 -2187 ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -4381 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3536 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -3754 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -2806 ((-1269 |#1|) (-1269 |#1|))) (-15 -2188 ((-922) (-1269 |#1|))) (-15 -2189 ((-112) (-1269 |#1|))) (-15 -2190 ((-1269 (-1269 |#1|)) (-922))) (-15 -2191 ((-1269 |#1|) (-922))) (-15 -2192 ((-1174 |#1|) (-1269 |#1|)))) -((-2178 (((-693 (-1228)) $) NIL)) (-2174 (((-693 (-1226)) $) NIL)) (-2176 (((-693 (-1225)) $) NIL)) (-2179 (((-693 (-553)) $) NIL)) (-2175 (((-693 (-551)) $) NIL)) (-2177 (((-693 (-550)) $) NIL)) (-2173 (((-773) $ (-129)) NIL)) (-2180 (((-693 (-128)) $) 26)) (-2193 (((-1123) $ (-1123)) 31)) (-3843 (((-1123) $) 30)) (-2961 (((-112) $) 20)) (-2195 (($ (-391)) 14) (($ (-1162)) 16)) (-2194 (((-112) $) 27)) (-4378 (((-865) $) 34)) (-1868 (($ $) 28))) -(((-532) (-13 (-530) (-615 (-865)) (-10 -8 (-15 -2195 ($ (-391))) (-15 -2195 ($ (-1162))) (-15 -2194 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -3843 ((-1123) $)) (-15 -2193 ((-1123) $ (-1123)))))) (T -532)) -((-2195 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-2195 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-532)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-532)))) (-2193 (*1 *2 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-532))))) -(-13 (-530) (-615 (-865)) (-10 -8 (-15 -2195 ($ (-391))) (-15 -2195 ($ (-1162))) (-15 -2194 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -3843 ((-1123) $)) (-15 -2193 ((-1123) $ (-1123))))) -((-2197 (((-1 |#1| |#1|) |#1|) 11)) (-2196 (((-1 |#1| |#1|)) 10))) -(((-533 |#1|) (-10 -7 (-15 -2196 ((-1 |#1| |#1|))) (-15 -2197 ((-1 |#1| |#1|) |#1|))) (-13 (-728) (-25))) (T -533)) -((-2197 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25))))) (-2196 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25)))))) -(-10 -7 (-15 -2196 ((-1 |#1| |#1|))) (-15 -2197 ((-1 |#1| |#1|) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2805 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ (-773) |#1|) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 (-773) (-773)) $) NIL)) (-2163 ((|#1| $) NIL)) (-3594 (((-773) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL))) -(((-534 |#1|) (-13 (-795) (-512 (-773) |#1|)) (-852)) (T -534)) -NIL -(-13 (-795) (-512 (-773) |#1|)) -((-2199 (((-643 |#2|) (-1174 |#1|) |#3|) 98)) (-2200 (((-643 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#2|))))) (-691 |#1|) |#3| (-1 (-408 (-1174 |#1|)) (-1174 |#1|))) 114)) (-2198 (((-1174 |#1|) (-691 |#1|)) 110))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2198 ((-1174 |#1|) (-691 |#1|))) (-15 -2199 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2200 ((-643 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#2|))))) (-691 |#1|) |#3| (-1 (-408 (-1174 |#1|)) (-1174 |#1|))))) (-365) (-365) (-13 (-365) (-850))) (T -535)) -((-2200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *6)) (-5 *5 (-1 (-408 (-1174 *6)) (-1174 *6))) (-4 *6 (-365)) (-5 *2 (-643 (-2 (|:| |outval| *7) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-850))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-643 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850))))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-691 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-850)))))) -(-10 -7 (-15 -2198 ((-1174 |#1|) (-691 |#1|))) (-15 -2199 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2200 ((-643 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#2|))))) (-691 |#1|) |#3| (-1 (-408 (-1174 |#1|)) (-1174 |#1|))))) -((-2958 (((-693 (-1228)) $ (-1228)) NIL)) (-2959 (((-693 (-553)) $ (-553)) NIL)) (-2957 (((-773) $ (-129)) 39)) (-2960 (((-693 (-128)) $ (-128)) 40)) (-2178 (((-693 (-1228)) $) NIL)) (-2174 (((-693 (-1226)) $) NIL)) (-2176 (((-693 (-1225)) $) NIL)) (-2179 (((-693 (-553)) $) NIL)) (-2175 (((-693 (-551)) $) NIL)) (-2177 (((-693 (-550)) $) NIL)) (-2173 (((-773) $ (-129)) 35)) (-2180 (((-693 (-128)) $) 37)) (-2760 (((-112) $) 27)) (-2761 (((-693 $) (-582) (-957)) 18) (((-693 $) (-494) (-957)) 24)) (-4378 (((-865) $) 48)) (-1868 (($ $) 42))) -(((-536) (-13 (-769 (-582)) (-615 (-865)) (-10 -8 (-15 -2761 ((-693 $) (-494) (-957)))))) (T -536)) -((-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-957)) (-5 *2 (-693 (-536))) (-5 *1 (-536))))) -(-13 (-769 (-582)) (-615 (-865)) (-10 -8 (-15 -2761 ((-693 $) (-494) (-957))))) -((-2930 (((-844 (-549))) 12)) (-2929 (((-844 (-549))) 14)) (-2914 (((-834 (-549))) 9))) -(((-537) (-10 -7 (-15 -2914 ((-834 (-549)))) (-15 -2930 ((-844 (-549)))) (-15 -2929 ((-844 (-549)))))) (T -537)) -((-2929 (*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) (-2930 (*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) (-2914 (*1 *2) (-12 (-5 *2 (-834 (-549))) (-5 *1 (-537))))) -(-10 -7 (-15 -2914 ((-834 (-549)))) (-15 -2930 ((-844 (-549)))) (-15 -2929 ((-844 (-549))))) -((-2968 (((-112) $ $) NIL)) (-2204 (((-1162) $) 55)) (-3681 (((-112) $) 51)) (-3677 (((-1180) $) 52)) (-3682 (((-112) $) 49)) (-3966 (((-1162) $) 50)) (-2203 (($ (-1162)) 56)) (-3684 (((-112) $) NIL)) (-3686 (((-112) $) NIL)) (-3683 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-2206 (($ $ (-643 (-1180))) 21)) (-2209 (((-51) $) 23)) (-3680 (((-112) $) NIL)) (-3676 (((-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-2546 (($ $ (-643 (-1180)) (-1180)) 73)) (-3679 (((-112) $) NIL)) (-3675 (((-225) $) NIL)) (-2205 (($ $) 44)) (-3674 (((-865) $) NIL)) (-3687 (((-112) $ $) NIL)) (-4231 (($ $ (-549)) NIL) (($ $ (-643 (-549))) NIL)) (-3678 (((-643 $) $) 30)) (-2202 (((-1180) (-643 $)) 57)) (-4402 (($ (-1162)) NIL) (($ (-1180)) 19) (($ (-549)) 8) (($ (-225)) 28) (($ (-865)) NIL) (($ (-643 $)) 65) (((-1106) $) 12) (($ (-1106)) 13)) (-2201 (((-1180) (-1180) (-643 $)) 60)) (-4378 (((-865) $) 54)) (-3672 (($ $) 59)) (-3673 (($ $) 58)) (-2207 (($ $ (-643 $)) 66)) (-3662 (((-112) $ $) NIL)) (-3685 (((-112) $) 29)) (-3510 (($) 9 T CONST)) (-3067 (($) 11 T CONST)) (-3455 (((-112) $ $) 74)) (-4381 (($ $ $) 82)) (-4271 (($ $ $) 75)) (** (($ $ (-773)) 81) (($ $ (-549)) 80)) (* (($ $ $) 76)) (-4389 (((-549) $) NIL))) -(((-538) (-13 (-1107 (-1162) (-1180) (-549) (-225) (-865)) (-616 (-1106)) (-10 -8 (-15 -2209 ((-51) $)) (-15 -4402 ($ (-1106))) (-15 -2207 ($ $ (-643 $))) (-15 -2546 ($ $ (-643 (-1180)) (-1180))) (-15 -2206 ($ $ (-643 (-1180)))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ (-549))) (-15 0 ($) -4384) (-15 1 ($) -4384) (-15 -2205 ($ $)) (-15 -2204 ((-1162) $)) (-15 -2203 ($ (-1162))) (-15 -2202 ((-1180) (-643 $))) (-15 -2201 ((-1180) (-1180) (-643 $)))))) (T -538)) -((-2209 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-538)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-538)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-538))) (-5 *1 (-538)))) (-2546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1180)) (-5 *1 (-538)))) (-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-538)))) (-4271 (*1 *1 *1 *1) (-5 *1 (-538))) (* (*1 *1 *1 *1) (-5 *1 (-538))) (-4381 (*1 *1 *1 *1) (-5 *1 (-538))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-538)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))) (-3510 (*1 *1) (-5 *1 (-538))) (-3067 (*1 *1) (-5 *1 (-538))) (-2205 (*1 *1 *1) (-5 *1 (-538))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-538)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-538)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-643 (-538))) (-5 *2 (-1180)) (-5 *1 (-538)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-538))) (-5 *1 (-538))))) -(-13 (-1107 (-1162) (-1180) (-549) (-225) (-865)) (-616 (-1106)) (-10 -8 (-15 -2209 ((-51) $)) (-15 -4402 ($ (-1106))) (-15 -2207 ($ $ (-643 $))) (-15 -2546 ($ $ (-643 (-1180)) (-1180))) (-15 -2206 ($ $ (-643 (-1180)))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ (-549))) (-15 (-3510) ($) -4384) (-15 (-3067) ($) -4384) (-15 -2205 ($ $)) (-15 -2204 ((-1162) $)) (-15 -2203 ($ (-1162))) (-15 -2202 ((-1180) (-643 $))) (-15 -2201 ((-1180) (-1180) (-643 $))))) -((-2208 (((-538) (-1180)) 15)) (-2209 ((|#1| (-538)) 20))) -(((-539 |#1|) (-10 -7 (-15 -2208 ((-538) (-1180))) (-15 -2209 (|#1| (-538)))) (-1219)) (T -539)) -((-2209 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-539 *2)) (-4 *2 (-1219)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-538)) (-5 *1 (-539 *4)) (-4 *4 (-1219))))) -(-10 -7 (-15 -2208 ((-538) (-1180))) (-15 -2209 (|#1| (-538)))) -((-3876 ((|#2| |#2|) 17)) (-3874 ((|#2| |#2|) 13)) (-3877 ((|#2| |#2| (-549) (-549)) 20)) (-3875 ((|#2| |#2|) 15))) -(((-540 |#1| |#2|) (-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) (-13 (-560) (-147)) (-1262 |#1|)) (T -540)) -((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1262 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) -((-2212 (((-643 (-294 (-949 |#2|))) (-643 |#2|) (-643 (-1180))) 32)) (-2210 (((-643 |#2|) (-949 |#1|) |#3|) 54) (((-643 |#2|) (-1174 |#1|) |#3|) 53)) (-2211 (((-643 (-643 |#2|)) (-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)) |#3|) 106))) -(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -2210 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2210 ((-643 |#2|) (-949 |#1|) |#3|)) (-15 -2211 ((-643 (-643 |#2|)) (-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)) |#3|)) (-15 -2212 ((-643 (-294 (-949 |#2|))) (-643 |#2|) (-643 (-1180))))) (-455) (-365) (-13 (-365) (-850))) (T -541)) -((-2212 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1180))) (-4 *6 (-365)) (-5 *2 (-643 (-294 (-949 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-850))))) (-2211 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-850))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850)))))) -(-10 -7 (-15 -2210 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2210 ((-643 |#2|) (-949 |#1|) |#3|)) (-15 -2211 ((-643 (-643 |#2|)) (-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)) |#3|)) (-15 -2212 ((-643 (-294 (-949 |#2|))) (-643 |#2|) (-643 (-1180))))) -((-2215 ((|#2| |#2| |#1|) 17)) (-2213 ((|#2| (-643 |#2|)) 31)) (-2214 ((|#2| (-643 |#2|)) 52))) -(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2213 (|#2| (-643 |#2|))) (-15 -2214 (|#2| (-643 |#2|))) (-15 -2215 (|#2| |#2| |#1|))) (-308) (-1245 |#1|) |#1| (-1 |#1| |#1| (-773))) (T -542)) -((-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-773))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773))))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773)))))) -(-10 -7 (-15 -2213 (|#2| (-643 |#2|))) (-15 -2214 (|#2| (-643 |#2|))) (-15 -2215 (|#2| |#2| |#1|))) -((-4164 (((-408 (-1174 |#4|)) (-1174 |#4|) (-1 (-408 (-1174 |#3|)) (-1174 |#3|))) 89) (((-408 |#4|) |#4| (-1 (-408 (-1174 |#3|)) (-1174 |#3|))) 214))) -(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 (-1174 |#3|)) (-1174 |#3|)))) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|) (-1 (-408 (-1174 |#3|)) (-1174 |#3|))))) (-852) (-795) (-13 (-308) (-147)) (-953 |#3| |#2| |#1|)) (T -543)) -((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *8 (-953 *7 *6 *5)) (-5 *2 (-408 (-1174 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-953 *7 *6 *5))))) -(-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 (-1174 |#3|)) (-1174 |#3|)))) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|) (-1 (-408 (-1174 |#3|)) (-1174 |#3|))))) -((-3876 ((|#4| |#4|) 74)) (-3874 ((|#4| |#4|) 70)) (-3877 ((|#4| |#4| (-549) (-549)) 76)) (-3875 ((|#4| |#4|) 72))) -(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3874 (|#4| |#4|)) (-15 -3875 (|#4| |#4|)) (-15 -3876 (|#4| |#4|)) (-15 -3877 (|#4| |#4| (-549) (-549)))) (-13 (-365) (-370) (-616 (-549))) (-1245 |#1|) (-726 |#1| |#2|) (-1262 |#3|)) (T -544)) -((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) (-4 *5 (-1245 *4)) (-4 *6 (-726 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1262 *6)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5))))) -(-10 -7 (-15 -3874 (|#4| |#4|)) (-15 -3875 (|#4| |#4|)) (-15 -3876 (|#4| |#4|)) (-15 -3877 (|#4| |#4| (-549) (-549)))) -((-3876 ((|#2| |#2|) 27)) (-3874 ((|#2| |#2|) 23)) (-3877 ((|#2| |#2| (-549) (-549)) 29)) (-3875 ((|#2| |#2|) 25))) -(((-545 |#1| |#2|) (-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) (-13 (-365) (-370) (-616 (-549))) (-1262 |#1|)) (T -545)) -((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1262 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1262 *3)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1262 *3)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) -((-2216 (((-3 (-549) #1="failed") |#2| |#1| (-1 (-3 (-549) #1#) |#1|)) 18) (((-3 (-549) #1#) |#2| |#1| (-549) (-1 (-3 (-549) #1#) |#1|)) 14) (((-3 (-549) #1#) |#2| (-549) (-1 (-3 (-549) #1#) |#1|)) 32))) -(((-546 |#1| |#2|) (-10 -7 (-15 -2216 ((-3 (-549) #1="failed") |#2| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-1 (-3 (-549) #1#) |#1|)))) (-1052) (-1245 |#1|)) (T -546)) -((-2216 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) #1="failed") *4)) (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-2216 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) #1#) *4)) (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-2216 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-549) #1#) *5)) (-4 *5 (-1052)) (-5 *2 (-549)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -2216 ((-3 (-549) #1="failed") |#2| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-1 (-3 (-549) #1#) |#1|)))) -((-2225 (($ $ $) 84)) (-4401 (((-408 $) $) 52)) (-3577 (((-3 (-549) "failed") $) 64)) (-3576 (((-549) $) 42)) (-3425 (((-3 (-410 (-549)) "failed") $) 79)) (-3424 (((-112) $) 26)) (-3423 (((-410 (-549)) $) 77)) (-4155 (((-112) $) 55)) (-2218 (($ $ $ $) 92)) (-3606 (((-112) $) 17)) (-1456 (($ $ $) 62)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 74)) (-3868 (((-3 $ "failed") $) 69)) (-2222 (($ $) 24)) (-2217 (($ $ $) 90)) (-3869 (($) 65)) (-1454 (($ $) 58)) (-4164 (((-408 $) $) 50)) (-3077 (((-112) $) 15)) (-1752 (((-773) $) 32)) (-4242 (($ $ (-773)) NIL) (($ $) 11)) (-3824 (($ $) 18)) (-4402 (((-549) $) NIL) (((-538) $) 41) (((-893 (-549)) $) 45) (((-380) $) 35) (((-225) $) 38)) (-3530 (((-773)) 9)) (-2227 (((-112) $ $) 21)) (-3505 (($ $ $) 60))) -(((-547 |#1|) (-10 -8 (-15 -2217 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3577 ((-3 (-549) "failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4402 ((-549) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3606 ((-112) |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -3530 ((-773)))) (-548)) (T -547)) -((-3530 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-547 *3)) (-4 *3 (-548))))) -(-10 -8 (-15 -2217 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3577 ((-3 (-549) "failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4402 ((-549) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3606 ((-112) |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -3530 ((-773)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-2225 (($ $ $) 90)) (-1407 (((-3 $ "failed") $ $) 20)) (-2220 (($ $ $ $) 79)) (-4206 (($ $) 57)) (-4401 (((-408 $) $) 58)) (-1753 (((-112) $ $) 130)) (-4055 (((-549) $) 119)) (-2762 (($ $ $) 93)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) "failed") $) 111)) (-3576 (((-549) $) 112)) (-2964 (($ $ $) 134)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 109) (((-691 (-549)) (-691 $)) 108)) (-3890 (((-3 $ "failed") $) 37)) (-3425 (((-3 (-410 (-549)) "failed") $) 87)) (-3424 (((-112) $) 89)) (-3423 (((-410 (-549)) $) 88)) (-3395 (($) 86) (($ $) 85)) (-2963 (($ $ $) 133)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 128)) (-4155 (((-112) $) 59)) (-2218 (($ $ $ $) 77)) (-2226 (($ $ $) 91)) (-3606 (((-112) $) 121)) (-1456 (($ $ $) 102)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 105)) (-2573 (((-112) $) 35)) (-3076 (((-112) $) 97)) (-3868 (((-3 $ "failed") $) 99)) (-3607 (((-112) $) 120)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 137)) (-2219 (($ $ $ $) 78)) (-2934 (($ $ $) 122)) (-3260 (($ $ $) 123)) (-2222 (($ $) 81)) (-4265 (($ $) 94)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2217 (($ $ $) 76)) (-3869 (($) 98 T CONST)) (-2224 (($ $) 83)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1454 (($ $) 103)) (-4164 (((-408 $) $) 56)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 135)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 129)) (-3077 (((-112) $) 96)) (-1752 (((-773) $) 131)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 132)) (-4242 (($ $ (-773)) 116) (($ $) 114)) (-2223 (($ $) 82)) (-3824 (($ $) 84)) (-4402 (((-549) $) 113) (((-538) $) 107) (((-893 (-549)) $) 106) (((-380) $) 101) (((-225) $) 100)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-549)) 110)) (-3530 (((-773)) 32 T CONST)) (-2227 (((-112) $ $) 92)) (-3505 (($ $ $) 104)) (-3662 (((-112) $ $) 9)) (-3097 (($) 95)) (-2240 (((-112) $ $) 45)) (-2221 (($ $ $ $) 80)) (-3807 (($ $) 118)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-773)) 117) (($ $) 115)) (-2966 (((-112) $ $) 125)) (-2967 (((-112) $ $) 126)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 124)) (-3088 (((-112) $ $) 127)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-548) (-140)) (T -548)) -((-3076 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3097 (*1 *1) (-4 *1 (-548))) (-4265 (*1 *1 *1) (-4 *1 (-548))) (-2762 (*1 *1 *1 *1) (-4 *1 (-548))) (-2227 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2226 (*1 *1 *1 *1) (-4 *1 (-548))) (-2225 (*1 *1 *1 *1) (-4 *1 (-548))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) (-3395 (*1 *1) (-4 *1 (-548))) (-3395 (*1 *1 *1) (-4 *1 (-548))) (-3824 (*1 *1 *1) (-4 *1 (-548))) (-2224 (*1 *1 *1) (-4 *1 (-548))) (-2223 (*1 *1 *1) (-4 *1 (-548))) (-2222 (*1 *1 *1) (-4 *1 (-548))) (-2221 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2220 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2219 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2218 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2217 (*1 *1 *1 *1) (-4 *1 (-548)))) -(-13 (-1224) (-308) (-822) (-233) (-616 (-549)) (-1041 (-549)) (-641 (-549)) (-616 (-538)) (-616 (-893 (-549))) (-889 (-549)) (-143) (-1023) (-147) (-1154) (-10 -8 (-15 -3076 ((-112) $)) (-15 -3077 ((-112) $)) (-6 -4424) (-15 -3097 ($)) (-15 -4265 ($ $)) (-15 -2762 ($ $ $)) (-15 -2227 ((-112) $ $)) (-15 -2226 ($ $ $)) (-15 -2225 ($ $ $)) (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $)) (-15 -3395 ($)) (-15 -3395 ($ $)) (-15 -3824 ($ $)) (-15 -2224 ($ $)) (-15 -2223 ($ $)) (-15 -2222 ($ $)) (-15 -2221 ($ $ $ $)) (-15 -2220 ($ $ $ $)) (-15 -2219 ($ $ $ $)) (-15 -2218 ($ $ $ $)) (-15 -2217 ($ $ $)) (-6 -4423))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-143) . T) ((-172) . T) ((-616 (-225)) . T) ((-616 (-380)) . T) ((-616 (-538)) . T) ((-616 (-549)) . T) ((-616 (-893 (-549))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-641 (-549)) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-822) . T) ((-850) . T) ((-852) . T) ((-889 (-549)) . T) ((-924) . T) ((-1023) . T) ((-1041 (-549)) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) . T) ((-1224) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 30)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 97)) (-2241 (($ $) 98)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) 52)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) 92)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) NIL)) (-3576 (((-549) $) NIL)) (-2964 (($ $ $) 54)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 77) (((-691 (-549)) (-691 $)) 73)) (-3890 (((-3 $ "failed") $) 94)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($) 79) (($ $) 80)) (-2963 (($ $ $) 91)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) 70)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) 34)) (-3076 (((-112) $) 86)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) 43)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) 55)) (-2934 (($ $ $) 88)) (-3260 (($ $ $) 87)) (-2222 (($ $) NIL)) (-4265 (($ $) 49)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) 69)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2224 (($ $) 38)) (-3664 (((-1123) $) 42)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 129)) (-3564 (($ $ $) 95) (($ (-643 $)) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) 115)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) 113)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 90)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-2223 (($ $) 40)) (-3824 (($ $) 36)) (-4402 (((-549) $) 48) (((-538) $) 64) (((-893 (-549)) $) NIL) (((-380) $) 58) (((-225) $) 61) (((-1162) $) 66)) (-4378 (((-865) $) 46) (($ (-549)) 47) (($ $) NIL) (($ (-549)) 47)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) 35)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) 51)) (-3807 (($ $) 78)) (-3510 (($) 6 T CONST)) (-3067 (($) 31 T CONST)) (-2900 (((-1162) $) 26) (((-1162) $ (-112)) 27) (((-1275) (-825) $) 28) (((-1275) (-825) $ (-112)) 29)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-2966 (((-112) $ $) 50)) (-2967 (((-112) $ $) 81)) (-3455 (((-112) $ $) 33)) (-3087 (((-112) $ $) 83)) (-3088 (((-112) $ $) 10)) (-4269 (($ $) 16) (($ $ $) 39)) (-4271 (($ $ $) 37)) (** (($ $ (-922)) NIL) (($ $ (-773)) 85)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 84) (($ $ $) 53))) -(((-549) (-13 (-548) (-616 (-1162)) (-823) (-10 -7 (-6 -4412) (-6 -4417) (-6 -4413) (-6 -4407)))) (T -549)) -NIL -(-13 (-548) (-616 (-1162)) (-823) (-10 -7 (-6 -4412) (-6 -4417) (-6 -4413) (-6 -4407))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-550) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -550)) -((-4156 (*1 *1) (-5 *1 (-550)))) -(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) NIL)) (-4228 ((|#1| $) NIL)) (-4230 (($ $) NIL)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) 73 (|has| $ (-6 -4428)))) (-1902 (((-112) $) NIL (|has| |#1| (-853))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1900 (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4428)))) (-3312 (($ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4220 (($ $ $) 23 (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) 21 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4428))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) |#1|) $) NIL)) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4229 ((|#1| $) NIL)) (-4158 (($) NIL T CONST)) (-2444 (($ $) 28 (|has| $ (-6 -4428)))) (-2445 (($ $) 29)) (-4232 (($ $) 18) (($ $ (-774)) 35)) (-2528 (($ $) 66 (|has| |#1| (-1105)))) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) NIL (|has| |#1| (-1105))) (($ (-1 (-112) |#1|) $) NIL)) (-3832 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3868 (((-112) $) NIL)) (-3845 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105))) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) (-1 (-112) |#1|) $) NIL)) (-2126 (((-644 |#1|) $) 27 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 31 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3261 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3943 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3967 (($ |#1|) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) NIL)) (-3665 (((-1163) $) 62 (|has| |#1| (-1105)))) (-4231 ((|#1| $) NIL) (($ $ (-774)) NIL)) (-4041 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2451 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) 13) (($ $ (-774)) NIL)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-3869 (((-112) $) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 12)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) 17)) (-3998 (($) 16)) (-4233 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1237 (-550))) NIL) ((|#1| $ (-550)) NIL) ((|#1| $ (-550) |#1|) NIL)) (-3432 (((-550) $ $) NIL)) (-1681 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-2452 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-4067 (((-112) $) 39)) (-4225 (($ $) NIL)) (-4223 (($ $) NIL (|has| $ (-6 -4428)))) (-4226 (((-774) $) NIL)) (-4227 (($ $) 44)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) 40)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 26)) (-4224 (($ $ $) 65) (($ $ |#1|) NIL)) (-4235 (($ $ $) NIL) (($ |#1| $) 10) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-4380 (((-866) $) 54 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) 58 (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) 9 (|has| $ (-6 -4427))))) +(((-524 |#1| |#2|) (-669 |#1|) (-1220) (-550)) (T -524)) +NIL +(-669 |#1|) +((-3516 ((|#4| |#4|) 37)) (-3515 (((-774) |#4|) 45)) (-3514 (((-774) |#4|) 46)) (-3513 (((-644 |#3|) |#4|) 56 (|has| |#3| (-6 -4428)))) (-4023 (((-3 |#4| "failed") |#4|) 70)) (-2172 ((|#4| |#4|) 62)) (-3754 ((|#1| |#4|) 61))) +(((-525 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| |#4|)) (-15 -3515 ((-774) |#4|)) (-15 -3514 ((-774) |#4|)) (IF (|has| |#3| (-6 -4428)) (-15 -3513 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -3754 (|#1| |#4|)) (-15 -2172 (|#4| |#4|)) (-15 -4023 ((-3 |#4| "failed") |#4|))) (-366) (-375 |#1|) (-375 |#1|) (-689 |#1| |#2| |#3|)) (T -525)) +((-4023 (*1 *2 *2) (|partial| -12 (-4 *3 (-366)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-525 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-2172 (*1 *2 *2) (-12 (-4 *3 (-366)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-525 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-366)) (-5 *1 (-525 *2 *4 *5 *3)) (-4 *3 (-689 *2 *4 *5)))) (-3513 (*1 *2 *3) (-12 (|has| *6 (-6 -4428)) (-4 *4 (-366)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-525 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-366)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-774)) (-5 *1 (-525 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-366)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-774)) (-5 *1 (-525 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-366)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-525 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) +(-10 -7 (-15 -3516 (|#4| |#4|)) (-15 -3515 ((-774) |#4|)) (-15 -3514 ((-774) |#4|)) (IF (|has| |#3| (-6 -4428)) (-15 -3513 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -3754 (|#1| |#4|)) (-15 -2172 (|#4| |#4|)) (-15 -4023 ((-3 |#4| "failed") |#4|))) +((-3516 ((|#8| |#4|) 20)) (-3513 (((-644 |#3|) |#4|) 29 (|has| |#7| (-6 -4428)))) (-4023 (((-3 |#8| "failed") |#4|) 23))) +(((-526 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 (|#8| |#4|)) (-15 -4023 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4428)) (-15 -3513 ((-644 |#3|) |#4|)) |%noBranch|)) (-561) (-375 |#1|) (-375 |#1|) (-689 |#1| |#2| |#3|) (-995 |#1|) (-375 |#5|) (-375 |#5|) (-689 |#5| |#6| |#7|)) (T -526)) +((-3513 (*1 *2 *3) (-12 (|has| *9 (-6 -4428)) (-4 *4 (-561)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-995 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) (-5 *1 (-526 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-689 *4 *5 *6)) (-4 *10 (-689 *7 *8 *9)))) (-4023 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-995 *4)) (-4 *2 (-689 *7 *8 *9)) (-5 *1 (-526 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-689 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-995 *4)) (-4 *2 (-689 *7 *8 *9)) (-5 *1 (-526 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-689 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) +(-10 -7 (-15 -3516 (|#8| |#4|)) (-15 -4023 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4428)) (-15 -3513 ((-644 |#3|) |#4|)) |%noBranch|)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4272 (($ (-774) (-774)) NIL)) (-2503 (($ $ $) NIL)) (-3840 (($ (-605 |#1| |#3|)) NIL) (($ $) NIL)) (-3527 (((-112) $) NIL)) (-2502 (($ $ (-550) (-550)) 21)) (-2501 (($ $ (-550) (-550)) NIL)) (-2500 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-2505 (($ $) NIL)) (-3529 (((-112) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-2499 (($ $ (-550) (-550) $) NIL)) (-4221 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-644 (-550)) (-644 (-550)) $) NIL)) (-1346 (($ $ (-550) (-605 |#1| |#3|)) NIL)) (-1345 (($ $ (-550) (-605 |#1| |#2|)) NIL)) (-3759 (($ (-774) |#1|) NIL)) (-4158 (($) NIL T CONST)) (-3516 (($ $) 30 (|has| |#1| (-309)))) (-3518 (((-605 |#1| |#3|) $ (-550)) NIL)) (-3515 (((-774) $) 33 (|has| |#1| (-561)))) (-1686 ((|#1| $ (-550) (-550) |#1|) NIL)) (-3519 ((|#1| $ (-550) (-550)) NIL)) (-2126 (((-644 |#1|) $) NIL)) (-3514 (((-774) $) 35 (|has| |#1| (-561)))) (-3513 (((-644 (-605 |#1| |#2|)) $) 38 (|has| |#1| (-561)))) (-3521 (((-774) $) NIL)) (-4048 (($ (-774) (-774) |#1|) NIL)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3753 ((|#1| $) 28 (|has| |#1| (-6 (-4429 #1="*"))))) (-3525 (((-550) $) 10)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3524 (((-550) $) 13)) (-3522 (((-550) $) NIL)) (-3530 (($ (-644 (-644 |#1|))) NIL)) (-2130 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4027 (((-644 (-644 |#1|)) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4023 (((-3 $ #2="failed") $) 42 (|has| |#1| (-366)))) (-2504 (($ $ $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) NIL)) (-3891 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-561)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-644 (-550)) (-644 (-550))) NIL)) (-3758 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-3528 (((-112) $) NIL)) (-3754 ((|#1| $) 26 (|has| |#1| (-6 (-4429 #1#))))) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-3517 (((-605 |#1| |#2|) $ (-550)) NIL)) (-4380 (($ (-605 |#1| |#2|)) NIL) (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3526 (((-112) $) NIL)) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-605 |#1| |#2|) $ (-605 |#1| |#2|)) NIL) (((-605 |#1| |#3|) (-605 |#1| |#3|) $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-527 |#1| |#2| |#3|) (-689 |#1| (-605 |#1| |#3|) (-605 |#1| |#2|)) (-1053) (-550) (-550)) (T -527)) +NIL +(-689 |#1| (-605 |#1| |#3|) (-605 |#1| |#2|)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2173 (((-644 (-1221)) $) 13)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 19) (($ (-1186)) NIL) (((-1186) $) NIL) (($ (-644 (-1221))) 11)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-528) (-13 (-1087) (-10 -8 (-15 -4380 ($ (-644 (-1221)))) (-15 -2173 ((-644 (-1221)) $))))) (T -528)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-528)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-528))))) +(-13 (-1087) (-10 -8 (-15 -4380 ($ (-644 (-1221)))) (-15 -2173 ((-644 (-1221)) $)))) +((-2970 (((-112) $ $) NIL)) (-2174 (((-1139) $) 14)) (-3665 (((-1163) $) NIL)) (-3875 (((-510) $) 11)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 21) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-529) (-13 (-1087) (-10 -8 (-15 -3875 ((-510) $)) (-15 -2174 ((-1139) $))))) (T -529)) +((-3875 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-529)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-529))))) +(-13 (-1087) (-10 -8 (-15 -3875 ((-510) $)) (-15 -2174 ((-1139) $)))) +((-2180 (((-694 (-1229)) $) 15)) (-2176 (((-694 (-1227)) $) 38)) (-2178 (((-694 (-1226)) $) 29)) (-2181 (((-694 (-554)) $) 12)) (-2177 (((-694 (-552)) $) 42)) (-2179 (((-694 (-551)) $) 33)) (-2175 (((-774) $ (-129)) 54))) +(((-530 |#1|) (-10 -8 (-15 -2175 ((-774) |#1| (-129))) (-15 -2176 ((-694 (-1227)) |#1|)) (-15 -2177 ((-694 (-552)) |#1|)) (-15 -2178 ((-694 (-1226)) |#1|)) (-15 -2179 ((-694 (-551)) |#1|)) (-15 -2180 ((-694 (-1229)) |#1|)) (-15 -2181 ((-694 (-554)) |#1|))) (-531)) (T -530)) +NIL +(-10 -8 (-15 -2175 ((-774) |#1| (-129))) (-15 -2176 ((-694 (-1227)) |#1|)) (-15 -2177 ((-694 (-552)) |#1|)) (-15 -2178 ((-694 (-1226)) |#1|)) (-15 -2179 ((-694 (-551)) |#1|)) (-15 -2180 ((-694 (-1229)) |#1|)) (-15 -2181 ((-694 (-554)) |#1|))) +((-2180 (((-694 (-1229)) $) 12)) (-2176 (((-694 (-1227)) $) 8)) (-2178 (((-694 (-1226)) $) 10)) (-2181 (((-694 (-554)) $) 13)) (-2177 (((-694 (-552)) $) 9)) (-2179 (((-694 (-551)) $) 11)) (-2175 (((-774) $ (-129)) 7)) (-2182 (((-694 (-128)) $) 14)) (-1870 (($ $) 6))) +(((-531) (-140)) (T -531)) +((-2182 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-128))))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-554))))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-1229))))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-551))))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-1226))))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-552))))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-1227))))) (-2175 (*1 *2 *1 *3) (-12 (-4 *1 (-531)) (-5 *3 (-129)) (-5 *2 (-774))))) +(-13 (-174) (-10 -8 (-15 -2182 ((-694 (-128)) $)) (-15 -2181 ((-694 (-554)) $)) (-15 -2180 ((-694 (-1229)) $)) (-15 -2179 ((-694 (-551)) $)) (-15 -2178 ((-694 (-1226)) $)) (-15 -2177 ((-694 (-552)) $)) (-15 -2176 ((-694 (-1227)) $)) (-15 -2175 ((-774) $ (-129))))) +(((-174) . T)) +((-2185 (((-1175 |#1|) (-774)) 114)) (-3756 (((-1270 |#1|) (-1270 |#1|) (-923)) 107)) (-2183 (((-1276) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) |#1|) 122)) (-2187 (((-1270 |#1|) (-1270 |#1|) (-774)) 53)) (-3397 (((-1270 |#1|) (-923)) 109)) (-2189 (((-1270 |#1|) (-1270 |#1|) (-550)) 30)) (-2184 (((-1175 |#1|) (-1270 |#1|)) 115)) (-2193 (((-1270 |#1|) (-923)) 135)) (-2191 (((-112) (-1270 |#1|)) 119)) (-3538 (((-1270 |#1|) (-1270 |#1|) (-923)) 99)) (-2194 (((-1175 |#1|) (-1270 |#1|)) 129)) (-2190 (((-923) (-1270 |#1|)) 95)) (-2808 (((-1270 |#1|) (-1270 |#1|)) 38)) (-2565 (((-1270 |#1|) (-923) (-923)) 138)) (-2188 (((-1270 |#1|) (-1270 |#1|) (-1124) (-1124)) 29)) (-2186 (((-1270 |#1|) (-1270 |#1|) (-774) (-1124)) 54)) (-2192 (((-1270 (-1270 |#1|)) (-923)) 134)) (-4383 (((-1270 |#1|) (-1270 |#1|) (-1270 |#1|)) 120)) (** (((-1270 |#1|) (-1270 |#1|) (-550)) 67)) (* (((-1270 |#1|) (-1270 |#1|) (-1270 |#1|)) 31))) +(((-532 |#1|) (-10 -7 (-15 -2183 ((-1276) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) |#1|)) (-15 -3397 ((-1270 |#1|) (-923))) (-15 -2565 ((-1270 |#1|) (-923) (-923))) (-15 -2184 ((-1175 |#1|) (-1270 |#1|))) (-15 -2185 ((-1175 |#1|) (-774))) (-15 -2186 ((-1270 |#1|) (-1270 |#1|) (-774) (-1124))) (-15 -2187 ((-1270 |#1|) (-1270 |#1|) (-774))) (-15 -2188 ((-1270 |#1|) (-1270 |#1|) (-1124) (-1124))) (-15 -2189 ((-1270 |#1|) (-1270 |#1|) (-550))) (-15 ** ((-1270 |#1|) (-1270 |#1|) (-550))) (-15 * ((-1270 |#1|) (-1270 |#1|) (-1270 |#1|))) (-15 -4383 ((-1270 |#1|) (-1270 |#1|) (-1270 |#1|))) (-15 -3538 ((-1270 |#1|) (-1270 |#1|) (-923))) (-15 -3756 ((-1270 |#1|) (-1270 |#1|) (-923))) (-15 -2808 ((-1270 |#1|) (-1270 |#1|))) (-15 -2190 ((-923) (-1270 |#1|))) (-15 -2191 ((-112) (-1270 |#1|))) (-15 -2192 ((-1270 (-1270 |#1|)) (-923))) (-15 -2193 ((-1270 |#1|) (-923))) (-15 -2194 ((-1175 |#1|) (-1270 |#1|)))) (-353)) (T -532)) +((-2194 (*1 *2 *3) (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-1175 *4)) (-5 *1 (-532 *4)))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1270 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1270 (-1270 *4))) (-5 *1 (-532 *4)) (-4 *4 (-353)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-532 *4)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-923)) (-5 *1 (-532 *4)))) (-2808 (*1 *2 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-353)) (-5 *1 (-532 *3)))) (-3756 (*1 *2 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-923)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-923)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) (-4383 (*1 *2 *2 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-353)) (-5 *1 (-532 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-353)) (-5 *1 (-532 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-550)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) (-2189 (*1 *2 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-550)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) (-2188 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-1124)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) (-2187 (*1 *2 *2 *3) (-12 (-5 *2 (-1270 *4)) (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) (-2186 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1270 *5)) (-5 *3 (-774)) (-5 *4 (-1124)) (-4 *5 (-353)) (-5 *1 (-532 *5)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1175 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-1175 *4)) (-5 *1 (-532 *4)))) (-2565 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1270 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1270 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353)))) (-2183 (*1 *2 *3 *4) (-12 (-5 *3 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) (-4 *4 (-353)) (-5 *2 (-1276)) (-5 *1 (-532 *4))))) +(-10 -7 (-15 -2183 ((-1276) (-1270 (-644 (-2 (|:| -3828 |#1|) (|:| -2565 (-1124))))) |#1|)) (-15 -3397 ((-1270 |#1|) (-923))) (-15 -2565 ((-1270 |#1|) (-923) (-923))) (-15 -2184 ((-1175 |#1|) (-1270 |#1|))) (-15 -2185 ((-1175 |#1|) (-774))) (-15 -2186 ((-1270 |#1|) (-1270 |#1|) (-774) (-1124))) (-15 -2187 ((-1270 |#1|) (-1270 |#1|) (-774))) (-15 -2188 ((-1270 |#1|) (-1270 |#1|) (-1124) (-1124))) (-15 -2189 ((-1270 |#1|) (-1270 |#1|) (-550))) (-15 ** ((-1270 |#1|) (-1270 |#1|) (-550))) (-15 * ((-1270 |#1|) (-1270 |#1|) (-1270 |#1|))) (-15 -4383 ((-1270 |#1|) (-1270 |#1|) (-1270 |#1|))) (-15 -3538 ((-1270 |#1|) (-1270 |#1|) (-923))) (-15 -3756 ((-1270 |#1|) (-1270 |#1|) (-923))) (-15 -2808 ((-1270 |#1|) (-1270 |#1|))) (-15 -2190 ((-923) (-1270 |#1|))) (-15 -2191 ((-112) (-1270 |#1|))) (-15 -2192 ((-1270 (-1270 |#1|)) (-923))) (-15 -2193 ((-1270 |#1|) (-923))) (-15 -2194 ((-1175 |#1|) (-1270 |#1|)))) +((-2180 (((-694 (-1229)) $) NIL)) (-2176 (((-694 (-1227)) $) NIL)) (-2178 (((-694 (-1226)) $) NIL)) (-2181 (((-694 (-554)) $) NIL)) (-2177 (((-694 (-552)) $) NIL)) (-2179 (((-694 (-551)) $) NIL)) (-2175 (((-774) $ (-129)) NIL)) (-2182 (((-694 (-128)) $) 26)) (-2195 (((-1124) $ (-1124)) 31)) (-3845 (((-1124) $) 30)) (-2963 (((-112) $) 20)) (-2197 (($ (-392)) 14) (($ (-1163)) 16)) (-2196 (((-112) $) 27)) (-4380 (((-866) $) 34)) (-1870 (($ $) 28))) +(((-533) (-13 (-531) (-616 (-866)) (-10 -8 (-15 -2197 ($ (-392))) (-15 -2197 ($ (-1163))) (-15 -2196 ((-112) $)) (-15 -2963 ((-112) $)) (-15 -3845 ((-1124) $)) (-15 -2195 ((-1124) $ (-1124)))))) (T -533)) +((-2197 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-533)))) (-2197 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-533)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-533)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-533)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-533)))) (-2195 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-533))))) +(-13 (-531) (-616 (-866)) (-10 -8 (-15 -2197 ($ (-392))) (-15 -2197 ($ (-1163))) (-15 -2196 ((-112) $)) (-15 -2963 ((-112) $)) (-15 -3845 ((-1124) $)) (-15 -2195 ((-1124) $ (-1124))))) +((-2199 (((-1 |#1| |#1|) |#1|) 11)) (-2198 (((-1 |#1| |#1|)) 10))) +(((-534 |#1|) (-10 -7 (-15 -2198 ((-1 |#1| |#1|))) (-15 -2199 ((-1 |#1| |#1|) |#1|))) (-13 (-729) (-25))) (T -534)) +((-2199 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-534 *3)) (-4 *3 (-13 (-729) (-25))))) (-2198 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-534 *3)) (-4 *3 (-13 (-729) (-25)))))) +(-10 -7 (-15 -2198 ((-1 |#1| |#1|))) (-15 -2199 ((-1 |#1| |#1|) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2807 (($ $ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3296 (($ (-774) |#1|) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4392 (($ (-1 (-774) (-774)) $) NIL)) (-2165 ((|#1| $) NIL)) (-3596 (((-774) $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 27)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL))) +(((-535 |#1|) (-13 (-796) (-513 (-774) |#1|)) (-853)) (T -535)) +NIL +(-13 (-796) (-513 (-774) |#1|)) +((-2201 (((-644 |#2|) (-1175 |#1|) |#3|) 98)) (-2202 (((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 |#2|))))) (-692 |#1|) |#3| (-1 (-409 (-1175 |#1|)) (-1175 |#1|))) 114)) (-2200 (((-1175 |#1|) (-692 |#1|)) 110))) +(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2200 ((-1175 |#1|) (-692 |#1|))) (-15 -2201 ((-644 |#2|) (-1175 |#1|) |#3|)) (-15 -2202 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 |#2|))))) (-692 |#1|) |#3| (-1 (-409 (-1175 |#1|)) (-1175 |#1|))))) (-366) (-366) (-13 (-366) (-851))) (T -536)) +((-2202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *6)) (-5 *5 (-1 (-409 (-1175 *6)) (-1175 *6))) (-4 *6 (-366)) (-5 *2 (-644 (-2 (|:| |outval| *7) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 *7)))))) (-5 *1 (-536 *6 *7 *4)) (-4 *7 (-366)) (-4 *4 (-13 (-366) (-851))))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *5)) (-4 *5 (-366)) (-5 *2 (-644 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-366)) (-4 *4 (-13 (-366) (-851))))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-692 *4)) (-4 *4 (-366)) (-5 *2 (-1175 *4)) (-5 *1 (-536 *4 *5 *6)) (-4 *5 (-366)) (-4 *6 (-13 (-366) (-851)))))) +(-10 -7 (-15 -2200 ((-1175 |#1|) (-692 |#1|))) (-15 -2201 ((-644 |#2|) (-1175 |#1|) |#3|)) (-15 -2202 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 |#2|))))) (-692 |#1|) |#3| (-1 (-409 (-1175 |#1|)) (-1175 |#1|))))) +((-2960 (((-694 (-1229)) $ (-1229)) NIL)) (-2961 (((-694 (-554)) $ (-554)) NIL)) (-2959 (((-774) $ (-129)) 39)) (-2962 (((-694 (-128)) $ (-128)) 40)) (-2180 (((-694 (-1229)) $) NIL)) (-2176 (((-694 (-1227)) $) NIL)) (-2178 (((-694 (-1226)) $) NIL)) (-2181 (((-694 (-554)) $) NIL)) (-2177 (((-694 (-552)) $) NIL)) (-2179 (((-694 (-551)) $) NIL)) (-2175 (((-774) $ (-129)) 35)) (-2182 (((-694 (-128)) $) 37)) (-2762 (((-112) $) 27)) (-2763 (((-694 $) (-583) (-958)) 18) (((-694 $) (-495) (-958)) 24)) (-4380 (((-866) $) 48)) (-1870 (($ $) 42))) +(((-537) (-13 (-770 (-583)) (-616 (-866)) (-10 -8 (-15 -2763 ((-694 $) (-495) (-958)))))) (T -537)) +((-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-495)) (-5 *4 (-958)) (-5 *2 (-694 (-537))) (-5 *1 (-537))))) +(-13 (-770 (-583)) (-616 (-866)) (-10 -8 (-15 -2763 ((-694 $) (-495) (-958))))) +((-2932 (((-845 (-550))) 12)) (-2931 (((-845 (-550))) 14)) (-2916 (((-835 (-550))) 9))) +(((-538) (-10 -7 (-15 -2916 ((-835 (-550)))) (-15 -2932 ((-845 (-550)))) (-15 -2931 ((-845 (-550)))))) (T -538)) +((-2931 (*1 *2) (-12 (-5 *2 (-845 (-550))) (-5 *1 (-538)))) (-2932 (*1 *2) (-12 (-5 *2 (-845 (-550))) (-5 *1 (-538)))) (-2916 (*1 *2) (-12 (-5 *2 (-835 (-550))) (-5 *1 (-538))))) +(-10 -7 (-15 -2916 ((-835 (-550)))) (-15 -2932 ((-845 (-550)))) (-15 -2931 ((-845 (-550))))) +((-2970 (((-112) $ $) NIL)) (-2206 (((-1163) $) 55)) (-3683 (((-112) $) 51)) (-3679 (((-1181) $) 52)) (-3684 (((-112) $) 49)) (-3968 (((-1163) $) 50)) (-2205 (($ (-1163)) 56)) (-3686 (((-112) $) NIL)) (-3688 (((-112) $) NIL)) (-3685 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-2208 (($ $ (-644 (-1181))) 21)) (-2211 (((-51) $) 23)) (-3682 (((-112) $) NIL)) (-3678 (((-550) $) NIL)) (-3666 (((-1124) $) NIL)) (-2548 (($ $ (-644 (-1181)) (-1181)) 73)) (-3681 (((-112) $) NIL)) (-3677 (((-226) $) NIL)) (-2207 (($ $) 44)) (-3676 (((-866) $) NIL)) (-3689 (((-112) $ $) NIL)) (-4233 (($ $ (-550)) NIL) (($ $ (-644 (-550))) NIL)) (-3680 (((-644 $) $) 30)) (-2204 (((-1181) (-644 $)) 57)) (-4404 (($ (-1163)) NIL) (($ (-1181)) 19) (($ (-550)) 8) (($ (-226)) 28) (($ (-866)) NIL) (($ (-644 $)) 65) (((-1107) $) 12) (($ (-1107)) 13)) (-2203 (((-1181) (-1181) (-644 $)) 60)) (-4380 (((-866) $) 54)) (-3674 (($ $) 59)) (-3675 (($ $) 58)) (-2209 (($ $ (-644 $)) 66)) (-3664 (((-112) $ $) NIL)) (-3687 (((-112) $) 29)) (-3512 (($) 9 T CONST)) (-3069 (($) 11 T CONST)) (-3457 (((-112) $ $) 74)) (-4383 (($ $ $) 82)) (-4273 (($ $ $) 75)) (** (($ $ (-774)) 81) (($ $ (-550)) 80)) (* (($ $ $) 76)) (-4391 (((-550) $) NIL))) +(((-539) (-13 (-1108 (-1163) (-1181) (-550) (-226) (-866)) (-617 (-1107)) (-10 -8 (-15 -2211 ((-51) $)) (-15 -4404 ($ (-1107))) (-15 -2209 ($ $ (-644 $))) (-15 -2548 ($ $ (-644 (-1181)) (-1181))) (-15 -2208 ($ $ (-644 (-1181)))) (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 -4383 ($ $ $)) (-15 ** ($ $ (-774))) (-15 ** ($ $ (-550))) (-15 0 ($) -4386) (-15 1 ($) -4386) (-15 -2207 ($ $)) (-15 -2206 ((-1163) $)) (-15 -2205 ($ (-1163))) (-15 -2204 ((-1181) (-644 $))) (-15 -2203 ((-1181) (-1181) (-644 $)))))) (T -539)) +((-2211 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-539)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-539)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-539))) (-5 *1 (-539)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-1181)) (-5 *1 (-539)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-539)))) (-4273 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-4383 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539)))) (-3512 (*1 *1) (-5 *1 (-539))) (-3069 (*1 *1) (-5 *1 (-539))) (-2207 (*1 *1 *1) (-5 *1 (-539))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-539)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-539)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-644 (-539))) (-5 *2 (-1181)) (-5 *1 (-539)))) (-2203 (*1 *2 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-539))) (-5 *1 (-539))))) +(-13 (-1108 (-1163) (-1181) (-550) (-226) (-866)) (-617 (-1107)) (-10 -8 (-15 -2211 ((-51) $)) (-15 -4404 ($ (-1107))) (-15 -2209 ($ $ (-644 $))) (-15 -2548 ($ $ (-644 (-1181)) (-1181))) (-15 -2208 ($ $ (-644 (-1181)))) (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 -4383 ($ $ $)) (-15 ** ($ $ (-774))) (-15 ** ($ $ (-550))) (-15 (-3512) ($) -4386) (-15 (-3069) ($) -4386) (-15 -2207 ($ $)) (-15 -2206 ((-1163) $)) (-15 -2205 ($ (-1163))) (-15 -2204 ((-1181) (-644 $))) (-15 -2203 ((-1181) (-1181) (-644 $))))) +((-2210 (((-539) (-1181)) 15)) (-2211 ((|#1| (-539)) 20))) +(((-540 |#1|) (-10 -7 (-15 -2210 ((-539) (-1181))) (-15 -2211 (|#1| (-539)))) (-1220)) (T -540)) +((-2211 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-540 *2)) (-4 *2 (-1220)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-539)) (-5 *1 (-540 *4)) (-4 *4 (-1220))))) +(-10 -7 (-15 -2210 ((-539) (-1181))) (-15 -2211 (|#1| (-539)))) +((-3878 ((|#2| |#2|) 17)) (-3876 ((|#2| |#2|) 13)) (-3879 ((|#2| |#2| (-550) (-550)) 20)) (-3877 ((|#2| |#2|) 15))) +(((-541 |#1| |#2|) (-10 -7 (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3878 (|#2| |#2|)) (-15 -3879 (|#2| |#2| (-550) (-550)))) (-13 (-561) (-147)) (-1263 |#1|)) (T -541)) +((-3879 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-541 *4 *2)) (-4 *2 (-1263 *4)))) (-3878 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1263 *3)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1263 *3)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1263 *3))))) +(-10 -7 (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3878 (|#2| |#2|)) (-15 -3879 (|#2| |#2| (-550) (-550)))) +((-2214 (((-644 (-295 (-950 |#2|))) (-644 |#2|) (-644 (-1181))) 32)) (-2212 (((-644 |#2|) (-950 |#1|) |#3|) 54) (((-644 |#2|) (-1175 |#1|) |#3|) 53)) (-2213 (((-644 (-644 |#2|)) (-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181)) |#3|) 106))) +(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -2212 ((-644 |#2|) (-1175 |#1|) |#3|)) (-15 -2212 ((-644 |#2|) (-950 |#1|) |#3|)) (-15 -2213 ((-644 (-644 |#2|)) (-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181)) |#3|)) (-15 -2214 ((-644 (-295 (-950 |#2|))) (-644 |#2|) (-644 (-1181))))) (-456) (-366) (-13 (-366) (-851))) (T -542)) +((-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1181))) (-4 *6 (-366)) (-5 *2 (-644 (-295 (-950 *6)))) (-5 *1 (-542 *5 *6 *7)) (-4 *5 (-456)) (-4 *7 (-13 (-366) (-851))))) (-2213 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-950 *6))) (-5 *4 (-644 (-1181))) (-4 *6 (-456)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-542 *6 *7 *5)) (-4 *7 (-366)) (-4 *5 (-13 (-366) (-851))))) (-2212 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-4 *5 (-456)) (-5 *2 (-644 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-366)) (-4 *4 (-13 (-366) (-851))))) (-2212 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *5)) (-4 *5 (-456)) (-5 *2 (-644 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-366)) (-4 *4 (-13 (-366) (-851)))))) +(-10 -7 (-15 -2212 ((-644 |#2|) (-1175 |#1|) |#3|)) (-15 -2212 ((-644 |#2|) (-950 |#1|) |#3|)) (-15 -2213 ((-644 (-644 |#2|)) (-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181)) |#3|)) (-15 -2214 ((-644 (-295 (-950 |#2|))) (-644 |#2|) (-644 (-1181))))) +((-2217 ((|#2| |#2| |#1|) 17)) (-2215 ((|#2| (-644 |#2|)) 31)) (-2216 ((|#2| (-644 |#2|)) 52))) +(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2215 (|#2| (-644 |#2|))) (-15 -2216 (|#2| (-644 |#2|))) (-15 -2217 (|#2| |#2| |#1|))) (-309) (-1246 |#1|) |#1| (-1 |#1| |#1| (-774))) (T -543)) +((-2217 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-774))) (-5 *1 (-543 *3 *2 *4 *5)) (-4 *2 (-1246 *3)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-543 *4 *2 *5 *6)) (-4 *4 (-309)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-774))))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-543 *4 *2 *5 *6)) (-4 *4 (-309)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-774)))))) +(-10 -7 (-15 -2215 (|#2| (-644 |#2|))) (-15 -2216 (|#2| (-644 |#2|))) (-15 -2217 (|#2| |#2| |#1|))) +((-4166 (((-409 (-1175 |#4|)) (-1175 |#4|) (-1 (-409 (-1175 |#3|)) (-1175 |#3|))) 89) (((-409 |#4|) |#4| (-1 (-409 (-1175 |#3|)) (-1175 |#3|))) 214))) +(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 |#4|) |#4| (-1 (-409 (-1175 |#3|)) (-1175 |#3|)))) (-15 -4166 ((-409 (-1175 |#4|)) (-1175 |#4|) (-1 (-409 (-1175 |#3|)) (-1175 |#3|))))) (-853) (-796) (-13 (-309) (-147)) (-954 |#3| |#2| |#1|)) (T -544)) +((-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-309) (-147))) (-4 *5 (-853)) (-4 *6 (-796)) (-4 *8 (-954 *7 *6 *5)) (-5 *2 (-409 (-1175 *8))) (-5 *1 (-544 *5 *6 *7 *8)) (-5 *3 (-1175 *8)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-309) (-147))) (-4 *5 (-853)) (-4 *6 (-796)) (-5 *2 (-409 *3)) (-5 *1 (-544 *5 *6 *7 *3)) (-4 *3 (-954 *7 *6 *5))))) +(-10 -7 (-15 -4166 ((-409 |#4|) |#4| (-1 (-409 (-1175 |#3|)) (-1175 |#3|)))) (-15 -4166 ((-409 (-1175 |#4|)) (-1175 |#4|) (-1 (-409 (-1175 |#3|)) (-1175 |#3|))))) +((-3878 ((|#4| |#4|) 74)) (-3876 ((|#4| |#4|) 70)) (-3879 ((|#4| |#4| (-550) (-550)) 76)) (-3877 ((|#4| |#4|) 72))) +(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3876 (|#4| |#4|)) (-15 -3877 (|#4| |#4|)) (-15 -3878 (|#4| |#4|)) (-15 -3879 (|#4| |#4| (-550) (-550)))) (-13 (-366) (-371) (-617 (-550))) (-1246 |#1|) (-727 |#1| |#2|) (-1263 |#3|)) (T -545)) +((-3879 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-366) (-371) (-617 *3))) (-4 *5 (-1246 *4)) (-4 *6 (-727 *4 *5)) (-5 *1 (-545 *4 *5 *6 *2)) (-4 *2 (-1263 *6)))) (-3878 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-4 *4 (-1246 *3)) (-4 *5 (-727 *3 *4)) (-5 *1 (-545 *3 *4 *5 *2)) (-4 *2 (-1263 *5)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-4 *4 (-1246 *3)) (-4 *5 (-727 *3 *4)) (-5 *1 (-545 *3 *4 *5 *2)) (-4 *2 (-1263 *5)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-4 *4 (-1246 *3)) (-4 *5 (-727 *3 *4)) (-5 *1 (-545 *3 *4 *5 *2)) (-4 *2 (-1263 *5))))) +(-10 -7 (-15 -3876 (|#4| |#4|)) (-15 -3877 (|#4| |#4|)) (-15 -3878 (|#4| |#4|)) (-15 -3879 (|#4| |#4| (-550) (-550)))) +((-3878 ((|#2| |#2|) 27)) (-3876 ((|#2| |#2|) 23)) (-3879 ((|#2| |#2| (-550) (-550)) 29)) (-3877 ((|#2| |#2|) 25))) +(((-546 |#1| |#2|) (-10 -7 (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3878 (|#2| |#2|)) (-15 -3879 (|#2| |#2| (-550) (-550)))) (-13 (-366) (-371) (-617 (-550))) (-1263 |#1|)) (T -546)) +((-3879 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-13 (-366) (-371) (-617 *3))) (-5 *1 (-546 *4 *2)) (-4 *2 (-1263 *4)))) (-3878 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1263 *3)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1263 *3)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1263 *3))))) +(-10 -7 (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3878 (|#2| |#2|)) (-15 -3879 (|#2| |#2| (-550) (-550)))) +((-2218 (((-3 (-550) #1="failed") |#2| |#1| (-1 (-3 (-550) #1#) |#1|)) 18) (((-3 (-550) #1#) |#2| |#1| (-550) (-1 (-3 (-550) #1#) |#1|)) 14) (((-3 (-550) #1#) |#2| (-550) (-1 (-3 (-550) #1#) |#1|)) 32))) +(((-547 |#1| |#2|) (-10 -7 (-15 -2218 ((-3 (-550) #1="failed") |#2| (-550) (-1 (-3 (-550) #1#) |#1|))) (-15 -2218 ((-3 (-550) #1#) |#2| |#1| (-550) (-1 (-3 (-550) #1#) |#1|))) (-15 -2218 ((-3 (-550) #1#) |#2| |#1| (-1 (-3 (-550) #1#) |#1|)))) (-1053) (-1246 |#1|)) (T -547)) +((-2218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-550) #1="failed") *4)) (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-547 *4 *3)) (-4 *3 (-1246 *4)))) (-2218 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-550) #1#) *4)) (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-547 *4 *3)) (-4 *3 (-1246 *4)))) (-2218 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-550) #1#) *5)) (-4 *5 (-1053)) (-5 *2 (-550)) (-5 *1 (-547 *5 *3)) (-4 *3 (-1246 *5))))) +(-10 -7 (-15 -2218 ((-3 (-550) #1="failed") |#2| (-550) (-1 (-3 (-550) #1#) |#1|))) (-15 -2218 ((-3 (-550) #1#) |#2| |#1| (-550) (-1 (-3 (-550) #1#) |#1|))) (-15 -2218 ((-3 (-550) #1#) |#2| |#1| (-1 (-3 (-550) #1#) |#1|)))) +((-2227 (($ $ $) 84)) (-4403 (((-409 $) $) 52)) (-3579 (((-3 (-550) "failed") $) 64)) (-3578 (((-550) $) 42)) (-3427 (((-3 (-411 (-550)) "failed") $) 79)) (-3426 (((-112) $) 26)) (-3425 (((-411 (-550)) $) 77)) (-4157 (((-112) $) 55)) (-2220 (($ $ $ $) 92)) (-3608 (((-112) $) 17)) (-1457 (($ $ $) 62)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 74)) (-3870 (((-3 $ "failed") $) 69)) (-2224 (($ $) 24)) (-2219 (($ $ $) 90)) (-3871 (($) 65)) (-1455 (($ $) 58)) (-4166 (((-409 $) $) 50)) (-3079 (((-112) $) 15)) (-1754 (((-774) $) 32)) (-4244 (($ $ (-774)) NIL) (($ $) 11)) (-3826 (($ $) 18)) (-4404 (((-550) $) NIL) (((-539) $) 41) (((-894 (-550)) $) 45) (((-381) $) 35) (((-226) $) 38)) (-3532 (((-774)) 9)) (-2229 (((-112) $ $) 21)) (-3507 (($ $ $) 60))) +(((-548 |#1|) (-10 -8 (-15 -2219 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1| |#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2229 ((-112) |#1| |#1|)) (-15 -3079 ((-112) |#1|)) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -4404 ((-226) |#1|)) (-15 -4404 ((-381) |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3507 (|#1| |#1| |#1|)) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -3579 ((-3 (-550) "failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -4404 ((-550) |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -3608 ((-112) |#1|)) (-15 -1754 ((-774) |#1|)) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4157 ((-112) |#1|)) (-15 -3532 ((-774)))) (-549)) (T -548)) +((-3532 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-548 *3)) (-4 *3 (-549))))) +(-10 -8 (-15 -2219 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1| |#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2229 ((-112) |#1| |#1|)) (-15 -3079 ((-112) |#1|)) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -4404 ((-226) |#1|)) (-15 -4404 ((-381) |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3507 (|#1| |#1| |#1|)) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -3579 ((-3 (-550) "failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -4404 ((-550) |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -3608 ((-112) |#1|)) (-15 -1754 ((-774) |#1|)) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4157 ((-112) |#1|)) (-15 -3532 ((-774)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-2227 (($ $ $) 90)) (-1408 (((-3 $ "failed") $ $) 20)) (-2222 (($ $ $ $) 79)) (-4208 (($ $) 57)) (-4403 (((-409 $) $) 58)) (-1755 (((-112) $ $) 130)) (-4057 (((-550) $) 119)) (-2764 (($ $ $) 93)) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) "failed") $) 111)) (-3578 (((-550) $) 112)) (-2966 (($ $ $) 134)) (-2429 (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 109) (((-692 (-550)) (-692 $)) 108)) (-3892 (((-3 $ "failed") $) 37)) (-3427 (((-3 (-411 (-550)) "failed") $) 87)) (-3426 (((-112) $) 89)) (-3425 (((-411 (-550)) $) 88)) (-3397 (($) 86) (($ $) 85)) (-2965 (($ $ $) 133)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 128)) (-4157 (((-112) $) 59)) (-2220 (($ $ $ $) 77)) (-2228 (($ $ $) 91)) (-3608 (((-112) $) 121)) (-1457 (($ $ $) 102)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 105)) (-2575 (((-112) $) 35)) (-3078 (((-112) $) 97)) (-3870 (((-3 $ "failed") $) 99)) (-3609 (((-112) $) 120)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 137)) (-2221 (($ $ $ $) 78)) (-2936 (($ $ $) 122)) (-3262 (($ $ $) 123)) (-2224 (($ $) 81)) (-4267 (($ $) 94)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2219 (($ $ $) 76)) (-3871 (($) 98 T CONST)) (-2226 (($ $) 83)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-1455 (($ $) 103)) (-4166 (((-409 $) $) 56)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 135)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 129)) (-3079 (((-112) $) 96)) (-1754 (((-774) $) 131)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 132)) (-4244 (($ $ (-774)) 116) (($ $) 114)) (-2225 (($ $) 82)) (-3826 (($ $) 84)) (-4404 (((-550) $) 113) (((-539) $) 107) (((-894 (-550)) $) 106) (((-381) $) 101) (((-226) $) 100)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-550)) 110)) (-3532 (((-774)) 32 T CONST)) (-2229 (((-112) $ $) 92)) (-3507 (($ $ $) 104)) (-3664 (((-112) $ $) 9)) (-3099 (($) 95)) (-2242 (((-112) $ $) 45)) (-2223 (($ $ $ $) 80)) (-3809 (($ $) 118)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-774)) 117) (($ $) 115)) (-2968 (((-112) $ $) 125)) (-2969 (((-112) $ $) 126)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 124)) (-3090 (((-112) $ $) 127)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-549) (-140)) (T -549)) +((-3078 (*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) (-3099 (*1 *1) (-4 *1 (-549))) (-4267 (*1 *1 *1) (-4 *1 (-549))) (-2764 (*1 *1 *1 *1) (-4 *1 (-549))) (-2229 (*1 *2 *1 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) (-2228 (*1 *1 *1 *1) (-4 *1 (-549))) (-2227 (*1 *1 *1 *1) (-4 *1 (-549))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-411 (-550))))) (-3427 (*1 *2 *1) (|partial| -12 (-4 *1 (-549)) (-5 *2 (-411 (-550))))) (-3397 (*1 *1) (-4 *1 (-549))) (-3397 (*1 *1 *1) (-4 *1 (-549))) (-3826 (*1 *1 *1) (-4 *1 (-549))) (-2226 (*1 *1 *1) (-4 *1 (-549))) (-2225 (*1 *1 *1) (-4 *1 (-549))) (-2224 (*1 *1 *1) (-4 *1 (-549))) (-2223 (*1 *1 *1 *1 *1) (-4 *1 (-549))) (-2222 (*1 *1 *1 *1 *1) (-4 *1 (-549))) (-2221 (*1 *1 *1 *1 *1) (-4 *1 (-549))) (-2220 (*1 *1 *1 *1 *1) (-4 *1 (-549))) (-2219 (*1 *1 *1 *1) (-4 *1 (-549)))) +(-13 (-1225) (-309) (-823) (-234) (-617 (-550)) (-1042 (-550)) (-642 (-550)) (-617 (-539)) (-617 (-894 (-550))) (-890 (-550)) (-143) (-1024) (-147) (-1155) (-10 -8 (-15 -3078 ((-112) $)) (-15 -3079 ((-112) $)) (-6 -4426) (-15 -3099 ($)) (-15 -4267 ($ $)) (-15 -2764 ($ $ $)) (-15 -2229 ((-112) $ $)) (-15 -2228 ($ $ $)) (-15 -2227 ($ $ $)) (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $)) (-15 -3397 ($)) (-15 -3397 ($ $)) (-15 -3826 ($ $)) (-15 -2226 ($ $)) (-15 -2225 ($ $)) (-15 -2224 ($ $)) (-15 -2223 ($ $ $ $)) (-15 -2222 ($ $ $ $)) (-15 -2221 ($ $ $ $)) (-15 -2220 ($ $ $ $)) (-15 -2219 ($ $ $)) (-6 -4425))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-143) . T) ((-173) . T) ((-617 (-226)) . T) ((-617 (-381)) . T) ((-617 (-539)) . T) ((-617 (-550)) . T) ((-617 (-894 (-550))) . T) ((-234) . T) ((-292) . T) ((-309) . T) ((-456) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-642 (-550)) . T) ((-720 $) . T) ((-729) . T) ((-794) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-823) . T) ((-851) . T) ((-853) . T) ((-890 (-550)) . T) ((-925) . T) ((-1024) . T) ((-1042 (-550)) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) . T) ((-1225) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 30)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 97)) (-2243 (($ $) 98)) (-2241 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-2222 (($ $ $ $) 52)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL)) (-2764 (($ $ $) 92)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) "failed") $) NIL)) (-3578 (((-550) $) NIL)) (-2966 (($ $ $) 54)) (-2429 (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 77) (((-692 (-550)) (-692 $)) 73)) (-3892 (((-3 $ "failed") $) 94)) (-3427 (((-3 (-411 (-550)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-3425 (((-411 (-550)) $) NIL)) (-3397 (($) 79) (($ $) 80)) (-2965 (($ $ $) 91)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2220 (($ $ $ $) NIL)) (-2228 (($ $ $) 70)) (-3608 (((-112) $) NIL)) (-1457 (($ $ $) NIL)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL)) (-2575 (((-112) $) 34)) (-3078 (((-112) $) 86)) (-3870 (((-3 $ "failed") $) NIL)) (-3609 (((-112) $) 43)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2221 (($ $ $ $) 55)) (-2936 (($ $ $) 88)) (-3262 (($ $ $) 87)) (-2224 (($ $) NIL)) (-4267 (($ $) 49)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) 69)) (-2219 (($ $ $) NIL)) (-3871 (($) NIL T CONST)) (-2226 (($ $) 38)) (-3666 (((-1124) $) 42)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 129)) (-3566 (($ $ $) 95) (($ (-644 $)) NIL)) (-1455 (($ $) NIL)) (-4166 (((-409 $) $) 115)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-3891 (((-3 $ "failed") $ $) 113)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3079 (((-112) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 90)) (-4244 (($ $ (-774)) NIL) (($ $) NIL)) (-2225 (($ $) 40)) (-3826 (($ $) 36)) (-4404 (((-550) $) 48) (((-539) $) 64) (((-894 (-550)) $) NIL) (((-381) $) 58) (((-226) $) 61) (((-1163) $) 66)) (-4380 (((-866) $) 46) (($ (-550)) 47) (($ $) NIL) (($ (-550)) 47)) (-3532 (((-774)) NIL T CONST)) (-2229 (((-112) $ $) NIL)) (-3507 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-3099 (($) 35)) (-2242 (((-112) $ $) NIL)) (-2223 (($ $ $ $) 51)) (-3809 (($ $) 78)) (-3512 (($) 6 T CONST)) (-3069 (($) 31 T CONST)) (-2902 (((-1163) $) 26) (((-1163) $ (-112)) 27) (((-1276) (-826) $) 28) (((-1276) (-826) $ (-112)) 29)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) 50)) (-2969 (((-112) $ $) 81)) (-3457 (((-112) $ $) 33)) (-3089 (((-112) $ $) 83)) (-3090 (((-112) $ $) 10)) (-4271 (($ $) 16) (($ $ $) 39)) (-4273 (($ $ $) 37)) (** (($ $ (-923)) NIL) (($ $ (-774)) 85)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 84) (($ $ $) 53))) +(((-550) (-13 (-549) (-617 (-1163)) (-824) (-10 -7 (-6 -4414) (-6 -4419) (-6 -4415) (-6 -4409)))) (T -550)) +NIL +(-13 (-549) (-617 (-1163)) (-824) (-10 -7 (-6 -4414) (-6 -4419) (-6 -4415) (-6 -4409))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-551) (-13 (-847) (-10 -8 (-15 -4158 ($) -4386)))) (T -551)) +((-4158 (*1 *1) (-5 *1 (-551)))) +(-13 (-847) (-10 -8 (-15 -4158 ($) -4386))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-551) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -551)) -((-4156 (*1 *1) (-5 *1 (-551)))) -(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-552) (-13 (-847) (-10 -8 (-15 -4158 ($) -4386)))) (T -552)) +((-4158 (*1 *1) (-5 *1 (-552)))) +(-13 (-847) (-10 -8 (-15 -4158 ($) -4386))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-552) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -552)) -((-4156 (*1 *1) (-5 *1 (-552)))) -(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-553) (-13 (-847) (-10 -8 (-15 -4158 ($) -4386)))) (T -553)) +((-4158 (*1 *1) (-5 *1 (-553)))) +(-13 (-847) (-10 -8 (-15 -4158 ($) -4386))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-553) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -553)) -((-4156 (*1 *1) (-5 *1 (-553)))) -(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-554) (-13 (-847) (-10 -8 (-15 -4158 ($) -4386)))) (T -554)) +((-4158 (*1 *1) (-5 *1 (-554)))) +(-13 (-847) (-10 -8 (-15 -4158 ($) -4386))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-554 |#1| |#2| |#3|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425)))) (T -554)) -NIL -(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) -((-2228 (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))) 50))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2228 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) (-560) (-13 (-27) (-424 |#1|))) (T -555)) -((-2228 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-560)) (-5 *2 (-586 *3)) (-5 *1 (-555 *6 *3))))) -(-10 -7 (-15 -2228 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) -((-2230 (((-586 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2231 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2229 (((-586 |#5|) |#5| (-1 |#3| |#3|)) 222))) -(((-556 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2229 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2230 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2231 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-560) (-1041 (-549))) (-13 (-27) (-424 |#1|)) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -556)) -((-2231 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *7 (-1245 (-410 *6))) (-5 *1 (-556 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-2229 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(-10 -7 (-15 -2229 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2230 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2231 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2234 (((-112) (-549) (-549)) 12)) (-2232 (((-549) (-549)) 7)) (-2233 (((-549) (-549) (-549)) 10))) -(((-557) (-10 -7 (-15 -2232 ((-549) (-549))) (-15 -2233 ((-549) (-549) (-549))) (-15 -2234 ((-112) (-549) (-549))))) (T -557)) -((-2234 (*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-557)))) (-2233 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557))))) -(-10 -7 (-15 -2232 ((-549) (-549))) (-15 -2233 ((-549) (-549) (-549))) (-15 -2234 ((-112) (-549) (-549)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3004 ((|#1| $) 67)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-3915 (($ $) 97)) (-4071 (($ $) 80)) (-2805 ((|#1| $) 68)) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $) 79)) (-3913 (($ $) 96)) (-4070 (($ $) 81)) (-3917 (($ $) 95)) (-4069 (($ $) 82)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) "failed") $) 75)) (-3576 (((-549) $) 76)) (-3890 (((-3 $ "failed") $) 37)) (-2237 (($ |#1| |#1|) 72)) (-3606 (((-112) $) 66)) (-4059 (($) 107)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 78)) (-3607 (((-112) $) 65)) (-2934 (($ $ $) 113)) (-3260 (($ $ $) 112)) (-4374 (($ $) 104)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2238 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-549))) 70)) (-2236 ((|#1| $) 69)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3889 (((-3 $ "failed") $ $) 48)) (-4375 (($ $) 105)) (-3918 (($ $) 94)) (-4068 (($ $) 83)) (-3916 (($ $) 93)) (-4067 (($ $) 84)) (-3914 (($ $) 92)) (-4066 (($ $) 85)) (-2235 (((-112) $ |#1|) 64)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-549)) 74)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 103)) (-3909 (($ $) 91)) (-2240 (((-112) $ $) 45)) (-3919 (($ $) 102)) (-3907 (($ $) 90)) (-3923 (($ $) 101)) (-3911 (($ $) 89)) (-3924 (($ $) 100)) (-3912 (($ $) 88)) (-3922 (($ $) 99)) (-3910 (($ $) 87)) (-3920 (($ $) 98)) (-3908 (($ $) 86)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 110)) (-2967 (((-112) $ $) 109)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 111)) (-3088 (((-112) $ $) 108)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ $) 106) (($ $ (-410 (-549))) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-558 |#1|) (-140) (-13 (-407) (-1205))) (T -558)) -((-2238 (*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2237 (*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2238 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2238 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) (-2235 (*1 *2 *1 *3) (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112))))) -(-13 (-455) (-852) (-1205) (-1005) (-1041 (-549)) (-10 -8 (-6 -4201) (-15 -2238 ($ |t#1| |t#1|)) (-15 -2237 ($ |t#1| |t#1|)) (-15 -2238 ($ |t#1|)) (-15 -2238 ($ (-410 (-549)))) (-15 -2236 (|t#1| $)) (-15 -2805 (|t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3606 ((-112) $)) (-15 -3607 ((-112) $)) (-15 -2235 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-852) . T) ((-1005) . T) ((-1041 (-549)) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) . T) ((-1208) . T)) -((-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 9)) (-2241 (($ $) 11)) (-2239 (((-112) $) 20)) (-3890 (((-3 $ "failed") $) 16)) (-2240 (((-112) $ $) 22))) -(((-559 |#1|) (-10 -8 (-15 -2239 ((-112) |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) (-560)) (T -559)) -NIL -(-10 -8 (-15 -2239 ((-112) |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-560) (-140)) (T -560)) -((-3889 (*1 *1 *1 *1) (|partial| -4 *1 (-560))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1947 *1) (|:| -4412 *1) (|:| |associate| *1))) (-4 *1 (-560)))) (-2241 (*1 *1 *1) (-4 *1 (-560))) (-2240 (*1 *2 *1 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -3889 ((-3 $ "failed") $ $)) (-15 -2242 ((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $)) (-15 -2241 ($ $)) (-15 -2240 ((-112) $ $)) (-15 -2239 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2244 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1180) (-643 |#2|)) 38)) (-2246 (((-586 |#2|) |#2| (-1180)) 63)) (-2245 (((-3 |#2| "failed") |#2| (-1180)) 156)) (-2247 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1180) (-613 |#2|) (-643 (-613 |#2|))) 159)) (-2243 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1180) |#2|) 41))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2243 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1180) |#2|)) (-15 -2244 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1180) (-643 |#2|))) (-15 -2245 ((-3 |#2| "failed") |#2| (-1180))) (-15 -2246 ((-586 |#2|) |#2| (-1180))) (-15 -2247 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1180) (-613 |#2|) (-643 (-613 |#2|))))) (-13 (-455) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -561)) -((-2247 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1180)) (-5 *6 (-643 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *7 *3)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-561 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2245 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-2244 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-561 *6 *3)))) (-2243 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) -(-10 -7 (-15 -2243 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1180) |#2|)) (-15 -2244 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1180) (-643 |#2|))) (-15 -2245 ((-3 |#2| "failed") |#2| (-1180))) (-15 -2246 ((-586 |#2|) |#2| (-1180))) (-15 -2247 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1180) (-613 |#2|) (-643 (-613 |#2|))))) -((-4401 (((-408 |#1|) |#1|) 19)) (-4164 (((-408 |#1|) |#1|) 34)) (-2249 (((-3 |#1| "failed") |#1|) 51)) (-2248 (((-408 |#1|) |#1|) 64))) -(((-562 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -2248 ((-408 |#1|) |#1|)) (-15 -2249 ((-3 |#1| "failed") |#1|))) (-548)) (T -562)) -((-2249 (*1 *2 *2) (|partial| -12 (-5 *1 (-562 *2)) (-4 *2 (-548)))) (-2248 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) (-4401 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -2248 ((-408 |#1|) |#1|)) (-15 -2249 ((-3 |#1| "failed") |#1|))) -((-2250 (($) 9)) (-2253 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34)) (-2816 (((-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 31)) (-4039 (($ (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28)) (-2252 (($ (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26)) (-2254 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2379 (((-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36)) (-2251 (((-1275)) 11))) -(((-563) (-10 -8 (-15 -2250 ($)) (-15 -2251 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2252 ($ (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2253 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2379 ((-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2254 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -563)) -((-2254 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-563)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-563)))) (-2253 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-563)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-563)))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-563)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-563)))) (-2251 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-563)))) (-2250 (*1 *1) (-5 *1 (-563)))) -(-10 -8 (-15 -2250 ($)) (-15 -2251 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2252 ($ (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2253 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2379 ((-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2254 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3487 (((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|)) 35)) (-2257 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) |#2| (-1174 |#2|)) 115)) (-2255 (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 85) (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 55)) (-2256 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|))) 92) (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|)) 114)) (-2258 (((-3 |#2| #3="failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 110) (((-3 |#2| #3#) |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) |#2| (-1174 |#2|)) 116)) (-2259 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 135 (|has| |#3| (-660 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 134 (|has| |#3| (-660 |#2|)))) (-3488 ((|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|) 53)) (-3481 (((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|)) 34))) -(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) |#2| (-1174 |#2|))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2258 ((-3 |#2| #3="failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) |#2| (-1174 |#2|))) (-15 -2258 ((-3 |#2| #3#) |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3487 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -3488 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -3481 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-660 |#2|)) (PROGN (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) (-13 (-455) (-1041 (-549)) (-147) (-641 (-549))) (-13 (-424 |#1|) (-27) (-1205)) (-1104)) (T -564)) -((-2259 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) (-4 *4 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) (-2259 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) (-4 *4 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-564 *5 *6 *7)) (-5 *3 (-1174 *6)) (-4 *7 (-1104)))) (-3488 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1104)))) (-3487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-564 *6 *3 *7)) (-5 *5 (-1174 *3)) (-4 *7 (-1104)))) (-2258 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1180))) (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104)))) (-2258 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1180))) (-5 *5 (-1174 *2)) (-4 *2 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104)))) (-2257 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-410 (-1174 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104)))) (-2257 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-1174 *3)) (-4 *3 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104)))) (-2256 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) (-2256 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) (-2255 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) (-2255 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104))))) -(-10 -7 (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) |#2| (-1174 |#2|))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2258 ((-3 |#2| #3="failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) |#2| (-1174 |#2|))) (-15 -2258 ((-3 |#2| #3#) |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3487 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -3488 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -3481 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-660 |#2|)) (PROGN (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) -((-2269 (((-549) (-549) (-773)) 90)) (-2268 (((-549) (-549)) 88)) (-2267 (((-549) (-549)) 86)) (-2266 (((-549) (-549)) 92)) (-3208 (((-549) (-549) (-549)) 70)) (-2265 (((-549) (-549) (-549)) 67)) (-2264 (((-410 (-549)) (-549)) 30)) (-2263 (((-549) (-549)) 36)) (-2262 (((-549) (-549)) 79)) (-3205 (((-549) (-549)) 51)) (-2261 (((-643 (-549)) (-549)) 85)) (-2260 (((-549) (-549) (-549) (-549) (-549)) 63)) (-3201 (((-410 (-549)) (-549)) 60))) -(((-565) (-10 -7 (-15 -3201 ((-410 (-549)) (-549))) (-15 -2260 ((-549) (-549) (-549) (-549) (-549))) (-15 -2261 ((-643 (-549)) (-549))) (-15 -3205 ((-549) (-549))) (-15 -2262 ((-549) (-549))) (-15 -2263 ((-549) (-549))) (-15 -2264 ((-410 (-549)) (-549))) (-15 -2265 ((-549) (-549) (-549))) (-15 -3208 ((-549) (-549) (-549))) (-15 -2266 ((-549) (-549))) (-15 -2267 ((-549) (-549))) (-15 -2268 ((-549) (-549))) (-15 -2269 ((-549) (-549) (-773))))) (T -565)) -((-2269 (*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-773)) (-5 *1 (-565)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-3208 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2265 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2264 (*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2261 (*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-565)) (-5 *3 (-549)))) (-2260 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549))))) -(-10 -7 (-15 -3201 ((-410 (-549)) (-549))) (-15 -2260 ((-549) (-549) (-549) (-549) (-549))) (-15 -2261 ((-643 (-549)) (-549))) (-15 -3205 ((-549) (-549))) (-15 -2262 ((-549) (-549))) (-15 -2263 ((-549) (-549))) (-15 -2264 ((-410 (-549)) (-549))) (-15 -2265 ((-549) (-549) (-549))) (-15 -3208 ((-549) (-549) (-549))) (-15 -2266 ((-549) (-549))) (-15 -2267 ((-549) (-549))) (-15 -2268 ((-549) (-549))) (-15 -2269 ((-549) (-549) (-773)))) -((-2270 (((-2 (|:| |answer| |#4|) (|:| -2317 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-2 (|:| |answer| |#4|) (|:| -2317 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -566)) -((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2317 *3))) (-5 *1 (-566 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) -(-10 -7 (-15 -2270 ((-2 (|:| |answer| |#4|) (|:| -2317 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2270 (((-2 (|:| |answer| (-410 |#2|)) (|:| -2317 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2270 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2317 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -567)) -((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -2317 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-567 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -2270 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2317 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) -((-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771) (-1066)) 119) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771)) 121)) (-4244 (((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1180)) 197) (((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1162)) 196) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380) (-1066)) 201) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380)) 202) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380)) 203) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380))))) 204) (((-1038) (-315 (-380)) (-1092 (-844 (-380)))) 192) (((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380)) 191) (((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380)) 187) (((-1038) (-771)) 179) (((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380) (-1066)) 186))) -(((-568) (-10 -7 (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380) (-1066))) (-15 -4244 ((-1038) (-771))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380) (-1066))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771) (-1066))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1162))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1180))))) (T -568)) -((-4244 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) (-5 *5 (-1180)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) (-5 *5 (-1162)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) (-5 *1 (-568)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *5 (-380)) (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568))))) -(-10 -7 (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380) (-1066))) (-15 -4244 ((-1038) (-771))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380) (-1066))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771) (-1066))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1162))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1180)))) -((-2273 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|)) 198)) (-2271 (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-2272 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-2274 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1180))) 203)) (-2275 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1180)) 212 (|has| |#3| (-660 |#2|))))) -(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -2271 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -2272 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -2273 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|))) (-15 -2274 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1180)))) (IF (|has| |#3| (-660 |#2|)) (-15 -2275 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1180))) |%noBranch|)) (-13 (-455) (-1041 (-549)) (-147) (-641 (-549))) (-13 (-424 |#1|) (-27) (-1205)) (-1104)) (T -569)) -((-2275 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1180)) (-4 *4 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) (-2274 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1180))) (-4 *2 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1104)))) (-2273 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1104)))) (-2272 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1104)))) (-2271 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1104))))) -(-10 -7 (-15 -2271 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -2272 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -2273 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|))) (-15 -2274 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1180)))) (IF (|has| |#3| (-660 |#2|)) (-15 -2275 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1180))) |%noBranch|)) -((-2276 (((-2 (|:| -2489 |#2|) (|:| |nconst| |#2|)) |#2| (-1180)) 64)) (-2278 (((-3 |#2| "failed") |#2| (-1180) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1142)) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-889 (-549))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)) 154 (-12 (|has| |#2| (-632)) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-889 (-549)))))) (-2277 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)) 156 (-12 (|has| |#2| (-632)) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-889 (-549))))))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2276 ((-2 (|:| -2489 |#2|) (|:| |nconst| |#2|)) |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (PROGN (IF (|has| |#2| (-632)) (PROGN (-15 -2277 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180))) (-15 -2278 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) (IF (|has| |#2| (-1142)) (-15 -2278 ((-3 |#2| "failed") |#2| (-1180) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1041 (-549)) (-455) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -570)) -((-2278 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1180)) (-5 *4 (-844 *2)) (-4 *2 (-1142)) (-4 *2 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-616 (-893 (-549)))) (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *1 (-570 *5 *2)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *2 (-2 (|:| -2489 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) -(-10 -7 (-15 -2276 ((-2 (|:| -2489 |#2|) (|:| |nconst| |#2|)) |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (PROGN (IF (|has| |#2| (-632)) (PROGN (-15 -2277 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180))) (-15 -2278 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) (IF (|has| |#2| (-1142)) (-15 -2278 ((-3 |#2| "failed") |#2| (-1180) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2281 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-643 (-410 |#2|))) 41)) (-4244 (((-586 (-410 |#2|)) (-410 |#2|)) 28)) (-2279 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-2280 (((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48))) -(((-571 |#1| |#2|) (-10 -7 (-15 -4244 ((-586 (-410 |#2|)) (-410 |#2|))) (-15 -2279 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2280 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2281 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-643 (-410 |#2|))))) (-13 (-365) (-147) (-1041 (-549))) (-1245 |#1|)) (T -571)) -((-2281 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-643 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-2280 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2318 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-2279 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147) (-1041 (-549)))) (-5 *1 (-571 *3 *4)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-586 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) -(-10 -7 (-15 -4244 ((-586 (-410 |#2|)) (-410 |#2|))) (-15 -2279 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2280 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2281 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-643 (-410 |#2|))))) -((-2282 (((-3 (-549) "failed") |#1|) 14)) (-3680 (((-112) |#1|) 13)) (-3676 (((-549) |#1|) 9))) -(((-572 |#1|) (-10 -7 (-15 -3676 ((-549) |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -2282 ((-3 (-549) "failed") |#1|))) (-1041 (-549))) (T -572)) -((-2282 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2)))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1041 (-549))))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2))))) -(-10 -7 (-15 -3676 ((-549) |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -2282 ((-3 (-549) "failed") |#1|))) -((-2285 (((-3 (-2 (|:| |mainpart| (-410 (-949 |#1|))) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 (-949 |#1|))) (|:| |logand| (-410 (-949 |#1|))))))) "failed") (-410 (-949 |#1|)) (-1180) (-643 (-410 (-949 |#1|)))) 48)) (-2283 (((-586 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-1180)) 28)) (-2284 (((-3 (-410 (-949 |#1|)) "failed") (-410 (-949 |#1|)) (-1180)) 23)) (-2286 (((-3 (-2 (|:| -2318 (-410 (-949 |#1|))) (|:| |coeff| (-410 (-949 |#1|)))) "failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))) 35))) -(((-573 |#1|) (-10 -7 (-15 -2283 ((-586 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2284 ((-3 (-410 (-949 |#1|)) "failed") (-410 (-949 |#1|)) (-1180))) (-15 -2285 ((-3 (-2 (|:| |mainpart| (-410 (-949 |#1|))) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 (-949 |#1|))) (|:| |logand| (-410 (-949 |#1|))))))) "failed") (-410 (-949 |#1|)) (-1180) (-643 (-410 (-949 |#1|))))) (-15 -2286 ((-3 (-2 (|:| -2318 (-410 (-949 |#1|))) (|:| |coeff| (-410 (-949 |#1|)))) "failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))))) (-13 (-560) (-1041 (-549)) (-147))) (T -573)) -((-2286 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 (-2 (|:| -2318 (-410 (-949 *5))) (|:| |coeff| (-410 (-949 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5))))) (-2285 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 (-410 (-949 *6)))) (-5 *3 (-410 (-949 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2284 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-147))) (-5 *1 (-573 *4)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 (-586 (-410 (-949 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5)))))) -(-10 -7 (-15 -2283 ((-586 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2284 ((-3 (-410 (-949 |#1|)) "failed") (-410 (-949 |#1|)) (-1180))) (-15 -2285 ((-3 (-2 (|:| |mainpart| (-410 (-949 |#1|))) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 (-949 |#1|))) (|:| |logand| (-410 (-949 |#1|))))))) "failed") (-410 (-949 |#1|)) (-1180) (-643 (-410 (-949 |#1|))))) (-15 -2286 ((-3 (-2 (|:| -2318 (-410 (-949 |#1|))) (|:| |coeff| (-410 (-949 |#1|)))) "failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))))) -((-2968 (((-112) $ $) 75)) (-3608 (((-112) $) 48)) (-3004 ((|#1| $) 39)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) 79)) (-3915 (($ $) 139)) (-4071 (($ $) 118)) (-2805 ((|#1| $) 37)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL)) (-3913 (($ $) 141)) (-4070 (($ $) 114)) (-3917 (($ $) 143)) (-4069 (($ $) 122)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) 93)) (-3576 (((-549) $) 95)) (-3890 (((-3 $ "failed") $) 78)) (-2237 (($ |#1| |#1|) 35)) (-3606 (((-112) $) 44)) (-4059 (($) 104)) (-2573 (((-112) $) 55)) (-3412 (($ $ (-549)) NIL)) (-3607 (((-112) $) 45)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4374 (($ $) 106)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2238 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-549))) 92)) (-2236 ((|#1| $) 36)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) 81) (($ (-643 $)) NIL)) (-3889 (((-3 $ "failed") $ $) 80)) (-4375 (($ $) 108)) (-3918 (($ $) 147)) (-4068 (($ $) 120)) (-3916 (($ $) 149)) (-4067 (($ $) 124)) (-3914 (($ $) 145)) (-4066 (($ $) 116)) (-2235 (((-112) $ |#1|) 42)) (-4378 (((-865) $) 100) (($ (-549)) 83) (($ $) NIL) (($ (-549)) 83)) (-3530 (((-773)) 102 T CONST)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 161)) (-3909 (($ $) 130)) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) 159)) (-3907 (($ $) 126)) (-3923 (($ $) 157)) (-3911 (($ $) 137)) (-3924 (($ $) 155)) (-3912 (($ $) 135)) (-3922 (($ $) 153)) (-3910 (($ $) 132)) (-3920 (($ $) 151)) (-3908 (($ $) 128)) (-3510 (($) 30 T CONST)) (-3067 (($) 10 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 49)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 47)) (-4269 (($ $) 53) (($ $ $) 54)) (-4271 (($ $ $) 52)) (** (($ $ (-922)) 71) (($ $ (-773)) NIL) (($ $ $) 110) (($ $ (-410 (-549))) 163)) (* (($ (-922) $) 66) (($ (-773) $) NIL) (($ (-549) $) 65) (($ $ $) 61))) -(((-574 |#1|) (-558 |#1|) (-13 (-407) (-1205))) (T -574)) -NIL -(-558 |#1|) -((-3107 (((-3 (-643 (-1174 (-549))) "failed") (-643 (-1174 (-549))) (-1174 (-549))) 27))) -(((-575) (-10 -7 (-15 -3107 ((-3 (-643 (-1174 (-549))) "failed") (-643 (-1174 (-549))) (-1174 (-549)))))) (T -575)) -((-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 (-549)))) (-5 *3 (-1174 (-549))) (-5 *1 (-575))))) -(-10 -7 (-15 -3107 ((-3 (-643 (-1174 (-549))) "failed") (-643 (-1174 (-549))) (-1174 (-549))))) -((-2287 (((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-1180)) 19)) (-2290 (((-643 (-613 |#2|)) (-643 |#2|) (-1180)) 23)) (-3654 (((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-643 (-613 |#2|))) 11)) (-2291 ((|#2| |#2| (-1180)) 59 (|has| |#1| (-560)))) (-2292 ((|#2| |#2| (-1180)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-2289 (((-613 |#2|) (-613 |#2|) (-643 (-613 |#2|)) (-1180)) 25)) (-2288 (((-613 |#2|) (-643 (-613 |#2|))) 24)) (-2293 (((-586 |#2|) |#2| (-1180) (-1 (-586 |#2|) |#2| (-1180)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-632)) (|has| |#2| (-1041 (-1180))) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-455)) (|has| |#1| (-889 (-549))))))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2287 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-1180))) (-15 -2288 ((-613 |#2|) (-643 (-613 |#2|)))) (-15 -2289 ((-613 |#2|) (-613 |#2|) (-643 (-613 |#2|)) (-1180))) (-15 -3654 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-643 (-613 |#2|)))) (-15 -2290 ((-643 (-613 |#2|)) (-643 |#2|) (-1180))) (IF (|has| |#1| (-560)) (-15 -2291 (|#2| |#2| (-1180))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -2292 (|#2| |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (IF (|has| |#2| (-632)) (IF (|has| |#2| (-1041 (-1180))) (-15 -2293 ((-586 |#2|) |#2| (-1180) (-1 (-586 |#2|) |#2| (-1180)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1104) (-424 |#1|)) (T -576)) -((-2293 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-586 *3) *3 (-1180))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1180))) (-4 *3 (-285)) (-4 *3 (-632)) (-4 *3 (-1041 *4)) (-4 *3 (-424 *7)) (-5 *4 (-1180)) (-4 *7 (-616 (-893 (-549)))) (-4 *7 (-455)) (-4 *7 (-889 (-549))) (-4 *7 (-1104)) (-5 *2 (-586 *3)) (-5 *1 (-576 *7 *3)))) (-2292 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-455)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-424 *4)))) (-2291 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) (-4 *2 (-424 *4)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-1180)) (-4 *6 (-424 *5)) (-4 *5 (-1104)) (-5 *2 (-643 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *2 (-643 (-613 *4))) (-4 *4 (-424 *3)) (-4 *3 (-1104)) (-5 *1 (-576 *3 *4)))) (-2289 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-643 (-613 *6))) (-5 *4 (-1180)) (-5 *2 (-613 *6)) (-4 *6 (-424 *5)) (-4 *5 (-1104)) (-5 *1 (-576 *5 *6)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-643 (-613 *5))) (-4 *4 (-1104)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-424 *4)))) (-2287 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-613 *5))) (-5 *3 (-1180)) (-4 *5 (-424 *4)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *5))))) -(-10 -7 (-15 -2287 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-1180))) (-15 -2288 ((-613 |#2|) (-643 (-613 |#2|)))) (-15 -2289 ((-613 |#2|) (-613 |#2|) (-643 (-613 |#2|)) (-1180))) (-15 -3654 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-643 (-613 |#2|)))) (-15 -2290 ((-643 (-613 |#2|)) (-643 |#2|) (-1180))) (IF (|has| |#1| (-560)) (-15 -2291 (|#2| |#2| (-1180))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -2292 (|#2| |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (IF (|has| |#2| (-632)) (IF (|has| |#2| (-1041 (-1180))) (-15 -2293 ((-586 |#2|) |#2| (-1180) (-1 (-586 |#2|) |#2| (-1180)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2296 (((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-643 |#1|) "failed") (-549) |#1| |#1|)) 201)) (-2299 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-643 (-410 |#2|))) 176)) (-2302 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-643 (-410 |#2|))) 173)) (-2303 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 164)) (-2294 (((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 187)) (-2301 (((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 204)) (-2297 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-410 |#2|)) 207)) (-2305 (((-2 (|:| |ir| (-586 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 88)) (-2306 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2300 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-643 (-410 |#2|))) 180)) (-2304 (((-3 (-625 |#1| |#2|) "failed") (-625 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 168)) (-2295 (((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 191)) (-2298 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-410 |#2|)) 212))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2294 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2295 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2296 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-643 |#1|) "failed") (-549) |#1| |#1|))) (-15 -2297 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-410 |#2|))) (-15 -2298 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-410 |#2|))) (-15 -2299 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-643 (-410 |#2|)))) (-15 -2300 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-643 (-410 |#2|)))) (-15 -2301 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -2302 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-643 (-410 |#2|)))) (-15 -2303 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2304 ((-3 (-625 |#1| |#2|) "failed") (-625 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2305 ((-2 (|:| |ir| (-586 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2306 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -577)) -((-2306 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-586 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2304 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112))) (-549) *4)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5)))) (-2303 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4)))) (-2302 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-643 (-410 *7))) (-4 *7 (-1245 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-2301 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2318 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2300 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3541 *7) (|:| |sol?| (-112))) (-549) *7)) (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2299 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2318 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2298 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2297 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-643 *6) "failed") (-549) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2294 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(-10 -7 (-15 -2294 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2295 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2296 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-643 |#1|) "failed") (-549) |#1| |#1|))) (-15 -2297 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-410 |#2|))) (-15 -2298 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-410 |#2|))) (-15 -2299 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-643 (-410 |#2|)))) (-15 -2300 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-643 (-410 |#2|)))) (-15 -2301 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -2302 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-643 (-410 |#2|)))) (-15 -2303 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2304 ((-3 (-625 |#1| |#2|) "failed") (-625 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2305 ((-2 (|:| |ir| (-586 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2306 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2307 (((-3 |#2| "failed") |#2| (-1180) (-1180)) 10))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2307 ((-3 |#2| "failed") |#2| (-1180) (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-1142) (-29 |#1|))) (T -578)) -((-2307 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-1142) (-29 *4)))))) -(-10 -7 (-15 -2307 ((-3 |#2| "failed") |#2| (-1180) (-1180)))) -((-2958 (((-693 (-1228)) $ (-1228)) 26)) (-2959 (((-693 (-553)) $ (-553)) 25)) (-2957 (((-773) $ (-129)) 27)) (-2960 (((-693 (-128)) $ (-128)) 24)) (-2178 (((-693 (-1228)) $) 12)) (-2174 (((-693 (-1226)) $) 8)) (-2176 (((-693 (-1225)) $) 10)) (-2179 (((-693 (-553)) $) 13)) (-2175 (((-693 (-551)) $) 9)) (-2177 (((-693 (-550)) $) 11)) (-2173 (((-773) $ (-129)) 7)) (-2180 (((-693 (-128)) $) 14)) (-1868 (($ $) 6))) -(((-579) (-140)) (T -579)) -NIL -(-13 (-530) (-863)) -(((-173) . T) ((-530) . T) ((-863) . T)) -((-2958 (((-693 (-1228)) $ (-1228)) NIL)) (-2959 (((-693 (-553)) $ (-553)) NIL)) (-2957 (((-773) $ (-129)) NIL)) (-2960 (((-693 (-128)) $ (-128)) NIL)) (-2178 (((-693 (-1228)) $) NIL)) (-2174 (((-693 (-1226)) $) NIL)) (-2176 (((-693 (-1225)) $) NIL)) (-2179 (((-693 (-553)) $) NIL)) (-2175 (((-693 (-551)) $) NIL)) (-2177 (((-693 (-550)) $) NIL)) (-2173 (((-773) $ (-129)) NIL)) (-2180 (((-693 (-128)) $) NIL)) (-2961 (((-112) $) NIL)) (-2308 (($ (-391)) 14) (($ (-1162)) 16)) (-4378 (((-865) $) NIL)) (-1868 (($ $) NIL))) -(((-580) (-13 (-579) (-615 (-865)) (-10 -8 (-15 -2308 ($ (-391))) (-15 -2308 ($ (-1162))) (-15 -2961 ((-112) $))))) (T -580)) -((-2308 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-580)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))) -(-13 (-579) (-615 (-865)) (-10 -8 (-15 -2308 ($ (-391))) (-15 -2308 ($ (-1162))) (-15 -2961 ((-112) $)))) -((-2968 (((-112) $ $) NIL)) (-3883 (($) 7 T CONST)) (-3663 (((-1162) $) NIL)) (-2310 (($) 6 T CONST)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 14)) (-2309 (($) 8 T CONST)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 10))) -(((-581) (-13 (-1104) (-10 -8 (-15 -2310 ($) -4384) (-15 -3883 ($) -4384) (-15 -2309 ($) -4384)))) (T -581)) -((-2310 (*1 *1) (-5 *1 (-581))) (-3883 (*1 *1) (-5 *1 (-581))) (-2309 (*1 *1) (-5 *1 (-581)))) -(-13 (-1104) (-10 -8 (-15 -2310 ($) -4384) (-15 -3883 ($) -4384) (-15 -2309 ($) -4384))) -((-2968 (((-112) $ $) NIL)) (-2311 (((-693 $) (-494)) 21)) (-3663 (((-1162) $) NIL)) (-2313 (($ (-1162)) 14)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 34)) (-2312 (((-213 4 (-128)) $) 24)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 26))) -(((-582) (-13 (-1104) (-10 -8 (-15 -2313 ($ (-1162))) (-15 -2312 ((-213 4 (-128)) $)) (-15 -2311 ((-693 $) (-494)))))) (T -582)) -((-2313 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-582)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-128))) (-5 *1 (-582)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-693 (-582))) (-5 *1 (-582))))) -(-13 (-1104) (-10 -8 (-15 -2313 ($ (-1162))) (-15 -2312 ((-213 4 (-128)) $)) (-15 -2311 ((-693 $) (-494))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $ (-549)) 77)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3011 (($ (-1174 (-549)) (-549)) 83)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 68)) (-3012 (($ $) 43)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4203 (((-773) $) 16)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 (((-549)) 37)) (-3013 (((-549) $) 41)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4200 (($ $ (-549)) 24)) (-3889 (((-3 $ "failed") $ $) 73)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) 17)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 74)) (-3015 (((-1157 (-549)) $) 19)) (-3292 (($ $) 26)) (-4378 (((-865) $) 104) (($ (-549)) 63) (($ $) NIL)) (-3530 (((-773)) 15 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-549) $ (-549)) 46)) (-3510 (($) 44 T CONST)) (-3067 (($) 21 T CONST)) (-3455 (((-112) $ $) 54)) (-4269 (($ $) 62) (($ $ $) 48)) (-4271 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 64) (($ $ $) 65))) -(((-583 |#1| |#2|) (-872 |#1|) (-549) (-112)) (T -583)) -NIL -(-872 |#1|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 30)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) 59)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 $ "failed") $) 95)) (-3576 (($ $) 94)) (-1967 (($ (-1269 $)) 93)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 44)) (-3395 (($) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 61)) (-1848 (((-112) $) NIL)) (-1941 (($ $) NIL) (($ $ (-773)) NIL)) (-4155 (((-112) $) NIL)) (-4203 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2573 (((-112) $) NIL)) (-2191 (($) 49 (|has| $ (-370)))) (-2189 (((-112) $) NIL (|has| $ (-370)))) (-3536 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 $) $ (-922)) NIL (|has| $ (-370))) (((-1174 $) $) 104)) (-2188 (((-922) $) 67)) (-1772 (((-1174 $) $) NIL (|has| $ (-370)))) (-1771 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-1773 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL T CONST)) (-2563 (($ (-922)) 60)) (-4363 (((-112) $) 87)) (-3664 (((-1123) $) NIL)) (-2572 (($) 28 (|has| $ (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 54)) (-4164 (((-408 $) $) NIL)) (-4362 (((-922)) 86) (((-834 (-922))) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-3 (-773) "failed") $ $) NIL) (((-773) $) NIL)) (-4343 (((-134)) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-4380 (((-922) $) 85) (((-834 (-922)) $) NIL)) (-3605 (((-1174 $)) 102)) (-1842 (($) 66)) (-1774 (($) 50 (|has| $ (-370)))) (-3644 (((-691 $) (-1269 $)) NIL) (((-1269 $) $) 91)) (-4402 (((-549) $) 40)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) 42) (($ $) NIL) (($ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3530 (((-773)) 51 T CONST)) (-3662 (((-112) $ $) 107)) (-2190 (((-1269 $) (-922)) 97) (((-1269 $)) 96)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 31 T CONST)) (-3067 (($) 27 T CONST)) (-4360 (($ $ (-773)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 34)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 81) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-584 |#1|) (-13 (-352) (-330 $) (-616 (-549))) (-922)) (T -584)) -NIL -(-13 (-352) (-330 $) (-616 (-549))) -((-2314 (((-1275) (-1162)) 10))) -(((-585) (-10 -7 (-15 -2314 ((-1275) (-1162))))) (T -585)) -((-2314 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-585))))) -(-10 -7 (-15 -2314 ((-1275) (-1162)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 76)) (-3576 ((|#1| $) NIL)) (-2318 ((|#1| $) 30)) (-2316 (((-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2319 (($ |#1| (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2317 (((-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $) 31)) (-3663 (((-1162) $) NIL)) (-3235 (($ |#1| |#1|) 38) (($ |#1| (-1180)) 49 (|has| |#1| (-1041 (-1180))))) (-3664 (((-1123) $) NIL)) (-2315 (((-112) $) 35)) (-4242 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1180)) 89 (|has| |#1| (-903 (-1180))))) (-4378 (((-865) $) 112) (($ |#1|) 29)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 18 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) 17) (($ $ $) NIL)) (-4271 (($ $ $) 85)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 16) (($ (-410 (-549)) $) 41) (($ $ (-410 (-549))) NIL))) -(((-586 |#1|) (-13 (-719 (-410 (-549))) (-1041 |#1|) (-10 -8 (-15 -2319 ($ |#1| (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2318 (|#1| $)) (-15 -2317 ((-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2316 ((-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2315 ((-112) $)) (-15 -3235 ($ |#1| |#1|)) (-15 -4242 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-903 (-1180))) (-15 -4242 (|#1| $ (-1180))) |%noBranch|) (IF (|has| |#1| (-1041 (-1180))) (-15 -3235 ($ |#1| (-1180))) |%noBranch|))) (-365)) (T -586)) -((-2319 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *2)) (|:| |logand| (-1174 *2))))) (-5 *4 (-643 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-586 *2)))) (-2318 (*1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *3)) (|:| |logand| (-1174 *3))))) (-5 *1 (-586 *3)) (-4 *3 (-365)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-586 *3)) (-4 *3 (-365)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-365)))) (-3235 (*1 *1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365)))) (-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-586 *2)) (-4 *2 (-365)))) (-4242 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-903 *3)) (-5 *1 (-586 *2)) (-5 *3 (-1180)))) (-3235 (*1 *1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *1 (-586 *2)) (-4 *2 (-1041 *3)) (-4 *2 (-365))))) -(-13 (-719 (-410 (-549))) (-1041 |#1|) (-10 -8 (-15 -2319 ($ |#1| (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2318 (|#1| $)) (-15 -2317 ((-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2316 ((-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2315 ((-112) $)) (-15 -3235 ($ |#1| |#1|)) (-15 -4242 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-903 (-1180))) (-15 -4242 (|#1| $ (-1180))) |%noBranch|) (IF (|has| |#1| (-1041 (-1180))) (-15 -3235 ($ |#1| (-1180))) |%noBranch|))) -((-4390 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|)) 30))) -(((-587 |#1| |#2|) (-10 -7 (-15 -4390 ((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|))) (-15 -4390 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4390 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4390 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587)) -((-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2318 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -2318 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-586 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-586 *6)) (-5 *1 (-587 *5 *6))))) -(-10 -7 (-15 -4390 ((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|))) (-15 -4390 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4390 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4390 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3842 (((-586 |#2|) (-586 |#2|)) 42)) (-4395 (((-643 |#2|) (-586 |#2|)) 44)) (-2327 ((|#2| (-586 |#2|)) 50))) -(((-588 |#1| |#2|) (-10 -7 (-15 -3842 ((-586 |#2|) (-586 |#2|))) (-15 -4395 ((-643 |#2|) (-586 |#2|))) (-15 -2327 (|#2| (-586 |#2|)))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-29 |#1|) (-1205))) (T -588)) -((-2327 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-13 (-29 *4) (-1205))) (-5 *1 (-588 *4 *2)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-586 *5)) (-4 *5 (-13 (-29 *4) (-1205))) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 *5)) (-5 *1 (-588 *4 *5)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-586 *4)) (-4 *4 (-13 (-29 *3) (-1205))) (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-588 *3 *4))))) -(-10 -7 (-15 -3842 ((-586 |#2|) (-586 |#2|))) (-15 -4395 ((-643 |#2|) (-586 |#2|))) (-15 -2327 (|#2| (-586 |#2|)))) -((-4378 (((-865) $) 9))) -(((-589) (-615 (-865))) (T -589)) -NIL -(-615 (-865)) -((-2323 (((-112) |#1|) 16)) (-2324 (((-3 |#1| "failed") |#1|) 14)) (-2321 (((-2 (|:| -3097 |#1|) (|:| -2564 (-773))) |#1|) 39) (((-3 |#1| "failed") |#1| (-773)) 18)) (-2320 (((-112) |#1| (-773)) 19)) (-2325 ((|#1| |#1|) 43)) (-2322 ((|#1| |#1| (-773)) 46))) -(((-590 |#1|) (-10 -7 (-15 -2320 ((-112) |#1| (-773))) (-15 -2321 ((-3 |#1| "failed") |#1| (-773))) (-15 -2321 ((-2 (|:| -3097 |#1|) (|:| -2564 (-773))) |#1|)) (-15 -2322 (|#1| |#1| (-773))) (-15 -2323 ((-112) |#1|)) (-15 -2324 ((-3 |#1| "failed") |#1|)) (-15 -2325 (|#1| |#1|))) (-548)) (T -590)) -((-2325 (*1 *2 *2) (-12 (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2324 (*1 *2 *2) (|partial| -12 (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2323 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2321 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3097 *3) (|:| -2564 (-773)))) (-5 *1 (-590 *3)) (-4 *3 (-548)))) (-2321 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -2320 ((-112) |#1| (-773))) (-15 -2321 ((-3 |#1| "failed") |#1| (-773))) (-15 -2321 ((-2 (|:| -3097 |#1|) (|:| -2564 (-773))) |#1|)) (-15 -2322 (|#1| |#1| (-773))) (-15 -2323 ((-112) |#1|)) (-15 -2324 ((-3 |#1| "failed") |#1|)) (-15 -2325 (|#1| |#1|))) -((-2326 (((-1174 |#1|) (-922)) 44))) -(((-591 |#1|) (-10 -7 (-15 -2326 ((-1174 |#1|) (-922)))) (-352)) (T -591)) -((-2326 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-591 *4)) (-4 *4 (-352))))) -(-10 -7 (-15 -2326 ((-1174 |#1|) (-922)))) -((-3842 (((-586 (-410 (-949 |#1|))) (-586 (-410 (-949 |#1|)))) 27)) (-4244 (((-3 (-315 |#1|) (-643 (-315 |#1|))) (-410 (-949 |#1|)) (-1180)) 34 (|has| |#1| (-147)))) (-4395 (((-643 (-315 |#1|)) (-586 (-410 (-949 |#1|)))) 19)) (-2328 (((-315 |#1|) (-410 (-949 |#1|)) (-1180)) 32 (|has| |#1| (-147)))) (-2327 (((-315 |#1|) (-586 (-410 (-949 |#1|)))) 21))) -(((-592 |#1|) (-10 -7 (-15 -3842 ((-586 (-410 (-949 |#1|))) (-586 (-410 (-949 |#1|))))) (-15 -4395 ((-643 (-315 |#1|)) (-586 (-410 (-949 |#1|))))) (-15 -2327 ((-315 |#1|) (-586 (-410 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4244 ((-3 (-315 |#1|) (-643 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2328 ((-315 |#1|) (-410 (-949 |#1|)) (-1180)))) |%noBranch|)) (-13 (-455) (-1041 (-549)) (-641 (-549)))) (T -592)) -((-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *5)) (-5 *1 (-592 *5)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (-315 *5) (-643 (-315 *5)))) (-5 *1 (-592 *5)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-586 (-410 (-949 *4)))) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *4)) (-5 *1 (-592 *4)))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-586 (-410 (-949 *4)))) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 (-315 *4))) (-5 *1 (-592 *4)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-586 (-410 (-949 *3)))) (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-592 *3))))) -(-10 -7 (-15 -3842 ((-586 (-410 (-949 |#1|))) (-586 (-410 (-949 |#1|))))) (-15 -4395 ((-643 (-315 |#1|)) (-586 (-410 (-949 |#1|))))) (-15 -2327 ((-315 |#1|) (-586 (-410 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4244 ((-3 (-315 |#1|) (-643 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2328 ((-315 |#1|) (-410 (-949 |#1|)) (-1180)))) |%noBranch|)) -((-2330 (((-643 (-691 (-549))) (-643 (-549)) (-643 (-905 (-549)))) 78) (((-643 (-691 (-549))) (-643 (-549))) 79) (((-691 (-549)) (-643 (-549)) (-905 (-549))) 72)) (-2329 (((-773) (-643 (-549))) 69))) -(((-593) (-10 -7 (-15 -2329 ((-773) (-643 (-549)))) (-15 -2330 ((-691 (-549)) (-643 (-549)) (-905 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)) (-643 (-905 (-549))))))) (T -593)) -((-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-549))) (-5 *4 (-643 (-905 (-549)))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593)))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-549))) (-5 *4 (-905 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-593)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-773)) (-5 *1 (-593))))) -(-10 -7 (-15 -2329 ((-773) (-643 (-549)))) (-15 -2330 ((-691 (-549)) (-643 (-549)) (-905 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)) (-643 (-905 (-549)))))) -((-3633 (((-643 |#5|) |#5| (-112)) 100)) (-2331 (((-112) |#5| (-643 |#5|)) 34))) -(((-594 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3633 ((-643 |#5|) |#5| (-112))) (-15 -2331 ((-112) |#5| (-643 |#5|)))) (-13 (-308) (-147)) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1112 |#1| |#2| |#3| |#4|)) (T -594)) -((-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1112 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-594 *5 *6 *7 *8 *3)))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-643 *3)) (-5 *1 (-594 *5 *6 *7 *8 *3)) (-4 *3 (-1112 *5 *6 *7 *8))))) -(-10 -7 (-15 -3633 ((-643 |#5|) |#5| (-112))) (-15 -2331 ((-112) |#5| (-643 |#5|)))) -((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-595) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -595)) -((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595))))) -(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) -((-2968 (((-112) $ $) NIL (|has| (-144) (-1104)))) (-3850 (($ $) 38)) (-3851 (($ $) NIL)) (-3841 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) 68)) (-3847 (((-112) $ $ (-549)) 62)) (-3842 (((-643 $) $ (-144)) 76) (((-643 $) $ (-141)) 77)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-144) (-852))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-144) $ (-549) (-144)) 59 (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-3839 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-3844 (($ $ (-1236 (-549)) $) 57)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3830 (($ (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) NIL (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) NIL)) (-3849 (((-112) $ $) 90)) (-3843 (((-549) (-1 (-112) (-144)) $) NIL) (((-549) (-144) $) NIL (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) 65 (|has| (-144) (-1104))) (((-549) $ $ (-549)) 63) (((-549) (-141) $ (-549)) 67)) (-2124 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) 9)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 32 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2375 (((-549) $) 47 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) 91)) (-3846 (((-773) $ $ (-144)) 88)) (-2128 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3852 (($ $) 41)) (-3853 (($ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3840 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3663 (((-1162) $) 43 (|has| (-144) (-1104)))) (-2449 (($ (-144) $ (-549)) NIL) (($ $ $ (-549)) 27)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) 87 (|has| (-144) (-1104)))) (-4232 (((-144) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2373 (($ $ (-144)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) NIL)) (-3827 (((-112) $) 15)) (-3996 (($) 10)) (-4231 (((-144) $ (-549) (-144)) NIL) (((-144) $ (-549)) 69) (($ $ (-1236 (-549))) 25) (($ $ $) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (((-773) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-1899 (($ $ $ (-549)) 84 (|has| $ (-6 -4426)))) (-3824 (($ $) 20)) (-4402 (((-538) $) NIL (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) NIL)) (-4233 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-643 $)) 85)) (-4378 (($ (-144)) NIL) (((-865) $) 31 (|has| (-144) (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| (-144) (-1104)))) (-2127 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| (-144) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3455 (((-112) $ $) 17 (|has| (-144) (-1104)))) (-3087 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3088 (((-112) $ $) 18 (|has| (-144) (-852)))) (-4389 (((-773) $) 16 (|has| $ (-6 -4425))))) -(((-596 |#1|) (-1147) (-549)) (T -596)) -NIL -(-1147) -((-3955 (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1092 |#4|)) 32))) -(((-597 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1092 |#4|))) (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|))) (-795) (-852) (-560) (-953 |#3| |#1| |#2|)) (T -597)) -((-3955 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-597 *5 *4 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) (-3955 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1092 *3)) (-4 *3 (-953 *7 *6 *4)) (-4 *6 (-795)) (-4 *4 (-852)) (-4 *7 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-597 *6 *4 *7 *3))))) -(-10 -7 (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1092 |#4|))) (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 72)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 58) (($ $ (-549) (-549)) 59)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 65)) (-2362 (($ $) 110)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2360 (((-865) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-1029 (-844 (-549))) (-1180) |#1| (-410 (-549))) 243)) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 36)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3293 (((-112) $) NIL)) (-4203 (((-549) $) 63) (((-549) $ (-549)) 64)) (-2573 (((-112) $) NIL)) (-4208 (($ $ (-922)) 84)) (-4247 (($ (-1 |#1| (-549)) $) 81)) (-4369 (((-112) $) 26)) (-3294 (($ |#1| (-549)) 22) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 76)) (-2366 (($ (-1029 (-844 (-549))) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 13)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $) 163 (|has| |#1| (-38 (-410 (-549)))))) (-2363 (((-3 $ "failed") $ $ (-112)) 109)) (-2361 (($ $ $) 117)) (-3664 (((-1123) $) NIL)) (-2364 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 15)) (-2365 (((-1029 (-844 (-549))) $) 14)) (-4200 (($ $ (-549)) 47)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-4231 ((|#1| $ (-549)) 62) (($ $ $) NIL (|has| (-549) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-4380 (((-549) $) NIL)) (-3292 (($ $) 48)) (-4378 (((-865) $) NIL) (($ (-549)) 29) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 28 (|has| |#1| (-172)))) (-4109 ((|#1| $ (-549)) 61)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 39 T CONST)) (-4204 ((|#1| $) NIL)) (-2341 (($ $) 200 (|has| |#1| (-38 (-410 (-549)))))) (-2353 (($ $) 171 (|has| |#1| (-38 (-410 (-549)))))) (-2343 (($ $) 204 (|has| |#1| (-38 (-410 (-549)))))) (-2355 (($ $) 176 (|has| |#1| (-38 (-410 (-549)))))) (-2339 (($ $) 203 (|has| |#1| (-38 (-410 (-549)))))) (-2351 (($ $) 175 (|has| |#1| (-38 (-410 (-549)))))) (-2358 (($ $ (-410 (-549))) 179 (|has| |#1| (-38 (-410 (-549)))))) (-2359 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-549)))))) (-2356 (($ $) 206 (|has| |#1| (-38 (-410 (-549)))))) (-2357 (($ $) 162 (|has| |#1| (-38 (-410 (-549)))))) (-2338 (($ $) 205 (|has| |#1| (-38 (-410 (-549)))))) (-2350 (($ $) 177 (|has| |#1| (-38 (-410 (-549)))))) (-2340 (($ $) 201 (|has| |#1| (-38 (-410 (-549)))))) (-2352 (($ $) 173 (|has| |#1| (-38 (-410 (-549)))))) (-2342 (($ $) 202 (|has| |#1| (-38 (-410 (-549)))))) (-2354 (($ $) 174 (|has| |#1| (-38 (-410 (-549)))))) (-2335 (($ $) 211 (|has| |#1| (-38 (-410 (-549)))))) (-2347 (($ $) 187 (|has| |#1| (-38 (-410 (-549)))))) (-2337 (($ $) 208 (|has| |#1| (-38 (-410 (-549)))))) (-2349 (($ $) 183 (|has| |#1| (-38 (-410 (-549)))))) (-2333 (($ $) 215 (|has| |#1| (-38 (-410 (-549)))))) (-2345 (($ $) 191 (|has| |#1| (-38 (-410 (-549)))))) (-2332 (($ $) 217 (|has| |#1| (-38 (-410 (-549)))))) (-2344 (($ $) 193 (|has| |#1| (-38 (-410 (-549)))))) (-2334 (($ $) 213 (|has| |#1| (-38 (-410 (-549)))))) (-2346 (($ $) 189 (|has| |#1| (-38 (-410 (-549)))))) (-2336 (($ $) 210 (|has| |#1| (-38 (-410 (-549)))))) (-2348 (($ $) 185 (|has| |#1| (-38 (-410 (-549)))))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-4201 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3510 (($) 30 T CONST)) (-3067 (($) 40 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3455 (((-112) $ $) 74)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) 92) (($ $ $) 73)) (-4271 (($ $ $) 89)) (** (($ $ (-922)) NIL) (($ $ (-773)) 112)) (* (($ (-922) $) 99) (($ (-773) $) 97) (($ (-549) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-598 |#1|) (-13 (-1248 |#1| (-549)) (-10 -8 (-15 -2366 ($ (-1029 (-844 (-549))) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2365 ((-1029 (-844 (-549))) $)) (-15 -2364 ((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -4250 ($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -4369 ((-112) $)) (-15 -4247 ($ (-1 |#1| (-549)) $)) (-15 -2363 ((-3 $ "failed") $ $ (-112))) (-15 -2362 ($ $)) (-15 -2361 ($ $ $)) (-15 -2360 ((-865) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-1029 (-844 (-549))) (-1180) |#1| (-410 (-549)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (-15 -2359 ($ $ |#1|)) (-15 -2358 ($ $ (-410 (-549)))) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $)) (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $))) |%noBranch|))) (-1052)) (T -598)) -((-4369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-1029 (-844 (-549)))) (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1052)) (-5 *1 (-598 *4)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-1029 (-844 (-549)))) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) (-5 *1 (-598 *3)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-598 *3)))) (-2363 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052)))) (-2361 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052)))) (-2360 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *6)))) (-5 *4 (-1029 (-844 (-549)))) (-5 *5 (-1180)) (-5 *7 (-410 (-549))) (-4 *6 (-1052)) (-5 *2 (-865)) (-5 *1 (-598 *6)))) (-4244 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2358 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-598 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1052)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2354 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2351 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2350 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2349 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2348 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2347 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2345 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2344 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2341 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2340 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2338 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2337 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2336 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2333 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2332 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) -(-13 (-1248 |#1| (-549)) (-10 -8 (-15 -2366 ($ (-1029 (-844 (-549))) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2365 ((-1029 (-844 (-549))) $)) (-15 -2364 ((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -4250 ($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -4369 ((-112) $)) (-15 -4247 ($ (-1 |#1| (-549)) $)) (-15 -2363 ((-3 $ "failed") $ $ (-112))) (-15 -2362 ($ $)) (-15 -2361 ($ $ $)) (-15 -2360 ((-865) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-1029 (-844 (-549))) (-1180) |#1| (-410 (-549)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (-15 -2359 ($ $ |#1|)) (-15 -2358 ($ $ (-410 (-549)))) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $)) (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $))) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 65)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4250 (($ (-1157 |#1|)) 9)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) 48)) (-3293 (((-112) $) 58)) (-4203 (((-773) $) 63) (((-773) $ (-773)) 62)) (-2573 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ "failed") $ $) 50 (|has| |#1| (-560)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-1157 |#1|) $) 29)) (-3530 (((-773)) 57 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 10 T CONST)) (-3067 (($) 14 T CONST)) (-3455 (((-112) $ $) 28)) (-4269 (($ $) 36) (($ $ $) 16)) (-4271 (($ $ $) 31)) (** (($ $ (-922)) NIL) (($ $ (-773)) 55)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-549)) 42))) -(((-599 |#1|) (-13 (-1052) (-111 |#1| |#1|) (-10 -8 (-15 -4249 ((-1157 |#1|) $)) (-15 -4250 ($ (-1157 |#1|))) (-15 -3293 ((-112) $)) (-15 -4203 ((-773) $)) (-15 -4203 ((-773) $ (-773))) (-15 * ($ $ (-549))) (IF (|has| |#1| (-560)) (-6 (-560)) |%noBranch|))) (-1052)) (T -599)) -((-4249 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-599 *3)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (-4203 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-599 *3)) (-4 *3 (-1052))))) -(-13 (-1052) (-111 |#1| |#1|) (-10 -8 (-15 -4249 ((-1157 |#1|) $)) (-15 -4250 ($ (-1157 |#1|))) (-15 -3293 ((-112) $)) (-15 -4203 ((-773) $)) (-15 -4203 ((-773) $ (-773))) (-15 * ($ $ (-549))) (IF (|has| |#1| (-560)) (-6 (-560)) |%noBranch|))) -((-4390 (((-603 |#2|) (-1 |#2| |#1|) (-603 |#1|)) 15))) -(((-600 |#1| |#2|) (-10 -7 (-15 -4390 ((-603 |#2|) (-1 |#2| |#1|) (-603 |#1|)))) (-1219) (-1219)) (T -600)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-603 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-603 *6)) (-5 *1 (-600 *5 *6))))) -(-10 -7 (-15 -4390 ((-603 |#2|) (-1 |#2| |#1|) (-603 |#1|)))) -((-4390 (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-1157 |#2|)) 20) (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-603 |#2|)) 19) (((-603 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-603 |#2|)) 18))) -(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-603 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-1157 |#2|)))) (-1219) (-1219) (-1219)) (T -601)) -((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-1157 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) (-5 *1 (-601 *6 *7 *8)))) (-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-603 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) (-5 *1 (-601 *6 *7 *8)))) (-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-603 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-603 *8)) (-5 *1 (-601 *6 *7 *8))))) -(-10 -7 (-15 -4390 ((-603 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-1157 |#2|)))) -((-2371 ((|#3| |#3| (-643 (-613 |#3|)) (-643 (-1180))) 57)) (-2370 (((-168 |#2|) |#3|) 121)) (-2367 ((|#3| (-168 |#2|)) 46)) (-2368 ((|#2| |#3|) 21)) (-2369 ((|#3| |#2|) 35))) -(((-602 |#1| |#2| |#3|) (-10 -7 (-15 -2367 (|#3| (-168 |#2|))) (-15 -2368 (|#2| |#3|)) (-15 -2369 (|#3| |#2|)) (-15 -2370 ((-168 |#2|) |#3|)) (-15 -2371 (|#3| |#3| (-643 (-613 |#3|)) (-643 (-1180))))) (-560) (-13 (-424 |#1|) (-1005) (-1205)) (-13 (-424 (-168 |#1|)) (-1005) (-1205))) (T -602)) -((-2371 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-643 (-1180))) (-4 *2 (-13 (-424 (-168 *5)) (-1005) (-1205))) (-4 *5 (-560)) (-5 *1 (-602 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-1005) (-1205))))) (-2370 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-168 *5)) (-5 *1 (-602 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-1005) (-1205))) (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205))))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) (-5 *1 (-602 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-1005) (-1205))))) (-2368 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) (-5 *1 (-602 *4 *2 *3)) (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205))))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-424 *4) (-1005) (-1205))) (-4 *4 (-560)) (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) (-5 *1 (-602 *4 *5 *2))))) -(-10 -7 (-15 -2367 (|#3| (-168 |#2|))) (-15 -2368 (|#2| |#3|)) (-15 -2369 (|#3| |#2|)) (-15 -2370 ((-168 |#2|) |#3|)) (-15 -2371 (|#3| |#3| (-643 (-613 |#3|)) (-643 (-1180))))) -((-4142 (($ (-1 (-112) |#1|) $) 17)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3880 (($ (-1 |#1| |#1|) |#1|) 9)) (-3879 (($ (-1 (-112) |#1|) $) 13)) (-3878 (($ (-1 (-112) |#1|) $) 15)) (-3953 (((-1157 |#1|) $) 18)) (-4378 (((-865) $) NIL))) -(((-603 |#1|) (-13 (-615 (-865)) (-10 -8 (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)) (-15 -4142 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3953 ((-1157 |#1|) $)))) (-1219)) (T -603)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-603 *3)) (-4 *3 (-1219))))) -(-13 (-615 (-865)) (-10 -8 (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)) (-15 -4142 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3953 ((-1157 |#1|) $)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773)) NIL (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) NIL (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4264 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-4148 (((-112) $ (-773)) NIL)) (-4265 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4268 ((|#1| $ $) NIL (|has| |#1| (-1052)))) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4266 (($ $ $) NIL (|has| |#1| (-1052)))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4271 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-728))) (($ $ |#1|) NIL (|has| |#1| (-728)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-604 |#1| |#2|) (-1268 |#1|) (-1219) (-549)) (T -604)) -NIL -(-1268 |#1|) -((-2372 (((-1275) $ |#2| |#2|) 35)) (-2374 ((|#2| $) 23)) (-2375 ((|#2| $) 21)) (-2128 (($ (-1 |#3| |#3|) $) 32)) (-4390 (($ (-1 |#3| |#3|) $) 30)) (-4232 ((|#3| $) 26)) (-2373 (($ $ |#3|) 33)) (-2376 (((-112) |#3| $) 17)) (-2379 (((-643 |#3|) $) 15)) (-4231 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-605 |#1| |#2| |#3|) (-10 -8 (-15 -2372 ((-1275) |#1| |#2| |#2|)) (-15 -2373 (|#1| |#1| |#3|)) (-15 -4232 (|#3| |#1|)) (-15 -2374 (|#2| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2376 ((-112) |#3| |#1|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|))) (-606 |#2| |#3|) (-1104) (-1219)) (T -605)) -NIL -(-10 -8 (-15 -2372 ((-1275) |#1| |#2| |#2|)) (-15 -2373 (|#1| |#1| |#3|)) (-15 -4232 (|#3| |#1|)) (-15 -2374 (|#2| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2376 ((-112) |#3| |#1|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#2| (-1104)))) (-2372 (((-1275) $ |#1| |#1|) 41 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-1684 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 52)) (-2124 (((-643 |#2|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-2374 ((|#1| $) 44 (|has| |#1| (-852)))) (-3008 (((-643 |#2|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-2375 ((|#1| $) 45 (|has| |#1| (-852)))) (-2128 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#2| (-1104)))) (-2377 (((-643 |#1|) $) 47)) (-2378 (((-112) |#1| $) 48)) (-3664 (((-1123) $) 21 (|has| |#2| (-1104)))) (-4232 ((|#2| $) 43 (|has| |#1| (-852)))) (-2373 (($ $ |#2|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-2125 (((-773) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4425))) (((-773) |#2| $) 29 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#2| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#2| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-606 |#1| |#2|) (-140) (-1104) (-1219)) (T -606)) -((-2379 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *4)))) (-2378 (*1 *2 *3 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *3)))) (-2376 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-606 *4 *3)) (-4 *4 (-1104)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) (-4 *3 (-852)) (-4 *2 (-1219)))) (-2373 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-2372 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-1275))))) -(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -2379 ((-643 |t#2|) $)) (-15 -2378 ((-112) |t#1| $)) (-15 -2377 ((-643 |t#1|) $)) (IF (|has| |t#2| (-1104)) (IF (|has| $ (-6 -4425)) (-15 -2376 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-852)) (PROGN (-15 -2375 (|t#1| $)) (-15 -2374 (|t#1| $)) (-15 -4232 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -2373 ($ $ |t#2|)) (-15 -2372 ((-1275) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1104)) ((-615 (-865)) -3960 (|has| |#2| (-1104)) (|has| |#2| (-615 (-865)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-1104) |has| |#2| (-1104)) ((-1219) . T)) -((-4378 (((-865) $) 19) (($ (-128)) 13) (((-128) $) 14))) -(((-607) (-13 (-615 (-865)) (-493 (-128)))) (T -607)) -NIL -(-13 (-615 (-865)) (-493 (-128))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-1185)) NIL) (((-1185) $) NIL) (((-1220) $) 14) (($ (-643 (-1220))) 13)) (-2380 (((-643 (-1220)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-608) (-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2380 ((-643 (-1220)) $))))) (T -608)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608))))) -(-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2380 ((-643 (-1220)) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-1269 (-691 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1897 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1871 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1963 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1895 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1961 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2567 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2078 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1873 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1965 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1891 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1885 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1967 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3890 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-3513 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-1882 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1876 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1880 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1872 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1964 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1896 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1962 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2568 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2082 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1874 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1966 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1892 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1886 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1879 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1881 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4231 ((|#1| $ (-549)) NIL (|has| |#2| (-421 |#1|)))) (-3644 (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4402 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2070 (((-643 (-949 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-643 (-949 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4378 (((-865) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL (|has| |#2| (-421 |#1|)))) (-1875 (((-643 (-1269 |#1|))) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2948 (($ (-691 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1887 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1883 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 24)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-609 |#1| |#2|) (-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-746 |#1|)) (T -609)) -((-4378 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-609 *3 *2)) (-4 *2 (-746 *3))))) -(-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-1865 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) 39)) (-4029 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL) (($) NIL)) (-2372 (((-1275) $ (-1162) (-1162)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-1162) |#1|) 49)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#1| #1="failed") (-1162) $) 52)) (-4156 (($) NIL T CONST)) (-1869 (($ $ (-1162)) 25)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-3829 (((-3 |#1| #1#) (-1162) $) 53) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (|has| $ (-6 -4425)))) (-3830 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-4274 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-1866 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) 38)) (-1684 ((|#1| $ (-1162) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-1162)) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-2420 (($ $) 54)) (-1870 (($ (-391)) 23) (($ (-391) (-1162)) 22)) (-3973 (((-391) $) 40)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1162) $) NIL (|has| (-1162) (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (((-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-2375 (((-1162) $) NIL (|has| (-1162) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2816 (((-643 (-1162)) $) 45)) (-2382 (((-112) (-1162) $) NIL)) (-1867 (((-1162) $) 41)) (-1369 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2377 (((-643 (-1162)) $) NIL)) (-2378 (((-112) (-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 ((|#1| $) NIL (|has| (-1162) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) "failed") (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-643 (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 43)) (-4231 ((|#1| $ (-1162) |#1|) NIL) ((|#1| $ (-1162)) 48)) (-1567 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL) (($) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (((-773) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-773) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-4378 (((-865) $) 21)) (-1868 (($ $) 26)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-610 |#1|) (-13 (-367 (-391) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-1196 (-1162) |#1|) (-10 -8 (-6 -4425) (-15 -2420 ($ $)))) (-1104)) (T -610)) -((-2420 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-1104))))) -(-13 (-367 (-391) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-1196 (-1162) |#1|) (-10 -8 (-6 -4425) (-15 -2420 ($ $)))) -((-3666 (((-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 16)) (-2816 (((-643 |#2|) $) 20)) (-2382 (((-112) |#2| $) 12))) -(((-611 |#1| |#2| |#3|) (-10 -8 (-15 -2816 ((-643 |#2|) |#1|)) (-15 -2382 ((-112) |#2| |#1|)) (-15 -3666 ((-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|))) (-612 |#2| |#3|) (-1104) (-1104)) (T -611)) -NIL -(-10 -8 (-15 -2816 ((-643 |#2|) |#1|)) (-15 -2382 ((-112) |#2| |#1|)) (-15 -3666 ((-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|))) -((-2968 (((-112) $ $) 19 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 56 (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| "failed") |#1| $) 62)) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 47 (|has| $ (-6 -4425))) (((-3 |#2| "failed") |#1| $) 63)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 55 (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 57 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 54 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-2816 (((-643 |#1|) $) 64)) (-2382 (((-112) |#1| $) 65)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 40)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 41)) (-3664 (((-1123) $) 21 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 52)) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 42)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 27 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 26 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 25 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 24 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-1567 (($) 50) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 49)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 32 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 51)) (-4378 (((-865) $) 18 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 43)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-612 |#1| |#2|) (-140) (-1104) (-1104)) (T -612)) -((-2382 (*1 *2 *3 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-112)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) (-3829 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-2381 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) -(-13 (-229 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|))) (-10 -8 (-15 -2382 ((-112) |t#1| $)) (-15 -2816 ((-643 |t#1|) $)) (-15 -3829 ((-3 |t#2| "failed") |t#1| $)) (-15 -2381 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-102) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) ((-615 (-865)) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865)))) ((-151 #1#) . T) ((-616 (-538)) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) ((-229 #1#) . T) ((-235 #1#) . T) ((-310 #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-492 #1#) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-1104) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-2383 (((-3 (-1180) "failed") $) 48)) (-1408 (((-1275) $ (-773)) 24)) (-3843 (((-773) $) 23)) (-3448 (((-113) $) 12)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2384 (($ (-113) (-643 |#1|) (-773)) 34) (($ (-1180)) 35)) (-3035 (((-112) $ (-113)) 18) (((-112) $ (-1180)) 16)) (-3003 (((-773) $) 20)) (-3664 (((-1123) $) NIL)) (-4402 (((-893 (-549)) $) 96 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 103 (|has| |#1| (-616 (-893 (-380))))) (((-538) $) 89 (|has| |#1| (-616 (-538))))) (-4378 (((-865) $) 73)) (-3662 (((-112) $ $) NIL)) (-2385 (((-643 |#1|) $) 22)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 52)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 54))) -(((-613 |#1|) (-13 (-132) (-852) (-887 |#1|) (-10 -8 (-15 -3448 ((-113) $)) (-15 -2385 ((-643 |#1|) $)) (-15 -3003 ((-773) $)) (-15 -2384 ($ (-113) (-643 |#1|) (-773))) (-15 -2384 ($ (-1180))) (-15 -2383 ((-3 (-1180) "failed") $)) (-15 -3035 ((-112) $ (-113))) (-15 -3035 ((-112) $ (-1180))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) (-1104)) (T -613)) -((-3448 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-2384 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-1104)) (-5 *1 (-613 *5)))) (-2384 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-2383 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104))))) -(-13 (-132) (-852) (-887 |#1|) (-10 -8 (-15 -3448 ((-113) $)) (-15 -2385 ((-643 |#1|) $)) (-15 -3003 ((-773) $)) (-15 -2384 ($ (-113) (-643 |#1|) (-773))) (-15 -2384 ($ (-1180))) (-15 -2383 ((-3 (-1180) "failed") $)) (-15 -3035 ((-112) $ (-113))) (-15 -3035 ((-112) $ (-1180))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) -((-2386 (((-613 |#2|) |#1|) 17)) (-2387 (((-3 |#1| "failed") (-613 |#2|)) 21))) -(((-614 |#1| |#2|) (-10 -7 (-15 -2386 ((-613 |#2|) |#1|)) (-15 -2387 ((-3 |#1| "failed") (-613 |#2|)))) (-1104) (-1104)) (T -614)) -((-2387 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) (-5 *1 (-614 *2 *4)))) (-2386 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-614 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(-10 -7 (-15 -2386 ((-613 |#2|) |#1|)) (-15 -2387 ((-3 |#1| "failed") (-613 |#2|)))) -((-4378 ((|#1| $) 6))) -(((-615 |#1|) (-140) (-1219)) (T -615)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -4378 (|t#1| $)))) -((-4402 ((|#1| $) 6))) -(((-616 |#1|) (-140) (-1219)) (T -616)) -((-4402 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -4402 (|t#1| $)))) -((-2388 (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-408 |#2|) |#2|)) 15) (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16))) -(((-617 |#1| |#2|) (-10 -7 (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-408 |#2|) |#2|)))) (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -617)) -((-2388 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-1174 (-410 *6))) (-5 *1 (-617 *5 *6)) (-5 *3 (-410 *6)))) (-2388 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-617 *4 *5)) (-5 *3 (-410 *5))))) -(-10 -7 (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-408 |#2|) |#2|)))) -((-4378 (($ |#1|) 6))) -(((-618 |#1|) (-140) (-1219)) (T -618)) -((-4378 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -4378 ($ |t#1|)))) -((-2968 (((-112) $ $) NIL)) (-2389 (($) 14 T CONST)) (-3258 (($) 15 T CONST)) (-3255 (($ $ $) 29)) (-3746 (($ $) 27)) (-3663 (((-1162) $) NIL)) (-3254 (($ $ $) 30)) (-3664 (((-1123) $) NIL)) (-3257 (($) 11 T CONST)) (-3253 (($ $ $) 31)) (-4378 (((-865) $) 35)) (-3997 (((-112) $ (|[\|\|]| -3257)) 24) (((-112) $ (|[\|\|]| -2389)) 26) (((-112) $ (|[\|\|]| -3258)) 21)) (-3662 (((-112) $ $) NIL)) (-3256 (($ $ $) 28)) (-3455 (((-112) $ $) 18))) -(((-619) (-13 (-970) (-10 -8 (-15 -2389 ($) -4384) (-15 -3997 ((-112) $ (|[\|\|]| -3257))) (-15 -3997 ((-112) $ (|[\|\|]| -2389))) (-15 -3997 ((-112) $ (|[\|\|]| -3258)))))) (T -619)) -((-2389 (*1 *1) (-5 *1 (-619))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3257)) (-5 *2 (-112)) (-5 *1 (-619)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2389)) (-5 *2 (-112)) (-5 *1 (-619)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3258)) (-5 *2 (-112)) (-5 *1 (-619))))) -(-13 (-970) (-10 -8 (-15 -2389 ($) -4384) (-15 -3997 ((-112) $ (|[\|\|]| -3257))) (-15 -3997 ((-112) $ (|[\|\|]| -2389))) (-15 -3997 ((-112) $ (|[\|\|]| -3258))))) -((-4402 (($ |#1|) 6))) -(((-620 |#1|) (-140) (-1219)) (T -620)) -((-4402 (*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -4402 ($ |t#1|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4055 (((-549) $) NIL (|has| |#1| (-850)))) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-3606 (((-112) $) NIL (|has| |#1| (-850)))) (-2573 (((-112) $) NIL)) (-3399 ((|#1| $) 13)) (-3607 (((-112) $) NIL (|has| |#1| (-850)))) (-2934 (($ $ $) NIL (|has| |#1| (-850)))) (-3260 (($ $ $) NIL (|has| |#1| (-850)))) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3398 ((|#3| $) 15)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL)) (-3530 (((-773)) 20 T CONST)) (-3662 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-850)))) (-3510 (($) NIL T CONST)) (-3067 (($) 12 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-850)))) (-4381 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-621 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-728) |#2|)) (T -621)) -((-4381 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-728) *4)))) (-4381 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-728) *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-728) *3)))) (-3398 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) -((-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) 10))) -(((-622 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-623 |#2|) (-1052)) (T -622)) -NIL -(-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 41)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-623 |#1|) (-140) (-1052)) (T -623)) -((-4378 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1052))))) -(-13 (-1052) (-650 |t#1|) (-10 -8 (-15 -4378 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2390 ((|#2| |#2| (-1180) (-1180)) 16))) -(((-624 |#1| |#2|) (-10 -7 (-15 -2390 (|#2| |#2| (-1180) (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-29 |#1|))) (T -624)) -((-2390 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-624 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-29 *4)))))) -(-10 -7 (-15 -2390 (|#2| |#2| (-1180) (-1180)))) -((-2968 (((-112) $ $) 64)) (-3608 (((-112) $) 58)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2391 ((|#1| $) 55)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4183 (((-2 (|:| -1939 $) (|:| -1938 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 99) (((-3 |#2| #1#) $) 95)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 27)) (-3890 (((-3 $ "failed") $) 88)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4203 (((-549) $) 22)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) 40)) (-3294 (($ |#1| (-549)) 24)) (-3594 ((|#1| $) 57)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ $) 93)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-1752 (((-773) $) 115 (|has| |#1| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 114 (|has| |#1| (-365)))) (-4242 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4380 (((-549) $) 38)) (-4402 (((-410 |#2|) $) 47)) (-4378 (((-865) $) 69) (($ (-549)) 35) (($ $) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 34) (($ |#2|) 25)) (-4109 ((|#1| $ (-549)) 72)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 9 T CONST)) (-3067 (($) 14 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3455 (((-112) $ $) 21)) (-4269 (($ $) 51) (($ $ $) NIL)) (-4271 (($ $ $) 90)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 29) (($ $ $) 49))) -(((-625 |#1| |#2|) (-13 (-231 |#2|) (-560) (-616 (-410 |#2|)) (-415 |#1|) (-1041 |#2|) (-10 -8 (-15 -4369 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4203 ((-549) $)) (-15 -4391 ($ $)) (-15 -3594 (|#1| $)) (-15 -2391 (|#1| $)) (-15 -4109 (|#1| $ (-549))) (-15 -3294 ($ |#1| (-549))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -4183 ((-2 (|:| -1939 $) (|:| -1938 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-560) (-1245 |#1|)) (T -625)) -((-4369 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-112)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) (-4380 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) (-4203 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) (-4391 (*1 *1 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) (-3594 (*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) (-2391 (*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) (-4183 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-560)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -1939 (-625 *4 *5)) (|:| -1938 (-410 *5)))) (-5 *1 (-625 *4 *5)) (-5 *3 (-410 *5))))) -(-13 (-231 |#2|) (-560) (-616 (-410 |#2|)) (-415 |#1|) (-1041 |#2|) (-10 -8 (-15 -4369 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4203 ((-549) $)) (-15 -4391 ($ $)) (-15 -3594 (|#1| $)) (-15 -2391 (|#1| $)) (-15 -4109 (|#1| $ (-549))) (-15 -3294 ($ |#1| (-549))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -4183 ((-2 (|:| -1939 $) (|:| -1938 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) -((-4114 (((-643 |#6|) (-643 |#4|) (-112)) 54)) (-2392 ((|#6| |#6|) 48))) -(((-626 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2392 (|#6| |#6|)) (-15 -4114 ((-643 |#6|) (-643 |#4|) (-112)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|) (-1112 |#1| |#2| |#3| |#4|)) (T -626)) -((-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *10)) (-5 *1 (-626 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *10 (-1112 *5 *6 *7 *8)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-626 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *2 (-1112 *3 *4 *5 *6))))) -(-10 -7 (-15 -2392 (|#6| |#6|)) (-15 -4114 ((-643 |#6|) (-643 |#4|) (-112)))) -((-2393 (((-112) |#3| (-773) (-643 |#3|)) 32)) (-2394 (((-3 (-2 (|:| |polfac| (-643 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-643 (-1174 |#3|)))) "failed") |#3| (-643 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1954 (-643 (-2 (|:| |irr| |#4|) (|:| -2558 (-549)))))) (-643 |#3|) (-643 |#1|) (-643 |#3|)) 73))) -(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2393 ((-112) |#3| (-773) (-643 |#3|))) (-15 -2394 ((-3 (-2 (|:| |polfac| (-643 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-643 (-1174 |#3|)))) "failed") |#3| (-643 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1954 (-643 (-2 (|:| |irr| |#4|) (|:| -2558 (-549)))))) (-643 |#3|) (-643 |#1|) (-643 |#3|)))) (-852) (-795) (-308) (-953 |#3| |#2| |#1|)) (T -627)) -((-2394 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1954 (-643 (-2 (|:| |irr| *10) (|:| -2558 (-549))))))) (-5 *6 (-643 *3)) (-5 *7 (-643 *8)) (-4 *8 (-852)) (-4 *3 (-308)) (-4 *10 (-953 *3 *9 *8)) (-4 *9 (-795)) (-5 *2 (-2 (|:| |polfac| (-643 *10)) (|:| |correct| *3) (|:| |corrfact| (-643 (-1174 *3))))) (-5 *1 (-627 *8 *9 *3 *10)) (-5 *4 (-643 (-1174 *3))))) (-2393 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-773)) (-5 *5 (-643 *3)) (-4 *3 (-308)) (-4 *6 (-852)) (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-627 *6 *7 *3 *8)) (-4 *8 (-953 *3 *7 *6))))) -(-10 -7 (-15 -2393 ((-112) |#3| (-773) (-643 |#3|))) (-15 -2394 ((-3 (-2 (|:| |polfac| (-643 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-643 (-1174 |#3|)))) "failed") |#3| (-643 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1954 (-643 (-2 (|:| |irr| |#4|) (|:| -2558 (-549)))))) (-643 |#3|) (-643 |#1|) (-643 |#3|)))) -((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-628) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -628)) -((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628))))) -(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-4368 (($ $) 77)) (-4374 (((-666 |#1| |#2|) $) 60)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 81)) (-2395 (((-643 (-294 |#2|)) $ $) 42)) (-3664 (((-1123) $) NIL)) (-4375 (($ (-666 |#1| |#2|)) 56)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 66) (((-1285 |#1| |#2|) $) NIL) (((-1290 |#1| |#2|) $) 74)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 61 T CONST)) (-2396 (((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $) 41)) (-2397 (((-643 (-666 |#1| |#2|)) (-643 |#1|)) 73)) (-3066 (((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $) 46)) (-3455 (((-112) $ $) 62)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 52))) -(((-629 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -4375 ($ (-666 |#1| |#2|))) (-15 -4374 ((-666 |#1| |#2|) $)) (-15 -3066 ((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $)) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1290 |#1| |#2|) $)) (-15 -4368 ($ $)) (-15 -4366 ((-643 |#1|) $)) (-15 -2397 ((-643 (-666 |#1| |#2|)) (-643 |#1|))) (-15 -2396 ((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $)) (-15 -2395 ((-643 (-294 |#2|)) $ $)))) (-852) (-13 (-172) (-719 (-410 (-549)))) (-922)) (T -629)) -((-4375 (*1 *1 *2) (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-5 *1 (-629 *3 *4 *5)) (-14 *5 (-922)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-666 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| (-896 *3)) (|:| |c| *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-852)) (-4 *3 (-13 (-172) (-719 (-410 (-549))))) (-14 *4 (-922)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-666 *4 *5))) (-5 *1 (-629 *4 *5 *6)) (-4 *5 (-13 (-172) (-719 (-410 (-549))))) (-14 *6 (-922)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| (-674 *3)) (|:| |c| *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-2395 (*1 *2 *1 *1) (-12 (-5 *2 (-643 (-294 *4))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922))))) -(-13 (-476) (-10 -8 (-15 -4375 ($ (-666 |#1| |#2|))) (-15 -4374 ((-666 |#1| |#2|) $)) (-15 -3066 ((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $)) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1290 |#1| |#2|) $)) (-15 -4368 ($ $)) (-15 -4366 ((-643 |#1|) $)) (-15 -2397 ((-643 (-666 |#1| |#2|)) (-643 |#1|))) (-15 -2396 ((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $)) (-15 -2395 ((-643 (-294 |#2|)) $ $)))) -((-4114 (((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)) 103) (((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112)) 77)) (-2398 (((-112) (-643 (-782 |#1| (-866 |#2|)))) 26)) (-2402 (((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)) 102)) (-2401 (((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112)) 76)) (-2400 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|)))) 30)) (-2399 (((-3 (-643 (-782 |#1| (-866 |#2|))) "failed") (-643 (-782 |#1| (-866 |#2|)))) 29))) -(((-630 |#1| |#2|) (-10 -7 (-15 -2398 ((-112) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2399 ((-3 (-643 (-782 |#1| (-866 |#2|))) "failed") (-643 (-782 |#1| (-866 |#2|))))) (-15 -2400 ((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2401 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -2402 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)))) (-455) (-643 (-1180))) (T -630)) -((-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) (-5 *1 (-630 *5 *6)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) (-5 *1 (-630 *5 *6)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4)))) (-2399 (*1 *2 *2) (|partial| -12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-643 (-782 *4 (-866 *5)))) (-4 *4 (-455)) (-14 *5 (-643 (-1180))) (-5 *2 (-112)) (-5 *1 (-630 *4 *5))))) -(-10 -7 (-15 -2398 ((-112) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2399 ((-3 (-643 (-782 |#1| (-866 |#2|))) "failed") (-643 (-782 |#1| (-866 |#2|))))) (-15 -2400 ((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2401 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -2402 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)))) -((-3448 (((-113) (-113)) 88)) (-2406 ((|#2| |#2|) 28)) (-3235 ((|#2| |#2| (-1095 |#2|)) 84) ((|#2| |#2| (-1180)) 50)) (-2404 ((|#2| |#2|) 27)) (-2405 ((|#2| |#2|) 29)) (-2403 (((-112) (-113)) 33)) (-2408 ((|#2| |#2|) 24)) (-2409 ((|#2| |#2|) 26)) (-2407 ((|#2| |#2|) 25))) -(((-631 |#1| |#2|) (-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -2409 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2406 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3235 (|#2| |#2| (-1180))) (-15 -3235 (|#2| |#2| (-1095 |#2|)))) (-560) (-13 (-424 |#1|) (-1005) (-1205))) (T -631)) -((-3235 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) (-4 *4 (-560)) (-5 *1 (-631 *4 *2)))) (-3235 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))))) (-2405 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2406 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-424 *3) (-1005) (-1205))))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-424 *4) (-1005) (-1205)))))) -(-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -2409 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2406 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3235 (|#2| |#2| (-1180))) (-15 -3235 (|#2| |#2| (-1095 |#2|)))) -((-3915 (($ $) 38)) (-4071 (($ $) 21)) (-3913 (($ $) 37)) (-4070 (($ $) 22)) (-3917 (($ $) 36)) (-4069 (($ $) 23)) (-4059 (($) 48)) (-4374 (($ $) 45)) (-2406 (($ $) 17)) (-3235 (($ $ (-1095 $)) 7) (($ $ (-1180)) 6)) (-4375 (($ $) 46)) (-2404 (($ $) 15)) (-2405 (($ $) 16)) (-3918 (($ $) 35)) (-4068 (($ $) 24)) (-3916 (($ $) 34)) (-4067 (($ $) 25)) (-3914 (($ $) 33)) (-4066 (($ $) 26)) (-3921 (($ $) 44)) (-3909 (($ $) 32)) (-3919 (($ $) 43)) (-3907 (($ $) 31)) (-3923 (($ $) 42)) (-3911 (($ $) 30)) (-3924 (($ $) 41)) (-3912 (($ $) 29)) (-3922 (($ $) 40)) (-3910 (($ $) 28)) (-3920 (($ $) 39)) (-3908 (($ $) 27)) (-2408 (($ $) 19)) (-2409 (($ $) 20)) (-2407 (($ $) 18)) (** (($ $ $) 47))) -(((-632) (-140)) (T -632)) -((-2409 (*1 *1 *1) (-4 *1 (-632))) (-2408 (*1 *1 *1) (-4 *1 (-632))) (-2407 (*1 *1 *1) (-4 *1 (-632))) (-2406 (*1 *1 *1) (-4 *1 (-632))) (-2405 (*1 *1 *1) (-4 *1 (-632))) (-2404 (*1 *1 *1) (-4 *1 (-632)))) -(-13 (-963) (-1205) (-10 -8 (-15 -2409 ($ $)) (-15 -2408 ($ $)) (-15 -2407 ($ $)) (-15 -2406 ($ $)) (-15 -2405 ($ $)) (-15 -2404 ($ $)))) -(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-963) . T) ((-1205) . T) ((-1208) . T)) -((-2419 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 66)) (-2412 (((-643 (-247 |#1| |#2|)) (-643 (-484 |#1| |#2|))) 92)) (-2413 (((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-866 |#1|)) 94) (((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)) (-866 |#1|)) 93)) (-2410 (((-2 (|:| |gblist| (-643 (-247 |#1| |#2|))) (|:| |gvlist| (-643 (-549)))) (-643 (-484 |#1| |#2|))) 137)) (-2417 (((-643 (-484 |#1| |#2|)) (-866 |#1|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|))) 107)) (-2411 (((-2 (|:| |glbase| (-643 (-247 |#1| |#2|))) (|:| |glval| (-643 (-549)))) (-643 (-247 |#1| |#2|))) 147)) (-2415 (((-1269 |#2|) (-484 |#1| |#2|) (-643 (-484 |#1| |#2|))) 71)) (-2414 (((-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|))) 48)) (-2418 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|))) 63)) (-2416 (((-247 |#1| |#2|) (-643 |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|))) 115))) -(((-633 |#1| |#2|) (-10 -7 (-15 -2410 ((-2 (|:| |gblist| (-643 (-247 |#1| |#2|))) (|:| |gvlist| (-643 (-549)))) (-643 (-484 |#1| |#2|)))) (-15 -2411 ((-2 (|:| |glbase| (-643 (-247 |#1| |#2|))) (|:| |glval| (-643 (-549)))) (-643 (-247 |#1| |#2|)))) (-15 -2412 ((-643 (-247 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2414 ((-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2415 ((-1269 |#2|) (-484 |#1| |#2|) (-643 (-484 |#1| |#2|)))) (-15 -2416 ((-247 |#1| |#2|) (-643 |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2417 ((-643 (-484 |#1| |#2|)) (-866 |#1|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2418 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2419 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-643 (-1180)) (-455)) (T -633)) -((-2419 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-633 *4 *5)))) (-2418 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-633 *4 *5)))) (-2417 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-866 *4)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-633 *4 *5)))) (-2416 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-643 (-1180))) (-5 *1 (-633 *5 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-1269 *6)) (-5 *1 (-633 *5 *6)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-643 (-484 *3 *4))) (-14 *3 (-643 (-1180))) (-4 *4 (-455)) (-5 *1 (-633 *3 *4)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455)))) (-2413 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-643 (-247 *4 *5))) (-5 *1 (-633 *4 *5)))) (-2411 (*1 *2 *3) (-12 (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-643 (-247 *4 *5))) (|:| |glval| (-643 (-549))))) (-5 *1 (-633 *4 *5)) (-5 *3 (-643 (-247 *4 *5))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-643 (-247 *4 *5))) (|:| |gvlist| (-643 (-549))))) (-5 *1 (-633 *4 *5))))) -(-10 -7 (-15 -2410 ((-2 (|:| |gblist| (-643 (-247 |#1| |#2|))) (|:| |gvlist| (-643 (-549)))) (-643 (-484 |#1| |#2|)))) (-15 -2411 ((-2 (|:| |glbase| (-643 (-247 |#1| |#2|))) (|:| |glval| (-643 (-549)))) (-643 (-247 |#1| |#2|)))) (-15 -2412 ((-643 (-247 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2414 ((-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2415 ((-1269 |#2|) (-484 |#1| |#2|) (-643 (-484 |#1| |#2|)))) (-15 -2416 ((-247 |#1| |#2|) (-643 |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2417 ((-643 (-484 |#1| |#2|)) (-866 |#1|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2418 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2419 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-2372 (((-1275) $ (-1162) (-1162)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-51) $ (-1162) (-51)) 16) (((-51) $ (-1180) (-51)) 17)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 (-51) #1="failed") (-1162) $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-3 (-51) #1#) (-1162) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-51) $ (-1162) (-51)) NIL (|has| $ (-6 -4426)))) (-3517 (((-51) $ (-1162)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-2420 (($ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1162) $) NIL (|has| (-1162) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2375 (((-1162) $) NIL (|has| (-1162) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2421 (($ (-391)) 9)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-2816 (((-643 (-1162)) $) NIL)) (-2382 (((-112) (-1162) $) NIL)) (-1369 (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL)) (-2377 (((-643 (-1162)) $) NIL)) (-2378 (((-112) (-1162) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-4232 (((-51) $) NIL (|has| (-1162) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) "failed") (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL)) (-2373 (($ $ (-51)) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-51)) (-643 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-294 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-643 (-294 (-51)))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2379 (((-643 (-51)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-51) $ (-1162)) 14) (((-51) $ (-1162) (-51)) NIL) (((-51) $ (-1180)) 15)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (((-773) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104)))) (((-773) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-615 (-865))) (|has| (-51) (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-634) (-13 (-1196 (-1162) (-51)) (-10 -8 (-15 -2421 ($ (-391))) (-15 -2420 ($ $)) (-15 -4231 ((-51) $ (-1180))) (-15 -4219 ((-51) $ (-1180) (-51)))))) (T -634)) -((-2421 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-634)))) (-2420 (*1 *1 *1) (-5 *1 (-634))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-51)) (-5 *1 (-634)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1180)) (-5 *1 (-634))))) -(-13 (-1196 (-1162) (-51)) (-10 -8 (-15 -2421 ($ (-391))) (-15 -2420 ($ $)) (-15 -4231 ((-51) $ (-1180))) (-15 -4219 ((-51) $ (-1180) (-51))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-1269 (-691 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1897 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1871 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1963 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1895 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1961 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2567 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2078 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1873 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1965 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1891 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1885 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1967 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3890 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-3513 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-1882 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1876 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1880 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1872 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1964 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1896 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1962 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2568 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2082 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1874 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1966 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1892 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1886 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1879 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1881 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4231 ((|#1| $ (-549)) NIL (|has| |#2| (-421 |#1|)))) (-3644 (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4402 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2070 (((-643 (-949 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-643 (-949 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4378 (((-865) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL (|has| |#2| (-421 |#1|)))) (-1875 (((-643 (-1269 |#1|))) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2948 (($ (-691 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1887 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1883 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 20)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-635 |#1| |#2|) (-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-746 |#1|)) (T -635)) -((-4378 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-746 *3))))) -(-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-4381 (($ $ |#2|) 10))) -(((-636 |#1| |#2|) (-10 -8 (-15 -4381 (|#1| |#1| |#2|))) (-637 |#2|) (-172)) (T -636)) -NIL -(-10 -8 (-15 -4381 (|#1| |#1| |#2|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3953 (($ $ $) 34)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-637 |#1|) (-140) (-172)) (T -637)) -((-3953 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-719 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3953 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -4381 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-2423 (((-3 (-844 |#2|) #1="failed") |#2| (-294 |#2|) (-1162)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-844 |#2|) #1#))) "failed") |#2| (-294 (-844 |#2|))) 131)) (-2422 (((-3 (-834 |#2|) "failed") |#2| (-294 (-834 |#2|))) 136))) -(((-638 |#1| |#2|) (-10 -7 (-15 -2423 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) #1#))) "failed") |#2| (-294 (-844 |#2|)))) (-15 -2422 ((-3 (-834 |#2|) "failed") |#2| (-294 (-834 |#2|)))) (-15 -2423 ((-3 (-844 |#2|) #1#) |#2| (-294 |#2|) (-1162)))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -638)) -((-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1162)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-844 *3)) (-5 *1 (-638 *6 *3)))) (-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-834 *3))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-834 *3)) (-5 *1 (-638 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-844 *3))) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-844 *3) #1#))) "failed")) (-5 *1 (-638 *5 *3))))) -(-10 -7 (-15 -2423 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) #1#))) "failed") |#2| (-294 (-844 |#2|)))) (-15 -2422 ((-3 (-834 |#2|) "failed") |#2| (-294 (-834 |#2|)))) (-15 -2423 ((-3 (-844 |#2|) #1#) |#2| (-294 |#2|) (-1162)))) -((-2423 (((-3 (-844 (-410 (-949 |#1|))) #1="failed") (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))) (-1162)) 86) (((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2="failed") (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|)))) 20) (((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2#) (-410 (-949 |#1|)) (-294 (-844 (-949 |#1|)))) 35)) (-2422 (((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|)))) 23) (((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-834 (-949 |#1|)))) 43))) -(((-639 |#1|) (-10 -7 (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2="failed") (-410 (-949 |#1|)) (-294 (-844 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-834 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) #1#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))) (-1162)))) (-455)) (T -639)) -((-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-410 (-949 *6)))) (-5 *5 (-1162)) (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-639 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-639 *5)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-834 (-949 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-949 *5)))) (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-844 *3) #1#))) #2="failed")) (-5 *1 (-639 *5)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-844 (-949 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-949 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 *5))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 *5))) #1#))) #2#)) (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5)))))) -(-10 -7 (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2="failed") (-410 (-949 |#1|)) (-294 (-844 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-834 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) #1#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))) (-1162)))) -((-2426 (((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|) 64 (-3746 (|has| |#1| (-365)))) (((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-2424 (((-112) (-1269 |#2|)) 33)) (-2425 (((-3 (-1269 |#1|) "failed") (-1269 |#2|)) 40))) -(((-640 |#1| |#2|) (-10 -7 (-15 -2424 ((-112) (-1269 |#2|))) (-15 -2425 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -2426 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -2426 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) (-560) (-641 |#1|)) (T -640)) -((-2426 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-3746 (-4 *5 (-365))) (-4 *5 (-560)) (-5 *2 (-1269 (-410 *5))) (-5 *1 (-640 *5 *4)))) (-2426 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-4 *5 (-365)) (-4 *5 (-560)) (-5 *2 (-1269 *5)) (-5 *1 (-640 *5 *4)))) (-2425 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) (-5 *2 (-1269 *4)) (-5 *1 (-640 *4 *5)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -2424 ((-112) (-1269 |#2|))) (-15 -2425 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -2426 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -2426 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2427 (((-691 |#1|) (-691 $)) 40) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 39)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-641 |#1|) (-140) (-1052)) (T -641)) -((-2427 (*1 *2 *3) (-12 (-5 *3 (-691 *1)) (-4 *1 (-641 *4)) (-4 *4 (-1052)) (-5 *2 (-691 *4)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-641 *5)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 *5))))))) -(-13 (-1052) (-10 -8 (-15 -2427 ((-691 |t#1|) (-691 $))) (-15 -2427 ((-2 (|:| -1748 (-691 |t#1|)) (|:| |vec| (-1269 |t#1|))) (-691 $) (-1269 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-642 |#1|) (-140) (-1060)) (T -642)) -NIL -(-13 (-648 |t#1|) (-1054 |t#1|)) -(((-102) . T) ((-615 (-865)) . T) ((-648 |#1|) . T) ((-1054 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) NIL (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-2430 (($ $ $) 37 (|has| |#1| (-1104)))) (-2429 (($ $ $) 41 (|has| |#1| (-1104)))) (-2428 (($ $ $) 44 (|has| |#1| (-1104)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-4230 (($ $) 23) (($ $ (-773)) NIL)) (-2526 (($ $) NIL (|has| |#1| (-1104)))) (-1440 (($ $) 36 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104))) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-2432 (((-112) $) 11)) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2433 (($) 9 T CONST)) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3941 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3965 (($ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) 20) (($ $ (-773)) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) 39)) (-3996 (($) 38)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) 42) ((|#1| $ (-549) |#1|) NIL)) (-3430 (((-549) $ $) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-4065 (((-112) $) NIL)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 53 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-3884 (($ |#1| $) 12)) (-4222 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4233 (($ $ $) 35) (($ |#1| $) 43) (($ (-643 $)) NIL) (($ $ |#1|) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2431 (($ $ $) 13)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2900 (((-1162) $) 31 (|has| |#1| (-823))) (((-1162) $ (-112)) 32 (|has| |#1| (-823))) (((-1275) (-825) $) 33 (|has| |#1| (-823))) (((-1275) (-825) $ (-112)) 34 (|has| |#1| (-823)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-643 |#1|) (-13 (-668 |#1|) (-10 -8 (-15 -2433 ($) -4384) (-15 -2432 ((-112) $)) (-15 -3884 ($ |#1| $)) (-15 -2431 ($ $ $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -2430 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2428 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1219)) (T -643)) -((-2433 (*1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1219)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) (-2431 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) (-2430 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)))) (-2429 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)))) (-2428 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) -(-13 (-668 |#1|) (-10 -8 (-15 -2433 ($) -4384) (-15 -2432 ((-112) $)) (-15 -3884 ($ |#1| $)) (-15 -2431 ($ $ $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -2430 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2428 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) -((-4273 (((-643 |#2|) (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|) 16)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|) 18)) (-4390 (((-643 |#2|) (-1 |#2| |#1|) (-643 |#1|)) 13))) -(((-644 |#1| |#2|) (-10 -7 (-15 -4273 ((-643 |#2|) (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-643 |#1|)))) (-1219) (-1219)) (T -644)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-643 *6)) (-5 *1 (-644 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-644 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-643 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-643 *5)) (-5 *1 (-644 *6 *5))))) -(-10 -7 (-15 -4273 ((-643 |#2|) (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-643 |#1|)))) -((-3846 ((|#2| (-643 |#1|) (-643 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-643 |#1|) (-643 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) |#2|) 17) ((|#2| (-643 |#1|) (-643 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|)) 12))) -(((-645 |#1| |#2|) (-10 -7 (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) |#2|)) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| |#2|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) (-1 |#2| |#1|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| (-1 |#2| |#1|)))) (-1104) (-1219)) (T -645)) -((-3846 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1104)) (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) (-3846 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *1 (-645 *5 *6)))) (-3846 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 *5)) (-4 *6 (-1104)) (-4 *5 (-1219)) (-5 *2 (-1 *5 *6)) (-5 *1 (-645 *6 *5)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *5 *6))))) -(-10 -7 (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) |#2|)) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| |#2|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) (-1 |#2| |#1|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| (-1 |#2| |#1|)))) -((-4390 (((-643 |#3|) (-1 |#3| |#1| |#2|) (-643 |#1|) (-643 |#2|)) 21))) -(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-643 |#3|) (-1 |#3| |#1| |#2|) (-643 |#1|) (-643 |#2|)))) (-1219) (-1219) (-1219)) (T -646)) -((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-643 *6)) (-5 *5 (-643 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-643 *8)) (-5 *1 (-646 *6 *7 *8))))) -(-10 -7 (-15 -4390 ((-643 |#3|) (-1 |#3| |#1| |#2|) (-643 |#1|) (-643 |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11) (($ (-1185)) NIL) (((-1185) $) NIL) ((|#1| $) 8)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-647 |#1|) (-13 (-1086) (-615 |#1|)) (-1104)) (T -647)) -NIL -(-13 (-1086) (-615 |#1|)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-648 |#1|) (-140) (-1060)) (T -648)) -((-3510 (*1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060))))) -(-13 (-1104) (-10 -8 (-15 (-3510) ($) -4384) (-15 -3608 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2434 (($ |#1| |#1| $) 46)) (-1309 (((-112) $ (-773)) NIL)) (-1678 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2526 (($ $) 48)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) 59 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 9 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 37)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 50)) (-4039 (($ |#1| $) 29) (($ |#1| $ (-773)) 45)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1370 ((|#1| $) 53)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 23)) (-3996 (($) 28)) (-2435 (((-112) $) 57)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 69)) (-1567 (($) 26) (($ (-643 |#1|)) 19)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) 66 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 20)) (-4402 (((-538) $) 34 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4378 (((-865) $) 14 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 24)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 71 (|has| |#1| (-1104)))) (-4389 (((-773) $) 17 (|has| $ (-6 -4425))))) -(((-649 |#1|) (-13 (-697 |#1|) (-10 -8 (-6 -4425) (-15 -2435 ((-112) $)) (-15 -2434 ($ |#1| |#1| $)))) (-1104)) (T -649)) -((-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1104)))) (-2434 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1104))))) -(-13 (-697 |#1|) (-10 -8 (-6 -4425) (-15 -2435 ((-112) $)) (-15 -2434 ($ |#1| |#1| $)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27))) -(((-650 |#1|) (-140) (-1060)) (T -650)) -NIL -(-13 (-21) (-648 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773) $) 17)) (-2440 (($ $ |#1|) 69)) (-2442 (($ $) 39)) (-2443 (($ $) 37)) (-3577 (((-3 |#1| "failed") $) 61)) (-3576 ((|#1| $) NIL)) (-2477 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3956 (((-865) $ (-1 (-865) (-865) (-865)) (-1 (-865) (-865) (-865)) (-549)) 56)) (-2444 ((|#1| $ (-549)) 35)) (-2445 ((|#2| $ (-549)) 34)) (-2436 (($ (-1 |#1| |#1|) $) 41)) (-2437 (($ (-1 |#2| |#2|) $) 47)) (-2441 (($) 11)) (-2447 (($ |#1| |#2|) 24)) (-2446 (($ (-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|)))) 25)) (-2448 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $) 14)) (-2439 (($ |#1| $) 71)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2438 (((-112) $ $) 76)) (-4378 (((-865) $) 21) (($ |#1|) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 27))) -(((-651 |#1| |#2| |#3|) (-13 (-1104) (-1041 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-1 (-865) (-865) (-865)) (-1 (-865) (-865) (-865)) (-549))) (-15 -2448 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $)) (-15 -2447 ($ |#1| |#2|)) (-15 -2446 ($ (-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))))) (-15 -2445 (|#2| $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2443 ($ $)) (-15 -2442 ($ $)) (-15 -3540 ((-773) $)) (-15 -2441 ($)) (-15 -2440 ($ $ |#1|)) (-15 -2439 ($ |#1| $)) (-15 -2477 ($ |#1| |#2| $)) (-15 -2477 ($ $ $)) (-15 -2438 ((-112) $ $)) (-15 -2437 ($ (-1 |#2| |#2|) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)))) (-1104) (-23) |#2|) (T -651)) -((-3956 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-865) (-865) (-865))) (-5 *4 (-549)) (-5 *2 (-865)) (-5 *1 (-651 *5 *6 *7)) (-4 *5 (-1104)) (-4 *6 (-23)) (-14 *7 *6))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4))) (-2447 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-651 *4 *2 *5)) (-4 *4 (-1104)) (-14 *5 *2))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-1104)) (-5 *1 (-651 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2443 (*1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2442 (*1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4))) (-2441 (*1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2440 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2439 (*1 *1 *2 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2477 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2477 (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2438 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4))) (-2437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-651 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1104) (-1041 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-1 (-865) (-865) (-865)) (-1 (-865) (-865) (-865)) (-549))) (-15 -2448 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $)) (-15 -2447 ($ |#1| |#2|)) (-15 -2446 ($ (-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))))) (-15 -2445 (|#2| $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2443 ($ $)) (-15 -2442 ($ $)) (-15 -3540 ((-773) $)) (-15 -2441 ($)) (-15 -2440 ($ $ |#1|)) (-15 -2439 ($ |#1| $)) (-15 -2477 ($ |#1| |#2| $)) (-15 -2477 ($ $ $)) (-15 -2438 ((-112) $ $)) (-15 -2437 ($ (-1 |#2| |#2|) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)))) -((-2375 (((-549) $) 31)) (-2449 (($ |#2| $ (-549)) 27) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) 12)) (-2378 (((-112) (-549) $) 18)) (-4233 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-643 $)) NIL))) -(((-652 |#1| |#2|) (-10 -8 (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -2375 ((-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2378 ((-112) (-549) |#1|))) (-653 |#2|) (-1219)) (T -652)) -NIL -(-10 -8 (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -2375 ((-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2378 ((-112) (-549) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-653 |#1|) (-140) (-1219)) (T -653)) -((-4046 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4233 (*1 *1 *1 *2) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *2 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-2450 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-2450 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-2449 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-2449 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1236 (-549))) (|has| *1 (-6 -4426)) (-4 *1 (-653 *2)) (-4 *2 (-1219))))) -(-13 (-606 (-549) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4046 ($ (-773) |t#1|)) (-15 -4233 ($ $ |t#1|)) (-15 -4233 ($ |t#1| $)) (-15 -4233 ($ $ $)) (-15 -4233 ($ (-643 $))) (-15 -4390 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4231 ($ $ (-1236 (-549)))) (-15 -2450 ($ $ (-549))) (-15 -2450 ($ $ (-1236 (-549)))) (-15 -2449 ($ |t#1| $ (-549))) (-15 -2449 ($ $ $ (-549))) (IF (|has| $ (-6 -4426)) (-15 -4219 (|t#1| $ (-1236 (-549)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 15)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3399 ((|#1| $) 23)) (-2934 (($ $ $) NIL (|has| |#1| (-793)))) (-3260 (($ $ $) NIL (|has| |#1| (-793)))) (-3663 (((-1162) $) 48)) (-3664 (((-1123) $) NIL)) (-3398 ((|#3| $) 24)) (-4378 (((-865) $) 43)) (-3662 (((-112) $ $) 22)) (-3510 (($) 10 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-793)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-793)))) (-3455 (((-112) $ $) 20)) (-3087 (((-112) $ $) NIL (|has| |#1| (-793)))) (-3088 (((-112) $ $) 26 (|has| |#1| (-793)))) (-4381 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4269 (($ $) 17) (($ $ $) NIL)) (-4271 (($ $ $) 29)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-654 |#1| |#2| |#3|) (-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) (-719 |#2|) (-172) (|SubsetCategory| (-728) |#2|)) (T -654)) -((-4381 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4)) (-4 *2 (|SubsetCategory| (-728) *4)))) (-4381 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-654 *2 *4 *3)) (-4 *2 (-719 *4)) (-4 *3 (|SubsetCategory| (-728) *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-719 *3)) (-5 *1 (-654 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-728) *3)))) (-3398 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4))))) -(-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) -((-4004 (((-3 |#2| "failed") |#3| |#2| (-1180) |#2| (-643 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) "failed") |#3| |#2| (-1180)) 44))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) "failed") |#3| |#2| (-1180))) (-15 -4004 ((-3 |#2| "failed") |#3| |#2| (-1180) |#2| (-643 |#2|)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963)) (-660 |#2|)) (T -655)) -((-4004 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *2)) (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-655 *6 *2 *3)) (-4 *3 (-660 *2)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-4 *4 (-13 (-29 *6) (-1205) (-963))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) (-5 *1 (-655 *6 *4 *3)) (-4 *3 (-660 *4))))) -(-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) "failed") |#3| |#2| (-1180))) (-15 -4004 ((-3 |#2| "failed") |#3| |#2| (-1180) |#2| (-643 |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-365)))) (-2453 (($ $ $) 28 (|has| |#1| (-365)))) (-2454 (($ $ (-773)) 31 (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) 24)) (-2455 (($ $ $) 33 (|has| |#1| (-365)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) 20) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) 23)) (-2920 (($ $) NIL)) (-3510 (($) 21 T CONST)) (-3067 (($) 8 T CONST)) (-3072 (($) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-656 |#1| |#2|) (-660 |#1|) (-1052) (-1 |#1| |#1|)) (T -656)) -NIL -(-660 |#1|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-365)))) (-2453 (($ $ $) NIL (|has| |#1| (-365)))) (-2454 (($ $ (-773)) NIL (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) NIL)) (-2455 (($ $ $) NIL (|has| |#1| (-365)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) NIL)) (-2920 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-657 |#1|) (-660 |#1|) (-233)) (T -657)) -NIL -(-660 |#1|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-365)))) (-2453 (($ $ $) NIL (|has| |#1| (-365)))) (-2454 (($ $ (-773)) NIL (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2455 (($ $ $) NIL (|has| |#1| (-365)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) NIL)) (-2920 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-658 |#1| |#2|) (-13 (-660 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-650 |#1|) (-10 -8 (-15 -4242 ($ $))))) (T -658)) -NIL -(-13 (-660 |#1|) (-287 |#2| |#2|)) -((-2451 (($ $) 29)) (-2920 (($ $) 27)) (-3072 (($) 13))) -(((-659 |#1| |#2|) (-10 -8 (-15 -2451 (|#1| |#1|)) (-15 -2920 (|#1| |#1|)) (-15 -3072 (|#1|))) (-660 |#2|) (-1052)) (T -659)) -NIL -(-10 -8 (-15 -2451 (|#1| |#1|)) (-15 -2920 (|#1| |#1|)) (-15 -3072 (|#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2451 (($ $) 87 (|has| |#1| (-365)))) (-2453 (($ $ $) 89 (|has| |#1| (-365)))) (-2454 (($ $ (-773)) 88 (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2939 (($ $ $) 50 (|has| |#1| (-365)))) (-2940 (($ $ $) 51 (|has| |#1| (-365)))) (-2941 (($ $ $) 53 (|has| |#1| (-365)))) (-2937 (($ $ $) 48 (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 47 (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) 49 (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 52 (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) 80 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) 77 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) 74)) (-3576 (((-549) $) 79 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 76 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 75)) (-4391 (($ $) 69)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 60 (|has| |#1| (-455)))) (-2573 (((-112) $) 35)) (-3294 (($ |#1| (-773)) 67)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 62 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63 (|has| |#1| (-560)))) (-3223 (((-773) $) 71)) (-2945 (($ $ $) 57 (|has| |#1| (-365)))) (-2946 (($ $ $) 58 (|has| |#1| (-365)))) (-2935 (($ $ $) 46 (|has| |#1| (-365)))) (-2943 (($ $ $) 55 (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 54 (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) 56 (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 59 (|has| |#1| (-365)))) (-3594 ((|#1| $) 70)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ #1#) $ |#1|) 64 (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) 92)) (-2455 (($ $ $) 86 (|has| |#1| (-365)))) (-4380 (((-773) $) 72)) (-3220 ((|#1| $) 61 (|has| |#1| (-455)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 78 (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 73)) (-4249 (((-643 |#1|) $) 66)) (-4109 ((|#1| $ (-773)) 68)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2948 ((|#1| $ |#1| |#1|) 65)) (-2920 (($ $) 90)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($) 91)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-660 |#1|) (-140) (-1052)) (T -660)) -((-3072 (*1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) (-2920 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) (-2453 (*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-660 *3)) (-4 *3 (-1052)) (-4 *3 (-365)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(-13 (-854 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -3072 ($)) (-15 -2920 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2453 ($ $ $)) (-15 -2454 ($ $ (-773))) (-15 -2451 ($ $)) (-15 -2455 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-287 |#1| |#1|) . T) ((-415 |#1|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-854 |#1|) . T)) -((-2452 (((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-4164 (((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 19))) -(((-661 |#1| |#2|) (-10 -7 (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)))) (-15 -2452 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -661)) -((-2452 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) (-5 *3 (-657 (-410 *5))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) (-5 *3 (-657 (-410 *5))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-657 (-410 *6)))) (-5 *1 (-661 *5 *6)) (-5 *3 (-657 (-410 *6)))))) -(-10 -7 (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)))) (-15 -2452 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))))) |%noBranch|)) -((-2453 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2454 ((|#2| |#2| (-773) (-1 |#1| |#1|)) 48)) (-2455 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-662 |#1| |#2|) (-10 -7 (-15 -2453 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2454 (|#2| |#2| (-773) (-1 |#1| |#1|))) (-15 -2455 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-660 |#1|)) (T -662)) -((-2455 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) (-4 *2 (-660 *4)))) (-2454 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-662 *5 *2)) (-4 *2 (-660 *5)))) (-2453 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) (-4 *2 (-660 *4))))) -(-10 -7 (-15 -2453 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2454 (|#2| |#2| (-773) (-1 |#1| |#1|))) (-15 -2455 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2456 (($ $ $) 9))) -(((-663 |#1|) (-10 -8 (-15 -2456 (|#1| |#1| |#1|))) (-664)) (T -663)) -NIL -(-10 -8 (-15 -2456 (|#1| |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-2458 (($ $) 10)) (-2456 (($ $ $) 8)) (-3455 (((-112) $ $) 6)) (-2457 (($ $ $) 9))) -(((-664) (-140)) (T -664)) -((-2458 (*1 *1 *1) (-4 *1 (-664))) (-2457 (*1 *1 *1 *1) (-4 *1 (-664))) (-2456 (*1 *1 *1 *1) (-4 *1 (-664)))) -(-13 (-102) (-10 -8 (-15 -2458 ($ $)) (-15 -2457 ($ $ $)) (-15 -2456 ($ $ $)))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#2| $ |#1| |#2|) NIL)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) NIL)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-2818 (((-644 |#1|) $) NIL)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2379 (((-644 |#1|) $) NIL)) (-2380 (((-112) |#1| $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-555 |#1| |#2| |#3|) (-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) (-1105) (-1105) (-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427)))) (T -555)) +NIL +(-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) +((-2230 (((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))) 50))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2230 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))))) (-561) (-13 (-27) (-425 |#1|))) (T -556)) +((-2230 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-614 *3)) (-5 *5 (-1 (-1175 *3) (-1175 *3))) (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-561)) (-5 *2 (-587 *3)) (-5 *1 (-556 *6 *3))))) +(-10 -7 (-15 -2230 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))))) +((-2232 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2233 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2231 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 222))) +(((-557 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2231 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2232 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2233 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-561) (-1042 (-550))) (-13 (-27) (-425 |#1|)) (-1246 |#2|) (-1246 (-411 |#3|)) (-345 |#2| |#3| |#4|)) (T -557)) +((-2233 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-27) (-425 *4))) (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *7 (-1246 (-411 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) (-4 *2 (-345 *5 *6 *7)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1246 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-561) (-1042 (-550)))) (-4 *8 (-1246 (-411 *7))) (-5 *2 (-587 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-345 *6 *7 *8)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1246 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-561) (-1042 (-550)))) (-4 *8 (-1246 (-411 *7))) (-5 *2 (-587 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-345 *6 *7 *8))))) +(-10 -7 (-15 -2231 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2232 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2233 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2236 (((-112) (-550) (-550)) 12)) (-2234 (((-550) (-550)) 7)) (-2235 (((-550) (-550) (-550)) 10))) +(((-558) (-10 -7 (-15 -2234 ((-550) (-550))) (-15 -2235 ((-550) (-550) (-550))) (-15 -2236 ((-112) (-550) (-550))))) (T -558)) +((-2236 (*1 *2 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-558)))) (-2235 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-558)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-558))))) +(-10 -7 (-15 -2234 ((-550) (-550))) (-15 -2235 ((-550) (-550) (-550))) (-15 -2236 ((-112) (-550) (-550)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3006 ((|#1| $) 67)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-3917 (($ $) 97)) (-4073 (($ $) 80)) (-2807 ((|#1| $) 68)) (-1408 (((-3 $ "failed") $ $) 20)) (-3440 (($ $) 79)) (-3915 (($ $) 96)) (-4072 (($ $) 81)) (-3919 (($ $) 95)) (-4071 (($ $) 82)) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) "failed") $) 75)) (-3578 (((-550) $) 76)) (-3892 (((-3 $ "failed") $) 37)) (-2239 (($ |#1| |#1|) 72)) (-3608 (((-112) $) 66)) (-4061 (($) 107)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 78)) (-3609 (((-112) $) 65)) (-2936 (($ $ $) 113)) (-3262 (($ $ $) 112)) (-4376 (($ $) 104)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2240 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-411 (-550))) 70)) (-2238 ((|#1| $) 69)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3891 (((-3 $ "failed") $ $) 48)) (-4377 (($ $) 105)) (-3920 (($ $) 94)) (-4070 (($ $) 83)) (-3918 (($ $) 93)) (-4069 (($ $) 84)) (-3916 (($ $) 92)) (-4068 (($ $) 85)) (-2237 (((-112) $ |#1|) 64)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-550)) 74)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 103)) (-3911 (($ $) 91)) (-2242 (((-112) $ $) 45)) (-3921 (($ $) 102)) (-3909 (($ $) 90)) (-3925 (($ $) 101)) (-3913 (($ $) 89)) (-3926 (($ $) 100)) (-3914 (($ $) 88)) (-3924 (($ $) 99)) (-3912 (($ $) 87)) (-3922 (($ $) 98)) (-3910 (($ $) 86)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 110)) (-2969 (((-112) $ $) 109)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 111)) (-3090 (((-112) $ $) 108)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ $) 106) (($ $ (-411 (-550))) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-559 |#1|) (-140) (-13 (-408) (-1206))) (T -559)) +((-2240 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) (-2239 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) (-2240 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))) (-5 *2 (-112)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))) (-5 *2 (-112)))) (-2237 (*1 *2 *1 *3) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))) (-5 *2 (-112))))) +(-13 (-456) (-853) (-1206) (-1006) (-1042 (-550)) (-10 -8 (-6 -4203) (-15 -2240 ($ |t#1| |t#1|)) (-15 -2239 ($ |t#1| |t#1|)) (-15 -2240 ($ |t#1|)) (-15 -2240 ($ (-411 (-550)))) (-15 -2238 (|t#1| $)) (-15 -2807 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3608 ((-112) $)) (-15 -3609 ((-112) $)) (-15 -2237 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-286) . T) ((-292) . T) ((-456) . T) ((-497) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-853) . T) ((-1006) . T) ((-1042 (-550)) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1206) . T) ((-1209) . T)) +((-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 9)) (-2243 (($ $) 11)) (-2241 (((-112) $) 20)) (-3892 (((-3 $ "failed") $) 16)) (-2242 (((-112) $ $) 22))) +(((-560 |#1|) (-10 -8 (-15 -2241 ((-112) |#1|)) (-15 -2242 ((-112) |#1| |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -2244 ((-2 (|:| -1949 |#1|) (|:| -4414 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|))) (-561)) (T -560)) +NIL +(-10 -8 (-15 -2241 ((-112) |#1|)) (-15 -2242 ((-112) |#1| |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -2244 ((-2 (|:| -1949 |#1|) (|:| -4414 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ $) 48)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-561) (-140)) (T -561)) +((-3891 (*1 *1 *1 *1) (|partial| -4 *1 (-561))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1949 *1) (|:| -4414 *1) (|:| |associate| *1))) (-4 *1 (-561)))) (-2243 (*1 *1 *1) (-4 *1 (-561))) (-2242 (*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112))))) +(-13 (-173) (-38 $) (-292) (-10 -8 (-15 -3891 ((-3 $ "failed") $ $)) (-15 -2244 ((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $)) (-15 -2243 ($ $)) (-15 -2242 ((-112) $ $)) (-15 -2241 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2246 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1181) (-644 |#2|)) 38)) (-2248 (((-587 |#2|) |#2| (-1181)) 63)) (-2247 (((-3 |#2| "failed") |#2| (-1181)) 156)) (-2249 (((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1181) (-614 |#2|) (-644 (-614 |#2|))) 159)) (-2245 (((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1181) |#2|) 41))) +(((-562 |#1| |#2|) (-10 -7 (-15 -2245 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1181) |#2|)) (-15 -2246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1181) (-644 |#2|))) (-15 -2247 ((-3 |#2| "failed") |#2| (-1181))) (-15 -2248 ((-587 |#2|) |#2| (-1181))) (-15 -2249 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1181) (-614 |#2|) (-644 (-614 |#2|))))) (-13 (-456) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -562)) +((-2249 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1181)) (-5 *6 (-644 (-614 *3))) (-5 *5 (-614 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *7))) (-4 *7 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-562 *7 *3)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-2247 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) (-2246 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3)))) (-2245 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) +(-10 -7 (-15 -2245 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1181) |#2|)) (-15 -2246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1181) (-644 |#2|))) (-15 -2247 ((-3 |#2| "failed") |#2| (-1181))) (-15 -2248 ((-587 |#2|) |#2| (-1181))) (-15 -2249 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1181) (-614 |#2|) (-644 (-614 |#2|))))) +((-4403 (((-409 |#1|) |#1|) 19)) (-4166 (((-409 |#1|) |#1|) 34)) (-2251 (((-3 |#1| "failed") |#1|) 51)) (-2250 (((-409 |#1|) |#1|) 64))) +(((-563 |#1|) (-10 -7 (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -2250 ((-409 |#1|) |#1|)) (-15 -2251 ((-3 |#1| "failed") |#1|))) (-549)) (T -563)) +((-2251 (*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-549)))) (-2250 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-563 *3)) (-4 *3 (-549)))) (-4403 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-563 *3)) (-4 *3 (-549)))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-563 *3)) (-4 *3 (-549))))) +(-10 -7 (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -2250 ((-409 |#1|) |#1|)) (-15 -2251 ((-3 |#1| "failed") |#1|))) +((-2252 (($) 9)) (-2255 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 34)) (-2818 (((-644 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 31)) (-4041 (($ (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28)) (-2254 (($ (-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26)) (-2256 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-2381 (((-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36)) (-2253 (((-1276)) 11))) +(((-564) (-10 -8 (-15 -2252 ($)) (-15 -2253 ((-1276))) (-15 -2818 ((-644 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2254 ($ (-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4041 ($ (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2255 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2381 ((-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2256 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -564)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-564)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-564)))) (-2255 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-564)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-564)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-564)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-564)))) (-2253 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-564)))) (-2252 (*1 *1) (-5 *1 (-564)))) +(-10 -8 (-15 -2252 ($)) (-15 -2253 ((-1276))) (-15 -2818 ((-644 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2254 ($ (-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1609 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4041 ($ (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2255 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2381 ((-644 (-2 (|:| -4294 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2256 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| #6#))) (|:| -1609 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) +((-3489 (((-1175 (-411 (-1175 |#2|))) |#2| (-614 |#2|) (-614 |#2|) (-1175 |#2|)) 35)) (-2259 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|) |#2| (-1175 |#2|)) 115)) (-2257 (((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|))) 85) (((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) |#2| (-1175 |#2|)) 55)) (-2258 (((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-614 |#2|) (-614 |#2|) |#2| (-614 |#2|) |#2| (-411 (-1175 |#2|))) 92) (((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-614 |#2|) (-614 |#2|) |#2| |#2| (-1175 |#2|)) 114)) (-2260 (((-3 |#2| #3="failed") |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1181)) (-614 |#2|) |#2| (-411 (-1175 |#2|))) 110) (((-3 |#2| #3#) |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1181)) |#2| (-1175 |#2|)) 116)) (-2261 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|))) 135 (|has| |#3| (-661 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) |#2| (-1175 |#2|)) 134 (|has| |#3| (-661 |#2|)))) (-3490 ((|#2| (-1175 (-411 (-1175 |#2|))) (-614 |#2|) |#2|) 53)) (-3483 (((-1175 (-411 (-1175 |#2|))) (-1175 |#2|) (-614 |#2|)) 34))) +(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -2257 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) |#2| (-1175 |#2|))) (-15 -2257 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -2258 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-614 |#2|) (-614 |#2|) |#2| |#2| (-1175 |#2|))) (-15 -2258 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-614 |#2|) (-614 |#2|) |#2| (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -2259 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|) |#2| (-1175 |#2|))) (-15 -2259 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -2260 ((-3 |#2| #3="failed") |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1181)) |#2| (-1175 |#2|))) (-15 -2260 ((-3 |#2| #3#) |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1181)) (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -3489 ((-1175 (-411 (-1175 |#2|))) |#2| (-614 |#2|) (-614 |#2|) (-1175 |#2|))) (-15 -3490 (|#2| (-1175 (-411 (-1175 |#2|))) (-614 |#2|) |#2|)) (-15 -3483 ((-1175 (-411 (-1175 |#2|))) (-1175 |#2|) (-614 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -2261 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) |#2| (-1175 |#2|))) (-15 -2261 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|))))) |%noBranch|)) (-13 (-456) (-1042 (-550)) (-147) (-642 (-550))) (-13 (-425 |#1|) (-27) (-1206)) (-1105)) (T -565)) +((-2261 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-614 *4)) (-5 *6 (-411 (-1175 *4))) (-4 *4 (-13 (-425 *7) (-27) (-1206))) (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2192 (-644 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1105)))) (-2261 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-614 *4)) (-5 *6 (-1175 *4)) (-4 *4 (-13 (-425 *7) (-27) (-1206))) (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2192 (-644 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1105)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *4 (-614 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1206))) (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-1175 (-411 (-1175 *6)))) (-5 *1 (-565 *5 *6 *7)) (-5 *3 (-1175 *6)) (-4 *7 (-1105)))) (-3490 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1175 (-411 (-1175 *2)))) (-5 *4 (-614 *2)) (-4 *2 (-13 (-425 *5) (-27) (-1206))) (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1105)))) (-3489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-614 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-1175 (-411 (-1175 *3)))) (-5 *1 (-565 *6 *3 *7)) (-5 *5 (-1175 *3)) (-4 *7 (-1105)))) (-2260 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-614 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1181))) (-5 *5 (-411 (-1175 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1105)))) (-2260 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-614 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1181))) (-5 *5 (-1175 *2)) (-4 *2 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1105)))) (-2259 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-644 *3)) (-5 *6 (-411 (-1175 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1206))) (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1105)))) (-2259 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1175 *3)) (-4 *3 (-13 (-425 *7) (-27) (-1206))) (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1105)))) (-2258 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-411 (-1175 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1105)))) (-2258 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-1175 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1105)))) (-2257 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-614 *3)) (-5 *5 (-411 (-1175 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-587 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1105)))) (-2257 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-614 *3)) (-5 *5 (-1175 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-587 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1105))))) +(-10 -7 (-15 -2257 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) |#2| (-1175 |#2|))) (-15 -2257 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -2258 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-614 |#2|) (-614 |#2|) |#2| |#2| (-1175 |#2|))) (-15 -2258 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-614 |#2|) (-614 |#2|) |#2| (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -2259 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|) |#2| (-1175 |#2|))) (-15 -2259 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -2260 ((-3 |#2| #3="failed") |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1181)) |#2| (-1175 |#2|))) (-15 -2260 ((-3 |#2| #3#) |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1181)) (-614 |#2|) |#2| (-411 (-1175 |#2|)))) (-15 -3489 ((-1175 (-411 (-1175 |#2|))) |#2| (-614 |#2|) (-614 |#2|) (-1175 |#2|))) (-15 -3490 (|#2| (-1175 (-411 (-1175 |#2|))) (-614 |#2|) |#2|)) (-15 -3483 ((-1175 (-411 (-1175 |#2|))) (-1175 |#2|) (-614 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -2261 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) |#2| (-1175 |#2|))) (-15 -2261 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) (-614 |#2|) |#2| (-411 (-1175 |#2|))))) |%noBranch|)) +((-2271 (((-550) (-550) (-774)) 90)) (-2270 (((-550) (-550)) 88)) (-2269 (((-550) (-550)) 86)) (-2268 (((-550) (-550)) 92)) (-3210 (((-550) (-550) (-550)) 70)) (-2267 (((-550) (-550) (-550)) 67)) (-2266 (((-411 (-550)) (-550)) 30)) (-2265 (((-550) (-550)) 36)) (-2264 (((-550) (-550)) 79)) (-3207 (((-550) (-550)) 51)) (-2263 (((-644 (-550)) (-550)) 85)) (-2262 (((-550) (-550) (-550) (-550) (-550)) 63)) (-3203 (((-411 (-550)) (-550)) 60))) +(((-566) (-10 -7 (-15 -3203 ((-411 (-550)) (-550))) (-15 -2262 ((-550) (-550) (-550) (-550) (-550))) (-15 -2263 ((-644 (-550)) (-550))) (-15 -3207 ((-550) (-550))) (-15 -2264 ((-550) (-550))) (-15 -2265 ((-550) (-550))) (-15 -2266 ((-411 (-550)) (-550))) (-15 -2267 ((-550) (-550) (-550))) (-15 -3210 ((-550) (-550) (-550))) (-15 -2268 ((-550) (-550))) (-15 -2269 ((-550) (-550))) (-15 -2270 ((-550) (-550))) (-15 -2271 ((-550) (-550) (-774))))) (T -566)) +((-2271 (*1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-774)) (-5 *1 (-566)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-3210 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-2267 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-2266 (*1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-566)) (-5 *3 (-550)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-2263 (*1 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-566)) (-5 *3 (-550)))) (-2262 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-566)) (-5 *3 (-550))))) +(-10 -7 (-15 -3203 ((-411 (-550)) (-550))) (-15 -2262 ((-550) (-550) (-550) (-550) (-550))) (-15 -2263 ((-644 (-550)) (-550))) (-15 -3207 ((-550) (-550))) (-15 -2264 ((-550) (-550))) (-15 -2265 ((-550) (-550))) (-15 -2266 ((-411 (-550)) (-550))) (-15 -2267 ((-550) (-550) (-550))) (-15 -3210 ((-550) (-550) (-550))) (-15 -2268 ((-550) (-550))) (-15 -2269 ((-550) (-550))) (-15 -2270 ((-550) (-550))) (-15 -2271 ((-550) (-550) (-774)))) +((-2272 (((-2 (|:| |answer| |#4|) (|:| -2319 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-567 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2272 ((-2 (|:| |answer| |#4|) (|:| -2319 |#4|)) |#4| (-1 |#2| |#2|)))) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|)) (T -567)) +((-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-4 *7 (-1246 (-411 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2319 *3))) (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-345 *5 *6 *7))))) +(-10 -7 (-15 -2272 ((-2 (|:| |answer| |#4|) (|:| -2319 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2272 (((-2 (|:| |answer| (-411 |#2|)) (|:| -2319 (-411 |#2|)) (|:| |specpart| (-411 |#2|)) (|:| |polypart| |#2|)) (-411 |#2|) (-1 |#2| |#2|)) 18))) +(((-568 |#1| |#2|) (-10 -7 (-15 -2272 ((-2 (|:| |answer| (-411 |#2|)) (|:| -2319 (-411 |#2|)) (|:| |specpart| (-411 |#2|)) (|:| |polypart| |#2|)) (-411 |#2|) (-1 |#2| |#2|)))) (-366) (-1246 |#1|)) (T -568)) +((-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| |answer| (-411 *6)) (|:| -2319 (-411 *6)) (|:| |specpart| (-411 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-411 *6))))) +(-10 -7 (-15 -2272 ((-2 (|:| |answer| (-411 |#2|)) (|:| -2319 (-411 |#2|)) (|:| |specpart| (-411 |#2|)) (|:| |polypart| |#2|)) (-411 |#2|) (-1 |#2| |#2|)))) +((-3073 (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))) (-772) (-1067)) 119) (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))) (-772)) 121)) (-4246 (((-3 (-1039) "failed") (-316 (-381)) (-1096 (-845 (-381))) (-1181)) 197) (((-3 (-1039) "failed") (-316 (-381)) (-1096 (-845 (-381))) (-1163)) 196) (((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381) (-381) (-1067)) 201) (((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381) (-381)) 202) (((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381)) 203) (((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381))))) 204) (((-1039) (-316 (-381)) (-1093 (-845 (-381)))) 192) (((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381)) 191) (((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381) (-381)) 187) (((-1039) (-772)) 179) (((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381) (-381) (-1067)) 186))) +(((-569) (-10 -7 (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381) (-381) (-1067))) (-15 -4246 ((-1039) (-772))) (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381) (-381) (-1067))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))) (-772))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))) (-772) (-1067))) (-15 -4246 ((-3 (-1039) "failed") (-316 (-381)) (-1096 (-845 (-381))) (-1163))) (-15 -4246 ((-3 (-1039) "failed") (-316 (-381)) (-1096 (-845 (-381))) (-1181))))) (T -569)) +((-4246 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-381))) (-5 *4 (-1096 (-845 (-381)))) (-5 *5 (-1181)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-381))) (-5 *4 (-1096 (-845 (-381)))) (-5 *5 (-1163)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1067)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) (-5 *1 (-569)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) (-5 *5 (-381)) (-5 *6 (-1067)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) (-5 *5 (-381)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) (-5 *5 (-381)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *5 (-381)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *5 (-381)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1039)) (-5 *1 (-569)))) (-4246 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *5 (-381)) (-5 *6 (-1067)) (-5 *2 (-1039)) (-5 *1 (-569))))) +(-10 -7 (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381) (-381) (-1067))) (-15 -4246 ((-1039) (-772))) (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-1093 (-845 (-381))))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381) (-381))) (-15 -4246 ((-1039) (-316 (-381)) (-644 (-1093 (-845 (-381)))) (-381) (-381) (-1067))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))) (-772))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039))) (-772) (-1067))) (-15 -4246 ((-3 (-1039) "failed") (-316 (-381)) (-1096 (-845 (-381))) (-1163))) (-15 -4246 ((-3 (-1039) "failed") (-316 (-381)) (-1096 (-845 (-381))) (-1181)))) +((-2275 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|)) 198)) (-2273 (((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|)) 99)) (-2274 (((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-614 |#2|) (-614 |#2|) |#2|) 194)) (-2276 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1181))) 203)) (-2277 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) (-1181)) 212 (|has| |#3| (-661 |#2|))))) +(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -2273 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|))) (-15 -2274 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-614 |#2|) (-614 |#2|) |#2|)) (-15 -2275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|))) (-15 -2276 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1181)))) (IF (|has| |#3| (-661 |#2|)) (-15 -2277 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) (-1181))) |%noBranch|)) (-13 (-456) (-1042 (-550)) (-147) (-642 (-550))) (-13 (-425 |#1|) (-27) (-1206)) (-1105)) (T -570)) +((-2277 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-614 *4)) (-5 *6 (-1181)) (-4 *4 (-13 (-425 *7) (-27) (-1206))) (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2192 (-644 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1105)))) (-2276 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-614 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1181))) (-4 *2 (-13 (-425 *5) (-27) (-1206))) (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1105)))) (-2275 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1206))) (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1105)))) (-2274 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-614 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1206))) (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1105)))) (-2273 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-614 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1206))) (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-587 *3)) (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1105))))) +(-10 -7 (-15 -2273 ((-587 |#2|) |#2| (-614 |#2|) (-614 |#2|))) (-15 -2274 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-614 |#2|) (-614 |#2|) |#2|)) (-15 -2275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-614 |#2|) (-614 |#2|) (-644 |#2|))) (-15 -2276 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-614 |#2|) (-614 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1181)))) (IF (|has| |#3| (-661 |#2|)) (-15 -2277 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2192 (-644 |#2|))) |#3| |#2| (-614 |#2|) (-614 |#2|) (-1181))) |%noBranch|)) +((-2278 (((-2 (|:| -2491 |#2|) (|:| |nconst| |#2|)) |#2| (-1181)) 64)) (-2280 (((-3 |#2| "failed") |#2| (-1181) (-845 |#2|) (-845 |#2|)) 175 (-12 (|has| |#2| (-1143)) (|has| |#1| (-617 (-894 (-550)))) (|has| |#1| (-890 (-550))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181)) 154 (-12 (|has| |#2| (-633)) (|has| |#1| (-617 (-894 (-550)))) (|has| |#1| (-890 (-550)))))) (-2279 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181)) 156 (-12 (|has| |#2| (-633)) (|has| |#1| (-617 (-894 (-550)))) (|has| |#1| (-890 (-550))))))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2278 ((-2 (|:| -2491 |#2|) (|:| |nconst| |#2|)) |#2| (-1181))) (IF (|has| |#1| (-617 (-894 (-550)))) (IF (|has| |#1| (-890 (-550))) (PROGN (IF (|has| |#2| (-633)) (PROGN (-15 -2279 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181))) (-15 -2280 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181)))) |%noBranch|) (IF (|has| |#2| (-1143)) (-15 -2280 ((-3 |#2| "failed") |#2| (-1181) (-845 |#2|) (-845 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1042 (-550)) (-456) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -571)) +((-2280 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1181)) (-5 *4 (-845 *2)) (-4 *2 (-1143)) (-4 *2 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-617 (-894 (-550)))) (-4 *5 (-890 (-550))) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) (-5 *1 (-571 *5 *2)))) (-2280 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-617 (-894 (-550)))) (-4 *5 (-890 (-550))) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-633)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-617 (-894 (-550)))) (-4 *5 (-890 (-550))) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-633)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) (-5 *2 (-2 (|:| -2491 *3) (|:| |nconst| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) +(-10 -7 (-15 -2278 ((-2 (|:| -2491 |#2|) (|:| |nconst| |#2|)) |#2| (-1181))) (IF (|has| |#1| (-617 (-894 (-550)))) (IF (|has| |#1| (-890 (-550))) (PROGN (IF (|has| |#2| (-633)) (PROGN (-15 -2279 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181))) (-15 -2280 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181)))) |%noBranch|) (IF (|has| |#2| (-1143)) (-15 -2280 ((-3 |#2| "failed") |#2| (-1181) (-845 |#2|) (-845 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2283 (((-3 (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|)))))) "failed") (-411 |#2|) (-644 (-411 |#2|))) 41)) (-4246 (((-587 (-411 |#2|)) (-411 |#2|)) 28)) (-2281 (((-3 (-411 |#2|) "failed") (-411 |#2|)) 17)) (-2282 (((-3 (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-411 |#2|)) 48))) +(((-572 |#1| |#2|) (-10 -7 (-15 -4246 ((-587 (-411 |#2|)) (-411 |#2|))) (-15 -2281 ((-3 (-411 |#2|) "failed") (-411 |#2|))) (-15 -2282 ((-3 (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-411 |#2|))) (-15 -2283 ((-3 (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|)))))) "failed") (-411 |#2|) (-644 (-411 |#2|))))) (-13 (-366) (-147) (-1042 (-550))) (-1246 |#1|)) (T -572)) +((-2283 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-644 (-411 *6))) (-5 *3 (-411 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *5 *6)))) (-2282 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| -2320 (-411 *5)) (|:| |coeff| (-411 *5)))) (-5 *1 (-572 *4 *5)) (-5 *3 (-411 *5)))) (-2281 (*1 *2 *2) (|partial| -12 (-5 *2 (-411 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-13 (-366) (-147) (-1042 (-550)))) (-5 *1 (-572 *3 *4)))) (-4246 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) (-5 *2 (-587 (-411 *5))) (-5 *1 (-572 *4 *5)) (-5 *3 (-411 *5))))) +(-10 -7 (-15 -4246 ((-587 (-411 |#2|)) (-411 |#2|))) (-15 -2281 ((-3 (-411 |#2|) "failed") (-411 |#2|))) (-15 -2282 ((-3 (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-411 |#2|))) (-15 -2283 ((-3 (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|)))))) "failed") (-411 |#2|) (-644 (-411 |#2|))))) +((-2284 (((-3 (-550) "failed") |#1|) 14)) (-3682 (((-112) |#1|) 13)) (-3678 (((-550) |#1|) 9))) +(((-573 |#1|) (-10 -7 (-15 -3678 ((-550) |#1|)) (-15 -3682 ((-112) |#1|)) (-15 -2284 ((-3 (-550) "failed") |#1|))) (-1042 (-550))) (T -573)) +((-2284 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-573 *3)) (-4 *3 (-1042 *2)))) (-3682 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-573 *3)) (-4 *3 (-1042 (-550))))) (-3678 (*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-573 *3)) (-4 *3 (-1042 *2))))) +(-10 -7 (-15 -3678 ((-550) |#1|)) (-15 -3682 ((-112) |#1|)) (-15 -2284 ((-3 (-550) "failed") |#1|))) +((-2287 (((-3 (-2 (|:| |mainpart| (-411 (-950 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 (-950 |#1|))) (|:| |logand| (-411 (-950 |#1|))))))) "failed") (-411 (-950 |#1|)) (-1181) (-644 (-411 (-950 |#1|)))) 48)) (-2285 (((-587 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-1181)) 28)) (-2286 (((-3 (-411 (-950 |#1|)) "failed") (-411 (-950 |#1|)) (-1181)) 23)) (-2288 (((-3 (-2 (|:| -2320 (-411 (-950 |#1|))) (|:| |coeff| (-411 (-950 |#1|)))) "failed") (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|))) 35))) +(((-574 |#1|) (-10 -7 (-15 -2285 ((-587 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-1181))) (-15 -2286 ((-3 (-411 (-950 |#1|)) "failed") (-411 (-950 |#1|)) (-1181))) (-15 -2287 ((-3 (-2 (|:| |mainpart| (-411 (-950 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 (-950 |#1|))) (|:| |logand| (-411 (-950 |#1|))))))) "failed") (-411 (-950 |#1|)) (-1181) (-644 (-411 (-950 |#1|))))) (-15 -2288 ((-3 (-2 (|:| -2320 (-411 (-950 |#1|))) (|:| |coeff| (-411 (-950 |#1|)))) "failed") (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|))))) (-13 (-561) (-1042 (-550)) (-147))) (T -574)) +((-2288 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)) (-147))) (-5 *2 (-2 (|:| -2320 (-411 (-950 *5))) (|:| |coeff| (-411 (-950 *5))))) (-5 *1 (-574 *5)) (-5 *3 (-411 (-950 *5))))) (-2287 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-644 (-411 (-950 *6)))) (-5 *3 (-411 (-950 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6)))) (-2286 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-411 (-950 *4))) (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-147))) (-5 *1 (-574 *4)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)) (-147))) (-5 *2 (-587 (-411 (-950 *5)))) (-5 *1 (-574 *5)) (-5 *3 (-411 (-950 *5)))))) +(-10 -7 (-15 -2285 ((-587 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-1181))) (-15 -2286 ((-3 (-411 (-950 |#1|)) "failed") (-411 (-950 |#1|)) (-1181))) (-15 -2287 ((-3 (-2 (|:| |mainpart| (-411 (-950 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 (-950 |#1|))) (|:| |logand| (-411 (-950 |#1|))))))) "failed") (-411 (-950 |#1|)) (-1181) (-644 (-411 (-950 |#1|))))) (-15 -2288 ((-3 (-2 (|:| -2320 (-411 (-950 |#1|))) (|:| |coeff| (-411 (-950 |#1|)))) "failed") (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|))))) +((-2970 (((-112) $ $) 75)) (-3610 (((-112) $) 48)) (-3006 ((|#1| $) 39)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) 79)) (-3917 (($ $) 139)) (-4073 (($ $) 118)) (-2807 ((|#1| $) 37)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $) NIL)) (-3915 (($ $) 141)) (-4072 (($ $) 114)) (-3919 (($ $) 143)) (-4071 (($ $) 122)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) "failed") $) 93)) (-3578 (((-550) $) 95)) (-3892 (((-3 $ "failed") $) 78)) (-2239 (($ |#1| |#1|) 35)) (-3608 (((-112) $) 44)) (-4061 (($) 104)) (-2575 (((-112) $) 55)) (-3414 (($ $ (-550)) NIL)) (-3609 (((-112) $) 45)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4376 (($ $) 106)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2240 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-411 (-550))) 92)) (-2238 ((|#1| $) 36)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) 81) (($ (-644 $)) NIL)) (-3891 (((-3 $ "failed") $ $) 80)) (-4377 (($ $) 108)) (-3920 (($ $) 147)) (-4070 (($ $) 120)) (-3918 (($ $) 149)) (-4069 (($ $) 124)) (-3916 (($ $) 145)) (-4068 (($ $) 116)) (-2237 (((-112) $ |#1|) 42)) (-4380 (((-866) $) 100) (($ (-550)) 83) (($ $) NIL) (($ (-550)) 83)) (-3532 (((-774)) 102 T CONST)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) 161)) (-3911 (($ $) 130)) (-2242 (((-112) $ $) NIL)) (-3921 (($ $) 159)) (-3909 (($ $) 126)) (-3925 (($ $) 157)) (-3913 (($ $) 137)) (-3926 (($ $) 155)) (-3914 (($ $) 135)) (-3924 (($ $) 153)) (-3912 (($ $) 132)) (-3922 (($ $) 151)) (-3910 (($ $) 128)) (-3512 (($) 30 T CONST)) (-3069 (($) 10 T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 49)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 47)) (-4271 (($ $) 53) (($ $ $) 54)) (-4273 (($ $ $) 52)) (** (($ $ (-923)) 71) (($ $ (-774)) NIL) (($ $ $) 110) (($ $ (-411 (-550))) 163)) (* (($ (-923) $) 66) (($ (-774) $) NIL) (($ (-550) $) 65) (($ $ $) 61))) +(((-575 |#1|) (-559 |#1|) (-13 (-408) (-1206))) (T -575)) +NIL +(-559 |#1|) +((-3109 (((-3 (-644 (-1175 (-550))) "failed") (-644 (-1175 (-550))) (-1175 (-550))) 27))) +(((-576) (-10 -7 (-15 -3109 ((-3 (-644 (-1175 (-550))) "failed") (-644 (-1175 (-550))) (-1175 (-550)))))) (T -576)) +((-3109 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1175 (-550)))) (-5 *3 (-1175 (-550))) (-5 *1 (-576))))) +(-10 -7 (-15 -3109 ((-3 (-644 (-1175 (-550))) "failed") (-644 (-1175 (-550))) (-1175 (-550))))) +((-2289 (((-644 (-614 |#2|)) (-644 (-614 |#2|)) (-1181)) 19)) (-2292 (((-644 (-614 |#2|)) (-644 |#2|) (-1181)) 23)) (-3656 (((-644 (-614 |#2|)) (-644 (-614 |#2|)) (-644 (-614 |#2|))) 11)) (-2293 ((|#2| |#2| (-1181)) 59 (|has| |#1| (-561)))) (-2294 ((|#2| |#2| (-1181)) 87 (-12 (|has| |#2| (-286)) (|has| |#1| (-456))))) (-2291 (((-614 |#2|) (-614 |#2|) (-644 (-614 |#2|)) (-1181)) 25)) (-2290 (((-614 |#2|) (-644 (-614 |#2|))) 24)) (-2295 (((-587 |#2|) |#2| (-1181) (-1 (-587 |#2|) |#2| (-1181)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181))) 115 (-12 (|has| |#2| (-286)) (|has| |#2| (-633)) (|has| |#2| (-1042 (-1181))) (|has| |#1| (-617 (-894 (-550)))) (|has| |#1| (-456)) (|has| |#1| (-890 (-550))))))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2289 ((-644 (-614 |#2|)) (-644 (-614 |#2|)) (-1181))) (-15 -2290 ((-614 |#2|) (-644 (-614 |#2|)))) (-15 -2291 ((-614 |#2|) (-614 |#2|) (-644 (-614 |#2|)) (-1181))) (-15 -3656 ((-644 (-614 |#2|)) (-644 (-614 |#2|)) (-644 (-614 |#2|)))) (-15 -2292 ((-644 (-614 |#2|)) (-644 |#2|) (-1181))) (IF (|has| |#1| (-561)) (-15 -2293 (|#2| |#2| (-1181))) |%noBranch|) (IF (|has| |#1| (-456)) (IF (|has| |#2| (-286)) (PROGN (-15 -2294 (|#2| |#2| (-1181))) (IF (|has| |#1| (-617 (-894 (-550)))) (IF (|has| |#1| (-890 (-550))) (IF (|has| |#2| (-633)) (IF (|has| |#2| (-1042 (-1181))) (-15 -2295 ((-587 |#2|) |#2| (-1181) (-1 (-587 |#2|) |#2| (-1181)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1105) (-425 |#1|)) (T -577)) +((-2295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-587 *3) *3 (-1181))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1181))) (-4 *3 (-286)) (-4 *3 (-633)) (-4 *3 (-1042 *4)) (-4 *3 (-425 *7)) (-5 *4 (-1181)) (-4 *7 (-617 (-894 (-550)))) (-4 *7 (-456)) (-4 *7 (-890 (-550))) (-4 *7 (-1105)) (-5 *2 (-587 *3)) (-5 *1 (-577 *7 *3)))) (-2294 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-456)) (-4 *4 (-1105)) (-5 *1 (-577 *4 *2)) (-4 *2 (-286)) (-4 *2 (-425 *4)))) (-2293 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-4 *4 (-1105)) (-5 *1 (-577 *4 *2)) (-4 *2 (-425 *4)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-1181)) (-4 *6 (-425 *5)) (-4 *5 (-1105)) (-5 *2 (-644 (-614 *6))) (-5 *1 (-577 *5 *6)))) (-3656 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-614 *4))) (-4 *4 (-425 *3)) (-4 *3 (-1105)) (-5 *1 (-577 *3 *4)))) (-2291 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-614 *6))) (-5 *4 (-1181)) (-5 *2 (-614 *6)) (-4 *6 (-425 *5)) (-4 *5 (-1105)) (-5 *1 (-577 *5 *6)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-644 (-614 *5))) (-4 *4 (-1105)) (-5 *2 (-614 *5)) (-5 *1 (-577 *4 *5)) (-4 *5 (-425 *4)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-614 *5))) (-5 *3 (-1181)) (-4 *5 (-425 *4)) (-4 *4 (-1105)) (-5 *1 (-577 *4 *5))))) +(-10 -7 (-15 -2289 ((-644 (-614 |#2|)) (-644 (-614 |#2|)) (-1181))) (-15 -2290 ((-614 |#2|) (-644 (-614 |#2|)))) (-15 -2291 ((-614 |#2|) (-614 |#2|) (-644 (-614 |#2|)) (-1181))) (-15 -3656 ((-644 (-614 |#2|)) (-644 (-614 |#2|)) (-644 (-614 |#2|)))) (-15 -2292 ((-644 (-614 |#2|)) (-644 |#2|) (-1181))) (IF (|has| |#1| (-561)) (-15 -2293 (|#2| |#2| (-1181))) |%noBranch|) (IF (|has| |#1| (-456)) (IF (|has| |#2| (-286)) (PROGN (-15 -2294 (|#2| |#2| (-1181))) (IF (|has| |#1| (-617 (-894 (-550)))) (IF (|has| |#1| (-890 (-550))) (IF (|has| |#2| (-633)) (IF (|has| |#2| (-1042 (-1181))) (-15 -2295 ((-587 |#2|) |#2| (-1181) (-1 (-587 |#2|) |#2| (-1181)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1181)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2298 (((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-550) |#1| |#1|)) 201)) (-2301 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|))))))) (|:| |a0| |#1|)) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-644 (-411 |#2|))) 176)) (-2304 (((-3 (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|)))))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-644 (-411 |#2|))) 173)) (-2305 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 164)) (-2296 (((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 187)) (-2303 (((-3 (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-411 |#2|)) 204)) (-2299 (((-3 (-2 (|:| |answer| (-411 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-411 |#2|)) 207)) (-2307 (((-2 (|:| |ir| (-587 (-411 |#2|))) (|:| |specpart| (-411 |#2|)) (|:| |polypart| |#2|)) (-411 |#2|) (-1 |#2| |#2|)) 88)) (-2308 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2302 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|))))))) (|:| |a0| |#1|)) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-644 (-411 |#2|))) 180)) (-2306 (((-3 (-626 |#1| |#2|) "failed") (-626 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|)) 168)) (-2297 (((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|)) 191)) (-2300 (((-3 (-2 (|:| |answer| (-411 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-411 |#2|)) 212))) +(((-578 |#1| |#2|) (-10 -7 (-15 -2296 ((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2297 ((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -2298 ((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-550) |#1| |#1|))) (-15 -2299 ((-3 (-2 (|:| |answer| (-411 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-411 |#2|))) (-15 -2300 ((-3 (-2 (|:| |answer| (-411 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-411 |#2|))) (-15 -2301 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|))))))) (|:| |a0| |#1|)) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-644 (-411 |#2|)))) (-15 -2302 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|))))))) (|:| |a0| |#1|)) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-644 (-411 |#2|)))) (-15 -2303 ((-3 (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-411 |#2|))) (-15 -2304 ((-3 (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|)))))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-644 (-411 |#2|)))) (-15 -2305 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2306 ((-3 (-626 |#1| |#2|) "failed") (-626 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -2307 ((-2 (|:| |ir| (-587 (-411 |#2|))) (|:| |specpart| (-411 |#2|)) (|:| |polypart| |#2|)) (-411 |#2|) (-1 |#2| |#2|))) (-15 -2308 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-366) (-1246 |#1|)) (T -578)) +((-2308 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-578 *5 *3)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| |ir| (-587 (-411 *6))) (|:| |specpart| (-411 *6)) (|:| |polypart| *6))) (-5 *1 (-578 *5 *6)) (-5 *3 (-411 *6)))) (-2306 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3543 *4) (|:| |sol?| (-112))) (-550) *4)) (-4 *4 (-366)) (-4 *5 (-1246 *4)) (-5 *1 (-578 *4 *5)))) (-2305 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2320 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-366)) (-5 *1 (-578 *4 *2)) (-4 *2 (-1246 *4)))) (-2304 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-411 *7))) (-4 *7 (-1246 *6)) (-5 *3 (-411 *7)) (-4 *6 (-366)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *7)))) (-2303 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| -2320 (-411 *6)) (|:| |coeff| (-411 *6)))) (-5 *1 (-578 *5 *6)) (-5 *3 (-411 *6)))) (-2302 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3543 *7) (|:| |sol?| (-112))) (-550) *7)) (-5 *6 (-644 (-411 *8))) (-4 *7 (-366)) (-4 *8 (-1246 *7)) (-5 *3 (-411 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-578 *7 *8)))) (-2301 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2320 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-644 (-411 *8))) (-4 *7 (-366)) (-4 *8 (-1246 *7)) (-5 *3 (-411 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-578 *7 *8)))) (-2300 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3543 *6) (|:| |sol?| (-112))) (-550) *6)) (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-411 *7)) (|:| |a0| *6)) (-2 (|:| -2320 (-411 *7)) (|:| |coeff| (-411 *7))) "failed")) (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7)))) (-2299 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2320 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-411 *7)) (|:| |a0| *6)) (-2 (|:| -2320 (-411 *7)) (|:| |coeff| (-411 *7))) "failed")) (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7)))) (-2298 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-644 *6) "failed") (-550) *6 *6)) (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-411 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7)))) (-2297 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3543 *6) (|:| |sol?| (-112))) (-550) *6)) (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-411 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7)))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2320 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-411 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7))))) +(-10 -7 (-15 -2296 ((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2297 ((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -2298 ((-2 (|:| |answer| (-587 (-411 |#2|))) (|:| |a0| |#1|)) (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-550) |#1| |#1|))) (-15 -2299 ((-3 (-2 (|:| |answer| (-411 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-411 |#2|))) (-15 -2300 ((-3 (-2 (|:| |answer| (-411 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-411 |#2|))) (-15 -2301 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|))))))) (|:| |a0| |#1|)) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-644 (-411 |#2|)))) (-15 -2302 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|))))))) (|:| |a0| |#1|)) "failed") (-411 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|) (-644 (-411 |#2|)))) (-15 -2303 ((-3 (-2 (|:| -2320 (-411 |#2|)) (|:| |coeff| (-411 |#2|))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-411 |#2|))) (-15 -2304 ((-3 (-2 (|:| |mainpart| (-411 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-411 |#2|)) (|:| |logand| (-411 |#2|)))))) "failed") (-411 |#2|) (-1 |#2| |#2|) (-644 (-411 |#2|)))) (-15 -2305 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2306 ((-3 (-626 |#1| |#2|) "failed") (-626 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3543 |#1|) (|:| |sol?| (-112))) (-550) |#1|))) (-15 -2307 ((-2 (|:| |ir| (-587 (-411 |#2|))) (|:| |specpart| (-411 |#2|)) (|:| |polypart| |#2|)) (-411 |#2|) (-1 |#2| |#2|))) (-15 -2308 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2309 (((-3 |#2| "failed") |#2| (-1181) (-1181)) 10))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2309 ((-3 |#2| "failed") |#2| (-1181) (-1181)))) (-13 (-309) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-964) (-1143) (-29 |#1|))) (T -579)) +((-2309 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-1206) (-964) (-1143) (-29 *4)))))) +(-10 -7 (-15 -2309 ((-3 |#2| "failed") |#2| (-1181) (-1181)))) +((-2960 (((-694 (-1229)) $ (-1229)) 26)) (-2961 (((-694 (-554)) $ (-554)) 25)) (-2959 (((-774) $ (-129)) 27)) (-2962 (((-694 (-128)) $ (-128)) 24)) (-2180 (((-694 (-1229)) $) 12)) (-2176 (((-694 (-1227)) $) 8)) (-2178 (((-694 (-1226)) $) 10)) (-2181 (((-694 (-554)) $) 13)) (-2177 (((-694 (-552)) $) 9)) (-2179 (((-694 (-551)) $) 11)) (-2175 (((-774) $ (-129)) 7)) (-2182 (((-694 (-128)) $) 14)) (-1870 (($ $) 6))) +(((-580) (-140)) (T -580)) +NIL +(-13 (-531) (-864)) +(((-174) . T) ((-531) . T) ((-864) . T)) +((-2960 (((-694 (-1229)) $ (-1229)) NIL)) (-2961 (((-694 (-554)) $ (-554)) NIL)) (-2959 (((-774) $ (-129)) NIL)) (-2962 (((-694 (-128)) $ (-128)) NIL)) (-2180 (((-694 (-1229)) $) NIL)) (-2176 (((-694 (-1227)) $) NIL)) (-2178 (((-694 (-1226)) $) NIL)) (-2181 (((-694 (-554)) $) NIL)) (-2177 (((-694 (-552)) $) NIL)) (-2179 (((-694 (-551)) $) NIL)) (-2175 (((-774) $ (-129)) NIL)) (-2182 (((-694 (-128)) $) NIL)) (-2963 (((-112) $) NIL)) (-2310 (($ (-392)) 14) (($ (-1163)) 16)) (-4380 (((-866) $) NIL)) (-1870 (($ $) NIL))) +(((-581) (-13 (-580) (-616 (-866)) (-10 -8 (-15 -2310 ($ (-392))) (-15 -2310 ($ (-1163))) (-15 -2963 ((-112) $))))) (T -581)) +((-2310 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-581)))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-581)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581))))) +(-13 (-580) (-616 (-866)) (-10 -8 (-15 -2310 ($ (-392))) (-15 -2310 ($ (-1163))) (-15 -2963 ((-112) $)))) +((-2970 (((-112) $ $) NIL)) (-3885 (($) 7 T CONST)) (-3665 (((-1163) $) NIL)) (-2312 (($) 6 T CONST)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 14)) (-2311 (($) 8 T CONST)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 10))) +(((-582) (-13 (-1105) (-10 -8 (-15 -2312 ($) -4386) (-15 -3885 ($) -4386) (-15 -2311 ($) -4386)))) (T -582)) +((-2312 (*1 *1) (-5 *1 (-582))) (-3885 (*1 *1) (-5 *1 (-582))) (-2311 (*1 *1) (-5 *1 (-582)))) +(-13 (-1105) (-10 -8 (-15 -2312 ($) -4386) (-15 -3885 ($) -4386) (-15 -2311 ($) -4386))) +((-2970 (((-112) $ $) NIL)) (-2313 (((-694 $) (-495)) 21)) (-3665 (((-1163) $) NIL)) (-2315 (($ (-1163)) 14)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 34)) (-2314 (((-214 4 (-128)) $) 24)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 26))) +(((-583) (-13 (-1105) (-10 -8 (-15 -2315 ($ (-1163))) (-15 -2314 ((-214 4 (-128)) $)) (-15 -2313 ((-694 $) (-495)))))) (T -583)) +((-2315 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-583)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-214 4 (-128))) (-5 *1 (-583)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-495)) (-5 *2 (-694 (-583))) (-5 *1 (-583))))) +(-13 (-1105) (-10 -8 (-15 -2315 ($ (-1163))) (-15 -2314 ((-214 4 (-128)) $)) (-15 -2313 ((-694 $) (-495))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $ (-550)) 77)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3013 (($ (-1175 (-550)) (-550)) 83)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) 68)) (-3014 (($ $) 43)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4205 (((-774) $) 16)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-3016 (((-550)) 37)) (-3015 (((-550) $) 41)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4202 (($ $ (-550)) 24)) (-3891 (((-3 $ "failed") $ $) 73)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) 17)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 74)) (-3017 (((-1158 (-550)) $) 19)) (-3294 (($ $) 26)) (-4380 (((-866) $) 104) (($ (-550)) 63) (($ $) NIL)) (-3532 (((-774)) 15 T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-550) $ (-550)) 46)) (-3512 (($) 44 T CONST)) (-3069 (($) 21 T CONST)) (-3457 (((-112) $ $) 54)) (-4271 (($ $) 62) (($ $ $) 48)) (-4273 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 64) (($ $ $) 65))) +(((-584 |#1| |#2|) (-873 |#1|) (-550) (-112)) (T -584)) +NIL +(-873 |#1|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 30)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 (($ $ (-923)) NIL (|has| $ (-371))) (($ $) NIL)) (-1845 (((-1193 (-923) (-774)) (-550)) 59)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 $ "failed") $) 95)) (-3578 (($ $) 94)) (-1969 (($ (-1270 $)) 93)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) 44)) (-3397 (($) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) 61)) (-1850 (((-112) $) NIL)) (-1943 (($ $) NIL) (($ $ (-774)) NIL)) (-4157 (((-112) $) NIL)) (-4205 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-2575 (((-112) $) NIL)) (-2193 (($) 49 (|has| $ (-371)))) (-2191 (((-112) $) NIL (|has| $ (-371)))) (-3538 (($ $ (-923)) NIL (|has| $ (-371))) (($ $) NIL)) (-3870 (((-3 $ "failed") $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 $) $ (-923)) NIL (|has| $ (-371))) (((-1175 $) $) 104)) (-2190 (((-923) $) 67)) (-1774 (((-1175 $) $) NIL (|has| $ (-371)))) (-1773 (((-3 (-1175 $) "failed") $ $) NIL (|has| $ (-371))) (((-1175 $) $) NIL (|has| $ (-371)))) (-1775 (($ $ (-1175 $)) NIL (|has| $ (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL T CONST)) (-2565 (($ (-923)) 60)) (-4365 (((-112) $) 87)) (-3666 (((-1124) $) NIL)) (-2574 (($) 28 (|has| $ (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 54)) (-4166 (((-409 $) $) NIL)) (-4364 (((-923)) 86) (((-835 (-923))) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-3 (-774) "failed") $ $) NIL) (((-774) $) NIL)) (-4345 (((-134)) NIL)) (-4244 (($ $ (-774)) NIL) (($ $) NIL)) (-4382 (((-923) $) 85) (((-835 (-923)) $) NIL)) (-3607 (((-1175 $)) 102)) (-1844 (($) 66)) (-1776 (($) 50 (|has| $ (-371)))) (-3646 (((-692 $) (-1270 $)) NIL) (((-1270 $) $) 91)) (-4404 (((-550) $) 40)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) 42) (($ $) NIL) (($ (-411 (-550))) NIL)) (-3107 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3532 (((-774)) 51 T CONST)) (-3664 (((-112) $ $) 107)) (-2192 (((-1270 $) (-923)) 97) (((-1270 $)) 96)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) 31 T CONST)) (-3069 (($) 27 T CONST)) (-4362 (($ $ (-774)) NIL (|has| $ (-371))) (($ $) NIL (|has| $ (-371)))) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 34)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 81) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-585 |#1|) (-13 (-353) (-331 $) (-617 (-550))) (-923)) (T -585)) +NIL +(-13 (-353) (-331 $) (-617 (-550))) +((-2316 (((-1276) (-1163)) 10))) +(((-586) (-10 -7 (-15 -2316 ((-1276) (-1163))))) (T -586)) +((-2316 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-586))))) +(-10 -7 (-15 -2316 ((-1276) (-1163)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| "failed") $) 76)) (-3578 ((|#1| $) NIL)) (-2320 ((|#1| $) 30)) (-2318 (((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2321 (($ |#1| (-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2319 (((-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $) 31)) (-3665 (((-1163) $) NIL)) (-3237 (($ |#1| |#1|) 38) (($ |#1| (-1181)) 49 (|has| |#1| (-1042 (-1181))))) (-3666 (((-1124) $) NIL)) (-2317 (((-112) $) 35)) (-4244 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1181)) 89 (|has| |#1| (-904 (-1181))))) (-4380 (((-866) $) 112) (($ |#1|) 29)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 18 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) 17) (($ $ $) NIL)) (-4273 (($ $ $) 85)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 16) (($ (-411 (-550)) $) 41) (($ $ (-411 (-550))) NIL))) +(((-587 |#1|) (-13 (-720 (-411 (-550))) (-1042 |#1|) (-10 -8 (-15 -2321 ($ |#1| (-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2320 (|#1| $)) (-15 -2319 ((-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $)) (-15 -2318 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2317 ((-112) $)) (-15 -3237 ($ |#1| |#1|)) (-15 -4244 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-904 (-1181))) (-15 -4244 (|#1| $ (-1181))) |%noBranch|) (IF (|has| |#1| (-1042 (-1181))) (-15 -3237 ($ |#1| (-1181))) |%noBranch|))) (-366)) (T -587)) +((-2321 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 *2)) (|:| |logand| (-1175 *2))))) (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-366)) (-5 *1 (-587 *2)))) (-2320 (*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-366)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 *3)) (|:| |logand| (-1175 *3))))) (-5 *1 (-587 *3)) (-4 *3 (-366)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-587 *3)) (-4 *3 (-366)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-366)))) (-3237 (*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-366)))) (-4244 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-366)))) (-4244 (*1 *2 *1 *3) (-12 (-4 *2 (-366)) (-4 *2 (-904 *3)) (-5 *1 (-587 *2)) (-5 *3 (-1181)))) (-3237 (*1 *1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *1 (-587 *2)) (-4 *2 (-1042 *3)) (-4 *2 (-366))))) +(-13 (-720 (-411 (-550))) (-1042 |#1|) (-10 -8 (-15 -2321 ($ |#1| (-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2320 (|#1| $)) (-15 -2319 ((-644 (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $)) (-15 -2318 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2317 ((-112) $)) (-15 -3237 ($ |#1| |#1|)) (-15 -4244 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-904 (-1181))) (-15 -4244 (|#1| $ (-1181))) |%noBranch|) (IF (|has| |#1| (-1042 (-1181))) (-15 -3237 ($ |#1| (-1181))) |%noBranch|))) +((-4392 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 30))) +(((-588 |#1| |#2|) (-10 -7 (-15 -4392 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -4392 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4392 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-366) (-366)) (T -588)) +((-4392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-366)) (-4 *6 (-366)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-588 *5 *6)))) (-4392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-366)) (-4 *2 (-366)) (-5 *1 (-588 *5 *2)))) (-4392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2320 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-366)) (-4 *6 (-366)) (-5 *2 (-2 (|:| -2320 *6) (|:| |coeff| *6))) (-5 *1 (-588 *5 *6)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-366)) (-4 *6 (-366)) (-5 *2 (-587 *6)) (-5 *1 (-588 *5 *6))))) +(-10 -7 (-15 -4392 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -4392 ((-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2320 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4392 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3844 (((-587 |#2|) (-587 |#2|)) 42)) (-4397 (((-644 |#2|) (-587 |#2|)) 44)) (-2329 ((|#2| (-587 |#2|)) 50))) +(((-589 |#1| |#2|) (-10 -7 (-15 -3844 ((-587 |#2|) (-587 |#2|))) (-15 -4397 ((-644 |#2|) (-587 |#2|))) (-15 -2329 (|#2| (-587 |#2|)))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-29 |#1|) (-1206))) (T -589)) +((-2329 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1206))) (-5 *1 (-589 *4 *2)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1206))) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-644 *5)) (-5 *1 (-589 *4 *5)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1206))) (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-589 *3 *4))))) +(-10 -7 (-15 -3844 ((-587 |#2|) (-587 |#2|))) (-15 -4397 ((-644 |#2|) (-587 |#2|))) (-15 -2329 (|#2| (-587 |#2|)))) +((-4380 (((-866) $) 9))) +(((-590) (-616 (-866))) (T -590)) +NIL +(-616 (-866)) +((-2325 (((-112) |#1|) 16)) (-2326 (((-3 |#1| "failed") |#1|) 14)) (-2323 (((-2 (|:| -3099 |#1|) (|:| -2566 (-774))) |#1|) 39) (((-3 |#1| "failed") |#1| (-774)) 18)) (-2322 (((-112) |#1| (-774)) 19)) (-2327 ((|#1| |#1|) 43)) (-2324 ((|#1| |#1| (-774)) 46))) +(((-591 |#1|) (-10 -7 (-15 -2322 ((-112) |#1| (-774))) (-15 -2323 ((-3 |#1| "failed") |#1| (-774))) (-15 -2323 ((-2 (|:| -3099 |#1|) (|:| -2566 (-774))) |#1|)) (-15 -2324 (|#1| |#1| (-774))) (-15 -2325 ((-112) |#1|)) (-15 -2326 ((-3 |#1| "failed") |#1|)) (-15 -2327 (|#1| |#1|))) (-549)) (T -591)) +((-2327 (*1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-549)))) (-2326 (*1 *2 *2) (|partial| -12 (-5 *1 (-591 *2)) (-4 *2 (-549)))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-549)))) (-2324 (*1 *2 *2 *3) (-12 (-5 *3 (-774)) (-5 *1 (-591 *2)) (-4 *2 (-549)))) (-2323 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3099 *3) (|:| -2566 (-774)))) (-5 *1 (-591 *3)) (-4 *3 (-549)))) (-2323 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-774)) (-5 *1 (-591 *2)) (-4 *2 (-549)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-549))))) +(-10 -7 (-15 -2322 ((-112) |#1| (-774))) (-15 -2323 ((-3 |#1| "failed") |#1| (-774))) (-15 -2323 ((-2 (|:| -3099 |#1|) (|:| -2566 (-774))) |#1|)) (-15 -2324 (|#1| |#1| (-774))) (-15 -2325 ((-112) |#1|)) (-15 -2326 ((-3 |#1| "failed") |#1|)) (-15 -2327 (|#1| |#1|))) +((-2328 (((-1175 |#1|) (-923)) 44))) +(((-592 |#1|) (-10 -7 (-15 -2328 ((-1175 |#1|) (-923)))) (-353)) (T -592)) +((-2328 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-592 *4)) (-4 *4 (-353))))) +(-10 -7 (-15 -2328 ((-1175 |#1|) (-923)))) +((-3844 (((-587 (-411 (-950 |#1|))) (-587 (-411 (-950 |#1|)))) 27)) (-4246 (((-3 (-316 |#1|) (-644 (-316 |#1|))) (-411 (-950 |#1|)) (-1181)) 34 (|has| |#1| (-147)))) (-4397 (((-644 (-316 |#1|)) (-587 (-411 (-950 |#1|)))) 19)) (-2330 (((-316 |#1|) (-411 (-950 |#1|)) (-1181)) 32 (|has| |#1| (-147)))) (-2329 (((-316 |#1|) (-587 (-411 (-950 |#1|)))) 21))) +(((-593 |#1|) (-10 -7 (-15 -3844 ((-587 (-411 (-950 |#1|))) (-587 (-411 (-950 |#1|))))) (-15 -4397 ((-644 (-316 |#1|)) (-587 (-411 (-950 |#1|))))) (-15 -2329 ((-316 |#1|) (-587 (-411 (-950 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4246 ((-3 (-316 |#1|) (-644 (-316 |#1|))) (-411 (-950 |#1|)) (-1181))) (-15 -2330 ((-316 |#1|) (-411 (-950 |#1|)) (-1181)))) |%noBranch|)) (-13 (-456) (-1042 (-550)) (-642 (-550)))) (T -593)) +((-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-147)) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-316 *5)) (-5 *1 (-593 *5)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-147)) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (-316 *5) (-644 (-316 *5)))) (-5 *1 (-593 *5)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-587 (-411 (-950 *4)))) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-316 *4)) (-5 *1 (-593 *4)))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-587 (-411 (-950 *4)))) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-644 (-316 *4))) (-5 *1 (-593 *4)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-587 (-411 (-950 *3)))) (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-593 *3))))) +(-10 -7 (-15 -3844 ((-587 (-411 (-950 |#1|))) (-587 (-411 (-950 |#1|))))) (-15 -4397 ((-644 (-316 |#1|)) (-587 (-411 (-950 |#1|))))) (-15 -2329 ((-316 |#1|) (-587 (-411 (-950 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4246 ((-3 (-316 |#1|) (-644 (-316 |#1|))) (-411 (-950 |#1|)) (-1181))) (-15 -2330 ((-316 |#1|) (-411 (-950 |#1|)) (-1181)))) |%noBranch|)) +((-2332 (((-644 (-692 (-550))) (-644 (-550)) (-644 (-906 (-550)))) 78) (((-644 (-692 (-550))) (-644 (-550))) 79) (((-692 (-550)) (-644 (-550)) (-906 (-550))) 72)) (-2331 (((-774) (-644 (-550))) 69))) +(((-594) (-10 -7 (-15 -2331 ((-774) (-644 (-550)))) (-15 -2332 ((-692 (-550)) (-644 (-550)) (-906 (-550)))) (-15 -2332 ((-644 (-692 (-550))) (-644 (-550)))) (-15 -2332 ((-644 (-692 (-550))) (-644 (-550)) (-644 (-906 (-550))))))) (T -594)) +((-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-550))) (-5 *4 (-644 (-906 (-550)))) (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-594)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-594)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-550))) (-5 *4 (-906 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-594)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-774)) (-5 *1 (-594))))) +(-10 -7 (-15 -2331 ((-774) (-644 (-550)))) (-15 -2332 ((-692 (-550)) (-644 (-550)) (-906 (-550)))) (-15 -2332 ((-644 (-692 (-550))) (-644 (-550)))) (-15 -2332 ((-644 (-692 (-550))) (-644 (-550)) (-644 (-906 (-550)))))) +((-3635 (((-644 |#5|) |#5| (-112)) 100)) (-2333 (((-112) |#5| (-644 |#5|)) 34))) +(((-595 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3635 ((-644 |#5|) |#5| (-112))) (-15 -2333 ((-112) |#5| (-644 |#5|)))) (-13 (-309) (-147)) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1113 |#1| |#2| |#3| |#4|)) (T -595)) +((-2333 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1113 *5 *6 *7 *8)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-595 *5 *6 *7 *8 *3)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-644 *3)) (-5 *1 (-595 *5 *6 *7 *8 *3)) (-4 *3 (-1113 *5 *6 *7 *8))))) +(-10 -7 (-15 -3635 ((-644 |#5|) |#5| (-112))) (-15 -2333 ((-112) |#5| (-644 |#5|)))) +((-2970 (((-112) $ $) NIL)) (-3953 (((-1139) $) 11)) (-3954 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 17) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-596) (-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $))))) (T -596)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-596)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-596))))) +(-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $)))) +((-2970 (((-112) $ $) NIL (|has| (-144) (-1105)))) (-3852 (($ $) 38)) (-3853 (($ $) NIL)) (-3843 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-3850 (((-112) $ $) 68)) (-3849 (((-112) $ $ (-550)) 62)) (-3844 (((-644 $) $ (-144)) 76) (((-644 $) $ (-141)) 77)) (-1902 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-853)))) (-1900 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| (-144) (-853))))) (-3312 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 (((-144) $ (-550) (-144)) 59 (|has| $ (-6 -4428))) (((-144) $ (-1237 (-550)) (-144)) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-3841 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-3846 (($ $ (-1237 (-550)) $) 57)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-3832 (($ (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4427))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4427)))) (-1686 (((-144) $ (-550) (-144)) NIL (|has| $ (-6 -4428)))) (-3519 (((-144) $ (-550)) NIL)) (-3851 (((-112) $ $) 90)) (-3845 (((-550) (-1 (-112) (-144)) $) NIL) (((-550) (-144) $) NIL (|has| (-144) (-1105))) (((-550) (-144) $ (-550)) 65 (|has| (-144) (-1105))) (((-550) $ $ (-550)) 63) (((-550) (-141) $ (-550)) 67)) (-2126 (((-644 (-144)) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) (-144)) 9)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 32 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| (-144) (-853)))) (-3943 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-853)))) (-3010 (((-644 (-144)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-2377 (((-550) $) 47 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-144) (-853)))) (-3847 (((-112) $ $ (-144)) 91)) (-3848 (((-774) $ $ (-144)) 88)) (-2130 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3854 (($ $) 41)) (-3855 (($ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3842 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3665 (((-1163) $) 43 (|has| (-144) (-1105)))) (-2451 (($ (-144) $ (-550)) NIL) (($ $ $ (-550)) 27)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) 87 (|has| (-144) (-1105)))) (-4234 (((-144) $) NIL (|has| (-550) (-853)))) (-1442 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2375 (($ $ (-144)) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-2381 (((-644 (-144)) $) NIL)) (-3829 (((-112) $) 15)) (-3998 (($) 10)) (-4233 (((-144) $ (-550) (-144)) NIL) (((-144) $ (-550)) 69) (($ $ (-1237 (-550))) 25) (($ $ $) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427))) (((-774) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-1901 (($ $ $ (-550)) 84 (|has| $ (-6 -4428)))) (-3826 (($ $) 20)) (-4404 (((-539) $) NIL (|has| (-144) (-617 (-539))))) (-3955 (($ (-644 (-144))) NIL)) (-4235 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-644 $)) 85)) (-4380 (($ (-144)) NIL) (((-866) $) 31 (|has| (-144) (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| (-144) (-1105)))) (-2129 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| (-144) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-144) (-853)))) (-3457 (((-112) $ $) 17 (|has| (-144) (-1105)))) (-3089 (((-112) $ $) NIL (|has| (-144) (-853)))) (-3090 (((-112) $ $) 18 (|has| (-144) (-853)))) (-4391 (((-774) $) 16 (|has| $ (-6 -4427))))) +(((-597 |#1|) (-1148) (-550)) (T -597)) +NIL +(-1148) +((-3957 (((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1093 |#4|)) 32))) +(((-598 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1093 |#4|))) (-15 -3957 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|))) (-796) (-853) (-561) (-954 |#3| |#1| |#2|)) (T -598)) +((-3957 (*1 *2 *3 *4) (-12 (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-598 *5 *4 *6 *3)) (-4 *3 (-954 *6 *5 *4)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1093 *3)) (-4 *3 (-954 *7 *6 *4)) (-4 *6 (-796)) (-4 *4 (-853)) (-4 *7 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-598 *6 *4 *7 *3))))) +(-10 -7 (-15 -3957 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2| (-1093 |#4|))) (-15 -3957 ((-2 (|:| |num| |#4|) (|:| |den| (-550))) |#4| |#2|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 72)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-550)) 58) (($ $ (-550) (-550)) 59)) (-4207 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 65)) (-2364 (($ $) 110)) (-1408 (((-3 $ "failed") $ $) NIL)) (-2362 (((-866) (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-1030 (-845 (-550))) (-1181) |#1| (-411 (-550))) 243)) (-4252 (($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 36)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3295 (((-112) $) NIL)) (-4205 (((-550) $) 63) (((-550) $ (-550)) 64)) (-2575 (((-112) $) NIL)) (-4210 (($ $ (-923)) 84)) (-4249 (($ (-1 |#1| (-550)) $) 81)) (-4371 (((-112) $) 26)) (-3296 (($ |#1| (-550)) 22) (($ $ (-1086) (-550)) NIL) (($ $ (-644 (-1086)) (-644 (-550))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) 76)) (-2368 (($ (-1030 (-845 (-550))) (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 13)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-4246 (($ $) 163 (|has| |#1| (-38 (-411 (-550)))))) (-2365 (((-3 $ "failed") $ $ (-112)) 109)) (-2363 (($ $ $) 117)) (-3666 (((-1124) $) NIL)) (-2366 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 15)) (-2367 (((-1030 (-845 (-550))) $) 14)) (-4202 (($ $ (-550)) 47)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550)))))) (-4233 ((|#1| $ (-550)) 62) (($ $ $) NIL (|has| (-550) (-1116)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-4382 (((-550) $) NIL)) (-3294 (($ $) 48)) (-4380 (((-866) $) NIL) (($ (-550)) 29) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 28 (|has| |#1| (-173)))) (-4111 ((|#1| $ (-550)) 61)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) 39 T CONST)) (-4206 ((|#1| $) NIL)) (-2343 (($ $) 200 (|has| |#1| (-38 (-411 (-550)))))) (-2355 (($ $) 171 (|has| |#1| (-38 (-411 (-550)))))) (-2345 (($ $) 204 (|has| |#1| (-38 (-411 (-550)))))) (-2357 (($ $) 176 (|has| |#1| (-38 (-411 (-550)))))) (-2341 (($ $) 203 (|has| |#1| (-38 (-411 (-550)))))) (-2353 (($ $) 175 (|has| |#1| (-38 (-411 (-550)))))) (-2360 (($ $ (-411 (-550))) 179 (|has| |#1| (-38 (-411 (-550)))))) (-2361 (($ $ |#1|) 159 (|has| |#1| (-38 (-411 (-550)))))) (-2358 (($ $) 206 (|has| |#1| (-38 (-411 (-550)))))) (-2359 (($ $) 162 (|has| |#1| (-38 (-411 (-550)))))) (-2340 (($ $) 205 (|has| |#1| (-38 (-411 (-550)))))) (-2352 (($ $) 177 (|has| |#1| (-38 (-411 (-550)))))) (-2342 (($ $) 201 (|has| |#1| (-38 (-411 (-550)))))) (-2354 (($ $) 173 (|has| |#1| (-38 (-411 (-550)))))) (-2344 (($ $) 202 (|has| |#1| (-38 (-411 (-550)))))) (-2356 (($ $) 174 (|has| |#1| (-38 (-411 (-550)))))) (-2337 (($ $) 211 (|has| |#1| (-38 (-411 (-550)))))) (-2349 (($ $) 187 (|has| |#1| (-38 (-411 (-550)))))) (-2339 (($ $) 208 (|has| |#1| (-38 (-411 (-550)))))) (-2351 (($ $) 183 (|has| |#1| (-38 (-411 (-550)))))) (-2335 (($ $) 215 (|has| |#1| (-38 (-411 (-550)))))) (-2347 (($ $) 191 (|has| |#1| (-38 (-411 (-550)))))) (-2334 (($ $) 217 (|has| |#1| (-38 (-411 (-550)))))) (-2346 (($ $) 193 (|has| |#1| (-38 (-411 (-550)))))) (-2336 (($ $) 213 (|has| |#1| (-38 (-411 (-550)))))) (-2348 (($ $) 189 (|has| |#1| (-38 (-411 (-550)))))) (-2338 (($ $) 210 (|has| |#1| (-38 (-411 (-550)))))) (-2350 (($ $) 185 (|has| |#1| (-38 (-411 (-550)))))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4203 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3512 (($) 30 T CONST)) (-3069 (($) 40 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-3457 (((-112) $ $) 74)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) 92) (($ $ $) 73)) (-4273 (($ $ $) 89)) (** (($ $ (-923)) NIL) (($ $ (-774)) 112)) (* (($ (-923) $) 99) (($ (-774) $) 97) (($ (-550) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-599 |#1|) (-13 (-1249 |#1| (-550)) (-10 -8 (-15 -2368 ($ (-1030 (-845 (-550))) (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -2367 ((-1030 (-845 (-550))) $)) (-15 -2366 ((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $)) (-15 -4252 ($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -4371 ((-112) $)) (-15 -4249 ($ (-1 |#1| (-550)) $)) (-15 -2365 ((-3 $ "failed") $ $ (-112))) (-15 -2364 ($ $)) (-15 -2363 ($ $ $)) (-15 -2362 ((-866) (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-1030 (-845 (-550))) (-1181) |#1| (-411 (-550)))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $)) (-15 -2361 ($ $ |#1|)) (-15 -2360 ($ $ (-411 (-550)))) (-15 -2359 ($ $)) (-15 -2358 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $)) (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $))) |%noBranch|))) (-1053)) (T -599)) +((-4371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1053)))) (-2368 (*1 *1 *2 *3) (-12 (-5 *2 (-1030 (-845 (-550)))) (-5 *3 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *4)))) (-4 *4 (-1053)) (-5 *1 (-599 *4)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-1030 (-845 (-550)))) (-5 *1 (-599 *3)) (-4 *3 (-1053)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-5 *1 (-599 *3)) (-4 *3 (-1053)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1053)) (-5 *1 (-599 *3)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *3 (-1053)) (-5 *1 (-599 *3)))) (-2365 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1053)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1053)))) (-2363 (*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1053)))) (-2362 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *6)))) (-5 *4 (-1030 (-845 (-550)))) (-5 *5 (-1181)) (-5 *7 (-411 (-550))) (-4 *6 (-1053)) (-5 *2 (-866)) (-5 *1 (-599 *6)))) (-4246 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2361 (*1 *1 *1 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2360 (*1 *1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-599 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1053)))) (-2359 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2354 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2351 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2350 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2349 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2348 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2347 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2345 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2344 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2341 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2340 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2338 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2337 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2336 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) +(-13 (-1249 |#1| (-550)) (-10 -8 (-15 -2368 ($ (-1030 (-845 (-550))) (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -2367 ((-1030 (-845 (-550))) $)) (-15 -2366 ((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $)) (-15 -4252 ($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))))) (-15 -4371 ((-112) $)) (-15 -4249 ($ (-1 |#1| (-550)) $)) (-15 -2365 ((-3 $ "failed") $ $ (-112))) (-15 -2364 ($ $)) (-15 -2363 ($ $ $)) (-15 -2362 ((-866) (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) (-1030 (-845 (-550))) (-1181) |#1| (-411 (-550)))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $)) (-15 -2361 ($ $ |#1|)) (-15 -2360 ($ $ (-411 (-550)))) (-15 -2359 ($ $)) (-15 -2358 ($ $)) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $)) (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $))) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 65)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4252 (($ (-1158 |#1|)) 9)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) 48)) (-3295 (((-112) $) 58)) (-4205 (((-774) $) 63) (((-774) $ (-774)) 62)) (-2575 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ "failed") $ $) 50 (|has| |#1| (-561)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-1158 |#1|) $) 29)) (-3532 (((-774)) 57 T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) 10 T CONST)) (-3069 (($) 14 T CONST)) (-3457 (((-112) $ $) 28)) (-4271 (($ $) 36) (($ $ $) 16)) (-4273 (($ $ $) 31)) (** (($ $ (-923)) NIL) (($ $ (-774)) 55)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-550)) 42))) +(((-600 |#1|) (-13 (-1053) (-111 |#1| |#1|) (-10 -8 (-15 -4251 ((-1158 |#1|) $)) (-15 -4252 ($ (-1158 |#1|))) (-15 -3295 ((-112) $)) (-15 -4205 ((-774) $)) (-15 -4205 ((-774) $ (-774))) (-15 * ($ $ (-550))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) (-1053)) (T -600)) +((-4251 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-600 *3)))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) (-4205 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-600 *3)) (-4 *3 (-1053))))) +(-13 (-1053) (-111 |#1| |#1|) (-10 -8 (-15 -4251 ((-1158 |#1|) $)) (-15 -4252 ($ (-1158 |#1|))) (-15 -3295 ((-112) $)) (-15 -4205 ((-774) $)) (-15 -4205 ((-774) $ (-774))) (-15 * ($ $ (-550))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) +((-4392 (((-604 |#2|) (-1 |#2| |#1|) (-604 |#1|)) 15))) +(((-601 |#1| |#2|) (-10 -7 (-15 -4392 ((-604 |#2|) (-1 |#2| |#1|) (-604 |#1|)))) (-1220) (-1220)) (T -601)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-604 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-604 *6)) (-5 *1 (-601 *5 *6))))) +(-10 -7 (-15 -4392 ((-604 |#2|) (-1 |#2| |#1|) (-604 |#1|)))) +((-4392 (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-604 |#1|) (-1158 |#2|)) 20) (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-604 |#2|)) 19) (((-604 |#3|) (-1 |#3| |#1| |#2|) (-604 |#1|) (-604 |#2|)) 18))) +(((-602 |#1| |#2| |#3|) (-10 -7 (-15 -4392 ((-604 |#3|) (-1 |#3| |#1| |#2|) (-604 |#1|) (-604 |#2|))) (-15 -4392 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-604 |#2|))) (-15 -4392 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-604 |#1|) (-1158 |#2|)))) (-1220) (-1220) (-1220)) (T -602)) +((-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-604 *6)) (-5 *5 (-1158 *7)) (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-1158 *8)) (-5 *1 (-602 *6 *7 *8)))) (-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-604 *7)) (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-1158 *8)) (-5 *1 (-602 *6 *7 *8)))) (-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-604 *6)) (-5 *5 (-604 *7)) (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-604 *8)) (-5 *1 (-602 *6 *7 *8))))) +(-10 -7 (-15 -4392 ((-604 |#3|) (-1 |#3| |#1| |#2|) (-604 |#1|) (-604 |#2|))) (-15 -4392 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-604 |#2|))) (-15 -4392 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-604 |#1|) (-1158 |#2|)))) +((-2373 ((|#3| |#3| (-644 (-614 |#3|)) (-644 (-1181))) 57)) (-2372 (((-169 |#2|) |#3|) 121)) (-2369 ((|#3| (-169 |#2|)) 46)) (-2370 ((|#2| |#3|) 21)) (-2371 ((|#3| |#2|) 35))) +(((-603 |#1| |#2| |#3|) (-10 -7 (-15 -2369 (|#3| (-169 |#2|))) (-15 -2370 (|#2| |#3|)) (-15 -2371 (|#3| |#2|)) (-15 -2372 ((-169 |#2|) |#3|)) (-15 -2373 (|#3| |#3| (-644 (-614 |#3|)) (-644 (-1181))))) (-561) (-13 (-425 |#1|) (-1006) (-1206)) (-13 (-425 (-169 |#1|)) (-1006) (-1206))) (T -603)) +((-2373 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-614 *2))) (-5 *4 (-644 (-1181))) (-4 *2 (-13 (-425 (-169 *5)) (-1006) (-1206))) (-4 *5 (-561)) (-5 *1 (-603 *5 *6 *2)) (-4 *6 (-13 (-425 *5) (-1006) (-1206))))) (-2372 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-169 *5)) (-5 *1 (-603 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-1006) (-1206))) (-4 *3 (-13 (-425 (-169 *4)) (-1006) (-1206))))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-425 (-169 *4)) (-1006) (-1206))) (-5 *1 (-603 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-1006) (-1206))))) (-2370 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-425 *4) (-1006) (-1206))) (-5 *1 (-603 *4 *2 *3)) (-4 *3 (-13 (-425 (-169 *4)) (-1006) (-1206))))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-425 *4) (-1006) (-1206))) (-4 *4 (-561)) (-4 *2 (-13 (-425 (-169 *4)) (-1006) (-1206))) (-5 *1 (-603 *4 *5 *2))))) +(-10 -7 (-15 -2369 (|#3| (-169 |#2|))) (-15 -2370 (|#2| |#3|)) (-15 -2371 (|#3| |#2|)) (-15 -2372 ((-169 |#2|) |#3|)) (-15 -2373 (|#3| |#3| (-644 (-614 |#3|)) (-644 (-1181))))) +((-4144 (($ (-1 (-112) |#1|) $) 17)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3882 (($ (-1 |#1| |#1|) |#1|) 9)) (-3881 (($ (-1 (-112) |#1|) $) 13)) (-3880 (($ (-1 (-112) |#1|) $) 15)) (-3955 (((-1158 |#1|) $) 18)) (-4380 (((-866) $) NIL))) +(((-604 |#1|) (-13 (-616 (-866)) (-10 -8 (-15 -4392 ($ (-1 |#1| |#1|) $)) (-15 -3881 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 (-112) |#1|) $)) (-15 -4144 ($ (-1 (-112) |#1|) $)) (-15 -3882 ($ (-1 |#1| |#1|) |#1|)) (-15 -3955 ((-1158 |#1|) $)))) (-1220)) (T -604)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) (-4144 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) (-3882 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-604 *3)) (-4 *3 (-1220))))) +(-13 (-616 (-866)) (-10 -8 (-15 -4392 ($ (-1 |#1| |#1|) $)) (-15 -3881 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 (-112) |#1|) $)) (-15 -4144 ($ (-1 (-112) |#1|) $)) (-15 -3882 ($ (-1 |#1| |#1|) |#1|)) (-15 -3955 ((-1158 |#1|) $)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4272 (($ (-774)) NIL (|has| |#1| (-23)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4269 (((-692 |#1|) $ $) NIL (|has| |#1| (-1053)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4266 ((|#1| $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1053))))) (-4150 (((-112) $ (-774)) NIL)) (-4267 ((|#1| $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1053))))) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-4270 ((|#1| $ $) NIL (|has| |#1| (-1053)))) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-4268 (($ $ $) NIL (|has| |#1| (-1053)))) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) NIL)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4271 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4273 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-729))) (($ $ |#1|) NIL (|has| |#1| (-729)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-605 |#1| |#2|) (-1269 |#1|) (-1220) (-550)) (T -605)) +NIL +(-1269 |#1|) +((-2374 (((-1276) $ |#2| |#2|) 35)) (-2376 ((|#2| $) 23)) (-2377 ((|#2| $) 21)) (-2130 (($ (-1 |#3| |#3|) $) 32)) (-4392 (($ (-1 |#3| |#3|) $) 30)) (-4234 ((|#3| $) 26)) (-2375 (($ $ |#3|) 33)) (-2378 (((-112) |#3| $) 17)) (-2381 (((-644 |#3|) $) 15)) (-4233 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-606 |#1| |#2| |#3|) (-10 -8 (-15 -2374 ((-1276) |#1| |#2| |#2|)) (-15 -2375 (|#1| |#1| |#3|)) (-15 -4234 (|#3| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2377 (|#2| |#1|)) (-15 -2378 ((-112) |#3| |#1|)) (-15 -2381 ((-644 |#3|) |#1|)) (-15 -4233 (|#3| |#1| |#2|)) (-15 -4233 (|#3| |#1| |#2| |#3|)) (-15 -2130 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|))) (-607 |#2| |#3|) (-1105) (-1220)) (T -606)) +NIL +(-10 -8 (-15 -2374 ((-1276) |#1| |#2| |#2|)) (-15 -2375 (|#1| |#1| |#3|)) (-15 -4234 (|#3| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2377 (|#2| |#1|)) (-15 -2378 ((-112) |#3| |#1|)) (-15 -2381 ((-644 |#3|) |#1|)) (-15 -4233 (|#3| |#1| |#2|)) (-15 -4233 (|#3| |#1| |#2| |#3|)) (-15 -2130 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#2| (-1105)))) (-2374 (((-1276) $ |#1| |#1|) 41 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4428)))) (-4158 (($) 7 T CONST)) (-1686 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) 52)) (-2126 (((-644 |#2|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-2376 ((|#1| $) 44 (|has| |#1| (-853)))) (-3010 (((-644 |#2|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-2377 ((|#1| $) 45 (|has| |#1| (-853)))) (-2130 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#2| (-1105)))) (-2379 (((-644 |#1|) $) 47)) (-2380 (((-112) |#1| $) 48)) (-3666 (((-1124) $) 21 (|has| |#2| (-1105)))) (-4234 ((|#2| $) 43 (|has| |#1| (-853)))) (-2375 (($ $ |#2|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-2127 (((-774) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4427))) (((-774) |#2| $) 29 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#2| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#2| (-1105)))) (-2129 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#2| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-607 |#1| |#2|) (-140) (-1105) (-1220)) (T -607)) +((-2381 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-644 *4)))) (-2380 (*1 *2 *3 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-112)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-644 *3)))) (-2378 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-607 *4 *3)) (-4 *4 (-1105)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-607 *2 *3)) (-4 *3 (-1220)) (-4 *2 (-1105)) (-4 *2 (-853)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-607 *2 *3)) (-4 *3 (-1220)) (-4 *2 (-1105)) (-4 *2 (-853)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1105)) (-4 *3 (-853)) (-4 *2 (-1220)))) (-2375 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-607 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) (-2374 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-1276))))) +(-13 (-493 |t#2|) (-290 |t#1| |t#2|) (-10 -8 (-15 -2381 ((-644 |t#2|) $)) (-15 -2380 ((-112) |t#1| $)) (-15 -2379 ((-644 |t#1|) $)) (IF (|has| |t#2| (-1105)) (IF (|has| $ (-6 -4427)) (-15 -2378 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-853)) (PROGN (-15 -2377 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -4234 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4428)) (PROGN (-15 -2375 ($ $ |t#2|)) (-15 -2374 ((-1276) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1105)) ((-616 (-866)) -3962 (|has| |#2| (-1105)) (|has| |#2| (-616 (-866)))) ((-288 |#1| |#2|) . T) ((-290 |#1| |#2|) . T) ((-311 |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-493 |#2|) . T) ((-518 |#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-1105) |has| |#2| (-1105)) ((-1220) . T)) +((-4380 (((-866) $) 19) (($ (-128)) 13) (((-128) $) 14))) +(((-608) (-13 (-616 (-866)) (-494 (-128)))) (T -608)) +NIL +(-13 (-616 (-866)) (-494 (-128))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ (-1186)) NIL) (((-1186) $) NIL) (((-1221) $) 14) (($ (-644 (-1221))) 13)) (-2382 (((-644 (-1221)) $) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-609) (-13 (-1087) (-616 (-1221)) (-10 -8 (-15 -4380 ($ (-644 (-1221)))) (-15 -2382 ((-644 (-1221)) $))))) (T -609)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-609)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-609))))) +(-13 (-1087) (-616 (-1221)) (-10 -8 (-15 -4380 ($ (-644 (-1221)))) (-15 -2382 ((-644 (-1221)) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1949 (((-3 $ #1="failed")) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3645 (((-1270 (-692 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1270 (-692 |#1|)) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1899 (((-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-4158 (($) NIL T CONST)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1873 (((-3 $ #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1965 (((-692 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1897 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1963 (((-692 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) $ (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-2569 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2080 (((-1175 (-950 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-366))))) (-2572 (($ $ (-923)) NIL)) (-1895 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1875 (((-1175 |#1|) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1967 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1893 (((-1175 |#1|) $) NIL (|has| |#2| (-370 |#1|)))) (-1887 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1969 (($ (-1270 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1270 |#1|) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-3892 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3515 (((-923)) NIL (|has| |#2| (-370 |#1|)))) (-1884 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-2596 (($ $ (-923)) NIL)) (-1880 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1878 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1882 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1874 (((-3 $ #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1966 (((-692 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1898 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1964 (((-692 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) $ (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-2570 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2084 (((-1175 (-950 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-366))))) (-2571 (($ $ (-923)) NIL)) (-1896 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1876 (((-1175 |#1|) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1968 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1894 (((-1175 |#1|) $) NIL (|has| |#2| (-370 |#1|)))) (-1888 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-3665 (((-1163) $) NIL)) (-1879 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1881 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1883 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-3666 (((-1124) $) NIL)) (-1886 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-4233 ((|#1| $ (-550)) NIL (|has| |#2| (-422 |#1|)))) (-3646 (((-692 |#1|) (-1270 $)) NIL (|has| |#2| (-422 |#1|))) (((-1270 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) (-1270 $) (-1270 $)) NIL (|has| |#2| (-370 |#1|))) (((-1270 |#1|) $ (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-4404 (($ (-1270 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1270 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2072 (((-644 (-950 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-644 (-950 |#1|)) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-2758 (($ $ $) NIL)) (-1892 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-4380 (((-866) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL (|has| |#2| (-422 |#1|)))) (-1877 (((-644 (-1270 |#1|))) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2759 (($ $ $ $) NIL)) (-1890 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-2950 (($ (-692 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2757 (($ $ $) NIL)) (-1891 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1889 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1885 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-3512 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) 24)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-610 |#1| |#2|) (-13 (-747 |#1|) (-616 |#2|) (-10 -8 (-15 -4380 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-370 |#1|)) (-6 (-370 |#1|)) |%noBranch|))) (-173) (-747 |#1|)) (T -610)) +((-4380 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-610 *3 *2)) (-4 *2 (-747 *3))))) +(-13 (-747 |#1|) (-616 |#2|) (-10 -8 (-15 -4380 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-370 |#1|)) (-6 (-370 |#1|)) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-1867 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) 39)) (-4031 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL) (($) NIL)) (-2374 (((-1276) $ (-1163) (-1163)) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-1163) |#1|) 49)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#1| #1="failed") (-1163) $) 52)) (-4158 (($) NIL T CONST)) (-1871 (($ $ (-1163)) 25)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105))))) (-3831 (((-3 |#1| #1#) (-1163) $) 53) (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (($ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (|has| $ (-6 -4427)))) (-3832 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (($ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105))))) (-4276 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105))))) (-1868 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) 38)) (-1686 ((|#1| $ (-1163) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-1163)) NIL)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427))) (((-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-2422 (($ $) 54)) (-1872 (($ (-392)) 23) (($ (-392) (-1163)) 22)) (-3975 (((-392) $) 40)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-1163) $) NIL (|has| (-1163) (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427))) (((-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (((-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105))))) (-2377 (((-1163) $) NIL (|has| (-1163) (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-2818 (((-644 (-1163)) $) 45)) (-2384 (((-112) (-1163) $) NIL)) (-1869 (((-1163) $) 41)) (-1370 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL)) (-2379 (((-644 (-1163)) $) NIL)) (-2380 (((-112) (-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 ((|#1| $) NIL (|has| (-1163) (-853)))) (-1442 (((-3 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) "failed") (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-644 (-295 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 43)) (-4233 ((|#1| $ (-1163) |#1|) NIL) ((|#1| $ (-1163)) 48)) (-1569 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL) (($) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (((-774) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (((-774) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL)) (-4380 (((-866) $) 21)) (-1870 (($ $) 26)) (-3664 (((-112) $ $) NIL)) (-1372 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-611 |#1|) (-13 (-368 (-392) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) (-1197 (-1163) |#1|) (-10 -8 (-6 -4427) (-15 -2422 ($ $)))) (-1105)) (T -611)) +((-2422 (*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-1105))))) +(-13 (-368 (-392) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) (-1197 (-1163) |#1|) (-10 -8 (-6 -4427) (-15 -2422 ($ $)))) +((-3668 (((-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) $) 16)) (-2818 (((-644 |#2|) $) 20)) (-2384 (((-112) |#2| $) 12))) +(((-612 |#1| |#2| |#3|) (-10 -8 (-15 -2818 ((-644 |#2|) |#1|)) (-15 -2384 ((-112) |#2| |#1|)) (-15 -3668 ((-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|))) (-613 |#2| |#3|) (-1105) (-1105)) (T -612)) +NIL +(-10 -8 (-15 -2818 ((-644 |#2|) |#1|)) (-15 -2384 ((-112) |#2| |#1|)) (-15 -3668 ((-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|))) +((-2970 (((-112) $ $) 19 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 56 (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| "failed") |#1| $) 62)) (-4158 (($) 7 T CONST)) (-1441 (($ $) 59 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 47 (|has| $ (-6 -4427))) (((-3 |#2| "failed") |#1| $) 63)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 55 (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 57 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 54 (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 53 (|has| $ (-6 -4427)))) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-2818 (((-644 |#1|) $) 64)) (-2384 (((-112) |#1| $) 65)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 40)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 41)) (-3666 (((-1124) $) 21 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 52)) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 42)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) 27 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 26 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 25 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 24 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-1569 (($) 50) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 49)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 32 (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 51)) (-4380 (((-866) $) 18 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 43)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-613 |#1| |#2|) (-140) (-1105) (-1105)) (T -613)) +((-2384 (*1 *2 *3 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-112)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-644 *3)))) (-3831 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105)))) (-2383 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105))))) +(-13 (-230 (-2 (|:| -4294 |t#1|) (|:| -2256 |t#2|))) (-10 -8 (-15 -2384 ((-112) |t#1| $)) (-15 -2818 ((-644 |t#1|) $)) (-15 -3831 ((-3 |t#2| "failed") |t#1| $)) (-15 -2383 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((-102) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) ((-616 (-866)) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866)))) ((-151 #1#) . T) ((-617 (-539)) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))) ((-230 #1#) . T) ((-236 #1#) . T) ((-311 #1#) -12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) ((-493 #1#) . T) ((-518 #1# #1#) -12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) ((-1105) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-2385 (((-3 (-1181) "failed") $) 48)) (-1409 (((-1276) $ (-774)) 24)) (-3845 (((-774) $) 23)) (-3450 (((-113) $) 12)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2386 (($ (-113) (-644 |#1|) (-774)) 34) (($ (-1181)) 35)) (-3037 (((-112) $ (-113)) 18) (((-112) $ (-1181)) 16)) (-3005 (((-774) $) 20)) (-3666 (((-1124) $) NIL)) (-4404 (((-894 (-550)) $) 96 (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) 103 (|has| |#1| (-617 (-894 (-381))))) (((-539) $) 89 (|has| |#1| (-617 (-539))))) (-4380 (((-866) $) 73)) (-3664 (((-112) $ $) NIL)) (-2387 (((-644 |#1|) $) 22)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 52)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 54))) +(((-614 |#1|) (-13 (-132) (-853) (-888 |#1|) (-10 -8 (-15 -3450 ((-113) $)) (-15 -2387 ((-644 |#1|) $)) (-15 -3005 ((-774) $)) (-15 -2386 ($ (-113) (-644 |#1|) (-774))) (-15 -2386 ($ (-1181))) (-15 -2385 ((-3 (-1181) "failed") $)) (-15 -3037 ((-112) $ (-113))) (-15 -3037 ((-112) $ (-1181))) (IF (|has| |#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|))) (-1105)) (T -614)) +((-3450 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) (-2386 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-644 *5)) (-5 *4 (-774)) (-4 *5 (-1105)) (-5 *1 (-614 *5)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) (-2385 (*1 *2 *1) (|partial| -12 (-5 *2 (-1181)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-614 *4)) (-4 *4 (-1105)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-112)) (-5 *1 (-614 *4)) (-4 *4 (-1105))))) +(-13 (-132) (-853) (-888 |#1|) (-10 -8 (-15 -3450 ((-113) $)) (-15 -2387 ((-644 |#1|) $)) (-15 -3005 ((-774) $)) (-15 -2386 ($ (-113) (-644 |#1|) (-774))) (-15 -2386 ($ (-1181))) (-15 -2385 ((-3 (-1181) "failed") $)) (-15 -3037 ((-112) $ (-113))) (-15 -3037 ((-112) $ (-1181))) (IF (|has| |#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|))) +((-2388 (((-614 |#2|) |#1|) 17)) (-2389 (((-3 |#1| "failed") (-614 |#2|)) 21))) +(((-615 |#1| |#2|) (-10 -7 (-15 -2388 ((-614 |#2|) |#1|)) (-15 -2389 ((-3 |#1| "failed") (-614 |#2|)))) (-1105) (-1105)) (T -615)) +((-2389 (*1 *2 *3) (|partial| -12 (-5 *3 (-614 *4)) (-4 *4 (-1105)) (-4 *2 (-1105)) (-5 *1 (-615 *2 *4)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-614 *4)) (-5 *1 (-615 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) +(-10 -7 (-15 -2388 ((-614 |#2|) |#1|)) (-15 -2389 ((-3 |#1| "failed") (-614 |#2|)))) +((-4380 ((|#1| $) 6))) +(((-616 |#1|) (-140) (-1220)) (T -616)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1220))))) +(-13 (-10 -8 (-15 -4380 (|t#1| $)))) +((-4404 ((|#1| $) 6))) +(((-617 |#1|) (-140) (-1220)) (T -617)) +((-4404 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1220))))) +(-13 (-10 -8 (-15 -4404 (|t#1| $)))) +((-2390 (((-3 (-1175 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|) (-1 (-409 |#2|) |#2|)) 15) (((-3 (-1175 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|)) 16))) +(((-618 |#1| |#2|) (-10 -7 (-15 -2390 ((-3 (-1175 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|))) (-15 -2390 ((-3 (-1175 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|) (-1 (-409 |#2|) |#2|)))) (-13 (-147) (-27) (-1042 (-550)) (-1042 (-411 (-550)))) (-1246 |#1|)) (T -618)) +((-2390 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-147) (-27) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-1175 (-411 *6))) (-5 *1 (-618 *5 *6)) (-5 *3 (-411 *6)))) (-2390 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *2 (-1175 (-411 *5))) (-5 *1 (-618 *4 *5)) (-5 *3 (-411 *5))))) +(-10 -7 (-15 -2390 ((-3 (-1175 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|))) (-15 -2390 ((-3 (-1175 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|) (-1 (-409 |#2|) |#2|)))) +((-4380 (($ |#1|) 6))) +(((-619 |#1|) (-140) (-1220)) (T -619)) +((-4380 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1220))))) +(-13 (-10 -8 (-15 -4380 ($ |t#1|)))) +((-2970 (((-112) $ $) NIL)) (-2391 (($) 14 T CONST)) (-3260 (($) 15 T CONST)) (-3257 (($ $ $) 29)) (-3748 (($ $) 27)) (-3665 (((-1163) $) NIL)) (-3256 (($ $ $) 30)) (-3666 (((-1124) $) NIL)) (-3259 (($) 11 T CONST)) (-3255 (($ $ $) 31)) (-4380 (((-866) $) 35)) (-3999 (((-112) $ (|[\|\|]| -3259)) 24) (((-112) $ (|[\|\|]| -2391)) 26) (((-112) $ (|[\|\|]| -3260)) 21)) (-3664 (((-112) $ $) NIL)) (-3258 (($ $ $) 28)) (-3457 (((-112) $ $) 18))) +(((-620) (-13 (-971) (-10 -8 (-15 -2391 ($) -4386) (-15 -3999 ((-112) $ (|[\|\|]| -3259))) (-15 -3999 ((-112) $ (|[\|\|]| -2391))) (-15 -3999 ((-112) $ (|[\|\|]| -3260)))))) (T -620)) +((-2391 (*1 *1) (-5 *1 (-620))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3259)) (-5 *2 (-112)) (-5 *1 (-620)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2391)) (-5 *2 (-112)) (-5 *1 (-620)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3260)) (-5 *2 (-112)) (-5 *1 (-620))))) +(-13 (-971) (-10 -8 (-15 -2391 ($) -4386) (-15 -3999 ((-112) $ (|[\|\|]| -3259))) (-15 -3999 ((-112) $ (|[\|\|]| -2391))) (-15 -3999 ((-112) $ (|[\|\|]| -3260))))) +((-4404 (($ |#1|) 6))) +(((-621 |#1|) (-140) (-1220)) (T -621)) +((-4404 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1220))))) +(-13 (-10 -8 (-15 -4404 ($ |t#1|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4057 (((-550) $) NIL (|has| |#1| (-851)))) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-3608 (((-112) $) NIL (|has| |#1| (-851)))) (-2575 (((-112) $) NIL)) (-3401 ((|#1| $) 13)) (-3609 (((-112) $) NIL (|has| |#1| (-851)))) (-2936 (($ $ $) NIL (|has| |#1| (-851)))) (-3262 (($ $ $) NIL (|has| |#1| (-851)))) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3400 ((|#3| $) 15)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL)) (-3532 (((-774)) 20 T CONST)) (-3664 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-851)))) (-3512 (($) NIL T CONST)) (-3069 (($) 12 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-851)))) (-4383 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|) (-15 -4383 ($ $ |#3|)) (-15 -4383 ($ |#1| |#3|)) (-15 -3401 (|#1| $)) (-15 -3400 (|#3| $)))) (-38 |#2|) (-173) (|SubsetCategory| (-729) |#2|)) (T -622)) +((-4383 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-729) *4)))) (-4383 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-729) *4)))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-729) *3)))) (-3400 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-729) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|) (-15 -4383 ($ $ |#3|)) (-15 -4383 ($ |#1| |#3|)) (-15 -3401 (|#1| $)) (-15 -3400 (|#3| $)))) +((-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) 10))) +(((-623 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-624 |#2|) (-1053)) (T -623)) +NIL +(-10 -8 (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 41)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-624 |#1|) (-140) (-1053)) (T -624)) +((-4380 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1053))))) +(-13 (-1053) (-651 |t#1|) (-10 -8 (-15 -4380 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2392 ((|#2| |#2| (-1181) (-1181)) 16))) +(((-625 |#1| |#2|) (-10 -7 (-15 -2392 (|#2| |#2| (-1181) (-1181)))) (-13 (-309) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-964) (-29 |#1|))) (T -625)) +((-2392 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-625 *4 *2)) (-4 *2 (-13 (-1206) (-964) (-29 *4)))))) +(-10 -7 (-15 -2392 (|#2| |#2| (-1181) (-1181)))) +((-2970 (((-112) $ $) 64)) (-3610 (((-112) $) 58)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-2393 ((|#1| $) 55)) (-1408 (((-3 $ "failed") $ $) NIL)) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-4185 (((-2 (|:| -1941 $) (|:| -1940 (-411 |#2|))) (-411 |#2|)) 111 (|has| |#1| (-366)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 99) (((-3 |#2| #1#) $) 95)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) 27)) (-3892 (((-3 $ "failed") $) 88)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4205 (((-550) $) 22)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) 40)) (-3296 (($ |#1| (-550)) 24)) (-3596 ((|#1| $) 57)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) 101 (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 116 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ $) 93)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-1754 (((-774) $) 115 (|has| |#1| (-366)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 114 (|has| |#1| (-366)))) (-4244 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-4382 (((-550) $) 38)) (-4404 (((-411 |#2|) $) 47)) (-4380 (((-866) $) 69) (($ (-550)) 35) (($ $) NIL) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) 34) (($ |#2|) 25)) (-4111 ((|#1| $ (-550)) 72)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 9 T CONST)) (-3069 (($) 14 T CONST)) (-3074 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3457 (((-112) $ $) 21)) (-4271 (($ $) 51) (($ $ $) NIL)) (-4273 (($ $ $) 90)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 29) (($ $ $) 49))) +(((-626 |#1| |#2|) (-13 (-232 |#2|) (-561) (-617 (-411 |#2|)) (-416 |#1|) (-1042 |#2|) (-10 -8 (-15 -4371 ((-112) $)) (-15 -4382 ((-550) $)) (-15 -4205 ((-550) $)) (-15 -4393 ($ $)) (-15 -3596 (|#1| $)) (-15 -2393 (|#1| $)) (-15 -4111 (|#1| $ (-550))) (-15 -3296 ($ |#1| (-550))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-6 (-309)) (-15 -4185 ((-2 (|:| -1941 $) (|:| -1940 (-411 |#2|))) (-411 |#2|)))) |%noBranch|))) (-561) (-1246 |#1|)) (T -626)) +((-4371 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-626 *3 *4)) (-4 *4 (-1246 *3)))) (-4382 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-550)) (-5 *1 (-626 *3 *4)) (-4 *4 (-1246 *3)))) (-4205 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-550)) (-5 *1 (-626 *3 *4)) (-4 *4 (-1246 *3)))) (-4393 (*1 *1 *1) (-12 (-4 *2 (-561)) (-5 *1 (-626 *2 *3)) (-4 *3 (-1246 *2)))) (-3596 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-626 *2 *3)) (-4 *3 (-1246 *2)))) (-2393 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-626 *2 *3)) (-4 *3 (-1246 *2)))) (-4111 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-561)) (-5 *1 (-626 *2 *4)) (-4 *4 (-1246 *2)))) (-3296 (*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-4 *2 (-561)) (-5 *1 (-626 *2 *4)) (-4 *4 (-1246 *2)))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-366)) (-4 *4 (-561)) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| -1941 (-626 *4 *5)) (|:| -1940 (-411 *5)))) (-5 *1 (-626 *4 *5)) (-5 *3 (-411 *5))))) +(-13 (-232 |#2|) (-561) (-617 (-411 |#2|)) (-416 |#1|) (-1042 |#2|) (-10 -8 (-15 -4371 ((-112) $)) (-15 -4382 ((-550) $)) (-15 -4205 ((-550) $)) (-15 -4393 ($ $)) (-15 -3596 (|#1| $)) (-15 -2393 (|#1| $)) (-15 -4111 (|#1| $ (-550))) (-15 -3296 ($ |#1| (-550))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-6 (-309)) (-15 -4185 ((-2 (|:| -1941 $) (|:| -1940 (-411 |#2|))) (-411 |#2|)))) |%noBranch|))) +((-4116 (((-644 |#6|) (-644 |#4|) (-112)) 54)) (-2394 ((|#6| |#6|) 48))) +(((-627 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2394 (|#6| |#6|)) (-15 -4116 ((-644 |#6|) (-644 |#4|) (-112)))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|) (-1113 |#1| |#2| |#3| |#4|)) (T -627)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 *10)) (-5 *1 (-627 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *10 (-1113 *5 *6 *7 *8)))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *1 (-627 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *2 (-1113 *3 *4 *5 *6))))) +(-10 -7 (-15 -2394 (|#6| |#6|)) (-15 -4116 ((-644 |#6|) (-644 |#4|) (-112)))) +((-2395 (((-112) |#3| (-774) (-644 |#3|)) 32)) (-2396 (((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1175 |#3|)))) "failed") |#3| (-644 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1956 (-644 (-2 (|:| |irr| |#4|) (|:| -2560 (-550)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)) 73))) +(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2395 ((-112) |#3| (-774) (-644 |#3|))) (-15 -2396 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1175 |#3|)))) "failed") |#3| (-644 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1956 (-644 (-2 (|:| |irr| |#4|) (|:| -2560 (-550)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) (-853) (-796) (-309) (-954 |#3| |#2| |#1|)) (T -628)) +((-2396 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1956 (-644 (-2 (|:| |irr| *10) (|:| -2560 (-550))))))) (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-853)) (-4 *3 (-309)) (-4 *10 (-954 *3 *9 *8)) (-4 *9 (-796)) (-5 *2 (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) (|:| |corrfact| (-644 (-1175 *3))))) (-5 *1 (-628 *8 *9 *3 *10)) (-5 *4 (-644 (-1175 *3))))) (-2395 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-774)) (-5 *5 (-644 *3)) (-4 *3 (-309)) (-4 *6 (-853)) (-4 *7 (-796)) (-5 *2 (-112)) (-5 *1 (-628 *6 *7 *3 *8)) (-4 *8 (-954 *3 *7 *6))))) +(-10 -7 (-15 -2395 ((-112) |#3| (-774) (-644 |#3|))) (-15 -2396 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1175 |#3|)))) "failed") |#3| (-644 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1956 (-644 (-2 (|:| |irr| |#4|) (|:| -2560 (-550)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) +((-2970 (((-112) $ $) NIL)) (-3953 (((-1139) $) 11)) (-3954 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 17) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-629) (-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $))))) (T -629)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-629)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-629))))) +(-13 (-1087) (-10 -8 (-15 -3954 ((-1139) $)) (-15 -3953 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-4368 (((-644 |#1|) $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-4370 (($ $) 77)) (-4376 (((-667 |#1| |#2|) $) 60)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 81)) (-2397 (((-644 (-295 |#2|)) $ $) 42)) (-3666 (((-1124) $) NIL)) (-4377 (($ (-667 |#1| |#2|)) 56)) (-3412 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-4380 (((-866) $) 66) (((-1286 |#1| |#2|) $) NIL) (((-1291 |#1| |#2|) $) 74)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 61 T CONST)) (-2398 (((-644 (-2 (|:| |k| (-675 |#1|)) (|:| |c| |#2|))) $) 41)) (-2399 (((-644 (-667 |#1| |#2|)) (-644 |#1|)) 73)) (-3068 (((-644 (-2 (|:| |k| (-897 |#1|)) (|:| |c| |#2|))) $) 46)) (-3457 (((-112) $ $) 62)) (-4383 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 52))) +(((-630 |#1| |#2| |#3|) (-13 (-477) (-10 -8 (-15 -4377 ($ (-667 |#1| |#2|))) (-15 -4376 ((-667 |#1| |#2|) $)) (-15 -3068 ((-644 (-2 (|:| |k| (-897 |#1|)) (|:| |c| |#2|))) $)) (-15 -4380 ((-1286 |#1| |#2|) $)) (-15 -4380 ((-1291 |#1| |#2|) $)) (-15 -4370 ($ $)) (-15 -4368 ((-644 |#1|) $)) (-15 -2399 ((-644 (-667 |#1| |#2|)) (-644 |#1|))) (-15 -2398 ((-644 (-2 (|:| |k| (-675 |#1|)) (|:| |c| |#2|))) $)) (-15 -2397 ((-644 (-295 |#2|)) $ $)))) (-853) (-13 (-173) (-720 (-411 (-550)))) (-923)) (T -630)) +((-4377 (*1 *1 *2) (-12 (-5 *2 (-667 *3 *4)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-5 *1 (-630 *3 *4 *5)) (-14 *5 (-923)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-667 *3 *4)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-897 *3)) (|:| |c| *4)))) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) (-4370 (*1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-853)) (-4 *3 (-13 (-173) (-720 (-411 (-550))))) (-14 *4 (-923)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-853)) (-5 *2 (-644 (-667 *4 *5))) (-5 *1 (-630 *4 *5 *6)) (-4 *5 (-13 (-173) (-720 (-411 (-550))))) (-14 *6 (-923)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-675 *3)) (|:| |c| *4)))) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) (-2397 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923))))) +(-13 (-477) (-10 -8 (-15 -4377 ($ (-667 |#1| |#2|))) (-15 -4376 ((-667 |#1| |#2|) $)) (-15 -3068 ((-644 (-2 (|:| |k| (-897 |#1|)) (|:| |c| |#2|))) $)) (-15 -4380 ((-1286 |#1| |#2|) $)) (-15 -4380 ((-1291 |#1| |#2|) $)) (-15 -4370 ($ $)) (-15 -4368 ((-644 |#1|) $)) (-15 -2399 ((-644 (-667 |#1| |#2|)) (-644 |#1|))) (-15 -2398 ((-644 (-2 (|:| |k| (-675 |#1|)) (|:| |c| |#2|))) $)) (-15 -2397 ((-644 (-295 |#2|)) $ $)))) +((-4116 (((-644 (-1150 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|)))) (-644 (-783 |#1| (-867 |#2|))) (-112)) 103) (((-644 (-1050 |#1| |#2|)) (-644 (-783 |#1| (-867 |#2|))) (-112)) 77)) (-2400 (((-112) (-644 (-783 |#1| (-867 |#2|)))) 26)) (-2404 (((-644 (-1150 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|)))) (-644 (-783 |#1| (-867 |#2|))) (-112)) 102)) (-2403 (((-644 (-1050 |#1| |#2|)) (-644 (-783 |#1| (-867 |#2|))) (-112)) 76)) (-2402 (((-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|)))) 30)) (-2401 (((-3 (-644 (-783 |#1| (-867 |#2|))) "failed") (-644 (-783 |#1| (-867 |#2|)))) 29))) +(((-631 |#1| |#2|) (-10 -7 (-15 -2400 ((-112) (-644 (-783 |#1| (-867 |#2|))))) (-15 -2401 ((-3 (-644 (-783 |#1| (-867 |#2|))) "failed") (-644 (-783 |#1| (-867 |#2|))))) (-15 -2402 ((-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|))))) (-15 -2403 ((-644 (-1050 |#1| |#2|)) (-644 (-783 |#1| (-867 |#2|))) (-112))) (-15 -2404 ((-644 (-1150 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|)))) (-644 (-783 |#1| (-867 |#2|))) (-112))) (-15 -4116 ((-644 (-1050 |#1| |#2|)) (-644 (-783 |#1| (-867 |#2|))) (-112))) (-15 -4116 ((-644 (-1150 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|)))) (-644 (-783 |#1| (-867 |#2|))) (-112)))) (-456) (-644 (-1181))) (T -631)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1150 *5 (-535 (-867 *6)) (-867 *6) (-783 *5 (-867 *6))))) (-5 *1 (-631 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-631 *5 *6)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1150 *5 (-535 (-867 *6)) (-867 *6) (-783 *5 (-867 *6))))) (-5 *1 (-631 *5 *6)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-631 *5 *6)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-644 (-783 *3 (-867 *4)))) (-4 *3 (-456)) (-14 *4 (-644 (-1181))) (-5 *1 (-631 *3 *4)))) (-2401 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-783 *3 (-867 *4)))) (-4 *3 (-456)) (-14 *4 (-644 (-1181))) (-5 *1 (-631 *3 *4)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-644 (-783 *4 (-867 *5)))) (-4 *4 (-456)) (-14 *5 (-644 (-1181))) (-5 *2 (-112)) (-5 *1 (-631 *4 *5))))) +(-10 -7 (-15 -2400 ((-112) (-644 (-783 |#1| (-867 |#2|))))) (-15 -2401 ((-3 (-644 (-783 |#1| (-867 |#2|))) "failed") (-644 (-783 |#1| (-867 |#2|))))) (-15 -2402 ((-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|))))) (-15 -2403 ((-644 (-1050 |#1| |#2|)) (-644 (-783 |#1| (-867 |#2|))) (-112))) (-15 -2404 ((-644 (-1150 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|)))) (-644 (-783 |#1| (-867 |#2|))) (-112))) (-15 -4116 ((-644 (-1050 |#1| |#2|)) (-644 (-783 |#1| (-867 |#2|))) (-112))) (-15 -4116 ((-644 (-1150 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|)))) (-644 (-783 |#1| (-867 |#2|))) (-112)))) +((-3450 (((-113) (-113)) 88)) (-2408 ((|#2| |#2|) 28)) (-3237 ((|#2| |#2| (-1096 |#2|)) 84) ((|#2| |#2| (-1181)) 50)) (-2406 ((|#2| |#2|) 27)) (-2407 ((|#2| |#2|) 29)) (-2405 (((-112) (-113)) 33)) (-2410 ((|#2| |#2|) 24)) (-2411 ((|#2| |#2|) 26)) (-2409 ((|#2| |#2|) 25))) +(((-632 |#1| |#2|) (-10 -7 (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -2411 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2406 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -3237 (|#2| |#2| (-1181))) (-15 -3237 (|#2| |#2| (-1096 |#2|)))) (-561) (-13 (-425 |#1|) (-1006) (-1206))) (T -632)) +((-3237 (*1 *2 *2 *3) (-12 (-5 *3 (-1096 *2)) (-4 *2 (-13 (-425 *4) (-1006) (-1206))) (-4 *4 (-561)) (-5 *1 (-632 *4 *2)))) (-3237 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-425 *4) (-1006) (-1206))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) (-2406 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) (-2411 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-632 *3 *4)) (-4 *4 (-13 (-425 *3) (-1006) (-1206))))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-632 *4 *5)) (-4 *5 (-13 (-425 *4) (-1006) (-1206)))))) +(-10 -7 (-15 -2405 ((-112) (-113))) (-15 -3450 ((-113) (-113))) (-15 -2411 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2406 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -3237 (|#2| |#2| (-1181))) (-15 -3237 (|#2| |#2| (-1096 |#2|)))) +((-3917 (($ $) 38)) (-4073 (($ $) 21)) (-3915 (($ $) 37)) (-4072 (($ $) 22)) (-3919 (($ $) 36)) (-4071 (($ $) 23)) (-4061 (($) 48)) (-4376 (($ $) 45)) (-2408 (($ $) 17)) (-3237 (($ $ (-1096 $)) 7) (($ $ (-1181)) 6)) (-4377 (($ $) 46)) (-2406 (($ $) 15)) (-2407 (($ $) 16)) (-3920 (($ $) 35)) (-4070 (($ $) 24)) (-3918 (($ $) 34)) (-4069 (($ $) 25)) (-3916 (($ $) 33)) (-4068 (($ $) 26)) (-3923 (($ $) 44)) (-3911 (($ $) 32)) (-3921 (($ $) 43)) (-3909 (($ $) 31)) (-3925 (($ $) 42)) (-3913 (($ $) 30)) (-3926 (($ $) 41)) (-3914 (($ $) 29)) (-3924 (($ $) 40)) (-3912 (($ $) 28)) (-3922 (($ $) 39)) (-3910 (($ $) 27)) (-2410 (($ $) 19)) (-2411 (($ $) 20)) (-2409 (($ $) 18)) (** (($ $ $) 47))) +(((-633) (-140)) (T -633)) +((-2411 (*1 *1 *1) (-4 *1 (-633))) (-2410 (*1 *1 *1) (-4 *1 (-633))) (-2409 (*1 *1 *1) (-4 *1 (-633))) (-2408 (*1 *1 *1) (-4 *1 (-633))) (-2407 (*1 *1 *1) (-4 *1 (-633))) (-2406 (*1 *1 *1) (-4 *1 (-633)))) +(-13 (-964) (-1206) (-10 -8 (-15 -2411 ($ $)) (-15 -2410 ($ $)) (-15 -2409 ($ $)) (-15 -2408 ($ $)) (-15 -2407 ($ $)) (-15 -2406 ($ $)))) +(((-35) . T) ((-95) . T) ((-286) . T) ((-497) . T) ((-964) . T) ((-1206) . T) ((-1209) . T)) +((-2421 (((-485 |#1| |#2|) (-248 |#1| |#2|)) 66)) (-2414 (((-644 (-248 |#1| |#2|)) (-644 (-485 |#1| |#2|))) 92)) (-2415 (((-485 |#1| |#2|) (-644 (-485 |#1| |#2|)) (-867 |#1|)) 94) (((-485 |#1| |#2|) (-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)) (-867 |#1|)) 93)) (-2412 (((-2 (|:| |gblist| (-644 (-248 |#1| |#2|))) (|:| |gvlist| (-644 (-550)))) (-644 (-485 |#1| |#2|))) 137)) (-2419 (((-644 (-485 |#1| |#2|)) (-867 |#1|) (-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|))) 107)) (-2413 (((-2 (|:| |glbase| (-644 (-248 |#1| |#2|))) (|:| |glval| (-644 (-550)))) (-644 (-248 |#1| |#2|))) 147)) (-2417 (((-1270 |#2|) (-485 |#1| |#2|) (-644 (-485 |#1| |#2|))) 71)) (-2416 (((-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|))) 48)) (-2420 (((-248 |#1| |#2|) (-248 |#1| |#2|) (-644 (-248 |#1| |#2|))) 63)) (-2418 (((-248 |#1| |#2|) (-644 |#2|) (-248 |#1| |#2|) (-644 (-248 |#1| |#2|))) 115))) +(((-634 |#1| |#2|) (-10 -7 (-15 -2412 ((-2 (|:| |gblist| (-644 (-248 |#1| |#2|))) (|:| |gvlist| (-644 (-550)))) (-644 (-485 |#1| |#2|)))) (-15 -2413 ((-2 (|:| |glbase| (-644 (-248 |#1| |#2|))) (|:| |glval| (-644 (-550)))) (-644 (-248 |#1| |#2|)))) (-15 -2414 ((-644 (-248 |#1| |#2|)) (-644 (-485 |#1| |#2|)))) (-15 -2415 ((-485 |#1| |#2|) (-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)) (-867 |#1|))) (-15 -2415 ((-485 |#1| |#2|) (-644 (-485 |#1| |#2|)) (-867 |#1|))) (-15 -2416 ((-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)))) (-15 -2417 ((-1270 |#2|) (-485 |#1| |#2|) (-644 (-485 |#1| |#2|)))) (-15 -2418 ((-248 |#1| |#2|) (-644 |#2|) (-248 |#1| |#2|) (-644 (-248 |#1| |#2|)))) (-15 -2419 ((-644 (-485 |#1| |#2|)) (-867 |#1|) (-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)))) (-15 -2420 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-644 (-248 |#1| |#2|)))) (-15 -2421 ((-485 |#1| |#2|) (-248 |#1| |#2|)))) (-644 (-1181)) (-456)) (T -634)) +((-2421 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *2 (-485 *4 *5)) (-5 *1 (-634 *4 *5)))) (-2420 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *1 (-634 *4 *5)))) (-2419 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-644 (-485 *4 *5))) (-5 *3 (-867 *4)) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *1 (-634 *4 *5)))) (-2418 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-248 *5 *6))) (-4 *6 (-456)) (-5 *2 (-248 *5 *6)) (-14 *5 (-644 (-1181))) (-5 *1 (-634 *5 *6)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-485 *5 *6))) (-5 *3 (-485 *5 *6)) (-14 *5 (-644 (-1181))) (-4 *6 (-456)) (-5 *2 (-1270 *6)) (-5 *1 (-634 *5 *6)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-644 (-485 *3 *4))) (-14 *3 (-644 (-1181))) (-4 *4 (-456)) (-5 *1 (-634 *3 *4)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-485 *5 *6))) (-5 *4 (-867 *5)) (-14 *5 (-644 (-1181))) (-5 *2 (-485 *5 *6)) (-5 *1 (-634 *5 *6)) (-4 *6 (-456)))) (-2415 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-485 *5 *6))) (-5 *4 (-867 *5)) (-14 *5 (-644 (-1181))) (-5 *2 (-485 *5 *6)) (-5 *1 (-634 *5 *6)) (-4 *6 (-456)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-644 (-485 *4 *5))) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *2 (-644 (-248 *4 *5))) (-5 *1 (-634 *4 *5)))) (-2413 (*1 *2 *3) (-12 (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *2 (-2 (|:| |glbase| (-644 (-248 *4 *5))) (|:| |glval| (-644 (-550))))) (-5 *1 (-634 *4 *5)) (-5 *3 (-644 (-248 *4 *5))))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-644 (-485 *4 *5))) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *2 (-2 (|:| |gblist| (-644 (-248 *4 *5))) (|:| |gvlist| (-644 (-550))))) (-5 *1 (-634 *4 *5))))) +(-10 -7 (-15 -2412 ((-2 (|:| |gblist| (-644 (-248 |#1| |#2|))) (|:| |gvlist| (-644 (-550)))) (-644 (-485 |#1| |#2|)))) (-15 -2413 ((-2 (|:| |glbase| (-644 (-248 |#1| |#2|))) (|:| |glval| (-644 (-550)))) (-644 (-248 |#1| |#2|)))) (-15 -2414 ((-644 (-248 |#1| |#2|)) (-644 (-485 |#1| |#2|)))) (-15 -2415 ((-485 |#1| |#2|) (-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)) (-867 |#1|))) (-15 -2415 ((-485 |#1| |#2|) (-644 (-485 |#1| |#2|)) (-867 |#1|))) (-15 -2416 ((-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)))) (-15 -2417 ((-1270 |#2|) (-485 |#1| |#2|) (-644 (-485 |#1| |#2|)))) (-15 -2418 ((-248 |#1| |#2|) (-644 |#2|) (-248 |#1| |#2|) (-644 (-248 |#1| |#2|)))) (-15 -2419 ((-644 (-485 |#1| |#2|)) (-867 |#1|) (-644 (-485 |#1| |#2|)) (-644 (-485 |#1| |#2|)))) (-15 -2420 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-644 (-248 |#1| |#2|)))) (-15 -2421 ((-485 |#1| |#2|) (-248 |#1| |#2|)))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) NIL)) (-2374 (((-1276) $ (-1163) (-1163)) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 (((-51) $ (-1163) (-51)) 16) (((-51) $ (-1181) (-51)) 17)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 (-51) #1="failed") (-1163) $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105))))) (-3831 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-3 (-51) #1#) (-1163) $) NIL)) (-3832 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $ (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (((-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $ (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-1686 (((-51) $ (-1163) (-51)) NIL (|has| $ (-6 -4428)))) (-3519 (((-51) $ (-1163)) NIL)) (-2126 (((-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-644 (-51)) $) NIL (|has| $ (-6 -4427)))) (-2422 (($ $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-1163) $) NIL (|has| (-1163) (-853)))) (-3010 (((-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-644 (-51)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105))))) (-2377 (((-1163) $) NIL (|has| (-1163) (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4428))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2423 (($ (-392)) 9)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105))))) (-2818 (((-644 (-1163)) $) NIL)) (-2384 (((-112) (-1163) $) NIL)) (-1370 (((-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL)) (-4041 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL)) (-2379 (((-644 (-1163)) $) NIL)) (-2380 (((-112) (-1163) $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105))))) (-4234 (((-51) $) NIL (|has| (-1163) (-853)))) (-1442 (((-3 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) "failed") (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL)) (-2375 (($ $ (-51)) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (($ $ (-295 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (($ $ (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (($ $ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (($ $ (-644 (-51)) (-644 (-51))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-295 (-51))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-644 (-295 (-51)))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105))))) (-2381 (((-644 (-51)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 (((-51) $ (-1163)) 14) (((-51) $ (-1163) (-51)) NIL) (((-51) $ (-1181)) 15)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105)))) (((-774) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105)))) (((-774) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-616 (-866))) (|has| (-51) (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 (-51))) (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-635) (-13 (-1197 (-1163) (-51)) (-10 -8 (-15 -2423 ($ (-392))) (-15 -2422 ($ $)) (-15 -4233 ((-51) $ (-1181))) (-15 -4221 ((-51) $ (-1181) (-51)))))) (T -635)) +((-2423 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-635)))) (-2422 (*1 *1 *1) (-5 *1 (-635))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-51)) (-5 *1 (-635)))) (-4221 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1181)) (-5 *1 (-635))))) +(-13 (-1197 (-1163) (-51)) (-10 -8 (-15 -2423 ($ (-392))) (-15 -2422 ($ $)) (-15 -4233 ((-51) $ (-1181))) (-15 -4221 ((-51) $ (-1181) (-51))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1949 (((-3 $ #1="failed")) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3645 (((-1270 (-692 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1270 (-692 |#1|)) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1899 (((-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-4158 (($) NIL T CONST)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1873 (((-3 $ #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1965 (((-692 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1897 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1963 (((-692 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) $ (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-2569 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2080 (((-1175 (-950 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-366))))) (-2572 (($ $ (-923)) NIL)) (-1895 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1875 (((-1175 |#1|) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1967 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1893 (((-1175 |#1|) $) NIL (|has| |#2| (-370 |#1|)))) (-1887 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1969 (($ (-1270 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1270 |#1|) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-3892 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3515 (((-923)) NIL (|has| |#2| (-370 |#1|)))) (-1884 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-2596 (($ $ (-923)) NIL)) (-1880 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1878 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1882 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1874 (((-3 $ #1#)) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1966 (((-692 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1898 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1964 (((-692 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) $ (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-2570 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2084 (((-1175 (-950 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-366))))) (-2571 (($ $ (-923)) NIL)) (-1896 ((|#1| $) NIL (|has| |#2| (-370 |#1|)))) (-1876 (((-1175 |#1|) $) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1968 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-1894 (((-1175 |#1|) $) NIL (|has| |#2| (-370 |#1|)))) (-1888 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-3665 (((-1163) $) NIL)) (-1879 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1881 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1883 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-3666 (((-1124) $) NIL)) (-1886 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-4233 ((|#1| $ (-550)) NIL (|has| |#2| (-422 |#1|)))) (-3646 (((-692 |#1|) (-1270 $)) NIL (|has| |#2| (-422 |#1|))) (((-1270 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-692 |#1|) (-1270 $) (-1270 $)) NIL (|has| |#2| (-370 |#1|))) (((-1270 |#1|) $ (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-4404 (($ (-1270 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1270 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2072 (((-644 (-950 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-644 (-950 |#1|)) (-1270 $)) NIL (|has| |#2| (-370 |#1|)))) (-2758 (($ $ $) NIL)) (-1892 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-4380 (((-866) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL (|has| |#2| (-422 |#1|)))) (-1877 (((-644 (-1270 |#1|))) NIL (-3962 (-12 (|has| |#2| (-370 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2759 (($ $ $ $) NIL)) (-1890 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-2950 (($ (-692 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2757 (($ $ $) NIL)) (-1891 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1889 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-1885 (((-112)) NIL (|has| |#2| (-370 |#1|)))) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) 20)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-636 |#1| |#2|) (-13 (-747 |#1|) (-616 |#2|) (-10 -8 (-15 -4380 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-370 |#1|)) (-6 (-370 |#1|)) |%noBranch|))) (-173) (-747 |#1|)) (T -636)) +((-4380 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-636 *3 *2)) (-4 *2 (-747 *3))))) +(-13 (-747 |#1|) (-616 |#2|) (-10 -8 (-15 -4380 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-370 |#1|)) (-6 (-370 |#1|)) |%noBranch|))) +((-4383 (($ $ |#2|) 10))) +(((-637 |#1| |#2|) (-10 -8 (-15 -4383 (|#1| |#1| |#2|))) (-638 |#2|) (-173)) (T -637)) +NIL +(-10 -8 (-15 -4383 (|#1| |#1| |#2|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3955 (($ $ $) 34)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 33 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-638 |#1|) (-140) (-173)) (T -638)) +((-3955 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-173)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-173)) (-4 *2 (-366))))) +(-13 (-720 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3955 ($ $ $)) (IF (|has| |t#1| (-366)) (-15 -4383 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-2425 (((-3 (-845 |#2|) #1="failed") |#2| (-295 |#2|) (-1163)) 106) (((-3 (-845 |#2|) (-2 (|:| |leftHandLimit| (-3 (-845 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-845 |#2|) #1#))) "failed") |#2| (-295 (-845 |#2|))) 131)) (-2424 (((-3 (-835 |#2|) "failed") |#2| (-295 (-835 |#2|))) 136))) +(((-639 |#1| |#2|) (-10 -7 (-15 -2425 ((-3 (-845 |#2|) (-2 (|:| |leftHandLimit| (-3 (-845 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-845 |#2|) #1#))) "failed") |#2| (-295 (-845 |#2|)))) (-15 -2424 ((-3 (-835 |#2|) "failed") |#2| (-295 (-835 |#2|)))) (-15 -2425 ((-3 (-845 |#2|) #1#) |#2| (-295 |#2|) (-1163)))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -639)) +((-2425 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1163)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-845 *3)) (-5 *1 (-639 *6 *3)))) (-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-835 *3))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-835 *3)) (-5 *1 (-639 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) (-2425 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-845 *3))) (-4 *3 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-3 (-845 *3) (-2 (|:| |leftHandLimit| (-3 (-845 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-845 *3) #1#))) "failed")) (-5 *1 (-639 *5 *3))))) +(-10 -7 (-15 -2425 ((-3 (-845 |#2|) (-2 (|:| |leftHandLimit| (-3 (-845 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-845 |#2|) #1#))) "failed") |#2| (-295 (-845 |#2|)))) (-15 -2424 ((-3 (-835 |#2|) "failed") |#2| (-295 (-835 |#2|)))) (-15 -2425 ((-3 (-845 |#2|) #1#) |#2| (-295 |#2|) (-1163)))) +((-2425 (((-3 (-845 (-411 (-950 |#1|))) #1="failed") (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))) (-1163)) 86) (((-3 (-845 (-411 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#))) #2="failed") (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|)))) 20) (((-3 (-845 (-411 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#))) #2#) (-411 (-950 |#1|)) (-295 (-845 (-950 |#1|)))) 35)) (-2424 (((-835 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|)))) 23) (((-835 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-295 (-835 (-950 |#1|)))) 43))) +(((-640 |#1|) (-10 -7 (-15 -2425 ((-3 (-845 (-411 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#))) #2="failed") (-411 (-950 |#1|)) (-295 (-845 (-950 |#1|))))) (-15 -2425 ((-3 (-845 (-411 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#))) #2#) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))))) (-15 -2424 ((-835 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-295 (-835 (-950 |#1|))))) (-15 -2424 ((-835 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))))) (-15 -2425 ((-3 (-845 (-411 (-950 |#1|))) #1#) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))) (-1163)))) (-456)) (T -640)) +((-2425 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-411 (-950 *6)))) (-5 *5 (-1163)) (-5 *3 (-411 (-950 *6))) (-4 *6 (-456)) (-5 *2 (-845 *3)) (-5 *1 (-640 *6)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-411 (-950 *5)))) (-5 *3 (-411 (-950 *5))) (-4 *5 (-456)) (-5 *2 (-835 *3)) (-5 *1 (-640 *5)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-835 (-950 *5)))) (-4 *5 (-456)) (-5 *2 (-835 (-411 (-950 *5)))) (-5 *1 (-640 *5)) (-5 *3 (-411 (-950 *5))))) (-2425 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-411 (-950 *5)))) (-5 *3 (-411 (-950 *5))) (-4 *5 (-456)) (-5 *2 (-3 (-845 *3) (-2 (|:| |leftHandLimit| (-3 (-845 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-845 *3) #1#))) #2="failed")) (-5 *1 (-640 *5)))) (-2425 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-845 (-950 *5)))) (-4 *5 (-456)) (-5 *2 (-3 (-845 (-411 (-950 *5))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 *5))) #1#)) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 *5))) #1#))) #2#)) (-5 *1 (-640 *5)) (-5 *3 (-411 (-950 *5)))))) +(-10 -7 (-15 -2425 ((-3 (-845 (-411 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#))) #2="failed") (-411 (-950 |#1|)) (-295 (-845 (-950 |#1|))))) (-15 -2425 ((-3 (-845 (-411 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-845 (-411 (-950 |#1|))) #1#))) #2#) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))))) (-15 -2424 ((-835 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-295 (-835 (-950 |#1|))))) (-15 -2424 ((-835 (-411 (-950 |#1|))) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))))) (-15 -2425 ((-3 (-845 (-411 (-950 |#1|))) #1#) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))) (-1163)))) +((-2428 (((-3 (-1270 (-411 |#1|)) "failed") (-1270 |#2|) |#2|) 64 (-3748 (|has| |#1| (-366)))) (((-3 (-1270 |#1|) "failed") (-1270 |#2|) |#2|) 49 (|has| |#1| (-366)))) (-2426 (((-112) (-1270 |#2|)) 33)) (-2427 (((-3 (-1270 |#1|) "failed") (-1270 |#2|)) 40))) +(((-641 |#1| |#2|) (-10 -7 (-15 -2426 ((-112) (-1270 |#2|))) (-15 -2427 ((-3 (-1270 |#1|) "failed") (-1270 |#2|))) (IF (|has| |#1| (-366)) (-15 -2428 ((-3 (-1270 |#1|) "failed") (-1270 |#2|) |#2|)) (-15 -2428 ((-3 (-1270 (-411 |#1|)) "failed") (-1270 |#2|) |#2|)))) (-561) (-642 |#1|)) (T -641)) +((-2428 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 *5)) (-3748 (-4 *5 (-366))) (-4 *5 (-561)) (-5 *2 (-1270 (-411 *5))) (-5 *1 (-641 *5 *4)))) (-2428 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 *5)) (-4 *5 (-366)) (-4 *5 (-561)) (-5 *2 (-1270 *5)) (-5 *1 (-641 *5 *4)))) (-2427 (*1 *2 *3) (|partial| -12 (-5 *3 (-1270 *5)) (-4 *5 (-642 *4)) (-4 *4 (-561)) (-5 *2 (-1270 *4)) (-5 *1 (-641 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1270 *5)) (-4 *5 (-642 *4)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-641 *4 *5))))) +(-10 -7 (-15 -2426 ((-112) (-1270 |#2|))) (-15 -2427 ((-3 (-1270 |#1|) "failed") (-1270 |#2|))) (IF (|has| |#1| (-366)) (-15 -2428 ((-3 (-1270 |#1|) "failed") (-1270 |#2|) |#2|)) (-15 -2428 ((-3 (-1270 (-411 |#1|)) "failed") (-1270 |#2|) |#2|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2429 (((-692 |#1|) (-692 $)) 40) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 39)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-642 |#1|) (-140) (-1053)) (T -642)) +((-2429 (*1 *2 *3) (-12 (-5 *3 (-692 *1)) (-4 *1 (-642 *4)) (-4 *4 (-1053)) (-5 *2 (-692 *4)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *1)) (-5 *4 (-1270 *1)) (-4 *1 (-642 *5)) (-4 *5 (-1053)) (-5 *2 (-2 (|:| -1750 (-692 *5)) (|:| |vec| (-1270 *5))))))) +(-13 (-1053) (-10 -8 (-15 -2429 ((-692 |t#1|) (-692 $))) (-15 -2429 ((-2 (|:| -1750 (-692 |t#1|)) (|:| |vec| (-1270 |t#1|))) (-692 $) (-1270 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 16 T CONST)) (-3457 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-643 |#1|) (-140) (-1061)) (T -643)) +NIL +(-13 (-649 |t#1|) (-1055 |t#1|)) +(((-102) . T) ((-616 (-866)) . T) ((-649 |#1|) . T) ((-1055 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) NIL)) (-4228 ((|#1| $) NIL)) (-4230 (($ $) NIL)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) $) NIL (|has| |#1| (-853))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1900 (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-3312 (($ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4220 (($ $ $) NIL (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-2432 (($ $ $) 37 (|has| |#1| (-1105)))) (-2431 (($ $ $) 41 (|has| |#1| (-1105)))) (-2430 (($ $ $) 44 (|has| |#1| (-1105)))) (-1680 (($ (-1 (-112) |#1|) $) NIL)) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4229 ((|#1| $) NIL)) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-4232 (($ $) 23) (($ $ (-774)) NIL)) (-2528 (($ $) NIL (|has| |#1| (-1105)))) (-1441 (($ $) 36 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) NIL (|has| |#1| (-1105))) (($ (-1 (-112) |#1|) $) NIL)) (-3832 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3868 (((-112) $) NIL)) (-3845 (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105))) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) (-1 (-112) |#1|) $) NIL)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-2434 (((-112) $) 11)) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2435 (($) 9 T CONST)) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3261 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3967 (($ |#1|) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4231 ((|#1| $) NIL) (($ $ (-774)) NIL)) (-4041 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2451 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) 20) (($ $ (-774)) NIL)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-3869 (((-112) $) NIL)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) 39)) (-3998 (($) 38)) (-4233 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1237 (-550))) NIL) ((|#1| $ (-550)) 42) ((|#1| $ (-550) |#1|) NIL)) (-3432 (((-550) $ $) NIL)) (-1681 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-2452 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-4067 (((-112) $) NIL)) (-4225 (($ $) NIL)) (-4223 (($ $) NIL (|has| $ (-6 -4428)))) (-4226 (((-774) $) NIL)) (-4227 (($ $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) 53 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) NIL)) (-3886 (($ |#1| $) 12)) (-4224 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4235 (($ $ $) 35) (($ |#1| $) 43) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2433 (($ $ $) 13)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2902 (((-1163) $) 31 (|has| |#1| (-824))) (((-1163) $ (-112)) 32 (|has| |#1| (-824))) (((-1276) (-826) $) 33 (|has| |#1| (-824))) (((-1276) (-826) $ (-112)) 34 (|has| |#1| (-824)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-644 |#1|) (-13 (-669 |#1|) (-10 -8 (-15 -2435 ($) -4386) (-15 -2434 ((-112) $)) (-15 -3886 ($ |#1| $)) (-15 -2433 ($ $ $)) (IF (|has| |#1| (-1105)) (PROGN (-15 -2432 ($ $ $)) (-15 -2431 ($ $ $)) (-15 -2430 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-1220)) (T -644)) +((-2435 (*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1220)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1220)))) (-3886 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1220)))) (-2433 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1220)))) (-2432 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-1220)))) (-2431 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-1220)))) (-2430 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-1220))))) +(-13 (-669 |#1|) (-10 -8 (-15 -2435 ($) -4386) (-15 -2434 ((-112) $)) (-15 -3886 ($ |#1| $)) (-15 -2433 ($ $ $)) (IF (|has| |#1| (-1105)) (PROGN (-15 -2432 ($ $ $)) (-15 -2431 ($ $ $)) (-15 -2430 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) +((-4275 (((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 16)) (-4276 ((|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 18)) (-4392 (((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)) 13))) +(((-645 |#1| |#2|) (-10 -7 (-15 -4275 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -4392 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) (-1220) (-1220)) (T -645)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-644 *6)) (-5 *1 (-645 *5 *6)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-645 *5 *2)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-5 *2 (-644 *5)) (-5 *1 (-645 *6 *5))))) +(-10 -7 (-15 -4275 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -4392 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) +((-3848 ((|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|) 17) ((|#2| (-644 |#1|) (-644 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|)) 12))) +(((-646 |#1| |#2|) (-10 -7 (-15 -3848 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -3848 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -3848 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -3848 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -3848 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -3848 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) (-1105) (-1220)) (T -646)) +((-3848 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1105)) (-4 *2 (-1220)) (-5 *1 (-646 *5 *2)))) (-3848 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1105)) (-4 *6 (-1220)) (-5 *1 (-646 *5 *6)))) (-3848 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1105)) (-4 *2 (-1220)) (-5 *1 (-646 *5 *2)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1105)) (-4 *5 (-1220)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1105)) (-4 *2 (-1220)) (-5 *1 (-646 *5 *2)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1105)) (-4 *6 (-1220)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6))))) +(-10 -7 (-15 -3848 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -3848 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -3848 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -3848 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -3848 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -3848 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) +((-4392 (((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)) 21))) +(((-647 |#1| |#2| |#3|) (-10 -7 (-15 -4392 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) (-1220) (-1220) (-1220)) (T -647)) +((-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-644 *8)) (-5 *1 (-647 *6 *7 *8))))) +(-10 -7 (-15 -4392 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 11) (($ (-1186)) NIL) (((-1186) $) NIL) ((|#1| $) 8)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-648 |#1|) (-13 (-1087) (-616 |#1|)) (-1105)) (T -648)) +NIL +(-13 (-1087) (-616 |#1|)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 16 T CONST)) (-3457 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-649 |#1|) (-140) (-1061)) (T -649)) +((-3512 (*1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1061)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-649 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1061))))) +(-13 (-1105) (-10 -8 (-15 (-3512) ($) -4386) (-15 -3610 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2436 (($ |#1| |#1| $) 46)) (-1310 (((-112) $ (-774)) NIL)) (-1680 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2528 (($ $) 48)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) 59 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 9 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 37)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1370 ((|#1| $) 50)) (-4041 (($ |#1| $) 29) (($ |#1| $ (-774)) 45)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1371 ((|#1| $) 53)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 23)) (-3998 (($) 28)) (-2437 (((-112) $) 57)) (-2527 (((-644 (-2 (|:| -2256 |#1|) (|:| -2127 (-774)))) $) 69)) (-1569 (($) 26) (($ (-644 |#1|)) 19)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) 66 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 20)) (-4404 (((-539) $) 34 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) NIL)) (-4380 (((-866) $) 14 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 24)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 71 (|has| |#1| (-1105)))) (-4391 (((-774) $) 17 (|has| $ (-6 -4427))))) +(((-650 |#1|) (-13 (-698 |#1|) (-10 -8 (-6 -4427) (-15 -2437 ((-112) $)) (-15 -2436 ($ |#1| |#1| $)))) (-1105)) (T -650)) +((-2437 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-1105)))) (-2436 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1105))))) +(-13 (-698 |#1|) (-10 -8 (-6 -4427) (-15 -2437 ((-112) $)) (-15 -2436 ($ |#1| |#1| $)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#1| $) 27))) +(((-651 |#1|) (-140) (-1061)) (T -651)) +NIL +(-13 (-21) (-649 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774) $) 17)) (-2442 (($ $ |#1|) 69)) (-2444 (($ $) 39)) (-2445 (($ $) 37)) (-3579 (((-3 |#1| "failed") $) 61)) (-3578 ((|#1| $) NIL)) (-2479 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3958 (((-866) $ (-1 (-866) (-866) (-866)) (-1 (-866) (-866) (-866)) (-550)) 56)) (-2446 ((|#1| $ (-550)) 35)) (-2447 ((|#2| $ (-550)) 34)) (-2438 (($ (-1 |#1| |#1|) $) 41)) (-2439 (($ (-1 |#2| |#2|) $) 47)) (-2443 (($) 11)) (-2449 (($ |#1| |#2|) 24)) (-2448 (($ (-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|)))) 25)) (-2450 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))) $) 14)) (-2441 (($ |#1| $) 71)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2440 (((-112) $ $) 76)) (-4380 (((-866) $) 21) (($ |#1|) 18)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 27))) +(((-652 |#1| |#2| |#3|) (-13 (-1105) (-1042 |#1|) (-10 -8 (-15 -3958 ((-866) $ (-1 (-866) (-866) (-866)) (-1 (-866) (-866) (-866)) (-550))) (-15 -2450 ((-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))) $)) (-15 -2449 ($ |#1| |#2|)) (-15 -2448 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))))) (-15 -2447 (|#2| $ (-550))) (-15 -2446 (|#1| $ (-550))) (-15 -2445 ($ $)) (-15 -2444 ($ $)) (-15 -3542 ((-774) $)) (-15 -2443 ($)) (-15 -2442 ($ $ |#1|)) (-15 -2441 ($ |#1| $)) (-15 -2479 ($ |#1| |#2| $)) (-15 -2479 ($ $ $)) (-15 -2440 ((-112) $ $)) (-15 -2439 ($ (-1 |#2| |#2|) $)) (-15 -2438 ($ (-1 |#1| |#1|) $)))) (-1105) (-23) |#2|) (T -652)) +((-3958 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-866) (-866) (-866))) (-5 *4 (-550)) (-5 *2 (-866)) (-5 *1 (-652 *5 *6 *7)) (-4 *5 (-1105)) (-4 *6 (-23)) (-14 *7 *6))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 *4)))) (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4))) (-2449 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2448 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 *4)))) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-652 *3 *4 *5)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-23)) (-5 *1 (-652 *4 *2 *5)) (-4 *4 (-1105)) (-14 *5 *2))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *2 (-1105)) (-5 *1 (-652 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2445 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4))) (-2443 (*1 *1) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2442 (*1 *1 *1 *2) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2441 (*1 *1 *2 *1) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2479 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2479 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) (-2440 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4))) (-2439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)))) (-2438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1105)) (-5 *1 (-652 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1105) (-1042 |#1|) (-10 -8 (-15 -3958 ((-866) $ (-1 (-866) (-866) (-866)) (-1 (-866) (-866) (-866)) (-550))) (-15 -2450 ((-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))) $)) (-15 -2449 ($ |#1| |#2|)) (-15 -2448 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -4377 |#2|))))) (-15 -2447 (|#2| $ (-550))) (-15 -2446 (|#1| $ (-550))) (-15 -2445 ($ $)) (-15 -2444 ($ $)) (-15 -3542 ((-774) $)) (-15 -2443 ($)) (-15 -2442 ($ $ |#1|)) (-15 -2441 ($ |#1| $)) (-15 -2479 ($ |#1| |#2| $)) (-15 -2479 ($ $ $)) (-15 -2440 ((-112) $ $)) (-15 -2439 ($ (-1 |#2| |#2|) $)) (-15 -2438 ($ (-1 |#1| |#1|) $)))) +((-2377 (((-550) $) 31)) (-2451 (($ |#2| $ (-550)) 27) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) 12)) (-2380 (((-112) (-550) $) 18)) (-4235 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-644 $)) NIL))) +(((-653 |#1| |#2|) (-10 -8 (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -2377 ((-550) |#1|)) (-15 -2379 ((-644 (-550)) |#1|)) (-15 -2380 ((-112) (-550) |#1|))) (-654 |#2|) (-1220)) (T -653)) +NIL +(-10 -8 (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -2377 ((-550) |#1|)) (-15 -2379 ((-644 (-550)) |#1|)) (-15 -2380 ((-112) (-550) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-1441 (($ $) 79 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 78 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 52)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 43 (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2375 (($ $ |#1|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) 51) ((|#1| $ (-550)) 50) (($ $ (-1237 (-550))) 64)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 71)) (-4235 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-654 |#1|) (-140) (-1220)) (T -654)) +((-4048 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-4235 (*1 *1 *1 *2) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1220)))) (-4235 (*1 *1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1220)))) (-4235 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1220)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-4392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 (-550))) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 (-550))) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-2451 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-654 *2)) (-4 *2 (-1220)))) (-2451 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) (-4221 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1237 (-550))) (|has| *1 (-6 -4428)) (-4 *1 (-654 *2)) (-4 *2 (-1220))))) +(-13 (-607 (-550) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4048 ($ (-774) |t#1|)) (-15 -4235 ($ $ |t#1|)) (-15 -4235 ($ |t#1| $)) (-15 -4235 ($ $ $)) (-15 -4235 ($ (-644 $))) (-15 -4392 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4233 ($ $ (-1237 (-550)))) (-15 -2452 ($ $ (-550))) (-15 -2452 ($ $ (-1237 (-550)))) (-15 -2451 ($ |t#1| $ (-550))) (-15 -2451 ($ $ $ (-550))) (IF (|has| $ (-6 -4428)) (-15 -4221 (|t#1| $ (-1237 (-550)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 15)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3401 ((|#1| $) 23)) (-2936 (($ $ $) NIL (|has| |#1| (-794)))) (-3262 (($ $ $) NIL (|has| |#1| (-794)))) (-3665 (((-1163) $) 48)) (-3666 (((-1124) $) NIL)) (-3400 ((|#3| $) 24)) (-4380 (((-866) $) 43)) (-3664 (((-112) $ $) 22)) (-3512 (($) 10 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-794)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-794)))) (-3457 (((-112) $ $) 20)) (-3089 (((-112) $ $) NIL (|has| |#1| (-794)))) (-3090 (((-112) $ $) 26 (|has| |#1| (-794)))) (-4383 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4271 (($ $) 17) (($ $ $) NIL)) (-4273 (($ $ $) 29)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-655 |#1| |#2| |#3|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-794)) (-6 (-794)) |%noBranch|) (-15 -4383 ($ $ |#3|)) (-15 -4383 ($ |#1| |#3|)) (-15 -3401 (|#1| $)) (-15 -3400 (|#3| $)))) (-720 |#2|) (-173) (|SubsetCategory| (-729) |#2|)) (T -655)) +((-4383 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-720 *4)) (-4 *2 (|SubsetCategory| (-729) *4)))) (-4383 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-655 *2 *4 *3)) (-4 *2 (-720 *4)) (-4 *3 (|SubsetCategory| (-729) *4)))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-720 *3)) (-5 *1 (-655 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-729) *3)))) (-3400 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-729) *4)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-720 *4))))) +(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-794)) (-6 (-794)) |%noBranch|) (-15 -4383 ($ $ |#3|)) (-15 -4383 ($ |#1| |#3|)) (-15 -3401 (|#1| $)) (-15 -3400 (|#3| $)))) +((-4006 (((-3 |#2| "failed") |#3| |#2| (-1181) |#2| (-644 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) "failed") |#3| |#2| (-1181)) 44))) +(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -4006 ((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) "failed") |#3| |#2| (-1181))) (-15 -4006 ((-3 |#2| "failed") |#3| |#2| (-1181) |#2| (-644 |#2|)))) (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147)) (-13 (-29 |#1|) (-1206) (-964)) (-661 |#2|)) (T -656)) +((-4006 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1206) (-964))) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *1 (-656 *6 *2 *3)) (-4 *3 (-661 *2)))) (-4006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1181)) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-4 *4 (-13 (-29 *6) (-1206) (-964))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2192 (-644 *4)))) (-5 *1 (-656 *6 *4 *3)) (-4 *3 (-661 *4))))) +(-10 -7 (-15 -4006 ((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) "failed") |#3| |#2| (-1181))) (-15 -4006 ((-3 |#2| "failed") |#3| |#2| (-1181) |#2| (-644 |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2453 (($ $) NIL (|has| |#1| (-366)))) (-2455 (($ $ $) 28 (|has| |#1| (-366)))) (-2456 (($ $ (-774)) 31 (|has| |#1| (-366)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-2941 (($ $ $) NIL (|has| |#1| (-366)))) (-2942 (($ $ $) NIL (|has| |#1| (-366)))) (-2943 (($ $ $) NIL (|has| |#1| (-366)))) (-2939 (($ $ $) NIL (|has| |#1| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2940 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456)))) (-2575 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) NIL)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-3225 (((-774) $) NIL)) (-2947 (($ $ $) NIL (|has| |#1| (-366)))) (-2948 (($ $ $) NIL (|has| |#1| (-366)))) (-2937 (($ $ $) NIL (|has| |#1| (-366)))) (-2945 (($ $ $) NIL (|has| |#1| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2946 (((-3 $ #1#) $ $) NIL (|has| |#1| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-561)))) (-4233 ((|#1| $ |#1|) 24)) (-2457 (($ $ $) 33 (|has| |#1| (-366)))) (-4382 (((-774) $) NIL)) (-3222 ((|#1| $) NIL (|has| |#1| (-456)))) (-4380 (((-866) $) 20) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) NIL)) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2950 ((|#1| $ |#1| |#1|) 23)) (-2922 (($ $) NIL)) (-3512 (($) 21 T CONST)) (-3069 (($) 8 T CONST)) (-3074 (($) NIL)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-657 |#1| |#2|) (-661 |#1|) (-1053) (-1 |#1| |#1|)) (T -657)) +NIL +(-661 |#1|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2453 (($ $) NIL (|has| |#1| (-366)))) (-2455 (($ $ $) NIL (|has| |#1| (-366)))) (-2456 (($ $ (-774)) NIL (|has| |#1| (-366)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-2941 (($ $ $) NIL (|has| |#1| (-366)))) (-2942 (($ $ $) NIL (|has| |#1| (-366)))) (-2943 (($ $ $) NIL (|has| |#1| (-366)))) (-2939 (($ $ $) NIL (|has| |#1| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2940 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456)))) (-2575 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) NIL)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-3225 (((-774) $) NIL)) (-2947 (($ $ $) NIL (|has| |#1| (-366)))) (-2948 (($ $ $) NIL (|has| |#1| (-366)))) (-2937 (($ $ $) NIL (|has| |#1| (-366)))) (-2945 (($ $ $) NIL (|has| |#1| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2946 (((-3 $ #1#) $ $) NIL (|has| |#1| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-561)))) (-4233 ((|#1| $ |#1|) NIL)) (-2457 (($ $ $) NIL (|has| |#1| (-366)))) (-4382 (((-774) $) NIL)) (-3222 ((|#1| $) NIL (|has| |#1| (-456)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) NIL)) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2950 ((|#1| $ |#1| |#1|) NIL)) (-2922 (($ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($) NIL)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-658 |#1|) (-661 |#1|) (-234)) (T -658)) +NIL +(-661 |#1|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2453 (($ $) NIL (|has| |#1| (-366)))) (-2455 (($ $ $) NIL (|has| |#1| (-366)))) (-2456 (($ $ (-774)) NIL (|has| |#1| (-366)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-2941 (($ $ $) NIL (|has| |#1| (-366)))) (-2942 (($ $ $) NIL (|has| |#1| (-366)))) (-2943 (($ $ $) NIL (|has| |#1| (-366)))) (-2939 (($ $ $) NIL (|has| |#1| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2940 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456)))) (-2575 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) NIL)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-3225 (((-774) $) NIL)) (-2947 (($ $ $) NIL (|has| |#1| (-366)))) (-2948 (($ $ $) NIL (|has| |#1| (-366)))) (-2937 (($ $ $) NIL (|has| |#1| (-366)))) (-2945 (($ $ $) NIL (|has| |#1| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2946 (((-3 $ #1#) $ $) NIL (|has| |#1| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-561)))) (-4233 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2457 (($ $ $) NIL (|has| |#1| (-366)))) (-4382 (((-774) $) NIL)) (-3222 ((|#1| $) NIL (|has| |#1| (-456)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) NIL)) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2950 ((|#1| $ |#1| |#1|) NIL)) (-2922 (($ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($) NIL)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-659 |#1| |#2|) (-13 (-661 |#1|) (-288 |#2| |#2|)) (-234) (-13 (-651 |#1|) (-10 -8 (-15 -4244 ($ $))))) (T -659)) +NIL +(-13 (-661 |#1|) (-288 |#2| |#2|)) +((-2453 (($ $) 29)) (-2922 (($ $) 27)) (-3074 (($) 13))) +(((-660 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 -3074 (|#1|))) (-661 |#2|) (-1053)) (T -660)) +NIL +(-10 -8 (-15 -2453 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 -3074 (|#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2453 (($ $) 87 (|has| |#1| (-366)))) (-2455 (($ $ $) 89 (|has| |#1| (-366)))) (-2456 (($ $ (-774)) 88 (|has| |#1| (-366)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2941 (($ $ $) 50 (|has| |#1| (-366)))) (-2942 (($ $ $) 51 (|has| |#1| (-366)))) (-2943 (($ $ $) 53 (|has| |#1| (-366)))) (-2939 (($ $ $) 48 (|has| |#1| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 47 (|has| |#1| (-366)))) (-2940 (((-3 $ #1="failed") $ $) 49 (|has| |#1| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 52 (|has| |#1| (-366)))) (-3579 (((-3 (-550) #2="failed") $) 80 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) 77 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #2#) $) 74)) (-3578 (((-550) $) 79 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 76 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 75)) (-4393 (($ $) 69)) (-3892 (((-3 $ "failed") $) 37)) (-3928 (($ $) 60 (|has| |#1| (-456)))) (-2575 (((-112) $) 35)) (-3296 (($ |#1| (-774)) 67)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 62 (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63 (|has| |#1| (-561)))) (-3225 (((-774) $) 71)) (-2947 (($ $ $) 57 (|has| |#1| (-366)))) (-2948 (($ $ $) 58 (|has| |#1| (-366)))) (-2937 (($ $ $) 46 (|has| |#1| (-366)))) (-2945 (($ $ $) 55 (|has| |#1| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 54 (|has| |#1| (-366)))) (-2946 (((-3 $ #1#) $ $) 56 (|has| |#1| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 59 (|has| |#1| (-366)))) (-3596 ((|#1| $) 70)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ #1#) $ |#1|) 64 (|has| |#1| (-561)))) (-4233 ((|#1| $ |#1|) 92)) (-2457 (($ $ $) 86 (|has| |#1| (-366)))) (-4382 (((-774) $) 72)) (-3222 ((|#1| $) 61 (|has| |#1| (-456)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 78 (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) 73)) (-4251 (((-644 |#1|) $) 66)) (-4111 ((|#1| $ (-774)) 68)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2950 ((|#1| $ |#1| |#1|) 65)) (-2922 (($ $) 90)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($) 91)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-661 |#1|) (-140) (-1053)) (T -661)) +((-3074 (*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)))) (-2922 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)))) (-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2456 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-661 *3)) (-4 *3 (-1053)) (-4 *3 (-366)))) (-2453 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(-13 (-855 |t#1|) (-288 |t#1| |t#1|) (-10 -8 (-15 -3074 ($)) (-15 -2922 ($ $)) (IF (|has| |t#1| (-366)) (PROGN (-15 -2455 ($ $ $)) (-15 -2456 ($ $ (-774))) (-15 -2453 ($ $)) (-15 -2457 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-619 #1=(-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-288 |#1| |#1|) . T) ((-416 |#1|) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) |has| |#1| (-173)) ((-720 |#1|) |has| |#1| (-173)) ((-729) . T) ((-1042 #1#) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-855 |#1|) . T)) +((-2454 (((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|))) 87 (|has| |#1| (-27)))) (-4166 (((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|))) 86 (|has| |#1| (-27))) (((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|)) 19))) +(((-662 |#1| |#2|) (-10 -7 (-15 -4166 ((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4166 ((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|)))) (-15 -2454 ((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|))))) |%noBranch|)) (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550)))) (-1246 |#1|)) (T -662)) +((-2454 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *2 (-644 (-658 (-411 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-411 *5))))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *2 (-644 (-658 (-411 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-411 *5))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-658 (-411 *6)))) (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-411 *6)))))) +(-10 -7 (-15 -4166 ((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4166 ((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|)))) (-15 -2454 ((-644 (-658 (-411 |#2|))) (-658 (-411 |#2|))))) |%noBranch|)) +((-2455 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2456 ((|#2| |#2| (-774) (-1 |#1| |#1|)) 48)) (-2457 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-663 |#1| |#2|) (-10 -7 (-15 -2455 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2456 (|#2| |#2| (-774) (-1 |#1| |#1|))) (-15 -2457 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-366) (-661 |#1|)) (T -663)) +((-2457 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-366)) (-5 *1 (-663 *4 *2)) (-4 *2 (-661 *4)))) (-2456 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1 *5 *5)) (-4 *5 (-366)) (-5 *1 (-663 *5 *2)) (-4 *2 (-661 *5)))) (-2455 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-366)) (-5 *1 (-663 *4 *2)) (-4 *2 (-661 *4))))) +(-10 -7 (-15 -2455 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2456 (|#2| |#2| (-774) (-1 |#1| |#1|))) (-15 -2457 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2458 (($ $ $) 9))) +(((-664 |#1|) (-10 -8 (-15 -2458 (|#1| |#1| |#1|))) (-665)) (T -664)) +NIL +(-10 -8 (-15 -2458 (|#1| |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-2460 (($ $) 10)) (-2458 (($ $ $) 8)) (-3457 (((-112) $ $) 6)) (-2459 (($ $ $) 9))) +(((-665) (-140)) (T -665)) +((-2460 (*1 *1 *1) (-4 *1 (-665))) (-2459 (*1 *1 *1 *1) (-4 *1 (-665))) (-2458 (*1 *1 *1 *1) (-4 *1 (-665)))) +(-13 (-102) (-10 -8 (-15 -2460 ($ $)) (-15 -2459 ($ $ $)) (-15 -2458 ($ $ $)))) (((-102) . T)) -((-2459 (((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|)) 33))) -(((-665 |#1|) (-10 -7 (-15 -2459 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|)))) (-913)) (T -665)) -((-2459 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *4))) (-5 *3 (-1174 *4)) (-4 *4 (-913)) (-5 *1 (-665 *4))))) -(-10 -7 (-15 -2459 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 84)) (-4379 (($ $ (-773)) 94)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4371 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 50)) (-3577 (((-3 (-674 |#1|) "failed") $) NIL)) (-3576 (((-674 |#1|) $) NIL)) (-4391 (($ $) 93)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-674 |#1|) |#2|) 70)) (-4368 (($ $) 89)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 49)) (-1917 (((-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3295 (((-674 |#1|) $) NIL)) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4199 (($ $ |#1| $) 32) (($ $ (-643 |#1|) (-643 $)) 34)) (-4380 (((-773) $) 91)) (-3953 (($ $ $) 20) (($ (-674 |#1|) (-674 |#1|)) 79) (($ (-674 |#1|) $) 77) (($ $ (-674 |#1|)) 78)) (-4378 (((-865) $) NIL) (($ |#1|) 76) (((-1285 |#1| |#2|) $) 60) (((-1294 |#1| |#2|) $) 43) (($ (-674 |#1|)) 27)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-674 |#1|)) NIL)) (-4386 ((|#2| (-1294 |#1| |#2|) $) 45)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 23 T CONST)) (-3066 (((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4377 (((-3 $ "failed") (-1285 |#1| |#2|)) 62)) (-1901 (($ (-674 |#1|)) 14)) (-3455 (((-112) $ $) 46)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) 68) (($ $ $) NIL)) (-4271 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-674 |#1|)) NIL))) -(((-666 |#1| |#2|) (-13 (-376 |#1| |#2|) (-386 |#2| (-674 |#1|)) (-10 -8 (-15 -4377 ((-3 $ "failed") (-1285 |#1| |#2|))) (-15 -3953 ($ (-674 |#1|) (-674 |#1|))) (-15 -3953 ($ (-674 |#1|) $)) (-15 -3953 ($ $ (-674 |#1|))))) (-852) (-172)) (T -666)) -((-4377 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *1 (-666 *3 *4)))) (-3953 (*1 *1 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) (-3953 (*1 *1 *2 *1) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) (-3953 (*1 *1 *1 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172))))) -(-13 (-376 |#1| |#2|) (-386 |#2| (-674 |#1|)) (-10 -8 (-15 -4377 ((-3 $ "failed") (-1285 |#1| |#2|))) (-15 -3953 ($ (-674 |#1|) (-674 |#1|))) (-15 -3953 ($ (-674 |#1|) $)) (-15 -3953 ($ $ (-674 |#1|))))) -((-1900 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1898 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1678 (($ (-1 (-112) |#2|) $) 29)) (-2442 (($ $) 67)) (-2526 (($ $) 78)) (-3829 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3843 (((-549) |#2| $ (-549)) 75) (((-549) |#2| $) NIL) (((-549) (-1 (-112) |#2|) $) 56)) (-4046 (($ (-773) |#2|) 65)) (-3259 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3941 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4390 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3965 (($ |#2|) 15)) (-4039 (($ $ $ (-549)) 42) (($ |#2| $ (-549)) 40)) (-1441 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1679 (($ $ (-1236 (-549))) 51) (($ $ (-549)) 44)) (-1899 (($ $ $ (-549)) 74)) (-3824 (($ $) 72)) (-3088 (((-112) $ $) 80))) -(((-667 |#1| |#2|) (-10 -8 (-15 -3965 (|#1| |#2|)) (-15 -1679 (|#1| |#1| (-549))) (-15 -1679 (|#1| |#1| (-1236 (-549)))) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4039 (|#1| |#2| |#1| (-549))) (-15 -4039 (|#1| |#1| |#1| (-549))) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -2526 (|#1| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3941 (|#1| |#1| |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -2442 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4046 (|#1| (-773) |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) (-668 |#2|) (-1219)) (T -667)) -NIL -(-10 -8 (-15 -3965 (|#1| |#2|)) (-15 -1679 (|#1| |#1| (-549))) (-15 -1679 (|#1| |#1| (-1236 (-549)))) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4039 (|#1| |#2| |#1| (-549))) (-15 -4039 (|#1| |#1| |#1| (-549))) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -2526 (|#1| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3941 (|#1| |#1| |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -2442 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4046 (|#1| (-773) |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-2372 (((-1275) $ (-549) (-549)) 98 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1900 (((-112) $) 143 (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1898 (($ $) 147 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4426)))) (-3310 (($ $) 142 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 118 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 87 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) 130)) (-4142 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4425)))) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-2442 (($ $) 145 (|has| $ (-6 -4426)))) (-2443 (($ $) 135)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-2526 (($ $) 132 (|has| |#1| (-1104)))) (-1440 (($ $) 100 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 131 (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) 126)) (-3830 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4425))) (($ |#1| $) 101 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1684 ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 88)) (-3866 (((-112) $) 84)) (-3843 (((-549) |#1| $ (-549)) 140 (|has| |#1| (-1104))) (((-549) |#1| $) 139 (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) 138)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) 109)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 96 (|has| (-549) (-852)))) (-2934 (($ $ $) 148 (|has| |#1| (-852)))) (-3259 (($ $ $) 133 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3941 (($ $ $) 141 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 95 (|has| (-549) (-852)))) (-3260 (($ $ $) 149 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3965 (($ |#1|) 123)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-4039 (($ $ $ (-549)) 128) (($ |#1| $ (-549)) 127)) (-2449 (($ $ $ (-549)) 117) (($ |#1| $ (-549)) 116)) (-2377 (((-643 (-549)) $) 93)) (-2378 (((-112) (-549) $) 92)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2373 (($ $ |#1|) 97 (|has| $ (-6 -4426)))) (-3867 (((-112) $) 85)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 91)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1236 (-549))) 113) ((|#1| $ (-549)) 90) ((|#1| $ (-549) |#1|) 89)) (-3430 (((-549) $ $) 45)) (-1679 (($ $ (-1236 (-549))) 125) (($ $ (-549)) 124)) (-2450 (($ $ (-1236 (-549))) 115) (($ $ (-549)) 114)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 144 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 99 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 108)) (-4222 (($ $ $) 62) (($ $ |#1|) 61)) (-4233 (($ $ $) 79) (($ |#1| $) 78) (($ (-643 $)) 111) (($ $ |#1|) 110)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 151 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 152 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 150 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 153 (|has| |#1| (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-668 |#1|) (-140) (-1219)) (T -668)) -((-3965 (*1 *1 *2) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1219))))) -(-13 (-1152 |t#1|) (-374 |t#1|) (-283 |t#1|) (-10 -8 (-15 -3965 ($ |t#1|)))) -(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-283 |#1|) . T) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1013 |#1|) . T) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1152 |#1|) . T) ((-1219) . T) ((-1258 |#1|) . T)) -((-4004 (((-643 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2190 (-643 |#3|)))) |#4| (-643 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2190 (-643 |#3|))) |#4| |#3|) 60)) (-3513 (((-773) |#4| |#3|) 18)) (-3764 (((-3 |#3| #1#) |#4| |#3|) 21)) (-2460 (((-112) |#4| |#3|) 14))) -(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|)) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2190 (-643 |#3|)))) |#4| (-643 |#3|))) (-15 -3764 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2460 ((-112) |#4| |#3|)) (-15 -3513 ((-773) |#4| |#3|))) (-365) (-13 (-374 |#1|) (-10 -7 (-6 -4426))) (-13 (-374 |#1|) (-10 -7 (-6 -4426))) (-688 |#1| |#2| |#3|)) (T -669)) -((-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-773)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3764 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-374 *4) (-10 -7 (-6 -4426)))) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *7 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-643 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2190 (-643 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-643 *7)) (-4 *3 (-688 *5 *6 *7)))) (-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|)) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2190 (-643 |#3|)))) |#4| (-643 |#3|))) (-15 -3764 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2460 ((-112) |#4| |#3|)) (-15 -3513 ((-773) |#4| |#3|))) -((-4004 (((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1="failed")) (|:| -2190 (-643 (-1269 |#1|))))) (-643 (-643 |#1|)) (-643 (-1269 |#1|))) 22) (((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-691 |#1|) (-643 (-1269 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-643 (-643 |#1|)) (-1269 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)) 14)) (-3513 (((-773) (-691 |#1|) (-1269 |#1|)) 30)) (-3764 (((-3 (-1269 |#1|) #1#) (-691 |#1|) (-1269 |#1|)) 24)) (-2460 (((-112) (-691 |#1|) (-1269 |#1|)) 27))) -(((-670 |#1|) (-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1="failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|))) (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-643 (-643 |#1|)) (-1269 |#1|))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-691 |#1|) (-643 (-1269 |#1|)))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-643 (-643 |#1|)) (-643 (-1269 |#1|)))) (-15 -3764 ((-3 (-1269 |#1|) #1#) (-691 |#1|) (-1269 |#1|))) (-15 -2460 ((-112) (-691 |#1|) (-1269 |#1|))) (-15 -3513 ((-773) (-691 |#1|) (-1269 |#1|)))) (-365)) (T -670)) -((-3513 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-773)) (-5 *1 (-670 *5)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-670 *5)))) (-3764 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-691 *4)) (-4 *4 (-365)) (-5 *1 (-670 *4)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) (-5 *2 (-643 (-2 (|:| |particular| (-3 (-1269 *5) #1="failed")) (|:| -2190 (-643 (-1269 *5)))))) (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 (-643 (-2 (|:| |particular| (-3 (-1269 *5) #1#)) (|:| -2190 (-643 (-1269 *5)))))) (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) #1#)) (|:| -2190 (-643 (-1269 *5))))) (-5 *1 (-670 *5)) (-5 *4 (-1269 *5)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) #1#)) (|:| -2190 (-643 (-1269 *5))))) (-5 *1 (-670 *5)) (-5 *4 (-1269 *5))))) -(-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1="failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|))) (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-643 (-643 |#1|)) (-1269 |#1|))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-691 |#1|) (-643 (-1269 |#1|)))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-643 (-643 |#1|)) (-643 (-1269 |#1|)))) (-15 -3764 ((-3 (-1269 |#1|) #1#) (-691 |#1|) (-1269 |#1|))) (-15 -2460 ((-112) (-691 |#1|) (-1269 |#1|))) (-15 -3513 ((-773) (-691 |#1|) (-1269 |#1|)))) -((-2461 (((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2190 (-643 (-1269 (-410 |#4|))))) (-643 |#4|) (-643 |#3|)) 52))) -(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2461 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2190 (-643 (-1269 (-410 |#4|))))) (-643 |#4|) (-643 |#3|)))) (-560) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -671)) -((-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *7)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) (|:| -2190 (-643 (-1269 (-410 *8)))))) (-5 *1 (-671 *5 *6 *7 *8))))) -(-10 -7 (-15 -2461 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2190 (-643 (-1269 (-410 |#4|))))) (-643 |#4|) (-643 |#3|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (|has| |#2| (-560)))) (-3754 ((|#2| $) NIL)) (-3525 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#2|))) NIL) (((-1269 (-691 |#2|)) (-1269 $)) NIL)) (-3527 (((-112) $) NIL)) (-1897 (((-1269 $)) 44)) (-1309 (((-112) $ (-773)) NIL)) (-3757 (($ |#2|) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) NIL (|has| |#2| (-308)))) (-3516 (((-239 |#1| |#2|) $ (-549)) NIL)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#2| (-560)))) (-1871 (((-3 $ #1#)) NIL (|has| |#2| (-560)))) (-1963 (((-691 |#2|)) NIL) (((-691 |#2|) (-1269 $)) NIL)) (-1895 ((|#2| $) NIL)) (-1961 (((-691 |#2|) $) NIL) (((-691 |#2|) $ (-1269 $)) NIL)) (-2567 (((-3 $ #1#) $) NIL (|has| |#2| (-560)))) (-2078 (((-1174 (-949 |#2|))) NIL (|has| |#2| (-365)))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#2| $) NIL)) (-1873 (((-1174 |#2|) $) NIL (|has| |#2| (-560)))) (-1965 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-1891 (((-1174 |#2|) $) NIL)) (-1885 (((-112)) NIL)) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) NIL)) (-1967 (($ (-1269 |#2|)) NIL) (($ (-1269 |#2|) (-1269 $)) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3513 (((-773) $) NIL (|has| |#2| (-560))) (((-922)) 45)) (-3517 ((|#2| $ (-549) (-549)) NIL)) (-1882 (((-112)) NIL)) (-2594 (($ $ (-922)) NIL)) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL)) (-3512 (((-773) $) NIL (|has| |#2| (-560)))) (-3511 (((-643 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-560)))) (-3519 (((-773) $) NIL)) (-1878 (((-112)) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#2| $) NIL (|has| |#2| (-6 (-4427 #3="*"))))) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#2|))) NIL)) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4025 (((-643 (-643 |#2|)) $) NIL)) (-1876 (((-112)) NIL)) (-1880 (((-112)) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#2| (-560)))) (-1872 (((-3 $ #1#)) NIL (|has| |#2| (-560)))) (-1964 (((-691 |#2|)) NIL) (((-691 |#2|) (-1269 $)) NIL)) (-1896 ((|#2| $) NIL)) (-1962 (((-691 |#2|) $) NIL) (((-691 |#2|) $ (-1269 $)) NIL)) (-2568 (((-3 $ #1#) $) NIL (|has| |#2| (-560)))) (-2082 (((-1174 (-949 |#2|))) NIL (|has| |#2| (-365)))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#2| $) NIL)) (-1874 (((-1174 |#2|) $) NIL (|has| |#2| (-560)))) (-1966 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-1892 (((-1174 |#2|) $) NIL)) (-1886 (((-112)) NIL)) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL)) (-1879 (((-112)) NIL)) (-1881 (((-112)) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) NIL)) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) 30) ((|#2| $ (-549)) NIL)) (-4242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3753 ((|#2| $) NIL)) (-3756 (($ (-643 |#2|)) NIL)) (-3526 (((-112) $) NIL)) (-3755 (((-239 |#1| |#2|) $) NIL)) (-3752 ((|#2| $) NIL (|has| |#2| (-6 (-4427 #3#))))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-3644 (((-691 |#2|) (-1269 $)) NIL) (((-1269 |#2|) $) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $ (-1269 $)) 33)) (-4402 (($ (-1269 |#2|)) NIL) (((-1269 |#2|) $) NIL)) (-2070 (((-643 (-949 |#2|))) NIL) (((-643 (-949 |#2|)) (-1269 $)) NIL)) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL)) (-3515 (((-239 |#1| |#2|) $ (-549)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) NIL) (((-691 |#2|) $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 43)) (-1875 (((-643 (-1269 |#2|))) NIL (|has| |#2| (-560)))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL)) (-2948 (($ (-691 |#2|) $) NIL)) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL)) (-1887 (((-112)) NIL)) (-1883 (((-112)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-672 |#1| |#2|) (-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-421 |#2|)) (-922) (-172)) (T -672)) -NIL -(-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-421 |#2|)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3669 (((-643 (-1138)) $) 10)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-673) (-13 (-1086) (-10 -8 (-15 -3669 ((-643 (-1138)) $))))) (T -673)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-673))))) -(-13 (-1086) (-10 -8 (-15 -3669 ((-643 (-1138)) $)))) -((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) NIL)) (-3541 (($ $) 62)) (-3065 (((-112) $) NIL)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2464 (((-3 $ "failed") (-821 |#1|)) 27)) (-2466 (((-112) (-821 |#1|)) 17)) (-2465 (($ (-821 |#1|)) 28)) (-2839 (((-112) $ $) 36)) (-4265 (((-922) $) 43)) (-3542 (($ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4164 (((-643 $) (-821 |#1|)) 19)) (-4378 (((-865) $) 51) (($ |#1|) 40) (((-821 |#1|) $) 47) (((-679 |#1|) $) 52)) (-3662 (((-112) $ $) NIL)) (-2463 (((-58 (-643 $)) (-643 |#1|) (-922)) 67)) (-2462 (((-643 $) (-643 |#1|) (-922)) 72)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 63)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 46))) -(((-674 |#1|) (-13 (-852) (-1041 |#1|) (-10 -8 (-15 -3065 ((-112) $)) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ((-679 |#1|) $)) (-15 -4164 ((-643 $) (-821 |#1|))) (-15 -2466 ((-112) (-821 |#1|))) (-15 -2465 ($ (-821 |#1|))) (-15 -2464 ((-3 $ "failed") (-821 |#1|))) (-15 -4366 ((-643 |#1|) $)) (-15 -2463 ((-58 (-643 $)) (-643 |#1|) (-922))) (-15 -2462 ((-643 $) (-643 |#1|) (-922))))) (-852)) (T -674)) -((-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) (-3541 (*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-679 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-674 *4))) (-5 *1 (-674 *4)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-112)) (-5 *1 (-674 *4)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3)))) (-2464 (*1 *1 *2) (|partial| -12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) (-5 *2 (-58 (-643 (-674 *5)))) (-5 *1 (-674 *5)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) (-5 *2 (-643 (-674 *5))) (-5 *1 (-674 *5))))) -(-13 (-852) (-1041 |#1|) (-10 -8 (-15 -3065 ((-112) $)) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ((-679 |#1|) $)) (-15 -4164 ((-643 $) (-821 |#1|))) (-15 -2466 ((-112) (-821 |#1|))) (-15 -2465 ($ (-821 |#1|))) (-15 -2464 ((-3 $ "failed") (-821 |#1|))) (-15 -4366 ((-643 |#1|) $)) (-15 -2463 ((-58 (-643 $)) (-643 |#1|) (-922))) (-15 -2462 ((-643 $) (-643 |#1|) (-922))))) -((-3826 ((|#2| $) 103)) (-4228 (($ $) 124)) (-1309 (((-112) $ (-773)) 35)) (-4230 (($ $) 112) (($ $ (-773)) 115)) (-3866 (((-112) $) 125)) (-3432 (((-643 $) $) 99)) (-3428 (((-112) $ $) 95)) (-4151 (((-112) $ (-773)) 33)) (-2374 (((-549) $) 69)) (-2375 (((-549) $) 68)) (-4148 (((-112) $ (-773)) 31)) (-3950 (((-112) $) 101)) (-4229 ((|#2| $) 116) (($ $ (-773)) 120)) (-2449 (($ $ $ (-549)) 86) (($ |#2| $ (-549)) 85)) (-2377 (((-643 (-549)) $) 67)) (-2378 (((-112) (-549) $) 61)) (-4232 ((|#2| $) NIL) (($ $ (-773)) 111)) (-4200 (($ $ (-549)) 128)) (-3867 (((-112) $) 127)) (-2126 (((-112) (-1 (-112) |#2|) $) 44)) (-2379 (((-643 |#2|) $) 48)) (-4231 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1236 (-549))) 82) ((|#2| $ (-549)) 59) ((|#2| $ (-549) |#2|) 60)) (-3430 (((-549) $ $) 94)) (-2450 (($ $ (-1236 (-549))) 81) (($ $ (-549)) 75)) (-4065 (((-112) $) 90)) (-4223 (($ $) 108)) (-4224 (((-773) $) 107)) (-4225 (($ $) 106)) (-3953 (($ (-643 |#2|)) 55)) (-3292 (($ $) 129)) (-3945 (((-643 $) $) 93)) (-3429 (((-112) $ $) 92)) (-2127 (((-112) (-1 (-112) |#2|) $) 43)) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 41))) -(((-675 |#1| |#2|) (-10 -8 (-15 -3292 (|#1| |#1|)) (-15 -4200 (|#1| |#1| (-549))) (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2379 ((-643 |#2|) |#1|)) (-15 -2378 ((-112) (-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2375 ((-549) |#1|)) (-15 -2374 ((-549) |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "first")) (-15 -4232 (|#2| |#1|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -3430 ((-549) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| "value")) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) (-676 |#2|) (-1219)) (T -675)) -NIL -(-10 -8 (-15 -3292 (|#1| |#1|)) (-15 -4200 (|#1| |#1| (-549))) (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2379 ((-643 |#2|) |#1|)) (-15 -2378 ((-112) (-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2375 ((-549) |#1|)) (-15 -2374 ((-549) |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "first")) (-15 -4232 (|#2| |#1|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -3430 ((-549) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| "value")) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-2372 (((-1275) $ (-549) (-549)) 98 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 118 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 87 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 103)) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-2468 (($ $) 125)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-1440 (($ $) 100 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 101 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 104)) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1684 ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 88)) (-3866 (((-112) $) 84)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-2467 (((-773) $) 124)) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) 109)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 96 (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 95 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-2470 (($ $) 127)) (-2471 (((-112) $) 128)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-2449 (($ $ $ (-549)) 117) (($ |#1| $ (-549)) 116)) (-2377 (((-643 (-549)) $) 93)) (-2378 (((-112) (-549) $) 92)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2469 ((|#1| $) 126)) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2373 (($ $ |#1|) 97 (|has| $ (-6 -4426)))) (-4200 (($ $ (-549)) 123)) (-3867 (((-112) $) 85)) (-2472 (((-112) $) 129)) (-2473 (((-112) $) 130)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 91)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1236 (-549))) 113) ((|#1| $ (-549)) 90) ((|#1| $ (-549) |#1|) 89)) (-3430 (((-549) $ $) 45)) (-2450 (($ $ (-1236 (-549))) 115) (($ $ (-549)) 114)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 99 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 108)) (-4222 (($ $ $) 62 (|has| $ (-6 -4426))) (($ $ |#1|) 61 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 79) (($ |#1| $) 78) (($ (-643 $)) 111) (($ $ |#1|) 110)) (-3292 (($ $) 122)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-676 |#1|) (-140) (-1219)) (T -676)) -((-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) -(-13 (-1152 |t#1|) (-10 -8 (-15 -3830 ($ (-1 (-112) |t#1|) $)) (-15 -4142 ($ (-1 (-112) |t#1|) $)) (-15 -2473 ((-112) $)) (-15 -2472 ((-112) $)) (-15 -2471 ((-112) $)) (-15 -2470 ($ $)) (-15 -2469 (|t#1| $)) (-15 -2468 ($ $)) (-15 -2467 ((-773) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1152 |#1|) . T) ((-1219) . T) ((-1258 |#1|) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2479 (($ (-773) (-773) (-773)) 55 (|has| |#1| (-1052)))) (-1309 (((-112) $ (-773)) NIL)) (-2476 ((|#1| $ (-773) (-773) (-773) |#1|) 49)) (-4156 (($) NIL T CONST)) (-2477 (($ $ $) 60 (|has| |#1| (-1052)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2474 (((-1269 (-773)) $) 12)) (-2475 (($ (-1180) $ $) 37)) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2478 (($ (-773)) 57 (|has| |#1| (-1052)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-773) (-773) (-773)) 46)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3953 (($ (-643 (-643 (-643 |#1|)))) 70)) (-4378 (($ (-961 (-961 (-961 |#1|)))) 23) (((-961 (-961 (-961 |#1|))) $) 19) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-677 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1052)) (PROGN (-15 -2479 ($ (-773) (-773) (-773))) (-15 -2478 ($ (-773))) (-15 -2477 ($ $ $))) |%noBranch|) (-15 -3953 ($ (-643 (-643 (-643 |#1|))))) (-15 -4231 (|#1| $ (-773) (-773) (-773))) (-15 -2476 (|#1| $ (-773) (-773) (-773) |#1|)) (-15 -4378 ($ (-961 (-961 (-961 |#1|))))) (-15 -4378 ((-961 (-961 (-961 |#1|))) $)) (-15 -2475 ($ (-1180) $ $)) (-15 -2474 ((-1269 (-773)) $)))) (-1104)) (T -677)) -((-2479 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104)))) (-2478 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104)))) (-2477 (*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1052)) (-4 *2 (-1104)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-643 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) (-4231 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104)))) (-2476 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-5 *1 (-677 *3)) (-4 *3 (-1104)))) (-2475 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-677 *3)) (-4 *3 (-1104)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1269 (-773))) (-5 *1 (-677 *3)) (-4 *3 (-1104))))) -(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1052)) (PROGN (-15 -2479 ($ (-773) (-773) (-773))) (-15 -2478 ($ (-773))) (-15 -2477 ($ $ $))) |%noBranch|) (-15 -3953 ($ (-643 (-643 (-643 |#1|))))) (-15 -4231 (|#1| $ (-773) (-773) (-773))) (-15 -2476 (|#1| $ (-773) (-773) (-773) |#1|)) (-15 -4378 ($ (-961 (-961 (-961 |#1|))))) (-15 -4378 ((-961 (-961 (-961 |#1|))) $)) (-15 -2475 ($ (-1180) $ $)) (-15 -2474 ((-1269 (-773)) $)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3598 (((-486) $) 10)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-678) (-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3653 ((-1138) $))))) (T -678)) -((-3598 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-678)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-678))))) -(-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3653 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) 15)) (-3541 (($ $) 19)) (-3065 (((-112) $) 20)) (-3577 (((-3 |#1| "failed") $) 23)) (-3576 ((|#1| $) 21)) (-4230 (($ $) 37)) (-4368 (($ $) 25)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2839 (((-112) $ $) 47)) (-4265 (((-922) $) 40)) (-3542 (($ $) 18)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 ((|#1| $) 36)) (-4378 (((-865) $) 32) (($ |#1|) 24) (((-821 |#1|) $) 28)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 13)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-679 |#1|) (-13 (-852) (-1041 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4232 (|#1| $)) (-15 -3542 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4368 ($ $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -3541 ($ $)) (-15 -4366 ((-643 |#1|) $)))) (-852)) (T -679)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-4232 (*1 *2 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-3541 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852))))) -(-13 (-852) (-1041 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4232 (|#1| $)) (-15 -3542 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4368 ($ $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -3541 ($ $)) (-15 -4366 ((-643 |#1|) $)))) -((-2488 ((|#1| (-1 |#1| (-773) |#1|) (-773) |#1|) 14)) (-2480 ((|#1| (-1 |#1| |#1|) (-773) |#1|) 12))) -(((-680 |#1|) (-10 -7 (-15 -2480 (|#1| (-1 |#1| |#1|) (-773) |#1|)) (-15 -2488 (|#1| (-1 |#1| (-773) |#1|) (-773) |#1|))) (-1104)) (T -680)) -((-2488 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-773) *2)) (-5 *4 (-773)) (-4 *2 (-1104)) (-5 *1 (-680 *2)))) (-2480 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-773)) (-4 *2 (-1104)) (-5 *1 (-680 *2))))) -(-10 -7 (-15 -2480 (|#1| (-1 |#1| |#1|) (-773) |#1|)) (-15 -2488 (|#1| (-1 |#1| (-773) |#1|) (-773) |#1|))) -((-2482 ((|#2| |#1| |#2|) 9)) (-2481 ((|#1| |#1| |#2|) 8))) -(((-681 |#1| |#2|) (-10 -7 (-15 -2481 (|#1| |#1| |#2|)) (-15 -2482 (|#2| |#1| |#2|))) (-1104) (-1104)) (T -681)) -((-2482 (*1 *2 *3 *2) (-12 (-5 *1 (-681 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *1 (-681 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) -(-10 -7 (-15 -2481 (|#1| |#1| |#2|)) (-15 -2482 (|#2| |#1| |#2|))) -((-2483 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-682 |#1| |#2| |#3|) (-10 -7 (-15 -2483 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1104) (-1104) (-1104)) (T -682)) -((-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)) (-5 *1 (-682 *5 *6 *2))))) -(-10 -7 (-15 -2483 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 21)) (-3738 (((-643 (-1220)) $) 19)) (-2484 (($ (-643 (-1220)) (-1220)) 14)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 29) (($ (-1185)) NIL) (((-1185) $) NIL) (((-1220) $) 22) (($ (-1118)) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-683) (-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-1118))) (-15 -2484 ($ (-643 (-1220)) (-1220))) (-15 -3738 ((-643 (-1220)) $)) (-15 -3739 ((-1220) $))))) (T -683)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-683)))) (-2484 (*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1220))) (-5 *3 (-1220)) (-5 *1 (-683)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-683)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-683))))) -(-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-1118))) (-15 -2484 ($ (-643 (-1220)) (-1220))) (-15 -3738 ((-643 (-1220)) $)) (-15 -3739 ((-1220) $)))) -((-2488 (((-1 |#1| (-773) |#1|) (-1 |#1| (-773) |#1|)) 29)) (-2485 (((-1 |#1|) |#1|) 8)) (-2487 ((|#1| |#1|) 23)) (-2486 (((-643 |#1|) (-1 (-643 |#1|) (-643 |#1|)) (-549)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4378 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-773)) 26))) -(((-684 |#1|) (-10 -7 (-15 -2485 ((-1 |#1|) |#1|)) (-15 -4378 ((-1 |#1|) |#1|)) (-15 -2486 (|#1| (-1 |#1| |#1|))) (-15 -2486 ((-643 |#1|) (-1 (-643 |#1|) (-643 |#1|)) (-549))) (-15 -2487 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-773))) (-15 -2488 ((-1 |#1| (-773) |#1|) (-1 |#1| (-773) |#1|)))) (-1104)) (T -684)) -((-2488 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-773) *3)) (-4 *3 (-1104)) (-5 *1 (-684 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *4 (-1104)) (-5 *1 (-684 *4)))) (-2487 (*1 *2 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1104)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-643 *5) (-643 *5))) (-5 *4 (-549)) (-5 *2 (-643 *5)) (-5 *1 (-684 *5)) (-4 *5 (-1104)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-684 *2)) (-4 *2 (-1104)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104)))) (-2485 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104))))) -(-10 -7 (-15 -2485 ((-1 |#1|) |#1|)) (-15 -4378 ((-1 |#1|) |#1|)) (-15 -2486 (|#1| (-1 |#1| |#1|))) (-15 -2486 ((-643 |#1|) (-1 (-643 |#1|) (-643 |#1|)) (-549))) (-15 -2487 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-773))) (-15 -2488 ((-1 |#1| (-773) |#1|) (-1 |#1| (-773) |#1|)))) -((-2491 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2490 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4384 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2489 (((-1 |#2| |#1|) |#2|) 11))) -(((-685 |#1| |#2|) (-10 -7 (-15 -2489 ((-1 |#2| |#1|) |#2|)) (-15 -2490 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4384 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2491 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1104) (-1104)) (T -685)) -((-2491 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) (-5 *1 (-685 *4 *5)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) (-5 *1 (-685 *4 *5)) (-4 *4 (-1104)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5)) (-5 *1 (-685 *4 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-685 *4 *3)) (-4 *4 (-1104)) (-4 *3 (-1104))))) -(-10 -7 (-15 -2489 ((-1 |#2| |#1|) |#2|)) (-15 -2490 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4384 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2491 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2496 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2492 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2493 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2494 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2495 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-686 |#1| |#2| |#3|) (-10 -7 (-15 -2492 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2493 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2494 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2495 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2496 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1104) (-1104) (-1104)) (T -686)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-1 *7 *5)) (-5 *1 (-686 *5 *6 *7)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-686 *4 *5 *6)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-686 *4 *5 *6)) (-4 *4 (-1104)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-686 *4 *5 *6)) (-4 *5 (-1104)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *4 *5 *6)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1104)) (-4 *4 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *5 *4 *6))))) -(-10 -7 (-15 -2492 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2493 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2494 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2495 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2496 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-4270 (($ (-773) (-773)) 43)) (-2501 (($ $ $) 71)) (-3838 (($ |#3|) 66) (($ $) 67)) (-3525 (((-112) $) 38)) (-2500 (($ $ (-549) (-549)) 82)) (-2499 (($ $ (-549) (-549)) 83)) (-2498 (($ $ (-549) (-549) (-549) (-549)) 88)) (-2503 (($ $) 69)) (-3527 (((-112) $) 15)) (-2497 (($ $ (-549) (-549) $) 89)) (-4219 ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) 87)) (-3757 (($ (-773) |#2|) 53)) (-3528 (($ (-643 (-643 |#2|))) 51)) (-4025 (((-643 (-643 |#2|)) $) 78)) (-2502 (($ $ $) 70)) (-3889 (((-3 $ "failed") $ |#2|) 121)) (-4231 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-643 (-549)) (-643 (-549))) 86)) (-3756 (($ (-643 |#2|)) 54) (($ (-643 $)) 56)) (-3526 (((-112) $) 28)) (-4378 (($ |#4|) 61) (((-865) $) NIL)) (-3524 (((-112) $) 40)) (-4381 (($ $ |#2|) 123)) (-4269 (($ $ $) 93) (($ $) 96)) (-4271 (($ $ $) 91)) (** (($ $ (-773)) 110) (($ $ (-549)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-549) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#2|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| (-549) (-549) |#1|)) (-15 -2498 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -2499 (|#1| |#1| (-549) (-549))) (-15 -2500 (|#1| |#1| (-549) (-549))) (-15 -4219 (|#1| |#1| (-643 (-549)) (-643 (-549)) |#1|)) (-15 -4231 (|#1| |#1| (-643 (-549)) (-643 (-549)))) (-15 -4025 ((-643 (-643 |#2|)) |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -2503 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -4378 (|#1| |#4|)) (-15 -3756 (|#1| (-643 |#1|))) (-15 -3756 (|#1| (-643 |#2|))) (-15 -3757 (|#1| (-773) |#2|)) (-15 -3528 (|#1| (-643 (-643 |#2|)))) (-15 -4270 (|#1| (-773) (-773))) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549)))) (-688 |#2| |#3| |#4|) (-1052) (-374 |#2|) (-374 |#2|)) (T -687)) -NIL -(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#2|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| (-549) (-549) |#1|)) (-15 -2498 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -2499 (|#1| |#1| (-549) (-549))) (-15 -2500 (|#1| |#1| (-549) (-549))) (-15 -4219 (|#1| |#1| (-643 (-549)) (-643 (-549)) |#1|)) (-15 -4231 (|#1| |#1| (-643 (-549)) (-643 (-549)))) (-15 -4025 ((-643 (-643 |#2|)) |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -2503 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -4378 (|#1| |#4|)) (-15 -3756 (|#1| (-643 |#1|))) (-15 -3756 (|#1| (-643 |#2|))) (-15 -3757 (|#1| (-773) |#2|)) (-15 -3528 (|#1| (-643 (-643 |#2|)))) (-15 -4270 (|#1| (-773) (-773))) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549)))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) 98)) (-2501 (($ $ $) 88)) (-3838 (($ |#2|) 92) (($ $) 91)) (-3525 (((-112) $) 100)) (-2500 (($ $ (-549) (-549)) 84)) (-2499 (($ $ (-549) (-549)) 83)) (-2498 (($ $ (-549) (-549) (-549) (-549)) 82)) (-2503 (($ $) 90)) (-3527 (((-112) $) 102)) (-1309 (((-112) $ (-773)) 8)) (-2497 (($ $ (-549) (-549) $) 81)) (-4219 ((|#1| $ (-549) (-549) |#1|) 45) (($ $ (-643 (-549)) (-643 (-549)) $) 85)) (-1345 (($ $ (-549) |#2|) 43)) (-1344 (($ $ (-549) |#3|) 42)) (-3757 (($ (-773) |#1|) 96)) (-4156 (($) 7 T CONST)) (-3514 (($ $) 68 (|has| |#1| (-308)))) (-3516 ((|#2| $ (-549)) 47)) (-3513 (((-773) $) 67 (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) 44)) (-3517 ((|#1| $ (-549) (-549)) 49)) (-2124 (((-643 |#1|) $) 31)) (-3512 (((-773) $) 66 (|has| |#1| (-560)))) (-3511 (((-643 |#3|) $) 65 (|has| |#1| (-560)))) (-3519 (((-773) $) 52)) (-4046 (($ (-773) (-773) |#1|) 58)) (-3518 (((-773) $) 51)) (-4151 (((-112) $ (-773)) 9)) (-3751 ((|#1| $) 63 (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) 56)) (-3521 (((-549) $) 54)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 55)) (-3520 (((-549) $) 53)) (-3528 (($ (-643 (-643 |#1|))) 97)) (-2128 (($ (-1 |#1| |#1|) $) 35)) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4025 (((-643 (-643 |#1|)) $) 87)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4021 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-2502 (($ $ $) 89)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) 57)) (-3889 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) (-549)) 50) ((|#1| $ (-549) (-549) |#1|) 48) (($ $ (-643 (-549)) (-643 (-549))) 86)) (-3756 (($ (-643 |#1|)) 95) (($ (-643 $)) 94)) (-3526 (((-112) $) 101)) (-3752 ((|#1| $) 64 (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-3515 ((|#3| $ (-549)) 46)) (-4378 (($ |#3|) 93) (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3524 (((-112) $) 99)) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-4269 (($ $ $) 79) (($ $) 78)) (-4271 (($ $ $) 80)) (** (($ $ (-773)) 71) (($ $ (-549)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-549) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-688 |#1| |#2| |#3|) (-140) (-1052) (-374 |t#1|) (-374 |t#1|)) (T -688)) -((-3527 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-4270 (*1 *1 *2 *2) (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3757 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-374 *3)) (-4 *2 (-374 *3)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-374 *3)) (-4 *4 (-374 *3)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-2503 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-2502 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-2501 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-643 (-643 *3))))) (-4231 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4219 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2500 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2499 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2498 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2497 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *2 (-374 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1052)) (-4 *2 (-374 *3)) (-4 *4 (-374 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-560)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-365)))) (-3514 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-308)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-643 *5)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (|has| *2 (-6 (-4427 #1="*"))) (-4 *2 (-1052)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (|has| *2 (-6 (-4427 #1#))) (-4 *2 (-1052)))) (-4021 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-365))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3527 ((-112) $)) (-15 -3526 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -3524 ((-112) $)) (-15 -4270 ($ (-773) (-773))) (-15 -3528 ($ (-643 (-643 |t#1|)))) (-15 -3757 ($ (-773) |t#1|)) (-15 -3756 ($ (-643 |t#1|))) (-15 -3756 ($ (-643 $))) (-15 -4378 ($ |t#3|)) (-15 -3838 ($ |t#2|)) (-15 -3838 ($ $)) (-15 -2503 ($ $)) (-15 -2502 ($ $ $)) (-15 -2501 ($ $ $)) (-15 -4025 ((-643 (-643 |t#1|)) $)) (-15 -4231 ($ $ (-643 (-549)) (-643 (-549)))) (-15 -4219 ($ $ (-643 (-549)) (-643 (-549)) $)) (-15 -2500 ($ $ (-549) (-549))) (-15 -2499 ($ $ (-549) (-549))) (-15 -2498 ($ $ (-549) (-549) (-549) (-549))) (-15 -2497 ($ $ (-549) (-549) $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4269 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-549) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-773))) (IF (|has| |t#1| (-560)) (-15 -3889 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -4381 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -3514 ($ $)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-15 -3513 ((-773) $)) (-15 -3512 ((-773) $)) (-15 -3511 ((-643 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4427 "*"))) (PROGN (-15 -3752 (|t#1| $)) (-15 -3751 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -4021 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-57 |#1| |#2| |#3|) . T) ((-1219) . T)) -((-4274 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4390 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-689 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4390 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4274 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1052) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|) (-1052) (-374 |#5|) (-374 |#5|) (-688 |#5| |#6| |#7|)) (T -689)) -((-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *8 (-374 *2)) (-4 *9 (-374 *2)) (-5 *1 (-689 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-374 *8)) (-4 *10 (-374 *8)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-374 *8)) (-4 *10 (-374 *8))))) -(-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4390 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4274 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3514 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-3513 (((-773) |#4|) 125 (|has| |#1| (-560)))) (-3512 (((-773) |#4|) 101 (|has| |#1| (-560)))) (-3511 (((-643 |#3|) |#4|) 108 (|has| |#1| (-560)))) (-2542 (((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-3751 ((|#1| |#4|) 57)) (-2508 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-560)))) (-4021 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-2507 ((|#4| |#4|) 93 (|has| |#1| (-560)))) (-2505 ((|#4| |#4| |#1| (-549) (-549)) 65)) (-2504 ((|#4| |#4| (-549) (-549)) 60)) (-2506 ((|#4| |#4| |#1| (-549) (-549)) 70)) (-3752 ((|#1| |#4|) 103)) (-2920 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-560))))) -(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3752 (|#1| |#4|)) (-15 -3751 (|#1| |#4|)) (-15 -2504 (|#4| |#4| (-549) (-549))) (-15 -2505 (|#4| |#4| |#1| (-549) (-549))) (-15 -2506 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-560)) (PROGN (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (-15 -3511 ((-643 |#3|) |#4|)) (-15 -2507 (|#4| |#4|)) (-15 -2508 ((-3 |#4| "failed") |#4|)) (-15 -2920 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3514 (|#4| |#4|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -690)) -((-4021 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2542 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-690 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-3514 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2920 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2508 (*1 *2 *2) (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-643 *6)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2506 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-2505 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-2504 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *1 (-690 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-3751 (*1 *2 *3) (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))) -(-10 -7 (-15 -3752 (|#1| |#4|)) (-15 -3751 (|#1| |#4|)) (-15 -2504 (|#4| |#4| (-549) (-549))) (-15 -2505 (|#4| |#4| |#1| (-549) (-549))) (-15 -2506 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-560)) (PROGN (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (-15 -3511 ((-643 |#3|) |#4|)) (-15 -2507 (|#4| |#4|)) (-15 -2508 ((-3 |#4| "failed") |#4|)) (-15 -2920 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3514 (|#4| |#4|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) 64)) (-2501 (($ $ $) NIL)) (-3838 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-3525 (((-112) $) NIL)) (-2500 (($ $ (-549) (-549)) 22)) (-2499 (($ $ (-549) (-549)) NIL)) (-2498 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-2503 (($ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-2497 (($ $ (-549) (-549) $) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) NIL)) (-1345 (($ $ (-549) (-1269 |#1|)) NIL)) (-1344 (($ $ (-549) (-1269 |#1|)) NIL)) (-3757 (($ (-773) |#1|) 37)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 46 (|has| |#1| (-308)))) (-3516 (((-1269 |#1|) $ (-549)) NIL)) (-3513 (((-773) $) 48 (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) 69)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3512 (((-773) $) 50 (|has| |#1| (-560)))) (-3511 (((-643 (-1269 |#1|)) $) 53 (|has| |#1| (-560)))) (-3519 (((-773) $) 32)) (-4046 (($ (-773) (-773) |#1|) 28)) (-3518 (((-773) $) 33)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#1| $) 44 (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) 10)) (-3521 (((-549) $) 11)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) 14)) (-3520 (((-549) $) 65)) (-3528 (($ (-643 (-643 |#1|))) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4025 (((-643 (-643 |#1|)) $) 76)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4021 (((-3 $ #2="failed") $) 60 (|has| |#1| (-365)))) (-2502 (($ $ $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-3889 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549))) NIL)) (-3756 (($ (-643 |#1|)) NIL) (($ (-643 $)) NIL) (($ (-1269 |#1|)) 70)) (-3526 (((-112) $) NIL)) (-3752 ((|#1| $) 42 (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3515 (((-1269 |#1|) $ (-549)) NIL)) (-4378 (($ (-1269 |#1|)) NIL) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) 38) (($ $ (-549)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) NIL) (((-1269 |#1|) (-1269 |#1|) $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-691 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -3756 ($ (-1269 |#1|))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 $ "failed") $)) |%noBranch|))) (-1052)) (T -691)) -((-4021 (*1 *1 *1) (|partial| -12 (-5 *1 (-691 *2)) (-4 *2 (-365)) (-4 *2 (-1052)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-691 *3))))) -(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -3756 ($ (-1269 |#1|))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 $ "failed") $)) |%noBranch|))) -((-2514 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|)) 37)) (-2513 (((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|) 34)) (-2515 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-773)) 43)) (-2510 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|)) 27)) (-2511 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|)) 31) (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 29)) (-2512 (((-691 |#1|) (-691 |#1|) |#1| (-691 |#1|)) 33)) (-2509 (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 25)) (** (((-691 |#1|) (-691 |#1|) (-773)) 46))) -(((-692 |#1|) (-10 -7 (-15 -2509 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2510 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2512 ((-691 |#1|) (-691 |#1|) |#1| (-691 |#1|))) (-15 -2513 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2514 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2515 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-773))) (-15 ** ((-691 |#1|) (-691 |#1|) (-773)))) (-1052)) (T -692)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4)))) (-2515 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4)))) (-2514 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2513 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2512 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2511 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2511 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2510 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2509 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(-10 -7 (-15 -2509 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2510 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2512 ((-691 |#1|) (-691 |#1|) |#1| (-691 |#1|))) (-15 -2513 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2514 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2515 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-773))) (-15 ** ((-691 |#1|) (-691 |#1|) (-773)))) -((-3577 (((-3 |#1| "failed") $) 18)) (-3576 ((|#1| $) NIL)) (-2516 (($) 7 T CONST)) (-2517 (($ |#1|) 8)) (-4378 (($ |#1|) 16) (((-865) $) 23)) (-3997 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2516)) 11)) (-4003 ((|#1| $) 15))) -(((-693 |#1|) (-13 (-1265) (-1041 |#1|) (-615 (-865)) (-10 -8 (-15 -2517 ($ |#1|)) (-15 -3997 ((-112) $ (|[\|\|]| |#1|))) (-15 -3997 ((-112) $ (|[\|\|]| -2516))) (-15 -4003 (|#1| $)) (-15 -2516 ($) -4384))) (-615 (-865))) (T -693)) -((-2517 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865))))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-615 (-865))) (-5 *2 (-112)) (-5 *1 (-693 *4)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2516)) (-5 *2 (-112)) (-5 *1 (-693 *4)) (-4 *4 (-615 (-865))))) (-4003 (*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865))))) (-2516 (*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865)))))) -(-13 (-1265) (-1041 |#1|) (-615 (-865)) (-10 -8 (-15 -2517 ($ |#1|)) (-15 -3997 ((-112) $ (|[\|\|]| |#1|))) (-15 -3997 ((-112) $ (|[\|\|]| -2516))) (-15 -4003 (|#1| $)) (-15 -2516 ($) -4384))) -((-2520 ((|#2| |#2| |#4|) 33)) (-2523 (((-691 |#2|) |#3| |#4|) 39)) (-2521 (((-691 |#2|) |#2| |#4|) 38)) (-2518 (((-1269 |#2|) |#2| |#4|) 16)) (-2519 ((|#2| |#3| |#4|) 32)) (-2524 (((-691 |#2|) |#3| |#4| (-773) (-773)) 48)) (-2522 (((-691 |#2|) |#2| |#4| (-773)) 47))) -(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2518 ((-1269 |#2|) |#2| |#4|)) (-15 -2519 (|#2| |#3| |#4|)) (-15 -2520 (|#2| |#2| |#4|)) (-15 -2521 ((-691 |#2|) |#2| |#4|)) (-15 -2522 ((-691 |#2|) |#2| |#4| (-773))) (-15 -2523 ((-691 |#2|) |#3| |#4|)) (-15 -2524 ((-691 |#2|) |#3| |#4| (-773) (-773)))) (-1104) (-903 |#1|) (-374 |#2|) (-13 (-374 |#1|) (-10 -7 (-6 -4425)))) (T -694)) -((-2524 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *7 (-903 *6)) (-5 *2 (-691 *7)) (-5 *1 (-694 *6 *7 *3 *4)) (-4 *3 (-374 *7)) (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425)))))) (-2523 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *6 (-903 *5)) (-5 *2 (-691 *6)) (-5 *1 (-694 *5 *6 *3 *4)) (-4 *3 (-374 *6)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425)))))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *3 (-903 *6)) (-5 *2 (-691 *3)) (-5 *1 (-694 *6 *3 *7 *4)) (-4 *7 (-374 *3)) (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425)))))) (-2521 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-691 *3)) (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425)))))) (-2520 (*1 *2 *2 *3) (-12 (-4 *4 (-1104)) (-4 *2 (-903 *4)) (-5 *1 (-694 *4 *2 *5 *3)) (-4 *5 (-374 *2)) (-4 *3 (-13 (-374 *4) (-10 -7 (-6 -4425)))))) (-2519 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *2 (-903 *5)) (-5 *1 (-694 *5 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425)))))) (-2518 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-1269 *3)) (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) -(-10 -7 (-15 -2518 ((-1269 |#2|) |#2| |#4|)) (-15 -2519 (|#2| |#3| |#4|)) (-15 -2520 (|#2| |#2| |#4|)) (-15 -2521 ((-691 |#2|) |#2| |#4|)) (-15 -2522 ((-691 |#2|) |#2| |#4| (-773))) (-15 -2523 ((-691 |#2|) |#3| |#4|)) (-15 -2524 ((-691 |#2|) |#3| |#4| (-773) (-773)))) -((-4173 (((-2 (|:| |num| (-691 |#1|)) (|:| |den| |#1|)) (-691 |#2|)) 20)) (-4171 ((|#1| (-691 |#2|)) 9)) (-4172 (((-691 |#1|) (-691 |#2|)) 18))) -(((-695 |#1| |#2|) (-10 -7 (-15 -4171 (|#1| (-691 |#2|))) (-15 -4172 ((-691 |#1|) (-691 |#2|))) (-15 -4173 ((-2 (|:| |num| (-691 |#1|)) (|:| |den| |#1|)) (-691 |#2|)))) (-560) (-994 |#1|)) (T -695)) -((-4173 (*1 *2 *3) (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |num| (-691 *4)) (|:| |den| *4))) (-5 *1 (-695 *4 *5)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) (-5 *2 (-691 *4)) (-5 *1 (-695 *4 *5)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-691 *4)) (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-695 *2 *4))))) -(-10 -7 (-15 -4171 (|#1| (-691 |#2|))) (-15 -4172 ((-691 |#1|) (-691 |#2|))) (-15 -4173 ((-2 (|:| |num| (-691 |#1|)) (|:| |den| |#1|)) (-691 |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1957 (((-691 (-701))) NIL) (((-691 (-701)) (-1269 $)) NIL)) (-3754 (((-701) $) NIL)) (-3915 (($ $) NIL (|has| (-701) (-1205)))) (-4071 (($ $) NIL (|has| (-701) (-1205)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-701) (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-4206 (($ $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-4401 (((-408 $) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-3438 (($ $) NIL (-12 (|has| (-701) (-1005)) (|has| (-701) (-1205))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-1753 (((-112) $ $) NIL (|has| (-701) (-308)))) (-3540 (((-773)) NIL (|has| (-701) (-370)))) (-3913 (($ $) NIL (|has| (-701) (-1205)))) (-4070 (($ $) NIL (|has| (-701) (-1205)))) (-3917 (($ $) NIL (|has| (-701) (-1205)))) (-4069 (($ $) NIL (|has| (-701) (-1205)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-701) #2#) $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-701) (-1041 (-410 (-549)))))) (-3576 (((-549) $) NIL) (((-701) $) NIL) (((-410 (-549)) $) NIL (|has| (-701) (-1041 (-410 (-549)))))) (-1967 (($ (-1269 (-701))) NIL) (($ (-1269 (-701)) (-1269 $)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-701) (-352)))) (-2964 (($ $ $) NIL (|has| (-701) (-308)))) (-1956 (((-691 (-701)) $) NIL) (((-691 (-701)) $ (-1269 $)) NIL)) (-2427 (((-691 (-701)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-701))) (|:| |vec| (-1269 (-701)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-701) (-641 (-549)))) (((-691 (-549)) (-691 $)) NIL (|has| (-701) (-641 (-549))))) (-4274 (((-3 $ "failed") (-410 (-1174 (-701)))) NIL (|has| (-701) (-365))) (($ (-1174 (-701))) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4075 (((-701) $) 29)) (-3425 (((-3 (-410 (-549)) #3="failed") $) NIL (|has| (-701) (-548)))) (-3424 (((-112) $) NIL (|has| (-701) (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| (-701) (-548)))) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| (-701) (-370)))) (-2963 (($ $ $) NIL (|has| (-701) (-308)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| (-701) (-308)))) (-3236 (($) NIL (|has| (-701) (-352)))) (-1848 (((-112) $) NIL (|has| (-701) (-352)))) (-1941 (($ $) NIL (|has| (-701) (-352))) (($ $ (-773)) NIL (|has| (-701) (-352)))) (-4155 (((-112) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-1462 (((-2 (|:| |r| (-701)) (|:| |phi| (-701))) $) NIL (-12 (|has| (-701) (-1063)) (|has| (-701) (-1205))))) (-4059 (($) NIL (|has| (-701) (-1205)))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-701) (-889 (-380)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-701) (-889 (-549))))) (-4203 (((-834 (-922)) $) NIL (|has| (-701) (-352))) (((-922) $) NIL (|has| (-701) (-352)))) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (-12 (|has| (-701) (-1005)) (|has| (-701) (-1205))))) (-3536 (((-701) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-701) (-352)))) (-1750 (((-3 (-643 $) #4="failed") (-643 $) $) NIL (|has| (-701) (-308)))) (-2192 (((-1174 (-701)) $) NIL (|has| (-701) (-365)))) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 (-701) (-701)) $) NIL)) (-2188 (((-922) $) NIL (|has| (-701) (-370)))) (-4374 (($ $) NIL (|has| (-701) (-1205)))) (-3481 (((-1174 (-701)) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| (-701) (-308))) (($ $ $) NIL (|has| (-701) (-308)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| (-701) (-365)))) (-3869 (($) NIL (|has| (-701) (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| (-701) (-370)))) (-1464 (($) NIL)) (-4076 (((-701) $) 31)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-701) (-308)))) (-3564 (($ (-643 $)) NIL (|has| (-701) (-308))) (($ $ $) NIL (|has| (-701) (-308)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-701) (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-4164 (((-408 $) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-701) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| (-701) (-308)))) (-3889 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-701)) NIL (|has| (-701) (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| (-701) (-308)))) (-4375 (($ $) NIL (|has| (-701) (-1205)))) (-4199 (($ $ (-1180) (-701)) NIL (|has| (-701) (-517 (-1180) (-701)))) (($ $ (-643 (-1180)) (-643 (-701))) NIL (|has| (-701) (-517 (-1180) (-701)))) (($ $ (-643 (-294 (-701)))) NIL (|has| (-701) (-310 (-701)))) (($ $ (-294 (-701))) NIL (|has| (-701) (-310 (-701)))) (($ $ (-701) (-701)) NIL (|has| (-701) (-310 (-701)))) (($ $ (-643 (-701)) (-643 (-701))) NIL (|has| (-701) (-310 (-701))))) (-1752 (((-773) $) NIL (|has| (-701) (-308)))) (-4231 (($ $ (-701)) NIL (|has| (-701) (-287 (-701) (-701))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| (-701) (-308)))) (-4189 (((-701)) NIL) (((-701) (-1269 $)) NIL)) (-1942 (((-3 (-773) "failed") $ $) NIL (|has| (-701) (-352))) (((-773) $) NIL (|has| (-701) (-352)))) (-4242 (($ $ (-1 (-701) (-701))) NIL) (($ $ (-1 (-701) (-701)) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-773)) NIL (|has| (-701) (-233))) (($ $) NIL (|has| (-701) (-233)))) (-2571 (((-691 (-701)) (-1269 $) (-1 (-701) (-701))) NIL (|has| (-701) (-365)))) (-3605 (((-1174 (-701))) NIL)) (-3918 (($ $) NIL (|has| (-701) (-1205)))) (-4068 (($ $) NIL (|has| (-701) (-1205)))) (-1842 (($) NIL (|has| (-701) (-352)))) (-3916 (($ $) NIL (|has| (-701) (-1205)))) (-4067 (($ $) NIL (|has| (-701) (-1205)))) (-3914 (($ $) NIL (|has| (-701) (-1205)))) (-4066 (($ $) NIL (|has| (-701) (-1205)))) (-3644 (((-691 (-701)) (-1269 $)) NIL) (((-1269 (-701)) $) NIL) (((-691 (-701)) (-1269 $) (-1269 $)) NIL) (((-1269 (-701)) $ (-1269 $)) NIL)) (-4402 (((-538) $) NIL (|has| (-701) (-616 (-538)))) (((-168 (-225)) $) NIL (|has| (-701) (-1023))) (((-168 (-380)) $) NIL (|has| (-701) (-1023))) (((-893 (-380)) $) NIL (|has| (-701) (-616 (-893 (-380))))) (((-893 (-549)) $) NIL (|has| (-701) (-616 (-893 (-549))))) (($ (-1174 (-701))) NIL) (((-1174 (-701)) $) NIL) (($ (-1269 (-701))) NIL) (((-1269 (-701)) $) NIL)) (-3410 (($ $) NIL)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| $ (-145)) (|has| (-701) (-913))) (|has| (-701) (-352))))) (-1463 (($ (-701) (-701)) 12)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-701)) NIL) (($ (-168 (-380))) 13) (($ (-168 (-549))) 19) (($ (-168 (-701))) 28) (($ (-168 (-703))) 25) (((-168 (-380)) $) 33) (($ (-410 (-549))) NIL (-3960 (|has| (-701) (-365)) (|has| (-701) (-1041 (-410 (-549))))))) (-3105 (($ $) NIL (|has| (-701) (-352))) (((-3 $ #1#) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| $ (-145)) (|has| (-701) (-913))) (|has| (-701) (-145))))) (-2770 (((-1174 (-701)) $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-3921 (($ $) NIL (|has| (-701) (-1205)))) (-3909 (($ $) NIL (|has| (-701) (-1205)))) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) NIL (|has| (-701) (-1205)))) (-3907 (($ $) NIL (|has| (-701) (-1205)))) (-3923 (($ $) NIL (|has| (-701) (-1205)))) (-3911 (($ $) NIL (|has| (-701) (-1205)))) (-2385 (((-701) $) NIL (|has| (-701) (-1205)))) (-3924 (($ $) NIL (|has| (-701) (-1205)))) (-3912 (($ $) NIL (|has| (-701) (-1205)))) (-3922 (($ $) NIL (|has| (-701) (-1205)))) (-3910 (($ $) NIL (|has| (-701) (-1205)))) (-3920 (($ $) NIL (|has| (-701) (-1205)))) (-3908 (($ $) NIL (|has| (-701) (-1205)))) (-3807 (($ $) NIL (|has| (-701) (-1063)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1 (-701) (-701))) NIL) (($ $ (-1 (-701) (-701)) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-773)) NIL (|has| (-701) (-233))) (($ $) NIL (|has| (-701) (-233)))) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| (-701) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ $) NIL (|has| (-701) (-1205))) (($ $ (-410 (-549))) NIL (-12 (|has| (-701) (-1005)) (|has| (-701) (-1205)))) (($ $ (-549)) NIL (|has| (-701) (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-701) $) NIL) (($ $ (-701)) NIL) (($ (-410 (-549)) $) NIL (|has| (-701) (-365))) (($ $ (-410 (-549))) NIL (|has| (-701) (-365))))) -(((-696) (-13 (-390) (-166 (-701)) (-10 -8 (-15 -4378 ($ (-168 (-380)))) (-15 -4378 ($ (-168 (-549)))) (-15 -4378 ($ (-168 (-701)))) (-15 -4378 ($ (-168 (-703)))) (-15 -4378 ((-168 (-380)) $))))) (T -696)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-549))) (-5 *1 (-696)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-701))) (-5 *1 (-696)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-703))) (-5 *1 (-696)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696))))) -(-13 (-390) (-166 (-701)) (-10 -8 (-15 -4378 ($ (-168 (-380)))) (-15 -4378 ($ (-168 (-549)))) (-15 -4378 ($ (-168 (-701)))) (-15 -4378 ($ (-168 (-703)))) (-15 -4378 ((-168 (-380)) $)))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 63)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41) (($ |#1| $ (-773)) 64)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 62)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-697 |#1|) (-140) (-1104)) (T -697)) -((-4039 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-697 *2)) (-4 *2 (-1104)))) (-2526 (*1 *1 *1) (-12 (-4 *1 (-697 *2)) (-4 *2 (-1104)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-697 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-2 (|:| -2254 *3) (|:| -2125 (-773)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -4039 ($ |t#1| $ (-773))) (-15 -2526 ($ $)) (-15 -2525 ((-643 (-2 (|:| -2254 |t#1|) (|:| -2125 (-773)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2529 (((-643 |#1|) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) (-549)) 65)) (-2527 ((|#1| |#1| (-549)) 62)) (-3564 ((|#1| |#1| |#1| (-549)) 46)) (-4164 (((-643 |#1|) |#1| (-549)) 49)) (-2530 ((|#1| |#1| (-549) |#1| (-549)) 40)) (-2528 (((-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) |#1| (-549)) 61))) -(((-698 |#1|) (-10 -7 (-15 -3564 (|#1| |#1| |#1| (-549))) (-15 -2527 (|#1| |#1| (-549))) (-15 -4164 ((-643 |#1|) |#1| (-549))) (-15 -2528 ((-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) |#1| (-549))) (-15 -2529 ((-643 |#1|) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) (-549))) (-15 -2530 (|#1| |#1| (-549) |#1| (-549)))) (-1245 (-549))) (T -698)) -((-2530 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| -4164 *5) (|:| -4380 (-549))))) (-5 *4 (-549)) (-4 *5 (-1245 *4)) (-5 *2 (-643 *5)) (-5 *1 (-698 *5)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -4380 *4)))) (-5 *1 (-698 *3)) (-4 *3 (-1245 *4)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-643 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1245 *4)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3)))) (-3564 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -3564 (|#1| |#1| |#1| (-549))) (-15 -2527 (|#1| |#1| (-549))) (-15 -4164 ((-643 |#1|) |#1| (-549))) (-15 -2528 ((-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) |#1| (-549))) (-15 -2529 ((-643 |#1|) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) (-549))) (-15 -2530 (|#1| |#1| (-549) |#1| (-549)))) -((-2534 (((-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2531 (((-1136 (-225)) (-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 56) (((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 58) (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 60)) (-2533 (((-1136 (-225)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-643 (-262))) NIL)) (-2532 (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 61))) -(((-699) (-10 -7 (-15 -2531 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2532 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2533 ((-1136 (-225)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2534 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -699)) -((-2534 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-946 (-225)) (-225) (-225))) (-5 *1 (-699)))) (-2533 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) (-2532 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined")) (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) (-2531 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-225))) (-5 *5 (-643 (-262))) (-5 *1 (-699)))) (-2531 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-225))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) (-2531 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) #1#)) (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699))))) -(-10 -7 (-15 -2531 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2532 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2533 ((-1136 (-225)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2534 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-4164 (((-408 (-1174 |#4|)) (-1174 |#4|)) 86) (((-408 |#4|) |#4|) 269))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) (-852) (-795) (-352) (-953 |#3| |#2| |#1|)) (T -700)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) -(-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 97)) (-3533 (((-549) $) 34)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4202 (($ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-4156 (($) NIL T CONST)) (-3531 (($ $) NIL)) (-3577 (((-3 (-549) #1="failed") $) 85) (((-3 (-410 (-549)) #1#) $) 28) (((-3 (-380) #1#) $) 82)) (-3576 (((-549) $) 87) (((-410 (-549)) $) 79) (((-380) $) 80)) (-2964 (($ $ $) 109)) (-3890 (((-3 $ "failed") $) 100)) (-2963 (($ $ $) 108)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2537 (((-922)) 89) (((-922) (-922)) 88)) (-3606 (((-112) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL)) (-4203 (((-549) $) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL)) (-3536 (($ $) NIL)) (-3607 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2535 (((-549) (-549)) 94) (((-549)) 95)) (-2934 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2536 (((-549) (-549)) 92) (((-549)) 93)) (-3260 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2538 (((-549) $) 17)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 104)) (-1944 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL)) (-3534 (($ $) NIL)) (-3675 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-922)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) 105)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2564 (((-549) $) 24)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 107)) (-3015 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-1943 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-4402 (((-380) $) NIL) (((-225) $) NIL) (((-893 (-380)) $) NIL)) (-4378 (((-865) $) 63) (($ (-549)) 75) (($ $) NIL) (($ (-410 (-549))) 78) (($ (-549)) 75) (($ (-410 (-549))) 78) (($ (-380)) 72) (((-380) $) 61) (($ (-703)) 66)) (-3530 (((-773)) 119 T CONST)) (-3348 (($ (-549) (-549) (-922)) 54)) (-3535 (($ $) NIL)) (-1945 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) NIL)) (-3097 (((-922)) 91) (((-922) (-922)) 90)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) 37 T CONST)) (-3067 (($) 18 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 96)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 118)) (-4381 (($ $ $) 77)) (-4269 (($ $) 115) (($ $ $) 116)) (-4271 (($ $ $) 114)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ $ (-410 (-549))) 103)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 110) (($ $ $) 101) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-701) (-13 (-407) (-390) (-365) (-1041 (-380)) (-1041 (-410 (-549))) (-147) (-10 -8 (-15 -2537 ((-922) (-922))) (-15 -2537 ((-922))) (-15 -3097 ((-922) (-922))) (-15 -2536 ((-549) (-549))) (-15 -2536 ((-549))) (-15 -2535 ((-549) (-549))) (-15 -2535 ((-549))) (-15 -4378 ((-380) $)) (-15 -4378 ($ (-703))) (-15 -2538 ((-549) $)) (-15 -2564 ((-549) $)) (-15 -3348 ($ (-549) (-549) (-922)))))) (T -701)) -((-2564 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2537 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) (-2536 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2536 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2535 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-380)) (-5 *1 (-701)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-701)))) (-3348 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-5 *1 (-701))))) -(-13 (-407) (-390) (-365) (-1041 (-380)) (-1041 (-410 (-549))) (-147) (-10 -8 (-15 -2537 ((-922) (-922))) (-15 -2537 ((-922))) (-15 -3097 ((-922) (-922))) (-15 -2536 ((-549) (-549))) (-15 -2536 ((-549))) (-15 -2535 ((-549) (-549))) (-15 -2535 ((-549))) (-15 -4378 ((-380) $)) (-15 -4378 ($ (-703))) (-15 -2538 ((-549) $)) (-15 -2564 ((-549) $)) (-15 -3348 ($ (-549) (-549) (-922))))) -((-2541 (((-691 |#1|) (-691 |#1|) |#1| |#1|) 88)) (-3514 (((-691 |#1|) (-691 |#1|) |#1|) 67)) (-2540 (((-691 |#1|) (-691 |#1|) |#1|) 89)) (-2539 (((-691 |#1|) (-691 |#1|)) 68)) (-2542 (((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 87))) -(((-702 |#1|) (-10 -7 (-15 -2539 ((-691 |#1|) (-691 |#1|))) (-15 -3514 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2540 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2541 ((-691 |#1|) (-691 |#1|) |#1| |#1|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) (-308)) (T -702)) -((-2542 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-702 *3)) (-4 *3 (-308)))) (-2541 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) (-2540 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) (-3514 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) -(-10 -7 (-15 -2539 ((-691 |#1|) (-691 |#1|))) (-15 -3514 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2540 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2541 ((-691 |#1|) (-691 |#1|) |#1| |#1|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) 31)) (-3576 (((-549) $) 29)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($ $) NIL) (($) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) NIL)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) NIL)) (-2934 (($ $ $) NIL)) (-2543 (((-922) (-922)) 10) (((-922)) 9)) (-3260 (($ $ $) NIL)) (-2222 (($ $) NIL)) (-4265 (($ $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2224 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL) (($ $ (-773)) NIL)) (-2223 (($ $) NIL)) (-3824 (($ $) NIL)) (-4402 (((-225) $) NIL) (((-380) $) NIL) (((-893 (-549)) $) NIL) (((-538) $) NIL) (((-549) $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) 28) (($ $) NIL) (($ (-549)) 28) (((-315 $) (-315 (-549))) 18)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) NIL)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL) (($ $ (-773)) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) -(((-703) (-13 (-390) (-548) (-10 -8 (-15 -2543 ((-922) (-922))) (-15 -2543 ((-922))) (-15 -4378 ((-315 $) (-315 (-549))))))) (T -703)) -((-2543 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703)))) (-2543 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-315 (-549))) (-5 *2 (-315 (-703))) (-5 *1 (-703))))) -(-13 (-390) (-548) (-10 -8 (-15 -2543 ((-922) (-922))) (-15 -2543 ((-922))) (-15 -4378 ((-315 $) (-315 (-549)))))) -((-2549 (((-1 |#4| |#2| |#3|) |#1| (-1180) (-1180)) 19)) (-2544 (((-1 |#4| |#2| |#3|) (-1180)) 12))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 ((-1 |#4| |#2| |#3|) (-1180))) (-15 -2549 ((-1 |#4| |#2| |#3|) |#1| (-1180) (-1180)))) (-616 (-538)) (-1219) (-1219) (-1219)) (T -704)) -((-2549 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *3 *5 *6 *7)) (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *4 *5 *6 *7)) (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219))))) -(-10 -7 (-15 -2544 ((-1 |#4| |#2| |#3|) (-1180))) (-15 -2549 ((-1 |#4| |#2| |#3|) |#1| (-1180) (-1180)))) -((-2545 (((-1 (-225) (-225) (-225)) |#1| (-1180) (-1180)) 43) (((-1 (-225) (-225)) |#1| (-1180)) 48))) -(((-705 |#1|) (-10 -7 (-15 -2545 ((-1 (-225) (-225)) |#1| (-1180))) (-15 -2545 ((-1 (-225) (-225) (-225)) |#1| (-1180) (-1180)))) (-616 (-538))) (T -705)) -((-2545 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-705 *3)) (-4 *3 (-616 (-538))))) (-2545 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-705 *3)) (-4 *3 (-616 (-538)))))) -(-10 -7 (-15 -2545 ((-1 (-225) (-225)) |#1| (-1180))) (-15 -2545 ((-1 (-225) (-225) (-225)) |#1| (-1180) (-1180)))) -((-2546 (((-1180) |#1| (-1180) (-643 (-1180))) 10) (((-1180) |#1| (-1180) (-1180) (-1180)) 13) (((-1180) |#1| (-1180) (-1180)) 12) (((-1180) |#1| (-1180)) 11))) -(((-706 |#1|) (-10 -7 (-15 -2546 ((-1180) |#1| (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-643 (-1180))))) (-616 (-538))) (T -706)) -((-2546 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) (-2546 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) (-2546 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) (-2546 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538)))))) -(-10 -7 (-15 -2546 ((-1180) |#1| (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-643 (-1180))))) -((-2547 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-707 |#1| |#2|) (-10 -7 (-15 -2547 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1219) (-1219)) (T -707)) -((-2547 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-707 *3 *4)) (-4 *3 (-1219)) (-4 *4 (-1219))))) -(-10 -7 (-15 -2547 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2548 (((-1 |#3| |#2|) (-1180)) 11)) (-2549 (((-1 |#3| |#2|) |#1| (-1180)) 21))) -(((-708 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-1 |#3| |#2|) (-1180))) (-15 -2549 ((-1 |#3| |#2|) |#1| (-1180)))) (-616 (-538)) (-1219) (-1219)) (T -708)) -((-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *3 *5 *6)) (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *4 *5 *6)) (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219))))) -(-10 -7 (-15 -2548 ((-1 |#3| |#2|) (-1180))) (-15 -2549 ((-1 |#3| |#2|) |#1| (-1180)))) -((-2552 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#4|)) (-643 |#3|) (-643 |#4|) (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#4|)))) (-643 (-773)) (-1269 (-643 (-1174 |#3|))) |#3|) 95)) (-2551 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#3|)) (-643 |#3|) (-643 |#4|) (-643 (-773)) |#3|) 113)) (-2550 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 |#3|) (-643 (-773)) (-643 (-1174 |#4|)) (-1269 (-643 (-1174 |#3|))) |#3|) 47))) -(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 |#3|) (-643 (-773)) (-643 (-1174 |#4|)) (-1269 (-643 (-1174 |#3|))) |#3|)) (-15 -2551 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#3|)) (-643 |#3|) (-643 |#4|) (-643 (-773)) |#3|)) (-15 -2552 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#4|)) (-643 |#3|) (-643 |#4|) (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#4|)))) (-643 (-773)) (-1269 (-643 (-1174 |#3|))) |#3|))) (-795) (-852) (-308) (-953 |#3| |#1| |#2|)) (T -709)) -((-2552 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-643 (-1174 *13))) (-5 *3 (-1174 *13)) (-5 *4 (-643 *12)) (-5 *5 (-643 *10)) (-5 *6 (-643 *13)) (-5 *7 (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *13))))) (-5 *8 (-643 (-773))) (-5 *9 (-1269 (-643 (-1174 *10)))) (-4 *12 (-852)) (-4 *10 (-308)) (-4 *13 (-953 *10 *11 *12)) (-4 *11 (-795)) (-5 *1 (-709 *11 *12 *10 *13)))) (-2551 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-643 *11)) (-5 *5 (-643 (-1174 *9))) (-5 *6 (-643 *9)) (-5 *7 (-643 *12)) (-5 *8 (-643 (-773))) (-4 *11 (-852)) (-4 *9 (-308)) (-4 *12 (-953 *9 *10 *11)) (-4 *10 (-795)) (-5 *2 (-643 (-1174 *12))) (-5 *1 (-709 *10 *11 *9 *12)) (-5 *3 (-1174 *12)))) (-2550 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-643 (-1174 *11))) (-5 *3 (-1174 *11)) (-5 *4 (-643 *10)) (-5 *5 (-643 *8)) (-5 *6 (-643 (-773))) (-5 *7 (-1269 (-643 (-1174 *8)))) (-4 *10 (-852)) (-4 *8 (-308)) (-4 *11 (-953 *8 *9 *10)) (-4 *9 (-795)) (-5 *1 (-709 *9 *10 *8 *11))))) -(-10 -7 (-15 -2550 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 |#3|) (-643 (-773)) (-643 (-1174 |#4|)) (-1269 (-643 (-1174 |#3|))) |#3|)) (-15 -2551 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#3|)) (-643 |#3|) (-643 |#4|) (-643 (-773)) |#3|)) (-15 -2552 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#4|)) (-643 |#3|) (-643 |#4|) (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#4|)))) (-643 (-773)) (-1269 (-643 (-1174 |#3|))) |#3|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 48)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3294 (($ |#1| (-773)) 46)) (-3223 (((-773) $) 50)) (-3594 ((|#1| $) 49)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 (((-773) $) 51)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-4109 ((|#1| $ (-773)) 47)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-710 |#1|) (-140) (-1052)) (T -710)) -((-4380 (*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052))))) -(-13 (-1052) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4380 ((-773) $)) (-15 -3223 ((-773) $)) (-15 -3594 (|t#1| $)) (-15 -4391 ($ $)) (-15 -4109 (|t#1| $ (-773))) (-15 -3294 ($ |t#1| (-773))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-4390 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-711 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4390 (|#6| (-1 |#4| |#1|) |#3|))) (-560) (-1245 |#1|) (-1245 (-410 |#2|)) (-560) (-1245 |#4|) (-1245 (-410 |#5|))) (T -711)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-560)) (-4 *7 (-560)) (-4 *6 (-1245 *5)) (-4 *2 (-1245 (-410 *8))) (-5 *1 (-711 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1245 (-410 *6))) (-4 *8 (-1245 *7))))) -(-10 -7 (-15 -4390 (|#6| (-1 |#4| |#1|) |#3|))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2553 (((-1162) (-865)) 38)) (-4049 (((-1275) (-1162)) 31)) (-2555 (((-1162) (-865)) 28)) (-2554 (((-1162) (-865)) 29)) (-4378 (((-865) $) NIL) (((-1162) (-865)) 27)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-712) (-13 (-1104) (-10 -7 (-15 -4378 ((-1162) (-865))) (-15 -2555 ((-1162) (-865))) (-15 -2554 ((-1162) (-865))) (-15 -2553 ((-1162) (-865))) (-15 -4049 ((-1275) (-1162)))))) (T -712)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-712))))) -(-13 (-1104) (-10 -7 (-15 -4378 ((-1162) (-865))) (-15 -2555 ((-1162) (-865))) (-15 -2554 ((-1162) (-865))) (-15 -2553 ((-1162) (-865))) (-15 -4049 ((-1275) (-1162))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-4274 (($ |#1| |#2|) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 ((|#2| $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2565 (((-3 $ "failed") $ $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) ((|#1| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-713 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -713)) -((-3014 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4378 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4274 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2565 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-365) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)))) -((-2968 (((-112) $ $) 90)) (-3608 (((-112) $) 36)) (-4198 (((-1269 |#1|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#1|)) NIL)) (-3487 (((-1174 $) $ (-1085)) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) NIL (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3540 (((-773)) 56 (|has| |#1| (-370)))) (-4192 (($ $ (-773)) NIL)) (-4191 (($ $ (-773)) NIL)) (-2562 ((|#2| |#2|) 52)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1085) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 40)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-4274 (($ |#2|) 50)) (-3890 (((-3 $ "failed") $) 100)) (-3395 (($) 61 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4190 (($ $ $) NIL)) (-4185 (($ $ $) NIL (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-2558 (((-961 $)) 92)) (-1769 (($ $ |#1| (-773) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ $) NIL (|has| |#1| (-560)))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) NIL) (($ (-1174 $) (-1085)) NIL)) (-4208 (($ $ (-773)) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 88) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3014 ((|#2|) 53)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4197 (((-1174 |#1|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-3481 ((|#2| $) 49)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) 34)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) NIL)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2556 (($ $) 91 (|has| |#1| (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-643 (-1085)) (-643 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 101 (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4380 (((-773) $) 38) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-2557 (((-961 $)) 42)) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#1| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#1| (-560)))) (-4378 (((-865) $) 71) (($ (-549)) NIL) (($ |#1|) 68) (($ (-1085)) NIL) (($ |#2|) 78) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) 73) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 25 T CONST)) (-2561 (((-1269 |#1|) $) 86)) (-2560 (($ (-1269 |#1|)) 60)) (-3067 (($) 8 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2559 (((-1269 |#1|) $) NIL)) (-3455 (((-112) $ $) 79)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) 82) (($ $ $) NIL)) (-4271 (($ $ $) 39)) (** (($ $ (-922)) NIL) (($ $ (-773)) 95)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 67) (($ $ $) 85) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) -(((-714 |#1| |#2|) (-13 (-1245 |#1|) (-618 |#2|) (-10 -8 (-15 -2562 (|#2| |#2|)) (-15 -3014 (|#2|)) (-15 -4274 ($ |#2|)) (-15 -3481 (|#2| $)) (-15 -2561 ((-1269 |#1|) $)) (-15 -2560 ($ (-1269 |#1|))) (-15 -2559 ((-1269 |#1|) $)) (-15 -2558 ((-961 $))) (-15 -2557 ((-961 $))) (IF (|has| |#1| (-352)) (-15 -2556 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1052) (-1245 |#1|)) (T -714)) -((-2562 (*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3)))) (-3014 (*1 *2) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3)))) (-3481 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2559 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2557 (*1 *2) (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2556 (*1 *1 *1) (-12 (-4 *2 (-352)) (-4 *2 (-1052)) (-5 *1 (-714 *2 *3)) (-4 *3 (-1245 *2))))) -(-13 (-1245 |#1|) (-618 |#2|) (-10 -8 (-15 -2562 (|#2| |#2|)) (-15 -3014 (|#2|)) (-15 -4274 ($ |#2|)) (-15 -3481 (|#2| $)) (-15 -2561 ((-1269 |#1|) $)) (-15 -2560 ($ (-1269 |#1|))) (-15 -2559 ((-1269 |#1|) $)) (-15 -2558 ((-961 $))) (-15 -2557 ((-961 $))) (IF (|has| |#1| (-352)) (-15 -2556 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 ((|#1| $) 13)) (-3664 (((-1123) $) NIL)) (-2564 ((|#2| $) 12)) (-3953 (($ |#1| |#2|) 16)) (-4378 (((-865) $) NIL) (($ (-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) 15) (((-2 (|:| -2563 |#1|) (|:| -2564 |#2|)) $) 14)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 11))) -(((-715 |#1| |#2| |#3|) (-13 (-852) (-493 (-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) (-10 -8 (-15 -2564 (|#2| $)) (-15 -2563 (|#1| $)) (-15 -3953 ($ |#1| |#2|)))) (-852) (-1104) (-1 (-112) (-2 (|:| -2563 |#1|) (|:| -2564 |#2|)) (-2 (|:| -2563 |#1|) (|:| -2564 |#2|)))) (T -715)) -((-2564 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-715 *3 *2 *4)) (-4 *3 (-852)) (-14 *4 (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *2)) (-2 (|:| -2563 *3) (|:| -2564 *2)))))) (-2563 (*1 *2 *1) (-12 (-4 *2 (-852)) (-5 *1 (-715 *2 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) (-2 (|:| -2563 *2) (|:| -2564 *3)))))) (-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-715 *2 *3 *4)) (-4 *2 (-852)) (-4 *3 (-1104)) (-14 *4 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) (-2 (|:| -2563 *2) (|:| -2564 *3))))))) -(-13 (-852) (-493 (-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) (-10 -8 (-15 -2564 (|#2| $)) (-15 -2563 (|#1| $)) (-15 -3953 ($ |#1| |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 66)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #1="failed") $) 105) (((-3 (-113) #1#) $) 111)) (-3576 ((|#1| $) NIL) (((-113) $) 39)) (-3890 (((-3 $ "failed") $) 106)) (-2916 ((|#2| (-113) |#2|) 93)) (-2573 (((-112) $) NIL)) (-2915 (($ |#1| (-363 (-113))) 14)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2917 (($ $ (-1 |#2| |#2|)) 65)) (-2918 (($ $ (-1 |#2| |#2|)) 44)) (-4231 ((|#2| $ |#2|) 33)) (-2919 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4378 (((-865) $) 73) (($ (-549)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 37 T CONST)) (-3662 (((-112) $ $) NIL)) (-2920 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-3510 (($) 21 T CONST)) (-3067 (($) 9 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) 48) (($ $ $) NIL)) (-4271 (($ $ $) 83)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ (-113) (-549)) NIL) (($ $ (-549)) 64)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-716 |#1| |#2|) (-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#2| |#2|))) (-15 -2917 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#2| (-113) |#2|)) (-15 -2915 ($ |#1| (-363 (-113)))))) (-1052) (-650 |#1|)) (T -716)) -((-2920 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) (-2920 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) (-2919 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) (-2918 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *5)) (-4 *5 (-650 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)) (-4 *4 (-650 *3)))) (-2916 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *2)) (-4 *2 (-650 *4)))) (-2915 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-113))) (-4 *2 (-1052)) (-5 *1 (-716 *2 *4)) (-4 *4 (-650 *2))))) -(-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#2| |#2|))) (-15 -2917 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#2| (-113) |#2|)) (-15 -2915 ($ |#1| (-363 (-113)))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 33)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ |#1| |#2|) 25)) (-3890 (((-3 $ "failed") $) 51)) (-2573 (((-112) $) 35)) (-3014 ((|#2| $) 12)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 52)) (-3664 (((-1123) $) NIL)) (-2565 (((-3 $ "failed") $ $) 50)) (-4378 (((-865) $) 24) (($ (-549)) 19) ((|#1| $) 13)) (-3530 (((-773)) 28 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 16 T CONST)) (-3067 (($) 30 T CONST)) (-3455 (((-112) $ $) 41)) (-4269 (($ $) 46) (($ $ $) 40)) (-4271 (($ $ $) 43)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 21) (($ $ $) 20))) -(((-717 |#1| |#2| |#3| |#4| |#5|) (-13 (-1052) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -717)) -((-3890 (*1 *1 *1) (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3014 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4378 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4274 (*1 *1 *2 *3) (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2565 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2806 (*1 *1 *1) (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-1052) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)))) -((* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-718 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-719 |#2|) (-172)) (T -718)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-719 |#1|) (-140) (-172)) (T -719)) -NIL -(-13 (-111 |t#1| |t#1|) (-642 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-2762 (($ |#1|) 17) (($ $ |#1|) 20)) (-4279 (($ |#1|) 18) (($ $ |#1|) 21)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2573 (((-112) $) NIL)) (-2566 (($ |#1| |#1| |#1| |#1|) 8)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 16)) (-3664 (((-1123) $) NIL)) (-4199 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 39)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 9 T CONST)) (-3455 (((-112) $ $) 48)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 14))) -(((-720 |#1|) (-13 (-476) (-10 -8 (-15 -2566 ($ |#1| |#1| |#1| |#1|)) (-15 -2762 ($ |#1|)) (-15 -4279 ($ |#1|)) (-15 -3890 ($)) (-15 -2762 ($ $ |#1|)) (-15 -4279 ($ $ |#1|)) (-15 -3890 ($ $)) (-15 -4199 (|#1| $ |#1|)) (-15 -4199 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -720)) -((-2566 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-2762 (*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4279 (*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-3890 (*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-2762 (*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4279 (*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4199 (*1 *2 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4199 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-720 *3))))) -(-13 (-476) (-10 -8 (-15 -2566 ($ |#1| |#1| |#1| |#1|)) (-15 -2762 ($ |#1|)) (-15 -4279 ($ |#1|)) (-15 -3890 ($)) (-15 -2762 ($ $ |#1|)) (-15 -4279 ($ $ |#1|)) (-15 -3890 ($ $)) (-15 -4199 (|#1| $ |#1|)) (-15 -4199 ((-834 |#1|) $ (-834 |#1|))))) -((-2570 (($ $ (-922)) 21)) (-2569 (($ $ (-922)) 22)) (** (($ $ (-922)) 10))) -(((-721 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) (-722)) (T -721)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-2570 (($ $ (-922)) 16)) (-2569 (($ $ (-922)) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 17))) -(((-722) (-140)) (T -722)) -((* (*1 *1 *1 *1) (-4 *1 (-722))) (-2570 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) (-2569 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922))))) -(-13 (-1104) (-10 -8 (-15 * ($ $ $)) (-15 -2570 ($ $ (-922))) (-15 -2569 ($ $ (-922))) (-15 ** ($ $ (-922))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2570 (($ $ (-922)) NIL) (($ $ (-773)) 21)) (-2573 (((-112) $) 10)) (-2569 (($ $ (-922)) NIL) (($ $ (-773)) 22)) (** (($ $ (-922)) NIL) (($ $ (-773)) 16))) -(((-723 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-773))) (-15 -2569 (|#1| |#1| (-773))) (-15 -2570 (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) (-724)) (T -723)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-773))) (-15 -2569 (|#1| |#1| (-773))) (-15 -2570 (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-2567 (((-3 $ "failed") $) 18)) (-2570 (($ $ (-922)) 16) (($ $ (-773)) 23)) (-3890 (((-3 $ "failed") $) 20)) (-2573 (((-112) $) 24)) (-2568 (((-3 $ "failed") $) 19)) (-2569 (($ $ (-922)) 15) (($ $ (-773)) 22)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 25 T CONST)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-773)) 21)) (* (($ $ $) 17))) -(((-724) (-140)) (T -724)) -((-3067 (*1 *1) (-4 *1 (-724))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))) (-2570 (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) (-2569 (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) (-3890 (*1 *1 *1) (|partial| -4 *1 (-724))) (-2568 (*1 *1 *1) (|partial| -4 *1 (-724))) (-2567 (*1 *1 *1) (|partial| -4 *1 (-724)))) -(-13 (-722) (-10 -8 (-15 (-3067) ($) -4384) (-15 -2573 ((-112) $)) (-15 -2570 ($ $ (-773))) (-15 -2569 ($ $ (-773))) (-15 ** ($ $ (-773))) (-15 -3890 ((-3 $ "failed") $)) (-15 -2568 ((-3 $ "failed") $)) (-15 -2567 ((-3 $ "failed") $)))) -(((-102) . T) ((-615 (-865)) . T) ((-722) . T) ((-1104) . T)) -((-3540 (((-773)) 42)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 26)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 23)) (-4274 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 52)) (-3890 (((-3 $ "failed") $) 72)) (-3395 (($) 46)) (-3536 ((|#2| $) 21)) (-2572 (($) 18)) (-4242 (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-2571 (((-691 |#2|) (-1269 $) (-1 |#2| |#2|)) 67)) (-4402 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2770 ((|#3| $) 39)) (-2190 (((-1269 $)) 36))) -(((-725 |#1| |#2| |#3|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3395 (|#1|)) (-15 -3540 ((-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -2571 ((-691 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -4274 ((-3 |#1| "failed") (-410 |#3|))) (-15 -4402 (|#1| |#3|)) (-15 -4274 (|#1| |#3|)) (-15 -2572 (|#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 (|#3| |#1|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -2190 ((-1269 |#1|))) (-15 -2770 (|#3| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) (-726 |#2| |#3|) (-172) (-1245 |#2|)) (T -725)) -((-3540 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-773)) (-5 *1 (-725 *3 *4 *5)) (-4 *3 (-726 *4 *5))))) -(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3395 (|#1|)) (-15 -3540 ((-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -2571 ((-691 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -4274 ((-3 |#1| "failed") (-410 |#3|))) (-15 -4402 (|#1| |#3|)) (-15 -4274 (|#1| |#3|)) (-15 -2572 (|#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 (|#3| |#1|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -2190 ((-1269 |#1|))) (-15 -2770 (|#3| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-2241 (($ $) 103 (|has| |#1| (-365)))) (-2239 (((-112) $) 105 (|has| |#1| (-365)))) (-1957 (((-691 |#1|) (-1269 $)) 53) (((-691 |#1|)) 68)) (-3754 ((|#1| $) 59)) (-1843 (((-1192 (-922) (-773)) (-549)) 155 (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 122 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 123 (|has| |#1| (-365)))) (-1753 (((-112) $ $) 113 (|has| |#1| (-365)))) (-3540 (((-773)) 96 (|has| |#1| (-370)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 178 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 176 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 173)) (-3576 (((-549) $) 177 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 175 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 174)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-352)))) (-2964 (($ $ $) 117 (|has| |#1| (-365)))) (-1956 (((-691 |#1|) $ (-1269 $)) 60) (((-691 |#1|) $) 66)) (-2427 (((-691 (-549)) (-691 $)) 172 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 171 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 170) (((-691 |#1|) (-691 $)) 169)) (-4274 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-922)) 61)) (-3395 (($) 99 (|has| |#1| (-370)))) (-2963 (($ $ $) 116 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111 (|has| |#1| (-365)))) (-3236 (($) 157 (|has| |#1| (-352)))) (-1848 (((-112) $) 158 (|has| |#1| (-352)))) (-1941 (($ $ (-773)) 149 (|has| |#1| (-352))) (($ $) 148 (|has| |#1| (-352)))) (-4155 (((-112) $) 124 (|has| |#1| (-365)))) (-4203 (((-922) $) 160 (|has| |#1| (-352))) (((-834 (-922)) $) 146 (|has| |#1| (-352)))) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 58)) (-3868 (((-3 $ "failed") $) 150 (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120 (|has| |#1| (-365)))) (-2192 ((|#2| $) 51 (|has| |#1| (-365)))) (-2188 (((-922) $) 98 (|has| |#1| (-370)))) (-3481 ((|#2| $) 164)) (-2069 (($ (-643 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 125 (|has| |#1| (-365)))) (-3869 (($) 151 (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) 97 (|has| |#1| (-370)))) (-3664 (((-1123) $) 11)) (-2572 (($) 168)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 154 (|has| |#1| (-352)))) (-4164 (((-408 $) $) 121 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118 (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112 (|has| |#1| (-365)))) (-1752 (((-773) $) 114 (|has| |#1| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115 (|has| |#1| (-365)))) (-4189 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-1942 (((-773) $) 159 (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) 147 (|has| |#1| (-352)))) (-4242 (($ $) 145 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) 143 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) 141 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180))) 140 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1180) (-773)) 139 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-773))) 138 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-773)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3605 ((|#2|) 167)) (-1842 (($) 156 (|has| |#1| (-352)))) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-691 |#1|) (-1269 $)) 72)) (-4402 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 153 (|has| |#1| (-352)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-549))) 95 (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (($ $) 152 (|has| |#1| (-352))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2770 ((|#2| $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-2240 (((-112) $ $) 104 (|has| |#1| (-365)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 144 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) 142 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) 137 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180))) 136 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1180) (-773)) 135 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-773))) 134 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-773)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 129 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-549)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-549))) 127 (|has| |#1| (-365))))) -(((-726 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -726)) -((-2572 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-726 *2 *3)) (-4 *3 (-1245 *2)))) (-3605 (*1 *2) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) (-4402 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-4274 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-726 *3 *4)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-726 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *5))))) -(-13 (-413 |t#1| |t#2|) (-172) (-616 |t#2|) (-415 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2572 ($)) (-15 -3605 (|t#2|)) (-15 -4274 ($ |t#2|)) (-15 -4402 ($ |t#2|)) (-15 -3481 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -4274 ((-3 $ "failed") (-410 |t#2|))) (-15 -2571 ((-691 |t#1|) (-1269 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-352)) (-6 (-352)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-352)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-352)) (|has| |#1| (-365))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) . T) ((-616 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -3960 (|has| |#1| (-352)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-291) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-308) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-365) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-405) |has| |#1| (-352)) ((-370) -3960 (|has| |#1| (-352)) (|has| |#1| (-370))) ((-352) |has| |#1| (-352)) ((-372 |#1| |#2|) . T) ((-413 |#1| |#2|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-560) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-648 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-642 |#1|) . T) ((-642 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-719 |#1|) . T) ((-719 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180)))) ((-924) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-352)) ((-1224) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)))) -((-4156 (($) 11)) (-3890 (((-3 $ "failed") $) 14)) (-2573 (((-112) $) 10)) (** (($ $ (-922)) NIL) (($ $ (-773)) 20))) -(((-727 |#1|) (-10 -8 (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 ** (|#1| |#1| (-922)))) (-728)) (T -727)) -NIL -(-10 -8 (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 ** (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-4156 (($) 19 T CONST)) (-3890 (((-3 $ "failed") $) 16)) (-2573 (((-112) $) 18)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-773)) 17)) (* (($ $ $) 15))) -(((-728) (-140)) (T -728)) -((-3067 (*1 *1) (-4 *1 (-728))) (-4156 (*1 *1) (-4 *1 (-728))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-773)))) (-3890 (*1 *1 *1) (|partial| -4 *1 (-728)))) -(-13 (-1115) (-10 -8 (-15 (-3067) ($) -4384) (-15 -4156 ($) -4384) (-15 -2573 ((-112) $)) (-15 ** ($ $ (-773))) (-15 -3890 ((-3 $ "failed") $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1115) . T) ((-1104) . T)) -((-2574 (((-2 (|:| -3493 (-408 |#2|)) (|:| |special| (-408 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3842 (((-2 (|:| -3493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2575 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-3859 (((-2 (|:| |poly| |#2|) (|:| -3493 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48))) -(((-729 |#1| |#2|) (-10 -7 (-15 -3842 ((-2 (|:| -3493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2574 ((-2 (|:| -3493 (-408 |#2|)) (|:| |special| (-408 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2575 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -3859 ((-2 (|:| |poly| |#2|) (|:| -3493 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -729)) -((-3859 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3493 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-729 *5 *6)) (-5 *3 (-410 *6)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-729 *5 *2)) (-4 *5 (-365)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3493 (-408 *3)) (|:| |special| (-408 *3)))) (-5 *1 (-729 *5 *3)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3493 *3) (|:| |special| *3))) (-5 *1 (-729 *5 *3))))) -(-10 -7 (-15 -3842 ((-2 (|:| -3493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2574 ((-2 (|:| -3493 (-408 |#2|)) (|:| |special| (-408 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2575 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -3859 ((-2 (|:| |poly| |#2|) (|:| -3493 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) -((-2576 ((|#7| (-643 |#5|) |#6|) NIL)) (-4390 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4390 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2576 (|#7| (-643 |#5|) |#6|))) (-852) (-795) (-795) (-1052) (-1052) (-953 |#4| |#2| |#1|) (-953 |#5| |#3| |#1|)) (T -730)) -((-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *9)) (-4 *9 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *8 (-1052)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1052)) (-4 *9 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5))))) -(-10 -7 (-15 -4390 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2576 (|#7| (-643 |#5|) |#6|))) -((-4390 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-731 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4390 (|#7| (-1 |#2| |#1|) |#6|))) (-852) (-852) (-795) (-795) (-1052) (-953 |#5| |#3| |#1|) (-953 |#5| |#4| |#2|)) (T -731)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-852)) (-4 *6 (-852)) (-4 *7 (-795)) (-4 *9 (-1052)) (-4 *2 (-953 *9 *8 *6)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-795)) (-4 *4 (-953 *9 *7 *5))))) -(-10 -7 (-15 -4390 (|#7| (-1 |#2| |#1|) |#6|))) -((-4164 (((-408 |#4|) |#4|) 42))) -(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) (-795) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180))))) (-308) (-953 (-949 |#3|) |#1| |#2|)) (T -732)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-953 (-949 *6) *4 *5))))) -(-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-866 |#1|)) $) NIL)) (-3487 (((-1174 $) $ (-866 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-534 (-866 |#1|)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) NIL) (($ (-1174 $) (-866 |#1|)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-534 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 (((-534 (-866 |#1|)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-1770 (($ (-1 (-534 (-866 |#1|)) (-534 (-866 |#1|))) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) NIL) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) NIL) (($ $ (-866 |#1|) $) NIL) (($ $ (-643 (-866 |#1|)) (-643 $)) NIL)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 (((-534 (-866 |#1|)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-866 |#1|)) NIL) (($ $) NIL (|has| |#2| (-560))) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-534 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-733 |#1| |#2|) (-953 |#2| (-534 (-866 |#1|)) (-866 |#1|)) (-643 (-1180)) (-1052)) (T -733)) -NIL -(-953 |#2| (-534 (-866 |#1|)) (-866 |#1|)) -((-2577 (((-2 (|:| -2805 (-949 |#3|)) (|:| -2236 (-949 |#3|))) |#4|) 14)) (-3387 ((|#4| |#4| |#2|) 33)) (-2580 ((|#4| (-410 (-949 |#3|)) |#2|) 64)) (-2579 ((|#4| (-1174 (-949 |#3|)) |#2|) 77)) (-2578 ((|#4| (-1174 |#4|) |#2|) 51)) (-3386 ((|#4| |#4| |#2|) 54)) (-4164 (((-408 |#4|) |#4|) 40))) -(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2577 ((-2 (|:| -2805 (-949 |#3|)) (|:| -2236 (-949 |#3|))) |#4|)) (-15 -3386 (|#4| |#4| |#2|)) (-15 -2578 (|#4| (-1174 |#4|) |#2|)) (-15 -3387 (|#4| |#4| |#2|)) (-15 -2579 (|#4| (-1174 (-949 |#3|)) |#2|)) (-15 -2580 (|#4| (-410 (-949 |#3|)) |#2|)) (-15 -4164 ((-408 |#4|) |#4|))) (-795) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)))) (-560) (-953 (-410 (-949 |#3|)) |#1| |#2|)) (T -734)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-953 (-410 (-949 *6)) *4 *5)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *6 (-560)) (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) (-5 *3 (-410 (-949 *6))) (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-949 *6))) (-4 *6 (-560)) (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))))) (-3387 (*1 *2 *2 *3) (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560)) (-5 *2 (-2 (|:| -2805 (-949 *6)) (|:| -2236 (-949 *6)))) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-953 (-410 (-949 *6)) *4 *5))))) -(-10 -7 (-15 -2577 ((-2 (|:| -2805 (-949 |#3|)) (|:| -2236 (-949 |#3|))) |#4|)) (-15 -3386 (|#4| |#4| |#2|)) (-15 -2578 (|#4| (-1174 |#4|) |#2|)) (-15 -3387 (|#4| |#4| |#2|)) (-15 -2579 (|#4| (-1174 (-949 |#3|)) |#2|)) (-15 -2580 (|#4| (-410 (-949 |#3|)) |#2|)) (-15 -4164 ((-408 |#4|) |#4|))) -((-4164 (((-408 |#4|) |#4|) 54))) -(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) (-795) (-852) (-13 (-308) (-147)) (-953 (-410 |#3|) |#1| |#2|)) (T -735)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-953 (-410 *6) *4 *5))))) -(-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) -((-4390 (((-737 |#2| |#3|) (-1 |#2| |#1|) (-737 |#1| |#3|)) 18))) -(((-736 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-737 |#2| |#3|) (-1 |#2| |#1|) (-737 |#1| |#3|)))) (-1052) (-1052) (-728)) (T -736)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5 *7)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-728)) (-5 *2 (-737 *6 *7)) (-5 *1 (-736 *5 *6 *7))))) -(-10 -7 (-15 -4390 ((-737 |#2| |#3|) (-1 |#2| |#1|) (-737 |#1| |#3|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 38)) (-4205 (((-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))) $) 39)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #1="failed") $) 78) (((-3 |#1| #1#) $) 81)) (-3576 ((|#2| $) NIL) ((|#1| $) NIL)) (-4391 (($ $) 104 (|has| |#2| (-852)))) (-3890 (((-3 $ "failed") $) 87)) (-3395 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 72)) (-3224 (((-643 $) $) 54)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| |#2|) 17)) (-4390 (($ (-1 |#1| |#1|) $) 70)) (-2188 (((-922) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3295 ((|#2| $) 103 (|has| |#2| (-852)))) (-3594 ((|#1| $) 102 (|has| |#2| (-852)))) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 101) (($ (-549)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|)))) 11)) (-4249 (((-643 |#1|) $) 56)) (-4109 ((|#1| $ |#2|) 117)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 12 T CONST)) (-3067 (($) 46 T CONST)) (-3455 (((-112) $ $) 107)) (-4269 (($ $) 63) (($ $ $) NIL)) (-4271 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-737 |#1| |#2|) (-13 (-1052) (-1041 |#2|) (-1041 |#1|) (-10 -8 (-15 -3294 ($ |#1| |#2|)) (-15 -4109 (|#1| $ |#2|)) (-15 -4378 ($ (-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))))) (-15 -4205 ((-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -4369 ((-112) $)) (-15 -4249 ((-643 |#1|) $)) (-15 -3224 ((-643 $) $)) (-15 -2581 ((-773) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-852)) (PROGN (-15 -3295 (|#2| $)) (-15 -3594 (|#1| $)) (-15 -4391 ($ $))) |%noBranch|))) (-1052) (-728)) (T -737)) -((-3294 (*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-728)))) (-4109 (*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-728)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-4 *3 (-1052)) (-4 *4 (-728)) (-5 *1 (-737 *3 *4)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-737 *3 *4)) (-4 *4 (-728)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-643 (-737 *3 *4))) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-3295 (*1 *2 *1) (-12 (-4 *2 (-728)) (-4 *2 (-852)) (-5 *1 (-737 *3 *2)) (-4 *3 (-1052)))) (-3594 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *3 (-728)))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1052)) (-4 *3 (-728))))) -(-13 (-1052) (-1041 |#2|) (-1041 |#1|) (-10 -8 (-15 -3294 ($ |#1| |#2|)) (-15 -4109 (|#1| $ |#2|)) (-15 -4378 ($ (-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))))) (-15 -4205 ((-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -4369 ((-112) $)) (-15 -4249 ((-643 |#1|) $)) (-15 -3224 ((-643 $) $)) (-15 -2581 ((-773) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-852)) (PROGN (-15 -3295 (|#2| $)) (-15 -3594 (|#1| $)) (-15 -4391 ($ $))) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-3654 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3656 (($ $ $) 99)) (-3655 (((-112) $ $) 107)) (-1309 (((-112) $ (-773)) NIL)) (-3659 (($ (-643 |#1|)) 26) (($) 17)) (-1678 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2526 (($ $) 85)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) 70 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4425))) (($ |#1| $ (-549)) 75) (($ (-1 (-112) |#1|) $ (-549)) 78)) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $ (-549)) 80) (($ (-1 (-112) |#1|) $ (-549)) 81)) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 32 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 106)) (-2582 (($) 15) (($ |#1|) 28) (($ (-643 |#1|)) 23)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) 38)) (-3666 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 89)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 97)) (-1369 ((|#1| $) 62)) (-4039 (($ |#1| $) 63) (($ |#1| $ (-773)) 86)) (-3664 (((-1123) $) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1370 ((|#1| $) 61)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 56)) (-3996 (($) 14)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 55)) (-3657 (($ $ |#1|) NIL) (($ $ $) 98)) (-1567 (($) 16) (($ (-643 |#1|)) 25)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) 68 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 79)) (-4402 (((-538) $) 36 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 22)) (-4378 (((-865) $) 49)) (-3660 (($ (-643 |#1|)) 27) (($) 18)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 |#1|)) 24)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 103)) (-4389 (((-773) $) 67 (|has| $ (-6 -4425))))) -(((-738 |#1|) (-13 (-739 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -2582 ($)) (-15 -2582 ($ |#1|)) (-15 -2582 ($ (-643 |#1|))) (-15 -3008 ((-643 |#1|) $)) (-15 -3830 ($ |#1| $ (-549))) (-15 -3830 ($ (-1 (-112) |#1|) $ (-549))) (-15 -3829 ($ |#1| $ (-549))) (-15 -3829 ($ (-1 (-112) |#1|) $ (-549))))) (-1104)) (T -738)) -((-2582 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-2582 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-738 *3)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1104)))) (-3830 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-3830 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) (-5 *1 (-738 *4)))) (-3829 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-3829 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) (-5 *1 (-738 *4))))) -(-13 (-739 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -2582 ($)) (-15 -2582 ($ |#1|)) (-15 -2582 ($ (-643 |#1|))) (-15 -3008 ((-643 |#1|) $)) (-15 -3830 ($ |#1| $ (-549))) (-15 -3830 ($ (-1 (-112) |#1|) $ (-549))) (-15 -3829 ($ |#1| $ (-549))) (-15 -3829 ($ (-1 (-112) |#1|) $ (-549))))) -((-2968 (((-112) $ $) 19)) (-3654 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3656 (($ $ $) 73)) (-3655 (((-112) $ $) 74)) (-1309 (((-112) $ (-773)) 8)) (-3659 (($ (-643 |#1|)) 69) (($) 68)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 63)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 65)) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22)) (-3658 (($ $ $) 70)) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41) (($ |#1| $ (-773)) 64)) (-3664 (((-1123) $) 21)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 62)) (-3657 (($ $ |#1|) 72) (($ $ $) 71)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18)) (-3660 (($ (-643 |#1|)) 67) (($) 66)) (-3662 (((-112) $ $) 23)) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-739 |#1|) (-140) (-1104)) (T -739)) -NIL -(-13 (-697 |t#1|) (-1102 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-697 |#1|) . T) ((-1102 |#1|) . T) ((-1104) . T) ((-1219) . T)) -((-2583 (((-1275) (-1162)) 8))) -(((-740) (-10 -7 (-15 -2583 ((-1275) (-1162))))) (T -740)) -((-2583 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-740))))) -(-10 -7 (-15 -2583 ((-1275) (-1162)))) -((-2584 (((-643 |#1|) (-643 |#1|) (-643 |#1|)) 15))) -(((-741 |#1|) (-10 -7 (-15 -2584 ((-643 |#1|) (-643 |#1|) (-643 |#1|)))) (-852)) (T -741)) -((-2584 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-741 *3))))) -(-10 -7 (-15 -2584 ((-643 |#1|) (-643 |#1|) (-643 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#2|) $) 148)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 141 (|has| |#1| (-560)))) (-2241 (($ $) 140 (|has| |#1| (-560)))) (-2239 (((-112) $) 138 (|has| |#1| (-560)))) (-3915 (($ $) 97 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 80 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $) 79 (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 96 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 81 (|has| |#1| (-38 (-410 (-549)))))) (-3917 (($ $) 95 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 82 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-4391 (($ $) 132)) (-3890 (((-3 $ "failed") $) 37)) (-4246 (((-949 |#1|) $ (-773)) 110) (((-949 |#1|) $ (-773) (-773)) 109)) (-3293 (((-112) $) 149)) (-4059 (($) 107 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $ |#2|) 112) (((-773) $ |#2| (-773)) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 78 (|has| |#1| (-38 (-410 (-549)))))) (-4369 (((-112) $) 130)) (-3294 (($ $ (-643 |#2|) (-643 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-773)) 114) (($ $ (-643 |#2|) (-643 (-773))) 113)) (-4390 (($ (-1 |#1| |#1|) $) 129)) (-4374 (($ $) 104 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 127)) (-3594 ((|#1| $) 126)) (-3663 (((-1162) $) 10)) (-4244 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) 11)) (-4200 (($ $ (-773)) 115)) (-3889 (((-3 $ "failed") $ $) 142 (|has| |#1| (-560)))) (-4375 (($ $) 105 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (($ $ |#2| $) 123) (($ $ (-643 |#2|) (-643 $)) 122) (($ $ (-643 (-294 $))) 121) (($ $ (-294 $)) 120) (($ $ $ $) 119) (($ $ (-643 $) (-643 $)) 118)) (-4242 (($ $ |#2|) 46) (($ $ (-643 |#2|)) 45) (($ $ |#2| (-773)) 44) (($ $ (-643 |#2|) (-643 (-773))) 43)) (-4380 (((-534 |#2|) $) 128)) (-3918 (($ $) 94 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 83 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 93 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 84 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 92 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 85 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 150)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-560))) (($ (-410 (-549))) 135 (|has| |#1| (-38 (-410 (-549)))))) (-4109 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-773)) 117) (($ $ (-643 |#2|) (-643 (-773))) 116)) (-3105 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 103 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 91 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 139 (|has| |#1| (-560)))) (-3919 (($ $) 102 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 90 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 101 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 89 (|has| |#1| (-38 (-410 (-549)))))) (-3924 (($ $) 100 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 88 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 99 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 87 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 98 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 86 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#2|) 42) (($ $ (-643 |#2|)) 41) (($ $ |#2| (-773)) 40) (($ $ (-643 |#2|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 77 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 137 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 136 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-742 |#1| |#2|) (-140) (-1052) (-852)) (T -742)) -((-4109 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) (-4109 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-742 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4203 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-773)) (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) (-5 *2 (-949 *4)))) (-4246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) (-5 *2 (-949 *4)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852)) (-4 *3 (-38 (-410 (-549))))))) -(-13 (-903 |t#2|) (-976 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -4109 ($ $ |t#2| (-773))) (-15 -4109 ($ $ (-643 |t#2|) (-643 (-773)))) (-15 -4200 ($ $ (-773))) (-15 -3294 ($ $ |t#2| (-773))) (-15 -3294 ($ $ (-643 |t#2|) (-643 (-773)))) (-15 -4203 ((-773) $ |t#2|)) (-15 -4203 ((-773) $ |t#2| (-773))) (-15 -4246 ((-949 |t#1|) $ (-773))) (-15 -4246 ((-949 |t#1|) $ (-773) (-773))) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ |t#2|)) (-6 (-1005)) (-6 (-1205))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-534 |#2|)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-291) |has| |#1| (-560)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-560) |has| |#1| (-560)) ((-648 #2#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #2#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-903 |#2|) . T) ((-976 |#1| #1# |#2|) . T) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549))))) -((-4164 (((-408 (-1174 |#4|)) (-1174 |#4|)) 30) (((-408 |#4|) |#4|) 26))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) (-852) (-795) (-13 (-308) (-147)) (-953 |#3| |#2| |#1|)) (T -743)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) -(-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) -((-2587 (((-408 |#4|) |#4| |#2|) 142)) (-2585 (((-408 |#4|) |#4|) NIL)) (-4401 (((-408 (-1174 |#4|)) (-1174 |#4|)) 127) (((-408 |#4|) |#4|) 52)) (-2589 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 |#4|)) (|:| -2564 (-549)))))) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|))) 81)) (-2593 (((-1174 |#3|) (-1174 |#3|) (-549)) 168)) (-2592 (((-643 (-773)) (-1174 |#4|) (-643 |#2|) (-773)) 75)) (-3481 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-643 |#2|) (-643 (-773)) (-643 |#3|)) 79)) (-2590 (((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-643 |#3|)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|))) 27)) (-2588 (((-2 (|:| -2182 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-549)) 72)) (-2586 (((-549) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) 164)) (-2591 ((|#4| (-549) (-408 |#4|)) 73)) (-3781 (((-112) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) NIL))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-408 |#4|) |#4|)) (-15 -4401 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -2585 ((-408 |#4|) |#4|)) (-15 -2586 ((-549) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -2587 ((-408 |#4|) |#4| |#2|)) (-15 -2588 ((-2 (|:| -2182 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-549))) (-15 -2589 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 |#4|)) (|:| -2564 (-549)))))) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2590 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-643 |#3|)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2591 (|#4| (-549) (-408 |#4|))) (-15 -3781 ((-112) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -3481 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-643 |#2|) (-643 (-773)) (-643 |#3|))) (-15 -2592 ((-643 (-773)) (-1174 |#4|) (-643 |#2|) (-773))) (-15 -2593 ((-1174 |#3|) (-1174 |#3|) (-549)))) (-795) (-852) (-308) (-953 |#3| |#1| |#2|)) (T -744)) -((-2593 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *6)) (-5 *3 (-549)) (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-2592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-4 *7 (-852)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-4 *8 (-308)) (-5 *2 (-643 (-773))) (-5 *1 (-744 *6 *7 *8 *9)) (-5 *5 (-773)))) (-3481 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-643 *10)) (-5 *7 (-643 (-773))) (-5 *8 (-643 *11)) (-4 *10 (-852)) (-4 *11 (-308)) (-4 *9 (-795)) (-4 *5 (-953 *11 *9 *10)) (-5 *2 (-643 (-1174 *5))) (-5 *1 (-744 *9 *10 *11 *5)) (-5 *3 (-1174 *5)))) (-3781 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-408 *2)) (-4 *2 (-953 *7 *5 *6)) (-5 *1 (-744 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-308)))) (-2590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) (-4 *7 (-852)) (-4 *8 (-308)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-5 *2 (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-643 *8)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 *8)) (|:| -2564 (-549))))) (|:| |ctpol| *8))) (-5 *1 (-744 *6 *7 *8 *9)))) (-2589 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) (-4 *7 (-852)) (-4 *8 (-308)) (-4 *6 (-795)) (-4 *9 (-953 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 *9)) (|:| -2564 (-549))))))) (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9)))) (-2588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-549)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-308)) (-4 *9 (-953 *8 *6 *7)) (-5 *2 (-2 (|:| -2182 (-1174 *9)) (|:| |polval| (-1174 *8)))) (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8)))) (-2587 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-744 *5 *4 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-744 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5))))) -(-10 -7 (-15 -4401 ((-408 |#4|) |#4|)) (-15 -4401 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -2585 ((-408 |#4|) |#4|)) (-15 -2586 ((-549) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -2587 ((-408 |#4|) |#4| |#2|)) (-15 -2588 ((-2 (|:| -2182 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-549))) (-15 -2589 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 |#4|)) (|:| -2564 (-549)))))) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2590 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-643 |#3|)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2591 (|#4| (-549) (-408 |#4|))) (-15 -3781 ((-112) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -3481 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-643 |#2|) (-643 (-773)) (-643 |#3|))) (-15 -2592 ((-643 (-773)) (-1174 |#4|) (-643 |#2|) (-773))) (-15 -2593 ((-1174 |#3|) (-1174 |#3|) (-549)))) -((-2594 (($ $ (-922)) 17))) -(((-745 |#1| |#2|) (-10 -8 (-15 -2594 (|#1| |#1| (-922)))) (-746 |#2|) (-172)) (T -745)) -NIL -(-10 -8 (-15 -2594 (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2570 (($ $ (-922)) 31)) (-2594 (($ $ (-922)) 38)) (-2569 (($ $ (-922)) 32)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-2756 (($ $ $) 28)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2757 (($ $ $ $) 29)) (-2755 (($ $ $) 27)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-746 |#1|) (-140) (-172)) (T -746)) -((-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-746 *3)) (-4 *3 (-172))))) -(-13 (-763) (-719 |t#1|) (-10 -8 (-15 -2594 ($ $ (-922))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-722) . T) ((-763) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-2596 (((-1038) (-691 (-225)) (-549) (-112) (-549)) 25)) (-2595 (((-1038) (-691 (-225)) (-549) (-112) (-549)) 24))) -(((-747) (-10 -7 (-15 -2595 ((-1038) (-691 (-225)) (-549) (-112) (-549))) (-15 -2596 ((-1038) (-691 (-225)) (-549) (-112) (-549))))) (T -747)) -((-2596 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-747)))) (-2595 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-747))))) -(-10 -7 (-15 -2595 ((-1038) (-691 (-225)) (-549) (-112) (-549))) (-15 -2596 ((-1038) (-691 (-225)) (-549) (-112) (-549)))) -((-2599 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-2598 (((-1038) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-2597 (((-1038) (-225) (-225) (-225) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 32))) -(((-748) (-10 -7 (-15 -2597 ((-1038) (-225) (-225) (-225) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2598 ((-1038) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -2599 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -748)) -((-2599 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1038)) (-5 *1 (-748)))) (-2598 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1038)) (-5 *1 (-748)))) (-2597 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-748))))) -(-10 -7 (-15 -2597 ((-1038) (-225) (-225) (-225) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2598 ((-1038) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -2599 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))))) -((-2611 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 34)) (-2610 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 33)) (-2609 (((-1038) (-549) (-691 (-225)) (-549)) 32)) (-2608 (((-1038) (-549) (-691 (-225)) (-549)) 31)) (-2607 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 30)) (-2606 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 29)) (-2605 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549)) 28)) (-2604 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549)) 27)) (-2603 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 24)) (-2602 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549)) 23)) (-2601 (((-1038) (-549) (-691 (-225)) (-549)) 22)) (-2600 (((-1038) (-549) (-691 (-225)) (-549)) 21))) -(((-749) (-10 -7 (-15 -2600 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2601 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2602 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2603 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2604 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2605 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2606 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2607 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2608 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2609 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2610 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2611 ((-1038) (-549) (-549) (-691 (-225)) (-549))))) (T -749)) -((-2611 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2610 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2609 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2608 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2607 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2606 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2605 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2604 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2603 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2602 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2601 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2600 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) -(-10 -7 (-15 -2600 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2601 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2602 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2603 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2604 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2605 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2606 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2607 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2608 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2609 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2610 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2611 ((-1038) (-549) (-549) (-691 (-225)) (-549)))) -((-2623 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2622 (((-1038) (-691 (-225)) (-691 (-225)) (-549) (-549)) 51)) (-2621 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2620 (((-1038) (-225) (-225) (-549) (-549) (-549) (-549)) 46)) (-2619 (((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 45)) (-2618 (((-1038) (-225) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 44)) (-2617 (((-1038) (-225) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 43)) (-2616 (((-1038) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 42)) (-2615 (((-1038) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 38)) (-2614 (((-1038) (-225) (-225) (-549) (-691 (-225)) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 37)) (-2613 (((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 33)) (-2612 (((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 32))) -(((-750) (-10 -7 (-15 -2612 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2613 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2614 ((-1038) (-225) (-225) (-549) (-691 (-225)) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2615 ((-1038) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2616 ((-1038) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2617 ((-1038) (-225) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2618 ((-1038) (-225) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2619 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2620 ((-1038) (-225) (-225) (-549) (-549) (-549) (-549))) (-15 -2621 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN))))) (-15 -2622 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-549))) (-15 -2623 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN))))))) (T -750)) -((-2623 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2622 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2621 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2620 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2619 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2618 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2617 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2616 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2615 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2614 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2613 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2612 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-750))))) -(-10 -7 (-15 -2612 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2613 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2614 ((-1038) (-225) (-225) (-549) (-691 (-225)) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2615 ((-1038) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2616 ((-1038) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2617 ((-1038) (-225) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2618 ((-1038) (-225) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2619 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2620 ((-1038) (-225) (-225) (-549) (-549) (-549) (-549))) (-15 -2621 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN))))) (-15 -2622 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-549))) (-15 -2623 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))))) -((-2631 (((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2630 (((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))) (-391) (-391)) 69) (((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2629 (((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG)))) 57)) (-2628 (((-1038) (-691 (-225)) (-691 (-225)) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) 50)) (-2627 (((-1038) (-225) (-549) (-549) (-1162) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2626 (((-1038) (-225) (-549) (-549) (-225) (-1162) (-225) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2625 (((-1038) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) 42)) (-2624 (((-1038) (-225) (-549) (-549) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-751) (-10 -7 (-15 -2624 ((-1038) (-225) (-549) (-549) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2625 ((-1038) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2626 ((-1038) (-225) (-549) (-549) (-225) (-1162) (-225) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2627 ((-1038) (-225) (-549) (-549) (-1162) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2628 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2629 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))) (-391) (-391))) (-15 -2631 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -751)) -((-2631 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2630 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2630 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2629 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2628 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2627 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2626 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2625 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2624 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751))))) -(-10 -7 (-15 -2624 ((-1038) (-225) (-549) (-549) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2625 ((-1038) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2626 ((-1038) (-225) (-549) (-549) (-225) (-1162) (-225) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2627 ((-1038) (-225) (-549) (-549) (-1162) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2628 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2629 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))) (-391) (-391))) (-15 -2631 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))))) -((-2634 (((-1038) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-677 (-225)) (-549)) 45)) (-2633 (((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-1162) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY)))) 41)) (-2632 (((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 23))) -(((-752) (-10 -7 (-15 -2632 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2633 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-1162) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY))))) (-15 -2634 ((-1038) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-677 (-225)) (-549))))) (T -752)) -((-2634 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-677 (-225))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-752)))) (-2633 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1038)) (-5 *1 (-752)))) (-2632 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-752))))) -(-10 -7 (-15 -2632 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2633 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-1162) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY))))) (-15 -2634 ((-1038) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-677 (-225)) (-549)))) -((-2644 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-691 (-225)) (-225) (-225) (-549)) 35)) (-2643 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-225) (-225) (-549)) 34)) (-2642 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-691 (-225)) (-225) (-225) (-549)) 33)) (-2641 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 29)) (-2640 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 28)) (-2639 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549)) 27)) (-2638 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549)) 24)) (-2637 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549)) 23)) (-2636 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549)) 22)) (-2635 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)) 21))) -(((-753) (-10 -7 (-15 -2635 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2636 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2637 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2638 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2639 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2640 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2641 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2642 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2643 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-225) (-225) (-549))) (-15 -2644 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-691 (-225)) (-225) (-225) (-549))))) (T -753)) -((-2644 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2643 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2642 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2641 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2640 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2639 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2638 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2637 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2636 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2635 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) -(-10 -7 (-15 -2635 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2636 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2637 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2638 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2639 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2640 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2641 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2642 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2643 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-225) (-225) (-549))) (-15 -2644 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-691 (-225)) (-225) (-225) (-549)))) -((-2662 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)) 45)) (-2661 (((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-549)) 44)) (-2660 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)) 43)) (-2659 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 42)) (-2658 (((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549)) 41)) (-2657 (((-1038) (-1162) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549)) 40)) (-2656 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549) (-549) (-549) (-225) (-691 (-225)) (-549)) 39)) (-2655 (((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549))) 38)) (-2654 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549)) 35)) (-2653 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549)) 34)) (-2652 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549)) 33)) (-2651 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 32)) (-2650 (((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549)) 31)) (-2649 (((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-549)) 30)) (-2648 (((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-549) (-549) (-549)) 29)) (-2647 (((-1038) (-549) (-549) (-549) (-225) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-549)) (-549) (-549) (-549)) 28)) (-2646 (((-1038) (-549) (-691 (-225)) (-225) (-549)) 24)) (-2645 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 21))) -(((-754) (-10 -7 (-15 -2645 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2646 ((-1038) (-549) (-691 (-225)) (-225) (-549))) (-15 -2647 ((-1038) (-549) (-549) (-549) (-225) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-549)) (-549) (-549) (-549))) (-15 -2648 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2649 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-549))) (-15 -2650 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549))) (-15 -2651 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2652 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549))) (-15 -2653 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549))) (-15 -2654 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2655 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)))) (-15 -2656 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549) (-549) (-549) (-225) (-691 (-225)) (-549))) (-15 -2657 ((-1038) (-1162) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2658 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2659 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2660 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2661 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2662 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))))) (T -754)) -((-2662 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2661 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2660 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2659 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2658 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2657 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2656 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2655 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2654 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2653 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2652 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2651 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2650 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2649 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2648 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2647 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *3 (-549)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2645 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) -(-10 -7 (-15 -2645 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2646 ((-1038) (-549) (-691 (-225)) (-225) (-549))) (-15 -2647 ((-1038) (-549) (-549) (-549) (-225) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-549)) (-549) (-549) (-549))) (-15 -2648 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2649 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-549))) (-15 -2650 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549))) (-15 -2651 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2652 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549))) (-15 -2653 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549))) (-15 -2654 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2655 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)))) (-15 -2656 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549) (-549) (-549) (-225) (-691 (-225)) (-549))) (-15 -2657 ((-1038) (-1162) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2658 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2659 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2660 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2661 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2662 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)))) -((-2670 (((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-549) (-691 (-225)) (-549)) 63)) (-2669 (((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-112) (-225) (-549) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-549) (-549) (-549) (-549) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2668 (((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-112) (-112) (-549) (-549) (-691 (-225)) (-691 (-549)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-2667 (((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-549) (-549) (-691 (-225)) (-549)) 51)) (-2666 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2665 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2664 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2663 (((-1038) (-549) (-225) (-225) (-549) (-225) (-112) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) 38))) -(((-755) (-10 -7 (-15 -2663 ((-1038) (-549) (-225) (-225) (-549) (-225) (-112) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2664 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2665 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2))))) (-15 -2666 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -2667 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-549) (-549) (-691 (-225)) (-549))) (-15 -2668 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-112) (-112) (-549) (-549) (-691 (-225)) (-691 (-549)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2669 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-112) (-225) (-549) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-549) (-549) (-549) (-549) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2670 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-549) (-691 (-225)) (-549))))) (T -755)) -((-2670 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2669 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-691 (-549))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2668 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-691 (-225))) (-5 *6 (-112)) (-5 *7 (-691 (-549))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-549)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2667 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2666 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2665 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2664 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2663 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755))))) -(-10 -7 (-15 -2663 ((-1038) (-549) (-225) (-225) (-549) (-225) (-112) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2664 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2665 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2))))) (-15 -2666 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -2667 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-549) (-549) (-691 (-225)) (-549))) (-15 -2668 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-112) (-112) (-549) (-549) (-691 (-225)) (-691 (-549)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2669 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-112) (-225) (-549) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-549) (-549) (-549) (-549) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2670 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-549) (-691 (-225)) (-549)))) -((-2680 (((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)) 47)) (-2679 (((-1038) (-1162) (-1162) (-549) (-549) (-691 (-168 (-225))) (-549) (-691 (-168 (-225))) (-549) (-549) (-691 (-168 (-225))) (-549)) 46)) (-2678 (((-1038) (-549) (-549) (-549) (-691 (-168 (-225))) (-549)) 45)) (-2677 (((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 40)) (-2676 (((-1038) (-1162) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)) (-549)) 39)) (-2675 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-549)) 36)) (-2674 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549)) 35)) (-2673 (((-1038) (-549) (-549) (-549) (-549) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-225) (-225) (-549)) 34)) (-2672 (((-1038) (-549) (-549) (-549) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-112) (-225) (-112) (-691 (-549)) (-691 (-225)) (-549)) 33)) (-2671 (((-1038) (-549) (-549) (-549) (-549) (-225) (-112) (-112) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-549)) 32))) -(((-756) (-10 -7 (-15 -2671 ((-1038) (-549) (-549) (-549) (-549) (-225) (-112) (-112) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-549))) (-15 -2672 ((-1038) (-549) (-549) (-549) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-112) (-225) (-112) (-691 (-549)) (-691 (-225)) (-549))) (-15 -2673 ((-1038) (-549) (-549) (-549) (-549) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-225) (-225) (-549))) (-15 -2674 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549))) (-15 -2675 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2676 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)) (-549))) (-15 -2677 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2678 ((-1038) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2679 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-168 (-225))) (-549) (-691 (-168 (-225))) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2680 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549))))) (T -756)) -((-2680 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2679 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2678 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2677 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2676 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2675 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2674 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2673 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-643 (-112))) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *7 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2672 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-691 (-549))) (-5 *5 (-112)) (-5 *7 (-691 (-225))) (-5 *3 (-549)) (-5 *6 (-225)) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2671 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-643 (-112))) (-5 *7 (-691 (-225))) (-5 *8 (-691 (-549))) (-5 *3 (-549)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-756))))) -(-10 -7 (-15 -2671 ((-1038) (-549) (-549) (-549) (-549) (-225) (-112) (-112) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-549))) (-15 -2672 ((-1038) (-549) (-549) (-549) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-112) (-225) (-112) (-691 (-549)) (-691 (-225)) (-549))) (-15 -2673 ((-1038) (-549) (-549) (-549) (-549) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-225) (-225) (-549))) (-15 -2674 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549))) (-15 -2675 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2676 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)) (-549))) (-15 -2677 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2678 ((-1038) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2679 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-168 (-225))) (-549) (-691 (-168 (-225))) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2680 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)))) -((-2695 (((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)) 79)) (-2694 (((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549)) 68)) (-2693 (((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-2692 (((-1038) (-549) (-549) (-549) (-225) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549)) 37)) (-2691 (((-1038) (-549) (-549) (-225) (-225) (-549) (-549) (-691 (-225)) (-549)) 33)) (-2690 (((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549) (-549)) 30)) (-2689 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 29)) (-2688 (((-1038) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 28)) (-2687 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 27)) (-2686 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549)) 26)) (-2685 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 25)) (-2684 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 24)) (-2683 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 23)) (-2682 (((-1038) (-691 (-225)) (-549) (-549) (-549) (-549)) 22)) (-2681 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 21))) -(((-757) (-10 -7 (-15 -2681 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2682 ((-1038) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2683 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2684 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2685 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2686 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2687 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2688 ((-1038) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2689 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2690 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2691 ((-1038) (-549) (-549) (-225) (-225) (-549) (-549) (-691 (-225)) (-549))) (-15 -2692 ((-1038) (-549) (-549) (-549) (-225) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2694 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2695 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549))))) (T -757)) -((-2695 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2694 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2693 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2693 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2692 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2691 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2690 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2689 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2688 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2687 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2686 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2685 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2684 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2683 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2682 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2681 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) -(-10 -7 (-15 -2681 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2682 ((-1038) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2683 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2684 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2685 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2686 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2687 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2688 ((-1038) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2689 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2690 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2691 ((-1038) (-549) (-549) (-225) (-225) (-549) (-549) (-691 (-225)) (-549))) (-15 -2692 ((-1038) (-549) (-549) (-549) (-225) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2694 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2695 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)))) -((-2706 (((-1038) (-549) (-549) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2705 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549)) 60)) (-2704 (((-1038) (-549) (-691 (-225)) (-112) (-225) (-549) (-549) (-549) (-549) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2703 (((-1038) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549)) 37)) (-2702 (((-1038) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-549)) 36)) (-2701 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 33)) (-2700 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225))) 32)) (-2699 (((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549)) 28)) (-2698 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549)) 27)) (-2697 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549)) 26)) (-2696 (((-1038) (-549) (-691 (-168 (-225))) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-549)) 22))) -(((-758) (-10 -7 (-15 -2696 ((-1038) (-549) (-691 (-168 (-225))) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2697 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2698 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2699 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549))) (-15 -2700 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)))) (-15 -2701 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2702 ((-1038) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2703 ((-1038) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2704 ((-1038) (-549) (-691 (-225)) (-112) (-225) (-549) (-549) (-549) (-549) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2705 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2706 ((-1038) (-549) (-549) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -758)) -((-2706 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2705 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2704 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2703 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2702 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2701 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2700 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2699 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2698 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2697 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2696 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-758))))) -(-10 -7 (-15 -2696 ((-1038) (-549) (-691 (-168 (-225))) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2697 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2698 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2699 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549))) (-15 -2700 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)))) (-15 -2701 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2702 ((-1038) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2703 ((-1038) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2704 ((-1038) (-549) (-691 (-225)) (-112) (-225) (-549) (-549) (-549) (-549) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2705 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2706 ((-1038) (-549) (-549) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))))) -((-2710 (((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-549) (-691 (-225))) 29)) (-2709 (((-1038) (-1162) (-549) (-549) (-691 (-225))) 28)) (-2708 (((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-225))) 27)) (-2707 (((-1038) (-549) (-549) (-549) (-691 (-225))) 21))) -(((-759) (-10 -7 (-15 -2707 ((-1038) (-549) (-549) (-549) (-691 (-225)))) (-15 -2708 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-225)))) (-15 -2709 ((-1038) (-1162) (-549) (-549) (-691 (-225)))) (-15 -2710 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)))))) (T -759)) -((-2710 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759)))) (-2709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759)))) (-2708 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-759)))) (-2707 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759))))) -(-10 -7 (-15 -2707 ((-1038) (-549) (-549) (-549) (-691 (-225)))) (-15 -2708 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-225)))) (-15 -2709 ((-1038) (-1162) (-549) (-549) (-691 (-225)))) (-15 -2710 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-549) (-691 (-225))))) -((-2748 (((-1038) (-225) (-225) (-225) (-225) (-549)) 62)) (-2747 (((-1038) (-225) (-225) (-225) (-549)) 61)) (-2746 (((-1038) (-225) (-225) (-225) (-549)) 60)) (-2745 (((-1038) (-225) (-225) (-549)) 59)) (-2744 (((-1038) (-225) (-549)) 58)) (-2743 (((-1038) (-225) (-549)) 57)) (-2742 (((-1038) (-225) (-549)) 56)) (-2741 (((-1038) (-225) (-549)) 55)) (-2740 (((-1038) (-225) (-549)) 54)) (-2739 (((-1038) (-225) (-549)) 53)) (-2738 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 52)) (-2737 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 51)) (-2736 (((-1038) (-225) (-549)) 50)) (-2735 (((-1038) (-225) (-549)) 49)) (-2734 (((-1038) (-225) (-549)) 48)) (-2733 (((-1038) (-225) (-549)) 47)) (-2732 (((-1038) (-549) (-225) (-168 (-225)) (-549) (-1162) (-549)) 46)) (-2731 (((-1038) (-1162) (-168 (-225)) (-1162) (-549)) 45)) (-2730 (((-1038) (-1162) (-168 (-225)) (-1162) (-549)) 44)) (-2729 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 43)) (-2728 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 42)) (-2727 (((-1038) (-225) (-549)) 39)) (-2726 (((-1038) (-225) (-549)) 38)) (-2725 (((-1038) (-225) (-549)) 37)) (-2724 (((-1038) (-225) (-549)) 36)) (-2723 (((-1038) (-225) (-549)) 35)) (-2722 (((-1038) (-225) (-549)) 34)) (-2721 (((-1038) (-225) (-549)) 33)) (-2720 (((-1038) (-225) (-549)) 32)) (-2719 (((-1038) (-225) (-549)) 31)) (-2718 (((-1038) (-225) (-549)) 30)) (-2717 (((-1038) (-225) (-225) (-225) (-549)) 29)) (-2716 (((-1038) (-225) (-549)) 28)) (-2715 (((-1038) (-225) (-549)) 27)) (-2714 (((-1038) (-225) (-549)) 26)) (-2713 (((-1038) (-225) (-549)) 25)) (-2712 (((-1038) (-225) (-549)) 24)) (-2711 (((-1038) (-168 (-225)) (-549)) 21))) -(((-760) (-10 -7 (-15 -2711 ((-1038) (-168 (-225)) (-549))) (-15 -2712 ((-1038) (-225) (-549))) (-15 -2713 ((-1038) (-225) (-549))) (-15 -2714 ((-1038) (-225) (-549))) (-15 -2715 ((-1038) (-225) (-549))) (-15 -2716 ((-1038) (-225) (-549))) (-15 -2717 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2718 ((-1038) (-225) (-549))) (-15 -2719 ((-1038) (-225) (-549))) (-15 -2720 ((-1038) (-225) (-549))) (-15 -2721 ((-1038) (-225) (-549))) (-15 -2722 ((-1038) (-225) (-549))) (-15 -2723 ((-1038) (-225) (-549))) (-15 -2724 ((-1038) (-225) (-549))) (-15 -2725 ((-1038) (-225) (-549))) (-15 -2726 ((-1038) (-225) (-549))) (-15 -2727 ((-1038) (-225) (-549))) (-15 -2728 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2729 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2730 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2731 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2732 ((-1038) (-549) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2733 ((-1038) (-225) (-549))) (-15 -2734 ((-1038) (-225) (-549))) (-15 -2735 ((-1038) (-225) (-549))) (-15 -2736 ((-1038) (-225) (-549))) (-15 -2737 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2738 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2739 ((-1038) (-225) (-549))) (-15 -2740 ((-1038) (-225) (-549))) (-15 -2741 ((-1038) (-225) (-549))) (-15 -2742 ((-1038) (-225) (-549))) (-15 -2743 ((-1038) (-225) (-549))) (-15 -2744 ((-1038) (-225) (-549))) (-15 -2745 ((-1038) (-225) (-225) (-549))) (-15 -2746 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2747 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2748 ((-1038) (-225) (-225) (-225) (-225) (-549))))) (T -760)) -((-2748 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2747 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2746 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2745 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2738 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2737 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2732 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-168 (-225))) (-5 *6 (-1162)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2731 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2730 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2729 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2728 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2717 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) -(-10 -7 (-15 -2711 ((-1038) (-168 (-225)) (-549))) (-15 -2712 ((-1038) (-225) (-549))) (-15 -2713 ((-1038) (-225) (-549))) (-15 -2714 ((-1038) (-225) (-549))) (-15 -2715 ((-1038) (-225) (-549))) (-15 -2716 ((-1038) (-225) (-549))) (-15 -2717 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2718 ((-1038) (-225) (-549))) (-15 -2719 ((-1038) (-225) (-549))) (-15 -2720 ((-1038) (-225) (-549))) (-15 -2721 ((-1038) (-225) (-549))) (-15 -2722 ((-1038) (-225) (-549))) (-15 -2723 ((-1038) (-225) (-549))) (-15 -2724 ((-1038) (-225) (-549))) (-15 -2725 ((-1038) (-225) (-549))) (-15 -2726 ((-1038) (-225) (-549))) (-15 -2727 ((-1038) (-225) (-549))) (-15 -2728 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2729 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2730 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2731 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2732 ((-1038) (-549) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2733 ((-1038) (-225) (-549))) (-15 -2734 ((-1038) (-225) (-549))) (-15 -2735 ((-1038) (-225) (-549))) (-15 -2736 ((-1038) (-225) (-549))) (-15 -2737 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2738 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2739 ((-1038) (-225) (-549))) (-15 -2740 ((-1038) (-225) (-549))) (-15 -2741 ((-1038) (-225) (-549))) (-15 -2742 ((-1038) (-225) (-549))) (-15 -2743 ((-1038) (-225) (-549))) (-15 -2744 ((-1038) (-225) (-549))) (-15 -2745 ((-1038) (-225) (-225) (-549))) (-15 -2746 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2747 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2748 ((-1038) (-225) (-225) (-225) (-225) (-549)))) -((-2754 (((-1275)) 20)) (-2750 (((-1162)) 31)) (-2749 (((-1162)) 30)) (-2752 (((-1106) (-1180) (-691 (-549))) 45) (((-1106) (-1180) (-691 (-225))) 41)) (-2753 (((-112)) 19)) (-2751 (((-1162) (-1162)) 34))) -(((-761) (-10 -7 (-15 -2749 ((-1162))) (-15 -2750 ((-1162))) (-15 -2751 ((-1162) (-1162))) (-15 -2752 ((-1106) (-1180) (-691 (-225)))) (-15 -2752 ((-1106) (-1180) (-691 (-549)))) (-15 -2753 ((-112))) (-15 -2754 ((-1275))))) (T -761)) -((-2754 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-761)))) (-2753 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-761)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-549))) (-5 *2 (-1106)) (-5 *1 (-761)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-225))) (-5 *2 (-1106)) (-5 *1 (-761)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761)))) (-2750 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761)))) (-2749 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) -(-10 -7 (-15 -2749 ((-1162))) (-15 -2750 ((-1162))) (-15 -2751 ((-1162) (-1162))) (-15 -2752 ((-1106) (-1180) (-691 (-225)))) (-15 -2752 ((-1106) (-1180) (-691 (-549)))) (-15 -2753 ((-112))) (-15 -2754 ((-1275)))) -((-2756 (($ $ $) 10)) (-2757 (($ $ $ $) 9)) (-2755 (($ $ $) 12))) -(((-762 |#1|) (-10 -8 (-15 -2755 (|#1| |#1| |#1|)) (-15 -2756 (|#1| |#1| |#1|)) (-15 -2757 (|#1| |#1| |#1| |#1|))) (-763)) (T -762)) -NIL -(-10 -8 (-15 -2755 (|#1| |#1| |#1|)) (-15 -2756 (|#1| |#1| |#1|)) (-15 -2757 (|#1| |#1| |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2570 (($ $ (-922)) 31)) (-2569 (($ $ (-922)) 32)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-2756 (($ $ $) 28)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2757 (($ $ $ $) 29)) (-2755 (($ $ $) 27)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30))) -(((-763) (-140)) (T -763)) -((-2757 (*1 *1 *1 *1 *1) (-4 *1 (-763))) (-2756 (*1 *1 *1 *1) (-4 *1 (-763))) (-2755 (*1 *1 *1 *1) (-4 *1 (-763)))) -(-13 (-21) (-722) (-10 -8 (-15 -2757 ($ $ $ $)) (-15 -2756 ($ $ $)) (-15 -2755 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-722) . T) ((-1104) . T)) -((-4378 (((-865) $) NIL) (($ (-549)) 10))) -(((-764 |#1|) (-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-765)) (T -764)) -NIL -(-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2567 (((-3 $ #1="failed") $) 43)) (-2570 (($ $ (-922)) 31) (($ $ (-773)) 38)) (-3890 (((-3 $ #1#) $) 41)) (-2573 (((-112) $) 37)) (-2568 (((-3 $ #1#) $) 42)) (-2569 (($ $ (-922)) 32) (($ $ (-773)) 39)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-2756 (($ $ $) 28)) (-4378 (((-865) $) 12) (($ (-549)) 34)) (-3530 (((-773)) 35 T CONST)) (-3662 (((-112) $ $) 9)) (-2757 (($ $ $ $) 29)) (-2755 (($ $ $) 27)) (-3510 (($) 19 T CONST)) (-3067 (($) 36 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33) (($ $ (-773)) 40)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30))) -(((-765) (-140)) (T -765)) -((-3530 (*1 *2) (-12 (-4 *1 (-765)) (-5 *2 (-773)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-765))))) -(-13 (-763) (-724) (-10 -8 (-15 -3530 ((-773)) -4384) (-15 -4378 ($ (-549))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-722) . T) ((-724) . T) ((-763) . T) ((-1104) . T)) -((-2759 (((-643 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 |#1|)))))) (-691 (-168 (-410 (-549)))) |#1|) 33)) (-2758 (((-643 (-168 |#1|)) (-691 (-168 (-410 (-549)))) |#1|) 23)) (-2770 (((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))) (-1180)) 20) (((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549))))) 19))) -(((-766 |#1|) (-10 -7 (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))))) (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))) (-1180))) (-15 -2758 ((-643 (-168 |#1|)) (-691 (-168 (-410 (-549)))) |#1|)) (-15 -2759 ((-643 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 |#1|)))))) (-691 (-168 (-410 (-549)))) |#1|))) (-13 (-365) (-850))) (T -766)) -((-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-643 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 *4))))))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850))))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *4 (-1180)) (-5 *2 (-949 (-168 (-410 (-549))))) (-5 *1 (-766 *5)) (-4 *5 (-13 (-365) (-850))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-949 (-168 (-410 (-549))))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850)))))) -(-10 -7 (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))))) (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))) (-1180))) (-15 -2758 ((-643 (-168 |#1|)) (-691 (-168 (-410 (-549)))) |#1|)) (-15 -2759 ((-643 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 |#1|)))))) (-691 (-168 (-410 (-549)))) |#1|))) -((-3016 (((-174 (-549)) |#1|) 27))) -(((-767 |#1|) (-10 -7 (-15 -3016 ((-174 (-549)) |#1|))) (-407)) (T -767)) -((-3016 (*1 *2 *3) (-12 (-5 *2 (-174 (-549))) (-5 *1 (-767 *3)) (-4 *3 (-407))))) -(-10 -7 (-15 -3016 ((-174 (-549)) |#1|))) -((-2945 ((|#1| |#1| |#1|) 28)) (-2946 ((|#1| |#1| |#1|) 27)) (-2935 ((|#1| |#1| |#1|) 38)) (-2943 ((|#1| |#1| |#1|) 34)) (-2944 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2951 (((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 26))) -(((-768 |#1| |#2|) (-10 -7 (-15 -2951 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|))) (-710 |#2|) (-365)) (T -768)) -((-2935 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2943 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2944 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2945 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2946 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-768 *3 *4)) (-4 *3 (-710 *4))))) -(-10 -7 (-15 -2951 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|))) -((-2958 (((-693 (-1228)) $ (-1228)) 26)) (-2959 (((-693 (-553)) $ (-553)) 25)) (-2957 (((-773) $ (-129)) 27)) (-2960 (((-693 (-128)) $ (-128)) 24)) (-2178 (((-693 (-1228)) $) 12)) (-2174 (((-693 (-1226)) $) 8)) (-2176 (((-693 (-1225)) $) 10)) (-2179 (((-693 (-553)) $) 13)) (-2175 (((-693 (-551)) $) 9)) (-2177 (((-693 (-550)) $) 11)) (-2173 (((-773) $ (-129)) 7)) (-2180 (((-693 (-128)) $) 14)) (-2760 (((-112) $) 31)) (-2761 (((-693 $) |#1| (-957)) 32)) (-1868 (($ $) 6))) -(((-769 |#1|) (-140) (-1104)) (T -769)) -((-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-957)) (-4 *3 (-1104)) (-5 *2 (-693 *1)) (-4 *1 (-769 *3)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-769 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(-13 (-579) (-10 -8 (-15 -2761 ((-693 $) |t#1| (-957))) (-15 -2760 ((-112) $)))) -(((-173) . T) ((-530) . T) ((-579) . T) ((-863) . T)) -((-4351 (((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))) (-549)) 71)) (-4350 (((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549))))) 69)) (-4189 (((-549)) 85))) -(((-770 |#1| |#2|) (-10 -7 (-15 -4189 ((-549))) (-15 -4350 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))))) (-15 -4351 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))) (-549)))) (-1245 (-549)) (-413 (-549) |#1|)) (T -770)) -((-4351 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-770 *4 *5)) (-4 *5 (-413 *3 *4)))) (-4350 (*1 *2) (-12 (-4 *3 (-1245 (-549))) (-5 *2 (-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549))))) (-5 *1 (-770 *3 *4)) (-4 *4 (-413 (-549) *3)))) (-4189 (*1 *2) (-12 (-4 *3 (-1245 *2)) (-5 *2 (-549)) (-5 *1 (-770 *3 *4)) (-4 *4 (-413 *2 *3))))) -(-10 -7 (-15 -4189 ((-549))) (-15 -4350 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))))) (-15 -4351 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))) (-549)))) -((-2968 (((-112) $ $) NIL)) (-3576 (((-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-771) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3576 ((-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -771)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-771)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-771)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-771)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-771))))) -(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3576 ((-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-2836 (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))) 18) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180))) 17)) (-4004 (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))) 20) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180))) 19))) -(((-772 |#1|) (-10 -7 (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))))) (-560)) (T -772)) -((-4004 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5))))) -(-10 -7 (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2805 (($ $ $) 10)) (-1407 (((-3 $ "failed") $ $) 15)) (-2762 (($ $ (-549)) 11)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($ $) NIL)) (-2963 (($ $ $) NIL)) (-2573 (((-112) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3564 (($ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 6 T CONST)) (-3067 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ $ $) NIL))) -(((-773) (-13 (-795) (-728) (-10 -8 (-15 -2963 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -3564 ($ $ $)) (-15 -3282 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3889 ((-3 $ "failed") $ $)) (-15 -2762 ($ $ (-549))) (-15 -3395 ($ $)) (-6 (-4427 "*"))))) (T -773)) -((-2963 (*1 *1 *1 *1) (-5 *1 (-773))) (-2964 (*1 *1 *1 *1) (-5 *1 (-773))) (-3564 (*1 *1 *1 *1) (-5 *1 (-773))) (-3282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2152 (-773)) (|:| -3303 (-773)))) (-5 *1 (-773)))) (-3889 (*1 *1 *1 *1) (|partial| -5 *1 (-773))) (-2762 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-773)))) (-3395 (*1 *1 *1) (-5 *1 (-773)))) -(-13 (-795) (-728) (-10 -8 (-15 -2963 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -3564 ($ $ $)) (-15 -3282 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3889 ((-3 $ "failed") $ $)) (-15 -2762 ($ $ (-549))) (-15 -3395 ($ $)) (-6 (-4427 "*")))) +((-2461 (((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|)) 33))) +(((-666 |#1|) (-10 -7 (-15 -2461 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|)))) (-914)) (T -666)) +((-2461 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1175 *4))) (-5 *3 (-1175 *4)) (-4 *4 (-914)) (-5 *1 (-666 *4))))) +(-10 -7 (-15 -2461 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4368 (((-644 |#1|) $) 84)) (-4381 (($ $ (-774)) 94)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4373 (((-1295 |#1| |#2|) (-1295 |#1| |#2|) $) 50)) (-3579 (((-3 (-675 |#1|) "failed") $) NIL)) (-3578 (((-675 |#1|) $) NIL)) (-4393 (($ $) 93)) (-2583 (((-774) $) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-4372 (($ (-675 |#1|) |#2|) 70)) (-4370 (($ $) 89)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-4374 (((-1295 |#1| |#2|) (-1295 |#1| |#2|) $) 49)) (-1919 (((-2 (|:| |k| (-675 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3297 (((-675 |#1|) $) NIL)) (-3596 ((|#2| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4201 (($ $ |#1| $) 32) (($ $ (-644 |#1|) (-644 $)) 34)) (-4382 (((-774) $) 91)) (-3955 (($ $ $) 20) (($ (-675 |#1|) (-675 |#1|)) 79) (($ (-675 |#1|) $) 77) (($ $ (-675 |#1|)) 78)) (-4380 (((-866) $) NIL) (($ |#1|) 76) (((-1286 |#1| |#2|) $) 60) (((-1295 |#1| |#2|) $) 43) (($ (-675 |#1|)) 27)) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-675 |#1|)) NIL)) (-4388 ((|#2| (-1295 |#1| |#2|) $) 45)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 23 T CONST)) (-3068 (((-644 (-2 (|:| |k| (-675 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4379 (((-3 $ "failed") (-1286 |#1| |#2|)) 62)) (-1903 (($ (-675 |#1|)) 14)) (-3457 (((-112) $ $) 46)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) 68) (($ $ $) NIL)) (-4273 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-675 |#1|)) NIL))) +(((-667 |#1| |#2|) (-13 (-377 |#1| |#2|) (-387 |#2| (-675 |#1|)) (-10 -8 (-15 -4379 ((-3 $ "failed") (-1286 |#1| |#2|))) (-15 -3955 ($ (-675 |#1|) (-675 |#1|))) (-15 -3955 ($ (-675 |#1|) $)) (-15 -3955 ($ $ (-675 |#1|))))) (-853) (-173)) (T -667)) +((-4379 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *1 (-667 *3 *4)))) (-3955 (*1 *1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-5 *1 (-667 *3 *4)) (-4 *4 (-173)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-5 *1 (-667 *3 *4)) (-4 *4 (-173)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-5 *1 (-667 *3 *4)) (-4 *4 (-173))))) +(-13 (-377 |#1| |#2|) (-387 |#2| (-675 |#1|)) (-10 -8 (-15 -4379 ((-3 $ "failed") (-1286 |#1| |#2|))) (-15 -3955 ($ (-675 |#1|) (-675 |#1|))) (-15 -3955 ($ (-675 |#1|) $)) (-15 -3955 ($ $ (-675 |#1|))))) +((-1902 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1900 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1680 (($ (-1 (-112) |#2|) $) 29)) (-2444 (($ $) 67)) (-2528 (($ $) 78)) (-3831 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-4276 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3845 (((-550) |#2| $ (-550)) 75) (((-550) |#2| $) NIL) (((-550) (-1 (-112) |#2|) $) 56)) (-4048 (($ (-774) |#2|) 65)) (-3261 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3943 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4392 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3967 (($ |#2|) 15)) (-4041 (($ $ $ (-550)) 42) (($ |#2| $ (-550)) 40)) (-1442 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1681 (($ $ (-1237 (-550))) 51) (($ $ (-550)) 44)) (-1901 (($ $ $ (-550)) 74)) (-3826 (($ $) 72)) (-3090 (((-112) $ $) 80))) +(((-668 |#1| |#2|) (-10 -8 (-15 -3967 (|#1| |#2|)) (-15 -1681 (|#1| |#1| (-550))) (-15 -1681 (|#1| |#1| (-1237 (-550)))) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4041 (|#1| |#2| |#1| (-550))) (-15 -4041 (|#1| |#1| |#1| (-550))) (-15 -3261 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| |#2| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -3261 (|#1| |#1| |#1|)) (-15 -3943 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1902 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3845 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3845 ((-550) |#2| |#1|)) (-15 -3845 ((-550) |#2| |#1| (-550))) (-15 -3943 (|#1| |#1| |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -1901 (|#1| |#1| |#1| (-550))) (-15 -2444 (|#1| |#1|)) (-15 -1900 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1442 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4048 (|#1| (-774) |#2|)) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3826 (|#1| |#1|))) (-669 |#2|) (-1220)) (T -668)) +NIL +(-10 -8 (-15 -3967 (|#1| |#2|)) (-15 -1681 (|#1| |#1| (-550))) (-15 -1681 (|#1| |#1| (-1237 (-550)))) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4041 (|#1| |#2| |#1| (-550))) (-15 -4041 (|#1| |#1| |#1| (-550))) (-15 -3261 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1680 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| |#2| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -3261 (|#1| |#1| |#1|)) (-15 -3943 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1902 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3845 ((-550) (-1 (-112) |#2|) |#1|)) (-15 -3845 ((-550) |#2| |#1|)) (-15 -3845 ((-550) |#2| |#1| (-550))) (-15 -3943 (|#1| |#1| |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -1901 (|#1| |#1| |#1| (-550))) (-15 -2444 (|#1| |#1|)) (-15 -1900 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4276 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1442 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4048 (|#1| (-774) |#2|)) (-15 -4392 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3826 (|#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-4228 ((|#1| $) 66)) (-4230 (($ $) 68)) (-2374 (((-1276) $ (-550) (-550)) 98 (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) 53 (|has| $ (-6 -4428)))) (-1902 (((-112) $) 143 (|has| |#1| (-853))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1900 (($ $) 147 (-12 (|has| |#1| (-853)) (|has| $ (-6 -4428)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4428)))) (-3312 (($ $) 142 (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-4220 (($ $ $) 57 (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) 55 (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) 59 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4428))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 118 (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) 87 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-1680 (($ (-1 (-112) |#1|) $) 130)) (-4144 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4427)))) (-4229 ((|#1| $) 67)) (-4158 (($) 7 T CONST)) (-2444 (($ $) 145 (|has| $ (-6 -4428)))) (-2445 (($ $) 135)) (-4232 (($ $) 74) (($ $ (-774)) 72)) (-2528 (($ $) 132 (|has| |#1| (-1105)))) (-1441 (($ $) 100 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 131 (|has| |#1| (-1105))) (($ (-1 (-112) |#1|) $) 126)) (-3832 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4427))) (($ |#1| $) 101 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1686 ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 88)) (-3868 (((-112) $) 84)) (-3845 (((-550) |#1| $ (-550)) 140 (|has| |#1| (-1105))) (((-550) |#1| $) 139 (|has| |#1| (-1105))) (((-550) (-1 (-112) |#1|) $) 138)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-4048 (($ (-774) |#1|) 109)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 96 (|has| (-550) (-853)))) (-2936 (($ $ $) 148 (|has| |#1| (-853)))) (-3261 (($ $ $) 133 (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3943 (($ $ $) 141 (|has| |#1| (-853))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 95 (|has| (-550) (-853)))) (-3262 (($ $ $) 149 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3967 (($ |#1|) 123)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4231 ((|#1| $) 71) (($ $ (-774)) 69)) (-4041 (($ $ $ (-550)) 128) (($ |#1| $ (-550)) 127)) (-2451 (($ $ $ (-550)) 117) (($ |#1| $ (-550)) 116)) (-2379 (((-644 (-550)) $) 93)) (-2380 (((-112) (-550) $) 92)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 77) (($ $ (-774)) 75)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2375 (($ $ |#1|) 97 (|has| $ (-6 -4428)))) (-3869 (((-112) $) 85)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 91)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1237 (-550))) 113) ((|#1| $ (-550)) 90) ((|#1| $ (-550) |#1|) 89)) (-3432 (((-550) $ $) 45)) (-1681 (($ $ (-1237 (-550))) 125) (($ $ (-550)) 124)) (-2452 (($ $ (-1237 (-550))) 115) (($ $ (-550)) 114)) (-4067 (((-112) $) 47)) (-4225 (($ $) 63)) (-4223 (($ $) 60 (|has| $ (-6 -4428)))) (-4226 (((-774) $) 64)) (-4227 (($ $) 65)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 144 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 99 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 108)) (-4224 (($ $ $) 62) (($ $ |#1|) 61)) (-4235 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 151 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 152 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-3089 (((-112) $ $) 150 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 153 (|has| |#1| (-853)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-669 |#1|) (-140) (-1220)) (T -669)) +((-3967 (*1 *1 *2) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1220))))) +(-13 (-1153 |t#1|) (-375 |t#1|) (-284 |t#1|) (-10 -8 (-15 -3967 ($ |t#1|)))) +(((-34) . T) ((-102) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-284 |#1|) . T) ((-375 |#1|) . T) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-853) |has| |#1| (-853)) ((-1014 |#1|) . T) ((-1105) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-1153 |#1|) . T) ((-1220) . T) ((-1259 |#1|) . T)) +((-4006 (((-644 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2192 (-644 |#3|)))) |#4| (-644 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2192 (-644 |#3|))) |#4| |#3|) 60)) (-3515 (((-774) |#4| |#3|) 18)) (-3766 (((-3 |#3| #1#) |#4| |#3|) 21)) (-2462 (((-112) |#4| |#3|) 14))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2192 (-644 |#3|))) |#4| |#3|)) (-15 -4006 ((-644 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2192 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -3766 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2462 ((-112) |#4| |#3|)) (-15 -3515 ((-774) |#4| |#3|))) (-366) (-13 (-375 |#1|) (-10 -7 (-6 -4428))) (-13 (-375 |#1|) (-10 -7 (-6 -4428))) (-689 |#1| |#2| |#3|)) (T -670)) +((-3515 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-5 *2 (-774)) (-5 *1 (-670 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-5 *2 (-112)) (-5 *1 (-670 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4)))) (-3766 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-366)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4428)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428)))) (-5 *1 (-670 *4 *5 *2 *3)) (-4 *3 (-689 *4 *5 *2)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-5 *2 (-644 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2192 (-644 *7))))) (-5 *1 (-670 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-689 *5 *6 *7)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2192 (-644 *4)))) (-5 *1 (-670 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4))))) +(-10 -7 (-15 -4006 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2192 (-644 |#3|))) |#4| |#3|)) (-15 -4006 ((-644 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2192 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -3766 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2462 ((-112) |#4| |#3|)) (-15 -3515 ((-774) |#4| |#3|))) +((-4006 (((-644 (-2 (|:| |particular| (-3 (-1270 |#1|) #1="failed")) (|:| -2192 (-644 (-1270 |#1|))))) (-644 (-644 |#1|)) (-644 (-1270 |#1|))) 22) (((-644 (-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|))))) (-692 |#1|) (-644 (-1270 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|)))) (-644 (-644 |#1|)) (-1270 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|)))) (-692 |#1|) (-1270 |#1|)) 14)) (-3515 (((-774) (-692 |#1|) (-1270 |#1|)) 30)) (-3766 (((-3 (-1270 |#1|) #1#) (-692 |#1|) (-1270 |#1|)) 24)) (-2462 (((-112) (-692 |#1|) (-1270 |#1|)) 27))) +(((-671 |#1|) (-10 -7 (-15 -4006 ((-2 (|:| |particular| (-3 (-1270 |#1|) #1="failed")) (|:| -2192 (-644 (-1270 |#1|)))) (-692 |#1|) (-1270 |#1|))) (-15 -4006 ((-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|)))) (-644 (-644 |#1|)) (-1270 |#1|))) (-15 -4006 ((-644 (-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|))))) (-692 |#1|) (-644 (-1270 |#1|)))) (-15 -4006 ((-644 (-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|))))) (-644 (-644 |#1|)) (-644 (-1270 |#1|)))) (-15 -3766 ((-3 (-1270 |#1|) #1#) (-692 |#1|) (-1270 |#1|))) (-15 -2462 ((-112) (-692 |#1|) (-1270 |#1|))) (-15 -3515 ((-774) (-692 |#1|) (-1270 |#1|)))) (-366)) (T -671)) +((-3515 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)) (-4 *5 (-366)) (-5 *2 (-774)) (-5 *1 (-671 *5)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)) (-4 *5 (-366)) (-5 *2 (-112)) (-5 *1 (-671 *5)))) (-3766 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1270 *4)) (-5 *3 (-692 *4)) (-4 *4 (-366)) (-5 *1 (-671 *4)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-366)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1270 *5) #1="failed")) (|:| -2192 (-644 (-1270 *5)))))) (-5 *1 (-671 *5)) (-5 *4 (-644 (-1270 *5))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *5)) (-4 *5 (-366)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1270 *5) #1#)) (|:| -2192 (-644 (-1270 *5)))))) (-5 *1 (-671 *5)) (-5 *4 (-644 (-1270 *5))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-366)) (-5 *2 (-2 (|:| |particular| (-3 (-1270 *5) #1#)) (|:| -2192 (-644 (-1270 *5))))) (-5 *1 (-671 *5)) (-5 *4 (-1270 *5)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| |particular| (-3 (-1270 *5) #1#)) (|:| -2192 (-644 (-1270 *5))))) (-5 *1 (-671 *5)) (-5 *4 (-1270 *5))))) +(-10 -7 (-15 -4006 ((-2 (|:| |particular| (-3 (-1270 |#1|) #1="failed")) (|:| -2192 (-644 (-1270 |#1|)))) (-692 |#1|) (-1270 |#1|))) (-15 -4006 ((-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|)))) (-644 (-644 |#1|)) (-1270 |#1|))) (-15 -4006 ((-644 (-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|))))) (-692 |#1|) (-644 (-1270 |#1|)))) (-15 -4006 ((-644 (-2 (|:| |particular| (-3 (-1270 |#1|) #1#)) (|:| -2192 (-644 (-1270 |#1|))))) (-644 (-644 |#1|)) (-644 (-1270 |#1|)))) (-15 -3766 ((-3 (-1270 |#1|) #1#) (-692 |#1|) (-1270 |#1|))) (-15 -2462 ((-112) (-692 |#1|) (-1270 |#1|))) (-15 -3515 ((-774) (-692 |#1|) (-1270 |#1|)))) +((-2463 (((-2 (|:| |particular| (-3 (-1270 (-411 |#4|)) "failed")) (|:| -2192 (-644 (-1270 (-411 |#4|))))) (-644 |#4|) (-644 |#3|)) 52))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2463 ((-2 (|:| |particular| (-3 (-1270 (-411 |#4|)) "failed")) (|:| -2192 (-644 (-1270 (-411 |#4|))))) (-644 |#4|) (-644 |#3|)))) (-561) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -672)) +((-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-853)) (-4 *8 (-954 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-5 *2 (-2 (|:| |particular| (-3 (-1270 (-411 *8)) "failed")) (|:| -2192 (-644 (-1270 (-411 *8)))))) (-5 *1 (-672 *5 *6 *7 *8))))) +(-10 -7 (-15 -2463 ((-2 (|:| |particular| (-3 (-1270 (-411 |#4|)) "failed")) (|:| -2192 (-644 (-1270 (-411 |#4|))))) (-644 |#4|) (-644 |#3|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1949 (((-3 $ #1="failed")) NIL (|has| |#2| (-561)))) (-3756 ((|#2| $) NIL)) (-3527 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3645 (((-1270 (-692 |#2|))) NIL) (((-1270 (-692 |#2|)) (-1270 $)) NIL)) (-3529 (((-112) $) NIL)) (-1899 (((-1270 $)) 44)) (-1310 (((-112) $ (-774)) NIL)) (-3759 (($ |#2|) NIL)) (-4158 (($) NIL T CONST)) (-3516 (($ $) NIL (|has| |#2| (-309)))) (-3518 (((-240 |#1| |#2|) $ (-550)) NIL)) (-2086 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (|has| |#2| (-561)))) (-1873 (((-3 $ #1#)) NIL (|has| |#2| (-561)))) (-1965 (((-692 |#2|)) NIL) (((-692 |#2|) (-1270 $)) NIL)) (-1897 ((|#2| $) NIL)) (-1963 (((-692 |#2|) $) NIL) (((-692 |#2|) $ (-1270 $)) NIL)) (-2569 (((-3 $ #1#) $) NIL (|has| |#2| (-561)))) (-2080 (((-1175 (-950 |#2|))) NIL (|has| |#2| (-366)))) (-2572 (($ $ (-923)) NIL)) (-1895 ((|#2| $) NIL)) (-1875 (((-1175 |#2|) $) NIL (|has| |#2| (-561)))) (-1967 ((|#2|) NIL) ((|#2| (-1270 $)) NIL)) (-1893 (((-1175 |#2|) $) NIL)) (-1887 (((-112)) NIL)) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 |#2| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) ((|#2| $) NIL)) (-1969 (($ (-1270 |#2|)) NIL) (($ (-1270 |#2|) (-1270 $)) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3515 (((-774) $) NIL (|has| |#2| (-561))) (((-923)) 45)) (-3519 ((|#2| $ (-550) (-550)) NIL)) (-1884 (((-112)) NIL)) (-2596 (($ $ (-923)) NIL)) (-2126 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL)) (-3514 (((-774) $) NIL (|has| |#2| (-561)))) (-3513 (((-644 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-561)))) (-3521 (((-774) $) NIL)) (-1880 (((-112)) NIL)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3753 ((|#2| $) NIL (|has| |#2| (-6 (-4429 #3="*"))))) (-3525 (((-550) $) NIL)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3524 (((-550) $) NIL)) (-3522 (((-550) $) NIL)) (-3530 (($ (-644 (-644 |#2|))) NIL)) (-2130 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4027 (((-644 (-644 |#2|)) $) NIL)) (-1878 (((-112)) NIL)) (-1882 (((-112)) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-2087 (((-3 (-2 (|:| |particular| $) (|:| -2192 (-644 $))) #1#)) NIL (|has| |#2| (-561)))) (-1874 (((-3 $ #1#)) NIL (|has| |#2| (-561)))) (-1966 (((-692 |#2|)) NIL) (((-692 |#2|) (-1270 $)) NIL)) (-1898 ((|#2| $) NIL)) (-1964 (((-692 |#2|) $) NIL) (((-692 |#2|) $ (-1270 $)) NIL)) (-2570 (((-3 $ #1#) $) NIL (|has| |#2| (-561)))) (-2084 (((-1175 (-950 |#2|))) NIL (|has| |#2| (-366)))) (-2571 (($ $ (-923)) NIL)) (-1896 ((|#2| $) NIL)) (-1876 (((-1175 |#2|) $) NIL (|has| |#2| (-561)))) (-1968 ((|#2|) NIL) ((|#2| (-1270 $)) NIL)) (-1894 (((-1175 |#2|) $) NIL)) (-1888 (((-112)) NIL)) (-3665 (((-1163) $) NIL)) (-1879 (((-112)) NIL)) (-1881 (((-112)) NIL)) (-1883 (((-112)) NIL)) (-4023 (((-3 $ "failed") $) NIL (|has| |#2| (-366)))) (-3666 (((-1124) $) NIL)) (-1886 (((-112)) NIL)) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-2128 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ (-550) (-550) |#2|) NIL) ((|#2| $ (-550) (-550)) 30) ((|#2| $ (-550)) NIL)) (-4244 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3755 ((|#2| $) NIL)) (-3758 (($ (-644 |#2|)) NIL)) (-3528 (((-112) $) NIL)) (-3757 (((-240 |#1| |#2|) $) NIL)) (-3754 ((|#2| $) NIL (|has| |#2| (-6 (-4429 #3#))))) (-2127 (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3826 (($ $) NIL)) (-3646 (((-692 |#2|) (-1270 $)) NIL) (((-1270 |#2|) $) NIL) (((-692 |#2|) (-1270 $) (-1270 $)) NIL) (((-1270 |#2|) $ (-1270 $)) 33)) (-4404 (($ (-1270 |#2|)) NIL) (((-1270 |#2|) $) NIL)) (-2072 (((-644 (-950 |#2|))) NIL) (((-644 (-950 |#2|)) (-1270 $)) NIL)) (-2758 (($ $ $) NIL)) (-1892 (((-112)) NIL)) (-3517 (((-240 |#1| |#2|) $ (-550)) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#2| (-1042 (-411 (-550))))) (($ |#2|) NIL) (((-692 |#2|) $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) 43)) (-1877 (((-644 (-1270 |#2|))) NIL (|has| |#2| (-561)))) (-2759 (($ $ $ $) NIL)) (-1890 (((-112)) NIL)) (-2950 (($ (-692 |#2|) $) NIL)) (-2129 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3526 (((-112) $) NIL)) (-2757 (($ $ $) NIL)) (-1891 (((-112)) NIL)) (-1889 (((-112)) NIL)) (-1885 (((-112)) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#2| (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-673 |#1| |#2|) (-13 (-1127 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-616 (-692 |#2|)) (-422 |#2|)) (-923) (-173)) (T -673)) +NIL +(-13 (-1127 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-616 (-692 |#2|)) (-422 |#2|)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3671 (((-644 (-1139)) $) 10)) (-4380 (((-866) $) 16) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-674) (-13 (-1087) (-10 -8 (-15 -3671 ((-644 (-1139)) $))))) (T -674)) +((-3671 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-674))))) +(-13 (-1087) (-10 -8 (-15 -3671 ((-644 (-1139)) $)))) +((-2970 (((-112) $ $) NIL)) (-4368 (((-644 |#1|) $) NIL)) (-3543 (($ $) 62)) (-3067 (((-112) $) NIL)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-2466 (((-3 $ "failed") (-822 |#1|)) 27)) (-2468 (((-112) (-822 |#1|)) 17)) (-2467 (($ (-822 |#1|)) 28)) (-2841 (((-112) $ $) 36)) (-4267 (((-923) $) 43)) (-3544 (($ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4166 (((-644 $) (-822 |#1|)) 19)) (-4380 (((-866) $) 51) (($ |#1|) 40) (((-822 |#1|) $) 47) (((-680 |#1|) $) 52)) (-3664 (((-112) $ $) NIL)) (-2465 (((-58 (-644 $)) (-644 |#1|) (-923)) 67)) (-2464 (((-644 $) (-644 |#1|) (-923)) 72)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 63)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 46))) +(((-675 |#1|) (-13 (-853) (-1042 |#1|) (-10 -8 (-15 -3067 ((-112) $)) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -4267 ((-923) $)) (-15 -2841 ((-112) $ $)) (-15 -4380 ((-822 |#1|) $)) (-15 -4380 ((-680 |#1|) $)) (-15 -4166 ((-644 $) (-822 |#1|))) (-15 -2468 ((-112) (-822 |#1|))) (-15 -2467 ($ (-822 |#1|))) (-15 -2466 ((-3 $ "failed") (-822 |#1|))) (-15 -4368 ((-644 |#1|) $)) (-15 -2465 ((-58 (-644 $)) (-644 |#1|) (-923))) (-15 -2464 ((-644 $) (-644 |#1|) (-923))))) (-853)) (T -675)) +((-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) (-3544 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-853)))) (-3543 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-853)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) (-2841 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-680 *3)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-822 *4)) (-4 *4 (-853)) (-5 *2 (-644 (-675 *4))) (-5 *1 (-675 *4)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-822 *4)) (-4 *4 (-853)) (-5 *2 (-112)) (-5 *1 (-675 *4)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-822 *3)) (-4 *3 (-853)) (-5 *1 (-675 *3)))) (-2466 (*1 *1 *2) (|partial| -12 (-5 *2 (-822 *3)) (-4 *3 (-853)) (-5 *1 (-675 *3)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-923)) (-4 *5 (-853)) (-5 *2 (-58 (-644 (-675 *5)))) (-5 *1 (-675 *5)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-923)) (-4 *5 (-853)) (-5 *2 (-644 (-675 *5))) (-5 *1 (-675 *5))))) +(-13 (-853) (-1042 |#1|) (-10 -8 (-15 -3067 ((-112) $)) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -4267 ((-923) $)) (-15 -2841 ((-112) $ $)) (-15 -4380 ((-822 |#1|) $)) (-15 -4380 ((-680 |#1|) $)) (-15 -4166 ((-644 $) (-822 |#1|))) (-15 -2468 ((-112) (-822 |#1|))) (-15 -2467 ($ (-822 |#1|))) (-15 -2466 ((-3 $ "failed") (-822 |#1|))) (-15 -4368 ((-644 |#1|) $)) (-15 -2465 ((-58 (-644 $)) (-644 |#1|) (-923))) (-15 -2464 ((-644 $) (-644 |#1|) (-923))))) +((-3828 ((|#2| $) 103)) (-4230 (($ $) 124)) (-1310 (((-112) $ (-774)) 35)) (-4232 (($ $) 112) (($ $ (-774)) 115)) (-3868 (((-112) $) 125)) (-3434 (((-644 $) $) 99)) (-3430 (((-112) $ $) 95)) (-4153 (((-112) $ (-774)) 33)) (-2376 (((-550) $) 69)) (-2377 (((-550) $) 68)) (-4150 (((-112) $ (-774)) 31)) (-3952 (((-112) $) 101)) (-4231 ((|#2| $) 116) (($ $ (-774)) 120)) (-2451 (($ $ $ (-550)) 86) (($ |#2| $ (-550)) 85)) (-2379 (((-644 (-550)) $) 67)) (-2380 (((-112) (-550) $) 61)) (-4234 ((|#2| $) NIL) (($ $ (-774)) 111)) (-4202 (($ $ (-550)) 128)) (-3869 (((-112) $) 127)) (-2128 (((-112) (-1 (-112) |#2|) $) 44)) (-2381 (((-644 |#2|) $) 48)) (-4233 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1237 (-550))) 82) ((|#2| $ (-550)) 59) ((|#2| $ (-550) |#2|) 60)) (-3432 (((-550) $ $) 94)) (-2452 (($ $ (-1237 (-550))) 81) (($ $ (-550)) 75)) (-4067 (((-112) $) 90)) (-4225 (($ $) 108)) (-4226 (((-774) $) 107)) (-4227 (($ $) 106)) (-3955 (($ (-644 |#2|)) 55)) (-3294 (($ $) 129)) (-3947 (((-644 $) $) 93)) (-3431 (((-112) $ $) 92)) (-2129 (((-112) (-1 (-112) |#2|) $) 43)) (-3457 (((-112) $ $) 20)) (-4391 (((-774) $) 41))) +(((-676 |#1| |#2|) (-10 -8 (-15 -3294 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-550))) (-15 -3868 ((-112) |#1|)) (-15 -3869 ((-112) |#1|)) (-15 -4233 (|#2| |#1| (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550))) (-15 -2381 ((-644 |#2|) |#1|)) (-15 -2380 ((-112) (-550) |#1|)) (-15 -2379 ((-644 (-550)) |#1|)) (-15 -2377 ((-550) |#1|)) (-15 -2376 ((-550) |#1|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -2452 (|#1| |#1| (-550))) (-15 -2452 (|#1| |#1| (-1237 (-550)))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -4225 (|#1| |#1|)) (-15 -4226 ((-774) |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| "last")) (-15 -4231 (|#2| |#1|)) (-15 -4232 (|#1| |#1| (-774))) (-15 -4233 (|#1| |#1| "rest")) (-15 -4232 (|#1| |#1|)) (-15 -4234 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| "first")) (-15 -4234 (|#2| |#1|)) (-15 -3430 ((-112) |#1| |#1|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -3432 ((-550) |#1| |#1|)) (-15 -4067 ((-112) |#1|)) (-15 -4233 (|#2| |#1| "value")) (-15 -3828 (|#2| |#1|)) (-15 -3952 ((-112) |#1|)) (-15 -3434 ((-644 |#1|) |#1|)) (-15 -3947 ((-644 |#1|) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774)))) (-677 |#2|) (-1220)) (T -676)) +NIL +(-10 -8 (-15 -3294 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-550))) (-15 -3868 ((-112) |#1|)) (-15 -3869 ((-112) |#1|)) (-15 -4233 (|#2| |#1| (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550))) (-15 -2381 ((-644 |#2|) |#1|)) (-15 -2380 ((-112) (-550) |#1|)) (-15 -2379 ((-644 (-550)) |#1|)) (-15 -2377 ((-550) |#1|)) (-15 -2376 ((-550) |#1|)) (-15 -3955 (|#1| (-644 |#2|))) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -2452 (|#1| |#1| (-550))) (-15 -2452 (|#1| |#1| (-1237 (-550)))) (-15 -2451 (|#1| |#2| |#1| (-550))) (-15 -2451 (|#1| |#1| |#1| (-550))) (-15 -4225 (|#1| |#1|)) (-15 -4226 ((-774) |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| "last")) (-15 -4231 (|#2| |#1|)) (-15 -4232 (|#1| |#1| (-774))) (-15 -4233 (|#1| |#1| "rest")) (-15 -4232 (|#1| |#1|)) (-15 -4234 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| "first")) (-15 -4234 (|#2| |#1|)) (-15 -3430 ((-112) |#1| |#1|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -3432 ((-550) |#1| |#1|)) (-15 -4067 ((-112) |#1|)) (-15 -4233 (|#2| |#1| "value")) (-15 -3828 (|#2| |#1|)) (-15 -3952 ((-112) |#1|)) (-15 -3434 ((-644 |#1|) |#1|)) (-15 -3947 ((-644 |#1|) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -2128 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774)))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-4228 ((|#1| $) 66)) (-4230 (($ $) 68)) (-2374 (((-1276) $ (-550) (-550)) 98 (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) 53 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-4220 (($ $ $) 57 (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) 55 (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) 59 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4428))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 118 (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) 87 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 103)) (-4229 ((|#1| $) 67)) (-4158 (($) 7 T CONST)) (-2470 (($ $) 125)) (-4232 (($ $) 74) (($ $ (-774)) 72)) (-1441 (($ $) 100 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 101 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 104)) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1686 ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 88)) (-3868 (((-112) $) 84)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-2469 (((-774) $) 124)) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-4048 (($ (-774) |#1|) 109)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 96 (|has| (-550) (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 95 (|has| (-550) (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-2472 (($ $) 127)) (-2473 (((-112) $) 128)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4231 ((|#1| $) 71) (($ $ (-774)) 69)) (-2451 (($ $ $ (-550)) 117) (($ |#1| $ (-550)) 116)) (-2379 (((-644 (-550)) $) 93)) (-2380 (((-112) (-550) $) 92)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2471 ((|#1| $) 126)) (-4234 ((|#1| $) 77) (($ $ (-774)) 75)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2375 (($ $ |#1|) 97 (|has| $ (-6 -4428)))) (-4202 (($ $ (-550)) 123)) (-3869 (((-112) $) 85)) (-2474 (((-112) $) 129)) (-2475 (((-112) $) 130)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 91)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1237 (-550))) 113) ((|#1| $ (-550)) 90) ((|#1| $ (-550) |#1|) 89)) (-3432 (((-550) $ $) 45)) (-2452 (($ $ (-1237 (-550))) 115) (($ $ (-550)) 114)) (-4067 (((-112) $) 47)) (-4225 (($ $) 63)) (-4223 (($ $) 60 (|has| $ (-6 -4428)))) (-4226 (((-774) $) 64)) (-4227 (($ $) 65)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 99 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 108)) (-4224 (($ $ $) 62 (|has| $ (-6 -4428))) (($ $ |#1|) 61 (|has| $ (-6 -4428)))) (-4235 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-3294 (($ $) 122)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-677 |#1|) (-140) (-1220)) (T -677)) +((-3832 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-677 *3)) (-4 *3 (-1220)))) (-4144 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-677 *3)) (-4 *3 (-1220)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) (-2472 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220)))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-774)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-677 *3)) (-4 *3 (-1220)))) (-3294 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220))))) +(-13 (-1153 |t#1|) (-10 -8 (-15 -3832 ($ (-1 (-112) |t#1|) $)) (-15 -4144 ($ (-1 (-112) |t#1|) $)) (-15 -2475 ((-112) $)) (-15 -2474 ((-112) $)) (-15 -2473 ((-112) $)) (-15 -2472 ($ $)) (-15 -2471 (|t#1| $)) (-15 -2470 ($ $)) (-15 -2469 ((-774) $)) (-15 -4202 ($ $ (-550))) (-15 -3294 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-1014 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1153 |#1|) . T) ((-1220) . T) ((-1259 |#1|) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2481 (($ (-774) (-774) (-774)) 55 (|has| |#1| (-1053)))) (-1310 (((-112) $ (-774)) NIL)) (-2478 ((|#1| $ (-774) (-774) (-774) |#1|) 49)) (-4158 (($) NIL T CONST)) (-2479 (($ $ $) 60 (|has| |#1| (-1053)))) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2476 (((-1270 (-774)) $) 12)) (-2477 (($ (-1181) $ $) 37)) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2480 (($ (-774)) 57 (|has| |#1| (-1053)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-774) (-774) (-774)) 46)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-3955 (($ (-644 (-644 (-644 |#1|)))) 70)) (-4380 (($ (-962 (-962 (-962 |#1|)))) 23) (((-962 (-962 (-962 |#1|))) $) 19) (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-678 |#1|) (-13 (-493 |#1|) (-10 -8 (IF (|has| |#1| (-1053)) (PROGN (-15 -2481 ($ (-774) (-774) (-774))) (-15 -2480 ($ (-774))) (-15 -2479 ($ $ $))) |%noBranch|) (-15 -3955 ($ (-644 (-644 (-644 |#1|))))) (-15 -4233 (|#1| $ (-774) (-774) (-774))) (-15 -2478 (|#1| $ (-774) (-774) (-774) |#1|)) (-15 -4380 ($ (-962 (-962 (-962 |#1|))))) (-15 -4380 ((-962 (-962 (-962 |#1|))) $)) (-15 -2477 ($ (-1181) $ $)) (-15 -2476 ((-1270 (-774)) $)))) (-1105)) (T -678)) +((-2481 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-774)) (-5 *1 (-678 *3)) (-4 *3 (-1053)) (-4 *3 (-1105)))) (-2480 (*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-678 *3)) (-4 *3 (-1053)) (-4 *3 (-1105)))) (-2479 (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1053)) (-4 *2 (-1105)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1105)) (-5 *1 (-678 *3)))) (-4233 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-774)) (-5 *1 (-678 *2)) (-4 *2 (-1105)))) (-2478 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-678 *2)) (-4 *2 (-1105)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-962 (-962 (-962 *3)))) (-4 *3 (-1105)) (-5 *1 (-678 *3)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-962 (-962 (-962 *3)))) (-5 *1 (-678 *3)) (-4 *3 (-1105)))) (-2477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-678 *3)) (-4 *3 (-1105)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-1270 (-774))) (-5 *1 (-678 *3)) (-4 *3 (-1105))))) +(-13 (-493 |#1|) (-10 -8 (IF (|has| |#1| (-1053)) (PROGN (-15 -2481 ($ (-774) (-774) (-774))) (-15 -2480 ($ (-774))) (-15 -2479 ($ $ $))) |%noBranch|) (-15 -3955 ($ (-644 (-644 (-644 |#1|))))) (-15 -4233 (|#1| $ (-774) (-774) (-774))) (-15 -2478 (|#1| $ (-774) (-774) (-774) |#1|)) (-15 -4380 ($ (-962 (-962 (-962 |#1|))))) (-15 -4380 ((-962 (-962 (-962 |#1|))) $)) (-15 -2477 ($ (-1181) $ $)) (-15 -2476 ((-1270 (-774)) $)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3600 (((-487) $) 10)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 19) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-1139) $) 12)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-679) (-13 (-1087) (-10 -8 (-15 -3600 ((-487) $)) (-15 -3655 ((-1139) $))))) (T -679)) +((-3600 (*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-679)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-679))))) +(-13 (-1087) (-10 -8 (-15 -3600 ((-487) $)) (-15 -3655 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-4368 (((-644 |#1|) $) 15)) (-3543 (($ $) 19)) (-3067 (((-112) $) 20)) (-3579 (((-3 |#1| "failed") $) 23)) (-3578 ((|#1| $) 21)) (-4232 (($ $) 37)) (-4370 (($ $) 25)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-2841 (((-112) $ $) 47)) (-4267 (((-923) $) 40)) (-3544 (($ $) 18)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 ((|#1| $) 36)) (-4380 (((-866) $) 32) (($ |#1|) 24) (((-822 |#1|) $) 28)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 13)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-680 |#1|) (-13 (-853) (-1042 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4380 ((-822 |#1|) $)) (-15 -4234 (|#1| $)) (-15 -3544 ($ $)) (-15 -4267 ((-923) $)) (-15 -2841 ((-112) $ $)) (-15 -4370 ($ $)) (-15 -4232 ($ $)) (-15 -3067 ((-112) $)) (-15 -3543 ($ $)) (-15 -4368 ((-644 |#1|) $)))) (-853)) (T -680)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) (-4234 (*1 *2 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) (-3544 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) (-2841 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) (-4370 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) (-4232 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) (-3543 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-680 *3)) (-4 *3 (-853))))) +(-13 (-853) (-1042 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4380 ((-822 |#1|) $)) (-15 -4234 (|#1| $)) (-15 -3544 ($ $)) (-15 -4267 ((-923) $)) (-15 -2841 ((-112) $ $)) (-15 -4370 ($ $)) (-15 -4232 ($ $)) (-15 -3067 ((-112) $)) (-15 -3543 ($ $)) (-15 -4368 ((-644 |#1|) $)))) +((-2490 ((|#1| (-1 |#1| (-774) |#1|) (-774) |#1|) 14)) (-2482 ((|#1| (-1 |#1| |#1|) (-774) |#1|) 12))) +(((-681 |#1|) (-10 -7 (-15 -2482 (|#1| (-1 |#1| |#1|) (-774) |#1|)) (-15 -2490 (|#1| (-1 |#1| (-774) |#1|) (-774) |#1|))) (-1105)) (T -681)) +((-2490 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-774) *2)) (-5 *4 (-774)) (-4 *2 (-1105)) (-5 *1 (-681 *2)))) (-2482 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-774)) (-4 *2 (-1105)) (-5 *1 (-681 *2))))) +(-10 -7 (-15 -2482 (|#1| (-1 |#1| |#1|) (-774) |#1|)) (-15 -2490 (|#1| (-1 |#1| (-774) |#1|) (-774) |#1|))) +((-2484 ((|#2| |#1| |#2|) 9)) (-2483 ((|#1| |#1| |#2|) 8))) +(((-682 |#1| |#2|) (-10 -7 (-15 -2483 (|#1| |#1| |#2|)) (-15 -2484 (|#2| |#1| |#2|))) (-1105) (-1105)) (T -682)) +((-2484 (*1 *2 *3 *2) (-12 (-5 *1 (-682 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *1 (-682 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) +(-10 -7 (-15 -2483 (|#1| |#1| |#2|)) (-15 -2484 (|#2| |#1| |#2|))) +((-2485 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -2485 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1105) (-1105) (-1105)) (T -683)) +((-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)) (-5 *1 (-683 *5 *6 *2))))) +(-10 -7 (-15 -2485 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3741 (((-1221) $) 21)) (-3740 (((-644 (-1221)) $) 19)) (-2486 (($ (-644 (-1221)) (-1221)) 14)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 29) (($ (-1186)) NIL) (((-1186) $) NIL) (((-1221) $) 22) (($ (-1119)) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-684) (-13 (-1087) (-616 (-1221)) (-10 -8 (-15 -4380 ($ (-1119))) (-15 -2486 ($ (-644 (-1221)) (-1221))) (-15 -3740 ((-644 (-1221)) $)) (-15 -3741 ((-1221) $))))) (T -684)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-684)))) (-2486 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1221))) (-5 *3 (-1221)) (-5 *1 (-684)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-684)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-684))))) +(-13 (-1087) (-616 (-1221)) (-10 -8 (-15 -4380 ($ (-1119))) (-15 -2486 ($ (-644 (-1221)) (-1221))) (-15 -3740 ((-644 (-1221)) $)) (-15 -3741 ((-1221) $)))) +((-2490 (((-1 |#1| (-774) |#1|) (-1 |#1| (-774) |#1|)) 29)) (-2487 (((-1 |#1|) |#1|) 8)) (-2489 ((|#1| |#1|) 23)) (-2488 (((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-550)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4380 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-774)) 26))) +(((-685 |#1|) (-10 -7 (-15 -2487 ((-1 |#1|) |#1|)) (-15 -4380 ((-1 |#1|) |#1|)) (-15 -2488 (|#1| (-1 |#1| |#1|))) (-15 -2488 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-550))) (-15 -2489 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-774))) (-15 -2490 ((-1 |#1| (-774) |#1|) (-1 |#1| (-774) |#1|)))) (-1105)) (T -685)) +((-2490 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-774) *3)) (-4 *3 (-1105)) (-5 *1 (-685 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-774)) (-4 *4 (-1105)) (-5 *1 (-685 *4)))) (-2489 (*1 *2 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1105)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-550)) (-5 *2 (-644 *5)) (-5 *1 (-685 *5)) (-4 *5 (-1105)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-685 *2)) (-4 *2 (-1105)))) (-4380 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1105)))) (-2487 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1105))))) +(-10 -7 (-15 -2487 ((-1 |#1|) |#1|)) (-15 -4380 ((-1 |#1|) |#1|)) (-15 -2488 (|#1| (-1 |#1| |#1|))) (-15 -2488 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-550))) (-15 -2489 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-774))) (-15 -2490 ((-1 |#1| (-774) |#1|) (-1 |#1| (-774) |#1|)))) +((-2493 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2492 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4386 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2491 (((-1 |#2| |#1|) |#2|) 11))) +(((-686 |#1| |#2|) (-10 -7 (-15 -2491 ((-1 |#2| |#1|) |#2|)) (-15 -2492 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4386 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2493 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1105) (-1105)) (T -686)) +((-2493 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-5 *2 (-1 *5 *4)) (-5 *1 (-686 *4 *5)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1105)) (-5 *2 (-1 *5 *4)) (-5 *1 (-686 *4 *5)) (-4 *4 (-1105)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-5 *2 (-1 *5)) (-5 *1 (-686 *4 *5)))) (-2491 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-686 *4 *3)) (-4 *4 (-1105)) (-4 *3 (-1105))))) +(-10 -7 (-15 -2491 ((-1 |#2| |#1|) |#2|)) (-15 -2492 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4386 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2493 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2498 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2494 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2495 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2496 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2497 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-687 |#1| |#2| |#3|) (-10 -7 (-15 -2494 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2495 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2496 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2497 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1105) (-1105) (-1105)) (T -687)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-1 *7 *5)) (-5 *1 (-687 *5 *6 *7)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-687 *4 *5 *6)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-687 *4 *5 *6)) (-4 *4 (-1105)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-687 *4 *5 *6)) (-4 *5 (-1105)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1105)) (-4 *4 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *5 *4 *6))))) +(-10 -7 (-15 -2494 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2495 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2496 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2497 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-4272 (($ (-774) (-774)) 43)) (-2503 (($ $ $) 71)) (-3840 (($ |#3|) 66) (($ $) 67)) (-3527 (((-112) $) 38)) (-2502 (($ $ (-550) (-550)) 82)) (-2501 (($ $ (-550) (-550)) 83)) (-2500 (($ $ (-550) (-550) (-550) (-550)) 88)) (-2505 (($ $) 69)) (-3529 (((-112) $) 15)) (-2499 (($ $ (-550) (-550) $) 89)) (-4221 ((|#2| $ (-550) (-550) |#2|) NIL) (($ $ (-644 (-550)) (-644 (-550)) $) 87)) (-3759 (($ (-774) |#2|) 53)) (-3530 (($ (-644 (-644 |#2|))) 51)) (-4027 (((-644 (-644 |#2|)) $) 78)) (-2504 (($ $ $) 70)) (-3891 (((-3 $ "failed") $ |#2|) 121)) (-4233 ((|#2| $ (-550) (-550)) NIL) ((|#2| $ (-550) (-550) |#2|) NIL) (($ $ (-644 (-550)) (-644 (-550))) 86)) (-3758 (($ (-644 |#2|)) 54) (($ (-644 $)) 56)) (-3528 (((-112) $) 28)) (-4380 (($ |#4|) 61) (((-866) $) NIL)) (-3526 (((-112) $) 40)) (-4383 (($ $ |#2|) 123)) (-4271 (($ $ $) 93) (($ $) 96)) (-4273 (($ $ $) 91)) (** (($ $ (-774)) 110) (($ $ (-550)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-550) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4380 ((-866) |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -4383 (|#1| |#1| |#2|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-774))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1| (-550) (-550) |#1|)) (-15 -2500 (|#1| |#1| (-550) (-550) (-550) (-550))) (-15 -2501 (|#1| |#1| (-550) (-550))) (-15 -2502 (|#1| |#1| (-550) (-550))) (-15 -4221 (|#1| |#1| (-644 (-550)) (-644 (-550)) |#1|)) (-15 -4233 (|#1| |#1| (-644 (-550)) (-644 (-550)))) (-15 -4027 ((-644 (-644 |#2|)) |#1|)) (-15 -2503 (|#1| |#1| |#1|)) (-15 -2504 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3840 (|#1| |#3|)) (-15 -4380 (|#1| |#4|)) (-15 -3758 (|#1| (-644 |#1|))) (-15 -3758 (|#1| (-644 |#2|))) (-15 -3759 (|#1| (-774) |#2|)) (-15 -3530 (|#1| (-644 (-644 |#2|)))) (-15 -4272 (|#1| (-774) (-774))) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -3528 ((-112) |#1|)) (-15 -3529 ((-112) |#1|)) (-15 -4221 (|#2| |#1| (-550) (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) (-550)))) (-689 |#2| |#3| |#4|) (-1053) (-375 |#2|) (-375 |#2|)) (T -688)) +NIL +(-10 -8 (-15 -4380 ((-866) |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -4383 (|#1| |#1| |#2|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-774))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1| (-550) (-550) |#1|)) (-15 -2500 (|#1| |#1| (-550) (-550) (-550) (-550))) (-15 -2501 (|#1| |#1| (-550) (-550))) (-15 -2502 (|#1| |#1| (-550) (-550))) (-15 -4221 (|#1| |#1| (-644 (-550)) (-644 (-550)) |#1|)) (-15 -4233 (|#1| |#1| (-644 (-550)) (-644 (-550)))) (-15 -4027 ((-644 (-644 |#2|)) |#1|)) (-15 -2503 (|#1| |#1| |#1|)) (-15 -2504 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3840 (|#1| |#3|)) (-15 -4380 (|#1| |#4|)) (-15 -3758 (|#1| (-644 |#1|))) (-15 -3758 (|#1| (-644 |#2|))) (-15 -3759 (|#1| (-774) |#2|)) (-15 -3530 (|#1| (-644 (-644 |#2|)))) (-15 -4272 (|#1| (-774) (-774))) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -3528 ((-112) |#1|)) (-15 -3529 ((-112) |#1|)) (-15 -4221 (|#2| |#1| (-550) (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) (-550)))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-4272 (($ (-774) (-774)) 98)) (-2503 (($ $ $) 88)) (-3840 (($ |#2|) 92) (($ $) 91)) (-3527 (((-112) $) 100)) (-2502 (($ $ (-550) (-550)) 84)) (-2501 (($ $ (-550) (-550)) 83)) (-2500 (($ $ (-550) (-550) (-550) (-550)) 82)) (-2505 (($ $) 90)) (-3529 (((-112) $) 102)) (-1310 (((-112) $ (-774)) 8)) (-2499 (($ $ (-550) (-550) $) 81)) (-4221 ((|#1| $ (-550) (-550) |#1|) 45) (($ $ (-644 (-550)) (-644 (-550)) $) 85)) (-1346 (($ $ (-550) |#2|) 43)) (-1345 (($ $ (-550) |#3|) 42)) (-3759 (($ (-774) |#1|) 96)) (-4158 (($) 7 T CONST)) (-3516 (($ $) 68 (|has| |#1| (-309)))) (-3518 ((|#2| $ (-550)) 47)) (-3515 (((-774) $) 67 (|has| |#1| (-561)))) (-1686 ((|#1| $ (-550) (-550) |#1|) 44)) (-3519 ((|#1| $ (-550) (-550)) 49)) (-2126 (((-644 |#1|) $) 31)) (-3514 (((-774) $) 66 (|has| |#1| (-561)))) (-3513 (((-644 |#3|) $) 65 (|has| |#1| (-561)))) (-3521 (((-774) $) 52)) (-4048 (($ (-774) (-774) |#1|) 58)) (-3520 (((-774) $) 51)) (-4153 (((-112) $ (-774)) 9)) (-3753 ((|#1| $) 63 (|has| |#1| (-6 (-4429 #1="*"))))) (-3525 (((-550) $) 56)) (-3523 (((-550) $) 54)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3524 (((-550) $) 55)) (-3522 (((-550) $) 53)) (-3530 (($ (-644 (-644 |#1|))) 97)) (-2130 (($ (-1 |#1| |#1|) $) 35)) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4027 (((-644 (-644 |#1|)) $) 87)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4023 (((-3 $ "failed") $) 62 (|has| |#1| (-366)))) (-2504 (($ $ $) 89)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) 57)) (-3891 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-561)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) (-550)) 50) ((|#1| $ (-550) (-550) |#1|) 48) (($ $ (-644 (-550)) (-644 (-550))) 86)) (-3758 (($ (-644 |#1|)) 95) (($ (-644 $)) 94)) (-3528 (((-112) $) 101)) (-3754 ((|#1| $) 64 (|has| |#1| (-6 (-4429 #1#))))) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-3517 ((|#3| $ (-550)) 46)) (-4380 (($ |#3|) 93) (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3526 (((-112) $) 99)) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4383 (($ $ |#1|) 69 (|has| |#1| (-366)))) (-4271 (($ $ $) 79) (($ $) 78)) (-4273 (($ $ $) 80)) (** (($ $ (-774)) 71) (($ $ (-550)) 61 (|has| |#1| (-366)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-550) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-689 |#1| |#2| |#3|) (-140) (-1053) (-375 |t#1|) (-375 |t#1|)) (T -689)) +((-3529 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-4272 (*1 *1 *2 *2) (-12 (-5 *2 (-774)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3759 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3758 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3758 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4380 (*1 *1 *2) (-12 (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-3840 (*1 *1 *2) (-12 (-4 *3 (-1053)) (-4 *1 (-689 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2505 (*1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2504 (*1 *1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2503 (*1 *1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) (-4233 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-644 (-550))) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4221 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-644 (-550))) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2502 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2501 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2500 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2499 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4273 (*1 *1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4271 (*1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-689 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-689 *3 *2 *4)) (-4 *3 (-1053)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3891 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-561)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-366)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-309)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-561)) (-5 *2 (-774)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-561)) (-5 *2 (-774)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-561)) (-5 *2 (-644 *5)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4429 #1="*"))) (-4 *2 (-1053)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4429 #1#))) (-4 *2 (-1053)))) (-4023 (*1 *1 *1) (|partial| -12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-366)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-366))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4428) (-6 -4427) (-15 -3529 ((-112) $)) (-15 -3528 ((-112) $)) (-15 -3527 ((-112) $)) (-15 -3526 ((-112) $)) (-15 -4272 ($ (-774) (-774))) (-15 -3530 ($ (-644 (-644 |t#1|)))) (-15 -3759 ($ (-774) |t#1|)) (-15 -3758 ($ (-644 |t#1|))) (-15 -3758 ($ (-644 $))) (-15 -4380 ($ |t#3|)) (-15 -3840 ($ |t#2|)) (-15 -3840 ($ $)) (-15 -2505 ($ $)) (-15 -2504 ($ $ $)) (-15 -2503 ($ $ $)) (-15 -4027 ((-644 (-644 |t#1|)) $)) (-15 -4233 ($ $ (-644 (-550)) (-644 (-550)))) (-15 -4221 ($ $ (-644 (-550)) (-644 (-550)) $)) (-15 -2502 ($ $ (-550) (-550))) (-15 -2501 ($ $ (-550) (-550))) (-15 -2500 ($ $ (-550) (-550) (-550) (-550))) (-15 -2499 ($ $ (-550) (-550) $)) (-15 -4273 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4271 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-550) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-774))) (IF (|has| |t#1| (-561)) (-15 -3891 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-366)) (-15 -4383 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-309)) (-15 -3516 ($ $)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3515 ((-774) $)) (-15 -3514 ((-774) $)) (-15 -3513 ((-644 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4429 "*"))) (PROGN (-15 -3754 (|t#1| $)) (-15 -3753 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-366)) (PROGN (-15 -4023 ((-3 $ "failed") $)) (-15 ** ($ $ (-550)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-57 |#1| |#2| |#3|) . T) ((-1220) . T)) +((-4276 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4392 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4392 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4392 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4276 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1053) (-375 |#1|) (-375 |#1|) (-689 |#1| |#2| |#3|) (-1053) (-375 |#5|) (-375 |#5|) (-689 |#5| |#6| |#7|)) (T -690)) +((-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1053)) (-4 *2 (-1053)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-689 *5 *6 *7)) (-4 *10 (-689 *2 *8 *9)))) (-4392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1053)) (-4 *8 (-1053)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-689 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-689 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1053)) (-4 *8 (-1053)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-689 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-689 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) +(-10 -7 (-15 -4392 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4392 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4276 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3516 ((|#4| |#4|) 97 (|has| |#1| (-309)))) (-3515 (((-774) |#4|) 125 (|has| |#1| (-561)))) (-3514 (((-774) |#4|) 101 (|has| |#1| (-561)))) (-3513 (((-644 |#3|) |#4|) 108 (|has| |#1| (-561)))) (-2544 (((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|) 140 (|has| |#1| (-309)))) (-3753 ((|#1| |#4|) 57)) (-2510 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-561)))) (-4023 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-366)))) (-2509 ((|#4| |#4|) 93 (|has| |#1| (-561)))) (-2507 ((|#4| |#4| |#1| (-550) (-550)) 65)) (-2506 ((|#4| |#4| (-550) (-550)) 60)) (-2508 ((|#4| |#4| |#1| (-550) (-550)) 70)) (-3754 ((|#1| |#4|) 103)) (-2922 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-561))))) +(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3754 (|#1| |#4|)) (-15 -3753 (|#1| |#4|)) (-15 -2506 (|#4| |#4| (-550) (-550))) (-15 -2507 (|#4| |#4| |#1| (-550) (-550))) (-15 -2508 (|#4| |#4| |#1| (-550) (-550))) (IF (|has| |#1| (-561)) (PROGN (-15 -3515 ((-774) |#4|)) (-15 -3514 ((-774) |#4|)) (-15 -3513 ((-644 |#3|) |#4|)) (-15 -2509 (|#4| |#4|)) (-15 -2510 ((-3 |#4| "failed") |#4|)) (-15 -2922 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-15 -3516 (|#4| |#4|)) (-15 -2544 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4023 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-173) (-375 |#1|) (-375 |#1|) (-689 |#1| |#2| |#3|)) (T -691)) +((-4023 (*1 *2 *2) (|partial| -12 (-4 *3 (-366)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-2544 (*1 *2 *3 *3) (-12 (-4 *3 (-309)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-691 *3 *4 *5 *6)) (-4 *6 (-689 *3 *4 *5)))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-309)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-2510 (*1 *2 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-774)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-774)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-2508 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-550)) (-4 *3 (-173)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-691 *3 *5 *6 *2)) (-4 *2 (-689 *3 *5 *6)))) (-2507 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-550)) (-4 *3 (-173)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-691 *3 *5 *6 *2)) (-4 *2 (-689 *3 *5 *6)))) (-2506 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-550)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-691 *4 *5 *6 *2)) (-4 *2 (-689 *4 *5 *6)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-173)) (-5 *1 (-691 *2 *4 *5 *3)) (-4 *3 (-689 *2 *4 *5)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-173)) (-5 *1 (-691 *2 *4 *5 *3)) (-4 *3 (-689 *2 *4 *5))))) +(-10 -7 (-15 -3754 (|#1| |#4|)) (-15 -3753 (|#1| |#4|)) (-15 -2506 (|#4| |#4| (-550) (-550))) (-15 -2507 (|#4| |#4| |#1| (-550) (-550))) (-15 -2508 (|#4| |#4| |#1| (-550) (-550))) (IF (|has| |#1| (-561)) (PROGN (-15 -3515 ((-774) |#4|)) (-15 -3514 ((-774) |#4|)) (-15 -3513 ((-644 |#3|) |#4|)) (-15 -2509 (|#4| |#4|)) (-15 -2510 ((-3 |#4| "failed") |#4|)) (-15 -2922 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-309)) (PROGN (-15 -3516 (|#4| |#4|)) (-15 -2544 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4023 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4272 (($ (-774) (-774)) 64)) (-2503 (($ $ $) NIL)) (-3840 (($ (-1270 |#1|)) NIL) (($ $) NIL)) (-3527 (((-112) $) NIL)) (-2502 (($ $ (-550) (-550)) 22)) (-2501 (($ $ (-550) (-550)) NIL)) (-2500 (($ $ (-550) (-550) (-550) (-550)) NIL)) (-2505 (($ $) NIL)) (-3529 (((-112) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-2499 (($ $ (-550) (-550) $) NIL)) (-4221 ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-644 (-550)) (-644 (-550)) $) NIL)) (-1346 (($ $ (-550) (-1270 |#1|)) NIL)) (-1345 (($ $ (-550) (-1270 |#1|)) NIL)) (-3759 (($ (-774) |#1|) 37)) (-4158 (($) NIL T CONST)) (-3516 (($ $) 46 (|has| |#1| (-309)))) (-3518 (((-1270 |#1|) $ (-550)) NIL)) (-3515 (((-774) $) 48 (|has| |#1| (-561)))) (-1686 ((|#1| $ (-550) (-550) |#1|) 69)) (-3519 ((|#1| $ (-550) (-550)) NIL)) (-2126 (((-644 |#1|) $) NIL)) (-3514 (((-774) $) 50 (|has| |#1| (-561)))) (-3513 (((-644 (-1270 |#1|)) $) 53 (|has| |#1| (-561)))) (-3521 (((-774) $) 32)) (-4048 (($ (-774) (-774) |#1|) 28)) (-3520 (((-774) $) 33)) (-4153 (((-112) $ (-774)) NIL)) (-3753 ((|#1| $) 44 (|has| |#1| (-6 (-4429 #1="*"))))) (-3525 (((-550) $) 10)) (-3523 (((-550) $) 11)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3524 (((-550) $) 14)) (-3522 (((-550) $) 65)) (-3530 (($ (-644 (-644 |#1|))) NIL)) (-2130 (($ (-1 |#1| |#1|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4027 (((-644 (-644 |#1|)) $) 76)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4023 (((-3 $ #2="failed") $) 60 (|has| |#1| (-366)))) (-2504 (($ $ $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2375 (($ $ |#1|) NIL)) (-3891 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-561)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) (-550)) NIL) ((|#1| $ (-550) (-550) |#1|) NIL) (($ $ (-644 (-550)) (-644 (-550))) NIL)) (-3758 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL) (($ (-1270 |#1|)) 70)) (-3528 (((-112) $) NIL)) (-3754 ((|#1| $) 42 (|has| |#1| (-6 (-4429 #1#))))) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539))))) (-3517 (((-1270 |#1|) $ (-550)) NIL)) (-4380 (($ (-1270 |#1|)) NIL) (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3526 (((-112) $) NIL)) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $ $) NIL) (($ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) 38) (($ $ (-550)) 62 (|has| |#1| (-366)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-550) $) NIL) (((-1270 |#1|) $ (-1270 |#1|)) NIL) (((-1270 |#1|) (-1270 |#1|) $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-692 |#1|) (-13 (-689 |#1| (-1270 |#1|) (-1270 |#1|)) (-10 -8 (-15 -3758 ($ (-1270 |#1|))) (IF (|has| |#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4023 ((-3 $ "failed") $)) |%noBranch|))) (-1053)) (T -692)) +((-4023 (*1 *1 *1) (|partial| -12 (-5 *1 (-692 *2)) (-4 *2 (-366)) (-4 *2 (-1053)))) (-3758 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1053)) (-5 *1 (-692 *3))))) +(-13 (-689 |#1| (-1270 |#1|) (-1270 |#1|)) (-10 -8 (-15 -3758 ($ (-1270 |#1|))) (IF (|has| |#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4023 ((-3 $ "failed") $)) |%noBranch|))) +((-2516 (((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|)) 37)) (-2515 (((-692 |#1|) (-692 |#1|) (-692 |#1|) |#1|) 34)) (-2517 (((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|) (-774)) 43)) (-2512 (((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|)) 27)) (-2513 (((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|)) 31) (((-692 |#1|) (-692 |#1|) (-692 |#1|)) 29)) (-2514 (((-692 |#1|) (-692 |#1|) |#1| (-692 |#1|)) 33)) (-2511 (((-692 |#1|) (-692 |#1|) (-692 |#1|)) 25)) (** (((-692 |#1|) (-692 |#1|) (-774)) 46))) +(((-693 |#1|) (-10 -7 (-15 -2511 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2512 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2513 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2513 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2514 ((-692 |#1|) (-692 |#1|) |#1| (-692 |#1|))) (-15 -2515 ((-692 |#1|) (-692 |#1|) (-692 |#1|) |#1|)) (-15 -2516 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2517 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|) (-774))) (-15 ** ((-692 |#1|) (-692 |#1|) (-774)))) (-1053)) (T -693)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-692 *4)) (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *1 (-693 *4)))) (-2517 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-692 *4)) (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *1 (-693 *4)))) (-2516 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) (-2515 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) (-2514 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) (-2513 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) (-2513 (*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) (-2512 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) (-2511 (*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(-10 -7 (-15 -2511 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2512 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2513 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2513 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2514 ((-692 |#1|) (-692 |#1|) |#1| (-692 |#1|))) (-15 -2515 ((-692 |#1|) (-692 |#1|) (-692 |#1|) |#1|)) (-15 -2516 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -2517 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|) (-692 |#1|) (-774))) (-15 ** ((-692 |#1|) (-692 |#1|) (-774)))) +((-3579 (((-3 |#1| "failed") $) 18)) (-3578 ((|#1| $) NIL)) (-2518 (($) 7 T CONST)) (-2519 (($ |#1|) 8)) (-4380 (($ |#1|) 16) (((-866) $) 23)) (-3999 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2518)) 11)) (-4005 ((|#1| $) 15))) +(((-694 |#1|) (-13 (-1266) (-1042 |#1|) (-616 (-866)) (-10 -8 (-15 -2519 ($ |#1|)) (-15 -3999 ((-112) $ (|[\|\|]| |#1|))) (-15 -3999 ((-112) $ (|[\|\|]| -2518))) (-15 -4005 (|#1| $)) (-15 -2518 ($) -4386))) (-616 (-866))) (T -694)) +((-2519 (*1 *1 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-616 (-866))))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-616 (-866))) (-5 *2 (-112)) (-5 *1 (-694 *4)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2518)) (-5 *2 (-112)) (-5 *1 (-694 *4)) (-4 *4 (-616 (-866))))) (-4005 (*1 *2 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-616 (-866))))) (-2518 (*1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-616 (-866)))))) +(-13 (-1266) (-1042 |#1|) (-616 (-866)) (-10 -8 (-15 -2519 ($ |#1|)) (-15 -3999 ((-112) $ (|[\|\|]| |#1|))) (-15 -3999 ((-112) $ (|[\|\|]| -2518))) (-15 -4005 (|#1| $)) (-15 -2518 ($) -4386))) +((-2522 ((|#2| |#2| |#4|) 33)) (-2525 (((-692 |#2|) |#3| |#4|) 39)) (-2523 (((-692 |#2|) |#2| |#4|) 38)) (-2520 (((-1270 |#2|) |#2| |#4|) 16)) (-2521 ((|#2| |#3| |#4|) 32)) (-2526 (((-692 |#2|) |#3| |#4| (-774) (-774)) 48)) (-2524 (((-692 |#2|) |#2| |#4| (-774)) 47))) +(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2520 ((-1270 |#2|) |#2| |#4|)) (-15 -2521 (|#2| |#3| |#4|)) (-15 -2522 (|#2| |#2| |#4|)) (-15 -2523 ((-692 |#2|) |#2| |#4|)) (-15 -2524 ((-692 |#2|) |#2| |#4| (-774))) (-15 -2525 ((-692 |#2|) |#3| |#4|)) (-15 -2526 ((-692 |#2|) |#3| |#4| (-774) (-774)))) (-1105) (-904 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4427)))) (T -695)) +((-2526 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-774)) (-4 *6 (-1105)) (-4 *7 (-904 *6)) (-5 *2 (-692 *7)) (-5 *1 (-695 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4427)))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-4 *6 (-904 *5)) (-5 *2 (-692 *6)) (-5 *1 (-695 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427)))))) (-2524 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-774)) (-4 *6 (-1105)) (-4 *3 (-904 *6)) (-5 *2 (-692 *3)) (-5 *1 (-695 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4427)))))) (-2523 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-4 *3 (-904 *5)) (-5 *2 (-692 *3)) (-5 *1 (-695 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427)))))) (-2522 (*1 *2 *2 *3) (-12 (-4 *4 (-1105)) (-4 *2 (-904 *4)) (-5 *1 (-695 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4427)))))) (-2521 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-4 *2 (-904 *5)) (-5 *1 (-695 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427)))))) (-2520 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-4 *3 (-904 *5)) (-5 *2 (-1270 *3)) (-5 *1 (-695 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427))))))) +(-10 -7 (-15 -2520 ((-1270 |#2|) |#2| |#4|)) (-15 -2521 (|#2| |#3| |#4|)) (-15 -2522 (|#2| |#2| |#4|)) (-15 -2523 ((-692 |#2|) |#2| |#4|)) (-15 -2524 ((-692 |#2|) |#2| |#4| (-774))) (-15 -2525 ((-692 |#2|) |#3| |#4|)) (-15 -2526 ((-692 |#2|) |#3| |#4| (-774) (-774)))) +((-4175 (((-2 (|:| |num| (-692 |#1|)) (|:| |den| |#1|)) (-692 |#2|)) 20)) (-4173 ((|#1| (-692 |#2|)) 9)) (-4174 (((-692 |#1|) (-692 |#2|)) 18))) +(((-696 |#1| |#2|) (-10 -7 (-15 -4173 (|#1| (-692 |#2|))) (-15 -4174 ((-692 |#1|) (-692 |#2|))) (-15 -4175 ((-2 (|:| |num| (-692 |#1|)) (|:| |den| |#1|)) (-692 |#2|)))) (-561) (-995 |#1|)) (T -696)) +((-4175 (*1 *2 *3) (-12 (-5 *3 (-692 *5)) (-4 *5 (-995 *4)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| (-692 *4)) (|:| |den| *4))) (-5 *1 (-696 *4 *5)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-692 *5)) (-4 *5 (-995 *4)) (-4 *4 (-561)) (-5 *2 (-692 *4)) (-5 *1 (-696 *4 *5)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-692 *4)) (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-696 *2 *4))))) +(-10 -7 (-15 -4173 (|#1| (-692 |#2|))) (-15 -4174 ((-692 |#1|) (-692 |#2|))) (-15 -4175 ((-2 (|:| |num| (-692 |#1|)) (|:| |den| |#1|)) (-692 |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1959 (((-692 (-702))) NIL) (((-692 (-702)) (-1270 $)) NIL)) (-3756 (((-702) $) NIL)) (-3917 (($ $) NIL (|has| (-702) (-1206)))) (-4073 (($ $) NIL (|has| (-702) (-1206)))) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-702) (-353)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-702) (-309)) (|has| (-702) (-914))))) (-4208 (($ $) NIL (-3962 (-12 (|has| (-702) (-309)) (|has| (-702) (-914))) (|has| (-702) (-366))))) (-4403 (((-409 $) $) NIL (-3962 (-12 (|has| (-702) (-309)) (|has| (-702) (-914))) (|has| (-702) (-366))))) (-3440 (($ $) NIL (-12 (|has| (-702) (-1006)) (|has| (-702) (-1206))))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-702) (-309)) (|has| (-702) (-914))))) (-1755 (((-112) $ $) NIL (|has| (-702) (-309)))) (-3542 (((-774)) NIL (|has| (-702) (-371)))) (-3915 (($ $) NIL (|has| (-702) (-1206)))) (-4072 (($ $) NIL (|has| (-702) (-1206)))) (-3919 (($ $) NIL (|has| (-702) (-1206)))) (-4071 (($ $) NIL (|has| (-702) (-1206)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #2="failed") $) NIL) (((-3 (-702) #2#) $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-702) (-1042 (-411 (-550)))))) (-3578 (((-550) $) NIL) (((-702) $) NIL) (((-411 (-550)) $) NIL (|has| (-702) (-1042 (-411 (-550)))))) (-1969 (($ (-1270 (-702))) NIL) (($ (-1270 (-702)) (-1270 $)) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-702) (-353)))) (-2966 (($ $ $) NIL (|has| (-702) (-309)))) (-1958 (((-692 (-702)) $) NIL) (((-692 (-702)) $ (-1270 $)) NIL)) (-2429 (((-692 (-702)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-702))) (|:| |vec| (-1270 (-702)))) (-692 $) (-1270 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-702) (-642 (-550)))) (((-692 (-550)) (-692 $)) NIL (|has| (-702) (-642 (-550))))) (-4276 (((-3 $ "failed") (-411 (-1175 (-702)))) NIL (|has| (-702) (-366))) (($ (-1175 (-702))) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4077 (((-702) $) 29)) (-3427 (((-3 (-411 (-550)) #3="failed") $) NIL (|has| (-702) (-549)))) (-3426 (((-112) $) NIL (|has| (-702) (-549)))) (-3425 (((-411 (-550)) $) NIL (|has| (-702) (-549)))) (-3515 (((-923)) NIL)) (-3397 (($) NIL (|has| (-702) (-371)))) (-2965 (($ $ $) NIL (|has| (-702) (-309)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| (-702) (-309)))) (-3238 (($) NIL (|has| (-702) (-353)))) (-1850 (((-112) $) NIL (|has| (-702) (-353)))) (-1943 (($ $) NIL (|has| (-702) (-353))) (($ $ (-774)) NIL (|has| (-702) (-353)))) (-4157 (((-112) $) NIL (-3962 (-12 (|has| (-702) (-309)) (|has| (-702) (-914))) (|has| (-702) (-366))))) (-1463 (((-2 (|:| |r| (-702)) (|:| |phi| (-702))) $) NIL (-12 (|has| (-702) (-1064)) (|has| (-702) (-1206))))) (-4061 (($) NIL (|has| (-702) (-1206)))) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-702) (-890 (-381)))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-702) (-890 (-550))))) (-4205 (((-835 (-923)) $) NIL (|has| (-702) (-353))) (((-923) $) NIL (|has| (-702) (-353)))) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (-12 (|has| (-702) (-1006)) (|has| (-702) (-1206))))) (-3538 (((-702) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| (-702) (-353)))) (-1752 (((-3 (-644 $) #4="failed") (-644 $) $) NIL (|has| (-702) (-309)))) (-2194 (((-1175 (-702)) $) NIL (|has| (-702) (-366)))) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4392 (($ (-1 (-702) (-702)) $) NIL)) (-2190 (((-923) $) NIL (|has| (-702) (-371)))) (-4376 (($ $) NIL (|has| (-702) (-1206)))) (-3483 (((-1175 (-702)) $) NIL)) (-2071 (($ (-644 $)) NIL (|has| (-702) (-309))) (($ $ $) NIL (|has| (-702) (-309)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| (-702) (-366)))) (-3871 (($) NIL (|has| (-702) (-353)) CONST)) (-2565 (($ (-923)) NIL (|has| (-702) (-371)))) (-1465 (($) NIL)) (-4078 (((-702) $) 31)) (-3666 (((-1124) $) NIL)) (-2574 (($) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-702) (-309)))) (-3566 (($ (-644 $)) NIL (|has| (-702) (-309))) (($ $ $) NIL (|has| (-702) (-309)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-702) (-353)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-702) (-309)) (|has| (-702) (-914))))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-702) (-309)) (|has| (-702) (-914))))) (-4166 (((-409 $) $) NIL (-3962 (-12 (|has| (-702) (-309)) (|has| (-702) (-914))) (|has| (-702) (-366))))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-702) (-309))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| (-702) (-309)))) (-3891 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-702)) NIL (|has| (-702) (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-702) (-309)))) (-4377 (($ $) NIL (|has| (-702) (-1206)))) (-4201 (($ $ (-1181) (-702)) NIL (|has| (-702) (-518 (-1181) (-702)))) (($ $ (-644 (-1181)) (-644 (-702))) NIL (|has| (-702) (-518 (-1181) (-702)))) (($ $ (-644 (-295 (-702)))) NIL (|has| (-702) (-311 (-702)))) (($ $ (-295 (-702))) NIL (|has| (-702) (-311 (-702)))) (($ $ (-702) (-702)) NIL (|has| (-702) (-311 (-702)))) (($ $ (-644 (-702)) (-644 (-702))) NIL (|has| (-702) (-311 (-702))))) (-1754 (((-774) $) NIL (|has| (-702) (-309)))) (-4233 (($ $ (-702)) NIL (|has| (-702) (-288 (-702) (-702))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| (-702) (-309)))) (-4191 (((-702)) NIL) (((-702) (-1270 $)) NIL)) (-1944 (((-3 (-774) "failed") $ $) NIL (|has| (-702) (-353))) (((-774) $) NIL (|has| (-702) (-353)))) (-4244 (($ $ (-1 (-702) (-702))) NIL) (($ $ (-1 (-702) (-702)) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-1181)) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-774)) NIL (|has| (-702) (-234))) (($ $) NIL (|has| (-702) (-234)))) (-2573 (((-692 (-702)) (-1270 $) (-1 (-702) (-702))) NIL (|has| (-702) (-366)))) (-3607 (((-1175 (-702))) NIL)) (-3920 (($ $) NIL (|has| (-702) (-1206)))) (-4070 (($ $) NIL (|has| (-702) (-1206)))) (-1844 (($) NIL (|has| (-702) (-353)))) (-3918 (($ $) NIL (|has| (-702) (-1206)))) (-4069 (($ $) NIL (|has| (-702) (-1206)))) (-3916 (($ $) NIL (|has| (-702) (-1206)))) (-4068 (($ $) NIL (|has| (-702) (-1206)))) (-3646 (((-692 (-702)) (-1270 $)) NIL) (((-1270 (-702)) $) NIL) (((-692 (-702)) (-1270 $) (-1270 $)) NIL) (((-1270 (-702)) $ (-1270 $)) NIL)) (-4404 (((-539) $) NIL (|has| (-702) (-617 (-539)))) (((-169 (-226)) $) NIL (|has| (-702) (-1024))) (((-169 (-381)) $) NIL (|has| (-702) (-1024))) (((-894 (-381)) $) NIL (|has| (-702) (-617 (-894 (-381))))) (((-894 (-550)) $) NIL (|has| (-702) (-617 (-894 (-550))))) (($ (-1175 (-702))) NIL) (((-1175 (-702)) $) NIL) (($ (-1270 (-702))) NIL) (((-1270 (-702)) $) NIL)) (-3412 (($ $) NIL)) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-3962 (-12 (|has| (-702) (-309)) (|has| $ (-145)) (|has| (-702) (-914))) (|has| (-702) (-353))))) (-1464 (($ (-702) (-702)) 12)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-550)) NIL) (($ (-702)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-550))) 19) (($ (-169 (-702))) 28) (($ (-169 (-704))) 25) (((-169 (-381)) $) 33) (($ (-411 (-550))) NIL (-3962 (|has| (-702) (-366)) (|has| (-702) (-1042 (-411 (-550))))))) (-3107 (($ $) NIL (|has| (-702) (-353))) (((-3 $ #1#) $) NIL (-3962 (-12 (|has| (-702) (-309)) (|has| $ (-145)) (|has| (-702) (-914))) (|has| (-702) (-145))))) (-2772 (((-1175 (-702)) $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL)) (-3923 (($ $) NIL (|has| (-702) (-1206)))) (-3911 (($ $) NIL (|has| (-702) (-1206)))) (-2242 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| (-702) (-1206)))) (-3909 (($ $) NIL (|has| (-702) (-1206)))) (-3925 (($ $) NIL (|has| (-702) (-1206)))) (-3913 (($ $) NIL (|has| (-702) (-1206)))) (-2387 (((-702) $) NIL (|has| (-702) (-1206)))) (-3926 (($ $) NIL (|has| (-702) (-1206)))) (-3914 (($ $) NIL (|has| (-702) (-1206)))) (-3924 (($ $) NIL (|has| (-702) (-1206)))) (-3912 (($ $) NIL (|has| (-702) (-1206)))) (-3922 (($ $) NIL (|has| (-702) (-1206)))) (-3910 (($ $) NIL (|has| (-702) (-1206)))) (-3809 (($ $) NIL (|has| (-702) (-1064)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-1 (-702) (-702))) NIL) (($ $ (-1 (-702) (-702)) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-1181)) NIL (|has| (-702) (-904 (-1181)))) (($ $ (-774)) NIL (|has| (-702) (-234))) (($ $) NIL (|has| (-702) (-234)))) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL (|has| (-702) (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ $) NIL (|has| (-702) (-1206))) (($ $ (-411 (-550))) NIL (-12 (|has| (-702) (-1006)) (|has| (-702) (-1206)))) (($ $ (-550)) NIL (|has| (-702) (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ (-702) $) NIL) (($ $ (-702)) NIL) (($ (-411 (-550)) $) NIL (|has| (-702) (-366))) (($ $ (-411 (-550))) NIL (|has| (-702) (-366))))) +(((-697) (-13 (-391) (-166 (-702)) (-10 -8 (-15 -4380 ($ (-169 (-381)))) (-15 -4380 ($ (-169 (-550)))) (-15 -4380 ($ (-169 (-702)))) (-15 -4380 ($ (-169 (-704)))) (-15 -4380 ((-169 (-381)) $))))) (T -697)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-697)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-169 (-550))) (-5 *1 (-697)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-697)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-169 (-704))) (-5 *1 (-697)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-697))))) +(-13 (-391) (-166 (-702)) (-10 -8 (-15 -4380 ($ (-169 (-381)))) (-15 -4380 ($ (-169 (-550)))) (-15 -4380 ($ (-169 (-702)))) (-15 -4380 ($ (-169 (-704)))) (-15 -4380 ((-169 (-381)) $)))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-1680 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2528 (($ $) 63)) (-1441 (($ $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41) (($ |#1| $ (-774)) 64)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2527 (((-644 (-2 (|:| -2256 |#1|) (|:| -2127 (-774)))) $) 62)) (-1569 (($) 50) (($ (-644 |#1|)) 49)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 51)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-698 |#1|) (-140) (-1105)) (T -698)) +((-4041 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-698 *2)) (-4 *2 (-1105)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-698 *2)) (-4 *2 (-1105)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-698 *3)) (-4 *3 (-1105)) (-5 *2 (-644 (-2 (|:| -2256 *3) (|:| -2127 (-774)))))))) +(-13 (-236 |t#1|) (-10 -8 (-15 -4041 ($ |t#1| $ (-774))) (-15 -2528 ($ $)) (-15 -2527 ((-644 (-2 (|:| -2256 |t#1|) (|:| -2127 (-774)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-236 |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2531 (((-644 |#1|) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))) (-550)) 65)) (-2529 ((|#1| |#1| (-550)) 62)) (-3566 ((|#1| |#1| |#1| (-550)) 46)) (-4166 (((-644 |#1|) |#1| (-550)) 49)) (-2532 ((|#1| |#1| (-550) |#1| (-550)) 40)) (-2530 (((-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))) |#1| (-550)) 61))) +(((-699 |#1|) (-10 -7 (-15 -3566 (|#1| |#1| |#1| (-550))) (-15 -2529 (|#1| |#1| (-550))) (-15 -4166 ((-644 |#1|) |#1| (-550))) (-15 -2530 ((-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))) |#1| (-550))) (-15 -2531 ((-644 |#1|) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))) (-550))) (-15 -2532 (|#1| |#1| (-550) |#1| (-550)))) (-1246 (-550))) (T -699)) +((-2532 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-699 *2)) (-4 *2 (-1246 *3)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| -4166 *5) (|:| -4382 (-550))))) (-5 *4 (-550)) (-4 *5 (-1246 *4)) (-5 *2 (-644 *5)) (-5 *1 (-699 *5)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-644 (-2 (|:| -4166 *3) (|:| -4382 *4)))) (-5 *1 (-699 *3)) (-4 *3 (-1246 *4)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-644 *3)) (-5 *1 (-699 *3)) (-4 *3 (-1246 *4)))) (-2529 (*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-699 *2)) (-4 *2 (-1246 *3)))) (-3566 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-699 *2)) (-4 *2 (-1246 *3))))) +(-10 -7 (-15 -3566 (|#1| |#1| |#1| (-550))) (-15 -2529 (|#1| |#1| (-550))) (-15 -4166 ((-644 |#1|) |#1| (-550))) (-15 -2530 ((-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))) |#1| (-550))) (-15 -2531 ((-644 |#1|) (-644 (-2 (|:| -4166 |#1|) (|:| -4382 (-550)))) (-550))) (-15 -2532 (|#1| |#1| (-550) |#1| (-550)))) +((-2536 (((-1 (-947 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 17)) (-2533 (((-1137 (-226)) (-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-644 (-263))) 56) (((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-644 (-263))) 58) (((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined") (-1093 (-226)) (-1093 (-226)) (-644 (-263))) 60)) (-2535 (((-1137 (-226)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-644 (-263))) NIL)) (-2534 (((-1137 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1#) (-1093 (-226)) (-1093 (-226)) (-644 (-263))) 61))) +(((-700) (-10 -7 (-15 -2533 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined") (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2533 ((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2533 ((-1137 (-226)) (-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2534 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1#) (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2535 ((-1137 (-226)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2536 ((-1 (-947 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -700)) +((-2536 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1 (-226) (-226) (-226) (-226))) (-5 *2 (-1 (-947 (-226)) (-226) (-226))) (-5 *1 (-700)))) (-2535 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) (-5 *6 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-700)))) (-2534 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined")) (-5 *5 (-1093 (-226))) (-5 *6 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-700)))) (-2533 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1137 (-226))) (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-226))) (-5 *5 (-644 (-263))) (-5 *1 (-700)))) (-2533 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-226))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-700)))) (-2533 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) #1#)) (-5 *5 (-1093 (-226))) (-5 *6 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-700))))) +(-10 -7 (-15 -2533 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1="undefined") (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2533 ((-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2533 ((-1137 (-226)) (-1137 (-226)) (-1 (-947 (-226)) (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2534 ((-1137 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) #1#) (-1093 (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2535 ((-1137 (-226)) (-316 (-550)) (-316 (-550)) (-316 (-550)) (-1 (-226) (-226)) (-1093 (-226)) (-644 (-263)))) (-15 -2536 ((-1 (-947 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))))) +((-4166 (((-409 (-1175 |#4|)) (-1175 |#4|)) 86) (((-409 |#4|) |#4|) 269))) +(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 |#4|) |#4|)) (-15 -4166 ((-409 (-1175 |#4|)) (-1175 |#4|)))) (-853) (-796) (-353) (-954 |#3| |#2| |#1|)) (T -701)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-353)) (-4 *7 (-954 *6 *5 *4)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-701 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-353)) (-5 *2 (-409 *3)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-954 *6 *5 *4))))) +(-10 -7 (-15 -4166 ((-409 |#4|) |#4|)) (-15 -4166 ((-409 (-1175 |#4|)) (-1175 |#4|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 97)) (-3535 (((-550) $) 34)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4204 (($ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3440 (($ $) NIL)) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL)) (-4158 (($) NIL T CONST)) (-3533 (($ $) NIL)) (-3579 (((-3 (-550) #1="failed") $) 85) (((-3 (-411 (-550)) #1#) $) 28) (((-3 (-381) #1#) $) 82)) (-3578 (((-550) $) 87) (((-411 (-550)) $) 79) (((-381) $) 80)) (-2966 (($ $ $) 109)) (-3892 (((-3 $ "failed") $) 100)) (-2965 (($ $ $) 108)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2539 (((-923)) 89) (((-923) (-923)) 88)) (-3608 (((-112) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL)) (-4205 (((-550) $) NIL)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL)) (-3538 (($ $) NIL)) (-3609 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL)) (-2537 (((-550) (-550)) 94) (((-550)) 95)) (-2936 (($ $ $) NIL) (($) NIL (-12 (-3748 (|has| $ (-6 -4410))) (-3748 (|has| $ (-6 -4418)))))) (-2538 (((-550) (-550)) 92) (((-550)) 93)) (-3262 (($ $ $) NIL) (($) NIL (-12 (-3748 (|has| $ (-6 -4410))) (-3748 (|has| $ (-6 -4418)))))) (-2540 (((-550) $) 17)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 104)) (-1946 (((-923) (-550)) NIL (|has| $ (-6 -4418)))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL)) (-3536 (($ $) NIL)) (-3677 (($ (-550) (-550)) NIL) (($ (-550) (-550) (-923)) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) 105)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2566 (((-550) $) 24)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 107)) (-3017 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4418)))) (-1945 (((-923) (-550)) NIL (|has| $ (-6 -4418)))) (-4404 (((-381) $) NIL) (((-226) $) NIL) (((-894 (-381)) $) NIL)) (-4380 (((-866) $) 63) (($ (-550)) 75) (($ $) NIL) (($ (-411 (-550))) 78) (($ (-550)) 75) (($ (-411 (-550))) 78) (($ (-381)) 72) (((-381) $) 61) (($ (-704)) 66)) (-3532 (((-774)) 119 T CONST)) (-3350 (($ (-550) (-550) (-923)) 54)) (-3537 (($ $) NIL)) (-1947 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4418)))) (-3664 (((-112) $ $) NIL)) (-3099 (((-923)) 91) (((-923) (-923)) 90)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL)) (-3512 (($) 37 T CONST)) (-3069 (($) 18 T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 96)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 118)) (-4383 (($ $ $) 77)) (-4271 (($ $) 115) (($ $ $) 116)) (-4273 (($ $ $) 114)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL) (($ $ (-411 (-550))) 103)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 110) (($ $ $) 101) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-702) (-13 (-408) (-391) (-366) (-1042 (-381)) (-1042 (-411 (-550))) (-147) (-10 -8 (-15 -2539 ((-923) (-923))) (-15 -2539 ((-923))) (-15 -3099 ((-923) (-923))) (-15 -2538 ((-550) (-550))) (-15 -2538 ((-550))) (-15 -2537 ((-550) (-550))) (-15 -2537 ((-550))) (-15 -4380 ((-381) $)) (-15 -4380 ($ (-704))) (-15 -2540 ((-550) $)) (-15 -2566 ((-550) $)) (-15 -3350 ($ (-550) (-550) (-923)))))) (T -702)) +((-2566 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) (-2539 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) (-2538 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) (-2537 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-702)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-704)) (-5 *1 (-702)))) (-3350 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-923)) (-5 *1 (-702))))) +(-13 (-408) (-391) (-366) (-1042 (-381)) (-1042 (-411 (-550))) (-147) (-10 -8 (-15 -2539 ((-923) (-923))) (-15 -2539 ((-923))) (-15 -3099 ((-923) (-923))) (-15 -2538 ((-550) (-550))) (-15 -2538 ((-550))) (-15 -2537 ((-550) (-550))) (-15 -2537 ((-550))) (-15 -4380 ((-381) $)) (-15 -4380 ($ (-704))) (-15 -2540 ((-550) $)) (-15 -2566 ((-550) $)) (-15 -3350 ($ (-550) (-550) (-923))))) +((-2543 (((-692 |#1|) (-692 |#1|) |#1| |#1|) 88)) (-3516 (((-692 |#1|) (-692 |#1|) |#1|) 67)) (-2542 (((-692 |#1|) (-692 |#1|) |#1|) 89)) (-2541 (((-692 |#1|) (-692 |#1|)) 68)) (-2544 (((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|) 87))) +(((-703 |#1|) (-10 -7 (-15 -2541 ((-692 |#1|) (-692 |#1|))) (-15 -3516 ((-692 |#1|) (-692 |#1|) |#1|)) (-15 -2542 ((-692 |#1|) (-692 |#1|) |#1|)) (-15 -2543 ((-692 |#1|) (-692 |#1|) |#1| |#1|)) (-15 -2544 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|))) (-309)) (T -703)) +((-2544 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-703 *3)) (-4 *3 (-309)))) (-2543 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3)))) (-2542 (*1 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3)))) (-3516 (*1 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3))))) +(-10 -7 (-15 -2541 ((-692 |#1|) (-692 |#1|))) (-15 -3516 ((-692 |#1|) (-692 |#1|) |#1|)) (-15 -2542 ((-692 |#1|) (-692 |#1|) |#1|)) (-15 -2543 ((-692 |#1|) (-692 |#1|) |#1| |#1|)) (-15 -2544 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-2222 (($ $ $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL)) (-2764 (($ $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) "failed") $) 31)) (-3578 (((-550) $) 29)) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3427 (((-3 (-411 (-550)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-3425 (((-411 (-550)) $) NIL)) (-3397 (($ $) NIL) (($) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2220 (($ $ $ $) NIL)) (-2228 (($ $ $) NIL)) (-3608 (((-112) $) NIL)) (-1457 (($ $ $) NIL)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL)) (-2575 (((-112) $) NIL)) (-3078 (((-112) $) NIL)) (-3870 (((-3 $ "failed") $) NIL)) (-3609 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2221 (($ $ $ $) NIL)) (-2936 (($ $ $) NIL)) (-2545 (((-923) (-923)) 10) (((-923)) 9)) (-3262 (($ $ $) NIL)) (-2224 (($ $) NIL)) (-4267 (($ $) NIL)) (-2071 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2219 (($ $ $) NIL)) (-3871 (($) NIL T CONST)) (-2226 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1455 (($ $) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3079 (((-112) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL) (($ $ (-774)) NIL)) (-2225 (($ $) NIL)) (-3826 (($ $) NIL)) (-4404 (((-226) $) NIL) (((-381) $) NIL) (((-894 (-550)) $) NIL) (((-539) $) NIL) (((-550) $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) 28) (($ $) NIL) (($ (-550)) 28) (((-316 $) (-316 (-550))) 18)) (-3532 (((-774)) NIL T CONST)) (-2229 (((-112) $ $) NIL)) (-3507 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-3099 (($) NIL)) (-2242 (((-112) $ $) NIL)) (-2223 (($ $ $ $) NIL)) (-3809 (($ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL) (($ $ (-774)) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-704) (-13 (-391) (-549) (-10 -8 (-15 -2545 ((-923) (-923))) (-15 -2545 ((-923))) (-15 -4380 ((-316 $) (-316 (-550))))))) (T -704)) +((-2545 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-704)))) (-2545 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-704)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-316 (-550))) (-5 *2 (-316 (-704))) (-5 *1 (-704))))) +(-13 (-391) (-549) (-10 -8 (-15 -2545 ((-923) (-923))) (-15 -2545 ((-923))) (-15 -4380 ((-316 $) (-316 (-550)))))) +((-2551 (((-1 |#4| |#2| |#3|) |#1| (-1181) (-1181)) 19)) (-2546 (((-1 |#4| |#2| |#3|) (-1181)) 12))) +(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2546 ((-1 |#4| |#2| |#3|) (-1181))) (-15 -2551 ((-1 |#4| |#2| |#3|) |#1| (-1181) (-1181)))) (-617 (-539)) (-1220) (-1220) (-1220)) (T -705)) +((-2551 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1181)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-705 *3 *5 *6 *7)) (-4 *3 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220)) (-4 *7 (-1220)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-705 *4 *5 *6 *7)) (-4 *4 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220)) (-4 *7 (-1220))))) +(-10 -7 (-15 -2546 ((-1 |#4| |#2| |#3|) (-1181))) (-15 -2551 ((-1 |#4| |#2| |#3|) |#1| (-1181) (-1181)))) +((-2547 (((-1 (-226) (-226) (-226)) |#1| (-1181) (-1181)) 43) (((-1 (-226) (-226)) |#1| (-1181)) 48))) +(((-706 |#1|) (-10 -7 (-15 -2547 ((-1 (-226) (-226)) |#1| (-1181))) (-15 -2547 ((-1 (-226) (-226) (-226)) |#1| (-1181) (-1181)))) (-617 (-539))) (T -706)) +((-2547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1181)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-706 *3)) (-4 *3 (-617 (-539))))) (-2547 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-706 *3)) (-4 *3 (-617 (-539)))))) +(-10 -7 (-15 -2547 ((-1 (-226) (-226)) |#1| (-1181))) (-15 -2547 ((-1 (-226) (-226) (-226)) |#1| (-1181) (-1181)))) +((-2548 (((-1181) |#1| (-1181) (-644 (-1181))) 10) (((-1181) |#1| (-1181) (-1181) (-1181)) 13) (((-1181) |#1| (-1181) (-1181)) 12) (((-1181) |#1| (-1181)) 11))) +(((-707 |#1|) (-10 -7 (-15 -2548 ((-1181) |#1| (-1181))) (-15 -2548 ((-1181) |#1| (-1181) (-1181))) (-15 -2548 ((-1181) |#1| (-1181) (-1181) (-1181))) (-15 -2548 ((-1181) |#1| (-1181) (-644 (-1181))))) (-617 (-539))) (T -707)) +((-2548 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-644 (-1181))) (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539))))) (-2548 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539))))) (-2548 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539))))) (-2548 (*1 *2 *3 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539)))))) +(-10 -7 (-15 -2548 ((-1181) |#1| (-1181))) (-15 -2548 ((-1181) |#1| (-1181) (-1181))) (-15 -2548 ((-1181) |#1| (-1181) (-1181) (-1181))) (-15 -2548 ((-1181) |#1| (-1181) (-644 (-1181))))) +((-2549 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-708 |#1| |#2|) (-10 -7 (-15 -2549 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1220) (-1220)) (T -708)) +((-2549 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-708 *3 *4)) (-4 *3 (-1220)) (-4 *4 (-1220))))) +(-10 -7 (-15 -2549 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2550 (((-1 |#3| |#2|) (-1181)) 11)) (-2551 (((-1 |#3| |#2|) |#1| (-1181)) 21))) +(((-709 |#1| |#2| |#3|) (-10 -7 (-15 -2550 ((-1 |#3| |#2|) (-1181))) (-15 -2551 ((-1 |#3| |#2|) |#1| (-1181)))) (-617 (-539)) (-1220) (-1220)) (T -709)) +((-2551 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-5 *2 (-1 *6 *5)) (-5 *1 (-709 *3 *5 *6)) (-4 *3 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1 *6 *5)) (-5 *1 (-709 *4 *5 *6)) (-4 *4 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220))))) +(-10 -7 (-15 -2550 ((-1 |#3| |#2|) (-1181))) (-15 -2551 ((-1 |#3| |#2|) |#1| (-1181)))) +((-2554 (((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 (-1175 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| |#4|)))) (-644 (-774)) (-1270 (-644 (-1175 |#3|))) |#3|) 95)) (-2553 (((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 (-1175 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-774)) |#3|) 113)) (-2552 (((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-774)) (-644 (-1175 |#4|)) (-1270 (-644 (-1175 |#3|))) |#3|) 47))) +(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-774)) (-644 (-1175 |#4|)) (-1270 (-644 (-1175 |#3|))) |#3|)) (-15 -2553 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 (-1175 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-774)) |#3|)) (-15 -2554 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 (-1175 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| |#4|)))) (-644 (-774)) (-1270 (-644 (-1175 |#3|))) |#3|))) (-796) (-853) (-309) (-954 |#3| |#1| |#2|)) (T -710)) +((-2554 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-644 (-1175 *13))) (-5 *3 (-1175 *13)) (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) (-5 *7 (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| *13))))) (-5 *8 (-644 (-774))) (-5 *9 (-1270 (-644 (-1175 *10)))) (-4 *12 (-853)) (-4 *10 (-309)) (-4 *13 (-954 *10 *11 *12)) (-4 *11 (-796)) (-5 *1 (-710 *11 *12 *10 *13)))) (-2553 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1175 *9))) (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-774))) (-4 *11 (-853)) (-4 *9 (-309)) (-4 *12 (-954 *9 *10 *11)) (-4 *10 (-796)) (-5 *2 (-644 (-1175 *12))) (-5 *1 (-710 *10 *11 *9 *12)) (-5 *3 (-1175 *12)))) (-2552 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-644 (-1175 *11))) (-5 *3 (-1175 *11)) (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-774))) (-5 *7 (-1270 (-644 (-1175 *8)))) (-4 *10 (-853)) (-4 *8 (-309)) (-4 *11 (-954 *8 *9 *10)) (-4 *9 (-796)) (-5 *1 (-710 *9 *10 *8 *11))))) +(-10 -7 (-15 -2552 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-774)) (-644 (-1175 |#4|)) (-1270 (-644 (-1175 |#3|))) |#3|)) (-15 -2553 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 (-1175 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-774)) |#3|)) (-15 -2554 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-644 |#2|) (-644 (-1175 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| |#4|)))) (-644 (-774)) (-1270 (-644 (-1175 |#3|))) |#3|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-4393 (($ $) 48)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3296 (($ |#1| (-774)) 46)) (-3225 (((-774) $) 50)) (-3596 ((|#1| $) 49)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4382 (((-774) $) 51)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 45 (|has| |#1| (-173)))) (-4111 ((|#1| $ (-774)) 47)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-711 |#1|) (-140) (-1053)) (T -711)) +((-4382 (*1 *2 *1) (-12 (-4 *1 (-711 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-711 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1053)))) (-4393 (*1 *1 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1053)))) (-4111 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-711 *2)) (-4 *2 (-1053)))) (-3296 (*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-711 *2)) (-4 *2 (-1053))))) +(-13 (-1053) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4382 ((-774) $)) (-15 -3225 ((-774) $)) (-15 -3596 (|t#1| $)) (-15 -4393 ($ $)) (-15 -4111 (|t#1| $ (-774))) (-15 -3296 ($ |t#1| (-774))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) |has| |#1| (-173)) ((-720 |#1|) |has| |#1| (-173)) ((-729) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-4392 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-712 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4392 (|#6| (-1 |#4| |#1|) |#3|))) (-561) (-1246 |#1|) (-1246 (-411 |#2|)) (-561) (-1246 |#4|) (-1246 (-411 |#5|))) (T -712)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) (-4 *6 (-1246 *5)) (-4 *2 (-1246 (-411 *8))) (-5 *1 (-712 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1246 (-411 *6))) (-4 *8 (-1246 *7))))) +(-10 -7 (-15 -4392 (|#6| (-1 |#4| |#1|) |#3|))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2555 (((-1163) (-866)) 38)) (-4051 (((-1276) (-1163)) 31)) (-2557 (((-1163) (-866)) 28)) (-2556 (((-1163) (-866)) 29)) (-4380 (((-866) $) NIL) (((-1163) (-866)) 27)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-713) (-13 (-1105) (-10 -7 (-15 -4380 ((-1163) (-866))) (-15 -2557 ((-1163) (-866))) (-15 -2556 ((-1163) (-866))) (-15 -2555 ((-1163) (-866))) (-15 -4051 ((-1276) (-1163)))))) (T -713)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-713))))) +(-13 (-1105) (-10 -7 (-15 -4380 ((-1163) (-866))) (-15 -2557 ((-1163) (-866))) (-15 -2556 ((-1163) (-866))) (-15 -2555 ((-1163) (-866))) (-15 -4051 ((-1276) (-1163))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL)) (-4276 (($ |#1| |#2|) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-3016 ((|#2| $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2567 (((-3 $ "failed") $ $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) ((|#1| $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-714 |#1| |#2| |#3| |#4| |#5|) (-13 (-366) (-10 -8 (-15 -3016 (|#2| $)) (-15 -4380 (|#1| $)) (-15 -4276 ($ |#1| |#2|)) (-15 -2567 ((-3 $ "failed") $ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -714)) +((-3016 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-714 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4380 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-714 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4276 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2567 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-714 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-366) (-10 -8 (-15 -3016 (|#2| $)) (-15 -4380 (|#1| $)) (-15 -4276 ($ |#1| |#2|)) (-15 -2567 ((-3 $ "failed") $ $)))) +((-2970 (((-112) $ $) 90)) (-3610 (((-112) $) 36)) (-4200 (((-1270 |#1|) $ (-774)) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4198 (($ (-1175 |#1|)) NIL)) (-3489 (((-1175 $) $ (-1086)) NIL) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1086))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $ $) NIL (|has| |#1| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3542 (((-774)) 56 (|has| |#1| (-371)))) (-4194 (($ $ (-774)) NIL)) (-4193 (($ $ (-774)) NIL)) (-2564 ((|#2| |#2|) 52)) (-4185 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-456)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-1086) #2#) $) NIL)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-1086) $) NIL)) (-4190 (($ $ $ (-1086)) NIL (|has| |#1| (-173))) ((|#1| $ $) NIL (|has| |#1| (-173)))) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) 40)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-4276 (($ |#2|) 50)) (-3892 (((-3 $ "failed") $) 100)) (-3397 (($) 61 (|has| |#1| (-371)))) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-4192 (($ $ $) NIL)) (-4187 (($ $ $) NIL (|has| |#1| (-561)))) (-4186 (((-2 (|:| -4388 |#1|) (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ (-1086)) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-2560 (((-962 $)) 92)) (-1771 (($ $ |#1| (-774) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1086) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1086) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-4205 (((-774) $ $) NIL (|has| |#1| (-561)))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-1155)))) (-3490 (($ (-1175 |#1|) (-1086)) NIL) (($ (-1175 $) (-1086)) NIL)) (-4210 (($ $ (-774)) NIL)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) 88) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1086)) NIL) (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3016 ((|#2|) 53)) (-3225 (((-774) $) NIL) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-1772 (($ (-1 (-774) (-774)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4199 (((-1175 |#1|) $) NIL)) (-3488 (((-3 (-1086) #4="failed") $) NIL)) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-3483 ((|#2| $) 49)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) 34)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-4195 (((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774)) NIL)) (-3228 (((-3 (-644 $) #4#) $) NIL)) (-3227 (((-3 (-644 $) #4#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-1086)) (|:| -2566 (-774))) #4#) $) NIL)) (-4246 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3871 (($) NIL (|has| |#1| (-1155)) CONST)) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-2558 (($ $) 91 (|has| |#1| (-353)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1086) |#1|) NIL) (($ $ (-644 (-1086)) (-644 |#1|)) NIL) (($ $ (-1086) $) NIL) (($ $ (-644 (-1086)) (-644 $)) NIL)) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-411 $) (-411 $) (-411 $)) NIL (|has| |#1| (-561))) ((|#1| (-411 $) |#1|) NIL (|has| |#1| (-366))) (((-411 $) $ (-411 $)) NIL (|has| |#1| (-561)))) (-4197 (((-3 $ #5="failed") $ (-774)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 101 (|has| |#1| (-366)))) (-4191 (($ $ (-1086)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-4244 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4382 (((-774) $) 38) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-1086) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) NIL (|has| |#1| (-456))) (($ $ (-1086)) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-2559 (((-962 $)) 42)) (-4188 (((-3 $ #5#) $ $) NIL (|has| |#1| (-561))) (((-3 (-411 $) #5#) (-411 $) $) NIL (|has| |#1| (-561)))) (-4380 (((-866) $) 71) (($ (-550)) NIL) (($ |#1|) 68) (($ (-1086)) NIL) (($ |#2|) 78) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) 73) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) 25 T CONST)) (-2563 (((-1270 |#1|) $) 86)) (-2562 (($ (-1270 |#1|)) 60)) (-3069 (($) 8 T CONST)) (-3074 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2561 (((-1270 |#1|) $) NIL)) (-3457 (((-112) $ $) 79)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) 82) (($ $ $) NIL)) (-4273 (($ $ $) 39)) (** (($ $ (-923)) NIL) (($ $ (-774)) 95)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 67) (($ $ $) 85) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) +(((-715 |#1| |#2|) (-13 (-1246 |#1|) (-619 |#2|) (-10 -8 (-15 -2564 (|#2| |#2|)) (-15 -3016 (|#2|)) (-15 -4276 ($ |#2|)) (-15 -3483 (|#2| $)) (-15 -2563 ((-1270 |#1|) $)) (-15 -2562 ($ (-1270 |#1|))) (-15 -2561 ((-1270 |#1|) $)) (-15 -2560 ((-962 $))) (-15 -2559 ((-962 $))) (IF (|has| |#1| (-353)) (-15 -2558 ($ $)) |%noBranch|) (IF (|has| |#1| (-371)) (-6 (-371)) |%noBranch|))) (-1053) (-1246 |#1|)) (T -715)) +((-2564 (*1 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-715 *3 *2)) (-4 *2 (-1246 *3)))) (-3016 (*1 *2) (-12 (-4 *2 (-1246 *3)) (-5 *1 (-715 *3 *2)) (-4 *3 (-1053)))) (-4276 (*1 *1 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-715 *3 *2)) (-4 *2 (-1246 *3)))) (-3483 (*1 *2 *1) (-12 (-4 *2 (-1246 *3)) (-5 *1 (-715 *3 *2)) (-4 *3 (-1053)))) (-2563 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-1270 *3)) (-5 *1 (-715 *3 *4)) (-4 *4 (-1246 *3)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1053)) (-5 *1 (-715 *3 *4)) (-4 *4 (-1246 *3)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-1270 *3)) (-5 *1 (-715 *3 *4)) (-4 *4 (-1246 *3)))) (-2560 (*1 *2) (-12 (-4 *3 (-1053)) (-5 *2 (-962 (-715 *3 *4))) (-5 *1 (-715 *3 *4)) (-4 *4 (-1246 *3)))) (-2559 (*1 *2) (-12 (-4 *3 (-1053)) (-5 *2 (-962 (-715 *3 *4))) (-5 *1 (-715 *3 *4)) (-4 *4 (-1246 *3)))) (-2558 (*1 *1 *1) (-12 (-4 *2 (-353)) (-4 *2 (-1053)) (-5 *1 (-715 *2 *3)) (-4 *3 (-1246 *2))))) +(-13 (-1246 |#1|) (-619 |#2|) (-10 -8 (-15 -2564 (|#2| |#2|)) (-15 -3016 (|#2|)) (-15 -4276 ($ |#2|)) (-15 -3483 (|#2| $)) (-15 -2563 ((-1270 |#1|) $)) (-15 -2562 ($ (-1270 |#1|))) (-15 -2561 ((-1270 |#1|) $)) (-15 -2560 ((-962 $))) (-15 -2559 ((-962 $))) (IF (|has| |#1| (-353)) (-15 -2558 ($ $)) |%noBranch|) (IF (|has| |#1| (-371)) (-6 (-371)) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 ((|#1| $) 13)) (-3666 (((-1124) $) NIL)) (-2566 ((|#2| $) 12)) (-3955 (($ |#1| |#2|) 16)) (-4380 (((-866) $) NIL) (($ (-2 (|:| -2565 |#1|) (|:| -2566 |#2|))) 15) (((-2 (|:| -2565 |#1|) (|:| -2566 |#2|)) $) 14)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 11))) +(((-716 |#1| |#2| |#3|) (-13 (-853) (-494 (-2 (|:| -2565 |#1|) (|:| -2566 |#2|))) (-10 -8 (-15 -2566 (|#2| $)) (-15 -2565 (|#1| $)) (-15 -3955 ($ |#1| |#2|)))) (-853) (-1105) (-1 (-112) (-2 (|:| -2565 |#1|) (|:| -2566 |#2|)) (-2 (|:| -2565 |#1|) (|:| -2566 |#2|)))) (T -716)) +((-2566 (*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-716 *3 *2 *4)) (-4 *3 (-853)) (-14 *4 (-1 (-112) (-2 (|:| -2565 *3) (|:| -2566 *2)) (-2 (|:| -2565 *3) (|:| -2566 *2)))))) (-2565 (*1 *2 *1) (-12 (-4 *2 (-853)) (-5 *1 (-716 *2 *3 *4)) (-4 *3 (-1105)) (-14 *4 (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *3)) (-2 (|:| -2565 *2) (|:| -2566 *3)))))) (-3955 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4)) (-4 *2 (-853)) (-4 *3 (-1105)) (-14 *4 (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *3)) (-2 (|:| -2565 *2) (|:| -2566 *3))))))) +(-13 (-853) (-494 (-2 (|:| -2565 |#1|) (|:| -2566 |#2|))) (-10 -8 (-15 -2566 (|#2| $)) (-15 -2565 (|#1| $)) (-15 -3955 ($ |#1| |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 66)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #1="failed") $) 105) (((-3 (-113) #1#) $) 111)) (-3578 ((|#1| $) NIL) (((-113) $) 39)) (-3892 (((-3 $ "failed") $) 106)) (-2918 ((|#2| (-113) |#2|) 93)) (-2575 (((-112) $) NIL)) (-2917 (($ |#1| (-364 (-113))) 14)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2919 (($ $ (-1 |#2| |#2|)) 65)) (-2920 (($ $ (-1 |#2| |#2|)) 44)) (-4233 ((|#2| $ |#2|) 33)) (-2921 ((|#1| |#1|) 121 (|has| |#1| (-173)))) (-4380 (((-866) $) 73) (($ (-550)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) 37 T CONST)) (-3664 (((-112) $ $) NIL)) (-2922 (($ $) 115 (|has| |#1| (-173))) (($ $ $) 119 (|has| |#1| (-173)))) (-3512 (($) 21 T CONST)) (-3069 (($) 9 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) 48) (($ $ $) NIL)) (-4273 (($ $ $) 83)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ (-113) (-550)) NIL) (($ $ (-550)) 64)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-173))) (($ $ |#1|) 113 (|has| |#1| (-173))))) +(((-717 |#1| |#2|) (-13 (-1053) (-1042 |#1|) (-1042 (-113)) (-288 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2922 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 (|#1| |#1|))) |%noBranch|) (-15 -2920 ($ $ (-1 |#2| |#2|))) (-15 -2919 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-550))) (-15 ** ($ $ (-550))) (-15 -2918 (|#2| (-113) |#2|)) (-15 -2917 ($ |#1| (-364 (-113)))))) (-1053) (-651 |#1|)) (T -717)) +((-2922 (*1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1053)) (-5 *1 (-717 *2 *3)) (-4 *3 (-651 *2)))) (-2922 (*1 *1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1053)) (-5 *1 (-717 *2 *3)) (-4 *3 (-651 *2)))) (-2921 (*1 *2 *2) (-12 (-4 *2 (-173)) (-4 *2 (-1053)) (-5 *1 (-717 *2 *3)) (-4 *3 (-651 *2)))) (-2920 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-651 *3)) (-4 *3 (-1053)) (-5 *1 (-717 *3 *4)))) (-2919 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-651 *3)) (-4 *3 (-1053)) (-5 *1 (-717 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-717 *4 *5)) (-4 *5 (-651 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *3 (-1053)) (-5 *1 (-717 *3 *4)) (-4 *4 (-651 *3)))) (-2918 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1053)) (-5 *1 (-717 *4 *2)) (-4 *2 (-651 *4)))) (-2917 (*1 *1 *2 *3) (-12 (-5 *3 (-364 (-113))) (-4 *2 (-1053)) (-5 *1 (-717 *2 *4)) (-4 *4 (-651 *2))))) +(-13 (-1053) (-1042 |#1|) (-1042 (-113)) (-288 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2922 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 (|#1| |#1|))) |%noBranch|) (-15 -2920 ($ $ (-1 |#2| |#2|))) (-15 -2919 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-550))) (-15 ** ($ $ (-550))) (-15 -2918 (|#2| (-113) |#2|)) (-15 -2917 ($ |#1| (-364 (-113)))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 33)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4276 (($ |#1| |#2|) 25)) (-3892 (((-3 $ "failed") $) 51)) (-2575 (((-112) $) 35)) (-3016 ((|#2| $) 12)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 52)) (-3666 (((-1124) $) NIL)) (-2567 (((-3 $ "failed") $ $) 50)) (-4380 (((-866) $) 24) (($ (-550)) 19) ((|#1| $) 13)) (-3532 (((-774)) 28 T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 16 T CONST)) (-3069 (($) 30 T CONST)) (-3457 (((-112) $ $) 41)) (-4271 (($ $) 46) (($ $ $) 40)) (-4273 (($ $ $) 43)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 21) (($ $ $) 20))) +(((-718 |#1| |#2| |#3| |#4| |#5|) (-13 (-1053) (-10 -8 (-15 -3016 (|#2| $)) (-15 -4380 (|#1| $)) (-15 -4276 ($ |#1| |#2|)) (-15 -2567 ((-3 $ "failed") $ $)) (-15 -3892 ((-3 $ "failed") $)) (-15 -2808 ($ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -718)) +((-3892 (*1 *1 *1) (|partial| -12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3016 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-718 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4380 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4276 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2567 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2808 (*1 *1 *1) (-12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-1053) (-10 -8 (-15 -3016 (|#2| $)) (-15 -4380 (|#1| $)) (-15 -4276 ($ |#1| |#2|)) (-15 -2567 ((-3 $ "failed") $ $)) (-15 -3892 ((-3 $ "failed") $)) (-15 -2808 ($ $)))) +((* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-719 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) (-720 |#2|) (-173)) (T -719)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-720 |#1|) (-140) (-173)) (T -720)) +NIL +(-13 (-111 |t#1| |t#1|) (-643 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-2764 (($ |#1|) 17) (($ $ |#1|) 20)) (-4281 (($ |#1|) 18) (($ $ |#1|) 21)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2575 (((-112) $) NIL)) (-2568 (($ |#1| |#1| |#1| |#1|) 8)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 16)) (-3666 (((-1124) $) NIL)) (-4201 ((|#1| $ |#1|) 24) (((-835 |#1|) $ (-835 |#1|)) 32)) (-3412 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-4380 (((-866) $) 39)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 9 T CONST)) (-3457 (((-112) $ $) 48)) (-4383 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 14))) +(((-721 |#1|) (-13 (-477) (-10 -8 (-15 -2568 ($ |#1| |#1| |#1| |#1|)) (-15 -2764 ($ |#1|)) (-15 -4281 ($ |#1|)) (-15 -3892 ($)) (-15 -2764 ($ $ |#1|)) (-15 -4281 ($ $ |#1|)) (-15 -3892 ($ $)) (-15 -4201 (|#1| $ |#1|)) (-15 -4201 ((-835 |#1|) $ (-835 |#1|))))) (-366)) (T -721)) +((-2568 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-2764 (*1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-4281 (*1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-3892 (*1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-2764 (*1 *1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-3892 (*1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-4201 (*1 *2 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) (-4201 (*1 *2 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *3 (-366)) (-5 *1 (-721 *3))))) +(-13 (-477) (-10 -8 (-15 -2568 ($ |#1| |#1| |#1| |#1|)) (-15 -2764 ($ |#1|)) (-15 -4281 ($ |#1|)) (-15 -3892 ($)) (-15 -2764 ($ $ |#1|)) (-15 -4281 ($ $ |#1|)) (-15 -3892 ($ $)) (-15 -4201 (|#1| $ |#1|)) (-15 -4201 ((-835 |#1|) $ (-835 |#1|))))) +((-2572 (($ $ (-923)) 21)) (-2571 (($ $ (-923)) 22)) (** (($ $ (-923)) 10))) +(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -2571 (|#1| |#1| (-923))) (-15 -2572 (|#1| |#1| (-923)))) (-723)) (T -722)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -2571 (|#1| |#1| (-923))) (-15 -2572 (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-2572 (($ $ (-923)) 16)) (-2571 (($ $ (-923)) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 17))) +(((-723) (-140)) (T -723)) +((* (*1 *1 *1 *1) (-4 *1 (-723))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-923)))) (-2571 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-923)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-923))))) +(-13 (-1105) (-10 -8 (-15 * ($ $ $)) (-15 -2572 ($ $ (-923))) (-15 -2571 ($ $ (-923))) (-15 ** ($ $ (-923))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2572 (($ $ (-923)) NIL) (($ $ (-774)) 21)) (-2575 (((-112) $) 10)) (-2571 (($ $ (-923)) NIL) (($ $ (-774)) 22)) (** (($ $ (-923)) NIL) (($ $ (-774)) 16))) +(((-724 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-774))) (-15 -2571 (|#1| |#1| (-774))) (-15 -2572 (|#1| |#1| (-774))) (-15 -2575 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -2571 (|#1| |#1| (-923))) (-15 -2572 (|#1| |#1| (-923)))) (-725)) (T -724)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-774))) (-15 -2571 (|#1| |#1| (-774))) (-15 -2572 (|#1| |#1| (-774))) (-15 -2575 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -2571 (|#1| |#1| (-923))) (-15 -2572 (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-2569 (((-3 $ "failed") $) 18)) (-2572 (($ $ (-923)) 16) (($ $ (-774)) 23)) (-3892 (((-3 $ "failed") $) 20)) (-2575 (((-112) $) 24)) (-2570 (((-3 $ "failed") $) 19)) (-2571 (($ $ (-923)) 15) (($ $ (-774)) 22)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3069 (($) 25 T CONST)) (-3457 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-774)) 21)) (* (($ $ $) 17))) +(((-725) (-140)) (T -725)) +((-3069 (*1 *1) (-4 *1 (-725))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-725)) (-5 *2 (-112)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-774)))) (-2571 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-774)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-774)))) (-3892 (*1 *1 *1) (|partial| -4 *1 (-725))) (-2570 (*1 *1 *1) (|partial| -4 *1 (-725))) (-2569 (*1 *1 *1) (|partial| -4 *1 (-725)))) +(-13 (-723) (-10 -8 (-15 (-3069) ($) -4386) (-15 -2575 ((-112) $)) (-15 -2572 ($ $ (-774))) (-15 -2571 ($ $ (-774))) (-15 ** ($ $ (-774))) (-15 -3892 ((-3 $ "failed") $)) (-15 -2570 ((-3 $ "failed") $)) (-15 -2569 ((-3 $ "failed") $)))) +(((-102) . T) ((-616 (-866)) . T) ((-723) . T) ((-1105) . T)) +((-3542 (((-774)) 42)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 |#2| #1#) $) 26)) (-3578 (((-550) $) NIL) (((-411 (-550)) $) NIL) ((|#2| $) 23)) (-4276 (($ |#3|) NIL) (((-3 $ "failed") (-411 |#3|)) 52)) (-3892 (((-3 $ "failed") $) 72)) (-3397 (($) 46)) (-3538 ((|#2| $) 21)) (-2574 (($) 18)) (-4244 (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL) (($ $ (-774)) NIL) (($ $) NIL)) (-2573 (((-692 |#2|) (-1270 $) (-1 |#2| |#2|)) 67)) (-4404 (((-1270 |#2|) $) NIL) (($ (-1270 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2772 ((|#3| $) 39)) (-2192 (((-1270 $)) 36))) +(((-726 |#1| |#2| |#3|) (-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -3397 (|#1|)) (-15 -3542 ((-774))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -2573 ((-692 |#2|) (-1270 |#1|) (-1 |#2| |#2|))) (-15 -4276 ((-3 |#1| "failed") (-411 |#3|))) (-15 -4404 (|#1| |#3|)) (-15 -4276 (|#1| |#3|)) (-15 -2574 (|#1|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4404 (|#3| |#1|)) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -2192 ((-1270 |#1|))) (-15 -2772 (|#3| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|))) (-727 |#2| |#3|) (-173) (-1246 |#2|)) (T -726)) +((-3542 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-774)) (-5 *1 (-726 *3 *4 *5)) (-4 *3 (-727 *4 *5))))) +(-10 -8 (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -3397 (|#1|)) (-15 -3542 ((-774))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -2573 ((-692 |#2|) (-1270 |#1|) (-1 |#2| |#2|))) (-15 -4276 ((-3 |#1| "failed") (-411 |#3|))) (-15 -4404 (|#1| |#3|)) (-15 -4276 (|#1| |#3|)) (-15 -2574 (|#1|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4404 (|#3| |#1|)) (-15 -4404 (|#1| (-1270 |#2|))) (-15 -4404 ((-1270 |#2|) |#1|)) (-15 -2192 ((-1270 |#1|))) (-15 -2772 (|#3| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -3892 ((-3 |#1| "failed") |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 102 (|has| |#1| (-366)))) (-2243 (($ $) 103 (|has| |#1| (-366)))) (-2241 (((-112) $) 105 (|has| |#1| (-366)))) (-1959 (((-692 |#1|) (-1270 $)) 53) (((-692 |#1|)) 68)) (-3756 ((|#1| $) 59)) (-1845 (((-1193 (-923) (-774)) (-550)) 155 (|has| |#1| (-353)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 122 (|has| |#1| (-366)))) (-4403 (((-409 $) $) 123 (|has| |#1| (-366)))) (-1755 (((-112) $ $) 113 (|has| |#1| (-366)))) (-3542 (((-774)) 96 (|has| |#1| (-371)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 178 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 176 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 173)) (-3578 (((-550) $) 177 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 175 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 174)) (-1969 (($ (-1270 |#1|) (-1270 $)) 55) (($ (-1270 |#1|)) 71)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2966 (($ $ $) 117 (|has| |#1| (-366)))) (-1958 (((-692 |#1|) $ (-1270 $)) 60) (((-692 |#1|) $) 66)) (-2429 (((-692 (-550)) (-692 $)) 172 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 171 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 170) (((-692 |#1|) (-692 $)) 169)) (-4276 (($ |#2|) 166) (((-3 $ "failed") (-411 |#2|)) 163 (|has| |#1| (-366)))) (-3892 (((-3 $ "failed") $) 37)) (-3515 (((-923)) 61)) (-3397 (($) 99 (|has| |#1| (-371)))) (-2965 (($ $ $) 116 (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 111 (|has| |#1| (-366)))) (-3238 (($) 157 (|has| |#1| (-353)))) (-1850 (((-112) $) 158 (|has| |#1| (-353)))) (-1943 (($ $ (-774)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-4157 (((-112) $) 124 (|has| |#1| (-366)))) (-4205 (((-923) $) 160 (|has| |#1| (-353))) (((-835 (-923)) $) 146 (|has| |#1| (-353)))) (-2575 (((-112) $) 35)) (-3538 ((|#1| $) 58)) (-3870 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 120 (|has| |#1| (-366)))) (-2194 ((|#2| $) 51 (|has| |#1| (-366)))) (-2190 (((-923) $) 98 (|has| |#1| (-371)))) (-3483 ((|#2| $) 164)) (-2071 (($ (-644 $)) 109 (|has| |#1| (-366))) (($ $ $) 108 (|has| |#1| (-366)))) (-3665 (((-1163) $) 10)) (-2808 (($ $) 125 (|has| |#1| (-366)))) (-3871 (($) 151 (|has| |#1| (-353)) CONST)) (-2565 (($ (-923)) 97 (|has| |#1| (-371)))) (-3666 (((-1124) $) 11)) (-2574 (($) 168)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 110 (|has| |#1| (-366)))) (-3566 (($ (-644 $)) 107 (|has| |#1| (-366))) (($ $ $) 106 (|has| |#1| (-366)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) 154 (|has| |#1| (-353)))) (-4166 (((-409 $) $) 121 (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 118 (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ $) 101 (|has| |#1| (-366)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-366)))) (-1754 (((-774) $) 114 (|has| |#1| (-366)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 115 (|has| |#1| (-366)))) (-4191 ((|#1| (-1270 $)) 54) ((|#1|) 67)) (-1944 (((-774) $) 159 (|has| |#1| (-353))) (((-3 (-774) "failed") $ $) 147 (|has| |#1| (-353)))) (-4244 (($ $) 145 (-3962 (-3258 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-774)) 143 (-3962 (-3258 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-1181)) 141 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-644 (-1181))) 140 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-1181) (-774)) 139 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-644 (-1181)) (-644 (-774))) 138 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-1 |#1| |#1|) (-774)) 131 (|has| |#1| (-366))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-366)))) (-2573 (((-692 |#1|) (-1270 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-366)))) (-3607 ((|#2|) 167)) (-1844 (($) 156 (|has| |#1| (-353)))) (-3646 (((-1270 |#1|) $ (-1270 $)) 57) (((-692 |#1|) (-1270 $) (-1270 $)) 56) (((-1270 |#1|) $) 73) (((-692 |#1|) (-1270 $)) 72)) (-4404 (((-1270 |#1|) $) 70) (($ (-1270 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 153 (|has| |#1| (-353)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-366))) (($ (-411 (-550))) 95 (-3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550))))))) (-3107 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2772 ((|#2| $) 52)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2192 (((-1270 $)) 74)) (-2242 (((-112) $ $) 104 (|has| |#1| (-366)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $) 144 (-3962 (-3258 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-774)) 142 (-3962 (-3258 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-1181)) 137 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-644 (-1181))) 136 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-1181) (-774)) 135 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-644 (-1181)) (-644 (-774))) 134 (-3258 (|has| |#1| (-904 (-1181))) (|has| |#1| (-366)))) (($ $ (-1 |#1| |#1|) (-774)) 133 (|has| |#1| (-366))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-366)))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 129 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 126 (|has| |#1| (-366)))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-411 (-550)) $) 128 (|has| |#1| (-366))) (($ $ (-411 (-550))) 127 (|has| |#1| (-366))))) +(((-727 |#1| |#2|) (-140) (-173) (-1246 |t#1|)) (T -727)) +((-2574 (*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-727 *2 *3)) (-4 *3 (-1246 *2)))) (-3607 (*1 *2) (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1246 *3)))) (-4276 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-727 *3 *2)) (-4 *2 (-1246 *3)))) (-4404 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-727 *3 *2)) (-4 *2 (-1246 *3)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1246 *3)))) (-4276 (*1 *1 *2) (|partial| -12 (-5 *2 (-411 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-366)) (-4 *3 (-173)) (-4 *1 (-727 *3 *4)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-1270 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-366)) (-4 *1 (-727 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1246 *5)) (-5 *2 (-692 *5))))) +(-13 (-414 |t#1| |t#2|) (-173) (-617 |t#2|) (-416 |t#1|) (-380 |t#1|) (-10 -8 (-15 -2574 ($)) (-15 -3607 (|t#2|)) (-15 -4276 ($ |t#2|)) (-15 -4404 ($ |t#2|)) (-15 -3483 (|t#2| $)) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|) (IF (|has| |t#1| (-366)) (PROGN (-6 (-366)) (-6 (-232 |t#1|)) (-15 -4276 ((-3 $ "failed") (-411 |t#2|))) (-15 -2573 ((-692 |t#1|) (-1270 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-38 |#1|) . T) ((-38 $) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-102) . T) ((-111 #1# #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3962 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-353)) (|has| |#1| (-366))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 $) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-616 (-866)) . T) ((-173) . T) ((-617 |#2|) . T) ((-232 |#1|) |has| |#1| (-366)) ((-234) -3962 (|has| |#1| (-353)) (-12 (|has| |#1| (-234)) (|has| |#1| (-366)))) ((-244) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-292) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-309) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-366) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-406) |has| |#1| (-353)) ((-371) -3962 (|has| |#1| (-353)) (|has| |#1| (-371))) ((-353) |has| |#1| (-353)) ((-373 |#1| |#2|) . T) ((-414 |#1| |#2|) . T) ((-380 |#1|) . T) ((-416 |#1|) . T) ((-456) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-561) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-649 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-643 |#1|) . T) ((-643 $) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-720 |#1|) . T) ((-720 $) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-729) . T) ((-904 (-1181)) -12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181)))) ((-925) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-1055 |#1|) . T) ((-1055 $) . T) ((-1060 #1#) -3962 (|has| |#1| (-353)) (|has| |#1| (-366))) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) |has| |#1| (-353)) ((-1225) -3962 (|has| |#1| (-353)) (|has| |#1| (-366)))) +((-4158 (($) 11)) (-3892 (((-3 $ "failed") $) 14)) (-2575 (((-112) $) 10)) (** (($ $ (-923)) NIL) (($ $ (-774)) 20))) +(((-728 |#1|) (-10 -8 (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-774))) (-15 -2575 ((-112) |#1|)) (-15 -4158 (|#1|)) (-15 ** (|#1| |#1| (-923)))) (-729)) (T -728)) +NIL +(-10 -8 (-15 -3892 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-774))) (-15 -2575 ((-112) |#1|)) (-15 -4158 (|#1|)) (-15 ** (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-4158 (($) 19 T CONST)) (-3892 (((-3 $ "failed") $) 16)) (-2575 (((-112) $) 18)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3069 (($) 20 T CONST)) (-3457 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-774)) 17)) (* (($ $ $) 15))) +(((-729) (-140)) (T -729)) +((-3069 (*1 *1) (-4 *1 (-729))) (-4158 (*1 *1) (-4 *1 (-729))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-729)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-774)))) (-3892 (*1 *1 *1) (|partial| -4 *1 (-729)))) +(-13 (-1116) (-10 -8 (-15 (-3069) ($) -4386) (-15 -4158 ($) -4386) (-15 -2575 ((-112) $)) (-15 ** ($ $ (-774))) (-15 -3892 ((-3 $ "failed") $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1116) . T) ((-1105) . T)) +((-2576 (((-2 (|:| -3495 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3844 (((-2 (|:| -3495 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2577 ((|#2| (-411 |#2|) (-1 |#2| |#2|)) 13)) (-3861 (((-2 (|:| |poly| |#2|) (|:| -3495 (-411 |#2|)) (|:| |special| (-411 |#2|))) (-411 |#2|) (-1 |#2| |#2|)) 48))) +(((-730 |#1| |#2|) (-10 -7 (-15 -3844 ((-2 (|:| -3495 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2576 ((-2 (|:| -3495 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2577 (|#2| (-411 |#2|) (-1 |#2| |#2|))) (-15 -3861 ((-2 (|:| |poly| |#2|) (|:| -3495 (-411 |#2|)) (|:| |special| (-411 |#2|))) (-411 |#2|) (-1 |#2| |#2|)))) (-366) (-1246 |#1|)) (T -730)) +((-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3495 (-411 *6)) (|:| |special| (-411 *6)))) (-5 *1 (-730 *5 *6)) (-5 *3 (-411 *6)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-411 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1246 *5)) (-5 *1 (-730 *5 *2)) (-4 *5 (-366)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| -3495 (-409 *3)) (|:| |special| (-409 *3)))) (-5 *1 (-730 *5 *3)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-366)) (-5 *2 (-2 (|:| -3495 *3) (|:| |special| *3))) (-5 *1 (-730 *5 *3))))) +(-10 -7 (-15 -3844 ((-2 (|:| -3495 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2576 ((-2 (|:| -3495 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2577 (|#2| (-411 |#2|) (-1 |#2| |#2|))) (-15 -3861 ((-2 (|:| |poly| |#2|) (|:| -3495 (-411 |#2|)) (|:| |special| (-411 |#2|))) (-411 |#2|) (-1 |#2| |#2|)))) +((-2578 ((|#7| (-644 |#5|) |#6|) NIL)) (-4392 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-731 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4392 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2578 (|#7| (-644 |#5|) |#6|))) (-853) (-796) (-796) (-1053) (-1053) (-954 |#4| |#2| |#1|) (-954 |#5| |#3| |#1|)) (T -731)) +((-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *9)) (-4 *9 (-1053)) (-4 *5 (-853)) (-4 *6 (-796)) (-4 *8 (-1053)) (-4 *2 (-954 *9 *7 *5)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-796)) (-4 *4 (-954 *8 *6 *5)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1053)) (-4 *9 (-1053)) (-4 *5 (-853)) (-4 *6 (-796)) (-4 *2 (-954 *9 *7 *5)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-796)) (-4 *4 (-954 *8 *6 *5))))) +(-10 -7 (-15 -4392 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2578 (|#7| (-644 |#5|) |#6|))) +((-4392 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-732 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4392 (|#7| (-1 |#2| |#1|) |#6|))) (-853) (-853) (-796) (-796) (-1053) (-954 |#5| |#3| |#1|) (-954 |#5| |#4| |#2|)) (T -732)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-853)) (-4 *6 (-853)) (-4 *7 (-796)) (-4 *9 (-1053)) (-4 *2 (-954 *9 *8 *6)) (-5 *1 (-732 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-796)) (-4 *4 (-954 *9 *7 *5))))) +(-10 -7 (-15 -4392 (|#7| (-1 |#2| |#1|) |#6|))) +((-4166 (((-409 |#4|) |#4|) 42))) +(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 |#4|) |#4|))) (-796) (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181))))) (-309) (-954 (-950 |#3|) |#1| |#2|)) (T -733)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181)))))) (-4 *6 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-954 (-950 *6) *4 *5))))) +(-10 -7 (-15 -4166 ((-409 |#4|) |#4|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-867 |#1|)) $) NIL)) (-3489 (((-1175 $) $ (-867 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2243 (($ $) NIL (|has| |#2| (-561)))) (-2241 (((-112) $) NIL (|has| |#2| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-867 |#1|))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4208 (($ $) NIL (|has| |#2| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#2| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-867 |#1|) #2#) $) NIL)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-867 |#1|) $) NIL)) (-4190 (($ $ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#2| (-914)))) (-1771 (($ $ |#2| (-535 (-867 |#1|)) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-867 |#1|) (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#2|) (-867 |#1|)) NIL) (($ (-1175 $) (-867 |#1|)) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#2| (-535 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-867 |#1|)) NIL)) (-3225 (((-535 (-867 |#1|)) $) NIL) (((-774) $ (-867 |#1|)) NIL) (((-644 (-774)) $ (-644 (-867 |#1|))) NIL)) (-1772 (($ (-1 (-535 (-867 |#1|)) (-535 (-867 |#1|))) $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-3488 (((-3 (-867 |#1|) #3="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#2| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-867 |#1|)) (|:| -2566 (-774))) #3#) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#2| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#2| (-914)))) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-867 |#1|) |#2|) NIL) (($ $ (-644 (-867 |#1|)) (-644 |#2|)) NIL) (($ $ (-867 |#1|) $) NIL) (($ $ (-644 (-867 |#1|)) (-644 $)) NIL)) (-4191 (($ $ (-867 |#1|)) NIL (|has| |#2| (-173)))) (-4244 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-4382 (((-535 (-867 |#1|)) $) NIL) (((-774) $ (-867 |#1|)) NIL) (((-644 (-774)) $ (-644 (-867 |#1|))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-867 |#1|) (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-867 |#1|) (-617 (-539))) (|has| |#2| (-617 (-539)))))) (-3222 ((|#2| $) NIL (|has| |#2| (-456))) (($ $ (-867 |#1|)) NIL (|has| |#2| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-867 |#1|)) NIL) (($ $) NIL (|has| |#2| (-561))) (($ (-411 (-550))) NIL (-3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550))))))) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-535 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3107 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#2| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#2| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#2| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-867 |#1|)) NIL) (($ $ (-644 (-867 |#1|))) NIL) (($ $ (-867 |#1|) (-774)) NIL) (($ $ (-644 (-867 |#1|)) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#2| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#2| (-38 (-411 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-734 |#1| |#2|) (-954 |#2| (-535 (-867 |#1|)) (-867 |#1|)) (-644 (-1181)) (-1053)) (T -734)) +NIL +(-954 |#2| (-535 (-867 |#1|)) (-867 |#1|)) +((-2579 (((-2 (|:| -2807 (-950 |#3|)) (|:| -2238 (-950 |#3|))) |#4|) 14)) (-3389 ((|#4| |#4| |#2|) 33)) (-2582 ((|#4| (-411 (-950 |#3|)) |#2|) 64)) (-2581 ((|#4| (-1175 (-950 |#3|)) |#2|) 77)) (-2580 ((|#4| (-1175 |#4|) |#2|) 51)) (-3388 ((|#4| |#4| |#2|) 54)) (-4166 (((-409 |#4|) |#4|) 40))) +(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2579 ((-2 (|:| -2807 (-950 |#3|)) (|:| -2238 (-950 |#3|))) |#4|)) (-15 -3388 (|#4| |#4| |#2|)) (-15 -2580 (|#4| (-1175 |#4|) |#2|)) (-15 -3389 (|#4| |#4| |#2|)) (-15 -2581 (|#4| (-1175 (-950 |#3|)) |#2|)) (-15 -2582 (|#4| (-411 (-950 |#3|)) |#2|)) (-15 -4166 ((-409 |#4|) |#4|))) (-796) (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)))) (-561) (-954 (-411 (-950 |#3|)) |#1| |#2|)) (T -735)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) (-4 *6 (-561)) (-5 *2 (-409 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-954 (-411 (-950 *6)) *4 *5)))) (-2582 (*1 *2 *3 *4) (-12 (-4 *6 (-561)) (-4 *2 (-954 *3 *5 *4)) (-5 *1 (-735 *5 *4 *6 *2)) (-5 *3 (-411 (-950 *6))) (-4 *5 (-796)) (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))))) (-2581 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 (-950 *6))) (-4 *6 (-561)) (-4 *2 (-954 (-411 (-950 *6)) *5 *4)) (-5 *1 (-735 *5 *4 *6 *2)) (-4 *5 (-796)) (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))))) (-3389 (*1 *2 *2 *3) (-12 (-4 *4 (-796)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) (-4 *5 (-561)) (-5 *1 (-735 *4 *3 *5 *2)) (-4 *2 (-954 (-411 (-950 *5)) *4 *3)))) (-2580 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-954 (-411 (-950 *6)) *5 *4)) (-5 *1 (-735 *5 *4 *6 *2)) (-4 *5 (-796)) (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) (-4 *6 (-561)))) (-3388 (*1 *2 *2 *3) (-12 (-4 *4 (-796)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) (-4 *5 (-561)) (-5 *1 (-735 *4 *3 *5 *2)) (-4 *2 (-954 (-411 (-950 *5)) *4 *3)))) (-2579 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) (-4 *6 (-561)) (-5 *2 (-2 (|:| -2807 (-950 *6)) (|:| -2238 (-950 *6)))) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-954 (-411 (-950 *6)) *4 *5))))) +(-10 -7 (-15 -2579 ((-2 (|:| -2807 (-950 |#3|)) (|:| -2238 (-950 |#3|))) |#4|)) (-15 -3388 (|#4| |#4| |#2|)) (-15 -2580 (|#4| (-1175 |#4|) |#2|)) (-15 -3389 (|#4| |#4| |#2|)) (-15 -2581 (|#4| (-1175 (-950 |#3|)) |#2|)) (-15 -2582 (|#4| (-411 (-950 |#3|)) |#2|)) (-15 -4166 ((-409 |#4|) |#4|))) +((-4166 (((-409 |#4|) |#4|) 54))) +(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 |#4|) |#4|))) (-796) (-853) (-13 (-309) (-147)) (-954 (-411 |#3|) |#1| |#2|)) (T -736)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-13 (-309) (-147))) (-5 *2 (-409 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-954 (-411 *6) *4 *5))))) +(-10 -7 (-15 -4166 ((-409 |#4|) |#4|))) +((-4392 (((-738 |#2| |#3|) (-1 |#2| |#1|) (-738 |#1| |#3|)) 18))) +(((-737 |#1| |#2| |#3|) (-10 -7 (-15 -4392 ((-738 |#2| |#3|) (-1 |#2| |#1|) (-738 |#1| |#3|)))) (-1053) (-1053) (-729)) (T -737)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-738 *5 *7)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *7 (-729)) (-5 *2 (-738 *6 *7)) (-5 *1 (-737 *5 *6 *7))))) +(-10 -7 (-15 -4392 ((-738 |#2| |#3|) (-1 |#2| |#1|) (-738 |#1| |#3|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 38)) (-4207 (((-644 (-2 (|:| -4388 |#1|) (|:| -4372 |#2|))) $) 39)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3542 (((-774)) 22 (-12 (|has| |#2| (-371)) (|has| |#1| (-371))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #1="failed") $) 78) (((-3 |#1| #1#) $) 81)) (-3578 ((|#2| $) NIL) ((|#1| $) NIL)) (-4393 (($ $) 104 (|has| |#2| (-853)))) (-3892 (((-3 $ "failed") $) 87)) (-3397 (($) 50 (-12 (|has| |#2| (-371)) (|has| |#1| (-371))))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) 72)) (-3226 (((-644 $) $) 54)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| |#2|) 17)) (-4392 (($ (-1 |#1| |#1|) $) 70)) (-2190 (((-923) $) 45 (-12 (|has| |#2| (-371)) (|has| |#1| (-371))))) (-3297 ((|#2| $) 103 (|has| |#2| (-853)))) (-3596 ((|#1| $) 102 (|has| |#2| (-853)))) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) 37 (-12 (|has| |#2| (-371)) (|has| |#1| (-371))))) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 101) (($ (-550)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-644 (-2 (|:| -4388 |#1|) (|:| -4372 |#2|)))) 11)) (-4251 (((-644 |#1|) $) 56)) (-4111 ((|#1| $ |#2|) 117)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 12 T CONST)) (-3069 (($) 46 T CONST)) (-3457 (((-112) $ $) 107)) (-4271 (($ $) 63) (($ $ $) NIL)) (-4273 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) +(((-738 |#1| |#2|) (-13 (-1053) (-1042 |#2|) (-1042 |#1|) (-10 -8 (-15 -3296 ($ |#1| |#2|)) (-15 -4111 (|#1| $ |#2|)) (-15 -4380 ($ (-644 (-2 (|:| -4388 |#1|) (|:| -4372 |#2|))))) (-15 -4207 ((-644 (-2 (|:| -4388 |#1|) (|:| -4372 |#2|))) $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (-15 -4371 ((-112) $)) (-15 -4251 ((-644 |#1|) $)) (-15 -3226 ((-644 $) $)) (-15 -2583 ((-774) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-853)) (PROGN (-15 -3297 (|#2| $)) (-15 -3596 (|#1| $)) (-15 -4393 ($ $))) |%noBranch|))) (-1053) (-729)) (T -738)) +((-3296 (*1 *1 *2 *3) (-12 (-5 *1 (-738 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-729)))) (-4111 (*1 *2 *1 *3) (-12 (-4 *2 (-1053)) (-5 *1 (-738 *2 *3)) (-4 *3 (-729)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -4388 *3) (|:| -4372 *4)))) (-4 *3 (-1053)) (-4 *4 (-729)) (-5 *1 (-738 *3 *4)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -4388 *3) (|:| -4372 *4)))) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-738 *3 *4)) (-4 *4 (-729)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-644 (-738 *3 *4))) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) (-3297 (*1 *2 *1) (-12 (-4 *2 (-729)) (-4 *2 (-853)) (-5 *1 (-738 *3 *2)) (-4 *3 (-1053)))) (-3596 (*1 *2 *1) (-12 (-4 *2 (-1053)) (-5 *1 (-738 *2 *3)) (-4 *3 (-853)) (-4 *3 (-729)))) (-4393 (*1 *1 *1) (-12 (-5 *1 (-738 *2 *3)) (-4 *3 (-853)) (-4 *2 (-1053)) (-4 *3 (-729))))) +(-13 (-1053) (-1042 |#2|) (-1042 |#1|) (-10 -8 (-15 -3296 ($ |#1| |#2|)) (-15 -4111 (|#1| $ |#2|)) (-15 -4380 ($ (-644 (-2 (|:| -4388 |#1|) (|:| -4372 |#2|))))) (-15 -4207 ((-644 (-2 (|:| -4388 |#1|) (|:| -4372 |#2|))) $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (-15 -4371 ((-112) $)) (-15 -4251 ((-644 |#1|) $)) (-15 -3226 ((-644 $) $)) (-15 -2583 ((-774) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-853)) (PROGN (-15 -3297 (|#2| $)) (-15 -3596 (|#1| $)) (-15 -4393 ($ $))) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-3656 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3658 (($ $ $) 99)) (-3657 (((-112) $ $) 107)) (-1310 (((-112) $ (-774)) NIL)) (-3661 (($ (-644 |#1|)) 26) (($) 17)) (-1680 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2528 (($ $) 85)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) 70 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4427))) (($ |#1| $ (-550)) 75) (($ (-1 (-112) |#1|) $ (-550)) 78)) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (($ |#1| $ (-550)) 80) (($ (-1 (-112) |#1|) $ (-550)) 81)) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 32 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) 106)) (-2584 (($) 15) (($ |#1|) 28) (($ (-644 |#1|)) 23)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) 38)) (-3668 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 89)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3660 (($ $ $) 97)) (-1370 ((|#1| $) 62)) (-4041 (($ |#1| $) 63) (($ |#1| $ (-774)) 86)) (-3666 (((-1124) $) NIL)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1371 ((|#1| $) 61)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 56)) (-3998 (($) 14)) (-2527 (((-644 (-2 (|:| -2256 |#1|) (|:| -2127 (-774)))) $) 55)) (-3659 (($ $ |#1|) NIL) (($ $ $) 98)) (-1569 (($) 16) (($ (-644 |#1|)) 25)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) 68 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 79)) (-4404 (((-539) $) 36 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 22)) (-4380 (((-866) $) 49)) (-3662 (($ (-644 |#1|)) 27) (($) 18)) (-3664 (((-112) $ $) NIL)) (-1372 (($ (-644 |#1|)) 24)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 103)) (-4391 (((-774) $) 67 (|has| $ (-6 -4427))))) +(((-739 |#1|) (-13 (-740 |#1|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -2584 ($)) (-15 -2584 ($ |#1|)) (-15 -2584 ($ (-644 |#1|))) (-15 -3010 ((-644 |#1|) $)) (-15 -3832 ($ |#1| $ (-550))) (-15 -3832 ($ (-1 (-112) |#1|) $ (-550))) (-15 -3831 ($ |#1| $ (-550))) (-15 -3831 ($ (-1 (-112) |#1|) $ (-550))))) (-1105)) (T -739)) +((-2584 (*1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-1105)))) (-2584 (*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-1105)))) (-2584 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-739 *3)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-739 *3)) (-4 *3 (-1105)))) (-3832 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-739 *2)) (-4 *2 (-1105)))) (-3832 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1105)) (-5 *1 (-739 *4)))) (-3831 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-739 *2)) (-4 *2 (-1105)))) (-3831 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1105)) (-5 *1 (-739 *4))))) +(-13 (-740 |#1|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -2584 ($)) (-15 -2584 ($ |#1|)) (-15 -2584 ($ (-644 |#1|))) (-15 -3010 ((-644 |#1|) $)) (-15 -3832 ($ |#1| $ (-550))) (-15 -3832 ($ (-1 (-112) |#1|) $ (-550))) (-15 -3831 ($ |#1| $ (-550))) (-15 -3831 ($ (-1 (-112) |#1|) $ (-550))))) +((-2970 (((-112) $ $) 19)) (-3656 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3658 (($ $ $) 73)) (-3657 (((-112) $ $) 74)) (-1310 (((-112) $ (-774)) 8)) (-3661 (($ (-644 |#1|)) 69) (($) 68)) (-1680 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2528 (($ $) 63)) (-1441 (($ $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) 65)) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22)) (-3660 (($ $ $) 70)) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41) (($ |#1| $ (-774)) 64)) (-3666 (((-1124) $) 21)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2527 (((-644 (-2 (|:| -2256 |#1|) (|:| -2127 (-774)))) $) 62)) (-3659 (($ $ |#1|) 72) (($ $ $) 71)) (-1569 (($) 50) (($ (-644 |#1|)) 49)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 51)) (-4380 (((-866) $) 18)) (-3662 (($ (-644 |#1|)) 67) (($) 66)) (-3664 (((-112) $ $) 23)) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20)) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-740 |#1|) (-140) (-1105)) (T -740)) +NIL +(-13 (-698 |t#1|) (-1103 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-616 (-866)) . T) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-236 |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-698 |#1|) . T) ((-1103 |#1|) . T) ((-1105) . T) ((-1220) . T)) +((-2585 (((-1276) (-1163)) 8))) +(((-741) (-10 -7 (-15 -2585 ((-1276) (-1163))))) (T -741)) +((-2585 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-741))))) +(-10 -7 (-15 -2585 ((-1276) (-1163)))) +((-2586 (((-644 |#1|) (-644 |#1|) (-644 |#1|)) 15))) +(((-742 |#1|) (-10 -7 (-15 -2586 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) (-853)) (T -742)) +((-2586 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-742 *3))))) +(-10 -7 (-15 -2586 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 |#2|) $) 148)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 141 (|has| |#1| (-561)))) (-2243 (($ $) 140 (|has| |#1| (-561)))) (-2241 (((-112) $) 138 (|has| |#1| (-561)))) (-3917 (($ $) 97 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 80 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) 20)) (-3440 (($ $) 79 (|has| |#1| (-38 (-411 (-550)))))) (-3915 (($ $) 96 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 81 (|has| |#1| (-38 (-411 (-550)))))) (-3919 (($ $) 95 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 82 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) 18 T CONST)) (-4393 (($ $) 132)) (-3892 (((-3 $ "failed") $) 37)) (-4248 (((-950 |#1|) $ (-774)) 110) (((-950 |#1|) $ (-774) (-774)) 109)) (-3295 (((-112) $) 149)) (-4061 (($) 107 (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-774) $ |#2|) 112) (((-774) $ |#2| (-774)) 111)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 78 (|has| |#1| (-38 (-411 (-550)))))) (-4371 (((-112) $) 130)) (-3296 (($ $ (-644 |#2|) (-644 (-535 |#2|))) 147) (($ $ |#2| (-535 |#2|)) 146) (($ |#1| (-535 |#2|)) 131) (($ $ |#2| (-774)) 114) (($ $ (-644 |#2|) (-644 (-774))) 113)) (-4392 (($ (-1 |#1| |#1|) $) 129)) (-4376 (($ $) 104 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) 127)) (-3596 ((|#1| $) 126)) (-3665 (((-1163) $) 10)) (-4246 (($ $ |#2|) 108 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) 11)) (-4202 (($ $ (-774)) 115)) (-3891 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4377 (($ $) 105 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (($ $ |#2| $) 123) (($ $ (-644 |#2|) (-644 $)) 122) (($ $ (-644 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-644 $) (-644 $)) 118)) (-4244 (($ $ |#2|) 46) (($ $ (-644 |#2|)) 45) (($ $ |#2| (-774)) 44) (($ $ (-644 |#2|) (-644 (-774))) 43)) (-4382 (((-535 |#2|) $) 128)) (-3920 (($ $) 94 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 83 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 93 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 84 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 92 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 85 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 150)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 145 (|has| |#1| (-173))) (($ $) 143 (|has| |#1| (-561))) (($ (-411 (-550))) 135 (|has| |#1| (-38 (-411 (-550)))))) (-4111 ((|#1| $ (-535 |#2|)) 133) (($ $ |#2| (-774)) 117) (($ $ (-644 |#2|) (-644 (-774))) 116)) (-3107 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 103 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 91 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) 139 (|has| |#1| (-561)))) (-3921 (($ $) 102 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 90 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 101 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 89 (|has| |#1| (-38 (-411 (-550)))))) (-3926 (($ $) 100 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 88 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 99 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 87 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 98 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 86 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ |#2|) 42) (($ $ (-644 |#2|)) 41) (($ $ |#2| (-774)) 40) (($ $ (-644 |#2|) (-644 (-774))) 39)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 134 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ $) 106 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 77 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 137 (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) 136 (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-743 |#1| |#2|) (-140) (-1053) (-853)) (T -743)) +((-4111 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *2)) (-4 *4 (-1053)) (-4 *2 (-853)))) (-4111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-774))) (-4 *1 (-743 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-853)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-743 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-853)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *2)) (-4 *4 (-1053)) (-4 *2 (-853)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-774))) (-4 *1 (-743 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-853)))) (-4205 (*1 *2 *1 *3) (-12 (-4 *1 (-743 *4 *3)) (-4 *4 (-1053)) (-4 *3 (-853)) (-5 *2 (-774)))) (-4205 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-774)) (-4 *1 (-743 *4 *3)) (-4 *4 (-1053)) (-4 *3 (-853)))) (-4248 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-853)) (-5 *2 (-950 *4)))) (-4248 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-853)) (-5 *2 (-950 *4)))) (-4246 (*1 *1 *1 *2) (-12 (-4 *1 (-743 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-853)) (-4 *3 (-38 (-411 (-550))))))) +(-13 (-904 |t#2|) (-977 |t#1| (-535 |t#2|) |t#2|) (-518 |t#2| $) (-311 $) (-10 -8 (-15 -4111 ($ $ |t#2| (-774))) (-15 -4111 ($ $ (-644 |t#2|) (-644 (-774)))) (-15 -4202 ($ $ (-774))) (-15 -3296 ($ $ |t#2| (-774))) (-15 -3296 ($ $ (-644 |t#2|) (-644 (-774)))) (-15 -4205 ((-774) $ |t#2|)) (-15 -4205 ((-774) $ |t#2| (-774))) (-15 -4248 ((-950 |t#1|) $ (-774))) (-15 -4248 ((-950 |t#1|) $ (-774) (-774))) (IF (|has| |t#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $ |t#2|)) (-6 (-1006)) (-6 (-1206))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-535 |#2|)) . T) ((-25) . T) ((-38 #2=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-411 (-550)))) ((-95) |has| |#1| (-38 (-411 (-550)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #2#) |has| |#1| (-38 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-286) |has| |#1| (-38 (-411 (-550)))) ((-292) |has| |#1| (-561)) ((-311 $) . T) ((-497) |has| |#1| (-38 (-411 (-550)))) ((-518 |#2| $) . T) ((-518 $ $) . T) ((-561) |has| |#1| (-561)) ((-649 #2#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #2#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #2#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-720 #2#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) . T) ((-904 |#2|) . T) ((-977 |#1| #1# |#2|) . T) ((-1006) |has| |#1| (-38 (-411 (-550)))) ((-1055 #2#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1060 #2#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1206) |has| |#1| (-38 (-411 (-550)))) ((-1209) |has| |#1| (-38 (-411 (-550))))) +((-4166 (((-409 (-1175 |#4|)) (-1175 |#4|)) 30) (((-409 |#4|) |#4|) 26))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 |#4|) |#4|)) (-15 -4166 ((-409 (-1175 |#4|)) (-1175 |#4|)))) (-853) (-796) (-13 (-309) (-147)) (-954 |#3| |#2| |#1|)) (T -744)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-13 (-309) (-147))) (-4 *7 (-954 *6 *5 *4)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-744 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-13 (-309) (-147))) (-5 *2 (-409 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-954 *6 *5 *4))))) +(-10 -7 (-15 -4166 ((-409 |#4|) |#4|)) (-15 -4166 ((-409 (-1175 |#4|)) (-1175 |#4|)))) +((-2589 (((-409 |#4|) |#4| |#2|) 142)) (-2587 (((-409 |#4|) |#4|) NIL)) (-4403 (((-409 (-1175 |#4|)) (-1175 |#4|)) 127) (((-409 |#4|) |#4|) 52)) (-2591 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -4166 (-1175 |#4|)) (|:| -2566 (-550)))))) (-1175 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 81)) (-2595 (((-1175 |#3|) (-1175 |#3|) (-550)) 168)) (-2594 (((-644 (-774)) (-1175 |#4|) (-644 |#2|) (-774)) 75)) (-3483 (((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-644 |#2|) (-644 (-774)) (-644 |#3|)) 79)) (-2592 (((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 27)) (-2590 (((-2 (|:| -2184 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-550)) 72)) (-2588 (((-550) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550))))) 164)) (-2593 ((|#4| (-550) (-409 |#4|)) 73)) (-3783 (((-112) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550))))) NIL))) +(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4403 ((-409 |#4|) |#4|)) (-15 -4403 ((-409 (-1175 |#4|)) (-1175 |#4|))) (-15 -2587 ((-409 |#4|) |#4|)) (-15 -2588 ((-550) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))))) (-15 -2589 ((-409 |#4|) |#4| |#2|)) (-15 -2590 ((-2 (|:| -2184 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-550))) (-15 -2591 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -4166 (-1175 |#4|)) (|:| -2566 (-550)))))) (-1175 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2592 ((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2593 (|#4| (-550) (-409 |#4|))) (-15 -3783 ((-112) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))))) (-15 -3483 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-644 |#2|) (-644 (-774)) (-644 |#3|))) (-15 -2594 ((-644 (-774)) (-1175 |#4|) (-644 |#2|) (-774))) (-15 -2595 ((-1175 |#3|) (-1175 |#3|) (-550)))) (-796) (-853) (-309) (-954 |#3| |#1| |#2|)) (T -745)) +((-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *6)) (-5 *3 (-550)) (-4 *6 (-309)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-745 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-644 *7)) (-4 *7 (-853)) (-4 *9 (-954 *8 *6 *7)) (-4 *6 (-796)) (-4 *8 (-309)) (-5 *2 (-644 (-774))) (-5 *1 (-745 *6 *7 *8 *9)) (-5 *5 (-774)))) (-3483 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1175 *11)) (-5 *6 (-644 *10)) (-5 *7 (-644 (-774))) (-5 *8 (-644 *11)) (-4 *10 (-853)) (-4 *11 (-309)) (-4 *9 (-796)) (-4 *5 (-954 *11 *9 *10)) (-5 *2 (-644 (-1175 *5))) (-5 *1 (-745 *9 *10 *11 *5)) (-5 *3 (-1175 *5)))) (-3783 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-2 (|:| -4166 (-1175 *6)) (|:| -2566 (-550))))) (-4 *6 (-309)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) (-5 *1 (-745 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-409 *2)) (-4 *2 (-954 *7 *5 *6)) (-5 *1 (-745 *5 *6 *7 *2)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-309)))) (-2592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-853)) (-4 *8 (-309)) (-4 *9 (-954 *8 *6 *7)) (-4 *6 (-796)) (-5 *2 (-2 (|:| |upol| (-1175 *8)) (|:| |Lval| (-644 *8)) (|:| |Lfact| (-644 (-2 (|:| -4166 (-1175 *8)) (|:| -2566 (-550))))) (|:| |ctpol| *8))) (-5 *1 (-745 *6 *7 *8 *9)))) (-2591 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-853)) (-4 *8 (-309)) (-4 *6 (-796)) (-4 *9 (-954 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-644 (-2 (|:| -4166 (-1175 *9)) (|:| -2566 (-550))))))) (-5 *1 (-745 *6 *7 *8 *9)) (-5 *3 (-1175 *9)))) (-2590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-550)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-309)) (-4 *9 (-954 *8 *6 *7)) (-5 *2 (-2 (|:| -2184 (-1175 *9)) (|:| |polval| (-1175 *8)))) (-5 *1 (-745 *6 *7 *8 *9)) (-5 *3 (-1175 *9)) (-5 *4 (-1175 *8)))) (-2589 (*1 *2 *3 *4) (-12 (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-745 *5 *4 *6 *3)) (-4 *3 (-954 *6 *5 *4)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4166 (-1175 *6)) (|:| -2566 (-550))))) (-4 *6 (-309)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-550)) (-5 *1 (-745 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) (-2587 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-954 *6 *4 *5)))) (-4403 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-745 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-4403 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-954 *6 *4 *5))))) +(-10 -7 (-15 -4403 ((-409 |#4|) |#4|)) (-15 -4403 ((-409 (-1175 |#4|)) (-1175 |#4|))) (-15 -2587 ((-409 |#4|) |#4|)) (-15 -2588 ((-550) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))))) (-15 -2589 ((-409 |#4|) |#4| |#2|)) (-15 -2590 ((-2 (|:| -2184 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-550))) (-15 -2591 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -4166 (-1175 |#4|)) (|:| -2566 (-550)))))) (-1175 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2592 ((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2593 (|#4| (-550) (-409 |#4|))) (-15 -3783 ((-112) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))) (-644 (-2 (|:| -4166 (-1175 |#3|)) (|:| -2566 (-550)))))) (-15 -3483 ((-3 (-644 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-644 |#2|) (-644 (-774)) (-644 |#3|))) (-15 -2594 ((-644 (-774)) (-1175 |#4|) (-644 |#2|) (-774))) (-15 -2595 ((-1175 |#3|) (-1175 |#3|) (-550)))) +((-2596 (($ $ (-923)) 17))) +(((-746 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1| (-923)))) (-747 |#2|) (-173)) (T -746)) +NIL +(-10 -8 (-15 -2596 (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2572 (($ $ (-923)) 31)) (-2596 (($ $ (-923)) 38)) (-2571 (($ $ (-923)) 32)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-2758 (($ $ $) 28)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2759 (($ $ $ $) 29)) (-2757 (($ $ $) 27)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-747 |#1|) (-140) (-173)) (T -747)) +((-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-747 *3)) (-4 *3 (-173))))) +(-13 (-764) (-720 |t#1|) (-10 -8 (-15 -2596 ($ $ (-923))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-723) . T) ((-764) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-2598 (((-1039) (-692 (-226)) (-550) (-112) (-550)) 25)) (-2597 (((-1039) (-692 (-226)) (-550) (-112) (-550)) 24))) +(((-748) (-10 -7 (-15 -2597 ((-1039) (-692 (-226)) (-550) (-112) (-550))) (-15 -2598 ((-1039) (-692 (-226)) (-550) (-112) (-550))))) (T -748)) +((-2598 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1039)) (-5 *1 (-748)))) (-2597 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1039)) (-5 *1 (-748))))) +(-10 -7 (-15 -2597 ((-1039) (-692 (-226)) (-550) (-112) (-550))) (-15 -2598 ((-1039) (-692 (-226)) (-550) (-112) (-550)))) +((-2601 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-74 FCN)))) 43)) (-2600 (((-1039) (-550) (-550) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-81 FCN)))) 39)) (-2599 (((-1039) (-226) (-226) (-226) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) 32))) +(((-749) (-10 -7 (-15 -2599 ((-1039) (-226) (-226) (-226) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2600 ((-1039) (-550) (-550) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-81 FCN))))) (-15 -2601 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-74 FCN))))))) (T -749)) +((-2601 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1039)) (-5 *1 (-749)))) (-2600 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1039)) (-5 *1 (-749)))) (-2599 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) (-5 *1 (-749))))) +(-10 -7 (-15 -2599 ((-1039) (-226) (-226) (-226) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2600 ((-1039) (-550) (-550) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-81 FCN))))) (-15 -2601 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-74 FCN)))))) +((-2613 (((-1039) (-550) (-550) (-692 (-226)) (-550)) 34)) (-2612 (((-1039) (-550) (-550) (-692 (-226)) (-550)) 33)) (-2611 (((-1039) (-550) (-692 (-226)) (-550)) 32)) (-2610 (((-1039) (-550) (-692 (-226)) (-550)) 31)) (-2609 (((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 30)) (-2608 (((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 29)) (-2607 (((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-550)) 28)) (-2606 (((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-550)) 27)) (-2605 (((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 24)) (-2604 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550)) 23)) (-2603 (((-1039) (-550) (-692 (-226)) (-550)) 22)) (-2602 (((-1039) (-550) (-692 (-226)) (-550)) 21))) +(((-750) (-10 -7 (-15 -2602 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2603 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2604 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2605 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2606 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2607 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2608 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2609 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2610 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2611 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2612 ((-1039) (-550) (-550) (-692 (-226)) (-550))) (-15 -2613 ((-1039) (-550) (-550) (-692 (-226)) (-550))))) (T -750)) +((-2613 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2612 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2611 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2610 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2609 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2608 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2607 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2606 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2605 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2604 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2603 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750)))) (-2602 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) +(-10 -7 (-15 -2602 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2603 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2604 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2605 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2606 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2607 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2608 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2609 ((-1039) (-550) (-550) (-1163) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2610 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2611 ((-1039) (-550) (-692 (-226)) (-550))) (-15 -2612 ((-1039) (-550) (-550) (-692 (-226)) (-550))) (-15 -2613 ((-1039) (-550) (-550) (-692 (-226)) (-550)))) +((-2625 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-226) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2624 (((-1039) (-692 (-226)) (-692 (-226)) (-550) (-550)) 51)) (-2623 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2622 (((-1039) (-226) (-226) (-550) (-550) (-550) (-550)) 46)) (-2621 (((-1039) (-226) (-226) (-550) (-226) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) 45)) (-2620 (((-1039) (-226) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) 44)) (-2619 (((-1039) (-226) (-226) (-226) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) 43)) (-2618 (((-1039) (-226) (-226) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) 42)) (-2617 (((-1039) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) 38)) (-2616 (((-1039) (-226) (-226) (-550) (-692 (-226)) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) 37)) (-2615 (((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) 33)) (-2614 (((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) 32))) +(((-751) (-10 -7 (-15 -2614 ((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2615 ((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2616 ((-1039) (-226) (-226) (-550) (-692 (-226)) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2617 ((-1039) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2618 ((-1039) (-226) (-226) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2619 ((-1039) (-226) (-226) (-226) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2620 ((-1039) (-226) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2621 ((-1039) (-226) (-226) (-550) (-226) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2622 ((-1039) (-226) (-226) (-550) (-550) (-550) (-550))) (-15 -2623 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN))))) (-15 -2624 ((-1039) (-692 (-226)) (-692 (-226)) (-550) (-550))) (-15 -2625 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-226) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN))))))) (T -751)) +((-2625 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2624 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2623 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2622 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2621 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2620 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2619 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2618 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2617 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2616 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2615 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) (-5 *1 (-751)))) (-2614 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) (-5 *1 (-751))))) +(-10 -7 (-15 -2614 ((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2615 ((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2616 ((-1039) (-226) (-226) (-550) (-692 (-226)) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2617 ((-1039) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498))))) (-15 -2618 ((-1039) (-226) (-226) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2619 ((-1039) (-226) (-226) (-226) (-226) (-550) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2620 ((-1039) (-226) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2621 ((-1039) (-226) (-226) (-550) (-226) (-550) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G))))) (-15 -2622 ((-1039) (-226) (-226) (-550) (-550) (-550) (-550))) (-15 -2623 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-226) (-550) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN))))) (-15 -2624 ((-1039) (-692 (-226)) (-692 (-226)) (-550) (-550))) (-15 -2625 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-226) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))))) +((-2633 (((-1039) (-550) (-550) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-392)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2632 (((-1039) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL))) (-392) (-392)) 69) (((-1039) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2631 (((-1039) (-226) (-226) (-550) (-226) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-392)) (|:| |fp| (-86 FCNG)))) 57)) (-2630 (((-1039) (-692 (-226)) (-692 (-226)) (-550) (-226) (-226) (-226) (-550) (-550) (-550) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) 50)) (-2629 (((-1039) (-226) (-550) (-550) (-1163) (-550) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2628 (((-1039) (-226) (-550) (-550) (-226) (-1163) (-226) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2627 (((-1039) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) 42)) (-2626 (((-1039) (-226) (-550) (-550) (-550) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-752) (-10 -7 (-15 -2626 ((-1039) (-226) (-550) (-550) (-550) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT))))) (-15 -2627 ((-1039) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))))) (-15 -2628 ((-1039) (-226) (-550) (-550) (-226) (-1163) (-226) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT))))) (-15 -2629 ((-1039) (-226) (-550) (-550) (-1163) (-550) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT))))) (-15 -2630 ((-1039) (-692 (-226)) (-692 (-226)) (-550) (-226) (-226) (-226) (-550) (-550) (-550) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))))) (-15 -2631 ((-1039) (-226) (-226) (-550) (-226) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-392)) (|:| |fp| (-86 FCNG))))) (-15 -2632 ((-1039) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL))))) (-15 -2632 ((-1039) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL))) (-392) (-392))) (-15 -2633 ((-1039) (-550) (-550) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-392)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -752)) +((-2633 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2632 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-392)) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2632 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2631 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2630 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2629 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-550)) (-5 *5 (-1163)) (-5 *6 (-692 (-226))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-392)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2628 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-550)) (-5 *5 (-1163)) (-5 *6 (-692 (-226))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2627 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-752)))) (-2626 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-752))))) +(-10 -7 (-15 -2626 ((-1039) (-226) (-550) (-550) (-550) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT))))) (-15 -2627 ((-1039) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))))) (-15 -2628 ((-1039) (-226) (-550) (-550) (-226) (-1163) (-226) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT))))) (-15 -2629 ((-1039) (-226) (-550) (-550) (-1163) (-550) (-226) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT))))) (-15 -2630 ((-1039) (-692 (-226)) (-692 (-226)) (-550) (-226) (-226) (-226) (-550) (-550) (-550) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN))))) (-15 -2631 ((-1039) (-226) (-226) (-550) (-226) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-392)) (|:| |fp| (-86 FCNG))))) (-15 -2632 ((-1039) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL))))) (-15 -2632 ((-1039) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL))) (-392) (-392))) (-15 -2633 ((-1039) (-550) (-550) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-392)) (|:| |fp| (-77 G JACOBG JACGEP)))))) +((-2636 (((-1039) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-678 (-226)) (-550)) 45)) (-2635 (((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-1163) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-392)) (|:| |fp| (-84 BNDY)))) 41)) (-2634 (((-1039) (-550) (-550) (-550) (-550) (-226) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 23))) +(((-753) (-10 -7 (-15 -2634 ((-1039) (-550) (-550) (-550) (-550) (-226) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2635 ((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-1163) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-392)) (|:| |fp| (-84 BNDY))))) (-15 -2636 ((-1039) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-678 (-226)) (-550))))) (T -753)) +((-2636 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-678 (-226))) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-753)))) (-2635 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-1163)) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1039)) (-5 *1 (-753)))) (-2634 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-753))))) +(-10 -7 (-15 -2634 ((-1039) (-550) (-550) (-550) (-550) (-226) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2635 ((-1039) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-1163) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-392)) (|:| |fp| (-84 BNDY))))) (-15 -2636 ((-1039) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-678 (-226)) (-550)))) +((-2646 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-692 (-226)) (-226) (-226) (-550)) 35)) (-2645 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-226) (-226) (-550)) 34)) (-2644 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-692 (-226)) (-226) (-226) (-550)) 33)) (-2643 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 29)) (-2642 (((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 28)) (-2641 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550)) 27)) (-2640 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-550)) 24)) (-2639 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-550)) 23)) (-2638 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550)) 22)) (-2637 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550)) 21))) +(((-754) (-10 -7 (-15 -2637 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550))) (-15 -2638 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2639 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2640 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2641 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550))) (-15 -2642 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2643 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2644 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-692 (-226)) (-226) (-226) (-550))) (-15 -2645 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-226) (-226) (-550))) (-15 -2646 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-692 (-226)) (-226) (-226) (-550))))) (T -754)) +((-2646 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2645 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2644 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *6 (-226)) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2643 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2642 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2641 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2640 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2639 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2638 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754)))) (-2637 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) +(-10 -7 (-15 -2637 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550))) (-15 -2638 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2639 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2640 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2641 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-226) (-550))) (-15 -2642 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2643 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2644 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-692 (-226)) (-226) (-226) (-550))) (-15 -2645 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-226) (-226) (-550))) (-15 -2646 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-692 (-226)) (-226) (-226) (-550)))) +((-2664 (((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550)) 45)) (-2663 (((-1039) (-550) (-550) (-550) (-226) (-692 (-226)) (-692 (-226)) (-550)) 44)) (-2662 (((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550)) 43)) (-2661 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 42)) (-2660 (((-1039) (-1163) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550)) 41)) (-2659 (((-1039) (-1163) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550)) 40)) (-2658 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550) (-550) (-550) (-226) (-692 (-226)) (-550)) 39)) (-2657 (((-1039) (-1163) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-550))) 38)) (-2656 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550)) 35)) (-2655 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550)) 34)) (-2654 (((-1039) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550)) 33)) (-2653 (((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 32)) (-2652 (((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-226) (-550)) 31)) (-2651 (((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-550)) 30)) (-2650 (((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-550) (-550) (-550)) 29)) (-2649 (((-1039) (-550) (-550) (-550) (-226) (-226) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550) (-692 (-550)) (-550) (-550) (-550)) 28)) (-2648 (((-1039) (-550) (-692 (-226)) (-226) (-550)) 24)) (-2647 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 21))) +(((-755) (-10 -7 (-15 -2647 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2648 ((-1039) (-550) (-692 (-226)) (-226) (-550))) (-15 -2649 ((-1039) (-550) (-550) (-550) (-226) (-226) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550) (-692 (-550)) (-550) (-550) (-550))) (-15 -2650 ((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-550) (-550) (-550))) (-15 -2651 ((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-550))) (-15 -2652 ((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-226) (-550))) (-15 -2653 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2654 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550))) (-15 -2655 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550))) (-15 -2656 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2657 ((-1039) (-1163) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-550)))) (-15 -2658 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550) (-550) (-550) (-226) (-692 (-226)) (-550))) (-15 -2659 ((-1039) (-1163) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550))) (-15 -2660 ((-1039) (-1163) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2661 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2662 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550))) (-15 -2663 ((-1039) (-550) (-550) (-550) (-226) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2664 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550))))) (T -755)) +((-2664 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2663 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2662 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2661 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2660 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2659 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1163)) (-5 *5 (-692 (-226))) (-5 *6 (-226)) (-5 *7 (-692 (-550))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2658 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *6 (-226)) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2657 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1163)) (-5 *5 (-692 (-226))) (-5 *6 (-226)) (-5 *7 (-692 (-550))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2656 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2655 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2654 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2653 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2652 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2651 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2650 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2649 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-692 (-226))) (-5 *6 (-692 (-550))) (-5 *3 (-550)) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2648 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) (-5 *1 (-755)))) (-2647 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) +(-10 -7 (-15 -2647 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2648 ((-1039) (-550) (-692 (-226)) (-226) (-550))) (-15 -2649 ((-1039) (-550) (-550) (-550) (-226) (-226) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550) (-692 (-550)) (-550) (-550) (-550))) (-15 -2650 ((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-550) (-550) (-550))) (-15 -2651 ((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-226) (-550) (-550) (-550))) (-15 -2652 ((-1039) (-550) (-226) (-226) (-692 (-226)) (-550) (-550) (-226) (-550))) (-15 -2653 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2654 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550))) (-15 -2655 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550))) (-15 -2656 ((-1039) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2657 ((-1039) (-1163) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-550)))) (-15 -2658 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550) (-550) (-550) (-226) (-692 (-226)) (-550))) (-15 -2659 ((-1039) (-1163) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550))) (-15 -2660 ((-1039) (-1163) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2661 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2662 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550))) (-15 -2663 ((-1039) (-550) (-550) (-550) (-226) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2664 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550) (-692 (-226)) (-692 (-226)) (-550) (-550) (-550)))) +((-2672 (((-1039) (-550) (-550) (-550) (-226) (-692 (-226)) (-550) (-692 (-226)) (-550)) 63)) (-2671 (((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-112) (-226) (-550) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-550) (-550) (-550) (-550) (-550) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-550)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2670 (((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-226) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-112) (-112) (-112) (-550) (-550) (-692 (-226)) (-692 (-550)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-65 QPHESS)))) 58)) (-2669 (((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-112) (-550) (-550) (-692 (-226)) (-550)) 51)) (-2668 (((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2667 (((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2666 (((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2665 (((-1039) (-550) (-226) (-226) (-550) (-226) (-112) (-226) (-226) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN)))) 38))) +(((-756) (-10 -7 (-15 -2665 ((-1039) (-550) (-226) (-226) (-550) (-226) (-112) (-226) (-226) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN))))) (-15 -2666 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-79 LSFUN1))))) (-15 -2667 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-64 LSFUN2))))) (-15 -2668 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-66 FUNCT1))))) (-15 -2669 ((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-112) (-550) (-550) (-692 (-226)) (-550))) (-15 -2670 ((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-226) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-112) (-112) (-112) (-550) (-550) (-692 (-226)) (-692 (-550)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-65 QPHESS))))) (-15 -2671 ((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-112) (-226) (-550) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-550) (-550) (-550) (-550) (-550) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-550)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN))))) (-15 -2672 ((-1039) (-550) (-550) (-550) (-226) (-692 (-226)) (-550) (-692 (-226)) (-550))))) (T -756)) +((-2672 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2671 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-692 (-550))) (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2670 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-692 (-226))) (-5 *6 (-112)) (-5 *7 (-692 (-550))) (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-550)) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2669 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-112)) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2668 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2667 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2666 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1039)) (-5 *1 (-756)))) (-2665 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-692 (-226))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-756))))) +(-10 -7 (-15 -2665 ((-1039) (-550) (-226) (-226) (-550) (-226) (-112) (-226) (-226) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN))))) (-15 -2666 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-79 LSFUN1))))) (-15 -2667 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-64 LSFUN2))))) (-15 -2668 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-66 FUNCT1))))) (-15 -2669 ((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-112) (-550) (-550) (-692 (-226)) (-550))) (-15 -2670 ((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-226) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-112) (-112) (-112) (-550) (-550) (-692 (-226)) (-692 (-550)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-65 QPHESS))))) (-15 -2671 ((-1039) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-550) (-112) (-226) (-550) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-550) (-550) (-550) (-550) (-550) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-550) (-692 (-550)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN))))) (-15 -2672 ((-1039) (-550) (-550) (-550) (-226) (-692 (-226)) (-550) (-692 (-226)) (-550)))) +((-2682 (((-1039) (-1163) (-550) (-550) (-550) (-550) (-692 (-169 (-226))) (-692 (-169 (-226))) (-550)) 47)) (-2681 (((-1039) (-1163) (-1163) (-550) (-550) (-692 (-169 (-226))) (-550) (-692 (-169 (-226))) (-550) (-550) (-692 (-169 (-226))) (-550)) 46)) (-2680 (((-1039) (-550) (-550) (-550) (-692 (-169 (-226))) (-550)) 45)) (-2679 (((-1039) (-1163) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 40)) (-2678 (((-1039) (-1163) (-1163) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-692 (-226)) (-550)) 39)) (-2677 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-550)) 36)) (-2676 (((-1039) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550)) 35)) (-2675 (((-1039) (-550) (-550) (-550) (-550) (-644 (-112)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-226) (-226) (-550)) 34)) (-2674 (((-1039) (-550) (-550) (-550) (-692 (-550)) (-692 (-550)) (-692 (-550)) (-692 (-550)) (-112) (-226) (-112) (-692 (-550)) (-692 (-226)) (-550)) 33)) (-2673 (((-1039) (-550) (-550) (-550) (-550) (-226) (-112) (-112) (-644 (-112)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-550)) 32))) +(((-757) (-10 -7 (-15 -2673 ((-1039) (-550) (-550) (-550) (-550) (-226) (-112) (-112) (-644 (-112)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-550))) (-15 -2674 ((-1039) (-550) (-550) (-550) (-692 (-550)) (-692 (-550)) (-692 (-550)) (-692 (-550)) (-112) (-226) (-112) (-692 (-550)) (-692 (-226)) (-550))) (-15 -2675 ((-1039) (-550) (-550) (-550) (-550) (-644 (-112)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-226) (-226) (-550))) (-15 -2676 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550))) (-15 -2677 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-550))) (-15 -2678 ((-1039) (-1163) (-1163) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-692 (-226)) (-550))) (-15 -2679 ((-1039) (-1163) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2680 ((-1039) (-550) (-550) (-550) (-692 (-169 (-226))) (-550))) (-15 -2681 ((-1039) (-1163) (-1163) (-550) (-550) (-692 (-169 (-226))) (-550) (-692 (-169 (-226))) (-550) (-550) (-692 (-169 (-226))) (-550))) (-15 -2682 ((-1039) (-1163) (-550) (-550) (-550) (-550) (-692 (-169 (-226))) (-692 (-169 (-226))) (-550))))) (T -757)) +((-2682 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-169 (-226)))) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2681 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-169 (-226)))) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2680 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-169 (-226)))) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2679 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2678 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2677 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2676 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2675 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-644 (-112))) (-5 *5 (-692 (-226))) (-5 *6 (-692 (-550))) (-5 *7 (-226)) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2674 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-692 (-550))) (-5 *5 (-112)) (-5 *7 (-692 (-226))) (-5 *3 (-550)) (-5 *6 (-226)) (-5 *2 (-1039)) (-5 *1 (-757)))) (-2673 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-644 (-112))) (-5 *7 (-692 (-226))) (-5 *8 (-692 (-550))) (-5 *3 (-550)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1039)) (-5 *1 (-757))))) +(-10 -7 (-15 -2673 ((-1039) (-550) (-550) (-550) (-550) (-226) (-112) (-112) (-644 (-112)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-550))) (-15 -2674 ((-1039) (-550) (-550) (-550) (-692 (-550)) (-692 (-550)) (-692 (-550)) (-692 (-550)) (-112) (-226) (-112) (-692 (-550)) (-692 (-226)) (-550))) (-15 -2675 ((-1039) (-550) (-550) (-550) (-550) (-644 (-112)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-226) (-226) (-550))) (-15 -2676 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550))) (-15 -2677 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-550))) (-15 -2678 ((-1039) (-1163) (-1163) (-550) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-692 (-226)) (-550))) (-15 -2679 ((-1039) (-1163) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2680 ((-1039) (-550) (-550) (-550) (-692 (-169 (-226))) (-550))) (-15 -2681 ((-1039) (-1163) (-1163) (-550) (-550) (-692 (-169 (-226))) (-550) (-692 (-169 (-226))) (-550) (-550) (-692 (-169 (-226))) (-550))) (-15 -2682 ((-1039) (-1163) (-550) (-550) (-550) (-550) (-692 (-169 (-226))) (-692 (-169 (-226))) (-550)))) +((-2697 (((-1039) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-692 (-169 (-226))) (-692 (-169 (-226))) (-550)) 79)) (-2696 (((-1039) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-692 (-226)) (-692 (-226)) (-550)) 68)) (-2695 (((-1039) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE))) (-392)) 56) (((-1039) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE)))) 55)) (-2694 (((-1039) (-550) (-550) (-550) (-226) (-112) (-550) (-692 (-226)) (-692 (-226)) (-550)) 37)) (-2693 (((-1039) (-550) (-550) (-226) (-226) (-550) (-550) (-692 (-226)) (-550)) 33)) (-2692 (((-1039) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-550) (-550) (-550)) 30)) (-2691 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 29)) (-2690 (((-1039) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 28)) (-2689 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 27)) (-2688 (((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550)) 26)) (-2687 (((-1039) (-550) (-550) (-692 (-226)) (-550)) 25)) (-2686 (((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 24)) (-2685 (((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550)) 23)) (-2684 (((-1039) (-692 (-226)) (-550) (-550) (-550) (-550)) 22)) (-2683 (((-1039) (-550) (-550) (-692 (-226)) (-550)) 21))) +(((-758) (-10 -7 (-15 -2683 ((-1039) (-550) (-550) (-692 (-226)) (-550))) (-15 -2684 ((-1039) (-692 (-226)) (-550) (-550) (-550) (-550))) (-15 -2685 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2686 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2687 ((-1039) (-550) (-550) (-692 (-226)) (-550))) (-15 -2688 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550))) (-15 -2689 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2690 ((-1039) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2691 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2692 ((-1039) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-550) (-550) (-550))) (-15 -2693 ((-1039) (-550) (-550) (-226) (-226) (-550) (-550) (-692 (-226)) (-550))) (-15 -2694 ((-1039) (-550) (-550) (-550) (-226) (-112) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2695 ((-1039) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE))))) (-15 -2695 ((-1039) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE))) (-392))) (-15 -2696 ((-1039) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2697 ((-1039) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-692 (-169 (-226))) (-692 (-169 (-226))) (-550))))) (T -758)) +((-2697 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-692 (-169 (-226)))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2696 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2695 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-392)) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2695 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2694 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2693 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2692 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2691 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2690 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2689 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2688 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2687 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2686 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2685 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-758)))) (-2683 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) +(-10 -7 (-15 -2683 ((-1039) (-550) (-550) (-692 (-226)) (-550))) (-15 -2684 ((-1039) (-692 (-226)) (-550) (-550) (-550) (-550))) (-15 -2685 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2686 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2687 ((-1039) (-550) (-550) (-692 (-226)) (-550))) (-15 -2688 ((-1039) (-550) (-550) (-550) (-550) (-692 (-226)) (-550))) (-15 -2689 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2690 ((-1039) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2691 ((-1039) (-550) (-550) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2692 ((-1039) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-550) (-550) (-550))) (-15 -2693 ((-1039) (-550) (-550) (-226) (-226) (-550) (-550) (-692 (-226)) (-550))) (-15 -2694 ((-1039) (-550) (-550) (-550) (-226) (-112) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2695 ((-1039) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE))))) (-15 -2695 ((-1039) (-550) (-550) (-226) (-550) (-550) (-550) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE))) (-392))) (-15 -2696 ((-1039) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2697 ((-1039) (-550) (-550) (-550) (-550) (-550) (-112) (-550) (-112) (-550) (-692 (-169 (-226))) (-692 (-169 (-226))) (-550)))) +((-2708 (((-1039) (-550) (-550) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-70 APROD)))) 64)) (-2707 (((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-550)) (-550) (-692 (-226)) (-550) (-550) (-550) (-550)) 60)) (-2706 (((-1039) (-550) (-692 (-226)) (-112) (-226) (-550) (-550) (-550) (-550) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-392)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2705 (((-1039) (-550) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550) (-692 (-550)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550)) 37)) (-2704 (((-1039) (-550) (-550) (-550) (-226) (-550) (-692 (-226)) (-692 (-226)) (-550)) 36)) (-2703 (((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550)) 33)) (-2702 (((-1039) (-550) (-692 (-226)) (-550) (-692 (-550)) (-692 (-550)) (-550) (-692 (-550)) (-692 (-226))) 32)) (-2701 (((-1039) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-550)) 28)) (-2700 (((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550)) 27)) (-2699 (((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550)) 26)) (-2698 (((-1039) (-550) (-692 (-169 (-226))) (-550) (-550) (-550) (-550) (-692 (-169 (-226))) (-550)) 22))) +(((-759) (-10 -7 (-15 -2698 ((-1039) (-550) (-692 (-169 (-226))) (-550) (-550) (-550) (-550) (-692 (-169 (-226))) (-550))) (-15 -2699 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2700 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2701 ((-1039) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-550))) (-15 -2702 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-550)) (-692 (-550)) (-550) (-692 (-550)) (-692 (-226)))) (-15 -2703 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2704 ((-1039) (-550) (-550) (-550) (-226) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2705 ((-1039) (-550) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550) (-692 (-550)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550))) (-15 -2706 ((-1039) (-550) (-692 (-226)) (-112) (-226) (-550) (-550) (-550) (-550) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-392)) (|:| |fp| (-73 MSOLVE))))) (-15 -2707 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-550)) (-550) (-692 (-226)) (-550) (-550) (-550) (-550))) (-15 -2708 ((-1039) (-550) (-550) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-70 APROD))))))) (T -759)) +((-2708 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2707 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2706 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2705 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2704 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2703 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2702 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2701 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2700 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2699 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-759)))) (-2698 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-169 (-226)))) (-5 *2 (-1039)) (-5 *1 (-759))))) +(-10 -7 (-15 -2698 ((-1039) (-550) (-692 (-169 (-226))) (-550) (-550) (-550) (-550) (-692 (-169 (-226))) (-550))) (-15 -2699 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2700 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-550))) (-15 -2701 ((-1039) (-692 (-226)) (-550) (-692 (-226)) (-550) (-550) (-550))) (-15 -2702 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-550)) (-692 (-550)) (-550) (-692 (-550)) (-692 (-226)))) (-15 -2703 ((-1039) (-550) (-550) (-692 (-226)) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2704 ((-1039) (-550) (-550) (-550) (-226) (-550) (-692 (-226)) (-692 (-226)) (-550))) (-15 -2705 ((-1039) (-550) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550) (-692 (-550)) (-692 (-226)) (-692 (-550)) (-692 (-550)) (-692 (-226)) (-692 (-226)) (-692 (-550)) (-550))) (-15 -2706 ((-1039) (-550) (-692 (-226)) (-112) (-226) (-550) (-550) (-550) (-550) (-226) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-392)) (|:| |fp| (-73 MSOLVE))))) (-15 -2707 ((-1039) (-550) (-692 (-226)) (-550) (-692 (-226)) (-692 (-550)) (-550) (-692 (-226)) (-550) (-550) (-550) (-550))) (-15 -2708 ((-1039) (-550) (-550) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-692 (-226)) (-550) (-3 (|:| |fn| (-392)) (|:| |fp| (-70 APROD)))))) +((-2712 (((-1039) (-1163) (-550) (-550) (-692 (-226)) (-550) (-550) (-692 (-226))) 29)) (-2711 (((-1039) (-1163) (-550) (-550) (-692 (-226))) 28)) (-2710 (((-1039) (-1163) (-550) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550) (-692 (-226))) 27)) (-2709 (((-1039) (-550) (-550) (-550) (-692 (-226))) 21))) +(((-760) (-10 -7 (-15 -2709 ((-1039) (-550) (-550) (-550) (-692 (-226)))) (-15 -2710 ((-1039) (-1163) (-550) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550) (-692 (-226)))) (-15 -2711 ((-1039) (-1163) (-550) (-550) (-692 (-226)))) (-15 -2712 ((-1039) (-1163) (-550) (-550) (-692 (-226)) (-550) (-550) (-692 (-226)))))) (T -760)) +((-2712 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-760)))) (-2711 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-760)))) (-2710 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1163)) (-5 *5 (-692 (-226))) (-5 *6 (-692 (-550))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-760)))) (-2709 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-760))))) +(-10 -7 (-15 -2709 ((-1039) (-550) (-550) (-550) (-692 (-226)))) (-15 -2710 ((-1039) (-1163) (-550) (-550) (-692 (-226)) (-550) (-692 (-550)) (-550) (-692 (-226)))) (-15 -2711 ((-1039) (-1163) (-550) (-550) (-692 (-226)))) (-15 -2712 ((-1039) (-1163) (-550) (-550) (-692 (-226)) (-550) (-550) (-692 (-226))))) +((-2750 (((-1039) (-226) (-226) (-226) (-226) (-550)) 62)) (-2749 (((-1039) (-226) (-226) (-226) (-550)) 61)) (-2748 (((-1039) (-226) (-226) (-226) (-550)) 60)) (-2747 (((-1039) (-226) (-226) (-550)) 59)) (-2746 (((-1039) (-226) (-550)) 58)) (-2745 (((-1039) (-226) (-550)) 57)) (-2744 (((-1039) (-226) (-550)) 56)) (-2743 (((-1039) (-226) (-550)) 55)) (-2742 (((-1039) (-226) (-550)) 54)) (-2741 (((-1039) (-226) (-550)) 53)) (-2740 (((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550)) 52)) (-2739 (((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550)) 51)) (-2738 (((-1039) (-226) (-550)) 50)) (-2737 (((-1039) (-226) (-550)) 49)) (-2736 (((-1039) (-226) (-550)) 48)) (-2735 (((-1039) (-226) (-550)) 47)) (-2734 (((-1039) (-550) (-226) (-169 (-226)) (-550) (-1163) (-550)) 46)) (-2733 (((-1039) (-1163) (-169 (-226)) (-1163) (-550)) 45)) (-2732 (((-1039) (-1163) (-169 (-226)) (-1163) (-550)) 44)) (-2731 (((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550)) 43)) (-2730 (((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550)) 42)) (-2729 (((-1039) (-226) (-550)) 39)) (-2728 (((-1039) (-226) (-550)) 38)) (-2727 (((-1039) (-226) (-550)) 37)) (-2726 (((-1039) (-226) (-550)) 36)) (-2725 (((-1039) (-226) (-550)) 35)) (-2724 (((-1039) (-226) (-550)) 34)) (-2723 (((-1039) (-226) (-550)) 33)) (-2722 (((-1039) (-226) (-550)) 32)) (-2721 (((-1039) (-226) (-550)) 31)) (-2720 (((-1039) (-226) (-550)) 30)) (-2719 (((-1039) (-226) (-226) (-226) (-550)) 29)) (-2718 (((-1039) (-226) (-550)) 28)) (-2717 (((-1039) (-226) (-550)) 27)) (-2716 (((-1039) (-226) (-550)) 26)) (-2715 (((-1039) (-226) (-550)) 25)) (-2714 (((-1039) (-226) (-550)) 24)) (-2713 (((-1039) (-169 (-226)) (-550)) 21))) +(((-761) (-10 -7 (-15 -2713 ((-1039) (-169 (-226)) (-550))) (-15 -2714 ((-1039) (-226) (-550))) (-15 -2715 ((-1039) (-226) (-550))) (-15 -2716 ((-1039) (-226) (-550))) (-15 -2717 ((-1039) (-226) (-550))) (-15 -2718 ((-1039) (-226) (-550))) (-15 -2719 ((-1039) (-226) (-226) (-226) (-550))) (-15 -2720 ((-1039) (-226) (-550))) (-15 -2721 ((-1039) (-226) (-550))) (-15 -2722 ((-1039) (-226) (-550))) (-15 -2723 ((-1039) (-226) (-550))) (-15 -2724 ((-1039) (-226) (-550))) (-15 -2725 ((-1039) (-226) (-550))) (-15 -2726 ((-1039) (-226) (-550))) (-15 -2727 ((-1039) (-226) (-550))) (-15 -2728 ((-1039) (-226) (-550))) (-15 -2729 ((-1039) (-226) (-550))) (-15 -2730 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2731 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2732 ((-1039) (-1163) (-169 (-226)) (-1163) (-550))) (-15 -2733 ((-1039) (-1163) (-169 (-226)) (-1163) (-550))) (-15 -2734 ((-1039) (-550) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2735 ((-1039) (-226) (-550))) (-15 -2736 ((-1039) (-226) (-550))) (-15 -2737 ((-1039) (-226) (-550))) (-15 -2738 ((-1039) (-226) (-550))) (-15 -2739 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2740 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2741 ((-1039) (-226) (-550))) (-15 -2742 ((-1039) (-226) (-550))) (-15 -2743 ((-1039) (-226) (-550))) (-15 -2744 ((-1039) (-226) (-550))) (-15 -2745 ((-1039) (-226) (-550))) (-15 -2746 ((-1039) (-226) (-550))) (-15 -2747 ((-1039) (-226) (-226) (-550))) (-15 -2748 ((-1039) (-226) (-226) (-226) (-550))) (-15 -2749 ((-1039) (-226) (-226) (-226) (-550))) (-15 -2750 ((-1039) (-226) (-226) (-226) (-226) (-550))))) (T -761)) +((-2750 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2749 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2748 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2747 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2740 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2739 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2734 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-550)) (-5 *5 (-169 (-226))) (-5 *6 (-1163)) (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2733 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1163)) (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2732 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1163)) (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2731 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2730 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2719 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) +(-10 -7 (-15 -2713 ((-1039) (-169 (-226)) (-550))) (-15 -2714 ((-1039) (-226) (-550))) (-15 -2715 ((-1039) (-226) (-550))) (-15 -2716 ((-1039) (-226) (-550))) (-15 -2717 ((-1039) (-226) (-550))) (-15 -2718 ((-1039) (-226) (-550))) (-15 -2719 ((-1039) (-226) (-226) (-226) (-550))) (-15 -2720 ((-1039) (-226) (-550))) (-15 -2721 ((-1039) (-226) (-550))) (-15 -2722 ((-1039) (-226) (-550))) (-15 -2723 ((-1039) (-226) (-550))) (-15 -2724 ((-1039) (-226) (-550))) (-15 -2725 ((-1039) (-226) (-550))) (-15 -2726 ((-1039) (-226) (-550))) (-15 -2727 ((-1039) (-226) (-550))) (-15 -2728 ((-1039) (-226) (-550))) (-15 -2729 ((-1039) (-226) (-550))) (-15 -2730 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2731 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2732 ((-1039) (-1163) (-169 (-226)) (-1163) (-550))) (-15 -2733 ((-1039) (-1163) (-169 (-226)) (-1163) (-550))) (-15 -2734 ((-1039) (-550) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2735 ((-1039) (-226) (-550))) (-15 -2736 ((-1039) (-226) (-550))) (-15 -2737 ((-1039) (-226) (-550))) (-15 -2738 ((-1039) (-226) (-550))) (-15 -2739 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2740 ((-1039) (-226) (-169 (-226)) (-550) (-1163) (-550))) (-15 -2741 ((-1039) (-226) (-550))) (-15 -2742 ((-1039) (-226) (-550))) (-15 -2743 ((-1039) (-226) (-550))) (-15 -2744 ((-1039) (-226) (-550))) (-15 -2745 ((-1039) (-226) (-550))) (-15 -2746 ((-1039) (-226) (-550))) (-15 -2747 ((-1039) (-226) (-226) (-550))) (-15 -2748 ((-1039) (-226) (-226) (-226) (-550))) (-15 -2749 ((-1039) (-226) (-226) (-226) (-550))) (-15 -2750 ((-1039) (-226) (-226) (-226) (-226) (-550)))) +((-2756 (((-1276)) 20)) (-2752 (((-1163)) 31)) (-2751 (((-1163)) 30)) (-2754 (((-1107) (-1181) (-692 (-550))) 45) (((-1107) (-1181) (-692 (-226))) 41)) (-2755 (((-112)) 19)) (-2753 (((-1163) (-1163)) 34))) +(((-762) (-10 -7 (-15 -2751 ((-1163))) (-15 -2752 ((-1163))) (-15 -2753 ((-1163) (-1163))) (-15 -2754 ((-1107) (-1181) (-692 (-226)))) (-15 -2754 ((-1107) (-1181) (-692 (-550)))) (-15 -2755 ((-112))) (-15 -2756 ((-1276))))) (T -762)) +((-2756 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-762)))) (-2755 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-762)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-692 (-550))) (-5 *2 (-1107)) (-5 *1 (-762)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-692 (-226))) (-5 *2 (-1107)) (-5 *1 (-762)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-762)))) (-2752 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-762)))) (-2751 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-762))))) +(-10 -7 (-15 -2751 ((-1163))) (-15 -2752 ((-1163))) (-15 -2753 ((-1163) (-1163))) (-15 -2754 ((-1107) (-1181) (-692 (-226)))) (-15 -2754 ((-1107) (-1181) (-692 (-550)))) (-15 -2755 ((-112))) (-15 -2756 ((-1276)))) +((-2758 (($ $ $) 10)) (-2759 (($ $ $ $) 9)) (-2757 (($ $ $) 12))) +(((-763 |#1|) (-10 -8 (-15 -2757 (|#1| |#1| |#1|)) (-15 -2758 (|#1| |#1| |#1|)) (-15 -2759 (|#1| |#1| |#1| |#1|))) (-764)) (T -763)) +NIL +(-10 -8 (-15 -2757 (|#1| |#1| |#1|)) (-15 -2758 (|#1| |#1| |#1|)) (-15 -2759 (|#1| |#1| |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2572 (($ $ (-923)) 31)) (-2571 (($ $ (-923)) 32)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-2758 (($ $ $) 28)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2759 (($ $ $ $) 29)) (-2757 (($ $ $) 27)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 30))) +(((-764) (-140)) (T -764)) +((-2759 (*1 *1 *1 *1 *1) (-4 *1 (-764))) (-2758 (*1 *1 *1 *1) (-4 *1 (-764))) (-2757 (*1 *1 *1 *1) (-4 *1 (-764)))) +(-13 (-21) (-723) (-10 -8 (-15 -2759 ($ $ $ $)) (-15 -2758 ($ $ $)) (-15 -2757 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-723) . T) ((-1105) . T)) +((-4380 (((-866) $) NIL) (($ (-550)) 10))) +(((-765 |#1|) (-10 -8 (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-766)) (T -765)) +NIL +(-10 -8 (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2569 (((-3 $ #1="failed") $) 43)) (-2572 (($ $ (-923)) 31) (($ $ (-774)) 38)) (-3892 (((-3 $ #1#) $) 41)) (-2575 (((-112) $) 37)) (-2570 (((-3 $ #1#) $) 42)) (-2571 (($ $ (-923)) 32) (($ $ (-774)) 39)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-2758 (($ $ $) 28)) (-4380 (((-866) $) 12) (($ (-550)) 34)) (-3532 (((-774)) 35 T CONST)) (-3664 (((-112) $ $) 9)) (-2759 (($ $ $ $) 29)) (-2757 (($ $ $) 27)) (-3512 (($) 19 T CONST)) (-3069 (($) 36 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 33) (($ $ (-774)) 40)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 30))) +(((-766) (-140)) (T -766)) +((-3532 (*1 *2) (-12 (-4 *1 (-766)) (-5 *2 (-774)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-766))))) +(-13 (-764) (-725) (-10 -8 (-15 -3532 ((-774)) -4386) (-15 -4380 ($ (-550))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-723) . T) ((-725) . T) ((-764) . T) ((-1105) . T)) +((-2761 (((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 (-169 |#1|)))))) (-692 (-169 (-411 (-550)))) |#1|) 33)) (-2760 (((-644 (-169 |#1|)) (-692 (-169 (-411 (-550)))) |#1|) 23)) (-2772 (((-950 (-169 (-411 (-550)))) (-692 (-169 (-411 (-550)))) (-1181)) 20) (((-950 (-169 (-411 (-550)))) (-692 (-169 (-411 (-550))))) 19))) +(((-767 |#1|) (-10 -7 (-15 -2772 ((-950 (-169 (-411 (-550)))) (-692 (-169 (-411 (-550)))))) (-15 -2772 ((-950 (-169 (-411 (-550)))) (-692 (-169 (-411 (-550)))) (-1181))) (-15 -2760 ((-644 (-169 |#1|)) (-692 (-169 (-411 (-550)))) |#1|)) (-15 -2761 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 (-169 |#1|)))))) (-692 (-169 (-411 (-550)))) |#1|))) (-13 (-366) (-851))) (T -767)) +((-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *2 (-644 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 (-169 *4))))))) (-5 *1 (-767 *4)) (-4 *4 (-13 (-366) (-851))))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-767 *4)) (-4 *4 (-13 (-366) (-851))))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *4 (-1181)) (-5 *2 (-950 (-169 (-411 (-550))))) (-5 *1 (-767 *5)) (-4 *5 (-13 (-366) (-851))))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *2 (-950 (-169 (-411 (-550))))) (-5 *1 (-767 *4)) (-4 *4 (-13 (-366) (-851)))))) +(-10 -7 (-15 -2772 ((-950 (-169 (-411 (-550)))) (-692 (-169 (-411 (-550)))))) (-15 -2772 ((-950 (-169 (-411 (-550)))) (-692 (-169 (-411 (-550)))) (-1181))) (-15 -2760 ((-644 (-169 |#1|)) (-692 (-169 (-411 (-550)))) |#1|)) (-15 -2761 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 (-169 |#1|)))))) (-692 (-169 (-411 (-550)))) |#1|))) +((-3018 (((-175 (-550)) |#1|) 27))) +(((-768 |#1|) (-10 -7 (-15 -3018 ((-175 (-550)) |#1|))) (-408)) (T -768)) +((-3018 (*1 *2 *3) (-12 (-5 *2 (-175 (-550))) (-5 *1 (-768 *3)) (-4 *3 (-408))))) +(-10 -7 (-15 -3018 ((-175 (-550)) |#1|))) +((-2947 ((|#1| |#1| |#1|) 28)) (-2948 ((|#1| |#1| |#1|) 27)) (-2937 ((|#1| |#1| |#1|) 38)) (-2945 ((|#1| |#1| |#1|) 34)) (-2946 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2953 (((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|) 26))) +(((-769 |#1| |#2|) (-10 -7 (-15 -2953 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|))) (-711 |#2|) (-366)) (T -769)) +((-2937 (*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) (-2945 (*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) (-2946 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) (-2947 (*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) (-2948 (*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) (-2953 (*1 *2 *3 *3) (-12 (-4 *4 (-366)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-769 *3 *4)) (-4 *3 (-711 *4))))) +(-10 -7 (-15 -2953 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|))) +((-2960 (((-694 (-1229)) $ (-1229)) 26)) (-2961 (((-694 (-554)) $ (-554)) 25)) (-2959 (((-774) $ (-129)) 27)) (-2962 (((-694 (-128)) $ (-128)) 24)) (-2180 (((-694 (-1229)) $) 12)) (-2176 (((-694 (-1227)) $) 8)) (-2178 (((-694 (-1226)) $) 10)) (-2181 (((-694 (-554)) $) 13)) (-2177 (((-694 (-552)) $) 9)) (-2179 (((-694 (-551)) $) 11)) (-2175 (((-774) $ (-129)) 7)) (-2182 (((-694 (-128)) $) 14)) (-2762 (((-112) $) 31)) (-2763 (((-694 $) |#1| (-958)) 32)) (-1870 (($ $) 6))) +(((-770 |#1|) (-140) (-1105)) (T -770)) +((-2763 (*1 *2 *3 *4) (-12 (-5 *4 (-958)) (-4 *3 (-1105)) (-5 *2 (-694 *1)) (-4 *1 (-770 *3)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(-13 (-580) (-10 -8 (-15 -2763 ((-694 $) |t#1| (-958))) (-15 -2762 ((-112) $)))) +(((-174) . T) ((-531) . T) ((-580) . T) ((-864) . T)) +((-4353 (((-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550)))) (-550)) 71)) (-4352 (((-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550))))) 69)) (-4191 (((-550)) 85))) +(((-771 |#1| |#2|) (-10 -7 (-15 -4191 ((-550))) (-15 -4352 ((-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550)))))) (-15 -4353 ((-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550)))) (-550)))) (-1246 (-550)) (-414 (-550) |#1|)) (T -771)) +((-4353 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-1246 *3)) (-5 *2 (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) (-5 *1 (-771 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4352 (*1 *2) (-12 (-4 *3 (-1246 (-550))) (-5 *2 (-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550))))) (-5 *1 (-771 *3 *4)) (-4 *4 (-414 (-550) *3)))) (-4191 (*1 *2) (-12 (-4 *3 (-1246 *2)) (-5 *2 (-550)) (-5 *1 (-771 *3 *4)) (-4 *4 (-414 *2 *3))))) +(-10 -7 (-15 -4191 ((-550))) (-15 -4352 ((-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550)))))) (-15 -4353 ((-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) (|:| |basisInv| (-692 (-550)))) (-550)))) +((-2970 (((-112) $ $) NIL)) (-3578 (((-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $) 21)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 20) (($ (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 13) (($ (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) 18)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-772) (-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4380 ($ (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4380 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3578 ((-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))) (T -772)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-772)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-772)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-772)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-772))))) +(-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4380 ($ (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4380 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3578 ((-3 (|:| |nia| (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $)))) +((-2838 (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|))) 18) (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)) (-644 (-1181))) 17)) (-4006 (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|))) 20) (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)) (-644 (-1181))) 19))) +(((-773 |#1|) (-10 -7 (-15 -2838 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -2838 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|))))) (-561)) (T -773)) +((-4006 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-773 *4)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-773 *5)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-773 *4)))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-773 *5))))) +(-10 -7 (-15 -2838 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -2838 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-950 |#1|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2807 (($ $ $) 10)) (-1408 (((-3 $ "failed") $ $) 15)) (-2764 (($ $ (-550)) 11)) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($ $) NIL)) (-2965 (($ $ $) NIL)) (-2575 (((-112) $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3566 (($ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 6 T CONST)) (-3069 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ $ $) NIL))) +(((-774) (-13 (-796) (-729) (-10 -8 (-15 -2965 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -3566 ($ $ $)) (-15 -3284 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -3891 ((-3 $ "failed") $ $)) (-15 -2764 ($ $ (-550))) (-15 -3397 ($ $)) (-6 (-4429 "*"))))) (T -774)) +((-2965 (*1 *1 *1 *1) (-5 *1 (-774))) (-2966 (*1 *1 *1 *1) (-5 *1 (-774))) (-3566 (*1 *1 *1 *1) (-5 *1 (-774))) (-3284 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2154 (-774)) (|:| -3305 (-774)))) (-5 *1 (-774)))) (-3891 (*1 *1 *1 *1) (|partial| -5 *1 (-774))) (-2764 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-774)))) (-3397 (*1 *1 *1) (-5 *1 (-774)))) +(-13 (-796) (-729) (-10 -8 (-15 -2965 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -3566 ($ $ $)) (-15 -3284 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -3891 ((-3 $ "failed") $ $)) (-15 -2764 ($ $ (-550))) (-15 -3397 ($ $)) (-6 (-4429 "*")))) ((|Integer|) (>= |#1| 0)) -((-4004 (((-3 |#2| "failed") |#2| |#2| (-113) (-1180)) 37))) -(((-774 |#1| |#2|) (-10 -7 (-15 -4004 ((-3 |#2| "failed") |#2| |#2| (-113) (-1180)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963))) (T -774)) -((-4004 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-774 *5 *2)) (-4 *2 (-13 (-29 *5) (-1205) (-963)))))) -(-10 -7 (-15 -4004 ((-3 |#2| "failed") |#2| |#2| (-113) (-1180)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 7)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) -(((-775) (-1104)) (T -775)) -NIL -(-1104) -((-4378 (((-775) |#1|) 8))) -(((-776 |#1|) (-10 -7 (-15 -4378 ((-775) |#1|))) (-1219)) (T -776)) -((-4378 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-776 *3)) (-4 *3 (-1219))))) -(-10 -7 (-15 -4378 ((-775) |#1|))) -((-3536 ((|#2| |#4|) 35))) -(((-777 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3536 (|#2| |#4|))) (-455) (-1245 |#1|) (-726 |#1| |#2|) (-1245 |#3|)) (T -777)) -((-3536 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-726 *4 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-777 *4 *2 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -3536 (|#2| |#4|))) -((-3890 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2765 (((-1275) (-1162) (-1162) |#4| |#5|) 33)) (-2763 ((|#4| |#4| |#5|) 74)) (-2764 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|) 79)) (-2766 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 16))) -(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3890 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2763 (|#4| |#4| |#5|)) (-15 -2764 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -2765 ((-1275) (-1162) (-1162) |#4| |#5|)) (-15 -2766 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -778)) -((-2766 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-2765 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1162)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *4 (-1068 *6 *7 *8)) (-5 *2 (-1275)) (-5 *1 (-778 *6 *7 *8 *4 *5)) (-4 *5 (-1074 *6 *7 *8 *4)))) (-2764 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-2763 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *2 (-1068 *4 *5 *6)) (-5 *1 (-778 *4 *5 *6 *2 *3)) (-4 *3 (-1074 *4 *5 *6 *2)))) (-3890 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) -(-10 -7 (-15 -3890 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2763 (|#4| |#4| |#5|)) (-15 -2764 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -2765 ((-1275) (-1162) (-1162) |#4| |#5|)) (-15 -2766 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|))) -((-3577 (((-3 (-1174 (-1174 |#1|)) "failed") |#4|) 53)) (-2767 (((-643 |#4|) |#4|) 24)) (-4360 ((|#4| |#4|) 19))) -(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2767 ((-643 |#4|) |#4|)) (-15 -3577 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -4360 (|#4| |#4|))) (-352) (-330 |#1|) (-1245 |#2|) (-1245 |#3|) (-922)) (T -779)) -((-4360 (*1 *2 *2) (-12 (-4 *3 (-352)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-779 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-922)))) (-3577 (*1 *2 *3) (|partial| -12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-922)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-643 *3)) (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-922))))) -(-10 -7 (-15 -2767 ((-643 |#4|) |#4|)) (-15 -3577 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -4360 (|#4| |#4|))) -((-2768 (((-2 (|:| |deter| (-643 (-1174 |#5|))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-643 |#1|)) (|:| |nlead| (-643 |#5|))) (-1174 |#5|) (-643 |#1|) (-643 |#5|)) 75)) (-2769 (((-643 (-773)) |#1|) 20))) -(((-780 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2768 ((-2 (|:| |deter| (-643 (-1174 |#5|))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-643 |#1|)) (|:| |nlead| (-643 |#5|))) (-1174 |#5|) (-643 |#1|) (-643 |#5|))) (-15 -2769 ((-643 (-773)) |#1|))) (-1245 |#4|) (-795) (-852) (-308) (-953 |#4| |#2| |#3|)) (T -780)) -((-2769 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-643 (-773))) (-5 *1 (-780 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *6)) (-4 *7 (-953 *6 *4 *5)))) (-2768 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1245 *9)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-308)) (-4 *10 (-953 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-643 (-1174 *10))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *10))))) (|:| |nfacts| (-643 *6)) (|:| |nlead| (-643 *10)))) (-5 *1 (-780 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-643 *6)) (-5 *5 (-643 *10))))) -(-10 -7 (-15 -2768 ((-2 (|:| |deter| (-643 (-1174 |#5|))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-643 |#1|)) (|:| |nlead| (-643 |#5|))) (-1174 |#5|) (-643 |#1|) (-643 |#5|))) (-15 -2769 ((-643 (-773)) |#1|))) -((-2772 (((-643 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#1|))))) (-691 (-410 (-549))) |#1|) 31)) (-2771 (((-643 |#1|) (-691 (-410 (-549))) |#1|) 21)) (-2770 (((-949 (-410 (-549))) (-691 (-410 (-549))) (-1180)) 18) (((-949 (-410 (-549))) (-691 (-410 (-549)))) 17))) -(((-781 |#1|) (-10 -7 (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))))) (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))) (-1180))) (-15 -2771 ((-643 |#1|) (-691 (-410 (-549))) |#1|)) (-15 -2772 ((-643 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#1|))))) (-691 (-410 (-549))) |#1|))) (-13 (-365) (-850))) (T -781)) -((-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-643 (-2 (|:| |outval| *4) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 *4)))))) (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850))))) (-2771 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *4 (-1180)) (-5 *2 (-949 (-410 (-549)))) (-5 *1 (-781 *5)) (-4 *5 (-13 (-365) (-850))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-949 (-410 (-549)))) (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850)))))) -(-10 -7 (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))))) (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))) (-1180))) (-15 -2771 ((-643 |#1|) (-691 (-410 (-549))) |#1|)) (-15 -2772 ((-643 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#1|))))) (-691 (-410 (-549))) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 36)) (-3485 (((-643 |#2|) $) NIL)) (-3487 (((-1174 $) $ |#2|) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 |#2|)) NIL)) (-4228 (($ $) 30)) (-3586 (((-112) $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) 110 (|has| |#1| (-560)))) (-3568 (((-643 $) $ $) 123 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-949 (-410 (-549)))) NIL (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))))) (((-3 $ #3#) (-949 (-549))) NIL (-3960 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549)))))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180)))))) (((-3 $ #3#) (-949 |#1|)) NIL (-3960 (-12 (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-994 (-549))))))) (((-3 (-1128 |#1| |#2|) #2#) $) 21)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) ((|#2| $) NIL) (($ (-949 (-410 (-549)))) NIL (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))))) (($ (-949 (-549))) NIL (-3960 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549)))))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180)))))) (($ (-949 |#1|)) NIL (-3960 (-12 (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-994 (-549))))))) (((-1128 |#1| |#2|) $) NIL)) (-4188 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-560)))) (-4391 (($ $) NIL) (($ $ |#2|) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-4126 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3592 (((-112) $) NIL)) (-4184 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 81)) (-3563 (($ $) 136 (|has| |#1| (-455)))) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-3574 (($ $) NIL (|has| |#1| (-560)))) (-3575 (($ $) NIL (|has| |#1| (-560)))) (-3585 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3584 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1769 (($ $ |#1| (-534 |#2|) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) 57)) (-2581 (((-773) $) NIL)) (-4127 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-3565 (($ $ $ $ $) 107 (|has| |#1| (-560)))) (-3600 ((|#2| $) 22)) (-3488 (($ (-1174 |#1|) |#2|) NIL) (($ (-1174 $) |#2|) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-773)) 38) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3579 (($ $ $) 63)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#2|) NIL)) (-3593 (((-112) $) NIL)) (-3223 (((-534 |#2|) $) NIL) (((-773) $ |#2|) NIL) (((-643 (-773)) $ (-643 |#2|)) NIL)) (-3599 (((-773) $) 23)) (-1770 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3486 (((-3 |#2| #4="failed") $) NIL)) (-3560 (($ $) NIL (|has| |#1| (-455)))) (-3561 (($ $) NIL (|has| |#1| (-455)))) (-3588 (((-643 $) $) NIL)) (-3591 (($ $) 39)) (-3562 (($ $) NIL (|has| |#1| (-455)))) (-3589 (((-643 $) $) 43)) (-3590 (($ $) 41)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $) 96)) (-3580 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 78) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |#2|) NIL)) (-3581 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $) NIL) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |#2|) NIL)) (-3583 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3582 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3663 (((-1162) $) NIL)) (-3610 (($ $ $) 125 (|has| |#1| (-560)))) (-3596 (((-643 $) $) 32)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-773))) #4#) $) NIL)) (-4123 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-4118 (($ $ $) NIL)) (-3869 (($ $) 24)) (-4131 (((-112) $ $) NIL)) (-4124 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-4119 (($ $ $) NIL)) (-3598 (($ $) 26)) (-3664 (((-1123) $) NIL)) (-3569 (((-2 (|:| -3564 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-560)))) (-3570 (((-2 (|:| -3564 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-560)))) (-1972 (((-112) $) 56)) (-1971 ((|#1| $) 58)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3571 (((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-560)))) (-3572 (($ $ |#1|) 129 (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-3573 (($ $ |#1|) 128 (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-643 |#2|) (-643 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-643 |#2|) (-643 $)) NIL)) (-4189 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4242 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4380 (((-534 |#2|) $) NIL) (((-773) $ |#2|) 45) (((-643 (-773)) $ (-643 |#2|)) NIL)) (-3597 (($ $) NIL)) (-3595 (($ $) 35)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538))))) (($ (-949 (-410 (-549)))) NIL (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))))) (($ (-949 (-549))) NIL (-3960 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549)))))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180)))))) (($ (-949 |#1|)) NIL (|has| |#2| (-616 (-1180)))) (((-1162) $) NIL (-12 (|has| |#1| (-1041 (-549))) (|has| |#2| (-616 (-1180))))) (((-949 |#1|) $) NIL (|has| |#2| (-616 (-1180))))) (-3220 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-949 |#1|) $) NIL (|has| |#2| (-616 (-1180)))) (((-1128 |#1| |#2|) $) 18) (($ (-1128 |#1| |#2|)) 19) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-773)) 47) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 13 T CONST)) (-3587 (((-3 (-112) #3#) $ $) NIL)) (-3067 (($) 37 T CONST)) (-3566 (($ $ $ $ (-773)) 105 (|has| |#1| (-560)))) (-3567 (($ $ $ (-773)) 104 (|has| |#1| (-560)))) (-3072 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 75)) (-4271 (($ $ $) 85)) (** (($ $ (-922)) NIL) (($ $ (-773)) 70)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 62) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-782 |#1| |#2|) (-13 (-1068 |#1| (-534 |#2|) |#2|) (-615 (-1128 |#1| |#2|)) (-1041 (-1128 |#1| |#2|))) (-1052) (-852)) (T -782)) -NIL -(-13 (-1068 |#1| (-534 |#2|) |#2|) (-615 (-1128 |#1| |#2|)) (-1041 (-1128 |#1| |#2|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 12)) (-4198 (((-1269 |#1|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#1|)) NIL)) (-3487 (((-1174 $) $ (-1085)) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2776 (((-643 $) $ $) 54 (|has| |#1| (-560)))) (-4187 (($ $ $) 50 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4192 (($ $ (-773)) NIL)) (-4191 (($ $ (-773)) NIL)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL) (((-3 (-1174 |#1|) #2#) $) 10)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1085) $) NIL) (((-1174 |#1|) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4190 (($ $ $) NIL)) (-4185 (($ $ $) 87 (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) 86 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-773) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ $) NIL (|has| |#1| (-560)))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) NIL) (($ (-1174 $) (-1085)) NIL)) (-4208 (($ $ (-773)) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3579 (($ $ $) 27)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4197 (((-1174 |#1|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3904 (-773))) $ $) 37)) (-2778 (($ $ $) 41)) (-2777 (($ $ $) 47)) (-3580 (((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 46)) (-3663 (((-1162) $) NIL)) (-3610 (($ $ $) 56 (|has| |#1| (-560)))) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) NIL)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3569 (((-2 (|:| -3564 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-560)))) (-3570 (((-2 (|:| -3564 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-560)))) (-2773 (((-2 (|:| -4188 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-560)))) (-2774 (((-2 (|:| -4188 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-560)))) (-1972 (((-112) $) 13)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4170 (($ $ (-773) |#1| $) 26)) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3571 (((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-560)))) (-2775 (((-2 (|:| -4188 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-560)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-643 (-1085)) (-643 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4380 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#1| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#1| (-560)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1085)) NIL) (((-1174 |#1|) $) 7) (($ (-1174 |#1|)) 8) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 28 T CONST)) (-3067 (($) 32 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) 40) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-783 |#1|) (-13 (-1245 |#1|) (-615 (-1174 |#1|)) (-1041 (-1174 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#1| $)) (-15 -3579 ($ $ $)) (-15 -3578 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3904 (-773))) $ $)) (-15 -2778 ($ $ $)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2777 ($ $ $)) (IF (|has| |#1| (-560)) (PROGN (-15 -2776 ((-643 $) $ $)) (-15 -3610 ($ $ $)) (-15 -3571 ((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3570 ((-2 (|:| -3564 $) (|:| |coef1| $)) $ $)) (-15 -3569 ((-2 (|:| -3564 $) (|:| |coef2| $)) $ $)) (-15 -2775 ((-2 (|:| -4188 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2774 ((-2 (|:| -4188 |#1|) (|:| |coef1| $)) $ $)) (-15 -2773 ((-2 (|:| -4188 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1052)) (T -783)) -((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) (-3579 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) (-3578 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -3904 (-773)))) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) (-2778 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) (-3580 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4386 *3) (|:| |gap| (-773)) (|:| -2152 (-783 *3)) (|:| -3303 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) (-2777 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) (-2776 (*1 *2 *1 *1) (-12 (-5 *2 (-643 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-3610 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-560)) (-4 *2 (-1052)))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-3570 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-3569 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-2775 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-2774 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052))))) -(-13 (-1245 |#1|) (-615 (-1174 |#1|)) (-1041 (-1174 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#1| $)) (-15 -3579 ($ $ $)) (-15 -3578 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3904 (-773))) $ $)) (-15 -2778 ($ $ $)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2777 ($ $ $)) (IF (|has| |#1| (-560)) (PROGN (-15 -2776 ((-643 $) $ $)) (-15 -3610 ($ $ $)) (-15 -3571 ((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3570 ((-2 (|:| -3564 $) (|:| |coef1| $)) $ $)) (-15 -3569 ((-2 (|:| -3564 $) (|:| |coef2| $)) $ $)) (-15 -2775 ((-2 (|:| -4188 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2774 ((-2 (|:| -4188 |#1|) (|:| |coef1| $)) $ $)) (-15 -2773 ((-2 (|:| -4188 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4390 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13))) -(((-784 |#1| |#2|) (-10 -7 (-15 -4390 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1052) (-1052)) (T -784)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-783 *6)) (-5 *1 (-784 *5 *6))))) -(-10 -7 (-15 -4390 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) -((-2780 ((|#1| (-773) |#1|) 33 (|has| |#1| (-38 (-410 (-549)))))) (-3204 ((|#1| (-773) |#1|) 23)) (-2779 ((|#1| (-773) |#1|) 35 (|has| |#1| (-38 (-410 (-549))))))) -(((-785 |#1|) (-10 -7 (-15 -3204 (|#1| (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -2779 (|#1| (-773) |#1|)) (-15 -2780 (|#1| (-773) |#1|))) |%noBranch|)) (-172)) (T -785)) -((-2780 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-172)))) (-2779 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-172)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -3204 (|#1| (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -2779 (|#1| (-773) |#1|)) (-15 -2780 (|#1| (-773) |#1|))) |%noBranch|)) -((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-786 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -786)) -NIL -(-13 (-1074 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1074 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-2783 (((-3 (-380) "failed") (-315 |#1|) (-922)) 62 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-380) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-380) "failed") (-410 (-949 |#1|)) (-922)) 41 (|has| |#1| (-560))) (((-3 (-380) "failed") (-410 (-949 |#1|))) 40 (|has| |#1| (-560))) (((-3 (-380) "failed") (-949 |#1|) (-922)) 31 (|has| |#1| (-1052))) (((-3 (-380) "failed") (-949 |#1|)) 30 (|has| |#1| (-1052)))) (-2781 (((-380) (-315 |#1|) (-922)) 99 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-380) (-315 |#1|)) 94 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-380) (-410 (-949 |#1|)) (-922)) 91 (|has| |#1| (-560))) (((-380) (-410 (-949 |#1|))) 90 (|has| |#1| (-560))) (((-380) (-949 |#1|) (-922)) 86 (|has| |#1| (-1052))) (((-380) (-949 |#1|)) 85 (|has| |#1| (-1052))) (((-380) |#1| (-922)) 76) (((-380) |#1|) 22)) (-2784 (((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)) (-922)) 71 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-315 |#1|) (-922)) 63 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))) (-922)) 46 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|)))) 45 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)) (-922)) 39 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-410 (-949 |#1|))) 38 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-949 |#1|) (-922)) 28 (|has| |#1| (-1052))) (((-3 (-168 (-380)) "failed") (-949 |#1|)) 26 (|has| |#1| (-1052))) (((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)) (-922)) 18 (|has| |#1| (-172))) (((-3 (-168 (-380)) "failed") (-949 (-168 |#1|))) 15 (|has| |#1| (-172)))) (-2782 (((-168 (-380)) (-315 (-168 |#1|)) (-922)) 102 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-315 |#1|) (-922)) 100 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-315 |#1|)) 98 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-410 (-949 (-168 |#1|))) (-922)) 93 (|has| |#1| (-560))) (((-168 (-380)) (-410 (-949 (-168 |#1|)))) 92 (|has| |#1| (-560))) (((-168 (-380)) (-410 (-949 |#1|)) (-922)) 89 (|has| |#1| (-560))) (((-168 (-380)) (-410 (-949 |#1|))) 88 (|has| |#1| (-560))) (((-168 (-380)) (-949 |#1|) (-922)) 84 (|has| |#1| (-1052))) (((-168 (-380)) (-949 |#1|)) 83 (|has| |#1| (-1052))) (((-168 (-380)) (-949 (-168 |#1|)) (-922)) 78 (|has| |#1| (-172))) (((-168 (-380)) (-949 (-168 |#1|))) 77 (|has| |#1| (-172))) (((-168 (-380)) (-168 |#1|) (-922)) 80 (|has| |#1| (-172))) (((-168 (-380)) (-168 |#1|)) 79 (|has| |#1| (-172))) (((-168 (-380)) |#1| (-922)) 27) (((-168 (-380)) |#1|) 25))) -(((-787 |#1|) (-10 -7 (-15 -2781 ((-380) |#1|)) (-15 -2781 ((-380) |#1| (-922))) (-15 -2782 ((-168 (-380)) |#1|)) (-15 -2782 ((-168 (-380)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2782 ((-168 (-380)) (-168 |#1|))) (-15 -2782 ((-168 (-380)) (-168 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2781 ((-380) (-949 |#1|))) (-15 -2781 ((-380) (-949 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 |#1|))) (-15 -2782 ((-168 (-380)) (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2781 ((-380) (-410 (-949 |#1|)))) (-15 -2781 ((-380) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2781 ((-380) (-315 |#1|))) (-15 -2781 ((-380) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 |#1|))) (-15 -2782 ((-168 (-380)) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-949 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-949 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)))) (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-315 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) (-616 (-380))) (T -787)) -((-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-172)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) (-4 *3 (-616 (-380))))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) (-4 *3 (-616 (-380))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2)))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2))))) -(-10 -7 (-15 -2781 ((-380) |#1|)) (-15 -2781 ((-380) |#1| (-922))) (-15 -2782 ((-168 (-380)) |#1|)) (-15 -2782 ((-168 (-380)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2782 ((-168 (-380)) (-168 |#1|))) (-15 -2782 ((-168 (-380)) (-168 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2781 ((-380) (-949 |#1|))) (-15 -2781 ((-380) (-949 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 |#1|))) (-15 -2782 ((-168 (-380)) (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2781 ((-380) (-410 (-949 |#1|)))) (-15 -2781 ((-380) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2781 ((-380) (-315 |#1|))) (-15 -2781 ((-380) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 |#1|))) (-15 -2782 ((-168 (-380)) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-949 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-949 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)))) (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-315 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) -((-2788 (((-922) (-1162)) 92)) (-2790 (((-3 (-380) "failed") (-1162)) 36)) (-2789 (((-380) (-1162)) 34)) (-2786 (((-922) (-1162)) 63)) (-2787 (((-1162) (-922)) 75)) (-2785 (((-1162) (-922)) 62))) -(((-788) (-10 -7 (-15 -2785 ((-1162) (-922))) (-15 -2786 ((-922) (-1162))) (-15 -2787 ((-1162) (-922))) (-15 -2788 ((-922) (-1162))) (-15 -2789 ((-380) (-1162))) (-15 -2790 ((-3 (-380) "failed") (-1162))))) (T -788)) -((-2790 (*1 *2 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788))))) -(-10 -7 (-15 -2785 ((-1162) (-922))) (-15 -2786 ((-922) (-1162))) (-15 -2787 ((-1162) (-922))) (-15 -2788 ((-922) (-1162))) (-15 -2789 ((-380) (-1162))) (-15 -2790 ((-3 (-380) "failed") (-1162)))) -((-2968 (((-112) $ $) 7)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 16) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 14)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-789) (-140)) (T -789)) -((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-789)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038)))))) (-2791 (*1 *2 *3 *2) (-12 (-4 *1 (-789)) (-5 *2 (-1038)) (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-789)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038)))))) (-2791 (*1 *2 *3 *2) (-12 (-4 *1 (-789)) (-5 *2 (-1038)) (-5 *3 (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2791 ((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2791 ((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2794 (((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380))) 55) (((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 52)) (-2795 (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 61)) (-2793 (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 50)) (-2792 (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380))) 63) (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 62))) -(((-790) (-10 -7 (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2793 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2795 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))))) (T -790)) -((-2795 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2794 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2794 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2793 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2792 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2792 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) -(-10 -7 (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2793 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2795 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))))) -((-2804 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 66)) (-2801 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 42)) (-2803 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 65)) (-2800 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 40)) (-2802 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 64)) (-2799 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 26)) (-2798 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549)) 43)) (-2797 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549)) 41)) (-2796 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549)) 39))) -(((-791) (-10 -7 (-15 -2796 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2797 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2798 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2799 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2800 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2801 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2802 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2803 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2804 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))))) (T -791)) -((-2804 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2803 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2802 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2801 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2800 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2799 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2798 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2797 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2796 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549))))) -(-10 -7 (-15 -2796 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2797 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2798 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2799 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2800 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2801 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2802 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2803 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2804 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)))) -((-4137 (((-1215 |#1|) |#1| (-225) (-549)) 69))) -(((-792 |#1|) (-10 -7 (-15 -4137 ((-1215 |#1|) |#1| (-225) (-549)))) (-977)) (T -792)) -((-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-549)) (-5 *2 (-1215 *3)) (-5 *1 (-792 *3)) (-4 *3 (-977))))) -(-10 -7 (-15 -4137 ((-1215 |#1|) |#1| (-225) (-549)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-1407 (((-3 $ "failed") $ $) 27)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4269 (($ $ $) 31) (($ $) 30)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26) (($ (-549) $) 29))) -(((-793) (-140)) (T -793)) -NIL -(-13 (-799) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-852) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26))) +((-4006 (((-3 |#2| "failed") |#2| |#2| (-113) (-1181)) 37))) +(((-775 |#1| |#2|) (-10 -7 (-15 -4006 ((-3 |#2| "failed") |#2| |#2| (-113) (-1181)))) (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147)) (-13 (-29 |#1|) (-1206) (-964))) (T -775)) +((-4006 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *1 (-775 *5 *2)) (-4 *2 (-13 (-29 *5) (-1206) (-964)))))) +(-10 -7 (-15 -4006 ((-3 |#2| "failed") |#2| |#2| (-113) (-1181)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 7)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 9))) +(((-776) (-1105)) (T -776)) +NIL +(-1105) +((-4380 (((-776) |#1|) 8))) +(((-777 |#1|) (-10 -7 (-15 -4380 ((-776) |#1|))) (-1220)) (T -777)) +((-4380 (*1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-777 *3)) (-4 *3 (-1220))))) +(-10 -7 (-15 -4380 ((-776) |#1|))) +((-3538 ((|#2| |#4|) 35))) +(((-778 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 (|#2| |#4|))) (-456) (-1246 |#1|) (-727 |#1| |#2|) (-1246 |#3|)) (T -778)) +((-3538 (*1 *2 *3) (-12 (-4 *4 (-456)) (-4 *5 (-727 *4 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-778 *4 *2 *5 *3)) (-4 *3 (-1246 *5))))) +(-10 -7 (-15 -3538 (|#2| |#4|))) +((-3892 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2767 (((-1276) (-1163) (-1163) |#4| |#5|) 33)) (-2765 ((|#4| |#4| |#5|) 74)) (-2766 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|) 79)) (-2768 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|) 16))) +(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3892 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2765 (|#4| |#4| |#5|)) (-15 -2766 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -2767 ((-1276) (-1163) (-1163) |#4| |#5|)) (-15 -2768 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -779)) +((-2768 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) (-5 *1 (-779 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-2767 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1163)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *4 (-1069 *6 *7 *8)) (-5 *2 (-1276)) (-5 *1 (-779 *6 *7 *8 *4 *5)) (-4 *5 (-1075 *6 *7 *8 *4)))) (-2766 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-779 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-2765 (*1 *2 *2 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *2 (-1069 *4 *5 *6)) (-5 *1 (-779 *4 *5 *6 *2 *3)) (-4 *3 (-1075 *4 *5 *6 *2)))) (-3892 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-779 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) +(-10 -7 (-15 -3892 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2765 (|#4| |#4| |#5|)) (-15 -2766 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -2767 ((-1276) (-1163) (-1163) |#4| |#5|)) (-15 -2768 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|))) +((-3579 (((-3 (-1175 (-1175 |#1|)) "failed") |#4|) 53)) (-2769 (((-644 |#4|) |#4|) 24)) (-4362 ((|#4| |#4|) 19))) +(((-780 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2769 ((-644 |#4|) |#4|)) (-15 -3579 ((-3 (-1175 (-1175 |#1|)) "failed") |#4|)) (-15 -4362 (|#4| |#4|))) (-353) (-331 |#1|) (-1246 |#2|) (-1246 |#3|) (-923)) (T -780)) +((-4362 (*1 *2 *2) (-12 (-4 *3 (-353)) (-4 *4 (-331 *3)) (-4 *5 (-1246 *4)) (-5 *1 (-780 *3 *4 *5 *2 *6)) (-4 *2 (-1246 *5)) (-14 *6 (-923)))) (-3579 (*1 *2 *3) (|partial| -12 (-4 *4 (-353)) (-4 *5 (-331 *4)) (-4 *6 (-1246 *5)) (-5 *2 (-1175 (-1175 *4))) (-5 *1 (-780 *4 *5 *6 *3 *7)) (-4 *3 (-1246 *6)) (-14 *7 (-923)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *5 (-331 *4)) (-4 *6 (-1246 *5)) (-5 *2 (-644 *3)) (-5 *1 (-780 *4 *5 *6 *3 *7)) (-4 *3 (-1246 *6)) (-14 *7 (-923))))) +(-10 -7 (-15 -2769 ((-644 |#4|) |#4|)) (-15 -3579 ((-3 (-1175 (-1175 |#1|)) "failed") |#4|)) (-15 -4362 (|#4| |#4|))) +((-2770 (((-2 (|:| |deter| (-644 (-1175 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1175 |#5|) (-644 |#1|) (-644 |#5|)) 75)) (-2771 (((-644 (-774)) |#1|) 20))) +(((-781 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2770 ((-2 (|:| |deter| (-644 (-1175 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1175 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -2771 ((-644 (-774)) |#1|))) (-1246 |#4|) (-796) (-853) (-309) (-954 |#4| |#2| |#3|)) (T -781)) +((-2771 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-644 (-774))) (-5 *1 (-781 *3 *4 *5 *6 *7)) (-4 *3 (-1246 *6)) (-4 *7 (-954 *6 *4 *5)))) (-2770 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1246 *9)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-309)) (-4 *10 (-954 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-644 (-1175 *10))) (|:| |dterm| (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| *10))))) (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) (-5 *1 (-781 *6 *7 *8 *9 *10)) (-5 *3 (-1175 *10)) (-5 *4 (-644 *6)) (-5 *5 (-644 *10))))) +(-10 -7 (-15 -2770 ((-2 (|:| |deter| (-644 (-1175 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1175 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -2771 ((-644 (-774)) |#1|))) +((-2774 (((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 |#1|))))) (-692 (-411 (-550))) |#1|) 31)) (-2773 (((-644 |#1|) (-692 (-411 (-550))) |#1|) 21)) (-2772 (((-950 (-411 (-550))) (-692 (-411 (-550))) (-1181)) 18) (((-950 (-411 (-550))) (-692 (-411 (-550)))) 17))) +(((-782 |#1|) (-10 -7 (-15 -2772 ((-950 (-411 (-550))) (-692 (-411 (-550))))) (-15 -2772 ((-950 (-411 (-550))) (-692 (-411 (-550))) (-1181))) (-15 -2773 ((-644 |#1|) (-692 (-411 (-550))) |#1|)) (-15 -2774 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 |#1|))))) (-692 (-411 (-550))) |#1|))) (-13 (-366) (-851))) (T -782)) +((-2774 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *2 (-644 (-2 (|:| |outval| *4) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 *4)))))) (-5 *1 (-782 *4)) (-4 *4 (-13 (-366) (-851))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *2 (-644 *4)) (-5 *1 (-782 *4)) (-4 *4 (-13 (-366) (-851))))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *4 (-1181)) (-5 *2 (-950 (-411 (-550)))) (-5 *1 (-782 *5)) (-4 *5 (-13 (-366) (-851))))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *2 (-950 (-411 (-550)))) (-5 *1 (-782 *4)) (-4 *4 (-13 (-366) (-851)))))) +(-10 -7 (-15 -2772 ((-950 (-411 (-550))) (-692 (-411 (-550))))) (-15 -2772 ((-950 (-411 (-550))) (-692 (-411 (-550))) (-1181))) (-15 -2773 ((-644 |#1|) (-692 (-411 (-550))) |#1|)) (-15 -2774 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-550)) (|:| |outvect| (-644 (-692 |#1|))))) (-692 (-411 (-550))) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 36)) (-3487 (((-644 |#2|) $) NIL)) (-3489 (((-1175 $) $ |#2|) NIL) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 |#2|)) NIL)) (-4230 (($ $) 30)) (-3588 (((-112) $ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $ $) 110 (|has| |#1| (-561)))) (-3570 (((-644 $) $ $) 123 (|has| |#1| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-950 (-411 (-550)))) NIL (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181))))) (((-3 $ #3#) (-950 (-550))) NIL (-3962 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550)))))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181)))))) (((-3 $ #3#) (-950 |#1|)) NIL (-3962 (-12 (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550))))) (-3748 (|has| |#1| (-38 (-550))))) (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550))))) (-3748 (|has| |#1| (-549)))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-995 (-550))))))) (((-3 (-1129 |#1| |#2|) #2#) $) 21)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) ((|#2| $) NIL) (($ (-950 (-411 (-550)))) NIL (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181))))) (($ (-950 (-550))) NIL (-3962 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550)))))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181)))))) (($ (-950 |#1|)) NIL (-3962 (-12 (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550))))) (-3748 (|has| |#1| (-38 (-550))))) (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550))))) (-3748 (|has| |#1| (-549)))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-995 (-550))))))) (((-1129 |#1| |#2|) $) NIL)) (-4190 (($ $ $ |#2|) NIL (|has| |#1| (-173))) (($ $ $) 121 (|has| |#1| (-561)))) (-4393 (($ $) NIL) (($ $ |#2|) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-4128 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3594 (((-112) $) NIL)) (-4186 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 81)) (-3565 (($ $) 136 (|has| |#1| (-456)))) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ |#2|) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-3576 (($ $) NIL (|has| |#1| (-561)))) (-3577 (($ $) NIL (|has| |#1| (-561)))) (-3587 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3586 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1771 (($ $ |#1| (-535 |#2|) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| |#1| (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| |#1| (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-2575 (((-112) $) 57)) (-2583 (((-774) $) NIL)) (-4129 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3567 (($ $ $ $ $) 107 (|has| |#1| (-561)))) (-3602 ((|#2| $) 22)) (-3490 (($ (-1175 |#1|) |#2|) NIL) (($ (-1175 $) |#2|) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-535 |#2|)) NIL) (($ $ |#2| (-774)) 38) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-3581 (($ $ $) 63)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#2|) NIL)) (-3595 (((-112) $) NIL)) (-3225 (((-535 |#2|) $) NIL) (((-774) $ |#2|) NIL) (((-644 (-774)) $ (-644 |#2|)) NIL)) (-3601 (((-774) $) 23)) (-1772 (($ (-1 (-535 |#2|) (-535 |#2|)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3488 (((-3 |#2| #4="failed") $) NIL)) (-3562 (($ $) NIL (|has| |#1| (-456)))) (-3563 (($ $) NIL (|has| |#1| (-456)))) (-3590 (((-644 $) $) NIL)) (-3593 (($ $) 39)) (-3564 (($ $) NIL (|has| |#1| (-456)))) (-3591 (((-644 $) $) 43)) (-3592 (($ $) 41)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3580 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-774))) $ $) 96)) (-3582 (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $) 78) (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $ |#2|) NIL)) (-3583 (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $) NIL) (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $ |#2|) NIL)) (-3585 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3584 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3665 (((-1163) $) NIL)) (-3612 (($ $ $) 125 (|has| |#1| (-561)))) (-3598 (((-644 $) $) 32)) (-3228 (((-3 (-644 $) #4#) $) NIL)) (-3227 (((-3 (-644 $) #4#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| |#2|) (|:| -2566 (-774))) #4#) $) NIL)) (-4125 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-4120 (($ $ $) NIL)) (-3871 (($ $) 24)) (-4133 (((-112) $ $) NIL)) (-4126 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-4121 (($ $ $) NIL)) (-3600 (($ $) 26)) (-3666 (((-1124) $) NIL)) (-3571 (((-2 (|:| -3566 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-561)))) (-3572 (((-2 (|:| -3566 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-561)))) (-1974 (((-112) $) 56)) (-1973 ((|#1| $) 58)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 ((|#1| |#1| $) 133 (|has| |#1| (-456))) (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3573 (((-2 (|:| -3566 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-561)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-561)))) (-3574 (($ $ |#1|) 129 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3575 (($ $ |#1|) 128 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-644 |#2|) (-644 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-644 |#2|) (-644 $)) NIL)) (-4191 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-4244 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-4382 (((-535 |#2|) $) NIL) (((-774) $ |#2|) 45) (((-644 (-774)) $ (-644 |#2|)) NIL)) (-3599 (($ $) NIL)) (-3597 (($ $) 35)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| |#1| (-617 (-539))) (|has| |#2| (-617 (-539))))) (($ (-950 (-411 (-550)))) NIL (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181))))) (($ (-950 (-550))) NIL (-3962 (-12 (|has| |#1| (-38 (-550))) (|has| |#2| (-617 (-1181))) (-3748 (|has| |#1| (-38 (-411 (-550)))))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#2| (-617 (-1181)))))) (($ (-950 |#1|)) NIL (|has| |#2| (-617 (-1181)))) (((-1163) $) NIL (-12 (|has| |#1| (-1042 (-550))) (|has| |#2| (-617 (-1181))))) (((-950 |#1|) $) NIL (|has| |#2| (-617 (-1181))))) (-3222 ((|#1| $) 132 (|has| |#1| (-456))) (($ $ |#2|) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-950 |#1|) $) NIL (|has| |#2| (-617 (-1181)))) (((-1129 |#1| |#2|) $) 18) (($ (-1129 |#1| |#2|)) 19) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-535 |#2|)) NIL) (($ $ |#2| (-774)) 47) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) 13 T CONST)) (-3589 (((-3 (-112) #3#) $ $) NIL)) (-3069 (($) 37 T CONST)) (-3568 (($ $ $ $ (-774)) 105 (|has| |#1| (-561)))) (-3569 (($ $ $ (-774)) 104 (|has| |#1| (-561)))) (-3074 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) 75)) (-4273 (($ $ $) 85)) (** (($ $ (-923)) NIL) (($ $ (-774)) 70)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 62) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-783 |#1| |#2|) (-13 (-1069 |#1| (-535 |#2|) |#2|) (-616 (-1129 |#1| |#2|)) (-1042 (-1129 |#1| |#2|))) (-1053) (-853)) (T -783)) +NIL +(-13 (-1069 |#1| (-535 |#2|) |#2|) (-616 (-1129 |#1| |#2|)) (-1042 (-1129 |#1| |#2|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 12)) (-4200 (((-1270 |#1|) $ (-774)) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4198 (($ (-1175 |#1|)) NIL)) (-3489 (((-1175 $) $ (-1086)) NIL) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1086))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-2778 (((-644 $) $ $) 54 (|has| |#1| (-561)))) (-4189 (($ $ $) 50 (|has| |#1| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-4194 (($ $ (-774)) NIL)) (-4193 (($ $ (-774)) NIL)) (-4185 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-456)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-1086) #2#) $) NIL) (((-3 (-1175 |#1|) #2#) $) 10)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-1086) $) NIL) (((-1175 |#1|) $) NIL)) (-4190 (($ $ $ (-1086)) NIL (|has| |#1| (-173))) ((|#1| $ $) 58 (|has| |#1| (-173)))) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-4192 (($ $ $) NIL)) (-4187 (($ $ $) 87 (|has| |#1| (-561)))) (-4186 (((-2 (|:| -4388 |#1|) (|:| -2154 $) (|:| -3305 $)) $ $) 86 (|has| |#1| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ (-1086)) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-774) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1086) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1086) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-4205 (((-774) $ $) NIL (|has| |#1| (-561)))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-1155)))) (-3490 (($ (-1175 |#1|) (-1086)) NIL) (($ (-1175 $) (-1086)) NIL)) (-4210 (($ $ (-774)) NIL)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-3581 (($ $ $) 27)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1086)) NIL) (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3225 (((-774) $) NIL) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-1772 (($ (-1 (-774) (-774)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4199 (((-1175 |#1|) $) NIL)) (-3488 (((-3 (-1086) #4="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3580 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3906 (-774))) $ $) 37)) (-2780 (($ $ $) 41)) (-2779 (($ $ $) 47)) (-3582 (((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $) 46)) (-3665 (((-1163) $) NIL)) (-3612 (($ $ $) 56 (|has| |#1| (-561)))) (-4195 (((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774)) NIL)) (-3228 (((-3 (-644 $) #4#) $) NIL)) (-3227 (((-3 (-644 $) #4#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-1086)) (|:| -2566 (-774))) #4#) $) NIL)) (-4246 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3871 (($) NIL (|has| |#1| (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3571 (((-2 (|:| -3566 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-561)))) (-3572 (((-2 (|:| -3566 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-561)))) (-2775 (((-2 (|:| -4190 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-561)))) (-2776 (((-2 (|:| -4190 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-561)))) (-1974 (((-112) $) 13)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-4172 (($ $ (-774) |#1| $) 26)) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3573 (((-2 (|:| -3566 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-561)))) (-2777 (((-2 (|:| -4190 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-561)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1086) |#1|) NIL) (($ $ (-644 (-1086)) (-644 |#1|)) NIL) (($ $ (-1086) $) NIL) (($ $ (-644 (-1086)) (-644 $)) NIL)) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-411 $) (-411 $) (-411 $)) NIL (|has| |#1| (-561))) ((|#1| (-411 $) |#1|) NIL (|has| |#1| (-366))) (((-411 $) $ (-411 $)) NIL (|has| |#1| (-561)))) (-4197 (((-3 $ #5="failed") $ (-774)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4191 (($ $ (-1086)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-4244 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4382 (((-774) $) NIL) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-1086) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) NIL (|has| |#1| (-456))) (($ $ (-1086)) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4188 (((-3 $ #5#) $ $) NIL (|has| |#1| (-561))) (((-3 (-411 $) #5#) (-411 $) $) NIL (|has| |#1| (-561)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1086)) NIL) (((-1175 |#1|) $) 7) (($ (-1175 |#1|)) 8) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) 28 T CONST)) (-3069 (($) 32 T CONST)) (-3074 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) 40) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-784 |#1|) (-13 (-1246 |#1|) (-616 (-1175 |#1|)) (-1042 (-1175 |#1|)) (-10 -8 (-15 -4172 ($ $ (-774) |#1| $)) (-15 -3581 ($ $ $)) (-15 -3580 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3906 (-774))) $ $)) (-15 -2780 ($ $ $)) (-15 -3582 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -2779 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -2778 ((-644 $) $ $)) (-15 -3612 ($ $ $)) (-15 -3573 ((-2 (|:| -3566 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3572 ((-2 (|:| -3566 $) (|:| |coef1| $)) $ $)) (-15 -3571 ((-2 (|:| -3566 $) (|:| |coef2| $)) $ $)) (-15 -2777 ((-2 (|:| -4190 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2776 ((-2 (|:| -4190 |#1|) (|:| |coef1| $)) $ $)) (-15 -2775 ((-2 (|:| -4190 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1053)) (T -784)) +((-4172 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-774)) (-5 *1 (-784 *3)) (-4 *3 (-1053)))) (-3581 (*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1053)))) (-3580 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-784 *3)) (|:| |polden| *3) (|:| -3906 (-774)))) (-5 *1 (-784 *3)) (-4 *3 (-1053)))) (-2780 (*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1053)))) (-3582 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4388 *3) (|:| |gap| (-774)) (|:| -2154 (-784 *3)) (|:| -3305 (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-1053)))) (-2779 (*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1053)))) (-2778 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-784 *3))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) (-3612 (*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-561)) (-4 *2 (-1053)))) (-3573 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3566 (-784 *3)) (|:| |coef1| (-784 *3)) (|:| |coef2| (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) (-3572 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3566 (-784 *3)) (|:| |coef1| (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3566 (-784 *3)) (|:| |coef2| (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) (-2777 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4190 *3) (|:| |coef1| (-784 *3)) (|:| |coef2| (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) (-2776 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4190 *3) (|:| |coef1| (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) (-2775 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4190 *3) (|:| |coef2| (-784 *3)))) (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053))))) +(-13 (-1246 |#1|) (-616 (-1175 |#1|)) (-1042 (-1175 |#1|)) (-10 -8 (-15 -4172 ($ $ (-774) |#1| $)) (-15 -3581 ($ $ $)) (-15 -3580 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3906 (-774))) $ $)) (-15 -2780 ($ $ $)) (-15 -3582 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -2779 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -2778 ((-644 $) $ $)) (-15 -3612 ($ $ $)) (-15 -3573 ((-2 (|:| -3566 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3572 ((-2 (|:| -3566 $) (|:| |coef1| $)) $ $)) (-15 -3571 ((-2 (|:| -3566 $) (|:| |coef2| $)) $ $)) (-15 -2777 ((-2 (|:| -4190 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2776 ((-2 (|:| -4190 |#1|) (|:| |coef1| $)) $ $)) (-15 -2775 ((-2 (|:| -4190 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4392 (((-784 |#2|) (-1 |#2| |#1|) (-784 |#1|)) 13))) +(((-785 |#1| |#2|) (-10 -7 (-15 -4392 ((-784 |#2|) (-1 |#2| |#1|) (-784 |#1|)))) (-1053) (-1053)) (T -785)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-784 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-5 *2 (-784 *6)) (-5 *1 (-785 *5 *6))))) +(-10 -7 (-15 -4392 ((-784 |#2|) (-1 |#2| |#1|) (-784 |#1|)))) +((-2782 ((|#1| (-774) |#1|) 33 (|has| |#1| (-38 (-411 (-550)))))) (-3206 ((|#1| (-774) |#1|) 23)) (-2781 ((|#1| (-774) |#1|) 35 (|has| |#1| (-38 (-411 (-550))))))) +(((-786 |#1|) (-10 -7 (-15 -3206 (|#1| (-774) |#1|)) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -2781 (|#1| (-774) |#1|)) (-15 -2782 (|#1| (-774) |#1|))) |%noBranch|)) (-173)) (T -786)) +((-2782 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-786 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-173)))) (-2781 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-786 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-173)))) (-3206 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-786 *2)) (-4 *2 (-173))))) +(-10 -7 (-15 -3206 (|#1| (-774) |#1|)) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -2781 (|#1| (-774) |#1|)) (-15 -2782 (|#1| (-774) |#1|))) |%noBranch|)) +((-2970 (((-112) $ $) 7)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) 86)) (-4116 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3487 (((-644 |#3|) $) 34)) (-3311 (((-112) $) 27)) (-3302 (((-112) $) 18 (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) 102) (((-112) $) 98)) (-4122 ((|#4| |#4| $) 93)) (-4208 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| $) 127)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) 28)) (-1310 (((-112) $ (-774)) 45)) (-4144 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4158 (($) 46 T CONST)) (-3307 (((-112) $) 23 (|has| |#1| (-561)))) (-3309 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3308 (((-112) $ $) 24 (|has| |#1| (-561)))) (-3310 (((-112) $) 26 (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3303 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 37)) (-3578 (($ (-644 |#4|)) 36)) (-4232 (((-3 $ #1#) $) 83)) (-4119 ((|#4| |#4| $) 90)) (-1441 (($ $) 69 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#4| $) 68 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4117 ((|#4| |#4| $) 88)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) 106)) (-3619 (((-112) |#4| $) 137)) (-3617 (((-112) |#4| $) 134)) (-3620 (((-112) |#4| $) 138) (((-112) $) 135)) (-2126 (((-644 |#4|) $) 53 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) 105) (((-112) $) 104)) (-3602 ((|#3| $) 35)) (-4153 (((-112) $ (-774)) 44)) (-3010 (((-644 |#4|) $) 54 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 48)) (-3317 (((-644 |#3|) $) 33)) (-3316 (((-112) |#3| $) 32)) (-4150 (((-112) $ (-774)) 43)) (-3665 (((-1163) $) 10)) (-3613 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3612 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| |#4| $) 128)) (-4231 (((-3 |#4| #1#) $) 84)) (-3614 (((-644 $) |#4| $) 130)) (-3616 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-3866 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-4131 (((-644 |#4|) $) 108)) (-4125 (((-112) |#4| $) 100) (((-112) $) 96)) (-4120 ((|#4| |#4| $) 91)) (-4133 (((-112) $ $) 111)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) 101) (((-112) $) 97)) (-4121 ((|#4| |#4| $) 92)) (-3666 (((-1124) $) 11)) (-4234 (((-3 |#4| #1#) $) 85)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4113 (((-3 $ #1#) $ |#4|) 79)) (-4202 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2128 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) 39)) (-3829 (((-112) $) 42)) (-3998 (($) 41)) (-4382 (((-774) $) 107)) (-2127 (((-774) |#4| $) 55 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4427)))) (-3826 (($ $) 40)) (-4404 (((-539) $) 70 (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 61)) (-3313 (($ $ |#3|) 29)) (-3315 (($ $ |#3|) 31)) (-4118 (($ $) 89)) (-3314 (($ $ |#3|) 30)) (-4380 (((-866) $) 12) (((-644 |#4|) $) 38)) (-4112 (((-774) $) 77 (|has| |#3| (-371)))) (-3664 (((-112) $ $) 9)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3611 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2129 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) 82)) (-3618 (((-112) |#4| $) 136)) (-4367 (((-112) |#3| $) 81)) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-787 |#1| |#2| |#3| |#4|) (-140) (-456) (-796) (-853) (-1069 |t#1| |t#2| |t#3|)) (T -787)) +NIL +(-13 (-1075 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-616 (-644 |#4|)) . T) ((-616 (-866)) . T) ((-151 |#4|) . T) ((-617 (-539)) |has| |#4| (-617 (-539))) ((-311 |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-493 |#4|) . T) ((-518 |#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1075 |#1| |#2| |#3| |#4|) . T) ((-1105) . T) ((-1215 |#1| |#2| |#3| |#4|) . T) ((-1220) . T)) +((-2785 (((-3 (-381) "failed") (-316 |#1|) (-923)) 62 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-3 (-381) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-3 (-381) "failed") (-411 (-950 |#1|)) (-923)) 41 (|has| |#1| (-561))) (((-3 (-381) "failed") (-411 (-950 |#1|))) 40 (|has| |#1| (-561))) (((-3 (-381) "failed") (-950 |#1|) (-923)) 31 (|has| |#1| (-1053))) (((-3 (-381) "failed") (-950 |#1|)) 30 (|has| |#1| (-1053)))) (-2783 (((-381) (-316 |#1|) (-923)) 99 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-381) (-316 |#1|)) 94 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-381) (-411 (-950 |#1|)) (-923)) 91 (|has| |#1| (-561))) (((-381) (-411 (-950 |#1|))) 90 (|has| |#1| (-561))) (((-381) (-950 |#1|) (-923)) 86 (|has| |#1| (-1053))) (((-381) (-950 |#1|)) 85 (|has| |#1| (-1053))) (((-381) |#1| (-923)) 76) (((-381) |#1|) 22)) (-2786 (((-3 (-169 (-381)) "failed") (-316 (-169 |#1|)) (-923)) 71 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-3 (-169 (-381)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-3 (-169 (-381)) "failed") (-316 |#1|) (-923)) 63 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-3 (-169 (-381)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-3 (-169 (-381)) "failed") (-411 (-950 (-169 |#1|))) (-923)) 46 (|has| |#1| (-561))) (((-3 (-169 (-381)) "failed") (-411 (-950 (-169 |#1|)))) 45 (|has| |#1| (-561))) (((-3 (-169 (-381)) "failed") (-411 (-950 |#1|)) (-923)) 39 (|has| |#1| (-561))) (((-3 (-169 (-381)) "failed") (-411 (-950 |#1|))) 38 (|has| |#1| (-561))) (((-3 (-169 (-381)) "failed") (-950 |#1|) (-923)) 28 (|has| |#1| (-1053))) (((-3 (-169 (-381)) "failed") (-950 |#1|)) 26 (|has| |#1| (-1053))) (((-3 (-169 (-381)) "failed") (-950 (-169 |#1|)) (-923)) 18 (|has| |#1| (-173))) (((-3 (-169 (-381)) "failed") (-950 (-169 |#1|))) 15 (|has| |#1| (-173)))) (-2784 (((-169 (-381)) (-316 (-169 |#1|)) (-923)) 102 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-169 (-381)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-169 (-381)) (-316 |#1|) (-923)) 100 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-169 (-381)) (-316 |#1|)) 98 (-12 (|has| |#1| (-561)) (|has| |#1| (-853)))) (((-169 (-381)) (-411 (-950 (-169 |#1|))) (-923)) 93 (|has| |#1| (-561))) (((-169 (-381)) (-411 (-950 (-169 |#1|)))) 92 (|has| |#1| (-561))) (((-169 (-381)) (-411 (-950 |#1|)) (-923)) 89 (|has| |#1| (-561))) (((-169 (-381)) (-411 (-950 |#1|))) 88 (|has| |#1| (-561))) (((-169 (-381)) (-950 |#1|) (-923)) 84 (|has| |#1| (-1053))) (((-169 (-381)) (-950 |#1|)) 83 (|has| |#1| (-1053))) (((-169 (-381)) (-950 (-169 |#1|)) (-923)) 78 (|has| |#1| (-173))) (((-169 (-381)) (-950 (-169 |#1|))) 77 (|has| |#1| (-173))) (((-169 (-381)) (-169 |#1|) (-923)) 80 (|has| |#1| (-173))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-173))) (((-169 (-381)) |#1| (-923)) 27) (((-169 (-381)) |#1|) 25))) +(((-788 |#1|) (-10 -7 (-15 -2783 ((-381) |#1|)) (-15 -2783 ((-381) |#1| (-923))) (-15 -2784 ((-169 (-381)) |#1|)) (-15 -2784 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-173)) (PROGN (-15 -2784 ((-169 (-381)) (-169 |#1|))) (-15 -2784 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-950 (-169 |#1|)))) (-15 -2784 ((-169 (-381)) (-950 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1053)) (PROGN (-15 -2783 ((-381) (-950 |#1|))) (-15 -2783 ((-381) (-950 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-950 |#1|))) (-15 -2784 ((-169 (-381)) (-950 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2783 ((-381) (-411 (-950 |#1|)))) (-15 -2783 ((-381) (-411 (-950 |#1|)) (-923))) (-15 -2784 ((-169 (-381)) (-411 (-950 |#1|)))) (-15 -2784 ((-169 (-381)) (-411 (-950 |#1|)) (-923))) (-15 -2784 ((-169 (-381)) (-411 (-950 (-169 |#1|))))) (-15 -2784 ((-169 (-381)) (-411 (-950 (-169 |#1|))) (-923))) (IF (|has| |#1| (-853)) (PROGN (-15 -2783 ((-381) (-316 |#1|))) (-15 -2783 ((-381) (-316 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-316 |#1|))) (-15 -2784 ((-169 (-381)) (-316 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-316 (-169 |#1|)))) (-15 -2784 ((-169 (-381)) (-316 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 (-169 |#1|)))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1053)) (PROGN (-15 -2785 ((-3 (-381) "failed") (-950 |#1|))) (-15 -2785 ((-3 (-381) "failed") (-950 |#1|) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 |#1|))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2785 ((-3 (-381) "failed") (-411 (-950 |#1|)))) (-15 -2785 ((-3 (-381) "failed") (-411 (-950 |#1|)) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 |#1|)))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 |#1|)) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 (-169 |#1|))))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 (-169 |#1|))) (-923))) (IF (|has| |#1| (-853)) (PROGN (-15 -2785 ((-3 (-381) "failed") (-316 |#1|))) (-15 -2785 ((-3 (-381) "failed") (-316 |#1|) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 |#1|))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 |#1|) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 (-169 |#1|)))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) (-617 (-381))) (T -788)) +((-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) (-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-411 (-950 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-411 (-950 (-169 *4)))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) (-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) (-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-173)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 (-169 *4)))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-173)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-173)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-173)) (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-788 *3)) (-4 *3 (-617 (-381))))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-788 *3)) (-4 *3 (-617 (-381))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-788 *3)) (-4 *3 (-617 *2)))) (-2783 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-788 *3)) (-4 *3 (-617 *2))))) +(-10 -7 (-15 -2783 ((-381) |#1|)) (-15 -2783 ((-381) |#1| (-923))) (-15 -2784 ((-169 (-381)) |#1|)) (-15 -2784 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-173)) (PROGN (-15 -2784 ((-169 (-381)) (-169 |#1|))) (-15 -2784 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-950 (-169 |#1|)))) (-15 -2784 ((-169 (-381)) (-950 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1053)) (PROGN (-15 -2783 ((-381) (-950 |#1|))) (-15 -2783 ((-381) (-950 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-950 |#1|))) (-15 -2784 ((-169 (-381)) (-950 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2783 ((-381) (-411 (-950 |#1|)))) (-15 -2783 ((-381) (-411 (-950 |#1|)) (-923))) (-15 -2784 ((-169 (-381)) (-411 (-950 |#1|)))) (-15 -2784 ((-169 (-381)) (-411 (-950 |#1|)) (-923))) (-15 -2784 ((-169 (-381)) (-411 (-950 (-169 |#1|))))) (-15 -2784 ((-169 (-381)) (-411 (-950 (-169 |#1|))) (-923))) (IF (|has| |#1| (-853)) (PROGN (-15 -2783 ((-381) (-316 |#1|))) (-15 -2783 ((-381) (-316 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-316 |#1|))) (-15 -2784 ((-169 (-381)) (-316 |#1|) (-923))) (-15 -2784 ((-169 (-381)) (-316 (-169 |#1|)))) (-15 -2784 ((-169 (-381)) (-316 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 (-169 |#1|)))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1053)) (PROGN (-15 -2785 ((-3 (-381) "failed") (-950 |#1|))) (-15 -2785 ((-3 (-381) "failed") (-950 |#1|) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 |#1|))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-950 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2785 ((-3 (-381) "failed") (-411 (-950 |#1|)))) (-15 -2785 ((-3 (-381) "failed") (-411 (-950 |#1|)) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 |#1|)))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 |#1|)) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 (-169 |#1|))))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-411 (-950 (-169 |#1|))) (-923))) (IF (|has| |#1| (-853)) (PROGN (-15 -2785 ((-3 (-381) "failed") (-316 |#1|))) (-15 -2785 ((-3 (-381) "failed") (-316 |#1|) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 |#1|))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 |#1|) (-923))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 (-169 |#1|)))) (-15 -2786 ((-3 (-169 (-381)) "failed") (-316 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) +((-2790 (((-923) (-1163)) 92)) (-2792 (((-3 (-381) "failed") (-1163)) 36)) (-2791 (((-381) (-1163)) 34)) (-2788 (((-923) (-1163)) 63)) (-2789 (((-1163) (-923)) 75)) (-2787 (((-1163) (-923)) 62))) +(((-789) (-10 -7 (-15 -2787 ((-1163) (-923))) (-15 -2788 ((-923) (-1163))) (-15 -2789 ((-1163) (-923))) (-15 -2790 ((-923) (-1163))) (-15 -2791 ((-381) (-1163))) (-15 -2792 ((-3 (-381) "failed") (-1163))))) (T -789)) +((-2792 (*1 *2 *3) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-789)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-789)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-923)) (-5 *1 (-789)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1163)) (-5 *1 (-789)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-923)) (-5 *1 (-789)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1163)) (-5 *1 (-789))))) +(-10 -7 (-15 -2787 ((-1163) (-923))) (-15 -2788 ((-923) (-1163))) (-15 -2789 ((-1163) (-923))) (-15 -2790 ((-923) (-1163))) (-15 -2791 ((-381) (-1163))) (-15 -2792 ((-3 (-381) "failed") (-1163)))) +((-2970 (((-112) $ $) 7)) (-2793 (((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 16) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039)) 14)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 17) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-790) (-140)) (T -790)) +((-3073 (*1 *2 *3 *4) (-12 (-4 *1 (-790)) (-5 *3 (-1067)) (-5 *4 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039)))))) (-2793 (*1 *2 *3 *2) (-12 (-4 *1 (-790)) (-5 *2 (-1039)) (-5 *3 (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-3073 (*1 *2 *3 *4) (-12 (-4 *1 (-790)) (-5 *3 (-1067)) (-5 *4 (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039)))))) (-2793 (*1 *2 *3 *2) (-12 (-4 *1 (-790)) (-5 *2 (-1039)) (-5 *3 (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) +(-13 (-1105) (-10 -7 (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2793 ((-1039) (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) (|:| |extra| (-1039))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2793 ((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1039))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2796 (((-1276) (-1270 (-381)) (-550) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381))) (-381) (-1270 (-381)) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381))) 55) (((-1276) (-1270 (-381)) (-550) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381))) (-381) (-1270 (-381)) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381))) 52)) (-2797 (((-1276) (-1270 (-381)) (-550) (-381) (-381) (-550) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381))) 61)) (-2795 (((-1276) (-1270 (-381)) (-550) (-381) (-381) (-381) (-381) (-550) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381))) 50)) (-2794 (((-1276) (-1270 (-381)) (-550) (-381) (-381) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381))) 63) (((-1276) (-1270 (-381)) (-550) (-381) (-381) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381))) 62))) +(((-791) (-10 -7 (-15 -2794 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))) (-15 -2794 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)))) (-15 -2795 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-381) (-381) (-550) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))) (-15 -2796 ((-1276) (-1270 (-381)) (-550) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381))) (-381) (-1270 (-381)) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))) (-15 -2796 ((-1276) (-1270 (-381)) (-550) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381))) (-381) (-1270 (-381)) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)))) (-15 -2797 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-550) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))))) (T -791)) +((-2797 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) (-2796 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-550)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381)))) (-5 *7 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) (-2796 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-550)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381)))) (-5 *7 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) (-2795 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) (-2794 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) (-2794 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791))))) +(-10 -7 (-15 -2794 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))) (-15 -2794 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)))) (-15 -2795 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-381) (-381) (-550) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))) (-15 -2796 ((-1276) (-1270 (-381)) (-550) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381))) (-381) (-1270 (-381)) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)))) (-15 -2796 ((-1276) (-1270 (-381)) (-550) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381))) (-381) (-1270 (-381)) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)) (-1270 (-381)))) (-15 -2797 ((-1276) (-1270 (-381)) (-550) (-381) (-381) (-550) (-1 (-1276) (-1270 (-381)) (-1270 (-381)) (-381))))) +((-2806 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)) 66)) (-2803 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)) 42)) (-2805 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)) 65)) (-2802 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)) 40)) (-2804 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)) 64)) (-2801 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)) 26)) (-2800 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550)) 43)) (-2799 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550)) 41)) (-2798 (((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550)) 39))) +(((-792) (-10 -7 (-15 -2798 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550))) (-15 -2799 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550))) (-15 -2800 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550))) (-15 -2801 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2802 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2803 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2804 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2805 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2806 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))))) (T -792)) +((-2806 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2805 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2804 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2803 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2802 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2801 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2800 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2799 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550)))) (-2798 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) (-5 *1 (-792)) (-5 *5 (-550))))) +(-10 -7 (-15 -2798 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550))) (-15 -2799 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550))) (-15 -2800 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550) (-550))) (-15 -2801 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2802 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2803 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2804 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2805 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550))) (-15 -2806 ((-2 (|:| -3828 (-381)) (|:| -1706 (-381)) (|:| |totalpts| (-550)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-550) (-550)))) +((-4139 (((-1216 |#1|) |#1| (-226) (-550)) 69))) +(((-793 |#1|) (-10 -7 (-15 -4139 ((-1216 |#1|) |#1| (-226) (-550)))) (-978)) (T -793)) +((-4139 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-226)) (-5 *5 (-550)) (-5 *2 (-1216 *3)) (-5 *1 (-793 *3)) (-4 *3 (-978))))) +(-10 -7 (-15 -4139 ((-1216 |#1|) |#1| (-226) (-550)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 25)) (-1408 (((-3 $ "failed") $ $) 27)) (-4158 (($) 24 T CONST)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-4271 (($ $ $) 31) (($ $) 30)) (-4273 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-774) $) 26) (($ (-550) $) 29))) (((-794) (-140)) (T -794)) NIL -(-13 (-796) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-796) . T) ((-852) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-2805 (($ $ $) 28)) (-1407 (((-3 $ "failed") $ $) 27)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26))) +(-13 (-800) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-853) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 25)) (-4158 (($) 24 T CONST)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-4273 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-774) $) 26))) (((-795) (-140)) (T -795)) -((-2805 (*1 *1 *1 *1) (-4 *1 (-795)))) -(-13 (-799) (-10 -8 (-15 -2805 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-852) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22))) -(((-796) (-140)) (T -796)) NIL -(-13 (-852) (-25)) -(((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-852) . T) ((-1104) . T)) -((-3608 (((-112) $) 42)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 43)) (-3425 (((-3 (-410 (-549)) "failed") $) 78)) (-3424 (((-112) $) 72)) (-3423 (((-410 (-549)) $) 76)) (-3536 ((|#2| $) 26)) (-4390 (($ (-1 |#2| |#2|) $) 23)) (-2806 (($ $) 58)) (-4402 (((-538) $) 67)) (-3410 (($ $) 21)) (-4378 (((-865) $) 53) (($ (-549)) 40) (($ |#2|) 38) (($ (-410 (-549))) NIL)) (-3530 (((-773)) 10)) (-3807 ((|#2| $) 71)) (-3455 (((-112) $ $) 30)) (-3088 (((-112) $ $) 69)) (-4269 (($ $) 32) (($ $ $) NIL)) (-4271 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-797 |#1| |#2|) (-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797)) -((-3530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4))))) -(-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-3540 (((-773)) 58 (|has| |#1| (-370)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 100 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 97 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 94)) (-3576 (((-549) $) 99 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 96 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 95)) (-3890 (((-3 $ "failed") $) 37)) (-4075 ((|#1| $) 84)) (-3425 (((-3 (-410 (-549)) "failed") $) 71 (|has| |#1| (-548)))) (-3424 (((-112) $) 73 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 72 (|has| |#1| (-548)))) (-3395 (($) 61 (|has| |#1| (-370)))) (-2573 (((-112) $) 35)) (-2811 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3536 ((|#1| $) 76)) (-2934 (($ $ $) 67 (|has| |#1| (-852)))) (-3260 (($ $ $) 66 (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) 86)) (-2188 (((-922) $) 60 (|has| |#1| (-370)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 70 (|has| |#1| (-365)))) (-2563 (($ (-922)) 59 (|has| |#1| (-370)))) (-2808 ((|#1| $) 81)) (-2809 ((|#1| $) 82)) (-2810 ((|#1| $) 83)) (-3407 ((|#1| $) 77)) (-3408 ((|#1| $) 78)) (-3409 ((|#1| $) 79)) (-2807 ((|#1| $) 80)) (-3664 (((-1123) $) 11)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 88 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 87 (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-4402 (((-538) $) 68 (|has| |#1| (-616 (-538))))) (-3410 (($ $) 85)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ (-410 (-549))) 98 (|has| |#1| (-1041 (-410 (-549)))))) (-3105 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3807 ((|#1| $) 74 (|has| |#1| (-1063)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 64 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 63 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 65 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 62 (|has| |#1| (-852)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-798 |#1|) (-140) (-172)) (T -798)) -((-3410 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2811 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-2806 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-38 |t#1|) (-415 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3410 ($ $)) (-15 -4075 (|t#1| $)) (-15 -2810 (|t#1| $)) (-15 -2809 (|t#1| $)) (-15 -2808 (|t#1| $)) (-15 -2807 (|t#1| $)) (-15 -3409 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3536 (|t#1| $)) (-15 -2811 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -3807 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2806 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-415 |#1|) . T) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-852) |has| |#1| (-852)) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-1407 (((-3 $ "failed") $ $) 27)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26))) -(((-799) (-140)) (T -799)) -NIL -(-13 (-794) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-794) . T) ((-796) . T) ((-852) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #1="failed") $) NIL) (((-3 (-999 |#1|) #1#) $) 35) (((-3 (-549) #1#) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-549))) (|has| |#1| (-1041 (-549))))) (((-3 (-410 (-549)) #1#) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-549) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-549))) (|has| |#1| (-1041 (-549))))) (((-410 (-549)) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3890 (((-3 $ "failed") $) NIL)) (-4075 ((|#1| $) 16)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL (|has| |#1| (-548)))) (-3424 (((-112) $) NIL (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| |#1| (-548)))) (-3395 (($) NIL (|has| |#1| (-370)))) (-2573 (((-112) $) NIL)) (-2811 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-3536 ((|#1| $) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-2808 ((|#1| $) 22)) (-2809 ((|#1| $) 20)) (-2810 ((|#1| $) 18)) (-3407 ((|#1| $) 26)) (-3408 ((|#1| $) 25)) (-3409 ((|#1| $) 24)) (-2807 ((|#1| $) 23)) (-3664 (((-1123) $) NIL)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3410 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-410 (-549))) NIL (-3960 (|has| (-999 |#1|) (-1041 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-1063)))) (-3510 (($) 8 T CONST)) (-3067 (($) 12 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-800 |#1|) (-13 (-798 |#1|) (-415 (-999 |#1|)) (-10 -8 (-15 -2811 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -800)) -((-2811 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) -(-13 (-798 |#1|) (-415 (-999 |#1|)) (-10 -8 (-15 -2811 ($ (-999 |#1|) (-999 |#1|))))) -((-4390 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -801)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-801 *4 *5 *2 *6)) (-4 *4 (-798 *5))))) -(-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) -((-2968 (((-112) $ $) 7)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3455 (((-112) $ $) 6))) -(((-802) (-140)) (T -802)) -((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-802)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-2812 (*1 *2 *3) (-12 (-4 *1 (-802)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1038))))) -(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2812 ((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2813 (((-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#3| |#2| (-1180)) 19))) -(((-803 |#1| |#2| |#3|) (-10 -7 (-15 -2813 ((-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#3| |#2| (-1180)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963)) (-660 |#2|)) (T -803)) -((-2813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-4 *4 (-13 (-29 *6) (-1205) (-963))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) (-5 *1 (-803 *6 *4 *3)) (-4 *3 (-660 *4))))) -(-10 -7 (-15 -2813 ((-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#3| |#2| (-1180)))) -((-4004 (((-3 |#2| #1="failed") |#2| (-113) (-294 |#2|) (-643 |#2|)) 28) (((-3 |#2| #1#) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #2="failed") |#2| (-113) (-1180)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #2#) (-294 |#2|) (-113) (-1180)) 18) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 |#2|) (-643 (-113)) (-1180)) 24) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 (-294 |#2|)) (-643 (-113)) (-1180)) 26) (((-3 (-643 (-1269 |#2|)) "failed") (-691 |#2|) (-1180)) 37) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-691 |#2|) (-1269 |#2|) (-1180)) 35))) -(((-804 |#1| |#2|) (-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-691 |#2|) (-1269 |#2|) (-1180))) (-15 -4004 ((-3 (-643 (-1269 |#2|)) "failed") (-691 |#2|) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 (-294 |#2|)) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 |#2|) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1="failed") (-294 |#2|) (-113) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1#) |#2| (-113) (-1180))) (-15 -4004 ((-3 |#2| #2="failed") (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -4004 ((-3 |#2| #2#) |#2| (-113) (-294 |#2|) (-643 |#2|)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963))) (T -804)) -((-4004 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-294 *2)) (-5 *5 (-643 *2)) (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-804 *6 *2)))) (-4004 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-113)) (-5 *5 (-643 *2)) (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-5 *1 (-804 *6 *2)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))))) (-4004 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2190 (-643 *3))) *3 #1="failed")) (-5 *1 (-804 *6 *3)) (-4 *3 (-13 (-29 *6) (-1205) (-963))))) (-4004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2190 (-643 *7))) *7 #1#)) (-5 *1 (-804 *6 *7)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) (-5 *1 (-804 *6 *7)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) (-5 *1 (-804 *6 *7)))) (-4004 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-691 *6)) (-5 *4 (-1180)) (-4 *6 (-13 (-29 *5) (-1205) (-963))) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-1269 *6))) (-5 *1 (-804 *5 *6)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-691 *7)) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) (-5 *1 (-804 *6 *7)) (-5 *4 (-1269 *7))))) -(-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-691 |#2|) (-1269 |#2|) (-1180))) (-15 -4004 ((-3 (-643 (-1269 |#2|)) "failed") (-691 |#2|) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 (-294 |#2|)) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 |#2|) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1="failed") (-294 |#2|) (-113) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1#) |#2| (-113) (-1180))) (-15 -4004 ((-3 |#2| #2="failed") (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -4004 ((-3 |#2| #2#) |#2| (-113) (-294 |#2|) (-643 |#2|)))) -((-2814 (($) 9)) (-2818 (((-3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 30)) (-2816 (((-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 27)) (-4039 (($ (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))) 24)) (-2817 (($ (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) 22)) (-2815 (((-1275)) 11))) -(((-805) (-10 -8 (-15 -2814 ($)) (-15 -2815 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2817 ($ (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) (-15 -2818 ((-3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -805)) -((-2818 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))) (-5 *1 (-805)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))) (-5 *1 (-805)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) (-5 *1 (-805)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-805)))) (-2815 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-805)))) (-2814 (*1 *1) (-5 *1 (-805)))) -(-10 -8 (-15 -2814 ($)) (-15 -2815 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2817 ($ (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) (-15 -2818 ((-3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3893 ((|#2| |#2| (-1180)) 17)) (-2819 ((|#2| |#2| (-1180)) 56)) (-2820 (((-1 |#2| |#2|) (-1180)) 11))) -(((-806 |#1| |#2|) (-10 -7 (-15 -3893 (|#2| |#2| (-1180))) (-15 -2819 (|#2| |#2| (-1180))) (-15 -2820 ((-1 |#2| |#2|) (-1180)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963))) (T -806)) -((-2820 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-806 *4 *5)) (-4 *5 (-13 (-29 *4) (-1205) (-963))))) (-2819 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963))))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963)))))) -(-10 -7 (-15 -3893 (|#2| |#2| (-1180))) (-15 -2819 (|#2| |#2| (-1180))) (-15 -2820 ((-1 |#2| |#2|) (-1180)))) -((-4004 (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380) (-380)) 131) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380)) 132) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-643 (-380)) (-380)) 134) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-380)) 136) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-380)) 137) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380))) 139) (((-1038) (-810) (-1066)) 123) (((-1038) (-810)) 124)) (-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810) (-1066)) 83) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810)) 85))) -(((-807) (-10 -7 (-15 -4004 ((-1038) (-810))) (-15 -4004 ((-1038) (-810) (-1066))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380) (-380))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810) (-1066))))) (T -807)) -((-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-810)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-807)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-810)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-810)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1038)) (-5 *1 (-807))))) -(-10 -7 (-15 -4004 ((-1038) (-810))) (-15 -4004 ((-1038) (-810) (-1066))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380) (-380))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810) (-1066)))) -((-2821 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2190 (-643 |#4|))) (-657 |#4|) |#4|) 33))) -(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2821 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2190 (-643 |#4|))) (-657 |#4|) |#4|))) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -808)) -((-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-808 *5 *6 *7 *4))))) -(-10 -7 (-15 -2821 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2190 (-643 |#4|))) (-657 |#4|) |#4|))) -((-4173 (((-2 (|:| -3687 |#3|) (|:| |rh| (-643 (-410 |#2|)))) |#4| (-643 (-410 |#2|))) 53)) (-2823 (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4| |#2|) 62) (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4|) 61) (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3| |#2|) 20) (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3|) 21)) (-2824 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2822 ((|#2| |#3| (-643 (-410 |#2|))) 111) (((-3 |#2| "failed") |#3| (-410 |#2|)) 107))) -(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2822 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2822 (|#2| |#3| (-643 (-410 |#2|)))) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3| |#2|)) (-15 -2824 (|#2| |#3| |#1|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4| |#2|)) (-15 -2824 (|#2| |#4| |#1|)) (-15 -4173 ((-2 (|:| -3687 |#3|) (|:| |rh| (-643 (-410 |#2|)))) |#4| (-643 (-410 |#2|))))) (-13 (-365) (-147) (-1041 (-410 (-549)))) (-1245 |#1|) (-660 |#2|) (-660 (-410 |#2|))) (T -809)) -((-4173 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -3687 *7) (|:| |rh| (-643 (-410 *6))))) (-5 *1 (-809 *5 *6 *7 *3)) (-5 *4 (-643 (-410 *6))) (-4 *7 (-660 *6)) (-4 *3 (-660 (-410 *6))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-660 *2)) (-4 *3 (-660 (-410 *2))))) (-2823 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *6 *3)) (-4 *6 (-660 *4)) (-4 *3 (-660 (-410 *4))))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *6 *3)) (-4 *6 (-660 *5)) (-4 *3 (-660 (-410 *5))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *5 (-660 (-410 *2))))) (-2823 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *3 *6)) (-4 *3 (-660 *4)) (-4 *6 (-660 (-410 *4))))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5))))) (-2822 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-809 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *6 (-660 (-410 *2))))) (-2822 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-809 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *6 (-660 *4))))) -(-10 -7 (-15 -2822 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2822 (|#2| |#3| (-643 (-410 |#2|)))) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3| |#2|)) (-15 -2824 (|#2| |#3| |#1|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4| |#2|)) (-15 -2824 (|#2| |#4| |#1|)) (-15 -4173 ((-2 (|:| -3687 |#3|) (|:| |rh| (-643 (-410 |#2|)))) |#4| (-643 (-410 |#2|))))) -((-2968 (((-112) $ $) NIL)) (-3576 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-810) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -810)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-810)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-810))))) -(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-2832 (((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 |#3|))) |#3| (-1 (-643 |#2|) |#2| (-1174 |#2|)) (-1 (-408 |#2|) |#2|)) 157)) (-2833 (((-643 (-2 (|:| |poly| |#2|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|)) 54)) (-2826 (((-643 (-2 (|:| |deg| (-773)) (|:| -3687 |#2|))) |#3|) 126)) (-2825 ((|#2| |#3|) 45)) (-2827 (((-643 (-2 (|:| -4384 |#1|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|)) 103)) (-2828 ((|#3| |#3| (-410 |#2|)) 74) ((|#3| |#3| |#2|) 100))) -(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2825 (|#2| |#3|)) (-15 -2826 ((-643 (-2 (|:| |deg| (-773)) (|:| -3687 |#2|))) |#3|)) (-15 -2827 ((-643 (-2 (|:| -4384 |#1|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 |#3|))) |#3| (-1 (-643 |#2|) |#2| (-1174 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2828 (|#3| |#3| |#2|)) (-15 -2828 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1041 (-410 (-549)))) (-1245 |#1|) (-660 |#2|) (-660 (-410 |#2|))) (T -811)) -((-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *2 (-660 *5)) (-4 *6 (-660 *3)))) (-2828 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-1245 *4)) (-5 *1 (-811 *4 *3 *2 *5)) (-4 *2 (-660 *3)) (-4 *5 (-660 (-410 *3))))) (-2832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-643 *7) *7 (-1174 *7))) (-5 *5 (-1 (-408 *7) *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-5 *2 (-643 (-2 (|:| |frac| (-410 *7)) (|:| -3687 *3)))) (-5 *1 (-811 *6 *7 *3 *8)) (-4 *3 (-660 *7)) (-4 *8 (-660 (-410 *7))))) (-2833 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 *3)))) (-5 *1 (-811 *5 *6 *3 *7)) (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6))))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -4384 *5) (|:| -3687 *3)))) (-5 *1 (-811 *5 *6 *3 *7)) (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6))))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -3687 *5)))) (-5 *1 (-811 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5))))) (-2825 (*1 *2 *3) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *5 (-660 (-410 *2)))))) -(-10 -7 (-15 -2825 (|#2| |#3|)) (-15 -2826 ((-643 (-2 (|:| |deg| (-773)) (|:| -3687 |#2|))) |#3|)) (-15 -2827 ((-643 (-2 (|:| -4384 |#1|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 |#3|))) |#3| (-1 (-643 |#2|) |#2| (-1174 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2828 (|#3| |#3| |#2|)) (-15 -2828 (|#3| |#3| (-410 |#2|)))) -((-2829 (((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-658 |#2| (-410 |#2|)) (-643 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) #1="failed")) (|:| -2190 (-643 (-410 |#2|)))) (-658 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-657 (-410 |#2|)) (-643 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) #1#)) (|:| -2190 (-643 (-410 |#2|)))) (-657 (-410 |#2|)) (-410 |#2|)) 141)) (-2830 ((|#2| (-658 |#2| (-410 |#2|))) 89) ((|#2| (-657 (-410 |#2|))) 92))) -(((-812 |#1| |#2|) (-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1="failed")) (|:| -2190 (-643 (-410 |#2|)))) (-657 (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-657 (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1#)) (|:| -2190 (-643 (-410 |#2|)))) (-658 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-658 |#2| (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2830 (|#2| (-657 (-410 |#2|)))) (-15 -2830 (|#2| (-658 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -812)) -((-2830 (*1 *2 *3) (-12 (-5 *3 (-658 *2 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-657 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-812 *5 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) (-5 *1 (-812 *5 *6))))) -(-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1="failed")) (|:| -2190 (-643 (-410 |#2|)))) (-657 (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-657 (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1#)) (|:| -2190 (-643 (-410 |#2|)))) (-658 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-658 |#2| (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2830 (|#2| (-657 (-410 |#2|)))) (-15 -2830 (|#2| (-658 |#2| (-410 |#2|))))) -((-2831 (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|) 52))) -(((-813 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2831 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) (-365) (-660 |#1|) (-1245 |#1|) (-726 |#1| |#3|) (-660 |#4|)) (T -813)) -((-2831 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-726 *5 *7)) (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-813 *5 *6 *7 *4 *3)) (-4 *6 (-660 *5)) (-4 *3 (-660 *4))))) -(-10 -7 (-15 -2831 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) -((-2832 (((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)) 47)) (-2834 (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-408 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-657 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|)) 38) (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 39) (((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|)) 36) (((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 37)) (-2833 (((-643 (-2 (|:| |poly| |#2|) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 99))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -814)) -((-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-658 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-657 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 (-658 *6 (-410 *6)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6))))) (-2832 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-2 (|:| |frac| (-410 *6)) (|:| -3687 (-658 *6 (-410 *6)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6))))) (-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 *7 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) (-5 *5 (-1 (-408 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) (-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) (-5 *5 (-1 (-408 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6))))) -(-10 -7 (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)))) |%noBranch|)) -((-2835 (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) (-691 |#2|) (-1269 |#1|)) 110) (((-2 (|:| A (-691 |#1|)) (|:| |eqs| (-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3687 |#2|) (|:| |rh| |#1|))))) (-691 |#1|) (-1269 |#1|)) 15)) (-2836 (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2190 (-643 |#1|))) |#2| |#1|)) 116)) (-4004 (((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2190 (-691 |#1|))) "failed") (-691 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) "failed") |#2| |#1|)) 52))) -(((-815 |#1| |#2|) (-10 -7 (-15 -2835 ((-2 (|:| A (-691 |#1|)) (|:| |eqs| (-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3687 |#2|) (|:| |rh| |#1|))))) (-691 |#1|) (-1269 |#1|))) (-15 -2835 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) (-691 |#2|) (-1269 |#1|))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2190 (-691 |#1|))) "failed") (-691 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) "failed") |#2| |#1|))) (-15 -2836 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2190 (-643 |#1|))) |#2| |#1|)))) (-365) (-660 |#1|)) (T -815)) -((-2836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2190 (-643 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-660 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *6) "failed")) (|:| -2190 (-643 (-1269 *6))))) (-5 *1 (-815 *6 *7)) (-5 *4 (-1269 *6)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2190 (-643 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-660 *6)) (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -2190 (-691 *6)))) (-5 *1 (-815 *6 *7)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *6)))) (-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-660 *5)) (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *5)))) (-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-691 *5)) (|:| |eqs| (-643 (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5)) (|:| -3687 *6) (|:| |rh| *5)))))) (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *6 (-660 *5))))) -(-10 -7 (-15 -2835 ((-2 (|:| A (-691 |#1|)) (|:| |eqs| (-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3687 |#2|) (|:| |rh| |#1|))))) (-691 |#1|) (-1269 |#1|))) (-15 -2835 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) (-691 |#2|) (-1269 |#1|))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2190 (-691 |#1|))) "failed") (-691 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) "failed") |#2| |#1|))) (-15 -2836 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2190 (-643 |#1|))) |#2| |#1|)))) -((-2837 (((-691 |#1|) (-643 |#1|) (-773)) 14) (((-691 |#1|) (-643 |#1|)) 15)) (-2838 (((-3 (-1269 |#1|) "failed") |#2| |#1| (-643 |#1|)) 39)) (-3764 (((-3 |#1| "failed") |#2| |#1| (-643 |#1|) (-1 |#1| |#1|)) 46))) -(((-816 |#1| |#2|) (-10 -7 (-15 -2837 ((-691 |#1|) (-643 |#1|))) (-15 -2837 ((-691 |#1|) (-643 |#1|) (-773))) (-15 -2838 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-643 |#1|))) (-15 -3764 ((-3 |#1| "failed") |#2| |#1| (-643 |#1|) (-1 |#1| |#1|)))) (-365) (-660 |#1|)) (T -816)) -((-3764 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-643 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-816 *2 *3)) (-4 *3 (-660 *2)))) (-2838 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) (-5 *1 (-816 *4 *3)) (-4 *3 (-660 *4)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-365)) (-5 *2 (-691 *5)) (-5 *1 (-816 *5 *6)) (-4 *6 (-660 *5)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)) (-5 *1 (-816 *4 *5)) (-4 *5 (-660 *4))))) -(-10 -7 (-15 -2837 ((-691 |#1|) (-643 |#1|))) (-15 -2837 ((-691 |#1|) (-643 |#1|) (-773))) (-15 -2838 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-643 |#1|))) (-15 -3764 ((-3 |#1| "failed") |#2| |#1| (-643 |#1|) (-1 |#1| |#1|)))) -((-2968 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3608 (((-112) $) NIL (|has| |#2| (-131)))) (-4139 (($ (-922)) NIL (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#2| (-370)))) (-4055 (((-549) $) NIL (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) NIL (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) NIL (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) NIL (|has| |#2| (-728)))) (-3395 (($) NIL (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) NIL)) (-3606 (((-112) $) NIL (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#2| (-728)))) (-3607 (((-112) $) NIL (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#2| (-370)))) (-3664 (((-1123) $) NIL (|has| |#2| (-1104)))) (-4232 ((|#2| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-4268 ((|#2| $ $) NIL (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) NIL)) (-4343 (((-134)) NIL (|has| |#2| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#2|) $) NIL) (($ (-549)) NIL (-3960 (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) NIL (|has| |#2| (-1104))) (((-865) $) NIL (|has| |#2| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#2| (-850)))) (-3510 (($) NIL (|has| |#2| (-131)) CONST)) (-3067 (($) NIL (|has| |#2| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3455 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3088 (((-112) $ $) 11 (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $ $) NIL (|has| |#2| (-1052))) (($ $) NIL (|has| |#2| (-1052)))) (-4271 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-773)) NIL (|has| |#2| (-728))) (($ $ (-922)) NIL (|has| |#2| (-728)))) (* (($ (-549) $) NIL (|has| |#2| (-1052))) (($ $ $) NIL (|has| |#2| (-728))) (($ $ |#2|) NIL (|has| |#2| (-728))) (($ |#2| $) NIL (|has| |#2| (-728))) (($ (-773) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-817 |#1| |#2| |#3|) (-238 |#1| |#2|) (-773) (-795) (-1 (-112) (-1269 |#2|) (-1269 |#2|))) (T -817)) -NIL -(-238 |#1| |#2|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1589 (((-643 (-773)) $) NIL) (((-643 (-773)) $ (-1180)) NIL)) (-1623 (((-773) $) NIL) (((-773) $ (-1180)) NIL)) (-3485 (((-643 (-820 (-1180))) $) NIL)) (-3487 (((-1174 $) $ (-820 (-1180))) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-820 (-1180)))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1585 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-820 (-1180)) #2#) $) NIL) (((-3 (-1180) #2#) $) NIL) (((-3 (-1128 |#1| (-1180)) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-820 (-1180)) $) NIL) (((-1180) $) NIL) (((-1128 |#1| (-1180)) $) NIL)) (-4188 (($ $ $ (-820 (-1180))) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-820 (-1180))) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 (-820 (-1180))) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-820 (-1180)) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-820 (-1180)) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ (-1180)) NIL) (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) (-820 (-1180))) NIL) (($ (-1174 $) (-820 (-1180))) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-820 (-1180))) NIL)) (-3223 (((-534 (-820 (-1180))) $) NIL) (((-773) $ (-820 (-1180))) NIL) (((-643 (-773)) $ (-643 (-820 (-1180)))) NIL)) (-1770 (($ (-1 (-534 (-820 (-1180))) (-534 (-820 (-1180)))) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1624 (((-1 $ (-773)) (-1180)) NIL) (((-1 $ (-773)) $) NIL (|has| |#1| (-233)))) (-3486 (((-3 (-820 (-1180)) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-1587 (((-820 (-1180)) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1588 (((-112) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-820 (-1180))) (|:| -2564 (-773))) #3#) $) NIL)) (-1586 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-820 (-1180)) |#1|) NIL) (($ $ (-643 (-820 (-1180))) (-643 |#1|)) NIL) (($ $ (-820 (-1180)) $) NIL) (($ $ (-643 (-820 (-1180))) (-643 $)) NIL) (($ $ (-1180) $) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 $)) NIL (|has| |#1| (-233))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-233)))) (-4189 (($ $ (-820 (-1180))) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-820 (-1180))) NIL) (($ $ (-643 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1590 (((-643 (-1180)) $) NIL)) (-4380 (((-534 (-820 (-1180))) $) NIL) (((-773) $ (-820 (-1180))) NIL) (((-643 (-773)) $ (-643 (-820 (-1180)))) NIL) (((-773) $ (-1180)) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-820 (-1180)) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-820 (-1180)) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-820 (-1180)) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-820 (-1180))) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-820 (-1180))) NIL) (($ (-1180)) NIL) (($ (-1128 |#1| (-1180))) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-820 (-1180))) NIL) (($ $ (-643 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-818 |#1|) (-13 (-254 |#1| (-1180) (-820 (-1180)) (-534 (-820 (-1180)))) (-1041 (-1128 |#1| (-1180)))) (-1052)) (T -818)) -NIL -(-13 (-254 |#1| (-1180) (-820 (-1180)) (-534 (-820 (-1180)))) (-1041 (-1128 |#1| (-1180)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-2241 (($ $) NIL (|has| |#2| (-365)))) (-2239 (((-112) $) NIL (|has| |#2| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#2| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-365)))) (-1753 (((-112) $ $) NIL (|has| |#2| (-365)))) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL (|has| |#2| (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#2| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#2| (-365)))) (-4155 (((-112) $) NIL (|has| |#2| (-365)))) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-2069 (($ (-643 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 20 (|has| |#2| (-365)))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-1752 (((-773) $) NIL (|has| |#2| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-4242 (($ $ (-773)) NIL) (($ $) 13)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-549))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) 15 (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL) (($ $ (-549)) 18 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-549)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-549))) NIL (|has| |#2| (-365))))) -(((-819 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1104) (-903 |#1|) |#1|) (T -819)) -NIL -(-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-1623 (((-773) $) NIL)) (-4263 ((|#1| $) 10)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-4203 (((-773) $) 11)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-1624 (($ |#1| (-773)) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4242 (($ $) NIL) (($ $ (-773)) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-820 |#1|) (-267 |#1|) (-852)) (T -820)) -NIL -(-267 |#1|) -((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) 38)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-4371 (((-3 $ #1="failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-4230 (($ $) 42)) (-3890 (((-3 $ "failed") $) NIL)) (-1918 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2573 (((-112) $) NIL)) (-2444 ((|#1| $ (-549)) NIL)) (-2445 (((-773) $ (-549)) NIL)) (-4368 (($ $) 54)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2436 (($ (-1 |#1| |#1|) $) NIL)) (-2437 (($ (-1 (-773) (-773)) $) NIL)) (-4372 (((-3 $ #1#) $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2839 (((-112) $ $) 51)) (-4265 (((-773) $) 34)) (-3663 (((-1162) $) NIL)) (-1919 (($ $ $) NIL)) (-1920 (($ $ $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 ((|#1| $) 41)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) NIL)) (-3282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL)) (-2965 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 20 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 53)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ |#1| (-773)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-821 |#1|) (-13 (-388 |#1|) (-848) (-10 -8 (-15 -4232 (|#1| $)) (-15 -4230 ($ $)) (-15 -4368 ($ $)) (-15 -2839 ((-112) $ $)) (-15 -4372 ((-3 $ "failed") $ |#1|)) (-15 -4371 ((-3 $ "failed") $ |#1|)) (-15 -2965 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4265 ((-773) $)) (-15 -4366 ((-643 |#1|) $)))) (-852)) (T -821)) -((-4232 (*1 *2 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) (-4372 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-4371 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-2965 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-821 *3)) (|:| |rm| (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-821 *3)) (-4 *3 (-852))))) -(-13 (-388 |#1|) (-848) (-10 -8 (-15 -4232 (|#1| $)) (-15 -4230 ($ $)) (-15 -4368 ($ $)) (-15 -2839 ((-112) $ $)) (-15 -4372 ((-3 $ "failed") $ |#1|)) (-15 -4371 ((-3 $ "failed") $ |#1|)) (-15 -2965 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4265 ((-773) $)) (-15 -4366 ((-643 |#1|) $)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4055 (((-549) $) 59)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-3606 (((-112) $) 57)) (-2573 (((-112) $) 35)) (-3607 (((-112) $) 58)) (-2934 (($ $ $) 56)) (-3260 (($ $ $) 55)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 60)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 53)) (-2967 (((-112) $ $) 52)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 54)) (-3088 (((-112) $ $) 51)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-822) (-140)) (T -822)) -NIL -(-13 (-560) (-850)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2900 (((-1275) (-825) $ (-112)) 9) (((-1275) (-825) $) 8) (((-1162) $ (-112)) 7) (((-1162) $) 6))) +(-13 (-797) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-616 (-866)) . T) ((-797) . T) ((-853) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 25)) (-2807 (($ $ $) 28)) (-1408 (((-3 $ "failed") $ $) 27)) (-4158 (($) 24 T CONST)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-4273 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-774) $) 26))) +(((-796) (-140)) (T -796)) +((-2807 (*1 *1 *1 *1) (-4 *1 (-796)))) +(-13 (-800) (-10 -8 (-15 -2807 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-853) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-4273 (($ $ $) 21)) (* (($ (-923) $) 22))) +(((-797) (-140)) (T -797)) +NIL +(-13 (-853) (-25)) +(((-25) . T) ((-102) . T) ((-616 (-866)) . T) ((-853) . T) ((-1105) . T)) +((-3610 (((-112) $) 42)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3578 (((-550) $) NIL) (((-411 (-550)) $) NIL) ((|#2| $) 43)) (-3427 (((-3 (-411 (-550)) "failed") $) 78)) (-3426 (((-112) $) 72)) (-3425 (((-411 (-550)) $) 76)) (-3538 ((|#2| $) 26)) (-4392 (($ (-1 |#2| |#2|) $) 23)) (-2808 (($ $) 58)) (-4404 (((-539) $) 67)) (-3412 (($ $) 21)) (-4380 (((-866) $) 53) (($ (-550)) 40) (($ |#2|) 38) (($ (-411 (-550))) NIL)) (-3532 (((-774)) 10)) (-3809 ((|#2| $) 71)) (-3457 (((-112) $ $) 30)) (-3090 (((-112) $ $) 69)) (-4271 (($ $) 32) (($ $ $) NIL)) (-4273 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-798 |#1| |#2|) (-10 -8 (-15 -3090 ((-112) |#1| |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -2808 (|#1| |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-799 |#2|) (-173)) (T -798)) +((-3532 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-774)) (-5 *1 (-798 *3 *4)) (-4 *3 (-799 *4))))) +(-10 -8 (-15 -3090 ((-112) |#1| |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -2808 (|#1| |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-3542 (((-774)) 58 (|has| |#1| (-371)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 100 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 97 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 94)) (-3578 (((-550) $) 99 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 96 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 95)) (-3892 (((-3 $ "failed") $) 37)) (-4077 ((|#1| $) 84)) (-3427 (((-3 (-411 (-550)) "failed") $) 71 (|has| |#1| (-549)))) (-3426 (((-112) $) 73 (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) 72 (|has| |#1| (-549)))) (-3397 (($) 61 (|has| |#1| (-371)))) (-2575 (((-112) $) 35)) (-2813 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3538 ((|#1| $) 76)) (-2936 (($ $ $) 67 (|has| |#1| (-853)))) (-3262 (($ $ $) 66 (|has| |#1| (-853)))) (-4392 (($ (-1 |#1| |#1|) $) 86)) (-2190 (((-923) $) 60 (|has| |#1| (-371)))) (-3665 (((-1163) $) 10)) (-2808 (($ $) 70 (|has| |#1| (-366)))) (-2565 (($ (-923)) 59 (|has| |#1| (-371)))) (-2810 ((|#1| $) 81)) (-2811 ((|#1| $) 82)) (-2812 ((|#1| $) 83)) (-3409 ((|#1| $) 77)) (-3410 ((|#1| $) 78)) (-3411 ((|#1| $) 79)) (-2809 ((|#1| $) 80)) (-3666 (((-1124) $) 11)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) 92 (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) 89 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 88 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) 87 (|has| |#1| (-518 (-1181) |#1|)))) (-4233 (($ $ |#1|) 93 (|has| |#1| (-288 |#1| |#1|)))) (-4404 (((-539) $) 68 (|has| |#1| (-617 (-539))))) (-3412 (($ $) 85)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44) (($ (-411 (-550))) 98 (|has| |#1| (-1042 (-411 (-550)))))) (-3107 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3809 ((|#1| $) 74 (|has| |#1| (-1064)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 64 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 63 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 65 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 62 (|has| |#1| (-853)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-799 |#1|) (-140) (-173)) (T -799)) +((-3412 (*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-2813 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)) (-4 *2 (-1064)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) (-3427 (*1 *2 *1) (|partial| -12 (-4 *1 (-799 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) (-2808 (*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)) (-4 *2 (-366))))) +(-13 (-38 |t#1|) (-416 |t#1|) (-341 |t#1|) (-10 -8 (-15 -3412 ($ $)) (-15 -4077 (|t#1| $)) (-15 -2812 (|t#1| $)) (-15 -2811 (|t#1| $)) (-15 -2810 (|t#1| $)) (-15 -2809 (|t#1| $)) (-15 -3411 (|t#1| $)) (-15 -3410 (|t#1| $)) (-15 -3409 (|t#1| $)) (-15 -3538 (|t#1| $)) (-15 -2813 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|) (IF (|has| |t#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1064)) (-15 -3809 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-366)) (-15 -2808 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1=(-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 |#1| $) |has| |#1| (-288 |#1| |#1|)) ((-311 |#1|) |has| |#1| (-311 |#1|)) ((-371) |has| |#1| (-371)) ((-341 |#1|) . T) ((-416 |#1|) . T) ((-518 (-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((-518 |#1| |#1|) |has| |#1| (-311 |#1|)) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-729) . T) ((-853) |has| |#1| (-853)) ((-1042 #1#) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 25)) (-1408 (((-3 $ "failed") $ $) 27)) (-4158 (($) 24 T CONST)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-4273 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-774) $) 26))) +(((-800) (-140)) (T -800)) +NIL +(-13 (-795) (-131)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-795) . T) ((-797) . T) ((-853) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #1="failed") $) NIL) (((-3 (-1000 |#1|) #1#) $) 35) (((-3 (-550) #1#) $) NIL (-3962 (|has| (-1000 |#1|) (-1042 (-550))) (|has| |#1| (-1042 (-550))))) (((-3 (-411 (-550)) #1#) $) NIL (-3962 (|has| (-1000 |#1|) (-1042 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-3578 ((|#1| $) NIL) (((-1000 |#1|) $) 33) (((-550) $) NIL (-3962 (|has| (-1000 |#1|) (-1042 (-550))) (|has| |#1| (-1042 (-550))))) (((-411 (-550)) $) NIL (-3962 (|has| (-1000 |#1|) (-1042 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-3892 (((-3 $ "failed") $) NIL)) (-4077 ((|#1| $) 16)) (-3427 (((-3 (-411 (-550)) "failed") $) NIL (|has| |#1| (-549)))) (-3426 (((-112) $) NIL (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) NIL (|has| |#1| (-549)))) (-3397 (($) NIL (|has| |#1| (-371)))) (-2575 (((-112) $) NIL)) (-2813 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1000 |#1|) (-1000 |#1|)) 29)) (-3538 ((|#1| $) NIL)) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-2810 ((|#1| $) 22)) (-2811 ((|#1| $) 20)) (-2812 ((|#1| $) 18)) (-3409 ((|#1| $) 26)) (-3410 ((|#1| $) 25)) (-3411 ((|#1| $) 24)) (-2809 ((|#1| $) 23)) (-3666 (((-1124) $) NIL)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) NIL (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-518 (-1181) |#1|)))) (-4233 (($ $ |#1|) NIL (|has| |#1| (-288 |#1| |#1|)))) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3412 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1000 |#1|)) 30) (($ (-411 (-550))) NIL (-3962 (|has| (-1000 |#1|) (-1042 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3809 ((|#1| $) NIL (|has| |#1| (-1064)))) (-3512 (($) 8 T CONST)) (-3069 (($) 12 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-801 |#1|) (-13 (-799 |#1|) (-416 (-1000 |#1|)) (-10 -8 (-15 -2813 ($ (-1000 |#1|) (-1000 |#1|))))) (-173)) (T -801)) +((-2813 (*1 *1 *2 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-173)) (-5 *1 (-801 *3))))) +(-13 (-799 |#1|) (-416 (-1000 |#1|)) (-10 -8 (-15 -2813 ($ (-1000 |#1|) (-1000 |#1|))))) +((-4392 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#3| (-1 |#4| |#2|) |#1|))) (-799 |#2|) (-173) (-799 |#4|) (-173)) (T -802)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-799 *6)) (-5 *1 (-802 *4 *5 *2 *6)) (-4 *4 (-799 *5))))) +(-10 -7 (-15 -4392 (|#3| (-1 |#4| |#2|) |#1|))) +((-2970 (((-112) $ $) 7)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2814 (((-1039) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 14)) (-3457 (((-112) $ $) 6))) +(((-803) (-140)) (T -803)) +((-3073 (*1 *2 *3 *4) (-12 (-4 *1 (-803)) (-5 *3 (-1067)) (-5 *4 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) (-2814 (*1 *2 *3) (-12 (-4 *1 (-803)) (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1039))))) +(-13 (-1105) (-10 -7 (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2814 ((-1039) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2815 (((-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#3| |#2| (-1181)) 19))) +(((-804 |#1| |#2| |#3|) (-10 -7 (-15 -2815 ((-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#3| |#2| (-1181)))) (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147)) (-13 (-29 |#1|) (-1206) (-964)) (-661 |#2|)) (T -804)) +((-2815 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1181)) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-4 *4 (-13 (-29 *6) (-1206) (-964))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2192 (-644 *4)))) (-5 *1 (-804 *6 *4 *3)) (-4 *3 (-661 *4))))) +(-10 -7 (-15 -2815 ((-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#3| |#2| (-1181)))) +((-4006 (((-3 |#2| #1="failed") |#2| (-113) (-295 |#2|) (-644 |#2|)) 28) (((-3 |#2| #1#) (-295 |#2|) (-113) (-295 |#2|) (-644 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#2| #2="failed") |#2| (-113) (-1181)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#2| #2#) (-295 |#2|) (-113) (-1181)) 18) (((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-644 |#2|) (-644 (-113)) (-1181)) 24) (((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-113)) (-1181)) 26) (((-3 (-644 (-1270 |#2|)) "failed") (-692 |#2|) (-1181)) 37) (((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-692 |#2|) (-1270 |#2|) (-1181)) 35))) +(((-805 |#1| |#2|) (-10 -7 (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-692 |#2|) (-1270 |#2|) (-1181))) (-15 -4006 ((-3 (-644 (-1270 |#2|)) "failed") (-692 |#2|) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-113)) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-644 |#2|) (-644 (-113)) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#2| #1="failed") (-295 |#2|) (-113) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#2| #1#) |#2| (-113) (-1181))) (-15 -4006 ((-3 |#2| #2="failed") (-295 |#2|) (-113) (-295 |#2|) (-644 |#2|))) (-15 -4006 ((-3 |#2| #2#) |#2| (-113) (-295 |#2|) (-644 |#2|)))) (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147)) (-13 (-29 |#1|) (-1206) (-964))) (T -805)) +((-4006 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1206) (-964))) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *1 (-805 *6 *2)))) (-4006 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-113)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1206) (-964))) (-5 *1 (-805 *6 *2)) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))))) (-4006 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1181)) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2192 (-644 *3))) *3 #1="failed")) (-5 *1 (-805 *6 *3)) (-4 *3 (-13 (-29 *6) (-1206) (-964))))) (-4006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-113)) (-5 *5 (-1181)) (-4 *7 (-13 (-29 *6) (-1206) (-964))) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2192 (-644 *7))) *7 #1#)) (-5 *1 (-805 *6 *7)))) (-4006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-113))) (-5 *5 (-1181)) (-4 *7 (-13 (-29 *6) (-1206) (-964))) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-2 (|:| |particular| (-1270 *7)) (|:| -2192 (-644 (-1270 *7))))) (-5 *1 (-805 *6 *7)))) (-4006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-113))) (-5 *5 (-1181)) (-4 *7 (-13 (-29 *6) (-1206) (-964))) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-2 (|:| |particular| (-1270 *7)) (|:| -2192 (-644 (-1270 *7))))) (-5 *1 (-805 *6 *7)))) (-4006 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-692 *6)) (-5 *4 (-1181)) (-4 *6 (-13 (-29 *5) (-1206) (-964))) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-644 (-1270 *6))) (-5 *1 (-805 *5 *6)))) (-4006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-692 *7)) (-5 *5 (-1181)) (-4 *7 (-13 (-29 *6) (-1206) (-964))) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-2 (|:| |particular| (-1270 *7)) (|:| -2192 (-644 (-1270 *7))))) (-5 *1 (-805 *6 *7)) (-5 *4 (-1270 *7))))) +(-10 -7 (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-692 |#2|) (-1270 |#2|) (-1181))) (-15 -4006 ((-3 (-644 (-1270 |#2|)) "failed") (-692 |#2|) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-113)) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#2|)) (|:| -2192 (-644 (-1270 |#2|)))) "failed") (-644 |#2|) (-644 (-113)) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#2| #1="failed") (-295 |#2|) (-113) (-1181))) (-15 -4006 ((-3 (-2 (|:| |particular| |#2|) (|:| -2192 (-644 |#2|))) |#2| #1#) |#2| (-113) (-1181))) (-15 -4006 ((-3 |#2| #2="failed") (-295 |#2|) (-113) (-295 |#2|) (-644 |#2|))) (-15 -4006 ((-3 |#2| #2#) |#2| (-113) (-295 |#2|) (-644 |#2|)))) +((-2816 (($) 9)) (-2820 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 30)) (-2818 (((-644 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 27)) (-4041 (($ (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 24)) (-2819 (($ (-644 (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 22)) (-2817 (((-1276)) 11))) +(((-806) (-10 -8 (-15 -2816 ($)) (-15 -2817 ((-1276))) (-15 -2818 ((-644 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2819 ($ (-644 (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -4041 ($ (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2820 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -806)) +((-2820 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-806)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-806)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-806)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-806)))) (-2817 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-806)))) (-2816 (*1 *1) (-5 *1 (-806)))) +(-10 -8 (-15 -2816 ($)) (-15 -2817 ((-1276))) (-15 -2818 ((-644 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2819 ($ (-644 (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -4041 ($ (-2 (|:| -4294 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2256 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2820 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) +((-3895 ((|#2| |#2| (-1181)) 17)) (-2821 ((|#2| |#2| (-1181)) 56)) (-2822 (((-1 |#2| |#2|) (-1181)) 11))) +(((-807 |#1| |#2|) (-10 -7 (-15 -3895 (|#2| |#2| (-1181))) (-15 -2821 (|#2| |#2| (-1181))) (-15 -2822 ((-1 |#2| |#2|) (-1181)))) (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147)) (-13 (-29 |#1|) (-1206) (-964))) (T -807)) +((-2822 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-807 *4 *5)) (-4 *5 (-13 (-29 *4) (-1206) (-964))))) (-2821 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *1 (-807 *4 *2)) (-4 *2 (-13 (-29 *4) (-1206) (-964))))) (-3895 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *1 (-807 *4 *2)) (-4 *2 (-13 (-29 *4) (-1206) (-964)))))) +(-10 -7 (-15 -3895 (|#2| |#2| (-1181))) (-15 -2821 (|#2| |#2| (-1181))) (-15 -2822 ((-1 |#2| |#2|) (-1181)))) +((-4006 (((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-644 (-381)) (-381) (-381)) 131) (((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-644 (-381)) (-381)) 132) (((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381)) 134) (((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-381)) 136) (((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-381)) 137) (((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381))) 139) (((-1039) (-811) (-1067)) 123) (((-1039) (-811)) 124)) (-3073 (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-811) (-1067)) 83) (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-811)) 85))) +(((-808) (-10 -7 (-15 -4006 ((-1039) (-811))) (-15 -4006 ((-1039) (-811) (-1067))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-644 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-644 (-381)) (-381) (-381))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-811))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-811) (-1067))))) (T -808)) +((-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-811)) (-5 *4 (-1067)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *1 (-808)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-811)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1270 (-316 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-316 (-381))) (-5 *4 (-381)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1270 (-316 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-316 (-381))) (-5 *4 (-381)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1270 (-316 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1270 (-316 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-316 (-381))) (-5 *4 (-381)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1270 (-316 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1270 (-316 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-811)) (-5 *4 (-1067)) (-5 *2 (-1039)) (-5 *1 (-808)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-811)) (-5 *2 (-1039)) (-5 *1 (-808))))) +(-10 -7 (-15 -4006 ((-1039) (-811))) (-15 -4006 ((-1039) (-811) (-1067))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-644 (-381)) (-381))) (-15 -4006 ((-1039) (-1270 (-316 (-381))) (-381) (-381) (-644 (-381)) (-316 (-381)) (-644 (-381)) (-381) (-381))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-811))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-811) (-1067)))) +((-2823 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2192 (-644 |#4|))) (-658 |#4|) |#4|) 33))) +(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2823 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2192 (-644 |#4|))) (-658 |#4|) |#4|))) (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550)))) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|)) (T -809)) +((-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *4)) (-4 *4 (-345 *5 *6 *7)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2192 (-644 *4)))) (-5 *1 (-809 *5 *6 *7 *4))))) +(-10 -7 (-15 -2823 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2192 (-644 |#4|))) (-658 |#4|) |#4|))) +((-4175 (((-2 (|:| -3689 |#3|) (|:| |rh| (-644 (-411 |#2|)))) |#4| (-644 (-411 |#2|))) 53)) (-2825 (((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#4| |#2|) 62) (((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#4|) 61) (((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#3| |#2|) 20) (((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#3|) 21)) (-2826 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2824 ((|#2| |#3| (-644 (-411 |#2|))) 111) (((-3 |#2| "failed") |#3| (-411 |#2|)) 107))) +(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2824 ((-3 |#2| "failed") |#3| (-411 |#2|))) (-15 -2824 (|#2| |#3| (-644 (-411 |#2|)))) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#3|)) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#3| |#2|)) (-15 -2826 (|#2| |#3| |#1|)) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#4|)) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#4| |#2|)) (-15 -2826 (|#2| |#4| |#1|)) (-15 -4175 ((-2 (|:| -3689 |#3|) (|:| |rh| (-644 (-411 |#2|)))) |#4| (-644 (-411 |#2|))))) (-13 (-366) (-147) (-1042 (-411 (-550)))) (-1246 |#1|) (-661 |#2|) (-661 (-411 |#2|))) (T -810)) +((-4175 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-2 (|:| -3689 *7) (|:| |rh| (-644 (-411 *6))))) (-5 *1 (-810 *5 *6 *7 *3)) (-5 *4 (-644 (-411 *6))) (-4 *7 (-661 *6)) (-4 *3 (-661 (-411 *6))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *2 (-1246 *4)) (-5 *1 (-810 *4 *2 *5 *3)) (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-661 *2)) (-4 *3 (-661 (-411 *2))))) (-2825 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *4 (-1246 *5)) (-5 *2 (-644 (-2 (|:| -4206 *4) (|:| -3648 *4)))) (-5 *1 (-810 *5 *4 *6 *3)) (-4 *6 (-661 *4)) (-4 *3 (-661 (-411 *4))))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *2 (-644 (-2 (|:| -4206 *5) (|:| -3648 *5)))) (-5 *1 (-810 *4 *5 *6 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 (-411 *5))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *2 (-1246 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-411 *2))))) (-2825 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *4 (-1246 *5)) (-5 *2 (-644 (-2 (|:| -4206 *4) (|:| -3648 *4)))) (-5 *1 (-810 *5 *4 *3 *6)) (-4 *3 (-661 *4)) (-4 *6 (-661 (-411 *4))))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *2 (-644 (-2 (|:| -4206 *5) (|:| -3648 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-411 *5))))) (-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-411 *2))) (-4 *2 (-1246 *5)) (-5 *1 (-810 *5 *2 *3 *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) (-4 *6 (-661 (-411 *2))))) (-2824 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-411 *2)) (-4 *2 (-1246 *5)) (-5 *1 (-810 *5 *2 *3 *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) (-4 *6 (-661 *4))))) +(-10 -7 (-15 -2824 ((-3 |#2| "failed") |#3| (-411 |#2|))) (-15 -2824 (|#2| |#3| (-644 (-411 |#2|)))) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#3|)) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#3| |#2|)) (-15 -2826 (|#2| |#3| |#1|)) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#4|)) (-15 -2825 ((-644 (-2 (|:| -4206 |#2|) (|:| -3648 |#2|))) |#4| |#2|)) (-15 -2826 (|#2| |#4| |#1|)) (-15 -4175 ((-2 (|:| -3689 |#3|) (|:| |rh| (-644 (-411 |#2|)))) |#4| (-644 (-411 |#2|))))) +((-2970 (((-112) $ $) NIL)) (-3578 (((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $) 13)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 15) (($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 12)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-811) (-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3578 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))) (T -811)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-811)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-811))))) +(-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3578 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $)))) +((-2834 (((-644 (-2 (|:| |frac| (-411 |#2|)) (|:| -3689 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1175 |#2|)) (-1 (-409 |#2|) |#2|)) 157)) (-2835 (((-644 (-2 (|:| |poly| |#2|) (|:| -3689 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 54)) (-2828 (((-644 (-2 (|:| |deg| (-774)) (|:| -3689 |#2|))) |#3|) 126)) (-2827 ((|#2| |#3|) 45)) (-2829 (((-644 (-2 (|:| -4386 |#1|) (|:| -3689 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 103)) (-2830 ((|#3| |#3| (-411 |#2|)) 74) ((|#3| |#3| |#2|) 100))) +(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2827 (|#2| |#3|)) (-15 -2828 ((-644 (-2 (|:| |deg| (-774)) (|:| -3689 |#2|))) |#3|)) (-15 -2829 ((-644 (-2 (|:| -4386 |#1|) (|:| -3689 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2835 ((-644 (-2 (|:| |poly| |#2|) (|:| -3689 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2834 ((-644 (-2 (|:| |frac| (-411 |#2|)) (|:| -3689 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1175 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2830 (|#3| |#3| |#2|)) (-15 -2830 (|#3| |#3| (-411 |#2|)))) (-13 (-366) (-147) (-1042 (-411 (-550)))) (-1246 |#1|) (-661 |#2|) (-661 (-411 |#2|))) (T -812)) +((-2830 (*1 *2 *2 *3) (-12 (-5 *3 (-411 *5)) (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *1 (-812 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))) (-2830 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-1246 *4)) (-5 *1 (-812 *4 *3 *2 *5)) (-4 *2 (-661 *3)) (-4 *5 (-661 (-411 *3))))) (-2834 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-644 *7) *7 (-1175 *7))) (-5 *5 (-1 (-409 *7) *7)) (-4 *7 (-1246 *6)) (-4 *6 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-5 *2 (-644 (-2 (|:| |frac| (-411 *7)) (|:| -3689 *3)))) (-5 *1 (-812 *6 *7 *3 *8)) (-4 *3 (-661 *7)) (-4 *8 (-661 (-411 *7))))) (-2835 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3689 *3)))) (-5 *1 (-812 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-411 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-2 (|:| -4386 *5) (|:| -3689 *3)))) (-5 *1 (-812 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-411 *6))))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) (-5 *2 (-644 (-2 (|:| |deg| (-774)) (|:| -3689 *5)))) (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-411 *5))))) (-2827 (*1 *2 *3) (-12 (-4 *2 (-1246 *4)) (-5 *1 (-812 *4 *2 *3 *5)) (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-411 *2)))))) +(-10 -7 (-15 -2827 (|#2| |#3|)) (-15 -2828 ((-644 (-2 (|:| |deg| (-774)) (|:| -3689 |#2|))) |#3|)) (-15 -2829 ((-644 (-2 (|:| -4386 |#1|) (|:| -3689 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2835 ((-644 (-2 (|:| |poly| |#2|) (|:| -3689 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2834 ((-644 (-2 (|:| |frac| (-411 |#2|)) (|:| -3689 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1175 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2830 (|#3| |#3| |#2|)) (-15 -2830 (|#3| |#3| (-411 |#2|)))) +((-2831 (((-2 (|:| -2192 (-644 (-411 |#2|))) (|:| -1750 (-692 |#1|))) (-659 |#2| (-411 |#2|)) (-644 (-411 |#2|))) 149) (((-2 (|:| |particular| (-3 (-411 |#2|) #1="failed")) (|:| -2192 (-644 (-411 |#2|)))) (-659 |#2| (-411 |#2|)) (-411 |#2|)) 148) (((-2 (|:| -2192 (-644 (-411 |#2|))) (|:| -1750 (-692 |#1|))) (-658 (-411 |#2|)) (-644 (-411 |#2|))) 143) (((-2 (|:| |particular| (-3 (-411 |#2|) #1#)) (|:| -2192 (-644 (-411 |#2|)))) (-658 (-411 |#2|)) (-411 |#2|)) 141)) (-2832 ((|#2| (-659 |#2| (-411 |#2|))) 89) ((|#2| (-658 (-411 |#2|))) 92))) +(((-813 |#1| |#2|) (-10 -7 (-15 -2831 ((-2 (|:| |particular| (-3 (-411 |#2|) #1="failed")) (|:| -2192 (-644 (-411 |#2|)))) (-658 (-411 |#2|)) (-411 |#2|))) (-15 -2831 ((-2 (|:| -2192 (-644 (-411 |#2|))) (|:| -1750 (-692 |#1|))) (-658 (-411 |#2|)) (-644 (-411 |#2|)))) (-15 -2831 ((-2 (|:| |particular| (-3 (-411 |#2|) #1#)) (|:| -2192 (-644 (-411 |#2|)))) (-659 |#2| (-411 |#2|)) (-411 |#2|))) (-15 -2831 ((-2 (|:| -2192 (-644 (-411 |#2|))) (|:| -1750 (-692 |#1|))) (-659 |#2| (-411 |#2|)) (-644 (-411 |#2|)))) (-15 -2832 (|#2| (-658 (-411 |#2|)))) (-15 -2832 (|#2| (-659 |#2| (-411 |#2|))))) (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550)))) (-1246 |#1|)) (T -813)) +((-2832 (*1 *2 *3) (-12 (-5 *3 (-659 *2 (-411 *2))) (-4 *2 (-1246 *4)) (-5 *1 (-813 *4 *2)) (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-658 (-411 *2))) (-4 *2 (-1246 *4)) (-5 *1 (-813 *4 *2)) (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-411 *6))) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-2 (|:| -2192 (-644 (-411 *6))) (|:| -1750 (-692 *5)))) (-5 *1 (-813 *5 *6)) (-5 *4 (-644 (-411 *6))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-411 *6))) (-5 *4 (-411 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2192 (-644 *4)))) (-5 *1 (-813 *5 *6)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-411 *6))) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-2 (|:| -2192 (-644 (-411 *6))) (|:| -1750 (-692 *5)))) (-5 *1 (-813 *5 *6)) (-5 *4 (-644 (-411 *6))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-411 *6))) (-5 *4 (-411 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2192 (-644 *4)))) (-5 *1 (-813 *5 *6))))) +(-10 -7 (-15 -2831 ((-2 (|:| |particular| (-3 (-411 |#2|) #1="failed")) (|:| -2192 (-644 (-411 |#2|)))) (-658 (-411 |#2|)) (-411 |#2|))) (-15 -2831 ((-2 (|:| -2192 (-644 (-411 |#2|))) (|:| -1750 (-692 |#1|))) (-658 (-411 |#2|)) (-644 (-411 |#2|)))) (-15 -2831 ((-2 (|:| |particular| (-3 (-411 |#2|) #1#)) (|:| -2192 (-644 (-411 |#2|)))) (-659 |#2| (-411 |#2|)) (-411 |#2|))) (-15 -2831 ((-2 (|:| -2192 (-644 (-411 |#2|))) (|:| -1750 (-692 |#1|))) (-659 |#2| (-411 |#2|)) (-644 (-411 |#2|)))) (-15 -2832 (|#2| (-658 (-411 |#2|)))) (-15 -2832 (|#2| (-659 |#2| (-411 |#2|))))) +((-2833 (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#1|))) |#5| |#4|) 52))) +(((-814 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2833 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#1|))) |#5| |#4|))) (-366) (-661 |#1|) (-1246 |#1|) (-727 |#1| |#3|) (-661 |#4|)) (T -814)) +((-2833 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *7 (-1246 *5)) (-4 *4 (-727 *5 *7)) (-5 *2 (-2 (|:| -1750 (-692 *6)) (|:| |vec| (-1270 *5)))) (-5 *1 (-814 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4))))) +(-10 -7 (-15 -2833 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#1|))) |#5| |#4|))) +((-2834 (((-644 (-2 (|:| |frac| (-411 |#2|)) (|:| -3689 (-659 |#2| (-411 |#2|))))) (-659 |#2| (-411 |#2|)) (-1 (-409 |#2|) |#2|)) 47)) (-2836 (((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-409 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|))) 168 (|has| |#1| (-27))) (((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-409 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-644 (-411 |#2|)) (-658 (-411 |#2|))) 170 (|has| |#1| (-27))) (((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-409 |#2|) |#2|)) 38) (((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|)) 39) (((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-409 |#2|) |#2|)) 36) (((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|)) 37)) (-2835 (((-644 (-2 (|:| |poly| |#2|) (|:| -3689 (-659 |#2| (-411 |#2|))))) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|)) 99))) +(((-815 |#1| |#2|) (-10 -7 (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -2834 ((-644 (-2 (|:| |frac| (-411 |#2|)) (|:| -3689 (-659 |#2| (-411 |#2|))))) (-659 |#2| (-411 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2835 ((-644 (-2 (|:| |poly| |#2|) (|:| -3689 (-659 |#2| (-411 |#2|))))) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)))) (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-409 |#2|) |#2|)))) |%noBranch|)) (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550)))) (-1246 |#1|)) (T -815)) +((-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-411 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-659 *5 (-411 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-644 (-411 *5))) (-5 *1 (-815 *4 *5)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-411 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-658 (-411 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-644 (-411 *5))) (-5 *1 (-815 *4 *5)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3689 (-659 *6 (-411 *6)))))) (-5 *1 (-815 *5 *6)) (-5 *3 (-659 *6 (-411 *6))))) (-2834 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-5 *2 (-644 (-2 (|:| |frac| (-411 *6)) (|:| -3689 (-659 *6 (-411 *6)))))) (-5 *1 (-815 *5 *6)) (-5 *3 (-659 *6 (-411 *6))))) (-2836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *7 (-411 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-409 *7) *7)) (-4 *6 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *7 (-1246 *6)) (-5 *2 (-644 (-411 *7))) (-5 *1 (-815 *6 *7)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-411 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6)))) (-2836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 (-411 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-409 *7) *7)) (-4 *6 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *7 (-1246 *6)) (-5 *2 (-644 (-411 *7))) (-5 *1 (-815 *6 *7)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-411 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6))))) +(-10 -7 (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -2834 ((-644 (-2 (|:| |frac| (-411 |#2|)) (|:| -3689 (-659 |#2| (-411 |#2|))))) (-659 |#2| (-411 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2835 ((-644 (-2 (|:| |poly| |#2|) (|:| -3689 (-659 |#2| (-411 |#2|))))) (-659 |#2| (-411 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)))) (-15 -2836 ((-644 (-411 |#2|)) (-658 (-411 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)))) (-15 -2836 ((-644 (-411 |#2|)) (-659 |#2| (-411 |#2|)) (-1 (-409 |#2|) |#2|)))) |%noBranch|)) +((-2837 (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#1|))) (-692 |#2|) (-1270 |#1|)) 110) (((-2 (|:| A (-692 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-692 |#1|)) (|:| |g| (-1270 |#1|)) (|:| -3689 |#2|) (|:| |rh| |#1|))))) (-692 |#1|) (-1270 |#1|)) 15)) (-2838 (((-2 (|:| |particular| (-3 (-1270 |#1|) "failed")) (|:| -2192 (-644 (-1270 |#1|)))) (-692 |#2|) (-1270 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2192 (-644 |#1|))) |#2| |#1|)) 116)) (-4006 (((-3 (-2 (|:| |particular| (-1270 |#1|)) (|:| -2192 (-692 |#1|))) "failed") (-692 |#1|) (-1270 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) "failed") |#2| |#1|)) 52))) +(((-816 |#1| |#2|) (-10 -7 (-15 -2837 ((-2 (|:| A (-692 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-692 |#1|)) (|:| |g| (-1270 |#1|)) (|:| -3689 |#2|) (|:| |rh| |#1|))))) (-692 |#1|) (-1270 |#1|))) (-15 -2837 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#1|))) (-692 |#2|) (-1270 |#1|))) (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#1|)) (|:| -2192 (-692 |#1|))) "failed") (-692 |#1|) (-1270 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -2838 ((-2 (|:| |particular| (-3 (-1270 |#1|) "failed")) (|:| -2192 (-644 (-1270 |#1|)))) (-692 |#2|) (-1270 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2192 (-644 |#1|))) |#2| |#1|)))) (-366) (-661 |#1|)) (T -816)) +((-2838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2192 (-644 *6))) *7 *6)) (-4 *6 (-366)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1270 *6) "failed")) (|:| -2192 (-644 (-1270 *6))))) (-5 *1 (-816 *6 *7)) (-5 *4 (-1270 *6)))) (-4006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2192 (-644 *6))) "failed") *7 *6)) (-4 *6 (-366)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-1270 *6)) (|:| -2192 (-692 *6)))) (-5 *1 (-816 *6 *7)) (-5 *3 (-692 *6)) (-5 *4 (-1270 *6)))) (-2837 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-4 *6 (-661 *5)) (-5 *2 (-2 (|:| -1750 (-692 *6)) (|:| |vec| (-1270 *5)))) (-5 *1 (-816 *5 *6)) (-5 *3 (-692 *6)) (-5 *4 (-1270 *5)))) (-2837 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-5 *2 (-2 (|:| A (-692 *5)) (|:| |eqs| (-644 (-2 (|:| C (-692 *5)) (|:| |g| (-1270 *5)) (|:| -3689 *6) (|:| |rh| *5)))))) (-5 *1 (-816 *5 *6)) (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)) (-4 *6 (-661 *5))))) +(-10 -7 (-15 -2837 ((-2 (|:| A (-692 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-692 |#1|)) (|:| |g| (-1270 |#1|)) (|:| -3689 |#2|) (|:| |rh| |#1|))))) (-692 |#1|) (-1270 |#1|))) (-15 -2837 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#1|))) (-692 |#2|) (-1270 |#1|))) (-15 -4006 ((-3 (-2 (|:| |particular| (-1270 |#1|)) (|:| -2192 (-692 |#1|))) "failed") (-692 |#1|) (-1270 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2192 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -2838 ((-2 (|:| |particular| (-3 (-1270 |#1|) "failed")) (|:| -2192 (-644 (-1270 |#1|)))) (-692 |#2|) (-1270 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2192 (-644 |#1|))) |#2| |#1|)))) +((-2839 (((-692 |#1|) (-644 |#1|) (-774)) 14) (((-692 |#1|) (-644 |#1|)) 15)) (-2840 (((-3 (-1270 |#1|) "failed") |#2| |#1| (-644 |#1|)) 39)) (-3766 (((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)) 46))) +(((-817 |#1| |#2|) (-10 -7 (-15 -2839 ((-692 |#1|) (-644 |#1|))) (-15 -2839 ((-692 |#1|) (-644 |#1|) (-774))) (-15 -2840 ((-3 (-1270 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -3766 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) (-366) (-661 |#1|)) (T -817)) +((-3766 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-366)) (-5 *1 (-817 *2 *3)) (-4 *3 (-661 *2)))) (-2840 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-366)) (-5 *2 (-1270 *4)) (-5 *1 (-817 *4 *3)) (-4 *3 (-661 *4)))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-774)) (-4 *5 (-366)) (-5 *2 (-692 *5)) (-5 *1 (-817 *5 *6)) (-4 *6 (-661 *5)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-366)) (-5 *2 (-692 *4)) (-5 *1 (-817 *4 *5)) (-4 *5 (-661 *4))))) +(-10 -7 (-15 -2839 ((-692 |#1|) (-644 |#1|))) (-15 -2839 ((-692 |#1|) (-644 |#1|) (-774))) (-15 -2840 ((-3 (-1270 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -3766 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) +((-2970 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-3610 (((-112) $) NIL (|has| |#2| (-131)))) (-4141 (($ (-923)) NIL (|has| |#2| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-2807 (($ $ $) NIL (|has| |#2| (-796)))) (-1408 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| |#2| (-371)))) (-4057 (((-550) $) NIL (|has| |#2| (-851)))) (-4221 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-3 (-411 (-550)) #1#) $) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1105)))) (-3578 (((-550) $) NIL (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105)))) (((-411 (-550)) $) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) ((|#2| $) NIL (|has| |#2| (-1105)))) (-2429 (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#2| (-642 (-550))) (|has| |#2| (-1053)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL (|has| |#2| (-1053))) (((-692 |#2|) (-692 $)) NIL (|has| |#2| (-1053)))) (-3892 (((-3 $ "failed") $) NIL (|has| |#2| (-729)))) (-3397 (($) NIL (|has| |#2| (-371)))) (-1686 ((|#2| $ (-550) |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ (-550)) NIL)) (-3608 (((-112) $) NIL (|has| |#2| (-851)))) (-2126 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL (|has| |#2| (-729)))) (-3609 (((-112) $) NIL (|has| |#2| (-851)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3010 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-2130 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#2| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#2| (-1105)))) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-2565 (($ (-923)) NIL (|has| |#2| (-371)))) (-3666 (((-1124) $) NIL (|has| |#2| (-1105)))) (-4234 ((|#2| $) NIL (|has| (-550) (-853)))) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ (-550) |#2|) NIL) ((|#2| $ (-550)) NIL)) (-4270 ((|#2| $ $) NIL (|has| |#2| (-1053)))) (-1571 (($ (-1270 |#2|)) NIL)) (-4345 (((-134)) NIL (|has| |#2| (-366)))) (-4244 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1053)))) (-2127 (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1270 |#2|) $) NIL) (($ (-550)) NIL (-3962 (-12 (|has| |#2| (-1042 (-550))) (|has| |#2| (-1105))) (|has| |#2| (-1053)))) (($ (-411 (-550))) NIL (-12 (|has| |#2| (-1042 (-411 (-550)))) (|has| |#2| (-1105)))) (($ |#2|) NIL (|has| |#2| (-1105))) (((-866) $) NIL (|has| |#2| (-616 (-866))))) (-3532 (((-774)) NIL (|has| |#2| (-1053)) CONST)) (-3664 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-2129 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3809 (($ $) NIL (|has| |#2| (-851)))) (-3512 (($) NIL (|has| |#2| (-131)) CONST)) (-3069 (($) NIL (|has| |#2| (-729)) CONST)) (-3074 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#2| (-904 (-1181))) (|has| |#2| (-1053)))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#2| (-1053))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1053)))) (-2968 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3457 (((-112) $ $) NIL (|has| |#2| (-1105)))) (-3089 (((-112) $ $) NIL (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-3090 (((-112) $ $) 11 (-3962 (|has| |#2| (-796)) (|has| |#2| (-851))))) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $ $) NIL (|has| |#2| (-1053))) (($ $) NIL (|has| |#2| (-1053)))) (-4273 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-774)) NIL (|has| |#2| (-729))) (($ $ (-923)) NIL (|has| |#2| (-729)))) (* (($ (-550) $) NIL (|has| |#2| (-1053))) (($ $ $) NIL (|has| |#2| (-729))) (($ $ |#2|) NIL (|has| |#2| (-729))) (($ |#2| $) NIL (|has| |#2| (-729))) (($ (-774) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-818 |#1| |#2| |#3|) (-239 |#1| |#2|) (-774) (-796) (-1 (-112) (-1270 |#2|) (-1270 |#2|))) (T -818)) +NIL +(-239 |#1| |#2|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1591 (((-644 (-774)) $) NIL) (((-644 (-774)) $ (-1181)) NIL)) (-1625 (((-774) $) NIL) (((-774) $ (-1181)) NIL)) (-3487 (((-644 (-821 (-1181))) $) NIL)) (-3489 (((-1175 $) $ (-821 (-1181))) NIL) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-821 (-1181)))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-1587 (($ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-821 (-1181)) #2#) $) NIL) (((-3 (-1181) #2#) $) NIL) (((-3 (-1129 |#1| (-1181)) #2#) $) NIL)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-821 (-1181)) $) NIL) (((-1181) $) NIL) (((-1129 |#1| (-1181)) $) NIL)) (-4190 (($ $ $ (-821 (-1181))) NIL (|has| |#1| (-173)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ (-821 (-1181))) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-535 (-821 (-1181))) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-821 (-1181)) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-821 (-1181)) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-4205 (((-774) $ (-1181)) NIL) (((-774) $) NIL)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#1|) (-821 (-1181))) NIL) (($ (-1175 $) (-821 (-1181))) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-535 (-821 (-1181)))) NIL) (($ $ (-821 (-1181)) (-774)) NIL) (($ $ (-644 (-821 (-1181))) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-821 (-1181))) NIL)) (-3225 (((-535 (-821 (-1181))) $) NIL) (((-774) $ (-821 (-1181))) NIL) (((-644 (-774)) $ (-644 (-821 (-1181)))) NIL)) (-1772 (($ (-1 (-535 (-821 (-1181))) (-535 (-821 (-1181)))) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-1626 (((-1 $ (-774)) (-1181)) NIL) (((-1 $ (-774)) $) NIL (|has| |#1| (-234)))) (-3488 (((-3 (-821 (-1181)) #3="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-1589 (((-821 (-1181)) $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-1590 (((-112) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-821 (-1181))) (|:| -2566 (-774))) #3#) $) NIL)) (-1588 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-821 (-1181)) |#1|) NIL) (($ $ (-644 (-821 (-1181))) (-644 |#1|)) NIL) (($ $ (-821 (-1181)) $) NIL) (($ $ (-644 (-821 (-1181))) (-644 $)) NIL) (($ $ (-1181) $) NIL (|has| |#1| (-234))) (($ $ (-644 (-1181)) (-644 $)) NIL (|has| |#1| (-234))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-234))) (($ $ (-644 (-1181)) (-644 |#1|)) NIL (|has| |#1| (-234)))) (-4191 (($ $ (-821 (-1181))) NIL (|has| |#1| (-173)))) (-4244 (($ $ (-821 (-1181))) NIL) (($ $ (-644 (-821 (-1181)))) NIL) (($ $ (-821 (-1181)) (-774)) NIL) (($ $ (-644 (-821 (-1181))) (-644 (-774))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1592 (((-644 (-1181)) $) NIL)) (-4382 (((-535 (-821 (-1181))) $) NIL) (((-774) $ (-821 (-1181))) NIL) (((-644 (-774)) $ (-644 (-821 (-1181)))) NIL) (((-774) $ (-1181)) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-821 (-1181)) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-821 (-1181)) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-821 (-1181)) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) NIL (|has| |#1| (-456))) (($ $ (-821 (-1181))) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-821 (-1181))) NIL) (($ (-1181)) NIL) (($ (-1129 |#1| (-1181))) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-535 (-821 (-1181)))) NIL) (($ $ (-821 (-1181)) (-774)) NIL) (($ $ (-644 (-821 (-1181))) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-821 (-1181))) NIL) (($ $ (-644 (-821 (-1181)))) NIL) (($ $ (-821 (-1181)) (-774)) NIL) (($ $ (-644 (-821 (-1181))) (-644 (-774))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-819 |#1|) (-13 (-255 |#1| (-1181) (-821 (-1181)) (-535 (-821 (-1181)))) (-1042 (-1129 |#1| (-1181)))) (-1053)) (T -819)) +NIL +(-13 (-255 |#1| (-1181) (-821 (-1181)) (-535 (-821 (-1181)))) (-1042 (-1129 |#1| (-1181)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#2| (-366)))) (-2243 (($ $) NIL (|has| |#2| (-366)))) (-2241 (((-112) $) NIL (|has| |#2| (-366)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#2| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#2| (-366)))) (-1755 (((-112) $ $) NIL (|has| |#2| (-366)))) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL (|has| |#2| (-366)))) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL (|has| |#2| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#2| (-366)))) (-4157 (((-112) $) NIL (|has| |#2| (-366)))) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL (|has| |#2| (-366)))) (-2071 (($ (-644 $)) NIL (|has| |#2| (-366))) (($ $ $) NIL (|has| |#2| (-366)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 20 (|has| |#2| (-366)))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#2| (-366))) (($ $ $) NIL (|has| |#2| (-366)))) (-4166 (((-409 $) $) NIL (|has| |#2| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#2| (-366)))) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#2| (-366)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-366)))) (-1754 (((-774) $) NIL (|has| |#2| (-366)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-366)))) (-4244 (($ $ (-774)) NIL) (($ $) 13)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-411 (-550))) NIL (|has| |#2| (-366))) (($ $) NIL (|has| |#2| (-366)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#2| (-366)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) 15 (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL) (($ $ (-923)) NIL) (($ $ (-550)) 18 (|has| |#2| (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-411 (-550)) $) NIL (|has| |#2| (-366))) (($ $ (-411 (-550))) NIL (|has| |#2| (-366))))) +(((-820 |#1| |#2| |#3|) (-13 (-111 $ $) (-234) (-494 |#2|) (-10 -7 (IF (|has| |#2| (-366)) (-6 (-366)) |%noBranch|))) (-1105) (-904 |#1|) |#1|) (T -820)) +NIL +(-13 (-111 $ $) (-234) (-494 |#2|) (-10 -7 (IF (|has| |#2| (-366)) (-6 (-366)) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-1625 (((-774) $) NIL)) (-4265 ((|#1| $) 10)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-4205 (((-774) $) 11)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-1626 (($ |#1| (-774)) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4244 (($ $) NIL) (($ $ (-774)) NIL)) (-4380 (((-866) $) NIL) (($ |#1|) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-821 |#1|) (-268 |#1|) (-853)) (T -821)) +NIL +(-268 |#1|) +((-2970 (((-112) $ $) NIL)) (-4368 (((-644 |#1|) $) 38)) (-3542 (((-774) $) NIL)) (-4158 (($) NIL T CONST)) (-4373 (((-3 $ #1="failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-4232 (($ $) 42)) (-3892 (((-3 $ "failed") $) NIL)) (-1920 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2575 (((-112) $) NIL)) (-2446 ((|#1| $ (-550)) NIL)) (-2447 (((-774) $ (-550)) NIL)) (-4370 (($ $) 54)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-2438 (($ (-1 |#1| |#1|) $) NIL)) (-2439 (($ (-1 (-774) (-774)) $) NIL)) (-4374 (((-3 $ #1#) $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2841 (((-112) $ $) 51)) (-4267 (((-774) $) 34)) (-3665 (((-1163) $) NIL)) (-1921 (($ $ $) NIL)) (-1922 (($ $ $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 ((|#1| $) 41)) (-1956 (((-644 (-2 (|:| |gen| |#1|) (|:| -4377 (-774)))) $) NIL)) (-3284 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL)) (-2967 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4380 (((-866) $) NIL) (($ |#1|) NIL)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 20 T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 53)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ |#1| (-774)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-822 |#1|) (-13 (-389 |#1|) (-849) (-10 -8 (-15 -4234 (|#1| $)) (-15 -4232 ($ $)) (-15 -4370 ($ $)) (-15 -2841 ((-112) $ $)) (-15 -4374 ((-3 $ "failed") $ |#1|)) (-15 -4373 ((-3 $ "failed") $ |#1|)) (-15 -2967 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4267 ((-774) $)) (-15 -4368 ((-644 |#1|) $)))) (-853)) (T -822)) +((-4234 (*1 *2 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) (-4232 (*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) (-4370 (*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) (-2841 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822 *3)) (-4 *3 (-853)))) (-4374 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) (-4373 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) (-2967 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-822 *3)) (|:| |rm| (-822 *3)))) (-5 *1 (-822 *3)) (-4 *3 (-853)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-822 *3)) (-4 *3 (-853)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-822 *3)) (-4 *3 (-853))))) +(-13 (-389 |#1|) (-849) (-10 -8 (-15 -4234 (|#1| $)) (-15 -4232 ($ $)) (-15 -4370 ($ $)) (-15 -2841 ((-112) $ $)) (-15 -4374 ((-3 $ "failed") $ |#1|)) (-15 -4373 ((-3 $ "failed") $ |#1|)) (-15 -2967 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4267 ((-774) $)) (-15 -4368 ((-644 |#1|) $)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4057 (((-550) $) 59)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-3608 (((-112) $) 57)) (-2575 (((-112) $) 35)) (-3609 (((-112) $) 58)) (-2936 (($ $ $) 56)) (-3262 (($ $ $) 55)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ $) 48)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3809 (($ $) 60)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 53)) (-2969 (((-112) $ $) 52)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 54)) (-3090 (((-112) $ $) 51)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) (((-823) (-140)) (T -823)) -((-2900 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *4 (-112)) (-5 *2 (-1275)))) (-2900 (*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *2 (-1275)))) (-2900 (*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1162)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1162))))) -(-13 (-10 -8 (-15 -2900 ((-1162) $)) (-15 -2900 ((-1162) $ (-112))) (-15 -2900 ((-1275) (-825) $)) (-15 -2900 ((-1275) (-825) $ (-112))))) -((-2840 (($ (-1123)) 7)) (-2844 (((-112) $ (-1162) (-1123)) 15)) (-2843 (((-825) $) 12)) (-2842 (((-825) $) 11)) (-2841 (((-1275) $) 9)) (-2845 (((-112) $ (-1123)) 16))) -(((-824) (-10 -8 (-15 -2840 ($ (-1123))) (-15 -2841 ((-1275) $)) (-15 -2842 ((-825) $)) (-15 -2843 ((-825) $)) (-15 -2844 ((-112) $ (-1162) (-1123))) (-15 -2845 ((-112) $ (-1123))))) (T -824)) -((-2845 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-824)))) (-2844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-1123)) (-5 *2 (-112)) (-5 *1 (-824)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-824)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-824))))) -(-10 -8 (-15 -2840 ($ (-1123))) (-15 -2841 ((-1275) $)) (-15 -2842 ((-825) $)) (-15 -2843 ((-825) $)) (-15 -2844 ((-112) $ (-1162) (-1123))) (-15 -2845 ((-112) $ (-1123)))) -((-2849 (((-1275) $ (-826)) 12)) (-2866 (((-1275) $ (-1180)) 32)) (-2868 (((-1275) $ (-1162) (-1162)) 34)) (-2867 (((-1275) $ (-1162)) 33)) (-2856 (((-1275) $) 19)) (-2864 (((-1275) $ (-549)) 28)) (-2865 (((-1275) $ (-225)) 30)) (-2855 (((-1275) $) 18)) (-2863 (((-1275) $) 26)) (-2862 (((-1275) $) 25)) (-2860 (((-1275) $) 23)) (-2861 (((-1275) $) 24)) (-2859 (((-1275) $) 22)) (-2858 (((-1275) $) 21)) (-2857 (((-1275) $) 20)) (-2853 (((-1275) $) 16)) (-2854 (((-1275) $) 17)) (-2852 (((-1275) $) 15)) (-2851 (((-1275) $) 14)) (-2850 (((-1275) $) 13)) (-2847 (($ (-1162) (-826)) 9)) (-2846 (($ (-1162) (-1162) (-826)) 8)) (-2885 (((-1180) $) 51)) (-2888 (((-1180) $) 55)) (-2887 (((-2 (|:| |cd| (-1162)) (|:| -3973 (-1162))) $) 54)) (-2886 (((-1162) $) 52)) (-2875 (((-1275) $) 41)) (-2883 (((-549) $) 49)) (-2884 (((-225) $) 50)) (-2874 (((-1275) $) 40)) (-2882 (((-1275) $) 48)) (-2881 (((-1275) $) 47)) (-2879 (((-1275) $) 45)) (-2880 (((-1275) $) 46)) (-2878 (((-1275) $) 44)) (-2877 (((-1275) $) 43)) (-2876 (((-1275) $) 42)) (-2872 (((-1275) $) 38)) (-2873 (((-1275) $) 39)) (-2871 (((-1275) $) 37)) (-2870 (((-1275) $) 36)) (-2869 (((-1275) $) 35)) (-2848 (((-1275) $) 11))) -(((-825) (-10 -8 (-15 -2846 ($ (-1162) (-1162) (-826))) (-15 -2847 ($ (-1162) (-826))) (-15 -2848 ((-1275) $)) (-15 -2849 ((-1275) $ (-826))) (-15 -2850 ((-1275) $)) (-15 -2851 ((-1275) $)) (-15 -2852 ((-1275) $)) (-15 -2853 ((-1275) $)) (-15 -2854 ((-1275) $)) (-15 -2855 ((-1275) $)) (-15 -2856 ((-1275) $)) (-15 -2857 ((-1275) $)) (-15 -2858 ((-1275) $)) (-15 -2859 ((-1275) $)) (-15 -2860 ((-1275) $)) (-15 -2861 ((-1275) $)) (-15 -2862 ((-1275) $)) (-15 -2863 ((-1275) $)) (-15 -2864 ((-1275) $ (-549))) (-15 -2865 ((-1275) $ (-225))) (-15 -2866 ((-1275) $ (-1180))) (-15 -2867 ((-1275) $ (-1162))) (-15 -2868 ((-1275) $ (-1162) (-1162))) (-15 -2869 ((-1275) $)) (-15 -2870 ((-1275) $)) (-15 -2871 ((-1275) $)) (-15 -2872 ((-1275) $)) (-15 -2873 ((-1275) $)) (-15 -2874 ((-1275) $)) (-15 -2875 ((-1275) $)) (-15 -2876 ((-1275) $)) (-15 -2877 ((-1275) $)) (-15 -2878 ((-1275) $)) (-15 -2879 ((-1275) $)) (-15 -2880 ((-1275) $)) (-15 -2881 ((-1275) $)) (-15 -2882 ((-1275) $)) (-15 -2883 ((-549) $)) (-15 -2884 ((-225) $)) (-15 -2885 ((-1180) $)) (-15 -2886 ((-1162) $)) (-15 -2887 ((-2 (|:| |cd| (-1162)) (|:| -3973 (-1162))) $)) (-15 -2888 ((-1180) $)))) (T -825)) -((-2888 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1162)) (|:| -3973 (-1162)))) (-5 *1 (-825)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-825)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-825)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-825)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2865 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2849 (*1 *2 *1 *3) (-12 (-5 *3 (-826)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2847 (*1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825)))) (-2846 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825))))) -(-10 -8 (-15 -2846 ($ (-1162) (-1162) (-826))) (-15 -2847 ($ (-1162) (-826))) (-15 -2848 ((-1275) $)) (-15 -2849 ((-1275) $ (-826))) (-15 -2850 ((-1275) $)) (-15 -2851 ((-1275) $)) (-15 -2852 ((-1275) $)) (-15 -2853 ((-1275) $)) (-15 -2854 ((-1275) $)) (-15 -2855 ((-1275) $)) (-15 -2856 ((-1275) $)) (-15 -2857 ((-1275) $)) (-15 -2858 ((-1275) $)) (-15 -2859 ((-1275) $)) (-15 -2860 ((-1275) $)) (-15 -2861 ((-1275) $)) (-15 -2862 ((-1275) $)) (-15 -2863 ((-1275) $)) (-15 -2864 ((-1275) $ (-549))) (-15 -2865 ((-1275) $ (-225))) (-15 -2866 ((-1275) $ (-1180))) (-15 -2867 ((-1275) $ (-1162))) (-15 -2868 ((-1275) $ (-1162) (-1162))) (-15 -2869 ((-1275) $)) (-15 -2870 ((-1275) $)) (-15 -2871 ((-1275) $)) (-15 -2872 ((-1275) $)) (-15 -2873 ((-1275) $)) (-15 -2874 ((-1275) $)) (-15 -2875 ((-1275) $)) (-15 -2876 ((-1275) $)) (-15 -2877 ((-1275) $)) (-15 -2878 ((-1275) $)) (-15 -2879 ((-1275) $)) (-15 -2880 ((-1275) $)) (-15 -2881 ((-1275) $)) (-15 -2882 ((-1275) $)) (-15 -2883 ((-549) $)) (-15 -2884 ((-225) $)) (-15 -2885 ((-1180) $)) (-15 -2886 ((-1162) $)) (-15 -2887 ((-2 (|:| |cd| (-1162)) (|:| -3973 (-1162))) $)) (-15 -2888 ((-1180) $))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 13)) (-3662 (((-112) $ $) NIL)) (-2891 (($) 16)) (-2892 (($) 14)) (-2890 (($) 17)) (-2889 (($) 15)) (-3455 (((-112) $ $) 9))) -(((-826) (-13 (-1104) (-10 -8 (-15 -2892 ($)) (-15 -2891 ($)) (-15 -2890 ($)) (-15 -2889 ($))))) (T -826)) -((-2892 (*1 *1) (-5 *1 (-826))) (-2891 (*1 *1) (-5 *1 (-826))) (-2890 (*1 *1) (-5 *1 (-826))) (-2889 (*1 *1) (-5 *1 (-826)))) -(-13 (-1104) (-10 -8 (-15 -2892 ($)) (-15 -2891 ($)) (-15 -2890 ($)) (-15 -2889 ($)))) -((-2968 (((-112) $ $) NIL)) (-2893 (($ (-828) (-643 (-1180))) 32)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2895 (((-828) $) 33)) (-2894 (((-643 (-1180)) $) 34)) (-4378 (((-865) $) 31)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-827) (-13 (-1104) (-10 -8 (-15 -2895 ((-828) $)) (-15 -2894 ((-643 (-1180)) $)) (-15 -2893 ($ (-828) (-643 (-1180))))))) (T -827)) -((-2895 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-827)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-828)) (-5 *3 (-643 (-1180))) (-5 *1 (-827))))) -(-13 (-1104) (-10 -8 (-15 -2895 ((-828) $)) (-15 -2894 ((-643 (-1180)) $)) (-15 -2893 ($ (-828) (-643 (-1180)))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 23) (($ (-1180)) 19)) (-3662 (((-112) $ $) NIL)) (-2897 (((-112) $) 10)) (-2898 (((-112) $) 9)) (-2896 (((-112) $) 11)) (-2899 (((-112) $) 8)) (-3455 (((-112) $ $) 21))) -(((-828) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -2899 ((-112) $)) (-15 -2898 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2896 ((-112) $))))) (T -828)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-828)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) -(-13 (-1104) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -2899 ((-112) $)) (-15 -2898 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2896 ((-112) $)))) -((-2900 (((-1275) (-825) (-315 |#1|) (-112)) 23) (((-1275) (-825) (-315 |#1|)) 89) (((-1162) (-315 |#1|) (-112)) 88) (((-1162) (-315 |#1|)) 87))) -(((-829 |#1|) (-10 -7 (-15 -2900 ((-1162) (-315 |#1|))) (-15 -2900 ((-1162) (-315 |#1|) (-112))) (-15 -2900 ((-1275) (-825) (-315 |#1|))) (-15 -2900 ((-1275) (-825) (-315 |#1|) (-112)))) (-13 (-823) (-1052))) (T -829)) -((-2900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-825)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-823) (-1052))) (-5 *2 (-1275)) (-5 *1 (-829 *6)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-823) (-1052))) (-5 *2 (-1275)) (-5 *1 (-829 *5)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-1052))) (-5 *2 (-1162)) (-5 *1 (-829 *5)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-1052))) (-5 *2 (-1162)) (-5 *1 (-829 *4))))) -(-10 -7 (-15 -2900 ((-1162) (-315 |#1|))) (-15 -2900 ((-1162) (-315 |#1|) (-112))) (-15 -2900 ((-1275) (-825) (-315 |#1|))) (-15 -2900 ((-1275) (-825) (-315 |#1|) (-112)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2901 ((|#1| $) 10)) (-2902 (($ |#1|) 9)) (-2573 (((-112) $) NIL)) (-3294 (($ |#2| (-773)) NIL)) (-3223 (((-773) $) NIL)) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4242 (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-4380 (((-773) $) NIL)) (-4378 (((-865) $) 17) (($ (-549)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4109 ((|#2| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-830 |#1| |#2|) (-13 (-710 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2902 ($ |#1|)) (-15 -2901 (|#1| $)))) (-710 |#2|) (-1052)) (T -830)) -((-2902 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-830 *2 *3)) (-4 *2 (-710 *3)))) (-2901 (*1 *2 *1) (-12 (-4 *2 (-710 *3)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1052))))) -(-13 (-710 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2902 ($ |#1|)) (-15 -2901 (|#1| $)))) -((-2910 (((-312) (-1162) (-1162)) 12)) (-2909 (((-112) (-1162) (-1162)) 34)) (-2908 (((-112) (-1162)) 33)) (-2905 (((-51) (-1162)) 25)) (-2904 (((-51) (-1162)) 23)) (-2903 (((-51) (-825)) 17)) (-2907 (((-643 (-1162)) (-1162)) 28)) (-2906 (((-643 (-1162))) 27))) -(((-831) (-10 -7 (-15 -2903 ((-51) (-825))) (-15 -2904 ((-51) (-1162))) (-15 -2905 ((-51) (-1162))) (-15 -2906 ((-643 (-1162)))) (-15 -2907 ((-643 (-1162)) (-1162))) (-15 -2908 ((-112) (-1162))) (-15 -2909 ((-112) (-1162) (-1162))) (-15 -2910 ((-312) (-1162) (-1162))))) (T -831)) -((-2910 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-831)))) (-2909 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831)))) (-2907 (*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831)) (-5 *3 (-1162)))) (-2906 (*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-51)) (-5 *1 (-831))))) -(-10 -7 (-15 -2903 ((-51) (-825))) (-15 -2904 ((-51) (-1162))) (-15 -2905 ((-51) (-1162))) (-15 -2906 ((-643 (-1162)))) (-15 -2907 ((-643 (-1162)) (-1162))) (-15 -2908 ((-112) (-1162))) (-15 -2909 ((-112) (-1162) (-1162))) (-15 -2910 ((-312) (-1162) (-1162)))) -((-2968 (((-112) $ $) 19)) (-3654 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3656 (($ $ $) 73)) (-3655 (((-112) $ $) 74)) (-1309 (((-112) $ (-773)) 8)) (-3659 (($ (-643 |#1|)) 69) (($) 68)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 63)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 65)) (-4151 (((-112) $ (-773)) 9)) (-2934 ((|#1| $) 79)) (-3259 (($ $ $) 82)) (-3941 (($ $ $) 81)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3260 ((|#1| $) 80)) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22)) (-3658 (($ $ $) 70)) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41) (($ |#1| $ (-773)) 64)) (-3664 (((-1123) $) 21)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 62)) (-3657 (($ $ |#1|) 72) (($ $ $) 71)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18)) (-3660 (($ (-643 |#1|)) 67) (($) 66)) (-3662 (((-112) $ $) 23)) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-832 |#1|) (-140) (-852)) (T -832)) -((-2934 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-852))))) -(-13 (-739 |t#1|) (-971 |t#1|) (-10 -8 (-15 -2934 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-697 |#1|) . T) ((-739 |#1|) . T) ((-971 |#1|) . T) ((-1102 |#1|) . T) ((-1104) . T) ((-1219) . T)) -((-2913 (((-1275) (-1123) (-1123)) 48)) (-2912 (((-1275) (-824) (-51)) 45)) (-2911 (((-51) (-824)) 16))) -(((-833) (-10 -7 (-15 -2911 ((-51) (-824))) (-15 -2912 ((-1275) (-824) (-51))) (-15 -2913 ((-1275) (-1123) (-1123))))) (T -833)) -((-2913 (*1 *2 *3 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1275)) (-5 *1 (-833)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-51)) (-5 *2 (-1275)) (-5 *1 (-833)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-51)) (-5 *1 (-833))))) -(-10 -7 (-15 -2911 ((-51) (-824))) (-15 -2912 ((-1275) (-824) (-51))) (-15 -2913 ((-1275) (-1123) (-1123)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL (|has| |#1| (-21)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4055 (((-549) $) NIL (|has| |#1| (-850)))) (-4156 (($) NIL (|has| |#1| (-21)) CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 15)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 9)) (-3890 (((-3 $ "failed") $) 42 (|has| |#1| (-850)))) (-3425 (((-3 (-410 (-549)) "failed") $) 52 (|has| |#1| (-548)))) (-3424 (((-112) $) 46 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 49 (|has| |#1| (-548)))) (-3606 (((-112) $) NIL (|has| |#1| (-850)))) (-2573 (((-112) $) NIL (|has| |#1| (-850)))) (-3607 (((-112) $) NIL (|has| |#1| (-850)))) (-2934 (($ $ $) NIL (|has| |#1| (-850)))) (-3260 (($ $ $) NIL (|has| |#1| (-850)))) (-3663 (((-1162) $) NIL)) (-2914 (($) 13)) (-2927 (((-112) $) 12)) (-3664 (((-1123) $) NIL)) (-2928 (((-112) $) 11)) (-4378 (((-865) $) 18) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))))) (-3530 (((-773)) 36 (|has| |#1| (-850)) CONST)) (-3662 (((-112) $ $) 54)) (-3807 (($ $) NIL (|has| |#1| (-850)))) (-3510 (($) 23 (|has| |#1| (-21)) CONST)) (-3067 (($) 33 (|has| |#1| (-850)) CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3455 (((-112) $ $) 21)) (-3087 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3088 (((-112) $ $) 45 (|has| |#1| (-850)))) (-4269 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4271 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-850))) (($ $ (-773)) NIL (|has| |#1| (-850)))) (* (($ $ $) 39 (|has| |#1| (-850))) (($ (-549) $) 27 (|has| |#1| (-21))) (($ (-773) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21))))) -(((-834 |#1|) (-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2914 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) (-1104)) (T -834)) -((-2914 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1104)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104))))) -(-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2914 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) -((-4390 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13))) -(((-835 |#1| |#2|) (-10 -7 (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1104) (-1104)) (T -835)) -((-4390 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *1 (-835 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-834 *6)) (-5 *1 (-835 *5 *6))))) -(-10 -7 (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3576 ((|#1| $) NIL) (((-113) $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2916 ((|#1| (-113) |#1|) NIL)) (-2573 (((-112) $) NIL)) (-2915 (($ |#1| (-363 (-113))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2917 (($ $ (-1 |#1| |#1|)) NIL)) (-2918 (($ $ (-1 |#1| |#1|)) NIL)) (-4231 ((|#1| $ |#1|) NIL)) (-2919 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2920 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ (-113) (-549)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-836 |#1|) (-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#1| |#1|))) (-15 -2917 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#1| (-113) |#1|)) (-15 -2915 ($ |#1| (-363 (-113)))))) (-1052)) (T -836)) -((-2920 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) (-2920 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) (-2919 (*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) (-2918 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-5 *1 (-836 *4)) (-4 *4 (-1052)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-836 *3)) (-4 *3 (-1052)))) (-2916 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-836 *2)) (-4 *2 (-1052)))) (-2915 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-113))) (-5 *1 (-836 *2)) (-4 *2 (-1052))))) -(-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#1| |#1|))) (-15 -2917 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#1| (-113) |#1|)) (-15 -2915 ($ |#1| (-363 (-113)))))) -((-3035 (((-112) $ |#2|) 14)) (-4378 (((-865) $) 11))) -(((-837 |#1| |#2|) (-10 -8 (-15 -3035 ((-112) |#1| |#2|)) (-15 -4378 ((-865) |#1|))) (-838 |#2|) (-1104)) (T -837)) -NIL -(-10 -8 (-15 -3035 ((-112) |#1| |#2|)) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3973 ((|#1| $) 16)) (-3663 (((-1162) $) 10)) (-3035 (((-112) $ |#1|) 14)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2921 (((-55) $) 15)) (-3455 (((-112) $ $) 6))) -(((-838 |#1|) (-140) (-1104)) (T -838)) -((-3973 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1104)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-55)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(-13 (-1104) (-10 -8 (-15 -3973 (|t#1| $)) (-15 -2921 ((-55) $)) (-15 -3035 ((-112) $ |t#1|)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2922 (((-214 (-505)) (-1162)) 9))) -(((-839) (-10 -7 (-15 -2922 ((-214 (-505)) (-1162))))) (T -839)) -((-2922 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-214 (-505))) (-5 *1 (-839))))) -(-10 -7 (-15 -2922 ((-214 (-505)) (-1162)))) -((-2968 (((-112) $ $) NIL)) (-3740 (((-1118) $) 10)) (-3973 (((-509) $) 9)) (-3663 (((-1162) $) NIL)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-3953 (($ (-509) (-1118)) 8)) (-4378 (((-865) $) 25)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) 20)) (-3455 (((-112) $ $) 12))) -(((-840) (-13 (-838 (-509)) (-10 -8 (-15 -3740 ((-1118) $)) (-15 -3953 ($ (-509) (-1118)))))) (T -840)) -((-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-840)))) (-3953 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-840))))) -(-13 (-838 (-509)) (-10 -8 (-15 -3740 ((-1118) $)) (-15 -3953 ($ (-509) (-1118))))) -((-2968 (((-112) $ $) 7)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 15) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 14)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 17) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 16)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-841) (-140)) (T -841)) -((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-841)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-841)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-2923 (*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-1038)))) (-2923 (*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *3 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *2 (-1038))))) -(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -2923 ((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -2923 ((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2924 (((-1038) (-643 (-315 (-380))) (-643 (-380))) 169) (((-1038) (-315 (-380)) (-643 (-380))) 167) (((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-844 (-380)))) 165) (((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-315 (-380))) (-643 (-844 (-380)))) 163) (((-1038) (-843)) 128) (((-1038) (-843) (-1066)) 127)) (-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843) (-1066)) 88) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843)) 90)) (-2925 (((-1038) (-643 (-315 (-380))) (-643 (-380))) 170) (((-1038) (-843)) 153))) -(((-842) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843) (-1066))) (-15 -2924 ((-1038) (-843) (-1066))) (-15 -2924 ((-1038) (-843))) (-15 -2925 ((-1038) (-843))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-315 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)))) (-15 -2924 ((-1038) (-643 (-315 (-380))) (-643 (-380)))) (-15 -2925 ((-1038) (-643 (-315 (-380))) (-643 (-380)))))) (T -842)) -((-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) (-5 *6 (-643 (-315 (-380)))) (-5 *3 (-315 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-842)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-842)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-842))))) -(-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843) (-1066))) (-15 -2924 ((-1038) (-843) (-1066))) (-15 -2924 ((-1038) (-843))) (-15 -2925 ((-1038) (-843))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-315 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)))) (-15 -2924 ((-1038) (-643 (-315 (-380))) (-643 (-380)))) (-15 -2925 ((-1038) (-643 (-315 (-380))) (-643 (-380))))) -((-2968 (((-112) $ $) NIL)) (-3576 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) $) 21)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-843) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -4378 ($ (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4378 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))))) (-15 -3576 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) $))))) (T -843)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *1 (-843)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *1 (-843)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) (-5 *1 (-843)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) (-5 *1 (-843))))) -(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -4378 ($ (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4378 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))))) (-15 -3576 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL (|has| |#1| (-21)))) (-2926 (((-1123) $) 31)) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4055 (((-549) $) NIL (|has| |#1| (-850)))) (-4156 (($) NIL (|has| |#1| (-21)) CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 18)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 9)) (-3890 (((-3 $ "failed") $) 58 (|has| |#1| (-850)))) (-3425 (((-3 (-410 (-549)) "failed") $) 65 (|has| |#1| (-548)))) (-3424 (((-112) $) 60 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 63 (|has| |#1| (-548)))) (-3606 (((-112) $) NIL (|has| |#1| (-850)))) (-2930 (($) 14)) (-2573 (((-112) $) NIL (|has| |#1| (-850)))) (-3607 (((-112) $) NIL (|has| |#1| (-850)))) (-2929 (($) 16)) (-2934 (($ $ $) NIL (|has| |#1| (-850)))) (-3260 (($ $ $) NIL (|has| |#1| (-850)))) (-3663 (((-1162) $) NIL)) (-2927 (((-112) $) 12)) (-3664 (((-1123) $) NIL)) (-2928 (((-112) $) 11)) (-4378 (((-865) $) 24) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))))) (-3530 (((-773)) 51 (|has| |#1| (-850)) CONST)) (-3662 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-850)))) (-3510 (($) 37 (|has| |#1| (-21)) CONST)) (-3067 (($) 48 (|has| |#1| (-850)) CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3455 (((-112) $ $) 35)) (-3087 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3088 (((-112) $ $) 59 (|has| |#1| (-850)))) (-4269 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4271 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-850))) (($ $ (-773)) NIL (|has| |#1| (-850)))) (* (($ $ $) 55 (|has| |#1| (-850))) (($ (-549) $) 42 (|has| |#1| (-21))) (($ (-773) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21))))) -(((-844 |#1|) (-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2930 ($)) (-15 -2929 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (-15 -2926 ((-1123) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) (-1104)) (T -844)) -((-2930 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104)))) (-2929 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-844 *3)) (-4 *3 (-1104)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104))))) -(-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2930 ($)) (-15 -2929 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (-15 -2926 ((-1123) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) -((-4390 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14))) -(((-845 |#1| |#2|) (-10 -7 (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1104) (-1104)) (T -845)) -((-4390 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *1 (-845 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-844 *6)) (-5 *1 (-845 *5 *6))))) -(-10 -7 (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) -((-2968 (((-112) $ $) 7)) (-3540 (((-773)) 23)) (-3395 (($) 26)) (-2934 (($ $ $) 14) (($) 22 T CONST)) (-3260 (($ $ $) 15) (($) 21 T CONST)) (-2188 (((-922) $) 25)) (-3663 (((-1162) $) 10)) (-2563 (($ (-922)) 24)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19))) -(((-846) (-140)) (T -846)) -((-2934 (*1 *1) (-4 *1 (-846))) (-3260 (*1 *1) (-4 *1 (-846)))) -(-13 (-852) (-370) (-10 -8 (-15 -2934 ($) -4384) (-15 -3260 ($) -4384))) -(((-102) . T) ((-615 (-865)) . T) ((-370) . T) ((-852) . T) ((-1104) . T)) -((-2932 (((-112) (-1269 |#2|) (-1269 |#2|)) 23)) (-2933 (((-112) (-1269 |#2|) (-1269 |#2|)) 24)) (-2931 (((-112) (-1269 |#2|) (-1269 |#2|)) 20))) -(((-847 |#1| |#2|) (-10 -7 (-15 -2931 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2932 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2933 ((-112) (-1269 |#2|) (-1269 |#2|)))) (-773) (-794)) (T -847)) -((-2933 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) (-14 *4 (-773)))) (-2932 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) (-14 *4 (-773)))) (-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) (-14 *4 (-773))))) -(-10 -7 (-15 -2931 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2932 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2933 ((-112) (-1269 |#2|) (-1269 |#2|)))) -((-2968 (((-112) $ $) 7)) (-4156 (($) 24 T CONST)) (-3890 (((-3 $ "failed") $) 27)) (-2573 (((-112) $) 25)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (** (($ $ (-922)) 22) (($ $ (-773)) 26)) (* (($ $ $) 21))) -(((-848) (-140)) (T -848)) -NIL -(-13 (-859) (-728)) -(((-102) . T) ((-615 (-865)) . T) ((-728) . T) ((-859) . T) ((-852) . T) ((-1115) . T) ((-1104) . T)) -((-4055 (((-549) $) 21)) (-3606 (((-112) $) 10)) (-3607 (((-112) $) 12)) (-3807 (($ $) 23))) -(((-849 |#1|) (-10 -8 (-15 -3807 (|#1| |#1|)) (-15 -4055 ((-549) |#1|)) (-15 -3607 ((-112) |#1|)) (-15 -3606 ((-112) |#1|))) (-850)) (T -849)) -NIL -(-10 -8 (-15 -3807 (|#1| |#1|)) (-15 -4055 ((-549) |#1|)) (-15 -3607 ((-112) |#1|)) (-15 -3606 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-1407 (((-3 $ "failed") $ $) 27)) (-4055 (((-549) $) 37)) (-4156 (($) 24 T CONST)) (-3890 (((-3 $ "failed") $) 42)) (-3606 (((-112) $) 39)) (-2573 (((-112) $) 44)) (-3607 (((-112) $) 38)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 46)) (-3530 (((-773)) 47 T CONST)) (-3662 (((-112) $ $) 9)) (-3807 (($ $) 36)) (-3510 (($) 23 T CONST)) (-3067 (($) 45 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4269 (($ $ $) 31) (($ $) 30)) (-4271 (($ $ $) 21)) (** (($ $ (-773)) 43) (($ $ (-922)) 40)) (* (($ (-922) $) 22) (($ (-773) $) 26) (($ (-549) $) 29) (($ $ $) 41))) -(((-850) (-140)) (T -850)) -((-3606 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-549)))) (-3807 (*1 *1 *1) (-4 *1 (-850)))) -(-13 (-793) (-1052) (-728) (-10 -8 (-15 -3606 ((-112) $)) (-15 -3607 ((-112) $)) (-15 -4055 ((-549) $)) (-15 -3807 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-852) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2934 (($ $ $) 12)) (-3260 (($ $ $) 11)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 15)) (-2967 (((-112) $ $) 13)) (-3087 (((-112) $ $) 16))) -(((-851 |#1|) (-10 -8 (-15 -2934 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3087 ((-112) |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2967 ((-112) |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) (-852)) (T -851)) -NIL -(-10 -8 (-15 -2934 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3087 ((-112) |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2967 ((-112) |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19))) -(((-852) (-140)) (T -852)) -((-3088 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-2967 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-3087 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-3260 (*1 *1 *1 *1) (-4 *1 (-852))) (-2934 (*1 *1 *1 *1) (-4 *1 (-852)))) -(-13 (-1104) (-10 -8 (-15 -3088 ((-112) $ $)) (-15 -2967 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -3087 ((-112) $ $)) (-15 -3260 ($ $ $)) (-15 -2934 ($ $ $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2939 (($ $ $) 49)) (-2940 (($ $ $) 48)) (-2941 (($ $ $) 46)) (-2937 (($ $ $) 55)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 50)) (-2938 (((-3 $ "failed") $ $) 53)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 29)) (-3926 (($ $) 39)) (-2945 (($ $ $) 43)) (-2946 (($ $ $) 42)) (-2935 (($ $ $) 51)) (-2943 (($ $ $) 57)) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 45)) (-2944 (((-3 $ "failed") $ $) 52)) (-3889 (((-3 $ "failed") $ |#2|) 32)) (-3220 ((|#2| $) 36)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ |#2|) 13)) (-4249 (((-643 |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-853 |#1| |#2|) (-10 -8 (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4378 ((-865) |#1|))) (-854 |#2|) (-1052)) (T -853)) -NIL -(-10 -8 (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2939 (($ $ $) 50 (|has| |#1| (-365)))) (-2940 (($ $ $) 51 (|has| |#1| (-365)))) (-2941 (($ $ $) 53 (|has| |#1| (-365)))) (-2937 (($ $ $) 48 (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 47 (|has| |#1| (-365)))) (-2938 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 52 (|has| |#1| (-365)))) (-3577 (((-3 (-549) #1="failed") $) 80 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 77 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 74)) (-3576 (((-549) $) 79 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 76 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 75)) (-4391 (($ $) 69)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 60 (|has| |#1| (-455)))) (-2573 (((-112) $) 35)) (-3294 (($ |#1| (-773)) 67)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 62 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63 (|has| |#1| (-560)))) (-3223 (((-773) $) 71)) (-2945 (($ $ $) 57 (|has| |#1| (-365)))) (-2946 (($ $ $) 58 (|has| |#1| (-365)))) (-2935 (($ $ $) 46 (|has| |#1| (-365)))) (-2943 (($ $ $) 55 (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 54 (|has| |#1| (-365)))) (-2944 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 59 (|has| |#1| (-365)))) (-3594 ((|#1| $) 70)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-560)))) (-4380 (((-773) $) 72)) (-3220 ((|#1| $) 61 (|has| |#1| (-455)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 78 (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 73)) (-4249 (((-643 |#1|) $) 66)) (-4109 ((|#1| $ (-773)) 68)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2948 ((|#1| $ |#1| |#1|) 65)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-854 |#1|) (-140) (-1052)) (T -854)) -((-4380 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-643 *3)))) (-2948 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-2949 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-2950 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-2946 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2945 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2944 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2943 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2942 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) (-4 *1 (-854 *3)))) (-2941 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-2940 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2939 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2938 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) (-4 *1 (-854 *3)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(-13 (-1052) (-111 |t#1| |t#1|) (-415 |t#1|) (-10 -8 (-15 -4380 ((-773) $)) (-15 -3223 ((-773) $)) (-15 -3594 (|t#1| $)) (-15 -4391 ($ $)) (-15 -4109 (|t#1| $ (-773))) (-15 -3294 ($ |t#1| (-773))) (-15 -4249 ((-643 |t#1|) $)) (-15 -2948 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-15 -3889 ((-3 $ "failed") $ |t#1|)) (-15 -2949 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2950 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3220 (|t#1| $)) (-15 -3926 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2951 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2946 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -2944 ((-3 $ "failed") $ $)) (-15 -2943 ($ $ $)) (-15 -2942 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $)) (-15 -2941 ($ $ $)) (-15 -2952 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2940 ($ $ $)) (-15 -2939 ($ $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -2937 ($ $ $)) (-15 -2936 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $)) (-15 -2935 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-415 |#1|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2947 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2952 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-2950 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-560)))) (-2951 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-2948 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-855 |#1| |#2|) (-10 -7 (-15 -2947 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2948 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-560)) (PROGN (-15 -2949 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2950 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2951 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2952 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1052) (-854 |#1|)) (T -855)) -((-2952 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2951 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2950 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2949 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2948 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-855 *2 *3)) (-4 *3 (-854 *2)))) (-2947 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1052)) (-5 *1 (-855 *5 *2)) (-4 *2 (-854 *5))))) -(-10 -7 (-15 -2947 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2948 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-560)) (PROGN (-15 -2949 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2950 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2951 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2952 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 34 (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-3956 (((-865) $ (-865)) NIL)) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 30 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 28 (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 32 (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) 15)) (-3510 (($) NIL T CONST)) (-3067 (($) 23 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 19) (($ $ (-773)) 24)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-856 |#1| |#2| |#3|) (-13 (-854 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))))) (-1052) (-99 |#1|) (-1 |#1| |#1|)) (T -856)) -((-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-865)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-854 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#2| (-365)))) (-2940 (($ $ $) NIL (|has| |#2| (-365)))) (-2941 (($ $ $) NIL (|has| |#2| (-365)))) (-2937 (($ $ $) NIL (|has| |#2| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#2| (-773)) 17)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#2| (-365)))) (-2946 (($ $ $) NIL (|has| |#2| (-365)))) (-2935 (($ $ $) NIL (|has| |#2| (-365)))) (-2943 (($ $ $) NIL (|has| |#2| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#2| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-560)))) (-4380 (((-773) $) NIL)) (-3220 ((|#2| $) NIL (|has| |#2| (-455)))) (-4378 (((-865) $) 24) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) NIL) (($ (-1266 |#1|)) 19)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#2| $ |#2| |#2|) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) 13 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-857 |#1| |#2| |#3| |#4|) (-13 (-854 |#2|) (-618 (-1266 |#1|))) (-1180) (-1052) (-99 |#2|) (-1 |#2| |#2|)) (T -857)) -NIL -(-13 (-854 |#2|) (-618 (-1266 |#1|))) -((-2955 ((|#1| (-773) |#1|) 48 (|has| |#1| (-38 (-410 (-549)))))) (-2954 ((|#1| (-773) (-773) |#1|) 39) ((|#1| (-773) |#1|) 27)) (-2953 ((|#1| (-773) |#1|) 43)) (-3203 ((|#1| (-773) |#1|) 41)) (-3202 ((|#1| (-773) |#1|) 40))) -(((-858 |#1|) (-10 -7 (-15 -3202 (|#1| (-773) |#1|)) (-15 -3203 (|#1| (-773) |#1|)) (-15 -2953 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -2955 (|#1| (-773) |#1|)) |%noBranch|)) (-172)) (T -858)) -((-2955 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-172)))) (-2954 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-2954 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-2953 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-3203 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-3202 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -3202 (|#1| (-773) |#1|)) (-15 -3203 (|#1| (-773) |#1|)) (-15 -2953 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -2955 (|#1| (-773) |#1|)) |%noBranch|)) -((-2968 (((-112) $ $) 7)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (** (($ $ (-922)) 22)) (* (($ $ $) 21))) -(((-859) (-140)) (T -859)) -NIL -(-13 (-852) (-1115)) -(((-102) . T) ((-615 (-865)) . T) ((-852) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3826 (((-549) $) 14)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-549)) 13)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 11))) -(((-860) (-13 (-852) (-10 -8 (-15 -4378 ($ (-549))) (-15 -3826 ((-549) $))))) (T -860)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-860)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-860))))) -(-13 (-852) (-10 -8 (-15 -4378 ($ (-549))) (-15 -3826 ((-549) $)))) -((-2956 (((-1275) (-643 (-51))) 23)) (-3883 (((-1275) (-1162) (-865)) 13) (((-1275) (-865)) 8) (((-1275) (-1162)) 10))) -(((-861) (-10 -7 (-15 -3883 ((-1275) (-1162))) (-15 -3883 ((-1275) (-865))) (-15 -3883 ((-1275) (-1162) (-865))) (-15 -2956 ((-1275) (-643 (-51)))))) (T -861)) -((-2956 (*1 *2 *3) (-12 (-5 *3 (-643 (-51))) (-5 *2 (-1275)) (-5 *1 (-861)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-861))))) -(-10 -7 (-15 -3883 ((-1275) (-1162))) (-15 -3883 ((-1275) (-865))) (-15 -3883 ((-1275) (-1162) (-865))) (-15 -2956 ((-1275) (-643 (-51))))) -((-2958 (((-693 (-1228)) $ (-1228)) 15)) (-2959 (((-693 (-553)) $ (-553)) 12)) (-2957 (((-773) $ (-129)) 30))) -(((-862 |#1|) (-10 -8 (-15 -2957 ((-773) |#1| (-129))) (-15 -2958 ((-693 (-1228)) |#1| (-1228))) (-15 -2959 ((-693 (-553)) |#1| (-553)))) (-863)) (T -862)) -NIL -(-10 -8 (-15 -2957 ((-773) |#1| (-129))) (-15 -2958 ((-693 (-1228)) |#1| (-1228))) (-15 -2959 ((-693 (-553)) |#1| (-553)))) -((-2958 (((-693 (-1228)) $ (-1228)) 8)) (-2959 (((-693 (-553)) $ (-553)) 9)) (-2957 (((-773) $ (-129)) 7)) (-2960 (((-693 (-128)) $ (-128)) 10)) (-1868 (($ $) 6))) -(((-863) (-140)) (T -863)) -((-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-128))) (-5 *3 (-128)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-553))) (-5 *3 (-553)))) (-2958 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-1228))) (-5 *3 (-1228)))) (-2957 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *3 (-129)) (-5 *2 (-773))))) -(-13 (-173) (-10 -8 (-15 -2960 ((-693 (-128)) $ (-128))) (-15 -2959 ((-693 (-553)) $ (-553))) (-15 -2958 ((-693 (-1228)) $ (-1228))) (-15 -2957 ((-773) $ (-129))))) -(((-173) . T)) -((-2958 (((-693 (-1228)) $ (-1228)) NIL)) (-2959 (((-693 (-553)) $ (-553)) NIL)) (-2957 (((-773) $ (-129)) NIL)) (-2960 (((-693 (-128)) $ (-128)) 22)) (-2962 (($ (-391)) 12) (($ (-1162)) 14)) (-2961 (((-112) $) 19)) (-4378 (((-865) $) 26)) (-1868 (($ $) 23))) -(((-864) (-13 (-863) (-615 (-865)) (-10 -8 (-15 -2962 ($ (-391))) (-15 -2962 ($ (-1162))) (-15 -2961 ((-112) $))))) (T -864)) -((-2962 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-864)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-864)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864))))) -(-13 (-863) (-615 (-865)) (-10 -8 (-15 -2962 ($ (-391))) (-15 -2962 ($ (-1162))) (-15 -2961 ((-112) $)))) -((-2968 (((-112) $ $) NIL) (($ $ $) 85)) (-2989 (($ $ $) 125)) (-3004 (((-549) $) 31) (((-549)) 36)) (-2999 (($ (-549)) 53)) (-2996 (($ $ $) 54) (($ (-643 $)) 84)) (-2980 (($ $ (-643 $)) 82)) (-3001 (((-549) $) 34)) (-2983 (($ $ $) 73)) (-3955 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3002 (((-549) $) 33)) (-2984 (($ $ $) 72)) (-3966 (($ $) 114)) (-2987 (($ $ $) 129)) (-2970 (($ (-643 $)) 61)) (-3971 (($ $ (-643 $)) 79)) (-2998 (($ (-549) (-549)) 55)) (-3011 (($ $) 126) (($ $ $) 127)) (-3541 (($ $ (-549)) 43) (($ $) 46)) (-2964 (($ $ $) 97)) (-2985 (($ $ $) 132)) (-2979 (($ $) 115)) (-2963 (($ $ $) 98)) (-2975 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3240 (((-1275) $) 10)) (-2978 (($ $) 118) (($ $ (-773)) 122)) (-2981 (($ $ $) 75)) (-2982 (($ $ $) 74)) (-2995 (($ $ (-643 $)) 110)) (-2993 (($ $ $) 113)) (-2972 (($ (-643 $)) 59)) (-2973 (($ $) 70) (($ (-643 $)) 71)) (-2976 (($ $ $) 123)) (-2977 (($ $) 116)) (-2988 (($ $ $) 128)) (-3956 (($ (-549)) 21) (($ (-1180)) 23) (($ (-1162)) 30) (($ (-225)) 25)) (-3255 (($ $ $) 101)) (-3746 (($ $) 102)) (-3006 (((-1275) (-1162)) 15)) (-3007 (($ (-1162)) 14)) (-3528 (($ (-643 (-643 $))) 58)) (-3542 (($ $ (-549)) 42) (($ $) 45)) (-3663 (((-1162) $) NIL)) (-2991 (($ $ $) 131)) (-3893 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2992 (((-112) $) 108)) (-2994 (($ $ (-643 $)) 111) (($ $ $ $) 112)) (-3000 (($ (-549)) 39)) (-3003 (((-549) $) 32) (((-549)) 35)) (-2997 (($ $ $) 40) (($ (-643 $)) 83)) (-3664 (((-1123) $) NIL)) (-3889 (($ $ $) 99)) (-3996 (($) 13)) (-4231 (($ $ (-643 $)) 109)) (-3005 (((-1162) (-1162)) 8)) (-4268 (($ $) 117) (($ $ (-773)) 121)) (-2965 (($ $ $) 96)) (-4242 (($ $ (-773)) 139)) (-2971 (($ (-643 $)) 60)) (-4378 (((-865) $) 19)) (-4204 (($ $ (-549)) 41) (($ $) 44)) (-2974 (($ $) 68) (($ (-643 $)) 69)) (-3660 (($ $) 66) (($ (-643 $)) 67)) (-2990 (($ $) 124)) (-2969 (($ (-643 $)) 65)) (-3505 (($ $ $) 105)) (-3662 (((-112) $ $) NIL)) (-2986 (($ $ $) 130)) (-3256 (($ $ $) 100)) (-4169 (($ $ $) 103) (($ $) 104)) (-2966 (($ $ $) 89)) (-2967 (($ $ $) 87)) (-3455 (((-112) $ $) 16) (($ $ $) 17)) (-3087 (($ $ $) 88)) (-3088 (($ $ $) 86)) (-4381 (($ $ $) 94)) (-4269 (($ $ $) 91) (($ $) 92)) (-4271 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-865) (-13 (-1104) (-10 -8 (-15 -3240 ((-1275) $)) (-15 -3007 ($ (-1162))) (-15 -3006 ((-1275) (-1162))) (-15 -3956 ($ (-549))) (-15 -3956 ($ (-1180))) (-15 -3956 ($ (-1162))) (-15 -3956 ($ (-225))) (-15 -3996 ($)) (-15 -3005 ((-1162) (-1162))) (-15 -3004 ((-549) $)) (-15 -3003 ((-549) $)) (-15 -3004 ((-549))) (-15 -3003 ((-549))) (-15 -3002 ((-549) $)) (-15 -3001 ((-549) $)) (-15 -3000 ($ (-549))) (-15 -2999 ($ (-549))) (-15 -2998 ($ (-549) (-549))) (-15 -3542 ($ $ (-549))) (-15 -3541 ($ $ (-549))) (-15 -4204 ($ $ (-549))) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4204 ($ $)) (-15 -2997 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -2997 ($ (-643 $))) (-15 -2996 ($ (-643 $))) (-15 -2995 ($ $ (-643 $))) (-15 -2994 ($ $ (-643 $))) (-15 -2994 ($ $ $ $)) (-15 -2993 ($ $ $)) (-15 -2992 ((-112) $)) (-15 -4231 ($ $ (-643 $))) (-15 -3966 ($ $)) (-15 -2991 ($ $ $)) (-15 -2990 ($ $)) (-15 -3528 ($ (-643 (-643 $)))) (-15 -2989 ($ $ $)) (-15 -3011 ($ $)) (-15 -3011 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -4242 ($ $ (-773))) (-15 -3505 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3971 ($ $ (-643 $))) (-15 -2980 ($ $ (-643 $))) (-15 -2979 ($ $)) (-15 -4268 ($ $)) (-15 -4268 ($ $ (-773))) (-15 -2978 ($ $)) (-15 -2978 ($ $ (-773))) (-15 -2977 ($ $)) (-15 -2976 ($ $ $)) (-15 -3955 ($ $)) (-15 -3955 ($ $ $)) (-15 -3955 ($ $ $ $)) (-15 -2975 ($ $)) (-15 -2975 ($ $ $)) (-15 -2975 ($ $ $ $)) (-15 -3893 ($ $)) (-15 -3893 ($ $ $)) (-15 -3893 ($ $ $ $)) (-15 -3660 ($ $)) (-15 -3660 ($ (-643 $))) (-15 -2974 ($ $)) (-15 -2974 ($ (-643 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-643 $))) (-15 -2972 ($ (-643 $))) (-15 -2971 ($ (-643 $))) (-15 -2970 ($ (-643 $))) (-15 -2969 ($ (-643 $))) (-15 -3455 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3088 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4269 ($ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3746 ($ $)) (-15 -4169 ($ $ $)) (-15 -4169 ($ $))))) (T -865)) -((-3240 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-865)))) (-3007 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-865)))) (-3996 (*1 *1) (-5 *1 (-865))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3004 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3003 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3000 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-2998 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3542 (*1 *1 *1) (-5 *1 (-865))) (-3541 (*1 *1 *1) (-5 *1 (-865))) (-4204 (*1 *1 *1) (-5 *1 (-865))) (-2997 (*1 *1 *1 *1) (-5 *1 (-865))) (-2996 (*1 *1 *1 *1) (-5 *1 (-865))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2994 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-2993 (*1 *1 *1 *1) (-5 *1 (-865))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-3966 (*1 *1 *1) (-5 *1 (-865))) (-2991 (*1 *1 *1 *1) (-5 *1 (-865))) (-2990 (*1 *1 *1) (-5 *1 (-865))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-865)))) (-2989 (*1 *1 *1 *1) (-5 *1 (-865))) (-3011 (*1 *1 *1) (-5 *1 (-865))) (-3011 (*1 *1 *1 *1) (-5 *1 (-865))) (-2988 (*1 *1 *1 *1) (-5 *1 (-865))) (-2987 (*1 *1 *1 *1) (-5 *1 (-865))) (-2986 (*1 *1 *1 *1) (-5 *1 (-865))) (-2985 (*1 *1 *1 *1) (-5 *1 (-865))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) (-3505 (*1 *1 *1 *1) (-5 *1 (-865))) (-2984 (*1 *1 *1 *1) (-5 *1 (-865))) (-2983 (*1 *1 *1 *1) (-5 *1 (-865))) (-2982 (*1 *1 *1 *1) (-5 *1 (-865))) (-2981 (*1 *1 *1 *1) (-5 *1 (-865))) (-3971 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2979 (*1 *1 *1) (-5 *1 (-865))) (-4268 (*1 *1 *1) (-5 *1 (-865))) (-4268 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) (-2978 (*1 *1 *1) (-5 *1 (-865))) (-2978 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) (-2977 (*1 *1 *1) (-5 *1 (-865))) (-2976 (*1 *1 *1 *1) (-5 *1 (-865))) (-3955 (*1 *1 *1) (-5 *1 (-865))) (-3955 (*1 *1 *1 *1) (-5 *1 (-865))) (-3955 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-2975 (*1 *1 *1) (-5 *1 (-865))) (-2975 (*1 *1 *1 *1) (-5 *1 (-865))) (-2975 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-3893 (*1 *1 *1) (-5 *1 (-865))) (-3893 (*1 *1 *1 *1) (-5 *1 (-865))) (-3893 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-3660 (*1 *1 *1) (-5 *1 (-865))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2974 (*1 *1 *1) (-5 *1 (-865))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2973 (*1 *1 *1) (-5 *1 (-865))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-3455 (*1 *1 *1 *1) (-5 *1 (-865))) (-2968 (*1 *1 *1 *1) (-5 *1 (-865))) (-3088 (*1 *1 *1 *1) (-5 *1 (-865))) (-2967 (*1 *1 *1 *1) (-5 *1 (-865))) (-3087 (*1 *1 *1 *1) (-5 *1 (-865))) (-2966 (*1 *1 *1 *1) (-5 *1 (-865))) (-4271 (*1 *1 *1 *1) (-5 *1 (-865))) (-4269 (*1 *1 *1 *1) (-5 *1 (-865))) (-4269 (*1 *1 *1) (-5 *1 (-865))) (* (*1 *1 *1 *1) (-5 *1 (-865))) (-4381 (*1 *1 *1 *1) (-5 *1 (-865))) (** (*1 *1 *1 *1) (-5 *1 (-865))) (-2965 (*1 *1 *1 *1) (-5 *1 (-865))) (-2964 (*1 *1 *1 *1) (-5 *1 (-865))) (-2963 (*1 *1 *1 *1) (-5 *1 (-865))) (-3889 (*1 *1 *1 *1) (-5 *1 (-865))) (-3256 (*1 *1 *1 *1) (-5 *1 (-865))) (-3255 (*1 *1 *1 *1) (-5 *1 (-865))) (-3746 (*1 *1 *1) (-5 *1 (-865))) (-4169 (*1 *1 *1 *1) (-5 *1 (-865))) (-4169 (*1 *1 *1) (-5 *1 (-865)))) -(-13 (-1104) (-10 -8 (-15 -3240 ((-1275) $)) (-15 -3007 ($ (-1162))) (-15 -3006 ((-1275) (-1162))) (-15 -3956 ($ (-549))) (-15 -3956 ($ (-1180))) (-15 -3956 ($ (-1162))) (-15 -3956 ($ (-225))) (-15 -3996 ($)) (-15 -3005 ((-1162) (-1162))) (-15 -3004 ((-549) $)) (-15 -3003 ((-549) $)) (-15 -3004 ((-549))) (-15 -3003 ((-549))) (-15 -3002 ((-549) $)) (-15 -3001 ((-549) $)) (-15 -3000 ($ (-549))) (-15 -2999 ($ (-549))) (-15 -2998 ($ (-549) (-549))) (-15 -3542 ($ $ (-549))) (-15 -3541 ($ $ (-549))) (-15 -4204 ($ $ (-549))) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4204 ($ $)) (-15 -2997 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -2997 ($ (-643 $))) (-15 -2996 ($ (-643 $))) (-15 -2995 ($ $ (-643 $))) (-15 -2994 ($ $ (-643 $))) (-15 -2994 ($ $ $ $)) (-15 -2993 ($ $ $)) (-15 -2992 ((-112) $)) (-15 -4231 ($ $ (-643 $))) (-15 -3966 ($ $)) (-15 -2991 ($ $ $)) (-15 -2990 ($ $)) (-15 -3528 ($ (-643 (-643 $)))) (-15 -2989 ($ $ $)) (-15 -3011 ($ $)) (-15 -3011 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -4242 ($ $ (-773))) (-15 -3505 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3971 ($ $ (-643 $))) (-15 -2980 ($ $ (-643 $))) (-15 -2979 ($ $)) (-15 -4268 ($ $)) (-15 -4268 ($ $ (-773))) (-15 -2978 ($ $)) (-15 -2978 ($ $ (-773))) (-15 -2977 ($ $)) (-15 -2976 ($ $ $)) (-15 -3955 ($ $)) (-15 -3955 ($ $ $)) (-15 -3955 ($ $ $ $)) (-15 -2975 ($ $)) (-15 -2975 ($ $ $)) (-15 -2975 ($ $ $ $)) (-15 -3893 ($ $)) (-15 -3893 ($ $ $)) (-15 -3893 ($ $ $ $)) (-15 -3660 ($ $)) (-15 -3660 ($ (-643 $))) (-15 -2974 ($ $)) (-15 -2974 ($ (-643 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-643 $))) (-15 -2972 ($ (-643 $))) (-15 -2971 ($ (-643 $))) (-15 -2970 ($ (-643 $))) (-15 -2969 ($ (-643 $))) (-15 -3455 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3088 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4269 ($ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3746 ($ $)) (-15 -4169 ($ $ $)) (-15 -4169 ($ $)))) -((-2968 (((-112) $ $) NIL)) (-4263 (((-3 $ "failed") (-1180)) 39)) (-3540 (((-773)) 32)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) 29)) (-3663 (((-1162) $) 46)) (-2563 (($ (-922)) 28)) (-3664 (((-1123) $) NIL)) (-4402 (((-1180) $) 13) (((-538) $) 19) (((-893 (-380)) $) 26) (((-893 (-549)) $) 22)) (-4378 (((-865) $) 16)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 43)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 41))) -(((-866 |#1|) (-13 (-846) (-616 (-1180)) (-616 (-538)) (-616 (-893 (-380))) (-616 (-893 (-549))) (-10 -8 (-15 -4263 ((-3 $ "failed") (-1180))))) (-643 (-1180))) (T -866)) -((-4263 (*1 *1 *2) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-866 *3)) (-14 *3 (-643 *2))))) -(-13 (-846) (-616 (-1180)) (-616 (-538)) (-616 (-893 (-380))) (-616 (-893 (-549))) (-10 -8 (-15 -4263 ((-3 $ "failed") (-1180))))) -((-2968 (((-112) $ $) NIL)) (-3973 (((-509) $) 9)) (-3008 (((-643 (-442)) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 21)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 16))) -(((-867) (-13 (-1104) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3008 ((-643 (-442)) $))))) (T -867)) -((-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-867)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-643 (-442))) (-5 *1 (-867))))) -(-13 (-1104) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3008 ((-643 (-442)) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-949 |#1|)) NIL) (((-949 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3530 (((-773)) NIL T CONST)) (-4355 (((-1275) (-773)) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-868 |#1| |#2| |#3| |#4|) (-13 (-1052) (-493 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) (-1052) (-643 (-1180)) (-643 (-773)) (-773)) (T -868)) -((-4381 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-868 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-773))) (-14 *5 (-773)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-868 *4 *5 *6 *7)) (-4 *4 (-1052)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 *3)) (-14 *7 *3)))) -(-13 (-1052) (-493 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) -((-3009 (((-3 (-174 |#3|) "failed") (-773) (-773) |#2| |#2|) 43)) (-3010 (((-3 (-410 |#3|) "failed") (-773) (-773) |#2| |#2|) 34))) -(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -3010 ((-3 (-410 |#3|) "failed") (-773) (-773) |#2| |#2|)) (-15 -3009 ((-3 (-174 |#3|) "failed") (-773) (-773) |#2| |#2|))) (-365) (-1262 |#1|) (-1245 |#1|)) (T -869)) -((-3009 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5)))) (-3010 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5))))) -(-10 -7 (-15 -3010 ((-3 (-410 |#3|) "failed") (-773) (-773) |#2| |#2|)) (-15 -3009 ((-3 (-174 |#3|) "failed") (-773) (-773) |#2| |#2|))) -((-3010 (((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) 28))) -(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|)))) (-365) (-1180) |#1|) (T -870)) -((-3010 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) (-5 *1 (-870 *5 *6 *7)))) (-3010 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) (-5 *1 (-870 *5 *6 *7))))) -(-10 -7 (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $ (-549)) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3011 (($ (-1174 (-549)) (-549)) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3012 (($ $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4203 (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 (((-549)) NIL)) (-3013 (((-549) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4200 (($ $ (-549)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-1157 (-549)) $) NIL)) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-549) $ (-549)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) -(((-871 |#1|) (-872 |#1|) (-549)) (T -871)) -NIL -(-872 |#1|) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $ (-549)) 68)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-3011 (($ (-1174 (-549)) (-549)) 67)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-3012 (($ $) 70)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4203 (((-773) $) 75)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-3014 (((-549)) 72)) (-3013 (((-549) $) 71)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-4200 (($ $ (-549)) 74)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-3015 (((-1157 (-549)) $) 76)) (-3292 (($ $) 73)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-4201 (((-549) $ (-549)) 69)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-872 |#1|) (-140) (-549)) (T -872)) -((-3015 (*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-1157 (-549))))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-773)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3292 (*1 *1 *1) (-4 *1 (-872 *2))) (-3014 (*1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3012 (*1 *1 *1) (-4 *1 (-872 *2))) (-4201 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3438 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3011 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *3 (-549)) (-4 *1 (-872 *4))))) -(-13 (-308) (-147) (-10 -8 (-15 -3015 ((-1157 (-549)) $)) (-15 -4203 ((-773) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)) (-15 -3014 ((-549))) (-15 -3013 ((-549) $)) (-15 -3012 ($ $)) (-15 -4201 ((-549) $ (-549))) (-15 -3438 ($ $ (-549))) (-15 -3011 ($ (-1174 (-549)) (-549))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-871 |#1|) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-871 |#1|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-871 |#1|) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-871 |#1|) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-871 |#1|) (-1041 (-549))))) (-3576 (((-871 |#1|) $) NIL) (((-1180) $) NIL (|has| (-871 |#1|) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-871 |#1|) (-1041 (-549)))) (((-549) $) NIL (|has| (-871 |#1|) (-1041 (-549))))) (-4162 (($ $) NIL) (($ (-549) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-871 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-871 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-871 |#1|))) (|:| |vec| (-1269 (-871 |#1|)))) (-691 $) (-1269 $)) NIL) (((-691 (-871 |#1|)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-871 |#1|) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-871 |#1|) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-871 |#1|) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-871 |#1|) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-871 |#1|) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1154)))) (-3607 (((-112) $) NIL (|has| (-871 |#1|) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-871 |#1|) (-852)))) (-3260 (($ $ $) NIL (|has| (-871 |#1|) (-852)))) (-4390 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-871 |#1|) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-3534 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-871 |#1|)) (-643 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-294 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-643 (-294 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-643 (-1180)) (-643 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1180) (-871 |#1|)))) (($ $ (-1180) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1180) (-871 |#1|))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-773)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-871 |#1|) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-871 |#1|) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-871 |#1|) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-871 |#1|) (-616 (-538)))) (((-380) $) NIL (|has| (-871 |#1|) (-1023))) (((-225) $) NIL (|has| (-871 |#1|) (-1023)))) (-3016 (((-174 (-410 (-549))) $) NIL)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-871 |#1|)) NIL) (($ (-1180)) NIL (|has| (-871 |#1|) (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-913))) (|has| (-871 |#1|) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ (-549)) NIL)) (-3807 (($ $) NIL (|has| (-871 |#1|) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-773)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-4381 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL))) -(((-873 |#1|) (-13 (-994 (-871 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) (-549)) (T -873)) -((-4201 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-873 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-873 *3)) (-14 *3 (-549)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-14 *2 (-549)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-873 *3)) (-14 *3 *2)))) -(-13 (-994 (-871 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 ((|#2| $) NIL (|has| |#2| (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| |#2| (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| |#2| (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549))))) (-3576 ((|#2| $) NIL) (((-1180) $) NIL (|has| |#2| (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-549)))) (((-549) $) NIL (|has| |#2| (-1041 (-549))))) (-4162 (($ $) 35) (($ (-549) $) 38)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 64)) (-3395 (($) NIL (|has| |#2| (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| |#2| (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| |#2| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| |#2| (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 ((|#2| $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-3607 (((-112) $) NIL (|has| |#2| (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| |#2| (-852)))) (-3260 (($ $ $) NIL (|has| |#2| (-852)))) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 60)) (-3869 (($) NIL (|has| |#2| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| |#2| (-308)))) (-3534 ((|#2| $) NIL (|has| |#2| (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 |#2|) (-643 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-643 (-294 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-643 (-1180)) (-643 |#2|)) NIL (|has| |#2| (-517 (-1180) |#2|))) (($ $ (-1180) |#2|) NIL (|has| |#2| (-517 (-1180) |#2|)))) (-1752 (((-773) $) NIL)) (-4231 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| |#2| (-233))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3396 (($ $) NIL)) (-3398 ((|#2| $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| |#2| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#2| (-616 (-893 (-380))))) (((-538) $) NIL (|has| |#2| (-616 (-538)))) (((-380) $) NIL (|has| |#2| (-1023))) (((-225) $) NIL (|has| |#2| (-1023)))) (-3016 (((-174 (-410 (-549))) $) 78)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) 108) (($ (-549)) 20) (($ $) NIL) (($ (-410 (-549))) 25) (($ |#2|) 19) (($ (-1180)) NIL (|has| |#2| (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 ((|#2| $) NIL (|has| |#2| (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ (-549)) 71)) (-3807 (($ $) NIL (|has| |#2| (-822)))) (-3510 (($) 15 T CONST)) (-3067 (($) 17 T CONST)) (-3072 (($ $) NIL (|has| |#2| (-233))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2966 (((-112) $ $) NIL (|has| |#2| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#2| (-852)))) (-3455 (((-112) $ $) 46)) (-3087 (((-112) $ $) NIL (|has| |#2| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#2| (-852)))) (-4381 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4269 (($ $) 50) (($ $ $) 52)) (-4271 (($ $ $) 48)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 61)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 53) (($ $ $) 55) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-874 |#1| |#2|) (-13 (-994 |#2|) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) (-549) (-872 |#1|)) (T -874)) -((-4201 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-549))) (-5 *1 (-874 *4 *5)) (-5 *3 (-549)) (-4 *5 (-872 *4)))) (-3016 (*1 *2 *1) (-12 (-14 *3 (-549)) (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-874 *3 *4)) (-4 *4 (-872 *3)))) (-4162 (*1 *1 *1) (-12 (-14 *2 (-549)) (-5 *1 (-874 *2 *3)) (-4 *3 (-872 *2)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-874 *3 *4)) (-4 *4 (-872 *3))))) -(-13 (-994 |#2|) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) -((-2968 (((-112) $ $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-4227 ((|#2| $) 12)) (-3017 (($ |#1| |#2|) 9)) (-3663 (((-1162) $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-3664 (((-1123) $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#1| $) 11)) (-3953 (($ |#1| |#2|) 10)) (-4378 (((-865) $) 18 (-3960 (-12 (|has| |#1| (-615 (-865))) (|has| |#2| (-615 (-865)))) (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104)))))) (-3662 (((-112) $ $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-3455 (((-112) $ $) 23 (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104)))))) -(((-875 |#1| |#2|) (-13 (-1219) (-10 -8 (IF (|has| |#1| (-615 (-865))) (IF (|has| |#2| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1104)) (IF (|has| |#2| (-1104)) (-6 (-1104)) |%noBranch|) |%noBranch|) (-15 -3017 ($ |#1| |#2|)) (-15 -3953 ($ |#1| |#2|)) (-15 -4232 (|#1| $)) (-15 -4227 (|#2| $)))) (-1219) (-1219)) (T -875)) -((-3017 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-4232 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1219)))) (-4227 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (IF (|has| |#1| (-615 (-865))) (IF (|has| |#2| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1104)) (IF (|has| |#2| (-1104)) (-6 (-1104)) |%noBranch|) |%noBranch|) (-15 -3017 ($ |#1| |#2|)) (-15 -3953 ($ |#1| |#2|)) (-15 -4232 (|#1| $)) (-15 -4227 (|#2| $)))) -((-2968 (((-112) $ $) NIL)) (-3358 (((-549) $) 16)) (-3019 (($ (-157)) 13)) (-3018 (($ (-157)) 14)) (-3663 (((-1162) $) NIL)) (-3357 (((-157) $) 15)) (-3664 (((-1123) $) NIL)) (-3021 (($ (-157)) 11)) (-3022 (($ (-157)) 10)) (-4378 (((-865) $) 24) (($ (-157)) 17)) (-3020 (($ (-157)) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-876) (-13 (-1104) (-10 -8 (-15 -3022 ($ (-157))) (-15 -3021 ($ (-157))) (-15 -3020 ($ (-157))) (-15 -3019 ($ (-157))) (-15 -3018 ($ (-157))) (-15 -3357 ((-157) $)) (-15 -3358 ((-549) $)) (-15 -4378 ($ (-157)))))) (T -876)) -((-3022 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) -(-13 (-1104) (-10 -8 (-15 -3022 ($ (-157))) (-15 -3021 ($ (-157))) (-15 -3020 ($ (-157))) (-15 -3019 ($ (-157))) (-15 -3018 ($ (-157))) (-15 -3357 ((-157) $)) (-15 -3358 ((-549) $)) (-15 -4378 ($ (-157))))) -((-4378 (((-315 (-549)) (-410 (-949 (-48)))) 23) (((-315 (-549)) (-949 (-48))) 18))) -(((-877) (-10 -7 (-15 -4378 ((-315 (-549)) (-949 (-48)))) (-15 -4378 ((-315 (-549)) (-410 (-949 (-48))))))) (T -877)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 (-48)))) (-5 *2 (-315 (-549))) (-5 *1 (-877)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-315 (-549))) (-5 *1 (-877))))) -(-10 -7 (-15 -4378 ((-315 (-549)) (-949 (-48)))) (-15 -4378 ((-315 (-549)) (-410 (-949 (-48)))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 18) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3997 (((-112) $ (|[\|\|]| (-509))) 9) (((-112) $ (|[\|\|]| (-1162))) 13)) (-3662 (((-112) $ $) NIL)) (-4003 (((-509) $) 10) (((-1162) $) 14)) (-3455 (((-112) $ $) 15))) -(((-878) (-13 (-1086) (-1265) (-10 -8 (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -4003 ((-509) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))) (-15 -4003 ((-1162) $))))) (T -878)) -((-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-878)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-878)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-878)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-878))))) -(-13 (-1086) (-1265) (-10 -8 (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -4003 ((-509) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))) (-15 -4003 ((-1162) $)))) -((-4390 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 15))) -(((-879 |#1| |#2|) (-10 -7 (-15 -4390 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1219) (-1219)) (T -879)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))) -(-10 -7 (-15 -4390 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) -((-3795 (($ |#1| |#1|) 8)) (-3025 ((|#1| $ (-773)) 15))) -(((-880 |#1|) (-10 -8 (-15 -3795 ($ |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) (-1219)) (T -880)) -((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-880 *2)) (-4 *2 (-1219)))) (-3795 (*1 *1 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1219))))) -(-10 -8 (-15 -3795 ($ |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) -((-4390 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 15))) -(((-881 |#1| |#2|) (-10 -7 (-15 -4390 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1219) (-1219)) (T -881)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))) -(-10 -7 (-15 -4390 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) -((-3795 (($ |#1| |#1| |#1|) 8)) (-3025 ((|#1| $ (-773)) 15))) -(((-882 |#1|) (-10 -8 (-15 -3795 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) (-1219)) (T -882)) -((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-882 *2)) (-4 *2 (-1219)))) (-3795 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1219))))) -(-10 -8 (-15 -3795 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) -((-3023 (((-643 (-1185)) (-1162)) 9))) -(((-883) (-10 -7 (-15 -3023 ((-643 (-1185)) (-1162))))) (T -883)) -((-3023 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-883))))) -(-10 -7 (-15 -3023 ((-643 (-1185)) (-1162)))) -((-4390 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15))) -(((-884 |#1| |#2|) (-10 -7 (-15 -4390 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1219) (-1219)) (T -884)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))) -(-10 -7 (-15 -4390 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) -((-3024 (($ |#1| |#1| |#1|) 8)) (-3025 ((|#1| $ (-773)) 15))) -(((-885 |#1|) (-10 -8 (-15 -3024 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) (-1219)) (T -885)) -((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-885 *2)) (-4 *2 (-1219)))) (-3024 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1219))))) -(-10 -8 (-15 -3024 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) -((-3029 (((-1157 (-643 (-549))) (-643 (-549)) (-1157 (-643 (-549)))) 48)) (-3028 (((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549))) 44)) (-3030 (((-1157 (-643 (-549))) (-643 (-549))) 58) (((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549))) 56)) (-3031 (((-1157 (-643 (-549))) (-549)) 59)) (-3026 (((-1157 (-643 (-549))) (-549) (-549)) 34) (((-1157 (-643 (-549))) (-549)) 23) (((-1157 (-643 (-549))) (-549) (-549) (-549)) 19)) (-3027 (((-1157 (-643 (-549))) (-1157 (-643 (-549)))) 42)) (-3410 (((-643 (-549)) (-643 (-549))) 41))) -(((-886) (-10 -7 (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549))) (-15 -3410 ((-643 (-549)) (-643 (-549)))) (-15 -3027 ((-1157 (-643 (-549))) (-1157 (-643 (-549))))) (-15 -3028 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3029 ((-1157 (-643 (-549))) (-643 (-549)) (-1157 (-643 (-549))))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)))) (-15 -3031 ((-1157 (-643 (-549))) (-549))))) (T -886)) -((-3031 (*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) (-3030 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) (-3029 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *3 (-643 (-549))) (-5 *1 (-886)))) (-3028 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)))) (-3410 (*1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-886)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) (-3026 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549))))) -(-10 -7 (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549))) (-15 -3410 ((-643 (-549)) (-643 (-549)))) (-15 -3027 ((-1157 (-643 (-549))) (-1157 (-643 (-549))))) (-15 -3028 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3029 ((-1157 (-643 (-549))) (-643 (-549)) (-1157 (-643 (-549))))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)))) (-15 -3031 ((-1157 (-643 (-549))) (-549)))) -((-4402 (((-893 (-380)) $) 9 (|has| |#1| (-616 (-893 (-380))))) (((-893 (-549)) $) 8 (|has| |#1| (-616 (-893 (-549))))))) -(((-887 |#1|) (-140) (-1219)) (T -887)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-616 (-893 (-549)))) (-6 (-616 (-893 (-549)))) |%noBranch|) (IF (|has| |t#1| (-616 (-893 (-380)))) (-6 (-616 (-893 (-380)))) |%noBranch|))) -(((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549))))) -((-2968 (((-112) $ $) NIL)) (-4046 (($) 14)) (-3034 (($ (-891 |#1| |#2|) (-891 |#1| |#3|)) 28)) (-3032 (((-891 |#1| |#3|) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3042 (((-112) $) 22)) (-3041 (($) 19)) (-4378 (((-865) $) 31)) (-3662 (((-112) $ $) NIL)) (-3033 (((-891 |#1| |#2|) $) 15)) (-3455 (((-112) $ $) 26))) -(((-888 |#1| |#2| |#3|) (-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3034 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3033 ((-891 |#1| |#2|) $)) (-15 -3032 ((-891 |#1| |#3|) $)))) (-1104) (-1104) (-668 |#2|)) (T -888)) -((-3042 (*1 *2 *1) (-12 (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) (-4 *5 (-668 *4)))) (-3041 (*1 *1) (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) (-4 *4 (-668 *3)))) (-4046 (*1 *1) (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) (-4 *4 (-668 *3)))) (-3034 (*1 *1 *2 *3) (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-668 *5)) (-5 *1 (-888 *4 *5 *6)))) (-3033 (*1 *2 *1) (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *4)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) (-4 *5 (-668 *4)))) (-3032 (*1 *2 *1) (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *5)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) (-4 *5 (-668 *4))))) -(-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3034 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3033 ((-891 |#1| |#2|) $)) (-15 -3032 ((-891 |#1| |#3|) $)))) -((-2968 (((-112) $ $) 7)) (-3199 (((-891 |#1| $) $ (-893 |#1|) (-891 |#1| $)) 14)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-889 |#1|) (-140) (-1104)) (T -889)) -((-3199 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-889 *4)) (-4 *4 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -3199 ((-891 |t#1| $) $ (-893 |t#1|) (-891 |t#1| $))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-3035 (((-112) (-643 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3036 (((-891 |#1| |#2|) |#2| |#3|) 45 (-12 (-3746 (|has| |#2| (-1041 (-1180)))) (-3746 (|has| |#2| (-1052))))) (((-643 (-294 (-949 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1052)) (-3746 (|has| |#2| (-1041 (-1180)))))) (((-643 (-294 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1041 (-1180)))) (((-888 |#1| |#2| (-643 |#2|)) (-643 |#2|) |#3|) 21))) -(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3035 ((-112) |#2| |#3|)) (-15 -3035 ((-112) (-643 |#2|) |#3|)) (-15 -3036 ((-888 |#1| |#2| (-643 |#2|)) (-643 |#2|) |#3|)) (IF (|has| |#2| (-1041 (-1180))) (-15 -3036 ((-643 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1052)) (-15 -3036 ((-643 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -3036 ((-891 |#1| |#2|) |#2| |#3|))))) (-1104) (-889 |#1|) (-616 (-893 |#1|))) (T -890)) -((-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-891 *5 *3)) (-5 *1 (-890 *5 *3 *4)) (-3746 (-4 *3 (-1041 (-1180)))) (-3746 (-4 *3 (-1052))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 (-949 *3)))) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-1052)) (-3746 (-4 *3 (-1041 (-1180)))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 *3))) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-1041 (-1180))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *6 (-889 *5)) (-5 *2 (-888 *5 *6 (-643 *6))) (-5 *1 (-890 *5 *6 *4)) (-5 *3 (-643 *6)) (-4 *4 (-616 (-893 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-4 *6 (-889 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6 *4)) (-4 *4 (-616 (-893 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5)))))) -(-10 -7 (-15 -3035 ((-112) |#2| |#3|)) (-15 -3035 ((-112) (-643 |#2|) |#3|)) (-15 -3036 ((-888 |#1| |#2| (-643 |#2|)) (-643 |#2|) |#3|)) (IF (|has| |#2| (-1041 (-1180))) (-15 -3036 ((-643 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1052)) (-15 -3036 ((-643 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -3036 ((-891 |#1| |#2|) |#2| |#3|))))) -((-2968 (((-112) $ $) NIL)) (-3654 (($ $ $) 40)) (-3062 (((-3 (-112) "failed") $ (-893 |#1|)) 37)) (-4046 (($) 12)) (-3663 (((-1162) $) NIL)) (-3038 (($ (-893 |#1|) |#2| $) 20)) (-3664 (((-1123) $) NIL)) (-3040 (((-3 |#2| "failed") (-893 |#1|) $) 51)) (-3042 (((-112) $) 15)) (-3041 (($) 13)) (-3678 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))) $) 25)) (-3953 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|)))) 23)) (-4378 (((-865) $) 45)) (-3662 (((-112) $ $) NIL)) (-3037 (($ (-893 |#1|) |#2| $ |#2|) 49)) (-3039 (($ (-893 |#1|) |#2| $) 48)) (-3455 (((-112) $ $) 42))) -(((-891 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3654 ($ $ $)) (-15 -3040 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -3039 ($ (-893 |#1|) |#2| $)) (-15 -3038 ($ (-893 |#1|) |#2| $)) (-15 -3037 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -3678 ((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))))) (-15 -3062 ((-3 (-112) "failed") $ (-893 |#1|))))) (-1104) (-1104)) (T -891)) -((-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-3041 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-4046 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3654 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3040 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) (-5 *1 (-891 *4 *2)))) (-3039 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104)))) (-3038 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104)))) (-3037 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) (-4 *4 (-1104)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)))) (-3062 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3654 ($ $ $)) (-15 -3040 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -3039 ($ (-893 |#1|) |#2| $)) (-15 -3038 ($ (-893 |#1|) |#2| $)) (-15 -3037 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -3678 ((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))))) (-15 -3062 ((-3 (-112) "failed") $ (-893 |#1|))))) -((-4390 (((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)) 22))) -(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) (-1104) (-1104) (-1104)) (T -892)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-891 *5 *7)) (-5 *1 (-892 *5 *6 *7))))) -(-10 -7 (-15 -4390 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) -((-2968 (((-112) $ $) NIL)) (-3050 (($ $ (-643 (-51))) 74)) (-3485 (((-643 $) $) 138)) (-3047 (((-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51))) $) 30)) (-3681 (((-112) $) 35)) (-3048 (($ $ (-643 (-1180)) (-51)) 31)) (-3051 (($ $ (-643 (-51))) 73)) (-3577 (((-3 |#1| #1="failed") $) 71) (((-3 (-1180) #1#) $) 162)) (-3576 ((|#1| $) 68) (((-1180) $) NIL)) (-3045 (($ $) 126)) (-3057 (((-112) $) 55)) (-3052 (((-643 (-51)) $) 50)) (-3049 (($ (-1180) (-112) (-112) (-112)) 75)) (-3043 (((-3 (-643 $) "failed") (-643 $)) 82)) (-3054 (((-112) $) 58)) (-3055 (((-112) $) 57)) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) "failed") $) 41)) (-3060 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $) 97)) (-3225 (((-3 (-643 $) "failed") $) 40)) (-3061 (((-3 (-643 $) "failed") $ (-113)) 124) (((-3 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 $))) "failed") $) 107)) (-3059 (((-3 (-643 $) "failed") $) 42)) (-3227 (((-3 (-2 (|:| |val| $) (|:| -2564 (-773))) "failed") $) 45)) (-3058 (((-112) $) 34)) (-3664 (((-1123) $) NIL)) (-3046 (((-112) $) 28)) (-3053 (((-112) $) 52)) (-3044 (((-643 (-51)) $) 130)) (-3056 (((-112) $) 56)) (-4231 (($ (-113) (-643 $)) 104)) (-3747 (((-773) $) 33)) (-3824 (($ $) 72)) (-4402 (($ (-643 $)) 69)) (-4385 (((-112) $) 32)) (-4378 (((-865) $) 63) (($ |#1|) 23) (($ (-1180)) 76)) (-3662 (((-112) $ $) NIL)) (-3063 (($ $ (-51)) 129)) (-3510 (($) 103 T CONST)) (-3067 (($) 83 T CONST)) (-3455 (((-112) $ $) 93)) (-4381 (($ $ $) 117)) (-4271 (($ $ $) 121)) (** (($ $ (-773)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-893 |#1|) (-13 (-1104) (-1041 |#1|) (-1041 (-1180)) (-10 -8 (-15 0 ($) -4384) (-15 1 ($) -4384) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3061 ((-3 (-643 $) "failed") $ (-113))) (-15 -3061 ((-3 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 $))) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |val| $) (|:| -2564 (-773))) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3059 ((-3 (-643 $) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $)) (-15 -4231 ($ (-113) (-643 $))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ $)) (-15 -4381 ($ $ $)) (-15 -3747 ((-773) $)) (-15 -4402 ($ (-643 $))) (-15 -3824 ($ $)) (-15 -3058 ((-112) $)) (-15 -3057 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -4385 ((-112) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3054 ((-112) $)) (-15 -3053 ((-112) $)) (-15 -3052 ((-643 (-51)) $)) (-15 -3051 ($ $ (-643 (-51)))) (-15 -3050 ($ $ (-643 (-51)))) (-15 -3049 ($ (-1180) (-112) (-112) (-112))) (-15 -3048 ($ $ (-643 (-1180)) (-51))) (-15 -3047 ((-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51))) $)) (-15 -3046 ((-112) $)) (-15 -3045 ($ $)) (-15 -3063 ($ $ (-51))) (-15 -3044 ((-643 (-51)) $)) (-15 -3485 ((-643 $) $)) (-15 -3043 ((-3 (-643 $) "failed") (-643 $))))) (-1104)) (T -893)) -((-3510 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3067 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3225 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3061 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-3061 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 (-893 *3))))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3227 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-773)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3060 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3059 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3228 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-4271 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-4381 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3049 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-112)) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-51)) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3045 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3043 (*1 *2 *2) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(-13 (-1104) (-1041 |#1|) (-1041 (-1180)) (-10 -8 (-15 (-3510) ($) -4384) (-15 (-3067) ($) -4384) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3061 ((-3 (-643 $) "failed") $ (-113))) (-15 -3061 ((-3 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 $))) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |val| $) (|:| -2564 (-773))) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3059 ((-3 (-643 $) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $)) (-15 -4231 ($ (-113) (-643 $))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ $)) (-15 -4381 ($ $ $)) (-15 -3747 ((-773) $)) (-15 -4402 ($ (-643 $))) (-15 -3824 ($ $)) (-15 -3058 ((-112) $)) (-15 -3057 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -4385 ((-112) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3054 ((-112) $)) (-15 -3053 ((-112) $)) (-15 -3052 ((-643 (-51)) $)) (-15 -3051 ($ $ (-643 (-51)))) (-15 -3050 ($ $ (-643 (-51)))) (-15 -3049 ($ (-1180) (-112) (-112) (-112))) (-15 -3048 ($ $ (-643 (-1180)) (-51))) (-15 -3047 ((-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51))) $)) (-15 -3046 ((-112) $)) (-15 -3045 ($ $)) (-15 -3063 ($ $ (-51))) (-15 -3044 ((-643 (-51)) $)) (-15 -3485 ((-643 $) $)) (-15 -3043 ((-3 (-643 $) "failed") (-643 $))))) -((-3629 (((-893 |#1|) (-893 |#1|) (-643 (-1180)) (-1 (-112) (-643 |#2|))) 32) (((-893 |#1|) (-893 |#1|) (-643 (-1 (-112) |#2|))) 46) (((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|)) 35)) (-3062 (((-112) (-643 |#2|) (-893 |#1|)) 42) (((-112) |#2| (-893 |#1|)) 36)) (-3954 (((-1 (-112) |#2|) (-893 |#1|)) 16)) (-3064 (((-643 |#2|) (-893 |#1|)) 24)) (-3063 (((-893 |#1|) (-893 |#1|) |#2|) 20))) -(((-894 |#1| |#2|) (-10 -7 (-15 -3629 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1 (-112) |#2|)))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1180)) (-1 (-112) (-643 |#2|)))) (-15 -3954 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -3062 ((-112) |#2| (-893 |#1|))) (-15 -3062 ((-112) (-643 |#2|) (-893 |#1|))) (-15 -3063 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -3064 ((-643 |#2|) (-893 |#1|)))) (-1104) (-1219)) (T -894)) -((-3064 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-643 *5)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1219)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1219)))) (-3062 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *2 (-112)) (-5 *1 (-894 *5 *6)))) (-3062 (*1 *2 *3 *4) (-12 (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3)) (-4 *3 (-1219)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1219)))) (-3629 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-893 *5)) (-5 *3 (-643 (-1180))) (-5 *4 (-1 (-112) (-643 *6))) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *1 (-894 *5 *6)))) (-3629 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-643 (-1 (-112) *5))) (-4 *4 (-1104)) (-4 *5 (-1219)) (-5 *1 (-894 *4 *5)))) (-3629 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1104)) (-4 *5 (-1219)) (-5 *1 (-894 *4 *5))))) -(-10 -7 (-15 -3629 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1 (-112) |#2|)))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1180)) (-1 (-112) (-643 |#2|)))) (-15 -3954 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -3062 ((-112) |#2| (-893 |#1|))) (-15 -3062 ((-112) (-643 |#2|) (-893 |#1|))) (-15 -3063 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -3064 ((-643 |#2|) (-893 |#1|)))) -((-4390 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19))) -(((-895 |#1| |#2|) (-10 -7 (-15 -4390 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1104) (-1104)) (T -895)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-893 *6)) (-5 *1 (-895 *5 *6))))) -(-10 -7 (-15 -4390 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) -((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) 19)) (-3065 (((-112) $) 49)) (-3577 (((-3 (-674 |#1|) "failed") $) 56)) (-3576 (((-674 |#1|) $) 54)) (-4230 (($ $) 23)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4265 (((-773) $) 61)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-674 |#1|) $) 21)) (-4378 (((-865) $) 47) (($ (-674 |#1|)) 26) (((-821 |#1|) $) 36) (($ |#1|) 25)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 9 T CONST)) (-3066 (((-643 (-674 |#1|)) $) 28)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 12)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 67))) -(((-896 |#1|) (-13 (-852) (-1041 (-674 |#1|)) (-10 -8 (-15 1 ($) -4384) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ($ |#1|)) (-15 -4232 ((-674 |#1|) $)) (-15 -4265 ((-773) $)) (-15 -3066 ((-643 (-674 |#1|)) $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -4366 ((-643 |#1|) $)))) (-852)) (T -896)) -((-3067 (*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4378 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-674 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-643 (-674 *3))) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852))))) -(-13 (-852) (-1041 (-674 |#1|)) (-10 -8 (-15 (-3067) ($) -4384) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ($ |#1|)) (-15 -4232 ((-674 |#1|) $)) (-15 -4265 ((-773) $)) (-15 -3066 ((-643 (-674 |#1|)) $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -4366 ((-643 |#1|) $)))) -((-3897 ((|#1| |#1| |#1|) 19))) -(((-897 |#1| |#2|) (-10 -7 (-15 -3897 (|#1| |#1| |#1|))) (-1245 |#2|) (-1052)) (T -897)) -((-3897 (*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-897 *2 *3)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -3897 (|#1| |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3068 (((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 14)) (-3455 (((-112) $ $) 6))) -(((-898) (-140)) (T -898)) -((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-898)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-3068 (*1 *2 *3) (-12 (-4 *1 (-898)) (-5 *3 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *2 (-1038))))) -(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))) (-15 -3068 ((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-3070 ((|#1| |#1| (-773)) 29)) (-3069 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3859 (((-3 (-2 (|:| -3542 |#1|) (|:| -3541 |#1|)) "failed") |#1| (-773) (-773)) 32) (((-643 |#1|) |#1|) 39))) -(((-899 |#1| |#2|) (-10 -7 (-15 -3859 ((-643 |#1|) |#1|)) (-15 -3859 ((-3 (-2 (|:| -3542 |#1|) (|:| -3541 |#1|)) "failed") |#1| (-773) (-773))) (-15 -3069 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3070 (|#1| |#1| (-773)))) (-1245 |#2|) (-365)) (T -899)) -((-3070 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-5 *1 (-899 *2 *4)) (-4 *2 (-1245 *4)))) (-3069 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-899 *2 *3)) (-4 *2 (-1245 *3)))) (-3859 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-773)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-899 *3 *5)) (-4 *3 (-1245 *5)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3859 ((-643 |#1|) |#1|)) (-15 -3859 ((-3 (-2 (|:| -3542 |#1|) (|:| -3541 |#1|)) "failed") |#1| (-773) (-773))) (-15 -3069 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3070 (|#1| |#1| (-773)))) -((-4004 (((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162)) 106) (((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162) (-225)) 102) (((-1038) (-901) (-1066)) 94) (((-1038) (-901)) 95)) (-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901) (-1066)) 65) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901)) 67))) -(((-900) (-10 -7 (-15 -4004 ((-1038) (-901))) (-15 -4004 ((-1038) (-901) (-1066))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162) (-225))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901) (-1066))))) (T -900)) -((-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-901)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-900)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-900)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) (-5 *1 (-900)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) (-5 *8 (-225)) (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) (-5 *1 (-900)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-901)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-900)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-1038)) (-5 *1 (-900))))) -(-10 -7 (-15 -4004 ((-1038) (-901))) (-15 -4004 ((-1038) (-901) (-1066))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162) (-225))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901) (-1066)))) -((-2968 (((-112) $ $) NIL)) (-3576 (((-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))) $) 19)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 21) (($ (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-901) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))) (-15 -3576 ((-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))) $))))) (T -901)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *1 (-901)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *1 (-901))))) -(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))) (-15 -3576 ((-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))) $)))) -((-4242 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) 10) (($ $ |#2| (-773)) 15) (($ $ (-643 |#2|) (-643 (-773))) 18)) (-3072 (($ $ |#2|) 19) (($ $ (-643 |#2|)) 21) (($ $ |#2| (-773)) 22) (($ $ (-643 |#2|) (-643 (-773))) 24))) -(((-902 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -3072 (|#1| |#1| |#2| (-773))) (-15 -3072 (|#1| |#1| (-643 |#2|))) (-15 -3072 (|#1| |#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#2| (-773))) (-15 -4242 (|#1| |#1| (-643 |#2|))) (-15 -4242 (|#1| |#1| |#2|))) (-903 |#2|) (-1104)) (T -902)) -NIL -(-10 -8 (-15 -3072 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -3072 (|#1| |#1| |#2| (-773))) (-15 -3072 (|#1| |#1| (-643 |#2|))) (-15 -3072 (|#1| |#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#2| (-773))) (-15 -4242 (|#1| |#1| (-643 |#2|))) (-15 -4242 (|#1| |#1| |#2|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $ |#1|) 46) (($ $ (-643 |#1|)) 45) (($ $ |#1| (-773)) 44) (($ $ (-643 |#1|) (-643 (-773))) 43)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#1|) 42) (($ $ (-643 |#1|)) 41) (($ $ |#1| (-773)) 40) (($ $ (-643 |#1|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-903 |#1|) (-140) (-1104)) (T -903)) -((-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) (-4 *4 (-1104)))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) (-4 *4 (-1104))))) -(-13 (-1052) (-10 -8 (-15 -4242 ($ $ |t#1|)) (-15 -4242 ($ $ (-643 |t#1|))) (-15 -4242 ($ $ |t#1| (-773))) (-15 -4242 ($ $ (-643 |t#1|) (-643 (-773)))) (-15 -3072 ($ $ |t#1|)) (-15 -3072 ($ $ (-643 |t#1|))) (-15 -3072 ($ $ |t#1| (-773))) (-15 -3072 ($ $ (-643 |t#1|) (-643 (-773)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 26)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-1388 (($ $ $) NIL (|has| $ (-6 -4426)))) (-1389 (($ $ $) NIL (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 25)) (-3073 (($ |#1|) 12) (($ $ $) 17)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 23)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) 20)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1206 |#1|) $) 9) (((-865) $) 29 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 21 (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-904 |#1|) (-13 (-119 |#1|) (-615 (-1206 |#1|)) (-10 -8 (-15 -3073 ($ |#1|)) (-15 -3073 ($ $ $)))) (-1104)) (T -904)) -((-3073 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104))))) -(-13 (-119 |#1|) (-615 (-1206 |#1|)) (-10 -8 (-15 -3073 ($ |#1|)) (-15 -3073 ($ $ $)))) -((-2968 (((-112) $ $) NIL)) (-3310 (((-643 $) (-643 $)) 103)) (-4055 (((-549) $) 84)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-4203 (((-773) $) 81)) (-3093 (((-1100 |#1|) $ |#1|) 72)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) 88)) (-3078 (((-773) $) 85)) (-3089 (((-1100 |#1|) $) 61)) (-2934 (($ $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3260 (($ $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3082 (((-2 (|:| |preimage| (-643 |#1|)) (|:| |image| (-643 |#1|))) $) 56)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 131)) (-3664 (((-1123) $) NIL)) (-3075 (((-1100 |#1|) $) 139 (|has| |#1| (-370)))) (-3077 (((-112) $) 82)) (-4199 ((|#1| $ |#1|) 70)) (-4231 ((|#1| $ |#1|) 133)) (-4380 (((-773) $) 63)) (-3084 (($ (-643 (-643 |#1|))) 118)) (-3079 (((-974) $) 76)) (-3085 (($ (-643 |#1|)) 33)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-3081 (($ (-643 (-643 |#1|))) 58)) (-3080 (($ (-643 (-643 |#1|))) 123)) (-3074 (($ (-643 |#1|)) 135)) (-4378 (((-865) $) 117) (($ (-643 (-643 |#1|))) 91) (($ (-643 |#1|)) 92)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 24 T CONST)) (-2966 (((-112) $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3455 (((-112) $ $) 68)) (-3087 (((-112) $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3088 (((-112) $ $) 90)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 34))) -(((-905 |#1|) (-13 (-907 |#1|) (-10 -8 (-15 -3082 ((-2 (|:| |preimage| (-643 |#1|)) (|:| |image| (-643 |#1|))) $)) (-15 -3081 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 |#1|))) (-15 -3080 ($ (-643 (-643 |#1|)))) (-15 -4380 ((-773) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3079 ((-974) $)) (-15 -4203 ((-773) $)) (-15 -3078 ((-773) $)) (-15 -4055 ((-549) $)) (-15 -3077 ((-112) $)) (-15 -3076 ((-112) $)) (-15 -3310 ((-643 $) (-643 $))) (IF (|has| |#1| (-370)) (-15 -3075 ((-1100 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3074 ($ (-643 |#1|))) (IF (|has| |#1| (-370)) (-15 -3074 ($ (-643 |#1|))) |%noBranch|)))) (-1104)) (T -905)) -((-3082 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-643 *3)) (|:| |image| (-643 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-974)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3310 (*1 *2 *2) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1104)))) (-3074 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) -(-13 (-907 |#1|) (-10 -8 (-15 -3082 ((-2 (|:| |preimage| (-643 |#1|)) (|:| |image| (-643 |#1|))) $)) (-15 -3081 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 |#1|))) (-15 -3080 ($ (-643 (-643 |#1|)))) (-15 -4380 ((-773) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3079 ((-974) $)) (-15 -4203 ((-773) $)) (-15 -3078 ((-773) $)) (-15 -4055 ((-549) $)) (-15 -3077 ((-112) $)) (-15 -3076 ((-112) $)) (-15 -3310 ((-643 $) (-643 $))) (IF (|has| |#1| (-370)) (-15 -3075 ((-1100 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3074 ($ (-643 |#1|))) (IF (|has| |#1| (-370)) (-15 -3074 ($ (-643 |#1|))) |%noBranch|)))) -((-3083 ((|#2| (-1145 |#1| |#2|)) 50))) -(((-906 |#1| |#2|) (-10 -7 (-15 -3083 (|#2| (-1145 |#1| |#2|)))) (-922) (-13 (-1052) (-10 -7 (-6 (-4427 "*"))))) (T -906)) -((-3083 (*1 *2 *3) (-12 (-5 *3 (-1145 *4 *2)) (-14 *4 (-922)) (-4 *2 (-13 (-1052) (-10 -7 (-6 (-4427 "*"))))) (-5 *1 (-906 *4 *2))))) -(-10 -7 (-15 -3083 (|#2| (-1145 |#1| |#2|)))) -((-2968 (((-112) $ $) 7)) (-4156 (($) 19 T CONST)) (-3890 (((-3 $ "failed") $) 16)) (-3093 (((-1100 |#1|) $ |#1|) 33)) (-2573 (((-112) $) 18)) (-2934 (($ $ $) 31 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3260 (($ $ $) 30 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 25)) (-3664 (((-1123) $) 11)) (-4199 ((|#1| $ |#1|) 35)) (-4231 ((|#1| $ |#1|) 34)) (-3084 (($ (-643 (-643 |#1|))) 36)) (-3085 (($ (-643 |#1|)) 37)) (-3410 (($ $ $) 22)) (-2756 (($ $ $) 21)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-2966 (((-112) $ $) 28 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-2967 (((-112) $ $) 27 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 29 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3088 (((-112) $ $) 32)) (-4381 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-773)) 17) (($ $ (-549)) 23)) (* (($ $ $) 15))) -(((-907 |#1|) (-140) (-1104)) (T -907)) -((-3085 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-907 *3)))) (-3084 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-4 *1 (-907 *3)))) (-4199 (*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) (-4231 (*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-1100 *3)))) (-3088 (*1 *2 *1 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(-13 (-476) (-10 -8 (-15 -3085 ($ (-643 |t#1|))) (-15 -3084 ($ (-643 (-643 |t#1|)))) (-15 -4199 (|t#1| $ |t#1|)) (-15 -4231 (|t#1| $ |t#1|)) (-15 -3093 ((-1100 |t#1|) $ |t#1|)) (-15 -3088 ((-112) $ $)) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-852)) |%noBranch|))) -(((-102) . T) ((-615 (-865)) . T) ((-476) . T) ((-728) . T) ((-852) -3960 (|has| |#1| (-852)) (|has| |#1| (-370))) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3095 (((-643 (-643 (-773))) $) 164)) (-3091 (((-643 (-773)) (-905 |#1|) $) 192)) (-3090 (((-643 (-773)) (-905 |#1|) $) 193)) (-3096 (((-643 (-905 |#1|)) $) 153)) (-3395 (((-905 |#1|) $ (-549)) 158) (((-905 |#1|) $) 159)) (-3094 (($ (-643 (-905 |#1|))) 166)) (-4203 (((-773) $) 160)) (-3092 (((-1100 (-1100 |#1|)) $) 190)) (-3093 (((-1100 |#1|) $ |#1|) 181) (((-1100 (-1100 |#1|)) $ (-1100 |#1|)) 201) (((-1100 (-643 |#1|)) $ (-643 |#1|)) 204)) (-3089 (((-1100 |#1|) $) 156)) (-3666 (((-112) (-905 |#1|) $) 141)) (-3663 (((-1162) $) NIL)) (-3086 (((-1275) $) 146) (((-1275) $ (-549) (-549)) 205)) (-3664 (((-1123) $) NIL)) (-3098 (((-643 (-905 |#1|)) $) 147)) (-4231 (((-905 |#1|) $ (-773)) 154)) (-4380 (((-773) $) 161)) (-4378 (((-865) $) 178) (((-643 (-905 |#1|)) $) 28) (($ (-643 (-905 |#1|))) 165)) (-3662 (((-112) $ $) NIL)) (-3097 (((-643 |#1|) $) 163)) (-3455 (((-112) $ $) 198)) (-3087 (((-112) $ $) 196)) (-3088 (((-112) $ $) 195))) -(((-908 |#1|) (-13 (-1104) (-10 -8 (-15 -4378 ((-643 (-905 |#1|)) $)) (-15 -3098 ((-643 (-905 |#1|)) $)) (-15 -4231 ((-905 |#1|) $ (-773))) (-15 -3395 ((-905 |#1|) $ (-549))) (-15 -3395 ((-905 |#1|) $)) (-15 -4203 ((-773) $)) (-15 -4380 ((-773) $)) (-15 -3097 ((-643 |#1|) $)) (-15 -3096 ((-643 (-905 |#1|)) $)) (-15 -3095 ((-643 (-643 (-773))) $)) (-15 -4378 ($ (-643 (-905 |#1|)))) (-15 -3094 ($ (-643 (-905 |#1|)))) (-15 -3093 ((-1100 |#1|) $ |#1|)) (-15 -3092 ((-1100 (-1100 |#1|)) $)) (-15 -3093 ((-1100 (-1100 |#1|)) $ (-1100 |#1|))) (-15 -3093 ((-1100 (-643 |#1|)) $ (-643 |#1|))) (-15 -3666 ((-112) (-905 |#1|) $)) (-15 -3091 ((-643 (-773)) (-905 |#1|) $)) (-15 -3090 ((-643 (-773)) (-905 |#1|) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3088 ((-112) $ $)) (-15 -3087 ((-112) $ $)) (-15 -3086 ((-1275) $)) (-15 -3086 ((-1275) $ (-549) (-549))))) (-1104)) (T -908)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-773)))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3)))) (-3093 (*1 *2 *1 *3) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1100 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-1100 *4))) (-5 *1 (-908 *4)) (-5 *3 (-1100 *4)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-643 *4))) (-5 *1 (-908 *4)) (-5 *3 (-643 *4)))) (-3666 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-908 *4)))) (-3091 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) (-5 *1 (-908 *4)))) (-3090 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) (-5 *1 (-908 *4)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3088 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3086 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-908 *4)) (-4 *4 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -4378 ((-643 (-905 |#1|)) $)) (-15 -3098 ((-643 (-905 |#1|)) $)) (-15 -4231 ((-905 |#1|) $ (-773))) (-15 -3395 ((-905 |#1|) $ (-549))) (-15 -3395 ((-905 |#1|) $)) (-15 -4203 ((-773) $)) (-15 -4380 ((-773) $)) (-15 -3097 ((-643 |#1|) $)) (-15 -3096 ((-643 (-905 |#1|)) $)) (-15 -3095 ((-643 (-643 (-773))) $)) (-15 -4378 ($ (-643 (-905 |#1|)))) (-15 -3094 ($ (-643 (-905 |#1|)))) (-15 -3093 ((-1100 |#1|) $ |#1|)) (-15 -3092 ((-1100 (-1100 |#1|)) $)) (-15 -3093 ((-1100 (-1100 |#1|)) $ (-1100 |#1|))) (-15 -3093 ((-1100 (-643 |#1|)) $ (-643 |#1|))) (-15 -3666 ((-112) (-905 |#1|) $)) (-15 -3091 ((-643 (-773)) (-905 |#1|) $)) (-15 -3090 ((-643 (-773)) (-905 |#1|) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3088 ((-112) $ $)) (-15 -3087 ((-112) $ $)) (-15 -3086 ((-1275) $)) (-15 -3086 ((-1275) $ (-549) (-549))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 $ "failed") $) NIL)) (-3576 (($ $) NIL)) (-1967 (($ (-1269 $)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL)) (-1848 (((-112) $) NIL)) (-1941 (($ $) NIL) (($ $ (-773)) NIL)) (-4155 (((-112) $) NIL)) (-4203 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| $ (-370)))) (-2189 (((-112) $) NIL (|has| $ (-370)))) (-3536 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 $) $ (-922)) NIL (|has| $ (-370))) (((-1174 $) $) NIL)) (-2188 (((-922) $) NIL)) (-1772 (((-1174 $) $) NIL (|has| $ (-370)))) (-1771 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-1773 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL T CONST)) (-2563 (($ (-922)) NIL)) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| $ (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL)) (-4164 (((-408 $) $) NIL)) (-4362 (((-922)) NIL) (((-834 (-922))) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-3 (-773) "failed") $ $) NIL) (((-773) $) NIL)) (-4343 (((-134)) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-4380 (((-922) $) NIL) (((-834 (-922)) $) NIL)) (-3605 (((-1174 $)) NIL)) (-1842 (($) NIL)) (-1774 (($) NIL (|has| $ (-370)))) (-3644 (((-691 $) (-1269 $)) NIL) (((-1269 $) $) NIL)) (-4402 (((-549) $) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $) (-922)) NIL) (((-1269 $)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $ (-773)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-909 |#1|) (-13 (-352) (-330 $) (-616 (-549))) (-922)) (T -909)) -NIL -(-13 (-352) (-330 $) (-616 (-549))) -((-3100 (((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|)) 159)) (-3103 ((|#1|) 97)) (-3102 (((-408 (-1174 |#4|)) (-1174 |#4|)) 168)) (-3104 (((-408 (-1174 |#4|)) (-643 |#3|) (-1174 |#4|)) 84)) (-3101 (((-408 (-1174 |#4|)) (-1174 |#4|)) 178)) (-3099 (((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|) |#3|) 113))) -(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|))) (-15 -3101 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3102 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3103 (|#1|)) (-15 -3099 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -3104 ((-408 (-1174 |#4|)) (-643 |#3|) (-1174 |#4|)))) (-913) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -910)) -((-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *7)) (-4 *7 (-852)) (-4 *5 (-913)) (-4 *6 (-795)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-408 (-1174 *8))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-1174 *8)))) (-3099 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-953 *5 *6 *4)) (-4 *5 (-913)) (-4 *6 (-795)) (-4 *4 (-852)) (-5 *1 (-910 *5 *6 *4 *7)))) (-3103 (*1 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-910 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-3100 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-910 *4 *5 *6 *7))))) -(-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|))) (-15 -3101 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3102 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3103 (|#1|)) (-15 -3099 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -3104 ((-408 (-1174 |#4|)) (-643 |#3|) (-1174 |#4|)))) -((-3100 (((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)) 41)) (-3103 ((|#1|) 75)) (-3102 (((-408 (-1174 |#2|)) (-1174 |#2|)) 124)) (-3104 (((-408 (-1174 |#2|)) (-1174 |#2|)) 108)) (-3101 (((-408 (-1174 |#2|)) (-1174 |#2|)) 135))) -(((-911 |#1| |#2|) (-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|))) (-15 -3101 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3102 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3103 (|#1|)) (-15 -3104 ((-408 (-1174 |#2|)) (-1174 |#2|)))) (-913) (-1245 |#1|)) (T -911)) -((-3104 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5)))) (-3103 (*1 *2) (-12 (-4 *2 (-913)) (-5 *1 (-911 *2 *3)) (-4 *3 (-1245 *2)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5)))) (-3100 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-913)) (-5 *1 (-911 *4 *5))))) -(-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|))) (-15 -3101 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3102 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3103 (|#1|)) (-15 -3104 ((-408 (-1174 |#2|)) (-1174 |#2|)))) -((-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 42)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 18)) (-3105 (((-3 $ "failed") $) 36))) -(((-912 |#1|) (-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-913)) (T -912)) -NIL -(-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 66)) (-4206 (($ $) 57)) (-4401 (((-408 $) $) 58)) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 63)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-4155 (((-112) $) 59)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3108 (((-408 (-1174 $)) (-1174 $)) 64)) (-3109 (((-408 (-1174 $)) (-1174 $)) 65)) (-4164 (((-408 $) $) 56)) (-3889 (((-3 $ "failed") $ $) 48)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 62 (|has| $ (-145)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3105 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-913) (-140)) (T -913)) -((-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-913)))) (-3110 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3109 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3108 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *1))) (-5 *3 (-1174 *1)) (-4 *1 (-913)))) (-3106 (*1 *2 *3) (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-145)) (-4 *1 (-913)) (-5 *2 (-1269 *1)))) (-3105 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-913))))) -(-13 (-1224) (-10 -8 (-15 -3110 ((-408 (-1174 $)) (-1174 $))) (-15 -3109 ((-408 (-1174 $)) (-1174 $))) (-15 -3108 ((-408 (-1174 $)) (-1174 $))) (-15 -3111 ((-1174 $) (-1174 $) (-1174 $))) (-15 -3107 ((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $))) (IF (|has| $ (-145)) (PROGN (-15 -3106 ((-3 (-1269 $) "failed") (-691 $))) (-15 -3105 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-3113 (((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 77)) (-3112 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-4203 (((-3 (-773) "failed") (-335 |#2| |#3| |#4| |#5|)) 15))) -(((-914 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3112 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-560) (-1041 (-549))) (-424 |#1|) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -914)) -((-3113 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *8))) (-5 *1 (-914 *4 *5 *6 *7 *8)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7 *8)))) (-4203 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-773)) (-5 *1 (-914 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3112 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) -((-3113 (((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#3|)) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)) 64)) (-3112 (((-112) (-335 (-410 (-549)) |#1| |#2| |#3|)) 16)) (-4203 (((-3 (-773) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)) 14))) -(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3112 ((-112) (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#3|)) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)))) (-1245 (-410 (-549))) (-1245 (-410 |#1|)) (-344 (-410 (-549)) |#1| |#2|)) (T -915)) -((-3113 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *6))) (-5 *1 (-915 *4 *5 *6)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-915 *4 *5 *6)))) (-4203 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-773)) (-5 *1 (-915 *4 *5 *6))))) -(-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3112 ((-112) (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#3|)) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)))) -((-3118 ((|#2| |#2|) 26)) (-3116 (((-549) (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) 15)) (-3114 (((-922) (-549)) 38)) (-3117 (((-549) |#2|) 45)) (-3115 (((-549) |#2|) 21) (((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|) 20))) -(((-916 |#1| |#2|) (-10 -7 (-15 -3114 ((-922) (-549))) (-15 -3115 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -3115 ((-549) |#2|)) (-15 -3116 ((-549) (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -3117 ((-549) |#2|)) (-15 -3118 (|#2| |#2|))) (-1245 (-410 (-549))) (-1245 (-410 |#1|))) (T -916)) -((-3118 (*1 *2 *2) (-12 (-4 *3 (-1245 (-410 (-549)))) (-5 *1 (-916 *3 *2)) (-4 *2 (-1245 (-410 *3))))) (-3117 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1245 (-410 *4))))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-3115 (*1 *2 *3) (-12 (-4 *3 (-1245 (-410 (-549)))) (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))) (-5 *1 (-916 *3 *4)) (-4 *4 (-1245 (-410 *3))))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-922)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1245 (-410 *4)))))) -(-10 -7 (-15 -3114 ((-922) (-549))) (-15 -3115 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -3115 ((-549) |#2|)) (-15 -3116 ((-549) (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -3117 ((-549) |#2|)) (-15 -3118 (|#2| |#2|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 ((|#1| $) 100)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 94)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3126 (($ |#1| (-408 |#1|)) 92)) (-3120 (((-1174 |#1|) |#1| |#1|) 53)) (-3119 (($ $) 61)) (-2573 (((-112) $) NIL)) (-3121 (((-549) $) 97)) (-3122 (($ $ (-549)) 99)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3123 ((|#1| $) 96)) (-3124 (((-408 |#1|) $) 95)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) 93)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3125 (($ $) 50)) (-4378 (((-865) $) 124) (($ (-549)) 73) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-408 |#1|))) 86)) (-3530 (((-773)) 71 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 26 T CONST)) (-3067 (($) 15 T CONST)) (-3455 (((-112) $ $) 87)) (-4381 (($ $ $) NIL)) (-4269 (($ $) 108) (($ $ $) NIL)) (-4271 (($ $ $) 49)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 110) (($ $ $) 48) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-917 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4378 ((-410 |#1|) $)) (-15 -4378 ($ (-410 (-408 |#1|)))) (-15 -3125 ($ $)) (-15 -3124 ((-408 |#1|) $)) (-15 -3123 (|#1| $)) (-15 -3122 ($ $ (-549))) (-15 -3121 ((-549) $)) (-15 -3120 ((-1174 |#1|) |#1| |#1|)) (-15 -3119 ($ $)) (-15 -3126 ($ |#1| (-408 |#1|))) (-15 -3533 (|#1| $)))) (-308)) (T -917)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-410 (-408 *3))) (-4 *3 (-308)) (-5 *1 (-917 *3)))) (-3125 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-408 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3123 (*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3120 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) (-3126 (*1 *1 *2 *3) (-12 (-5 *3 (-408 *2)) (-4 *2 (-308)) (-5 *1 (-917 *2)))) (-3533 (*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) -(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4378 ((-410 |#1|) $)) (-15 -4378 ($ (-410 (-408 |#1|)))) (-15 -3125 ($ $)) (-15 -3124 ((-408 |#1|) $)) (-15 -3123 (|#1| $)) (-15 -3122 ($ $ (-549))) (-15 -3121 ((-549) $)) (-15 -3120 ((-1174 |#1|) |#1| |#1|)) (-15 -3119 ($ $)) (-15 -3126 ($ |#1| (-408 |#1|))) (-15 -3533 (|#1| $)))) -((-3126 (((-51) (-949 |#1|) (-408 (-949 |#1|)) (-1180)) 17) (((-51) (-410 (-949 |#1|)) (-1180)) 18))) -(((-918 |#1|) (-10 -7 (-15 -3126 ((-51) (-410 (-949 |#1|)) (-1180))) (-15 -3126 ((-51) (-949 |#1|) (-408 (-949 |#1|)) (-1180)))) (-13 (-308) (-147))) (T -918)) -((-3126 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-408 (-949 *6))) (-5 *5 (-1180)) (-5 *3 (-949 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-51)) (-5 *1 (-918 *6)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-51)) (-5 *1 (-918 *5))))) -(-10 -7 (-15 -3126 ((-51) (-410 (-949 |#1|)) (-1180))) (-15 -3126 ((-51) (-949 |#1|) (-408 (-949 |#1|)) (-1180)))) -((-3127 ((|#4| (-643 |#4|)) 149) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-3564 (((-1174 |#4|) (-643 (-1174 |#4|))) 142) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 63) ((|#4| (-643 |#4|)) 71) ((|#4| |#4| |#4|) 109))) -(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3564 (|#4| |#4| |#4|)) (-15 -3564 (|#4| (-643 |#4|))) (-15 -3564 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3564 ((-1174 |#4|) (-643 (-1174 |#4|)))) (-15 -3127 (|#4| |#4| |#4|)) (-15 -3127 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3127 (|#4| (-643 |#4|)))) (-795) (-852) (-308) (-953 |#3| |#1| |#2|)) (T -919)) -((-3127 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3127 (*1 *2 *2 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-953 *5 *3 *4)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-643 (-1174 *7))) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-1174 *7)) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-3564 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)))) (-3564 (*1 *2 *2 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-953 *5 *3 *4))))) -(-10 -7 (-15 -3564 (|#4| |#4| |#4|)) (-15 -3564 (|#4| (-643 |#4|))) (-15 -3564 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3564 ((-1174 |#4|) (-643 (-1174 |#4|)))) (-15 -3127 (|#4| |#4| |#4|)) (-15 -3127 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3127 (|#4| (-643 |#4|)))) -((-3140 (((-908 (-549)) (-974)) 38) (((-908 (-549)) (-643 (-549))) 35)) (-3128 (((-908 (-549)) (-643 (-549))) 70) (((-908 (-549)) (-922)) 71)) (-3139 (((-908 (-549))) 39)) (-3137 (((-908 (-549))) 55) (((-908 (-549)) (-643 (-549))) 54)) (-3136 (((-908 (-549))) 53) (((-908 (-549)) (-643 (-549))) 52)) (-3135 (((-908 (-549))) 51) (((-908 (-549)) (-643 (-549))) 50)) (-3134 (((-908 (-549))) 49) (((-908 (-549)) (-643 (-549))) 48)) (-3133 (((-908 (-549))) 47) (((-908 (-549)) (-643 (-549))) 46)) (-3138 (((-908 (-549))) 57) (((-908 (-549)) (-643 (-549))) 56)) (-3132 (((-908 (-549)) (-643 (-549))) 75) (((-908 (-549)) (-922)) 77)) (-3131 (((-908 (-549)) (-643 (-549))) 72) (((-908 (-549)) (-922)) 73)) (-3129 (((-908 (-549)) (-643 (-549))) 68) (((-908 (-549)) (-922)) 69)) (-3130 (((-908 (-549)) (-643 (-922))) 60))) -(((-920) (-10 -7 (-15 -3128 ((-908 (-549)) (-922))) (-15 -3128 ((-908 (-549)) (-643 (-549)))) (-15 -3129 ((-908 (-549)) (-922))) (-15 -3129 ((-908 (-549)) (-643 (-549)))) (-15 -3130 ((-908 (-549)) (-643 (-922)))) (-15 -3131 ((-908 (-549)) (-922))) (-15 -3131 ((-908 (-549)) (-643 (-549)))) (-15 -3132 ((-908 (-549)) (-922))) (-15 -3132 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)))) (-15 -3134 ((-908 (-549)) (-643 (-549)))) (-15 -3134 ((-908 (-549)))) (-15 -3135 ((-908 (-549)) (-643 (-549)))) (-15 -3135 ((-908 (-549)))) (-15 -3136 ((-908 (-549)) (-643 (-549)))) (-15 -3136 ((-908 (-549)))) (-15 -3137 ((-908 (-549)) (-643 (-549)))) (-15 -3137 ((-908 (-549)))) (-15 -3138 ((-908 (-549)) (-643 (-549)))) (-15 -3138 ((-908 (-549)))) (-15 -3139 ((-908 (-549)))) (-15 -3140 ((-908 (-549)) (-643 (-549)))) (-15 -3140 ((-908 (-549)) (-974))))) (T -920)) -((-3140 (*1 *2 *3) (-12 (-5 *3 (-974)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3139 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3138 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3137 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3136 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3135 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3134 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3133 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-643 (-922))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(-10 -7 (-15 -3128 ((-908 (-549)) (-922))) (-15 -3128 ((-908 (-549)) (-643 (-549)))) (-15 -3129 ((-908 (-549)) (-922))) (-15 -3129 ((-908 (-549)) (-643 (-549)))) (-15 -3130 ((-908 (-549)) (-643 (-922)))) (-15 -3131 ((-908 (-549)) (-922))) (-15 -3131 ((-908 (-549)) (-643 (-549)))) (-15 -3132 ((-908 (-549)) (-922))) (-15 -3132 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)))) (-15 -3134 ((-908 (-549)) (-643 (-549)))) (-15 -3134 ((-908 (-549)))) (-15 -3135 ((-908 (-549)) (-643 (-549)))) (-15 -3135 ((-908 (-549)))) (-15 -3136 ((-908 (-549)) (-643 (-549)))) (-15 -3136 ((-908 (-549)))) (-15 -3137 ((-908 (-549)) (-643 (-549)))) (-15 -3137 ((-908 (-549)))) (-15 -3138 ((-908 (-549)) (-643 (-549)))) (-15 -3138 ((-908 (-549)))) (-15 -3139 ((-908 (-549)))) (-15 -3140 ((-908 (-549)) (-643 (-549)))) (-15 -3140 ((-908 (-549)) (-974)))) -((-3142 (((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))) 14)) (-3141 (((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))) 13))) -(((-921 |#1|) (-10 -7 (-15 -3141 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3142 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))))) (-455)) (T -921)) -((-3142 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) (-5 *1 (-921 *4)))) (-3141 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) (-5 *1 (-921 *4))))) -(-10 -7 (-15 -3141 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3142 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))))) -((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3564 (($ $ $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ $ $) NIL))) -(((-922) (-13 (-796) (-728) (-10 -8 (-15 -3564 ($ $ $)) (-6 (-4427 "*"))))) (T -922)) -((-3564 (*1 *1 *1 *1) (-5 *1 (-922)))) -(-13 (-796) (-728) (-10 -8 (-15 -3564 ($ $ $)) (-6 (-4427 "*")))) +NIL +(-13 (-561) (-851)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-794) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-851) . T) ((-853) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2902 (((-1276) (-826) $ (-112)) 9) (((-1276) (-826) $) 8) (((-1163) $ (-112)) 7) (((-1163) $) 6))) +(((-824) (-140)) (T -824)) +((-2902 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-824)) (-5 *3 (-826)) (-5 *4 (-112)) (-5 *2 (-1276)))) (-2902 (*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-826)) (-5 *2 (-1276)))) (-2902 (*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1163)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1163))))) +(-13 (-10 -8 (-15 -2902 ((-1163) $)) (-15 -2902 ((-1163) $ (-112))) (-15 -2902 ((-1276) (-826) $)) (-15 -2902 ((-1276) (-826) $ (-112))))) +((-2842 (($ (-1124)) 7)) (-2846 (((-112) $ (-1163) (-1124)) 15)) (-2845 (((-826) $) 12)) (-2844 (((-826) $) 11)) (-2843 (((-1276) $) 9)) (-2847 (((-112) $ (-1124)) 16))) +(((-825) (-10 -8 (-15 -2842 ($ (-1124))) (-15 -2843 ((-1276) $)) (-15 -2844 ((-826) $)) (-15 -2845 ((-826) $)) (-15 -2846 ((-112) $ (-1163) (-1124))) (-15 -2847 ((-112) $ (-1124))))) (T -825)) +((-2847 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1124)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-826)) (-5 *1 (-825)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-826)) (-5 *1 (-825)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-825)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-825))))) +(-10 -8 (-15 -2842 ($ (-1124))) (-15 -2843 ((-1276) $)) (-15 -2844 ((-826) $)) (-15 -2845 ((-826) $)) (-15 -2846 ((-112) $ (-1163) (-1124))) (-15 -2847 ((-112) $ (-1124)))) +((-2851 (((-1276) $ (-827)) 12)) (-2868 (((-1276) $ (-1181)) 32)) (-2870 (((-1276) $ (-1163) (-1163)) 34)) (-2869 (((-1276) $ (-1163)) 33)) (-2858 (((-1276) $) 19)) (-2866 (((-1276) $ (-550)) 28)) (-2867 (((-1276) $ (-226)) 30)) (-2857 (((-1276) $) 18)) (-2865 (((-1276) $) 26)) (-2864 (((-1276) $) 25)) (-2862 (((-1276) $) 23)) (-2863 (((-1276) $) 24)) (-2861 (((-1276) $) 22)) (-2860 (((-1276) $) 21)) (-2859 (((-1276) $) 20)) (-2855 (((-1276) $) 16)) (-2856 (((-1276) $) 17)) (-2854 (((-1276) $) 15)) (-2853 (((-1276) $) 14)) (-2852 (((-1276) $) 13)) (-2849 (($ (-1163) (-827)) 9)) (-2848 (($ (-1163) (-1163) (-827)) 8)) (-2887 (((-1181) $) 51)) (-2890 (((-1181) $) 55)) (-2889 (((-2 (|:| |cd| (-1163)) (|:| -3975 (-1163))) $) 54)) (-2888 (((-1163) $) 52)) (-2877 (((-1276) $) 41)) (-2885 (((-550) $) 49)) (-2886 (((-226) $) 50)) (-2876 (((-1276) $) 40)) (-2884 (((-1276) $) 48)) (-2883 (((-1276) $) 47)) (-2881 (((-1276) $) 45)) (-2882 (((-1276) $) 46)) (-2880 (((-1276) $) 44)) (-2879 (((-1276) $) 43)) (-2878 (((-1276) $) 42)) (-2874 (((-1276) $) 38)) (-2875 (((-1276) $) 39)) (-2873 (((-1276) $) 37)) (-2872 (((-1276) $) 36)) (-2871 (((-1276) $) 35)) (-2850 (((-1276) $) 11))) +(((-826) (-10 -8 (-15 -2848 ($ (-1163) (-1163) (-827))) (-15 -2849 ($ (-1163) (-827))) (-15 -2850 ((-1276) $)) (-15 -2851 ((-1276) $ (-827))) (-15 -2852 ((-1276) $)) (-15 -2853 ((-1276) $)) (-15 -2854 ((-1276) $)) (-15 -2855 ((-1276) $)) (-15 -2856 ((-1276) $)) (-15 -2857 ((-1276) $)) (-15 -2858 ((-1276) $)) (-15 -2859 ((-1276) $)) (-15 -2860 ((-1276) $)) (-15 -2861 ((-1276) $)) (-15 -2862 ((-1276) $)) (-15 -2863 ((-1276) $)) (-15 -2864 ((-1276) $)) (-15 -2865 ((-1276) $)) (-15 -2866 ((-1276) $ (-550))) (-15 -2867 ((-1276) $ (-226))) (-15 -2868 ((-1276) $ (-1181))) (-15 -2869 ((-1276) $ (-1163))) (-15 -2870 ((-1276) $ (-1163) (-1163))) (-15 -2871 ((-1276) $)) (-15 -2872 ((-1276) $)) (-15 -2873 ((-1276) $)) (-15 -2874 ((-1276) $)) (-15 -2875 ((-1276) $)) (-15 -2876 ((-1276) $)) (-15 -2877 ((-1276) $)) (-15 -2878 ((-1276) $)) (-15 -2879 ((-1276) $)) (-15 -2880 ((-1276) $)) (-15 -2881 ((-1276) $)) (-15 -2882 ((-1276) $)) (-15 -2883 ((-1276) $)) (-15 -2884 ((-1276) $)) (-15 -2885 ((-550) $)) (-15 -2886 ((-226) $)) (-15 -2887 ((-1181) $)) (-15 -2888 ((-1163) $)) (-15 -2889 ((-2 (|:| |cd| (-1163)) (|:| -3975 (-1163))) $)) (-15 -2890 ((-1181) $)))) (T -826)) +((-2890 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-826)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1163)) (|:| -3975 (-1163)))) (-5 *1 (-826)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-826)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-826)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-826)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-826)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2870 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-826)))) (-2869 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-826)))) (-2868 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-826)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1276)) (-5 *1 (-826)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-826)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2851 (*1 *2 *1 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1276)) (-5 *1 (-826)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-827)) (-5 *1 (-826)))) (-2848 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-827)) (-5 *1 (-826))))) +(-10 -8 (-15 -2848 ($ (-1163) (-1163) (-827))) (-15 -2849 ($ (-1163) (-827))) (-15 -2850 ((-1276) $)) (-15 -2851 ((-1276) $ (-827))) (-15 -2852 ((-1276) $)) (-15 -2853 ((-1276) $)) (-15 -2854 ((-1276) $)) (-15 -2855 ((-1276) $)) (-15 -2856 ((-1276) $)) (-15 -2857 ((-1276) $)) (-15 -2858 ((-1276) $)) (-15 -2859 ((-1276) $)) (-15 -2860 ((-1276) $)) (-15 -2861 ((-1276) $)) (-15 -2862 ((-1276) $)) (-15 -2863 ((-1276) $)) (-15 -2864 ((-1276) $)) (-15 -2865 ((-1276) $)) (-15 -2866 ((-1276) $ (-550))) (-15 -2867 ((-1276) $ (-226))) (-15 -2868 ((-1276) $ (-1181))) (-15 -2869 ((-1276) $ (-1163))) (-15 -2870 ((-1276) $ (-1163) (-1163))) (-15 -2871 ((-1276) $)) (-15 -2872 ((-1276) $)) (-15 -2873 ((-1276) $)) (-15 -2874 ((-1276) $)) (-15 -2875 ((-1276) $)) (-15 -2876 ((-1276) $)) (-15 -2877 ((-1276) $)) (-15 -2878 ((-1276) $)) (-15 -2879 ((-1276) $)) (-15 -2880 ((-1276) $)) (-15 -2881 ((-1276) $)) (-15 -2882 ((-1276) $)) (-15 -2883 ((-1276) $)) (-15 -2884 ((-1276) $)) (-15 -2885 ((-550) $)) (-15 -2886 ((-226) $)) (-15 -2887 ((-1181) $)) (-15 -2888 ((-1163) $)) (-15 -2889 ((-2 (|:| |cd| (-1163)) (|:| -3975 (-1163))) $)) (-15 -2890 ((-1181) $))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 13)) (-3664 (((-112) $ $) NIL)) (-2893 (($) 16)) (-2894 (($) 14)) (-2892 (($) 17)) (-2891 (($) 15)) (-3457 (((-112) $ $) 9))) +(((-827) (-13 (-1105) (-10 -8 (-15 -2894 ($)) (-15 -2893 ($)) (-15 -2892 ($)) (-15 -2891 ($))))) (T -827)) +((-2894 (*1 *1) (-5 *1 (-827))) (-2893 (*1 *1) (-5 *1 (-827))) (-2892 (*1 *1) (-5 *1 (-827))) (-2891 (*1 *1) (-5 *1 (-827)))) +(-13 (-1105) (-10 -8 (-15 -2894 ($)) (-15 -2893 ($)) (-15 -2892 ($)) (-15 -2891 ($)))) +((-2970 (((-112) $ $) NIL)) (-2895 (($ (-829) (-644 (-1181))) 32)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2897 (((-829) $) 33)) (-2896 (((-644 (-1181)) $) 34)) (-4380 (((-866) $) 31)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-828) (-13 (-1105) (-10 -8 (-15 -2897 ((-829) $)) (-15 -2896 ((-644 (-1181)) $)) (-15 -2895 ($ (-829) (-644 (-1181))))))) (T -828)) +((-2897 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-828)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-828)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *2 (-829)) (-5 *3 (-644 (-1181))) (-5 *1 (-828))))) +(-13 (-1105) (-10 -8 (-15 -2897 ((-829) $)) (-15 -2896 ((-644 (-1181)) $)) (-15 -2895 ($ (-829) (-644 (-1181)))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 23) (($ (-1181)) 19)) (-3664 (((-112) $ $) NIL)) (-2899 (((-112) $) 10)) (-2900 (((-112) $) 9)) (-2898 (((-112) $) 11)) (-2901 (((-112) $) 8)) (-3457 (((-112) $ $) 21))) +(((-829) (-13 (-1105) (-10 -8 (-15 -4380 ($ (-1181))) (-15 -2901 ((-112) $)) (-15 -2900 ((-112) $)) (-15 -2899 ((-112) $)) (-15 -2898 ((-112) $))))) (T -829)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-829)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) +(-13 (-1105) (-10 -8 (-15 -4380 ($ (-1181))) (-15 -2901 ((-112) $)) (-15 -2900 ((-112) $)) (-15 -2899 ((-112) $)) (-15 -2898 ((-112) $)))) +((-2902 (((-1276) (-826) (-316 |#1|) (-112)) 23) (((-1276) (-826) (-316 |#1|)) 89) (((-1163) (-316 |#1|) (-112)) 88) (((-1163) (-316 |#1|)) 87))) +(((-830 |#1|) (-10 -7 (-15 -2902 ((-1163) (-316 |#1|))) (-15 -2902 ((-1163) (-316 |#1|) (-112))) (-15 -2902 ((-1276) (-826) (-316 |#1|))) (-15 -2902 ((-1276) (-826) (-316 |#1|) (-112)))) (-13 (-824) (-1053))) (T -830)) +((-2902 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-826)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-824) (-1053))) (-5 *2 (-1276)) (-5 *1 (-830 *6)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-1053))) (-5 *2 (-1276)) (-5 *1 (-830 *5)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-1053))) (-5 *2 (-1163)) (-5 *1 (-830 *5)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-1053))) (-5 *2 (-1163)) (-5 *1 (-830 *4))))) +(-10 -7 (-15 -2902 ((-1163) (-316 |#1|))) (-15 -2902 ((-1163) (-316 |#1|) (-112))) (-15 -2902 ((-1276) (-826) (-316 |#1|))) (-15 -2902 ((-1276) (-826) (-316 |#1|) (-112)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2903 ((|#1| $) 10)) (-2904 (($ |#1|) 9)) (-2575 (((-112) $) NIL)) (-3296 (($ |#2| (-774)) NIL)) (-3225 (((-774) $) NIL)) (-3596 ((|#2| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4244 (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-4382 (((-774) $) NIL)) (-4380 (((-866) $) 17) (($ (-550)) NIL) (($ |#2|) NIL (|has| |#2| (-173)))) (-4111 ((|#2| $ (-774)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-831 |#1| |#2|) (-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -2904 ($ |#1|)) (-15 -2903 (|#1| $)))) (-711 |#2|) (-1053)) (T -831)) +((-2904 (*1 *1 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-831 *2 *3)) (-4 *2 (-711 *3)))) (-2903 (*1 *2 *1) (-12 (-4 *2 (-711 *3)) (-5 *1 (-831 *2 *3)) (-4 *3 (-1053))))) +(-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -2904 ($ |#1|)) (-15 -2903 (|#1| $)))) +((-2912 (((-313) (-1163) (-1163)) 12)) (-2911 (((-112) (-1163) (-1163)) 34)) (-2910 (((-112) (-1163)) 33)) (-2907 (((-51) (-1163)) 25)) (-2906 (((-51) (-1163)) 23)) (-2905 (((-51) (-826)) 17)) (-2909 (((-644 (-1163)) (-1163)) 28)) (-2908 (((-644 (-1163))) 27))) +(((-832) (-10 -7 (-15 -2905 ((-51) (-826))) (-15 -2906 ((-51) (-1163))) (-15 -2907 ((-51) (-1163))) (-15 -2908 ((-644 (-1163)))) (-15 -2909 ((-644 (-1163)) (-1163))) (-15 -2910 ((-112) (-1163))) (-15 -2911 ((-112) (-1163) (-1163))) (-15 -2912 ((-313) (-1163) (-1163))))) (T -832)) +((-2912 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-832)))) (-2911 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-832)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-832)))) (-2909 (*1 *2 *3) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-832)) (-5 *3 (-1163)))) (-2908 (*1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-832)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-51)) (-5 *1 (-832)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-51)) (-5 *1 (-832)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-51)) (-5 *1 (-832))))) +(-10 -7 (-15 -2905 ((-51) (-826))) (-15 -2906 ((-51) (-1163))) (-15 -2907 ((-51) (-1163))) (-15 -2908 ((-644 (-1163)))) (-15 -2909 ((-644 (-1163)) (-1163))) (-15 -2910 ((-112) (-1163))) (-15 -2911 ((-112) (-1163) (-1163))) (-15 -2912 ((-313) (-1163) (-1163)))) +((-2970 (((-112) $ $) 19)) (-3656 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3658 (($ $ $) 73)) (-3657 (((-112) $ $) 74)) (-1310 (((-112) $ (-774)) 8)) (-3661 (($ (-644 |#1|)) 69) (($) 68)) (-1680 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2528 (($ $) 63)) (-1441 (($ $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ |#1| $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) 65)) (-4153 (((-112) $ (-774)) 9)) (-2936 ((|#1| $) 79)) (-3261 (($ $ $) 82)) (-3943 (($ $ $) 81)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3262 ((|#1| $) 80)) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22)) (-3660 (($ $ $) 70)) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41) (($ |#1| $ (-774)) 64)) (-3666 (((-1124) $) 21)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2527 (((-644 (-2 (|:| -2256 |#1|) (|:| -2127 (-774)))) $) 62)) (-3659 (($ $ |#1|) 72) (($ $ $) 71)) (-1569 (($) 50) (($ (-644 |#1|)) 49)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 51)) (-4380 (((-866) $) 18)) (-3662 (($ (-644 |#1|)) 67) (($) 66)) (-3664 (((-112) $ $) 23)) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20)) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-833 |#1|) (-140) (-853)) (T -833)) +((-2936 (*1 *2 *1) (-12 (-4 *1 (-833 *2)) (-4 *2 (-853))))) +(-13 (-740 |t#1|) (-972 |t#1|) (-10 -8 (-15 -2936 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-616 (-866)) . T) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-236 |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-698 |#1|) . T) ((-740 |#1|) . T) ((-972 |#1|) . T) ((-1103 |#1|) . T) ((-1105) . T) ((-1220) . T)) +((-2915 (((-1276) (-1124) (-1124)) 48)) (-2914 (((-1276) (-825) (-51)) 45)) (-2913 (((-51) (-825)) 16))) +(((-834) (-10 -7 (-15 -2913 ((-51) (-825))) (-15 -2914 ((-1276) (-825) (-51))) (-15 -2915 ((-1276) (-1124) (-1124))))) (T -834)) +((-2915 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1276)) (-5 *1 (-834)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-51)) (-5 *2 (-1276)) (-5 *1 (-834)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-51)) (-5 *1 (-834))))) +(-10 -7 (-15 -2913 ((-51) (-825))) (-15 -2914 ((-1276) (-825) (-51))) (-15 -2915 ((-1276) (-1124) (-1124)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL (|has| |#1| (-21)))) (-1408 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4057 (((-550) $) NIL (|has| |#1| (-851)))) (-4158 (($) NIL (|has| |#1| (-21)) CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 15)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 9)) (-3892 (((-3 $ "failed") $) 42 (|has| |#1| (-851)))) (-3427 (((-3 (-411 (-550)) "failed") $) 52 (|has| |#1| (-549)))) (-3426 (((-112) $) 46 (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) 49 (|has| |#1| (-549)))) (-3608 (((-112) $) NIL (|has| |#1| (-851)))) (-2575 (((-112) $) NIL (|has| |#1| (-851)))) (-3609 (((-112) $) NIL (|has| |#1| (-851)))) (-2936 (($ $ $) NIL (|has| |#1| (-851)))) (-3262 (($ $ $) NIL (|has| |#1| (-851)))) (-3665 (((-1163) $) NIL)) (-2916 (($) 13)) (-2929 (((-112) $) 12)) (-3666 (((-1124) $) NIL)) (-2930 (((-112) $) 11)) (-4380 (((-866) $) 18) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) 8) (($ (-550)) NIL (-3962 (|has| |#1| (-851)) (|has| |#1| (-1042 (-550)))))) (-3532 (((-774)) 36 (|has| |#1| (-851)) CONST)) (-3664 (((-112) $ $) 54)) (-3809 (($ $) NIL (|has| |#1| (-851)))) (-3512 (($) 23 (|has| |#1| (-21)) CONST)) (-3069 (($) 33 (|has| |#1| (-851)) CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3457 (((-112) $ $) 21)) (-3089 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3090 (((-112) $ $) 45 (|has| |#1| (-851)))) (-4271 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4273 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-851))) (($ $ (-774)) NIL (|has| |#1| (-851)))) (* (($ $ $) 39 (|has| |#1| (-851))) (($ (-550) $) 27 (|has| |#1| (-21))) (($ (-774) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21))))) +(((-835 |#1|) (-13 (-1105) (-416 |#1|) (-10 -8 (-15 -2916 ($)) (-15 -2930 ((-112) $)) (-15 -2929 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|))) (-1105)) (T -835)) +((-2916 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1105)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-1105)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-1105)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-835 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) (-3427 (*1 *2 *1) (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-835 *3)) (-4 *3 (-549)) (-4 *3 (-1105))))) +(-13 (-1105) (-416 |#1|) (-10 -8 (-15 -2916 ($)) (-15 -2930 ((-112) $)) (-15 -2929 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|))) +((-4392 (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|) (-835 |#2|)) 12) (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)) 13))) +(((-836 |#1| |#2|) (-10 -7 (-15 -4392 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|))) (-15 -4392 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|) (-835 |#2|)))) (-1105) (-1105)) (T -836)) +((-4392 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-835 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *1 (-836 *5 *6)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-835 *6)) (-5 *1 (-836 *5 *6))))) +(-10 -7 (-15 -4392 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|))) (-15 -4392 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|) (-835 |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3578 ((|#1| $) NIL) (((-113) $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2918 ((|#1| (-113) |#1|) NIL)) (-2575 (((-112) $) NIL)) (-2917 (($ |#1| (-364 (-113))) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-2919 (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (($ $ (-1 |#1| |#1|)) NIL)) (-4233 ((|#1| $ |#1|) NIL)) (-2921 ((|#1| |#1|) NIL (|has| |#1| (-173)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2922 (($ $) NIL (|has| |#1| (-173))) (($ $ $) NIL (|has| |#1| (-173)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ (-113) (-550)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) +(((-837 |#1|) (-13 (-1053) (-1042 |#1|) (-1042 (-113)) (-288 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2922 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 (|#1| |#1|))) |%noBranch|) (-15 -2920 ($ $ (-1 |#1| |#1|))) (-15 -2919 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-550))) (-15 ** ($ $ (-550))) (-15 -2918 (|#1| (-113) |#1|)) (-15 -2917 ($ |#1| (-364 (-113)))))) (-1053)) (T -837)) +((-2922 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-173)) (-4 *2 (-1053)))) (-2922 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-173)) (-4 *2 (-1053)))) (-2921 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-173)) (-4 *2 (-1053)))) (-2920 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-837 *3)))) (-2919 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-550)) (-5 *1 (-837 *4)) (-4 *4 (-1053)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837 *3)) (-4 *3 (-1053)))) (-2918 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-837 *2)) (-4 *2 (-1053)))) (-2917 (*1 *1 *2 *3) (-12 (-5 *3 (-364 (-113))) (-5 *1 (-837 *2)) (-4 *2 (-1053))))) +(-13 (-1053) (-1042 |#1|) (-1042 (-113)) (-288 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2922 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 (|#1| |#1|))) |%noBranch|) (-15 -2920 ($ $ (-1 |#1| |#1|))) (-15 -2919 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-550))) (-15 ** ($ $ (-550))) (-15 -2918 (|#1| (-113) |#1|)) (-15 -2917 ($ |#1| (-364 (-113)))))) +((-3037 (((-112) $ |#2|) 14)) (-4380 (((-866) $) 11))) +(((-838 |#1| |#2|) (-10 -8 (-15 -3037 ((-112) |#1| |#2|)) (-15 -4380 ((-866) |#1|))) (-839 |#2|) (-1105)) (T -838)) +NIL +(-10 -8 (-15 -3037 ((-112) |#1| |#2|)) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3975 ((|#1| $) 16)) (-3665 (((-1163) $) 10)) (-3037 (((-112) $ |#1|) 14)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2923 (((-55) $) 15)) (-3457 (((-112) $ $) 6))) +(((-839 |#1|) (-140) (-1105)) (T -839)) +((-3975 (*1 *2 *1) (-12 (-4 *1 (-839 *2)) (-4 *2 (-1105)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-839 *3)) (-4 *3 (-1105)) (-5 *2 (-55)))) (-3037 (*1 *2 *1 *3) (-12 (-4 *1 (-839 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(-13 (-1105) (-10 -8 (-15 -3975 (|t#1| $)) (-15 -2923 ((-55) $)) (-15 -3037 ((-112) $ |t#1|)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2924 (((-215 (-506)) (-1163)) 9))) +(((-840) (-10 -7 (-15 -2924 ((-215 (-506)) (-1163))))) (T -840)) +((-2924 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-215 (-506))) (-5 *1 (-840))))) +(-10 -7 (-15 -2924 ((-215 (-506)) (-1163)))) +((-2970 (((-112) $ $) NIL)) (-3742 (((-1119) $) 10)) (-3975 (((-510) $) 9)) (-3665 (((-1163) $) NIL)) (-3037 (((-112) $ (-510)) NIL)) (-3666 (((-1124) $) NIL)) (-3955 (($ (-510) (-1119)) 8)) (-4380 (((-866) $) 25)) (-3664 (((-112) $ $) NIL)) (-2923 (((-55) $) 20)) (-3457 (((-112) $ $) 12))) +(((-841) (-13 (-839 (-510)) (-10 -8 (-15 -3742 ((-1119) $)) (-15 -3955 ($ (-510) (-1119)))))) (T -841)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-841)))) (-3955 (*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-1119)) (-5 *1 (-841))))) +(-13 (-839 (-510)) (-10 -8 (-15 -3742 ((-1119) $)) (-15 -3955 ($ (-510) (-1119))))) +((-2970 (((-112) $ $) 7)) (-2925 (((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 15) (((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 14)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 17) (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 16)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-842) (-140)) (T -842)) +((-3073 (*1 *2 *3 *4) (-12 (-4 *1 (-842)) (-5 *3 (-1067)) (-5 *4 (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) (-3073 (*1 *2 *3 *4) (-12 (-4 *1 (-842)) (-5 *3 (-1067)) (-5 *4 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) (-2925 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *3 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) (-5 *2 (-1039)))) (-2925 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *3 (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (-5 *2 (-1039))))) +(-13 (-1105) (-10 -7 (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -2925 ((-1039) (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -2925 ((-1039) (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2926 (((-1039) (-644 (-316 (-381))) (-644 (-381))) 169) (((-1039) (-316 (-381)) (-644 (-381))) 167) (((-1039) (-316 (-381)) (-644 (-381)) (-644 (-845 (-381))) (-644 (-845 (-381)))) 165) (((-1039) (-316 (-381)) (-644 (-381)) (-644 (-845 (-381))) (-644 (-316 (-381))) (-644 (-845 (-381)))) 163) (((-1039) (-844)) 128) (((-1039) (-844) (-1067)) 127)) (-3073 (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-844) (-1067)) 88) (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-844)) 90)) (-2927 (((-1039) (-644 (-316 (-381))) (-644 (-381))) 170) (((-1039) (-844)) 153))) +(((-843) (-10 -7 (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-844))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-844) (-1067))) (-15 -2926 ((-1039) (-844) (-1067))) (-15 -2926 ((-1039) (-844))) (-15 -2927 ((-1039) (-844))) (-15 -2926 ((-1039) (-316 (-381)) (-644 (-381)) (-644 (-845 (-381))) (-644 (-316 (-381))) (-644 (-845 (-381))))) (-15 -2926 ((-1039) (-316 (-381)) (-644 (-381)) (-644 (-845 (-381))) (-644 (-845 (-381))))) (-15 -2926 ((-1039) (-316 (-381)) (-644 (-381)))) (-15 -2926 ((-1039) (-644 (-316 (-381))) (-644 (-381)))) (-15 -2927 ((-1039) (-644 (-316 (-381))) (-644 (-381)))))) (T -843)) +((-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-316 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-316 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2926 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-381))) (-5 *5 (-644 (-845 (-381)))) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2926 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-845 (-381)))) (-5 *6 (-644 (-316 (-381)))) (-5 *3 (-316 (-381))) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1039)) (-5 *1 (-843)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1067)) (-5 *2 (-1039)) (-5 *1 (-843)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1067)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *1 (-843)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *1 (-843))))) +(-10 -7 (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-844))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-844) (-1067))) (-15 -2926 ((-1039) (-844) (-1067))) (-15 -2926 ((-1039) (-844))) (-15 -2927 ((-1039) (-844))) (-15 -2926 ((-1039) (-316 (-381)) (-644 (-381)) (-644 (-845 (-381))) (-644 (-316 (-381))) (-644 (-845 (-381))))) (-15 -2926 ((-1039) (-316 (-381)) (-644 (-381)) (-644 (-845 (-381))) (-644 (-845 (-381))))) (-15 -2926 ((-1039) (-316 (-381)) (-644 (-381)))) (-15 -2926 ((-1039) (-644 (-316 (-381))) (-644 (-381)))) (-15 -2927 ((-1039) (-644 (-316 (-381))) (-644 (-381))))) +((-2970 (((-112) $ $) NIL)) (-3578 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) $) 21)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 20) (($ (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) 14) (($ (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) 18)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-844) (-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))))) (-15 -4380 ($ (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -4380 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))))) (-15 -3578 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) $))))) (T -844)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (-5 *1 (-844)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) (-5 *1 (-844)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) (-5 *1 (-844)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) (-5 *1 (-844))))) +(-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226))))))) (-15 -4380 ($ (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) (-15 -4380 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))))) (-15 -3578 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226)))))) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL (|has| |#1| (-21)))) (-2928 (((-1124) $) 31)) (-1408 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4057 (((-550) $) NIL (|has| |#1| (-851)))) (-4158 (($) NIL (|has| |#1| (-21)) CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 18)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 9)) (-3892 (((-3 $ "failed") $) 58 (|has| |#1| (-851)))) (-3427 (((-3 (-411 (-550)) "failed") $) 65 (|has| |#1| (-549)))) (-3426 (((-112) $) 60 (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) 63 (|has| |#1| (-549)))) (-3608 (((-112) $) NIL (|has| |#1| (-851)))) (-2932 (($) 14)) (-2575 (((-112) $) NIL (|has| |#1| (-851)))) (-3609 (((-112) $) NIL (|has| |#1| (-851)))) (-2931 (($) 16)) (-2936 (($ $ $) NIL (|has| |#1| (-851)))) (-3262 (($ $ $) NIL (|has| |#1| (-851)))) (-3665 (((-1163) $) NIL)) (-2929 (((-112) $) 12)) (-3666 (((-1124) $) NIL)) (-2930 (((-112) $) 11)) (-4380 (((-866) $) 24) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) 8) (($ (-550)) NIL (-3962 (|has| |#1| (-851)) (|has| |#1| (-1042 (-550)))))) (-3532 (((-774)) 51 (|has| |#1| (-851)) CONST)) (-3664 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-851)))) (-3512 (($) 37 (|has| |#1| (-21)) CONST)) (-3069 (($) 48 (|has| |#1| (-851)) CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3457 (((-112) $ $) 35)) (-3089 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3090 (((-112) $ $) 59 (|has| |#1| (-851)))) (-4271 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4273 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-851))) (($ $ (-774)) NIL (|has| |#1| (-851)))) (* (($ $ $) 55 (|has| |#1| (-851))) (($ (-550) $) 42 (|has| |#1| (-21))) (($ (-774) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21))))) +(((-845 |#1|) (-13 (-1105) (-416 |#1|) (-10 -8 (-15 -2932 ($)) (-15 -2931 ($)) (-15 -2930 ((-112) $)) (-15 -2929 ((-112) $)) (-15 -2928 ((-1124) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|))) (-1105)) (T -845)) +((-2932 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1105)))) (-2931 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1105)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1105)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1105)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-845 *3)) (-4 *3 (-1105)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-845 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) (-3427 (*1 *2 *1) (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-845 *3)) (-4 *3 (-549)) (-4 *3 (-1105))))) +(-13 (-1105) (-416 |#1|) (-10 -8 (-15 -2932 ($)) (-15 -2931 ($)) (-15 -2930 ((-112) $)) (-15 -2929 ((-112) $)) (-15 -2928 ((-1124) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|))) +((-4392 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|) (-845 |#2|)) 13) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 14))) +(((-846 |#1| |#2|) (-10 -7 (-15 -4392 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4392 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|) (-845 |#2|)))) (-1105) (-1105)) (T -846)) +((-4392 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *1 (-846 *5 *6)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-845 *6)) (-5 *1 (-846 *5 *6))))) +(-10 -7 (-15 -4392 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4392 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|) (-845 |#2|)))) +((-2970 (((-112) $ $) 7)) (-3542 (((-774)) 23)) (-3397 (($) 26)) (-2936 (($ $ $) 14) (($) 22 T CONST)) (-3262 (($ $ $) 15) (($) 21 T CONST)) (-2190 (((-923) $) 25)) (-3665 (((-1163) $) 10)) (-2565 (($ (-923)) 24)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19))) +(((-847) (-140)) (T -847)) +((-2936 (*1 *1) (-4 *1 (-847))) (-3262 (*1 *1) (-4 *1 (-847)))) +(-13 (-853) (-371) (-10 -8 (-15 -2936 ($) -4386) (-15 -3262 ($) -4386))) +(((-102) . T) ((-616 (-866)) . T) ((-371) . T) ((-853) . T) ((-1105) . T)) +((-2934 (((-112) (-1270 |#2|) (-1270 |#2|)) 23)) (-2935 (((-112) (-1270 |#2|) (-1270 |#2|)) 24)) (-2933 (((-112) (-1270 |#2|) (-1270 |#2|)) 20))) +(((-848 |#1| |#2|) (-10 -7 (-15 -2933 ((-112) (-1270 |#2|) (-1270 |#2|))) (-15 -2934 ((-112) (-1270 |#2|) (-1270 |#2|))) (-15 -2935 ((-112) (-1270 |#2|) (-1270 |#2|)))) (-774) (-795)) (T -848)) +((-2935 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-848 *4 *5)) (-14 *4 (-774)))) (-2934 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-848 *4 *5)) (-14 *4 (-774)))) (-2933 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-848 *4 *5)) (-14 *4 (-774))))) +(-10 -7 (-15 -2933 ((-112) (-1270 |#2|) (-1270 |#2|))) (-15 -2934 ((-112) (-1270 |#2|) (-1270 |#2|))) (-15 -2935 ((-112) (-1270 |#2|) (-1270 |#2|)))) +((-2970 (((-112) $ $) 7)) (-4158 (($) 24 T CONST)) (-3892 (((-3 $ "failed") $) 27)) (-2575 (((-112) $) 25)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3069 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (** (($ $ (-923)) 22) (($ $ (-774)) 26)) (* (($ $ $) 21))) +(((-849) (-140)) (T -849)) +NIL +(-13 (-860) (-729)) +(((-102) . T) ((-616 (-866)) . T) ((-729) . T) ((-860) . T) ((-853) . T) ((-1116) . T) ((-1105) . T)) +((-4057 (((-550) $) 21)) (-3608 (((-112) $) 10)) (-3609 (((-112) $) 12)) (-3809 (($ $) 23))) +(((-850 |#1|) (-10 -8 (-15 -3809 (|#1| |#1|)) (-15 -4057 ((-550) |#1|)) (-15 -3609 ((-112) |#1|)) (-15 -3608 ((-112) |#1|))) (-851)) (T -850)) +NIL +(-10 -8 (-15 -3809 (|#1| |#1|)) (-15 -4057 ((-550) |#1|)) (-15 -3609 ((-112) |#1|)) (-15 -3608 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 25)) (-1408 (((-3 $ "failed") $ $) 27)) (-4057 (((-550) $) 37)) (-4158 (($) 24 T CONST)) (-3892 (((-3 $ "failed") $) 42)) (-3608 (((-112) $) 39)) (-2575 (((-112) $) 44)) (-3609 (((-112) $) 38)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 46)) (-3532 (((-774)) 47 T CONST)) (-3664 (((-112) $ $) 9)) (-3809 (($ $) 36)) (-3512 (($) 23 T CONST)) (-3069 (($) 45 T CONST)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (-4271 (($ $ $) 31) (($ $) 30)) (-4273 (($ $ $) 21)) (** (($ $ (-774)) 43) (($ $ (-923)) 40)) (* (($ (-923) $) 22) (($ (-774) $) 26) (($ (-550) $) 29) (($ $ $) 41))) +(((-851) (-140)) (T -851)) +((-3608 (*1 *2 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-851)) (-5 *2 (-550)))) (-3809 (*1 *1 *1) (-4 *1 (-851)))) +(-13 (-794) (-1053) (-729) (-10 -8 (-15 -3608 ((-112) $)) (-15 -3609 ((-112) $)) (-15 -4057 ((-550) $)) (-15 -3809 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-794) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-853) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2936 (($ $ $) 12)) (-3262 (($ $ $) 11)) (-3664 (((-112) $ $) 9)) (-2968 (((-112) $ $) 15)) (-2969 (((-112) $ $) 13)) (-3089 (((-112) $ $) 16))) +(((-852 |#1|) (-10 -8 (-15 -2936 (|#1| |#1| |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -3089 ((-112) |#1| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -3664 ((-112) |#1| |#1|))) (-853)) (T -852)) +NIL +(-10 -8 (-15 -2936 (|#1| |#1| |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -3089 ((-112) |#1| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -3664 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19))) +(((-853) (-140)) (T -853)) +((-3090 (*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2969 (*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-3089 (*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-3262 (*1 *1 *1 *1) (-4 *1 (-853))) (-2936 (*1 *1 *1 *1) (-4 *1 (-853)))) +(-13 (-1105) (-10 -8 (-15 -3090 ((-112) $ $)) (-15 -2969 ((-112) $ $)) (-15 -2968 ((-112) $ $)) (-15 -3089 ((-112) $ $)) (-15 -3262 ($ $ $)) (-15 -2936 ($ $ $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2941 (($ $ $) 49)) (-2942 (($ $ $) 48)) (-2943 (($ $ $) 46)) (-2939 (($ $ $) 55)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 50)) (-2940 (((-3 $ "failed") $ $) 53)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 |#2| #1#) $) 29)) (-3928 (($ $) 39)) (-2947 (($ $ $) 43)) (-2948 (($ $ $) 42)) (-2937 (($ $ $) 51)) (-2945 (($ $ $) 57)) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 45)) (-2946 (((-3 $ "failed") $ $) 52)) (-3891 (((-3 $ "failed") $ |#2|) 32)) (-3222 ((|#2| $) 36)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL) (($ |#2|) 13)) (-4251 (((-644 |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-854 |#1| |#2|) (-10 -8 (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2574 |#1|)) |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2944 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2574 |#1|)) |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4251 ((-644 |#2|) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4380 ((-866) |#1|))) (-855 |#2|) (-1053)) (T -854)) +NIL +(-10 -8 (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2574 |#1|)) |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2944 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2574 |#1|)) |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -3891 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4251 ((-644 |#2|) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-2941 (($ $ $) 50 (|has| |#1| (-366)))) (-2942 (($ $ $) 51 (|has| |#1| (-366)))) (-2943 (($ $ $) 53 (|has| |#1| (-366)))) (-2939 (($ $ $) 48 (|has| |#1| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 47 (|has| |#1| (-366)))) (-2940 (((-3 $ "failed") $ $) 49 (|has| |#1| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 52 (|has| |#1| (-366)))) (-3579 (((-3 (-550) #1="failed") $) 80 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 77 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 74)) (-3578 (((-550) $) 79 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 76 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 75)) (-4393 (($ $) 69)) (-3892 (((-3 $ "failed") $) 37)) (-3928 (($ $) 60 (|has| |#1| (-456)))) (-2575 (((-112) $) 35)) (-3296 (($ |#1| (-774)) 67)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 62 (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63 (|has| |#1| (-561)))) (-3225 (((-774) $) 71)) (-2947 (($ $ $) 57 (|has| |#1| (-366)))) (-2948 (($ $ $) 58 (|has| |#1| (-366)))) (-2937 (($ $ $) 46 (|has| |#1| (-366)))) (-2945 (($ $ $) 55 (|has| |#1| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 54 (|has| |#1| (-366)))) (-2946 (((-3 $ "failed") $ $) 56 (|has| |#1| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 59 (|has| |#1| (-366)))) (-3596 ((|#1| $) 70)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-4382 (((-774) $) 72)) (-3222 ((|#1| $) 61 (|has| |#1| (-456)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 78 (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) 73)) (-4251 (((-644 |#1|) $) 66)) (-4111 ((|#1| $ (-774)) 68)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2950 ((|#1| $ |#1| |#1|) 65)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-855 |#1|) (-140) (-1053)) (T -855)) +((-4382 (*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)))) (-4393 (*1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)))) (-4111 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-855 *2)) (-4 *2 (-1053)))) (-3296 (*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-855 *2)) (-4 *2 (-1053)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-4 *3 (-1053)) (-5 *2 (-644 *3)))) (-2950 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)))) (-3891 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-561)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-456)))) (-3928 (*1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-456)))) (-2953 (*1 *2 *1 *1) (-12 (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) (-2948 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2947 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2946 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2945 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2944 (*1 *2 *1 *1) (-12 (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2574 *1))) (-4 *1 (-855 *3)))) (-2943 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2954 (*1 *2 *1 *1) (-12 (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) (-2942 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2941 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2939 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2574 *1))) (-4 *1 (-855 *3)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(-13 (-1053) (-111 |t#1| |t#1|) (-416 |t#1|) (-10 -8 (-15 -4382 ((-774) $)) (-15 -3225 ((-774) $)) (-15 -3596 (|t#1| $)) (-15 -4393 ($ $)) (-15 -4111 (|t#1| $ (-774))) (-15 -3296 ($ |t#1| (-774))) (-15 -4251 ((-644 |t#1|) $)) (-15 -2950 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3891 ((-3 $ "failed") $ |t#1|)) (-15 -2951 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -2952 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-456)) (PROGN (-15 -3222 (|t#1| $)) (-15 -3928 ($ $))) |%noBranch|) (IF (|has| |t#1| (-366)) (PROGN (-15 -2953 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -2948 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -2946 ((-3 $ "failed") $ $)) (-15 -2945 ($ $ $)) (-15 -2944 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $)) (-15 -2943 ($ $ $)) (-15 -2954 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -2942 ($ $ $)) (-15 -2941 ($ $ $)) (-15 -2940 ((-3 $ "failed") $ $)) (-15 -2939 ($ $ $)) (-15 -2938 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $)) (-15 -2937 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-619 #1=(-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-416 |#1|) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) |has| |#1| (-173)) ((-720 |#1|) |has| |#1| (-173)) ((-729) . T) ((-1042 #1#) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2949 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2954 (((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-366)))) (-2952 (((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-561)))) (-2953 (((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-366)))) (-2950 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-856 |#1| |#2|) (-10 -7 (-15 -2949 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2950 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2951 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2952 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-15 -2953 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2954 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1053) (-855 |#1|)) (T -856)) +((-2954 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-366)) (-4 *5 (-1053)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) (-4 *3 (-855 *5)))) (-2953 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-366)) (-4 *5 (-1053)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) (-4 *3 (-855 *5)))) (-2952 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1053)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) (-4 *3 (-855 *5)))) (-2951 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1053)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) (-4 *3 (-855 *5)))) (-2950 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1053)) (-5 *1 (-856 *2 *3)) (-4 *3 (-855 *2)))) (-2949 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1053)) (-5 *1 (-856 *5 *2)) (-4 *2 (-855 *5))))) +(-10 -7 (-15 -2949 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2950 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2951 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2952 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-15 -2953 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2954 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-2941 (($ $ $) NIL (|has| |#1| (-366)))) (-2942 (($ $ $) NIL (|has| |#1| (-366)))) (-2943 (($ $ $) NIL (|has| |#1| (-366)))) (-2939 (($ $ $) NIL (|has| |#1| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2940 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 34 (|has| |#1| (-366)))) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456)))) (-3958 (((-866) $ (-866)) NIL)) (-2575 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) NIL)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 30 (|has| |#1| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 28 (|has| |#1| (-561)))) (-3225 (((-774) $) NIL)) (-2947 (($ $ $) NIL (|has| |#1| (-366)))) (-2948 (($ $ $) NIL (|has| |#1| (-366)))) (-2937 (($ $ $) NIL (|has| |#1| (-366)))) (-2945 (($ $ $) NIL (|has| |#1| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-2946 (((-3 $ #1#) $ $) NIL (|has| |#1| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 32 (|has| |#1| (-366)))) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-561)))) (-4382 (((-774) $) NIL)) (-3222 ((|#1| $) NIL (|has| |#1| (-456)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#1| (-1042 (-411 (-550))))) (($ |#1|) NIL)) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2950 ((|#1| $ |#1| |#1|) 15)) (-3512 (($) NIL T CONST)) (-3069 (($) 23 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) 19) (($ $ (-774)) 24)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-857 |#1| |#2| |#3|) (-13 (-855 |#1|) (-10 -8 (-15 -3958 ((-866) $ (-866))))) (-1053) (-99 |#1|) (-1 |#1| |#1|)) (T -857)) +((-3958 (*1 *2 *1 *2) (-12 (-5 *2 (-866)) (-5 *1 (-857 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-855 |#1|) (-10 -8 (-15 -3958 ((-866) $ (-866))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-2941 (($ $ $) NIL (|has| |#2| (-366)))) (-2942 (($ $ $) NIL (|has| |#2| (-366)))) (-2943 (($ $ $) NIL (|has| |#2| (-366)))) (-2939 (($ $ $) NIL (|has| |#2| (-366)))) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#2| (-366)))) (-2940 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-366)))) (-2954 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-366)))) (-3579 (((-3 (-550) #2="failed") $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 |#2| #2#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) ((|#2| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#2| (-456)))) (-2575 (((-112) $) NIL)) (-3296 (($ |#2| (-774)) 17)) (-2952 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-561)))) (-2951 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-561)))) (-3225 (((-774) $) NIL)) (-2947 (($ $ $) NIL (|has| |#2| (-366)))) (-2948 (($ $ $) NIL (|has| |#2| (-366)))) (-2937 (($ $ $) NIL (|has| |#2| (-366)))) (-2945 (($ $ $) NIL (|has| |#2| (-366)))) (-2944 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#2| (-366)))) (-2946 (((-3 $ #1#) $ $) NIL (|has| |#2| (-366)))) (-2953 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-366)))) (-3596 ((|#2| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-561)))) (-4382 (((-774) $) NIL)) (-3222 ((|#2| $) NIL (|has| |#2| (-456)))) (-4380 (((-866) $) 24) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#2| (-1042 (-411 (-550))))) (($ |#2|) NIL) (($ (-1267 |#1|)) 19)) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-774)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2950 ((|#2| $ |#2| |#2|) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) 13 T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-858 |#1| |#2| |#3| |#4|) (-13 (-855 |#2|) (-619 (-1267 |#1|))) (-1181) (-1053) (-99 |#2|) (-1 |#2| |#2|)) (T -858)) +NIL +(-13 (-855 |#2|) (-619 (-1267 |#1|))) +((-2957 ((|#1| (-774) |#1|) 48 (|has| |#1| (-38 (-411 (-550)))))) (-2956 ((|#1| (-774) (-774) |#1|) 39) ((|#1| (-774) |#1|) 27)) (-2955 ((|#1| (-774) |#1|) 43)) (-3205 ((|#1| (-774) |#1|) 41)) (-3204 ((|#1| (-774) |#1|) 40))) +(((-859 |#1|) (-10 -7 (-15 -3204 (|#1| (-774) |#1|)) (-15 -3205 (|#1| (-774) |#1|)) (-15 -2955 (|#1| (-774) |#1|)) (-15 -2956 (|#1| (-774) |#1|)) (-15 -2956 (|#1| (-774) (-774) |#1|)) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -2957 (|#1| (-774) |#1|)) |%noBranch|)) (-173)) (T -859)) +((-2957 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-173)))) (-2956 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) (-2956 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) (-2955 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) (-3205 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173))))) +(-10 -7 (-15 -3204 (|#1| (-774) |#1|)) (-15 -3205 (|#1| (-774) |#1|)) (-15 -2955 (|#1| (-774) |#1|)) (-15 -2956 (|#1| (-774) |#1|)) (-15 -2956 (|#1| (-774) (-774) |#1|)) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -2957 (|#1| (-774) |#1|)) |%noBranch|)) +((-2970 (((-112) $ $) 7)) (-2936 (($ $ $) 14)) (-3262 (($ $ $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2969 (((-112) $ $) 18)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 16)) (-3090 (((-112) $ $) 19)) (** (($ $ (-923)) 22)) (* (($ $ $) 21))) +(((-860) (-140)) (T -860)) +NIL +(-13 (-853) (-1116)) +(((-102) . T) ((-616 (-866)) . T) ((-853) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3828 (((-550) $) 14)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 20) (($ (-550)) 13)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 9)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 11))) +(((-861) (-13 (-853) (-10 -8 (-15 -4380 ($ (-550))) (-15 -3828 ((-550) $))))) (T -861)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-861)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-861))))) +(-13 (-853) (-10 -8 (-15 -4380 ($ (-550))) (-15 -3828 ((-550) $)))) +((-2958 (((-1276) (-644 (-51))) 23)) (-3885 (((-1276) (-1163) (-866)) 13) (((-1276) (-866)) 8) (((-1276) (-1163)) 10))) +(((-862) (-10 -7 (-15 -3885 ((-1276) (-1163))) (-15 -3885 ((-1276) (-866))) (-15 -3885 ((-1276) (-1163) (-866))) (-15 -2958 ((-1276) (-644 (-51)))))) (T -862)) +((-2958 (*1 *2 *3) (-12 (-5 *3 (-644 (-51))) (-5 *2 (-1276)) (-5 *1 (-862)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-866)) (-5 *2 (-1276)) (-5 *1 (-862)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-862)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-862))))) +(-10 -7 (-15 -3885 ((-1276) (-1163))) (-15 -3885 ((-1276) (-866))) (-15 -3885 ((-1276) (-1163) (-866))) (-15 -2958 ((-1276) (-644 (-51))))) +((-2960 (((-694 (-1229)) $ (-1229)) 15)) (-2961 (((-694 (-554)) $ (-554)) 12)) (-2959 (((-774) $ (-129)) 30))) +(((-863 |#1|) (-10 -8 (-15 -2959 ((-774) |#1| (-129))) (-15 -2960 ((-694 (-1229)) |#1| (-1229))) (-15 -2961 ((-694 (-554)) |#1| (-554)))) (-864)) (T -863)) +NIL +(-10 -8 (-15 -2959 ((-774) |#1| (-129))) (-15 -2960 ((-694 (-1229)) |#1| (-1229))) (-15 -2961 ((-694 (-554)) |#1| (-554)))) +((-2960 (((-694 (-1229)) $ (-1229)) 8)) (-2961 (((-694 (-554)) $ (-554)) 9)) (-2959 (((-774) $ (-129)) 7)) (-2962 (((-694 (-128)) $ (-128)) 10)) (-1870 (($ $) 6))) +(((-864) (-140)) (T -864)) +((-2962 (*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *2 (-694 (-128))) (-5 *3 (-128)))) (-2961 (*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *2 (-694 (-554))) (-5 *3 (-554)))) (-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *2 (-694 (-1229))) (-5 *3 (-1229)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *3 (-129)) (-5 *2 (-774))))) +(-13 (-174) (-10 -8 (-15 -2962 ((-694 (-128)) $ (-128))) (-15 -2961 ((-694 (-554)) $ (-554))) (-15 -2960 ((-694 (-1229)) $ (-1229))) (-15 -2959 ((-774) $ (-129))))) +(((-174) . T)) +((-2960 (((-694 (-1229)) $ (-1229)) NIL)) (-2961 (((-694 (-554)) $ (-554)) NIL)) (-2959 (((-774) $ (-129)) NIL)) (-2962 (((-694 (-128)) $ (-128)) 22)) (-2964 (($ (-392)) 12) (($ (-1163)) 14)) (-2963 (((-112) $) 19)) (-4380 (((-866) $) 26)) (-1870 (($ $) 23))) +(((-865) (-13 (-864) (-616 (-866)) (-10 -8 (-15 -2964 ($ (-392))) (-15 -2964 ($ (-1163))) (-15 -2963 ((-112) $))))) (T -865)) +((-2964 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-865)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-865)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865))))) +(-13 (-864) (-616 (-866)) (-10 -8 (-15 -2964 ($ (-392))) (-15 -2964 ($ (-1163))) (-15 -2963 ((-112) $)))) +((-2970 (((-112) $ $) NIL) (($ $ $) 85)) (-2991 (($ $ $) 125)) (-3006 (((-550) $) 31) (((-550)) 36)) (-3001 (($ (-550)) 53)) (-2998 (($ $ $) 54) (($ (-644 $)) 84)) (-2982 (($ $ (-644 $)) 82)) (-3003 (((-550) $) 34)) (-2985 (($ $ $) 73)) (-3957 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3004 (((-550) $) 33)) (-2986 (($ $ $) 72)) (-3968 (($ $) 114)) (-2989 (($ $ $) 129)) (-2972 (($ (-644 $)) 61)) (-3973 (($ $ (-644 $)) 79)) (-3000 (($ (-550) (-550)) 55)) (-3013 (($ $) 126) (($ $ $) 127)) (-3543 (($ $ (-550)) 43) (($ $) 46)) (-2966 (($ $ $) 97)) (-2987 (($ $ $) 132)) (-2981 (($ $) 115)) (-2965 (($ $ $) 98)) (-2977 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3242 (((-1276) $) 10)) (-2980 (($ $) 118) (($ $ (-774)) 122)) (-2983 (($ $ $) 75)) (-2984 (($ $ $) 74)) (-2997 (($ $ (-644 $)) 110)) (-2995 (($ $ $) 113)) (-2974 (($ (-644 $)) 59)) (-2975 (($ $) 70) (($ (-644 $)) 71)) (-2978 (($ $ $) 123)) (-2979 (($ $) 116)) (-2990 (($ $ $) 128)) (-3958 (($ (-550)) 21) (($ (-1181)) 23) (($ (-1163)) 30) (($ (-226)) 25)) (-3257 (($ $ $) 101)) (-3748 (($ $) 102)) (-3008 (((-1276) (-1163)) 15)) (-3009 (($ (-1163)) 14)) (-3530 (($ (-644 (-644 $))) 58)) (-3544 (($ $ (-550)) 42) (($ $) 45)) (-3665 (((-1163) $) NIL)) (-2993 (($ $ $) 131)) (-3895 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2994 (((-112) $) 108)) (-2996 (($ $ (-644 $)) 111) (($ $ $ $) 112)) (-3002 (($ (-550)) 39)) (-3005 (((-550) $) 32) (((-550)) 35)) (-2999 (($ $ $) 40) (($ (-644 $)) 83)) (-3666 (((-1124) $) NIL)) (-3891 (($ $ $) 99)) (-3998 (($) 13)) (-4233 (($ $ (-644 $)) 109)) (-3007 (((-1163) (-1163)) 8)) (-4270 (($ $) 117) (($ $ (-774)) 121)) (-2967 (($ $ $) 96)) (-4244 (($ $ (-774)) 139)) (-2973 (($ (-644 $)) 60)) (-4380 (((-866) $) 19)) (-4206 (($ $ (-550)) 41) (($ $) 44)) (-2976 (($ $) 68) (($ (-644 $)) 69)) (-3662 (($ $) 66) (($ (-644 $)) 67)) (-2992 (($ $) 124)) (-2971 (($ (-644 $)) 65)) (-3507 (($ $ $) 105)) (-3664 (((-112) $ $) NIL)) (-2988 (($ $ $) 130)) (-3258 (($ $ $) 100)) (-4171 (($ $ $) 103) (($ $) 104)) (-2968 (($ $ $) 89)) (-2969 (($ $ $) 87)) (-3457 (((-112) $ $) 16) (($ $ $) 17)) (-3089 (($ $ $) 88)) (-3090 (($ $ $) 86)) (-4383 (($ $ $) 94)) (-4271 (($ $ $) 91) (($ $) 92)) (-4273 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-866) (-13 (-1105) (-10 -8 (-15 -3242 ((-1276) $)) (-15 -3009 ($ (-1163))) (-15 -3008 ((-1276) (-1163))) (-15 -3958 ($ (-550))) (-15 -3958 ($ (-1181))) (-15 -3958 ($ (-1163))) (-15 -3958 ($ (-226))) (-15 -3998 ($)) (-15 -3007 ((-1163) (-1163))) (-15 -3006 ((-550) $)) (-15 -3005 ((-550) $)) (-15 -3006 ((-550))) (-15 -3005 ((-550))) (-15 -3004 ((-550) $)) (-15 -3003 ((-550) $)) (-15 -3002 ($ (-550))) (-15 -3001 ($ (-550))) (-15 -3000 ($ (-550) (-550))) (-15 -3544 ($ $ (-550))) (-15 -3543 ($ $ (-550))) (-15 -4206 ($ $ (-550))) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -4206 ($ $)) (-15 -2999 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -2999 ($ (-644 $))) (-15 -2998 ($ (-644 $))) (-15 -2997 ($ $ (-644 $))) (-15 -2996 ($ $ (-644 $))) (-15 -2996 ($ $ $ $)) (-15 -2995 ($ $ $)) (-15 -2994 ((-112) $)) (-15 -4233 ($ $ (-644 $))) (-15 -3968 ($ $)) (-15 -2993 ($ $ $)) (-15 -2992 ($ $)) (-15 -3530 ($ (-644 (-644 $)))) (-15 -2991 ($ $ $)) (-15 -3013 ($ $)) (-15 -3013 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -2989 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -4244 ($ $ (-774))) (-15 -3507 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -3973 ($ $ (-644 $))) (-15 -2982 ($ $ (-644 $))) (-15 -2981 ($ $)) (-15 -4270 ($ $)) (-15 -4270 ($ $ (-774))) (-15 -2980 ($ $)) (-15 -2980 ($ $ (-774))) (-15 -2979 ($ $)) (-15 -2978 ($ $ $)) (-15 -3957 ($ $)) (-15 -3957 ($ $ $)) (-15 -3957 ($ $ $ $)) (-15 -2977 ($ $)) (-15 -2977 ($ $ $)) (-15 -2977 ($ $ $ $)) (-15 -3895 ($ $)) (-15 -3895 ($ $ $)) (-15 -3895 ($ $ $ $)) (-15 -3662 ($ $)) (-15 -3662 ($ (-644 $))) (-15 -2976 ($ $)) (-15 -2976 ($ (-644 $))) (-15 -2975 ($ $)) (-15 -2975 ($ (-644 $))) (-15 -2974 ($ (-644 $))) (-15 -2973 ($ (-644 $))) (-15 -2972 ($ (-644 $))) (-15 -2971 ($ (-644 $))) (-15 -3457 ($ $ $)) (-15 -2970 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -4273 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4271 ($ $)) (-15 * ($ $ $)) (-15 -4383 ($ $ $)) (-15 ** ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3258 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -3748 ($ $)) (-15 -4171 ($ $ $)) (-15 -4171 ($ $))))) (T -866)) +((-3242 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-866)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-866)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-866)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-866)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-866)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-866)))) (-3998 (*1 *1) (-5 *1 (-866))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-866)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3006 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3005 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3000 (*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3544 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) (-3544 (*1 *1 *1) (-5 *1 (-866))) (-3543 (*1 *1 *1) (-5 *1 (-866))) (-4206 (*1 *1 *1) (-5 *1 (-866))) (-2999 (*1 *1 *1 *1) (-5 *1 (-866))) (-2998 (*1 *1 *1 *1) (-5 *1 (-866))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2996 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2996 (*1 *1 *1 *1 *1) (-5 *1 (-866))) (-2995 (*1 *1 *1 *1) (-5 *1 (-866))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-3968 (*1 *1 *1) (-5 *1 (-866))) (-2993 (*1 *1 *1 *1) (-5 *1 (-866))) (-2992 (*1 *1 *1) (-5 *1 (-866))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-866)))) (-5 *1 (-866)))) (-2991 (*1 *1 *1 *1) (-5 *1 (-866))) (-3013 (*1 *1 *1) (-5 *1 (-866))) (-3013 (*1 *1 *1 *1) (-5 *1 (-866))) (-2990 (*1 *1 *1 *1) (-5 *1 (-866))) (-2989 (*1 *1 *1 *1) (-5 *1 (-866))) (-2988 (*1 *1 *1 *1) (-5 *1 (-866))) (-2987 (*1 *1 *1 *1) (-5 *1 (-866))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-866)))) (-3507 (*1 *1 *1 *1) (-5 *1 (-866))) (-2986 (*1 *1 *1 *1) (-5 *1 (-866))) (-2985 (*1 *1 *1 *1) (-5 *1 (-866))) (-2984 (*1 *1 *1 *1) (-5 *1 (-866))) (-2983 (*1 *1 *1 *1) (-5 *1 (-866))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2981 (*1 *1 *1) (-5 *1 (-866))) (-4270 (*1 *1 *1) (-5 *1 (-866))) (-4270 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-866)))) (-2980 (*1 *1 *1) (-5 *1 (-866))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-866)))) (-2979 (*1 *1 *1) (-5 *1 (-866))) (-2978 (*1 *1 *1 *1) (-5 *1 (-866))) (-3957 (*1 *1 *1) (-5 *1 (-866))) (-3957 (*1 *1 *1 *1) (-5 *1 (-866))) (-3957 (*1 *1 *1 *1 *1) (-5 *1 (-866))) (-2977 (*1 *1 *1) (-5 *1 (-866))) (-2977 (*1 *1 *1 *1) (-5 *1 (-866))) (-2977 (*1 *1 *1 *1 *1) (-5 *1 (-866))) (-3895 (*1 *1 *1) (-5 *1 (-866))) (-3895 (*1 *1 *1 *1) (-5 *1 (-866))) (-3895 (*1 *1 *1 *1 *1) (-5 *1 (-866))) (-3662 (*1 *1 *1) (-5 *1 (-866))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2976 (*1 *1 *1) (-5 *1 (-866))) (-2976 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2975 (*1 *1 *1) (-5 *1 (-866))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) (-3457 (*1 *1 *1 *1) (-5 *1 (-866))) (-2970 (*1 *1 *1 *1) (-5 *1 (-866))) (-3090 (*1 *1 *1 *1) (-5 *1 (-866))) (-2969 (*1 *1 *1 *1) (-5 *1 (-866))) (-3089 (*1 *1 *1 *1) (-5 *1 (-866))) (-2968 (*1 *1 *1 *1) (-5 *1 (-866))) (-4273 (*1 *1 *1 *1) (-5 *1 (-866))) (-4271 (*1 *1 *1 *1) (-5 *1 (-866))) (-4271 (*1 *1 *1) (-5 *1 (-866))) (* (*1 *1 *1 *1) (-5 *1 (-866))) (-4383 (*1 *1 *1 *1) (-5 *1 (-866))) (** (*1 *1 *1 *1) (-5 *1 (-866))) (-2967 (*1 *1 *1 *1) (-5 *1 (-866))) (-2966 (*1 *1 *1 *1) (-5 *1 (-866))) (-2965 (*1 *1 *1 *1) (-5 *1 (-866))) (-3891 (*1 *1 *1 *1) (-5 *1 (-866))) (-3258 (*1 *1 *1 *1) (-5 *1 (-866))) (-3257 (*1 *1 *1 *1) (-5 *1 (-866))) (-3748 (*1 *1 *1) (-5 *1 (-866))) (-4171 (*1 *1 *1 *1) (-5 *1 (-866))) (-4171 (*1 *1 *1) (-5 *1 (-866)))) +(-13 (-1105) (-10 -8 (-15 -3242 ((-1276) $)) (-15 -3009 ($ (-1163))) (-15 -3008 ((-1276) (-1163))) (-15 -3958 ($ (-550))) (-15 -3958 ($ (-1181))) (-15 -3958 ($ (-1163))) (-15 -3958 ($ (-226))) (-15 -3998 ($)) (-15 -3007 ((-1163) (-1163))) (-15 -3006 ((-550) $)) (-15 -3005 ((-550) $)) (-15 -3006 ((-550))) (-15 -3005 ((-550))) (-15 -3004 ((-550) $)) (-15 -3003 ((-550) $)) (-15 -3002 ($ (-550))) (-15 -3001 ($ (-550))) (-15 -3000 ($ (-550) (-550))) (-15 -3544 ($ $ (-550))) (-15 -3543 ($ $ (-550))) (-15 -4206 ($ $ (-550))) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -4206 ($ $)) (-15 -2999 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -2999 ($ (-644 $))) (-15 -2998 ($ (-644 $))) (-15 -2997 ($ $ (-644 $))) (-15 -2996 ($ $ (-644 $))) (-15 -2996 ($ $ $ $)) (-15 -2995 ($ $ $)) (-15 -2994 ((-112) $)) (-15 -4233 ($ $ (-644 $))) (-15 -3968 ($ $)) (-15 -2993 ($ $ $)) (-15 -2992 ($ $)) (-15 -3530 ($ (-644 (-644 $)))) (-15 -2991 ($ $ $)) (-15 -3013 ($ $)) (-15 -3013 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -2989 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -4244 ($ $ (-774))) (-15 -3507 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -3973 ($ $ (-644 $))) (-15 -2982 ($ $ (-644 $))) (-15 -2981 ($ $)) (-15 -4270 ($ $)) (-15 -4270 ($ $ (-774))) (-15 -2980 ($ $)) (-15 -2980 ($ $ (-774))) (-15 -2979 ($ $)) (-15 -2978 ($ $ $)) (-15 -3957 ($ $)) (-15 -3957 ($ $ $)) (-15 -3957 ($ $ $ $)) (-15 -2977 ($ $)) (-15 -2977 ($ $ $)) (-15 -2977 ($ $ $ $)) (-15 -3895 ($ $)) (-15 -3895 ($ $ $)) (-15 -3895 ($ $ $ $)) (-15 -3662 ($ $)) (-15 -3662 ($ (-644 $))) (-15 -2976 ($ $)) (-15 -2976 ($ (-644 $))) (-15 -2975 ($ $)) (-15 -2975 ($ (-644 $))) (-15 -2974 ($ (-644 $))) (-15 -2973 ($ (-644 $))) (-15 -2972 ($ (-644 $))) (-15 -2971 ($ (-644 $))) (-15 -3457 ($ $ $)) (-15 -2970 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -4273 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4271 ($ $)) (-15 * ($ $ $)) (-15 -4383 ($ $ $)) (-15 ** ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3258 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -3748 ($ $)) (-15 -4171 ($ $ $)) (-15 -4171 ($ $)))) +((-2970 (((-112) $ $) NIL)) (-4265 (((-3 $ "failed") (-1181)) 39)) (-3542 (((-774)) 32)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) 29)) (-3665 (((-1163) $) 46)) (-2565 (($ (-923)) 28)) (-3666 (((-1124) $) NIL)) (-4404 (((-1181) $) 13) (((-539) $) 19) (((-894 (-381)) $) 26) (((-894 (-550)) $) 22)) (-4380 (((-866) $) 16)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 43)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 41))) +(((-867 |#1|) (-13 (-847) (-617 (-1181)) (-617 (-539)) (-617 (-894 (-381))) (-617 (-894 (-550))) (-10 -8 (-15 -4265 ((-3 $ "failed") (-1181))))) (-644 (-1181))) (T -867)) +((-4265 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181)) (-5 *1 (-867 *3)) (-14 *3 (-644 *2))))) +(-13 (-847) (-617 (-1181)) (-617 (-539)) (-617 (-894 (-381))) (-617 (-894 (-550))) (-10 -8 (-15 -4265 ((-3 $ "failed") (-1181))))) +((-2970 (((-112) $ $) NIL)) (-3975 (((-510) $) 9)) (-3010 (((-644 (-443)) $) 13)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 21)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 16))) +(((-868) (-13 (-1105) (-10 -8 (-15 -3975 ((-510) $)) (-15 -3010 ((-644 (-443)) $))))) (T -868)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-868)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-644 (-443))) (-5 *1 (-868))))) +(-13 (-1105) (-10 -8 (-15 -3975 ((-510) $)) (-15 -3010 ((-644 (-443)) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-950 |#1|)) NIL) (((-950 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-173)))) (-3532 (((-774)) NIL T CONST)) (-4357 (((-1276) (-774)) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (((-3 $ "failed") $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) +(((-869 |#1| |#2| |#3| |#4|) (-13 (-1053) (-494 (-950 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4383 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4357 ((-1276) (-774))))) (-1053) (-644 (-1181)) (-644 (-774)) (-774)) (T -869)) +((-4383 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-869 *2 *3 *4 *5)) (-4 *2 (-366)) (-4 *2 (-1053)) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-774))) (-14 *5 (-774)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-869 *4 *5 *6 *7)) (-4 *4 (-1053)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 *3)) (-14 *7 *3)))) +(-13 (-1053) (-494 (-950 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4383 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4357 ((-1276) (-774))))) +((-3011 (((-3 (-175 |#3|) "failed") (-774) (-774) |#2| |#2|) 43)) (-3012 (((-3 (-411 |#3|) "failed") (-774) (-774) |#2| |#2|) 34))) +(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -3012 ((-3 (-411 |#3|) "failed") (-774) (-774) |#2| |#2|)) (-15 -3011 ((-3 (-175 |#3|) "failed") (-774) (-774) |#2| |#2|))) (-366) (-1263 |#1|) (-1246 |#1|)) (T -870)) +((-3011 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-774)) (-4 *5 (-366)) (-5 *2 (-175 *6)) (-5 *1 (-870 *5 *4 *6)) (-4 *4 (-1263 *5)) (-4 *6 (-1246 *5)))) (-3012 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-774)) (-4 *5 (-366)) (-5 *2 (-411 *6)) (-5 *1 (-870 *5 *4 *6)) (-4 *4 (-1263 *5)) (-4 *6 (-1246 *5))))) +(-10 -7 (-15 -3012 ((-3 (-411 |#3|) "failed") (-774) (-774) |#2| |#2|)) (-15 -3011 ((-3 (-175 |#3|) "failed") (-774) (-774) |#2| |#2|))) +((-3012 (((-3 (-411 (-1239 |#2| |#1|)) "failed") (-774) (-774) (-1260 |#1| |#2| |#3|)) 30) (((-3 (-411 (-1239 |#2| |#1|)) "failed") (-774) (-774) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) 28))) +(((-871 |#1| |#2| |#3|) (-10 -7 (-15 -3012 ((-3 (-411 (-1239 |#2| |#1|)) "failed") (-774) (-774) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (-15 -3012 ((-3 (-411 (-1239 |#2| |#1|)) "failed") (-774) (-774) (-1260 |#1| |#2| |#3|)))) (-366) (-1181) |#1|) (T -871)) +((-3012 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-774)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-366)) (-14 *6 (-1181)) (-14 *7 *5) (-5 *2 (-411 (-1239 *6 *5))) (-5 *1 (-871 *5 *6 *7)))) (-3012 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-774)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-366)) (-14 *6 (-1181)) (-14 *7 *5) (-5 *2 (-411 (-1239 *6 *5))) (-5 *1 (-871 *5 *6 *7))))) +(-10 -7 (-15 -3012 ((-3 (-411 (-1239 |#2| |#1|)) "failed") (-774) (-774) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (-15 -3012 ((-3 (-411 (-1239 |#2| |#1|)) "failed") (-774) (-774) (-1260 |#1| |#2| |#3|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $ (-550)) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3013 (($ (-1175 (-550)) (-550)) NIL)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3014 (($ $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4205 (((-774) $) NIL)) (-2575 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-3016 (((-550)) NIL)) (-3015 (((-550) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4202 (($ $ (-550)) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3017 (((-1158 (-550)) $) NIL)) (-3294 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-550) $ (-550)) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-872 |#1|) (-873 |#1|) (-550)) (T -872)) +NIL +(-873 |#1|) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-3440 (($ $ (-550)) 68)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-3013 (($ (-1175 (-550)) (-550)) 67)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-3014 (($ $) 70)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4205 (((-774) $) 75)) (-2575 (((-112) $) 35)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-3016 (((-550)) 72)) (-3015 (((-550) $) 71)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-4202 (($ $ (-550)) 74)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-3017 (((-1158 (-550)) $) 76)) (-3294 (($ $) 73)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-4203 (((-550) $ (-550)) 69)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-873 |#1|) (-140) (-550)) (T -873)) +((-3017 (*1 *2 *1) (-12 (-4 *1 (-873 *3)) (-5 *2 (-1158 (-550))))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-873 *3)) (-5 *2 (-774)))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) (-3294 (*1 *1 *1) (-4 *1 (-873 *2))) (-3016 (*1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) (-3014 (*1 *1 *1) (-4 *1 (-873 *2))) (-4203 (*1 *2 *1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) (-3440 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) (-3013 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *3 (-550)) (-4 *1 (-873 *4))))) +(-13 (-309) (-147) (-10 -8 (-15 -3017 ((-1158 (-550)) $)) (-15 -4205 ((-774) $)) (-15 -4202 ($ $ (-550))) (-15 -3294 ($ $)) (-15 -3016 ((-550))) (-15 -3015 ((-550) $)) (-15 -3014 ($ $)) (-15 -4203 ((-550) $ (-550))) (-15 -3440 ($ $ (-550))) (-15 -3013 ($ (-1175 (-550)) (-550))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-309) . T) ((-456) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-872 |#1|) $) NIL (|has| (-872 |#1|) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-872 |#1|) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-872 |#1|) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-872 |#1|) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-872 |#1|) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| (-872 |#1|) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| (-872 |#1|) (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| (-872 |#1|) (-1042 (-550))))) (-3578 (((-872 |#1|) $) NIL) (((-1181) $) NIL (|has| (-872 |#1|) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-872 |#1|) (-1042 (-550)))) (((-550) $) NIL (|has| (-872 |#1|) (-1042 (-550))))) (-4164 (($ $) NIL) (($ (-550) $) NIL)) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-872 |#1|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-872 |#1|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-872 |#1|))) (|:| |vec| (-1270 (-872 |#1|)))) (-692 $) (-1270 $)) NIL) (((-692 (-872 |#1|)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-872 |#1|) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| (-872 |#1|) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-872 |#1|) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-872 |#1|) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-872 |#1|) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| (-872 |#1|) (-1155)))) (-3609 (((-112) $) NIL (|has| (-872 |#1|) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-872 |#1|) (-853)))) (-3262 (($ $ $) NIL (|has| (-872 |#1|) (-853)))) (-4392 (($ (-1 (-872 |#1|) (-872 |#1|)) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-872 |#1|) (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-872 |#1|) (-309)))) (-3536 (((-872 |#1|) $) NIL (|has| (-872 |#1|) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-872 |#1|) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-872 |#1|) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-872 |#1|)) (-644 (-872 |#1|))) NIL (|has| (-872 |#1|) (-311 (-872 |#1|)))) (($ $ (-872 |#1|) (-872 |#1|)) NIL (|has| (-872 |#1|) (-311 (-872 |#1|)))) (($ $ (-295 (-872 |#1|))) NIL (|has| (-872 |#1|) (-311 (-872 |#1|)))) (($ $ (-644 (-295 (-872 |#1|)))) NIL (|has| (-872 |#1|) (-311 (-872 |#1|)))) (($ $ (-644 (-1181)) (-644 (-872 |#1|))) NIL (|has| (-872 |#1|) (-518 (-1181) (-872 |#1|)))) (($ $ (-1181) (-872 |#1|)) NIL (|has| (-872 |#1|) (-518 (-1181) (-872 |#1|))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-872 |#1|)) NIL (|has| (-872 |#1|) (-288 (-872 |#1|) (-872 |#1|))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| (-872 |#1|) (-234))) (($ $ (-774)) NIL (|has| (-872 |#1|) (-234))) (($ $ (-1181)) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-1 (-872 |#1|) (-872 |#1|)) (-774)) NIL) (($ $ (-1 (-872 |#1|) (-872 |#1|))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-872 |#1|) $) NIL)) (-4404 (((-894 (-550)) $) NIL (|has| (-872 |#1|) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-872 |#1|) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-872 |#1|) (-617 (-539)))) (((-381) $) NIL (|has| (-872 |#1|) (-1024))) (((-226) $) NIL (|has| (-872 |#1|) (-1024)))) (-3018 (((-175 (-411 (-550))) $) NIL)) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-872 |#1|) (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL) (($ (-872 |#1|)) NIL) (($ (-1181)) NIL (|has| (-872 |#1|) (-1042 (-1181))))) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-872 |#1|) (-914))) (|has| (-872 |#1|) (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 (((-872 |#1|) $) NIL (|has| (-872 |#1|) (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-411 (-550)) $ (-550)) NIL)) (-3809 (($ $) NIL (|has| (-872 |#1|) (-823)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $) NIL (|has| (-872 |#1|) (-234))) (($ $ (-774)) NIL (|has| (-872 |#1|) (-234))) (($ $ (-1181)) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-872 |#1|) (-904 (-1181)))) (($ $ (-1 (-872 |#1|) (-872 |#1|)) (-774)) NIL) (($ $ (-1 (-872 |#1|) (-872 |#1|))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-872 |#1|) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-872 |#1|) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-872 |#1|) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-872 |#1|) (-853)))) (-4383 (($ $ $) NIL) (($ (-872 |#1|) (-872 |#1|)) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-872 |#1|) $) NIL) (($ $ (-872 |#1|)) NIL))) +(((-874 |#1|) (-13 (-995 (-872 |#1|)) (-10 -8 (-15 -4203 ((-411 (-550)) $ (-550))) (-15 -3018 ((-175 (-411 (-550))) $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)))) (-550)) (T -874)) +((-4203 (*1 *2 *1 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-874 *4)) (-14 *4 *3) (-5 *3 (-550)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-175 (-411 (-550)))) (-5 *1 (-874 *3)) (-14 *3 (-550)))) (-4164 (*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-14 *2 (-550)))) (-4164 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-874 *3)) (-14 *3 *2)))) +(-13 (-995 (-872 |#1|)) (-10 -8 (-15 -4203 ((-411 (-550)) $ (-550))) (-15 -3018 ((-175 (-411 (-550))) $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 ((|#2| $) NIL (|has| |#2| (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| |#2| (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (|has| |#2| (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-550) #2#) $) NIL (|has| |#2| (-1042 (-550))))) (-3578 ((|#2| $) NIL) (((-1181) $) NIL (|has| |#2| (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-550)))) (((-550) $) NIL (|has| |#2| (-1042 (-550))))) (-4164 (($ $) 35) (($ (-550) $) 38)) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) 64)) (-3397 (($) NIL (|has| |#2| (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) NIL (|has| |#2| (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| |#2| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| |#2| (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 ((|#2| $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| |#2| (-1155)))) (-3609 (((-112) $) NIL (|has| |#2| (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| |#2| (-853)))) (-3262 (($ $ $) NIL (|has| |#2| (-853)))) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 60)) (-3871 (($) NIL (|has| |#2| (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| |#2| (-309)))) (-3536 ((|#2| $) NIL (|has| |#2| (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 |#2|) (-644 |#2|)) NIL (|has| |#2| (-311 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-311 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-311 |#2|))) (($ $ (-644 (-295 |#2|))) NIL (|has| |#2| (-311 |#2|))) (($ $ (-644 (-1181)) (-644 |#2|)) NIL (|has| |#2| (-518 (-1181) |#2|))) (($ $ (-1181) |#2|) NIL (|has| |#2| (-518 (-1181) |#2|)))) (-1754 (((-774) $) NIL)) (-4233 (($ $ |#2|) NIL (|has| |#2| (-288 |#2| |#2|)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) NIL (|has| |#2| (-234))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3398 (($ $) NIL)) (-3400 ((|#2| $) NIL)) (-4404 (((-894 (-550)) $) NIL (|has| |#2| (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| |#2| (-617 (-894 (-381))))) (((-539) $) NIL (|has| |#2| (-617 (-539)))) (((-381) $) NIL (|has| |#2| (-1024))) (((-226) $) NIL (|has| |#2| (-1024)))) (-3018 (((-175 (-411 (-550))) $) 78)) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-914))))) (-4380 (((-866) $) 108) (($ (-550)) 20) (($ $) NIL) (($ (-411 (-550))) 25) (($ |#2|) 19) (($ (-1181)) NIL (|has| |#2| (-1042 (-1181))))) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#2| (-145))))) (-3532 (((-774)) NIL T CONST)) (-3537 ((|#2| $) NIL (|has| |#2| (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-411 (-550)) $ (-550)) 71)) (-3809 (($ $) NIL (|has| |#2| (-823)))) (-3512 (($) 15 T CONST)) (-3069 (($) 17 T CONST)) (-3074 (($ $) NIL (|has| |#2| (-234))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2968 (((-112) $ $) NIL (|has| |#2| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#2| (-853)))) (-3457 (((-112) $ $) 46)) (-3089 (((-112) $ $) NIL (|has| |#2| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#2| (-853)))) (-4383 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4271 (($ $) 50) (($ $ $) 52)) (-4273 (($ $ $) 48)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) 61)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 53) (($ $ $) 55) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-875 |#1| |#2|) (-13 (-995 |#2|) (-10 -8 (-15 -4203 ((-411 (-550)) $ (-550))) (-15 -3018 ((-175 (-411 (-550))) $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)))) (-550) (-873 |#1|)) (T -875)) +((-4203 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-411 (-550))) (-5 *1 (-875 *4 *5)) (-5 *3 (-550)) (-4 *5 (-873 *4)))) (-3018 (*1 *2 *1) (-12 (-14 *3 (-550)) (-5 *2 (-175 (-411 (-550)))) (-5 *1 (-875 *3 *4)) (-4 *4 (-873 *3)))) (-4164 (*1 *1 *1) (-12 (-14 *2 (-550)) (-5 *1 (-875 *2 *3)) (-4 *3 (-873 *2)))) (-4164 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-14 *3 *2) (-5 *1 (-875 *3 *4)) (-4 *4 (-873 *3))))) +(-13 (-995 |#2|) (-10 -8 (-15 -4203 ((-411 (-550)) $ (-550))) (-15 -3018 ((-175 (-411 (-550))) $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)))) +((-2970 (((-112) $ $) NIL (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))))) (-4229 ((|#2| $) 12)) (-3019 (($ |#1| |#2|) 9)) (-3665 (((-1163) $) NIL (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))))) (-3666 (((-1124) $) NIL (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#1| $) 11)) (-3955 (($ |#1| |#2|) 10)) (-4380 (((-866) $) 18 (-3962 (-12 (|has| |#1| (-616 (-866))) (|has| |#2| (-616 (-866)))) (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105)))))) (-3664 (((-112) $ $) NIL (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105))))) (-3457 (((-112) $ $) 23 (-12 (|has| |#1| (-1105)) (|has| |#2| (-1105)))))) +(((-876 |#1| |#2|) (-13 (-1220) (-10 -8 (IF (|has| |#1| (-616 (-866))) (IF (|has| |#2| (-616 (-866))) (-6 (-616 (-866))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1105)) (IF (|has| |#2| (-1105)) (-6 (-1105)) |%noBranch|) |%noBranch|) (-15 -3019 ($ |#1| |#2|)) (-15 -3955 ($ |#1| |#2|)) (-15 -4234 (|#1| $)) (-15 -4229 (|#2| $)))) (-1220) (-1220)) (T -876)) +((-3019 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1220)) (-4 *3 (-1220)))) (-3955 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1220)) (-4 *3 (-1220)))) (-4234 (*1 *2 *1) (-12 (-4 *2 (-1220)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1220)))) (-4229 (*1 *2 *1) (-12 (-4 *2 (-1220)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1220))))) +(-13 (-1220) (-10 -8 (IF (|has| |#1| (-616 (-866))) (IF (|has| |#2| (-616 (-866))) (-6 (-616 (-866))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1105)) (IF (|has| |#2| (-1105)) (-6 (-1105)) |%noBranch|) |%noBranch|) (-15 -3019 ($ |#1| |#2|)) (-15 -3955 ($ |#1| |#2|)) (-15 -4234 (|#1| $)) (-15 -4229 (|#2| $)))) +((-2970 (((-112) $ $) NIL)) (-3360 (((-550) $) 16)) (-3021 (($ (-157)) 13)) (-3020 (($ (-157)) 14)) (-3665 (((-1163) $) NIL)) (-3359 (((-157) $) 15)) (-3666 (((-1124) $) NIL)) (-3023 (($ (-157)) 11)) (-3024 (($ (-157)) 10)) (-4380 (((-866) $) 24) (($ (-157)) 17)) (-3022 (($ (-157)) 12)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-877) (-13 (-1105) (-10 -8 (-15 -3024 ($ (-157))) (-15 -3023 ($ (-157))) (-15 -3022 ($ (-157))) (-15 -3021 ($ (-157))) (-15 -3020 ($ (-157))) (-15 -3359 ((-157) $)) (-15 -3360 ((-550) $)) (-15 -4380 ($ (-157)))))) (T -877)) +((-3024 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) (-3022 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-877)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877))))) +(-13 (-1105) (-10 -8 (-15 -3024 ($ (-157))) (-15 -3023 ($ (-157))) (-15 -3022 ($ (-157))) (-15 -3021 ($ (-157))) (-15 -3020 ($ (-157))) (-15 -3359 ((-157) $)) (-15 -3360 ((-550) $)) (-15 -4380 ($ (-157))))) +((-4380 (((-316 (-550)) (-411 (-950 (-48)))) 23) (((-316 (-550)) (-950 (-48))) 18))) +(((-878) (-10 -7 (-15 -4380 ((-316 (-550)) (-950 (-48)))) (-15 -4380 ((-316 (-550)) (-411 (-950 (-48))))))) (T -878)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 (-48)))) (-5 *2 (-316 (-550))) (-5 *1 (-878)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-950 (-48))) (-5 *2 (-316 (-550))) (-5 *1 (-878))))) +(-10 -7 (-15 -4380 ((-316 (-550)) (-950 (-48)))) (-15 -4380 ((-316 (-550)) (-411 (-950 (-48)))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 18) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3999 (((-112) $ (|[\|\|]| (-510))) 9) (((-112) $ (|[\|\|]| (-1163))) 13)) (-3664 (((-112) $ $) NIL)) (-4005 (((-510) $) 10) (((-1163) $) 14)) (-3457 (((-112) $ $) 15))) +(((-879) (-13 (-1087) (-1266) (-10 -8 (-15 -3999 ((-112) $ (|[\|\|]| (-510)))) (-15 -4005 ((-510) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1163)))) (-15 -4005 ((-1163) $))))) (T -879)) +((-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)) (-5 *1 (-879)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-879)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-879)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-879))))) +(-13 (-1087) (-1266) (-10 -8 (-15 -3999 ((-112) $ (|[\|\|]| (-510)))) (-15 -4005 ((-510) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1163)))) (-15 -4005 ((-1163) $)))) +((-4392 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 15))) +(((-880 |#1| |#2|) (-10 -7 (-15 -4392 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1220) (-1220)) (T -880)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6))))) +(-10 -7 (-15 -4392 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) +((-3797 (($ |#1| |#1|) 8)) (-3027 ((|#1| $ (-774)) 15))) +(((-881 |#1|) (-10 -8 (-15 -3797 ($ |#1| |#1|)) (-15 -3027 (|#1| $ (-774)))) (-1220)) (T -881)) +((-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-881 *2)) (-4 *2 (-1220)))) (-3797 (*1 *1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1220))))) +(-10 -8 (-15 -3797 ($ |#1| |#1|)) (-15 -3027 (|#1| $ (-774)))) +((-4392 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15))) +(((-882 |#1| |#2|) (-10 -7 (-15 -4392 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1220) (-1220)) (T -882)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))) +(-10 -7 (-15 -4392 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) +((-3797 (($ |#1| |#1| |#1|) 8)) (-3027 ((|#1| $ (-774)) 15))) +(((-883 |#1|) (-10 -8 (-15 -3797 ($ |#1| |#1| |#1|)) (-15 -3027 (|#1| $ (-774)))) (-1220)) (T -883)) +((-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-883 *2)) (-4 *2 (-1220)))) (-3797 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1220))))) +(-10 -8 (-15 -3797 ($ |#1| |#1| |#1|)) (-15 -3027 (|#1| $ (-774)))) +((-3025 (((-644 (-1186)) (-1163)) 9))) +(((-884) (-10 -7 (-15 -3025 ((-644 (-1186)) (-1163))))) (T -884)) +((-3025 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-644 (-1186))) (-5 *1 (-884))))) +(-10 -7 (-15 -3025 ((-644 (-1186)) (-1163)))) +((-4392 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 15))) +(((-885 |#1| |#2|) (-10 -7 (-15 -4392 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1220) (-1220)) (T -885)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))) +(-10 -7 (-15 -4392 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) +((-3026 (($ |#1| |#1| |#1|) 8)) (-3027 ((|#1| $ (-774)) 15))) +(((-886 |#1|) (-10 -8 (-15 -3026 ($ |#1| |#1| |#1|)) (-15 -3027 (|#1| $ (-774)))) (-1220)) (T -886)) +((-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-886 *2)) (-4 *2 (-1220)))) (-3026 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1220))))) +(-10 -8 (-15 -3026 ($ |#1| |#1| |#1|)) (-15 -3027 (|#1| $ (-774)))) +((-3031 (((-1158 (-644 (-550))) (-644 (-550)) (-1158 (-644 (-550)))) 48)) (-3030 (((-1158 (-644 (-550))) (-644 (-550)) (-644 (-550))) 44)) (-3032 (((-1158 (-644 (-550))) (-644 (-550))) 58) (((-1158 (-644 (-550))) (-644 (-550)) (-644 (-550))) 56)) (-3033 (((-1158 (-644 (-550))) (-550)) 59)) (-3028 (((-1158 (-644 (-550))) (-550) (-550)) 34) (((-1158 (-644 (-550))) (-550)) 23) (((-1158 (-644 (-550))) (-550) (-550) (-550)) 19)) (-3029 (((-1158 (-644 (-550))) (-1158 (-644 (-550)))) 42)) (-3412 (((-644 (-550)) (-644 (-550))) 41))) +(((-887) (-10 -7 (-15 -3028 ((-1158 (-644 (-550))) (-550) (-550) (-550))) (-15 -3028 ((-1158 (-644 (-550))) (-550))) (-15 -3028 ((-1158 (-644 (-550))) (-550) (-550))) (-15 -3412 ((-644 (-550)) (-644 (-550)))) (-15 -3029 ((-1158 (-644 (-550))) (-1158 (-644 (-550))))) (-15 -3030 ((-1158 (-644 (-550))) (-644 (-550)) (-644 (-550)))) (-15 -3031 ((-1158 (-644 (-550))) (-644 (-550)) (-1158 (-644 (-550))))) (-15 -3032 ((-1158 (-644 (-550))) (-644 (-550)) (-644 (-550)))) (-15 -3032 ((-1158 (-644 (-550))) (-644 (-550)))) (-15 -3033 ((-1158 (-644 (-550))) (-550))))) (T -887)) +((-3033 (*1 *2 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550)))) (-3032 (*1 *2 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-644 (-550))))) (-3032 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-644 (-550))))) (-3031 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *3 (-644 (-550))) (-5 *1 (-887)))) (-3030 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-644 (-550))))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-887)))) (-3028 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550)))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550)))) (-3028 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550))))) +(-10 -7 (-15 -3028 ((-1158 (-644 (-550))) (-550) (-550) (-550))) (-15 -3028 ((-1158 (-644 (-550))) (-550))) (-15 -3028 ((-1158 (-644 (-550))) (-550) (-550))) (-15 -3412 ((-644 (-550)) (-644 (-550)))) (-15 -3029 ((-1158 (-644 (-550))) (-1158 (-644 (-550))))) (-15 -3030 ((-1158 (-644 (-550))) (-644 (-550)) (-644 (-550)))) (-15 -3031 ((-1158 (-644 (-550))) (-644 (-550)) (-1158 (-644 (-550))))) (-15 -3032 ((-1158 (-644 (-550))) (-644 (-550)) (-644 (-550)))) (-15 -3032 ((-1158 (-644 (-550))) (-644 (-550)))) (-15 -3033 ((-1158 (-644 (-550))) (-550)))) +((-4404 (((-894 (-381)) $) 9 (|has| |#1| (-617 (-894 (-381))))) (((-894 (-550)) $) 8 (|has| |#1| (-617 (-894 (-550))))))) +(((-888 |#1|) (-140) (-1220)) (T -888)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-617 (-894 (-550)))) (-6 (-617 (-894 (-550)))) |%noBranch|) (IF (|has| |t#1| (-617 (-894 (-381)))) (-6 (-617 (-894 (-381)))) |%noBranch|))) +(((-617 (-894 (-381))) |has| |#1| (-617 (-894 (-381)))) ((-617 (-894 (-550))) |has| |#1| (-617 (-894 (-550))))) +((-2970 (((-112) $ $) NIL)) (-4048 (($) 14)) (-3036 (($ (-892 |#1| |#2|) (-892 |#1| |#3|)) 28)) (-3034 (((-892 |#1| |#3|) $) 16)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3044 (((-112) $) 22)) (-3043 (($) 19)) (-4380 (((-866) $) 31)) (-3664 (((-112) $ $) NIL)) (-3035 (((-892 |#1| |#2|) $) 15)) (-3457 (((-112) $ $) 26))) +(((-889 |#1| |#2| |#3|) (-13 (-1105) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3043 ($)) (-15 -4048 ($)) (-15 -3036 ($ (-892 |#1| |#2|) (-892 |#1| |#3|))) (-15 -3035 ((-892 |#1| |#2|) $)) (-15 -3034 ((-892 |#1| |#3|) $)))) (-1105) (-1105) (-669 |#2|)) (T -889)) +((-3044 (*1 *2 *1) (-12 (-4 *4 (-1105)) (-5 *2 (-112)) (-5 *1 (-889 *3 *4 *5)) (-4 *3 (-1105)) (-4 *5 (-669 *4)))) (-3043 (*1 *1) (-12 (-4 *3 (-1105)) (-5 *1 (-889 *2 *3 *4)) (-4 *2 (-1105)) (-4 *4 (-669 *3)))) (-4048 (*1 *1) (-12 (-4 *3 (-1105)) (-5 *1 (-889 *2 *3 *4)) (-4 *2 (-1105)) (-4 *4 (-669 *3)))) (-3036 (*1 *1 *2 *3) (-12 (-5 *2 (-892 *4 *5)) (-5 *3 (-892 *4 *6)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-669 *5)) (-5 *1 (-889 *4 *5 *6)))) (-3035 (*1 *2 *1) (-12 (-4 *4 (-1105)) (-5 *2 (-892 *3 *4)) (-5 *1 (-889 *3 *4 *5)) (-4 *3 (-1105)) (-4 *5 (-669 *4)))) (-3034 (*1 *2 *1) (-12 (-4 *4 (-1105)) (-5 *2 (-892 *3 *5)) (-5 *1 (-889 *3 *4 *5)) (-4 *3 (-1105)) (-4 *5 (-669 *4))))) +(-13 (-1105) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3043 ($)) (-15 -4048 ($)) (-15 -3036 ($ (-892 |#1| |#2|) (-892 |#1| |#3|))) (-15 -3035 ((-892 |#1| |#2|) $)) (-15 -3034 ((-892 |#1| |#3|) $)))) +((-2970 (((-112) $ $) 7)) (-3201 (((-892 |#1| $) $ (-894 |#1|) (-892 |#1| $)) 14)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-890 |#1|) (-140) (-1105)) (T -890)) +((-3201 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-892 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-890 *4)) (-4 *4 (-1105))))) +(-13 (-1105) (-10 -8 (-15 -3201 ((-892 |t#1| $) $ (-894 |t#1|) (-892 |t#1| $))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-3037 (((-112) (-644 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3038 (((-892 |#1| |#2|) |#2| |#3|) 45 (-12 (-3748 (|has| |#2| (-1042 (-1181)))) (-3748 (|has| |#2| (-1053))))) (((-644 (-295 (-950 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1053)) (-3748 (|has| |#2| (-1042 (-1181)))))) (((-644 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1042 (-1181)))) (((-889 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|) 21))) +(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -3037 ((-112) |#2| |#3|)) (-15 -3037 ((-112) (-644 |#2|) |#3|)) (-15 -3038 ((-889 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1042 (-1181))) (-15 -3038 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1053)) (-15 -3038 ((-644 (-295 (-950 |#2|))) |#2| |#3|)) (-15 -3038 ((-892 |#1| |#2|) |#2| |#3|))))) (-1105) (-890 |#1|) (-617 (-894 |#1|))) (T -891)) +((-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-5 *2 (-892 *5 *3)) (-5 *1 (-891 *5 *3 *4)) (-3748 (-4 *3 (-1042 (-1181)))) (-3748 (-4 *3 (-1053))) (-4 *3 (-890 *5)) (-4 *4 (-617 (-894 *5))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-5 *2 (-644 (-295 (-950 *3)))) (-5 *1 (-891 *5 *3 *4)) (-4 *3 (-1053)) (-3748 (-4 *3 (-1042 (-1181)))) (-4 *3 (-890 *5)) (-4 *4 (-617 (-894 *5))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-891 *5 *3 *4)) (-4 *3 (-1042 (-1181))) (-4 *3 (-890 *5)) (-4 *4 (-617 (-894 *5))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-4 *6 (-890 *5)) (-5 *2 (-889 *5 *6 (-644 *6))) (-5 *1 (-891 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-617 (-894 *5))))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-4 *6 (-890 *5)) (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-891 *5 *6 *4)) (-4 *4 (-617 (-894 *5))))) (-3037 (*1 *2 *3 *4) (-12 (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-891 *5 *3 *4)) (-4 *3 (-890 *5)) (-4 *4 (-617 (-894 *5)))))) +(-10 -7 (-15 -3037 ((-112) |#2| |#3|)) (-15 -3037 ((-112) (-644 |#2|) |#3|)) (-15 -3038 ((-889 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1042 (-1181))) (-15 -3038 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1053)) (-15 -3038 ((-644 (-295 (-950 |#2|))) |#2| |#3|)) (-15 -3038 ((-892 |#1| |#2|) |#2| |#3|))))) +((-2970 (((-112) $ $) NIL)) (-3656 (($ $ $) 40)) (-3064 (((-3 (-112) "failed") $ (-894 |#1|)) 37)) (-4048 (($) 12)) (-3665 (((-1163) $) NIL)) (-3040 (($ (-894 |#1|) |#2| $) 20)) (-3666 (((-1124) $) NIL)) (-3042 (((-3 |#2| "failed") (-894 |#1|) $) 51)) (-3044 (((-112) $) 15)) (-3043 (($) 13)) (-3680 (((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 |#2|))) $) 25)) (-3955 (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 |#2|)))) 23)) (-4380 (((-866) $) 45)) (-3664 (((-112) $ $) NIL)) (-3039 (($ (-894 |#1|) |#2| $ |#2|) 49)) (-3041 (($ (-894 |#1|) |#2| $) 48)) (-3457 (((-112) $ $) 42))) +(((-892 |#1| |#2|) (-13 (-1105) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3043 ($)) (-15 -4048 ($)) (-15 -3656 ($ $ $)) (-15 -3042 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -3041 ($ (-894 |#1|) |#2| $)) (-15 -3040 ($ (-894 |#1|) |#2| $)) (-15 -3039 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -3680 ((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 |#2|))) $)) (-15 -3955 ($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 |#2|))))) (-15 -3064 ((-3 (-112) "failed") $ (-894 |#1|))))) (-1105) (-1105)) (T -892)) +((-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-3043 (*1 *1) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-4048 (*1 *1) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-3656 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-3042 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-4 *2 (-1105)) (-5 *1 (-892 *4 *2)))) (-3041 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1105)))) (-3040 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1105)))) (-3039 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1105)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 *4)))) (-5 *1 (-892 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 *4)))) (-4 *4 (-1105)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1105)))) (-3064 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-5 *2 (-112)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1105))))) +(-13 (-1105) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3043 ($)) (-15 -4048 ($)) (-15 -3656 ($ $ $)) (-15 -3042 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -3041 ($ (-894 |#1|) |#2| $)) (-15 -3040 ($ (-894 |#1|) |#2| $)) (-15 -3039 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -3680 ((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 |#2|))) $)) (-15 -3955 ($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 |#2|))))) (-15 -3064 ((-3 (-112) "failed") $ (-894 |#1|))))) +((-4392 (((-892 |#1| |#3|) (-1 |#3| |#2|) (-892 |#1| |#2|)) 22))) +(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -4392 ((-892 |#1| |#3|) (-1 |#3| |#2|) (-892 |#1| |#2|)))) (-1105) (-1105) (-1105)) (T -893)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-892 *5 *6)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-892 *5 *7)) (-5 *1 (-893 *5 *6 *7))))) +(-10 -7 (-15 -4392 ((-892 |#1| |#3|) (-1 |#3| |#2|) (-892 |#1| |#2|)))) +((-2970 (((-112) $ $) NIL)) (-3052 (($ $ (-644 (-51))) 74)) (-3487 (((-644 $) $) 138)) (-3049 (((-2 (|:| |var| (-644 (-1181))) (|:| |pred| (-51))) $) 30)) (-3683 (((-112) $) 35)) (-3050 (($ $ (-644 (-1181)) (-51)) 31)) (-3053 (($ $ (-644 (-51))) 73)) (-3579 (((-3 |#1| #1="failed") $) 71) (((-3 (-1181) #1#) $) 162)) (-3578 ((|#1| $) 68) (((-1181) $) NIL)) (-3047 (($ $) 126)) (-3059 (((-112) $) 55)) (-3054 (((-644 (-51)) $) 50)) (-3051 (($ (-1181) (-112) (-112) (-112)) 75)) (-3045 (((-3 (-644 $) "failed") (-644 $)) 82)) (-3056 (((-112) $) 58)) (-3057 (((-112) $) 57)) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) "failed") $) 41)) (-3062 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3230 (((-3 (-2 (|:| |val| $) (|:| -2566 $)) "failed") $) 97)) (-3227 (((-3 (-644 $) "failed") $) 40)) (-3063 (((-3 (-644 $) "failed") $ (-113)) 124) (((-3 (-2 (|:| -2904 (-113)) (|:| |arg| (-644 $))) "failed") $) 107)) (-3061 (((-3 (-644 $) "failed") $) 42)) (-3229 (((-3 (-2 (|:| |val| $) (|:| -2566 (-774))) "failed") $) 45)) (-3060 (((-112) $) 34)) (-3666 (((-1124) $) NIL)) (-3048 (((-112) $) 28)) (-3055 (((-112) $) 52)) (-3046 (((-644 (-51)) $) 130)) (-3058 (((-112) $) 56)) (-4233 (($ (-113) (-644 $)) 104)) (-3749 (((-774) $) 33)) (-3826 (($ $) 72)) (-4404 (($ (-644 $)) 69)) (-4387 (((-112) $) 32)) (-4380 (((-866) $) 63) (($ |#1|) 23) (($ (-1181)) 76)) (-3664 (((-112) $ $) NIL)) (-3065 (($ $ (-51)) 129)) (-3512 (($) 103 T CONST)) (-3069 (($) 83 T CONST)) (-3457 (((-112) $ $) 93)) (-4383 (($ $ $) 117)) (-4273 (($ $ $) 121)) (** (($ $ (-774)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-894 |#1|) (-13 (-1105) (-1042 |#1|) (-1042 (-1181)) (-10 -8 (-15 0 ($) -4386) (-15 1 ($) -4386) (-15 -3227 ((-3 (-644 $) "failed") $)) (-15 -3228 ((-3 (-644 $) "failed") $)) (-15 -3063 ((-3 (-644 $) "failed") $ (-113))) (-15 -3063 ((-3 (-2 (|:| -2904 (-113)) (|:| |arg| (-644 $))) "failed") $)) (-15 -3229 ((-3 (-2 (|:| |val| $) (|:| -2566 (-774))) "failed") $)) (-15 -3062 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3061 ((-3 (-644 $) "failed") $)) (-15 -3230 ((-3 (-2 (|:| |val| $) (|:| -2566 $)) "failed") $)) (-15 -4233 ($ (-113) (-644 $))) (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-774))) (-15 ** ($ $ $)) (-15 -4383 ($ $ $)) (-15 -3749 ((-774) $)) (-15 -4404 ($ (-644 $))) (-15 -3826 ($ $)) (-15 -3060 ((-112) $)) (-15 -3059 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -3058 ((-112) $)) (-15 -3057 ((-112) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3054 ((-644 (-51)) $)) (-15 -3053 ($ $ (-644 (-51)))) (-15 -3052 ($ $ (-644 (-51)))) (-15 -3051 ($ (-1181) (-112) (-112) (-112))) (-15 -3050 ($ $ (-644 (-1181)) (-51))) (-15 -3049 ((-2 (|:| |var| (-644 (-1181))) (|:| |pred| (-51))) $)) (-15 -3048 ((-112) $)) (-15 -3047 ($ $)) (-15 -3065 ($ $ (-51))) (-15 -3046 ((-644 (-51)) $)) (-15 -3487 ((-644 $) $)) (-15 -3045 ((-3 (-644 $) "failed") (-644 $))))) (-1105)) (T -894)) +((-3512 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (-3069 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (-3227 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3228 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3063 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-644 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1105)))) (-3063 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2904 (-113)) (|:| |arg| (-644 (-894 *3))))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3229 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2566 (-774)))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3062 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3061 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3230 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2566 (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-4233 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-644 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1105)))) (-4273 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (-4383 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3051 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-112)) (-5 *1 (-894 *4)) (-4 *4 (-1105)))) (-3050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-51)) (-5 *1 (-894 *4)) (-4 *4 (-1105)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-644 (-1181))) (|:| |pred| (-51)))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3047 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) (-3065 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) (-3045 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(-13 (-1105) (-1042 |#1|) (-1042 (-1181)) (-10 -8 (-15 (-3512) ($) -4386) (-15 (-3069) ($) -4386) (-15 -3227 ((-3 (-644 $) "failed") $)) (-15 -3228 ((-3 (-644 $) "failed") $)) (-15 -3063 ((-3 (-644 $) "failed") $ (-113))) (-15 -3063 ((-3 (-2 (|:| -2904 (-113)) (|:| |arg| (-644 $))) "failed") $)) (-15 -3229 ((-3 (-2 (|:| |val| $) (|:| -2566 (-774))) "failed") $)) (-15 -3062 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3061 ((-3 (-644 $) "failed") $)) (-15 -3230 ((-3 (-2 (|:| |val| $) (|:| -2566 $)) "failed") $)) (-15 -4233 ($ (-113) (-644 $))) (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-774))) (-15 ** ($ $ $)) (-15 -4383 ($ $ $)) (-15 -3749 ((-774) $)) (-15 -4404 ($ (-644 $))) (-15 -3826 ($ $)) (-15 -3060 ((-112) $)) (-15 -3059 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -3058 ((-112) $)) (-15 -3057 ((-112) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3054 ((-644 (-51)) $)) (-15 -3053 ($ $ (-644 (-51)))) (-15 -3052 ($ $ (-644 (-51)))) (-15 -3051 ($ (-1181) (-112) (-112) (-112))) (-15 -3050 ($ $ (-644 (-1181)) (-51))) (-15 -3049 ((-2 (|:| |var| (-644 (-1181))) (|:| |pred| (-51))) $)) (-15 -3048 ((-112) $)) (-15 -3047 ($ $)) (-15 -3065 ($ $ (-51))) (-15 -3046 ((-644 (-51)) $)) (-15 -3487 ((-644 $) $)) (-15 -3045 ((-3 (-644 $) "failed") (-644 $))))) +((-3631 (((-894 |#1|) (-894 |#1|) (-644 (-1181)) (-1 (-112) (-644 |#2|))) 32) (((-894 |#1|) (-894 |#1|) (-644 (-1 (-112) |#2|))) 46) (((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|)) 35)) (-3064 (((-112) (-644 |#2|) (-894 |#1|)) 42) (((-112) |#2| (-894 |#1|)) 36)) (-3956 (((-1 (-112) |#2|) (-894 |#1|)) 16)) (-3066 (((-644 |#2|) (-894 |#1|)) 24)) (-3065 (((-894 |#1|) (-894 |#1|) |#2|) 20))) +(((-895 |#1| |#2|) (-10 -7 (-15 -3631 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -3631 ((-894 |#1|) (-894 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -3631 ((-894 |#1|) (-894 |#1|) (-644 (-1181)) (-1 (-112) (-644 |#2|)))) (-15 -3956 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -3064 ((-112) |#2| (-894 |#1|))) (-15 -3064 ((-112) (-644 |#2|) (-894 |#1|))) (-15 -3065 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -3066 ((-644 |#2|) (-894 |#1|)))) (-1105) (-1220)) (T -895)) +((-3066 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-5 *2 (-644 *5)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1220)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1220)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *6 (-1220)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-895 *5 *3)) (-4 *3 (-1220)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1220)))) (-3631 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-894 *5)) (-5 *3 (-644 (-1181))) (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1105)) (-4 *6 (-1220)) (-5 *1 (-895 *5 *6)))) (-3631 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1105)) (-4 *5 (-1220)) (-5 *1 (-895 *4 *5)))) (-3631 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1105)) (-4 *5 (-1220)) (-5 *1 (-895 *4 *5))))) +(-10 -7 (-15 -3631 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -3631 ((-894 |#1|) (-894 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -3631 ((-894 |#1|) (-894 |#1|) (-644 (-1181)) (-1 (-112) (-644 |#2|)))) (-15 -3956 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -3064 ((-112) |#2| (-894 |#1|))) (-15 -3064 ((-112) (-644 |#2|) (-894 |#1|))) (-15 -3065 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -3066 ((-644 |#2|) (-894 |#1|)))) +((-4392 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 19))) +(((-896 |#1| |#2|) (-10 -7 (-15 -4392 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1105) (-1105)) (T -896)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-894 *6)) (-5 *1 (-896 *5 *6))))) +(-10 -7 (-15 -4392 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) +((-2970 (((-112) $ $) NIL)) (-4368 (((-644 |#1|) $) 19)) (-3067 (((-112) $) 49)) (-3579 (((-3 (-675 |#1|) "failed") $) 56)) (-3578 (((-675 |#1|) $) 54)) (-4232 (($ $) 23)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-4267 (((-774) $) 61)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-675 |#1|) $) 21)) (-4380 (((-866) $) 47) (($ (-675 |#1|)) 26) (((-822 |#1|) $) 36) (($ |#1|) 25)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 9 T CONST)) (-3068 (((-644 (-675 |#1|)) $) 28)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 12)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 67))) +(((-897 |#1|) (-13 (-853) (-1042 (-675 |#1|)) (-10 -8 (-15 1 ($) -4386) (-15 -4380 ((-822 |#1|) $)) (-15 -4380 ($ |#1|)) (-15 -4234 ((-675 |#1|) $)) (-15 -4267 ((-774) $)) (-15 -3068 ((-644 (-675 |#1|)) $)) (-15 -4232 ($ $)) (-15 -3067 ((-112) $)) (-15 -4368 ((-644 |#1|) $)))) (-853)) (T -897)) +((-3069 (*1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-853)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) (-4380 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-853)))) (-4234 (*1 *2 *1) (-12 (-5 *2 (-675 *3)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-644 (-675 *3))) (-5 *1 (-897 *3)) (-4 *3 (-853)))) (-4232 (*1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-853)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-897 *3)) (-4 *3 (-853))))) +(-13 (-853) (-1042 (-675 |#1|)) (-10 -8 (-15 (-3069) ($) -4386) (-15 -4380 ((-822 |#1|) $)) (-15 -4380 ($ |#1|)) (-15 -4234 ((-675 |#1|) $)) (-15 -4267 ((-774) $)) (-15 -3068 ((-644 (-675 |#1|)) $)) (-15 -4232 ($ $)) (-15 -3067 ((-112) $)) (-15 -4368 ((-644 |#1|) $)))) +((-3899 ((|#1| |#1| |#1|) 19))) +(((-898 |#1| |#2|) (-10 -7 (-15 -3899 (|#1| |#1| |#1|))) (-1246 |#2|) (-1053)) (T -898)) +((-3899 (*1 *2 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-898 *2 *3)) (-4 *2 (-1246 *3))))) +(-10 -7 (-15 -3899 (|#1| |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3073 (((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3070 (((-1039) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 14)) (-3457 (((-112) $ $) 6))) +(((-899) (-140)) (T -899)) +((-3073 (*1 *2 *3 *4) (-12 (-4 *1 (-899)) (-5 *3 (-1067)) (-5 *4 (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) (-3070 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *3 (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) (-5 *2 (-1039))))) +(-13 (-1105) (-10 -7 (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| |explanations| (-1163))) (-1067) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))))) (-15 -3070 ((-1039) (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-3072 ((|#1| |#1| (-774)) 29)) (-3071 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3861 (((-3 (-2 (|:| -3544 |#1|) (|:| -3543 |#1|)) "failed") |#1| (-774) (-774)) 32) (((-644 |#1|) |#1|) 39))) +(((-900 |#1| |#2|) (-10 -7 (-15 -3861 ((-644 |#1|) |#1|)) (-15 -3861 ((-3 (-2 (|:| -3544 |#1|) (|:| -3543 |#1|)) "failed") |#1| (-774) (-774))) (-15 -3071 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3072 (|#1| |#1| (-774)))) (-1246 |#2|) (-366)) (T -900)) +((-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-366)) (-5 *1 (-900 *2 *4)) (-4 *2 (-1246 *4)))) (-3071 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-366)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1246 *3)))) (-3861 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-774)) (-4 *5 (-366)) (-5 *2 (-2 (|:| -3544 *3) (|:| -3543 *3))) (-5 *1 (-900 *3 *5)) (-4 *3 (-1246 *5)))) (-3861 (*1 *2 *3) (-12 (-4 *4 (-366)) (-5 *2 (-644 *3)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -3861 ((-644 |#1|) |#1|)) (-15 -3861 ((-3 (-2 (|:| -3544 |#1|) (|:| -3543 |#1|)) "failed") |#1| (-774) (-774))) (-15 -3071 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3072 (|#1| |#1| (-774)))) +((-4006 (((-1039) (-381) (-381) (-381) (-381) (-774) (-774) (-644 (-316 (-381))) (-644 (-644 (-316 (-381)))) (-1163)) 106) (((-1039) (-381) (-381) (-381) (-381) (-774) (-774) (-644 (-316 (-381))) (-644 (-644 (-316 (-381)))) (-1163) (-226)) 102) (((-1039) (-902) (-1067)) 94) (((-1039) (-902)) 95)) (-3073 (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-902) (-1067)) 65) (((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-902)) 67))) +(((-901) (-10 -7 (-15 -4006 ((-1039) (-902))) (-15 -4006 ((-1039) (-902) (-1067))) (-15 -4006 ((-1039) (-381) (-381) (-381) (-381) (-774) (-774) (-644 (-316 (-381))) (-644 (-644 (-316 (-381)))) (-1163) (-226))) (-15 -4006 ((-1039) (-381) (-381) (-381) (-381) (-774) (-774) (-644 (-316 (-381))) (-644 (-644 (-316 (-381)))) (-1163))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-902))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-902) (-1067))))) (T -901)) +((-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1067)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *1 (-901)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163))))) (-5 *1 (-901)))) (-4006 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-774)) (-5 *6 (-644 (-644 (-316 *3)))) (-5 *7 (-1163)) (-5 *5 (-644 (-316 (-381)))) (-5 *3 (-381)) (-5 *2 (-1039)) (-5 *1 (-901)))) (-4006 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-774)) (-5 *6 (-644 (-644 (-316 *3)))) (-5 *7 (-1163)) (-5 *8 (-226)) (-5 *5 (-644 (-316 (-381)))) (-5 *3 (-381)) (-5 *2 (-1039)) (-5 *1 (-901)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1067)) (-5 *2 (-1039)) (-5 *1 (-901)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1039)) (-5 *1 (-901))))) +(-10 -7 (-15 -4006 ((-1039) (-902))) (-15 -4006 ((-1039) (-902) (-1067))) (-15 -4006 ((-1039) (-381) (-381) (-381) (-381) (-774) (-774) (-644 (-316 (-381))) (-644 (-644 (-316 (-381)))) (-1163) (-226))) (-15 -4006 ((-1039) (-381) (-381) (-381) (-381) (-774) (-774) (-644 (-316 (-381))) (-644 (-644 (-316 (-381)))) (-1163))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-902))) (-15 -3073 ((-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) (|:| |explanations| (-644 (-1163)))) (-902) (-1067)))) +((-2970 (((-112) $ $) NIL)) (-3578 (((-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))) $) 19)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 21) (($ (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) 18)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-902) (-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))))) (-15 -3578 ((-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))) $))))) (T -902)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) (-5 *1 (-902)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226)))) (-5 *1 (-902))))) +(-13 (-1105) (-10 -8 (-15 -4380 ($ (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))))) (-15 -3578 ((-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| (-644 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) (|:| |dFinish| (-692 (-226)))))) (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) (|:| |tol| (-226))) $)))) +((-4244 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) 10) (($ $ |#2| (-774)) 15) (($ $ (-644 |#2|) (-644 (-774))) 18)) (-3074 (($ $ |#2|) 19) (($ $ (-644 |#2|)) 21) (($ $ |#2| (-774)) 22) (($ $ (-644 |#2|) (-644 (-774))) 24))) +(((-903 |#1| |#2|) (-10 -8 (-15 -3074 (|#1| |#1| (-644 |#2|) (-644 (-774)))) (-15 -3074 (|#1| |#1| |#2| (-774))) (-15 -3074 (|#1| |#1| (-644 |#2|))) (-15 -3074 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| (-644 |#2|) (-644 (-774)))) (-15 -4244 (|#1| |#1| |#2| (-774))) (-15 -4244 (|#1| |#1| (-644 |#2|))) (-15 -4244 (|#1| |#1| |#2|))) (-904 |#2|) (-1105)) (T -903)) +NIL +(-10 -8 (-15 -3074 (|#1| |#1| (-644 |#2|) (-644 (-774)))) (-15 -3074 (|#1| |#1| |#2| (-774))) (-15 -3074 (|#1| |#1| (-644 |#2|))) (-15 -3074 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| (-644 |#2|) (-644 (-774)))) (-15 -4244 (|#1| |#1| |#2| (-774))) (-15 -4244 (|#1| |#1| (-644 |#2|))) (-15 -4244 (|#1| |#1| |#2|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4244 (($ $ |#1|) 46) (($ $ (-644 |#1|)) 45) (($ $ |#1| (-774)) 44) (($ $ (-644 |#1|) (-644 (-774))) 43)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ |#1|) 42) (($ $ (-644 |#1|)) 41) (($ $ |#1| (-774)) 40) (($ $ (-644 |#1|) (-644 (-774))) 39)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-904 |#1|) (-140) (-1105)) (T -904)) +((-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1105)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-904 *3)) (-4 *3 (-1105)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-904 *2)) (-4 *2 (-1105)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-774))) (-4 *1 (-904 *4)) (-4 *4 (-1105)))) (-3074 (*1 *1 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1105)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-904 *3)) (-4 *3 (-1105)))) (-3074 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-904 *2)) (-4 *2 (-1105)))) (-3074 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-774))) (-4 *1 (-904 *4)) (-4 *4 (-1105))))) +(-13 (-1053) (-10 -8 (-15 -4244 ($ $ |t#1|)) (-15 -4244 ($ $ (-644 |t#1|))) (-15 -4244 ($ $ |t#1| (-774))) (-15 -4244 ($ $ (-644 |t#1|) (-644 (-774)))) (-15 -3074 ($ $ |t#1|)) (-15 -3074 ($ $ (-644 |t#1|))) (-15 -3074 ($ $ |t#1| (-774))) (-15 -3074 ($ $ (-644 |t#1|) (-644 (-774)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) 26)) (-1310 (((-112) $ (-774)) NIL)) (-3428 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-1389 (($ $ $) NIL (|has| $ (-6 -4428)))) (-1390 (($ $ $) NIL (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) (($ $ #2="left" $) NIL (|has| $ (-6 -4428))) (($ $ #3="right" $) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3543 (($ $) 25)) (-3075 (($ |#1|) 12) (($ $ $) 17)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3544 (($ $) 23)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) 20)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3432 (((-550) $ $) NIL)) (-4067 (((-112) $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1207 |#1|) $) 9) (((-866) $) 29 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 21 (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-905 |#1|) (-13 (-119 |#1|) (-616 (-1207 |#1|)) (-10 -8 (-15 -3075 ($ |#1|)) (-15 -3075 ($ $ $)))) (-1105)) (T -905)) +((-3075 (*1 *1 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1105)))) (-3075 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1105))))) +(-13 (-119 |#1|) (-616 (-1207 |#1|)) (-10 -8 (-15 -3075 ($ |#1|)) (-15 -3075 ($ $ $)))) +((-2970 (((-112) $ $) NIL)) (-3312 (((-644 $) (-644 $)) 103)) (-4057 (((-550) $) 84)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-4205 (((-774) $) 81)) (-3095 (((-1101 |#1|) $ |#1|) 72)) (-2575 (((-112) $) NIL)) (-3078 (((-112) $) 88)) (-3080 (((-774) $) 85)) (-3091 (((-1101 |#1|) $) 61)) (-2936 (($ $ $) NIL (-3962 (|has| |#1| (-371)) (|has| |#1| (-853))))) (-3262 (($ $ $) NIL (-3962 (|has| |#1| (-371)) (|has| |#1| (-853))))) (-3084 (((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $) 56)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 131)) (-3666 (((-1124) $) NIL)) (-3077 (((-1101 |#1|) $) 139 (|has| |#1| (-371)))) (-3079 (((-112) $) 82)) (-4201 ((|#1| $ |#1|) 70)) (-4233 ((|#1| $ |#1|) 133)) (-4382 (((-774) $) 63)) (-3086 (($ (-644 (-644 |#1|))) 118)) (-3081 (((-975) $) 76)) (-3087 (($ (-644 |#1|)) 33)) (-3412 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-3083 (($ (-644 (-644 |#1|))) 58)) (-3082 (($ (-644 (-644 |#1|))) 123)) (-3076 (($ (-644 |#1|)) 135)) (-4380 (((-866) $) 117) (($ (-644 (-644 |#1|))) 91) (($ (-644 |#1|)) 92)) (-3664 (((-112) $ $) NIL)) (-3069 (($) 24 T CONST)) (-2968 (((-112) $ $) NIL (-3962 (|has| |#1| (-371)) (|has| |#1| (-853))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#1| (-371)) (|has| |#1| (-853))))) (-3457 (((-112) $ $) 68)) (-3089 (((-112) $ $) NIL (-3962 (|has| |#1| (-371)) (|has| |#1| (-853))))) (-3090 (((-112) $ $) 90)) (-4383 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ $ $) 34))) +(((-906 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3084 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -3083 ($ (-644 (-644 |#1|)))) (-15 -4380 ($ (-644 (-644 |#1|)))) (-15 -4380 ($ (-644 |#1|))) (-15 -3082 ($ (-644 (-644 |#1|)))) (-15 -4382 ((-774) $)) (-15 -3091 ((-1101 |#1|) $)) (-15 -3081 ((-975) $)) (-15 -4205 ((-774) $)) (-15 -3080 ((-774) $)) (-15 -4057 ((-550) $)) (-15 -3079 ((-112) $)) (-15 -3078 ((-112) $)) (-15 -3312 ((-644 $) (-644 $))) (IF (|has| |#1| (-371)) (-15 -3077 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-549)) (-15 -3076 ($ (-644 |#1|))) (IF (|has| |#1| (-371)) (-15 -3076 ($ (-644 |#1|))) |%noBranch|)))) (-1105)) (T -906)) +((-3084 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-906 *3)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-906 *3)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-906 *3)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-906 *3)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-975)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-906 *3)) (-4 *3 (-371)) (-4 *3 (-1105)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-906 *3))))) +(-13 (-908 |#1|) (-10 -8 (-15 -3084 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -3083 ($ (-644 (-644 |#1|)))) (-15 -4380 ($ (-644 (-644 |#1|)))) (-15 -4380 ($ (-644 |#1|))) (-15 -3082 ($ (-644 (-644 |#1|)))) (-15 -4382 ((-774) $)) (-15 -3091 ((-1101 |#1|) $)) (-15 -3081 ((-975) $)) (-15 -4205 ((-774) $)) (-15 -3080 ((-774) $)) (-15 -4057 ((-550) $)) (-15 -3079 ((-112) $)) (-15 -3078 ((-112) $)) (-15 -3312 ((-644 $) (-644 $))) (IF (|has| |#1| (-371)) (-15 -3077 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-549)) (-15 -3076 ($ (-644 |#1|))) (IF (|has| |#1| (-371)) (-15 -3076 ($ (-644 |#1|))) |%noBranch|)))) +((-3085 ((|#2| (-1146 |#1| |#2|)) 50))) +(((-907 |#1| |#2|) (-10 -7 (-15 -3085 (|#2| (-1146 |#1| |#2|)))) (-923) (-13 (-1053) (-10 -7 (-6 (-4429 "*"))))) (T -907)) +((-3085 (*1 *2 *3) (-12 (-5 *3 (-1146 *4 *2)) (-14 *4 (-923)) (-4 *2 (-13 (-1053) (-10 -7 (-6 (-4429 "*"))))) (-5 *1 (-907 *4 *2))))) +(-10 -7 (-15 -3085 (|#2| (-1146 |#1| |#2|)))) +((-2970 (((-112) $ $) 7)) (-4158 (($) 19 T CONST)) (-3892 (((-3 $ "failed") $) 16)) (-3095 (((-1101 |#1|) $ |#1|) 33)) (-2575 (((-112) $) 18)) (-2936 (($ $ $) 31 (-3962 (|has| |#1| (-853)) (|has| |#1| (-371))))) (-3262 (($ $ $) 30 (-3962 (|has| |#1| (-853)) (|has| |#1| (-371))))) (-3665 (((-1163) $) 10)) (-2808 (($ $) 25)) (-3666 (((-1124) $) 11)) (-4201 ((|#1| $ |#1|) 35)) (-4233 ((|#1| $ |#1|) 34)) (-3086 (($ (-644 (-644 |#1|))) 36)) (-3087 (($ (-644 |#1|)) 37)) (-3412 (($ $ $) 22)) (-2758 (($ $ $) 21)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3069 (($) 20 T CONST)) (-2968 (((-112) $ $) 28 (-3962 (|has| |#1| (-853)) (|has| |#1| (-371))))) (-2969 (((-112) $ $) 27 (-3962 (|has| |#1| (-853)) (|has| |#1| (-371))))) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 29 (-3962 (|has| |#1| (-853)) (|has| |#1| (-371))))) (-3090 (((-112) $ $) 32)) (-4383 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-774)) 17) (($ $ (-550)) 23)) (* (($ $ $) 15))) +(((-908 |#1|) (-140) (-1105)) (T -908)) +((-3087 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-908 *3)))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-4 *1 (-908 *3)))) (-4201 (*1 *2 *1 *2) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1105)))) (-4233 (*1 *2 *1 *2) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1105)))) (-3095 (*1 *2 *1 *3) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1105)) (-5 *2 (-1101 *3)))) (-3090 (*1 *2 *1 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(-13 (-477) (-10 -8 (-15 -3087 ($ (-644 |t#1|))) (-15 -3086 ($ (-644 (-644 |t#1|)))) (-15 -4201 (|t#1| $ |t#1|)) (-15 -4233 (|t#1| $ |t#1|)) (-15 -3095 ((-1101 |t#1|) $ |t#1|)) (-15 -3090 ((-112) $ $)) (IF (|has| |t#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-853)) |%noBranch|))) +(((-102) . T) ((-616 (-866)) . T) ((-477) . T) ((-729) . T) ((-853) -3962 (|has| |#1| (-853)) (|has| |#1| (-371))) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3097 (((-644 (-644 (-774))) $) 164)) (-3093 (((-644 (-774)) (-906 |#1|) $) 192)) (-3092 (((-644 (-774)) (-906 |#1|) $) 193)) (-3098 (((-644 (-906 |#1|)) $) 153)) (-3397 (((-906 |#1|) $ (-550)) 158) (((-906 |#1|) $) 159)) (-3096 (($ (-644 (-906 |#1|))) 166)) (-4205 (((-774) $) 160)) (-3094 (((-1101 (-1101 |#1|)) $) 190)) (-3095 (((-1101 |#1|) $ |#1|) 181) (((-1101 (-1101 |#1|)) $ (-1101 |#1|)) 201) (((-1101 (-644 |#1|)) $ (-644 |#1|)) 204)) (-3091 (((-1101 |#1|) $) 156)) (-3668 (((-112) (-906 |#1|) $) 141)) (-3665 (((-1163) $) NIL)) (-3088 (((-1276) $) 146) (((-1276) $ (-550) (-550)) 205)) (-3666 (((-1124) $) NIL)) (-3100 (((-644 (-906 |#1|)) $) 147)) (-4233 (((-906 |#1|) $ (-774)) 154)) (-4382 (((-774) $) 161)) (-4380 (((-866) $) 178) (((-644 (-906 |#1|)) $) 28) (($ (-644 (-906 |#1|))) 165)) (-3664 (((-112) $ $) NIL)) (-3099 (((-644 |#1|) $) 163)) (-3457 (((-112) $ $) 198)) (-3089 (((-112) $ $) 196)) (-3090 (((-112) $ $) 195))) +(((-909 |#1|) (-13 (-1105) (-10 -8 (-15 -4380 ((-644 (-906 |#1|)) $)) (-15 -3100 ((-644 (-906 |#1|)) $)) (-15 -4233 ((-906 |#1|) $ (-774))) (-15 -3397 ((-906 |#1|) $ (-550))) (-15 -3397 ((-906 |#1|) $)) (-15 -4205 ((-774) $)) (-15 -4382 ((-774) $)) (-15 -3099 ((-644 |#1|) $)) (-15 -3098 ((-644 (-906 |#1|)) $)) (-15 -3097 ((-644 (-644 (-774))) $)) (-15 -4380 ($ (-644 (-906 |#1|)))) (-15 -3096 ($ (-644 (-906 |#1|)))) (-15 -3095 ((-1101 |#1|) $ |#1|)) (-15 -3094 ((-1101 (-1101 |#1|)) $)) (-15 -3095 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -3095 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -3668 ((-112) (-906 |#1|) $)) (-15 -3093 ((-644 (-774)) (-906 |#1|) $)) (-15 -3092 ((-644 (-774)) (-906 |#1|) $)) (-15 -3091 ((-1101 |#1|) $)) (-15 -3090 ((-112) $ $)) (-15 -3089 ((-112) $ $)) (-15 -3088 ((-1276) $)) (-15 -3088 ((-1276) $ (-550) (-550))))) (-1105)) (T -909)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-906 *4)) (-5 *1 (-909 *4)) (-4 *4 (-1105)))) (-3397 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-906 *4)) (-5 *1 (-909 *4)) (-4 *4 (-1105)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-906 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-774)))) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-644 (-906 *3))) (-4 *3 (-1105)) (-5 *1 (-909 *3)))) (-3096 (*1 *1 *2) (-12 (-5 *2 (-644 (-906 *3))) (-4 *3 (-1105)) (-5 *1 (-909 *3)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3095 (*1 *2 *1 *3) (-12 (-4 *4 (-1105)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-909 *4)) (-5 *3 (-1101 *4)))) (-3095 (*1 *2 *1 *3) (-12 (-4 *4 (-1105)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-909 *4)) (-5 *3 (-644 *4)))) (-3668 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1105)) (-5 *2 (-112)) (-5 *1 (-909 *4)))) (-3093 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1105)) (-5 *2 (-644 (-774))) (-5 *1 (-909 *4)))) (-3092 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1105)) (-5 *2 (-644 (-774))) (-5 *1 (-909 *4)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3090 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3089 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) (-3088 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-909 *4)) (-4 *4 (-1105))))) +(-13 (-1105) (-10 -8 (-15 -4380 ((-644 (-906 |#1|)) $)) (-15 -3100 ((-644 (-906 |#1|)) $)) (-15 -4233 ((-906 |#1|) $ (-774))) (-15 -3397 ((-906 |#1|) $ (-550))) (-15 -3397 ((-906 |#1|) $)) (-15 -4205 ((-774) $)) (-15 -4382 ((-774) $)) (-15 -3099 ((-644 |#1|) $)) (-15 -3098 ((-644 (-906 |#1|)) $)) (-15 -3097 ((-644 (-644 (-774))) $)) (-15 -4380 ($ (-644 (-906 |#1|)))) (-15 -3096 ($ (-644 (-906 |#1|)))) (-15 -3095 ((-1101 |#1|) $ |#1|)) (-15 -3094 ((-1101 (-1101 |#1|)) $)) (-15 -3095 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -3095 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -3668 ((-112) (-906 |#1|) $)) (-15 -3093 ((-644 (-774)) (-906 |#1|) $)) (-15 -3092 ((-644 (-774)) (-906 |#1|) $)) (-15 -3091 ((-1101 |#1|) $)) (-15 -3090 ((-112) $ $)) (-15 -3089 ((-112) $ $)) (-15 -3088 ((-1276) $)) (-15 -3088 ((-1276) $ (-550) (-550))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-4366 (((-112) $) NIL)) (-4363 (((-774)) NIL)) (-3756 (($ $ (-923)) NIL (|has| $ (-371))) (($ $) NIL)) (-1845 (((-1193 (-923) (-774)) (-550)) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 $ "failed") $) NIL)) (-3578 (($ $) NIL)) (-1969 (($ (-1270 $)) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-3238 (($) NIL)) (-1850 (((-112) $) NIL)) (-1943 (($ $) NIL) (($ $ (-774)) NIL)) (-4157 (((-112) $) NIL)) (-4205 (((-835 (-923)) $) NIL) (((-923) $) NIL)) (-2575 (((-112) $) NIL)) (-2193 (($) NIL (|has| $ (-371)))) (-2191 (((-112) $) NIL (|has| $ (-371)))) (-3538 (($ $ (-923)) NIL (|has| $ (-371))) (($ $) NIL)) (-3870 (((-3 $ "failed") $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2194 (((-1175 $) $ (-923)) NIL (|has| $ (-371))) (((-1175 $) $) NIL)) (-2190 (((-923) $) NIL)) (-1774 (((-1175 $) $) NIL (|has| $ (-371)))) (-1773 (((-3 (-1175 $) "failed") $ $) NIL (|has| $ (-371))) (((-1175 $) $) NIL (|has| $ (-371)))) (-1775 (($ $ (-1175 $)) NIL (|has| $ (-371)))) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL T CONST)) (-2565 (($ (-923)) NIL)) (-4365 (((-112) $) NIL)) (-3666 (((-1124) $) NIL)) (-2574 (($) NIL (|has| $ (-371)))) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL)) (-4166 (((-409 $) $) NIL)) (-4364 (((-923)) NIL) (((-835 (-923))) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-1944 (((-3 (-774) "failed") $ $) NIL) (((-774) $) NIL)) (-4345 (((-134)) NIL)) (-4244 (($ $ (-774)) NIL) (($ $) NIL)) (-4382 (((-923) $) NIL) (((-835 (-923)) $) NIL)) (-3607 (((-1175 $)) NIL)) (-1844 (($) NIL)) (-1776 (($) NIL (|has| $ (-371)))) (-3646 (((-692 $) (-1270 $)) NIL) (((-1270 $) $) NIL)) (-4404 (((-550) $) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL)) (-3107 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $) (-923)) NIL) (((-1270 $)) NIL)) (-2242 (((-112) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-4362 (($ $ (-774)) NIL (|has| $ (-371))) (($ $) NIL (|has| $ (-371)))) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-910 |#1|) (-13 (-353) (-331 $) (-617 (-550))) (-923)) (T -910)) +NIL +(-13 (-353) (-331 $) (-617 (-550))) +((-3102 (((-3 (-644 (-1175 |#4|)) "failed") (-644 (-1175 |#4|)) (-1175 |#4|)) 159)) (-3105 ((|#1|) 97)) (-3104 (((-409 (-1175 |#4|)) (-1175 |#4|)) 168)) (-3106 (((-409 (-1175 |#4|)) (-644 |#3|) (-1175 |#4|)) 84)) (-3103 (((-409 (-1175 |#4|)) (-1175 |#4|)) 178)) (-3101 (((-3 (-644 (-1175 |#4|)) "failed") (-644 (-1175 |#4|)) (-1175 |#4|) |#3|) 113))) +(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3102 ((-3 (-644 (-1175 |#4|)) "failed") (-644 (-1175 |#4|)) (-1175 |#4|))) (-15 -3103 ((-409 (-1175 |#4|)) (-1175 |#4|))) (-15 -3104 ((-409 (-1175 |#4|)) (-1175 |#4|))) (-15 -3105 (|#1|)) (-15 -3101 ((-3 (-644 (-1175 |#4|)) "failed") (-644 (-1175 |#4|)) (-1175 |#4|) |#3|)) (-15 -3106 ((-409 (-1175 |#4|)) (-644 |#3|) (-1175 |#4|)))) (-914) (-796) (-853) (-954 |#1| |#2| |#3|)) (T -911)) +((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *7)) (-4 *7 (-853)) (-4 *5 (-914)) (-4 *6 (-796)) (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-409 (-1175 *8))) (-5 *1 (-911 *5 *6 *7 *8)) (-5 *4 (-1175 *8)))) (-3101 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-644 (-1175 *7))) (-5 *3 (-1175 *7)) (-4 *7 (-954 *5 *6 *4)) (-4 *5 (-914)) (-4 *6 (-796)) (-4 *4 (-853)) (-5 *1 (-911 *5 *6 *4 *7)))) (-3105 (*1 *2) (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-914)) (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-954 *2 *3 *4)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-914)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-911 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-914)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-911 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1175 *7))) (-5 *3 (-1175 *7)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-914)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-911 *4 *5 *6 *7))))) +(-10 -7 (-15 -3102 ((-3 (-644 (-1175 |#4|)) "failed") (-644 (-1175 |#4|)) (-1175 |#4|))) (-15 -3103 ((-409 (-1175 |#4|)) (-1175 |#4|))) (-15 -3104 ((-409 (-1175 |#4|)) (-1175 |#4|))) (-15 -3105 (|#1|)) (-15 -3101 ((-3 (-644 (-1175 |#4|)) "failed") (-644 (-1175 |#4|)) (-1175 |#4|) |#3|)) (-15 -3106 ((-409 (-1175 |#4|)) (-644 |#3|) (-1175 |#4|)))) +((-3102 (((-3 (-644 (-1175 |#2|)) "failed") (-644 (-1175 |#2|)) (-1175 |#2|)) 41)) (-3105 ((|#1|) 75)) (-3104 (((-409 (-1175 |#2|)) (-1175 |#2|)) 124)) (-3106 (((-409 (-1175 |#2|)) (-1175 |#2|)) 108)) (-3103 (((-409 (-1175 |#2|)) (-1175 |#2|)) 135))) +(((-912 |#1| |#2|) (-10 -7 (-15 -3102 ((-3 (-644 (-1175 |#2|)) "failed") (-644 (-1175 |#2|)) (-1175 |#2|))) (-15 -3103 ((-409 (-1175 |#2|)) (-1175 |#2|))) (-15 -3104 ((-409 (-1175 |#2|)) (-1175 |#2|))) (-15 -3105 (|#1|)) (-15 -3106 ((-409 (-1175 |#2|)) (-1175 |#2|)))) (-914) (-1246 |#1|)) (T -912)) +((-3106 (*1 *2 *3) (-12 (-4 *4 (-914)) (-4 *5 (-1246 *4)) (-5 *2 (-409 (-1175 *5))) (-5 *1 (-912 *4 *5)) (-5 *3 (-1175 *5)))) (-3105 (*1 *2) (-12 (-4 *2 (-914)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1246 *2)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-914)) (-4 *5 (-1246 *4)) (-5 *2 (-409 (-1175 *5))) (-5 *1 (-912 *4 *5)) (-5 *3 (-1175 *5)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-914)) (-4 *5 (-1246 *4)) (-5 *2 (-409 (-1175 *5))) (-5 *1 (-912 *4 *5)) (-5 *3 (-1175 *5)))) (-3102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-914)) (-5 *1 (-912 *4 *5))))) +(-10 -7 (-15 -3102 ((-3 (-644 (-1175 |#2|)) "failed") (-644 (-1175 |#2|)) (-1175 |#2|))) (-15 -3103 ((-409 (-1175 |#2|)) (-1175 |#2|))) (-15 -3104 ((-409 (-1175 |#2|)) (-1175 |#2|))) (-15 -3105 (|#1|)) (-15 -3106 ((-409 (-1175 |#2|)) (-1175 |#2|)))) +((-3109 (((-3 (-644 (-1175 $)) "failed") (-644 (-1175 $)) (-1175 $)) 42)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 18)) (-3107 (((-3 $ "failed") $) 36))) +(((-913 |#1|) (-10 -8 (-15 -3107 ((-3 |#1| "failed") |#1|)) (-15 -3109 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) (-914)) (T -913)) +NIL +(-10 -8 (-15 -3107 ((-3 |#1| "failed") |#1|)) (-15 -3109 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-3112 (((-409 (-1175 $)) (-1175 $)) 66)) (-4208 (($ $) 57)) (-4403 (((-409 $) $) 58)) (-3109 (((-3 (-644 (-1175 $)) "failed") (-644 (-1175 $)) (-1175 $)) 63)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-4157 (((-112) $) 59)) (-2575 (((-112) $) 35)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3110 (((-409 (-1175 $)) (-1175 $)) 64)) (-3111 (((-409 (-1175 $)) (-1175 $)) 65)) (-4166 (((-409 $) $) 56)) (-3891 (((-3 $ "failed") $ $) 48)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) 62 (|has| $ (-145)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3107 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-914) (-140)) (T -914)) +((-3113 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-914)))) (-3112 (*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-409 (-1175 *1))) (-5 *3 (-1175 *1)))) (-3111 (*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-409 (-1175 *1))) (-5 *3 (-1175 *1)))) (-3110 (*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-409 (-1175 *1))) (-5 *3 (-1175 *1)))) (-3109 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1175 *1))) (-5 *3 (-1175 *1)) (-4 *1 (-914)))) (-3108 (*1 *2 *3) (|partial| -12 (-5 *3 (-692 *1)) (-4 *1 (-145)) (-4 *1 (-914)) (-5 *2 (-1270 *1)))) (-3107 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-914))))) +(-13 (-1225) (-10 -8 (-15 -3112 ((-409 (-1175 $)) (-1175 $))) (-15 -3111 ((-409 (-1175 $)) (-1175 $))) (-15 -3110 ((-409 (-1175 $)) (-1175 $))) (-15 -3113 ((-1175 $) (-1175 $) (-1175 $))) (-15 -3109 ((-3 (-644 (-1175 $)) "failed") (-644 (-1175 $)) (-1175 $))) (IF (|has| $ (-145)) (PROGN (-15 -3108 ((-3 (-1270 $) "failed") (-692 $))) (-15 -3107 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-456) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-3115 (((-3 (-2 (|:| -4205 (-774)) (|:| -2548 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 77)) (-3114 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-4205 (((-3 (-774) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) +(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4205 ((-3 (-774) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -3114 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3115 ((-3 (-2 (|:| -4205 (-774)) (|:| -2548 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-561) (-1042 (-550))) (-425 |#1|) (-1246 |#2|) (-1246 (-411 |#3|)) (-345 |#2| |#3| |#4|)) (T -915)) +((-3115 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-2 (|:| -4205 (-774)) (|:| -2548 *8))) (-5 *1 (-915 *4 *5 *6 *7 *8)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-112)) (-5 *1 (-915 *4 *5 *6 *7 *8)))) (-4205 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-774)) (-5 *1 (-915 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4205 ((-3 (-774) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -3114 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3115 ((-3 (-2 (|:| -4205 (-774)) (|:| -2548 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) +((-3115 (((-3 (-2 (|:| -4205 (-774)) (|:| -2548 |#3|)) "failed") (-336 (-411 (-550)) |#1| |#2| |#3|)) 64)) (-3114 (((-112) (-336 (-411 (-550)) |#1| |#2| |#3|)) 16)) (-4205 (((-3 (-774) "failed") (-336 (-411 (-550)) |#1| |#2| |#3|)) 14))) +(((-916 |#1| |#2| |#3|) (-10 -7 (-15 -4205 ((-3 (-774) "failed") (-336 (-411 (-550)) |#1| |#2| |#3|))) (-15 -3114 ((-112) (-336 (-411 (-550)) |#1| |#2| |#3|))) (-15 -3115 ((-3 (-2 (|:| -4205 (-774)) (|:| -2548 |#3|)) "failed") (-336 (-411 (-550)) |#1| |#2| |#3|)))) (-1246 (-411 (-550))) (-1246 (-411 |#1|)) (-345 (-411 (-550)) |#1| |#2|)) (T -916)) +((-3115 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-411 (-550)) *4 *5 *6)) (-4 *4 (-1246 (-411 (-550)))) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 (-411 (-550)) *4 *5)) (-5 *2 (-2 (|:| -4205 (-774)) (|:| -2548 *6))) (-5 *1 (-916 *4 *5 *6)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-336 (-411 (-550)) *4 *5 *6)) (-4 *4 (-1246 (-411 (-550)))) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 (-411 (-550)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-916 *4 *5 *6)))) (-4205 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-411 (-550)) *4 *5 *6)) (-4 *4 (-1246 (-411 (-550)))) (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 (-411 (-550)) *4 *5)) (-5 *2 (-774)) (-5 *1 (-916 *4 *5 *6))))) +(-10 -7 (-15 -4205 ((-3 (-774) "failed") (-336 (-411 (-550)) |#1| |#2| |#3|))) (-15 -3114 ((-112) (-336 (-411 (-550)) |#1| |#2| |#3|))) (-15 -3115 ((-3 (-2 (|:| -4205 (-774)) (|:| -2548 |#3|)) "failed") (-336 (-411 (-550)) |#1| |#2| |#3|)))) +((-3120 ((|#2| |#2|) 26)) (-3118 (((-550) (-644 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) 15)) (-3116 (((-923) (-550)) 38)) (-3119 (((-550) |#2|) 45)) (-3117 (((-550) |#2|) 21) (((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|) 20))) +(((-917 |#1| |#2|) (-10 -7 (-15 -3116 ((-923) (-550))) (-15 -3117 ((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|)) (-15 -3117 ((-550) |#2|)) (-15 -3118 ((-550) (-644 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))))) (-15 -3119 ((-550) |#2|)) (-15 -3120 (|#2| |#2|))) (-1246 (-411 (-550))) (-1246 (-411 |#1|))) (T -917)) +((-3120 (*1 *2 *2) (-12 (-4 *3 (-1246 (-411 (-550)))) (-5 *1 (-917 *3 *2)) (-4 *2 (-1246 (-411 *3))))) (-3119 (*1 *2 *3) (-12 (-4 *4 (-1246 (-411 *2))) (-5 *2 (-550)) (-5 *1 (-917 *4 *3)) (-4 *3 (-1246 (-411 *4))))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) (-4 *4 (-1246 (-411 *2))) (-5 *2 (-550)) (-5 *1 (-917 *4 *5)) (-4 *5 (-1246 (-411 *4))))) (-3117 (*1 *2 *3) (-12 (-4 *4 (-1246 (-411 *2))) (-5 *2 (-550)) (-5 *1 (-917 *4 *3)) (-4 *3 (-1246 (-411 *4))))) (-3117 (*1 *2 *3) (-12 (-4 *3 (-1246 (-411 (-550)))) (-5 *2 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))) (-5 *1 (-917 *3 *4)) (-4 *4 (-1246 (-411 *3))))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-550)) (-4 *4 (-1246 (-411 *3))) (-5 *2 (-923)) (-5 *1 (-917 *4 *5)) (-4 *5 (-1246 (-411 *4)))))) +(-10 -7 (-15 -3116 ((-923) (-550))) (-15 -3117 ((-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))) |#1|)) (-15 -3117 ((-550) |#2|)) (-15 -3118 ((-550) (-644 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))))) (-15 -3119 ((-550) |#2|)) (-15 -3120 (|#2| |#2|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 ((|#1| $) 100)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-2966 (($ $ $) NIL)) (-3892 (((-3 $ "failed") $) 94)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3128 (($ |#1| (-409 |#1|)) 92)) (-3122 (((-1175 |#1|) |#1| |#1|) 53)) (-3121 (($ $) 61)) (-2575 (((-112) $) NIL)) (-3123 (((-550) $) 97)) (-3124 (($ $ (-550)) 99)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3125 ((|#1| $) 96)) (-3126 (((-409 |#1|) $) 95)) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) 93)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3127 (($ $) 50)) (-4380 (((-866) $) 124) (($ (-550)) 73) (($ $) NIL) (($ (-411 (-550))) NIL) (($ |#1|) 41) (((-411 |#1|) $) 78) (($ (-411 (-409 |#1|))) 86)) (-3532 (((-774)) 71 T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) 26 T CONST)) (-3069 (($) 15 T CONST)) (-3457 (((-112) $ $) 87)) (-4383 (($ $ $) NIL)) (-4271 (($ $) 108) (($ $ $) NIL)) (-4273 (($ $ $) 49)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 110) (($ $ $) 48) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-918 |#1|) (-13 (-366) (-38 |#1|) (-10 -8 (-15 -4380 ((-411 |#1|) $)) (-15 -4380 ($ (-411 (-409 |#1|)))) (-15 -3127 ($ $)) (-15 -3126 ((-409 |#1|) $)) (-15 -3125 (|#1| $)) (-15 -3124 ($ $ (-550))) (-15 -3123 ((-550) $)) (-15 -3122 ((-1175 |#1|) |#1| |#1|)) (-15 -3121 ($ $)) (-15 -3128 ($ |#1| (-409 |#1|))) (-15 -3535 (|#1| $)))) (-309)) (T -918)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-918 *3)) (-4 *3 (-309)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-411 (-409 *3))) (-4 *3 (-309)) (-5 *1 (-918 *3)))) (-3127 (*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-918 *3)) (-4 *3 (-309)))) (-3125 (*1 *2 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309)))) (-3124 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-918 *3)) (-4 *3 (-309)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-918 *3)) (-4 *3 (-309)))) (-3122 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-918 *3)) (-4 *3 (-309)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309)))) (-3128 (*1 *1 *2 *3) (-12 (-5 *3 (-409 *2)) (-4 *2 (-309)) (-5 *1 (-918 *2)))) (-3535 (*1 *2 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309))))) +(-13 (-366) (-38 |#1|) (-10 -8 (-15 -4380 ((-411 |#1|) $)) (-15 -4380 ($ (-411 (-409 |#1|)))) (-15 -3127 ($ $)) (-15 -3126 ((-409 |#1|) $)) (-15 -3125 (|#1| $)) (-15 -3124 ($ $ (-550))) (-15 -3123 ((-550) $)) (-15 -3122 ((-1175 |#1|) |#1| |#1|)) (-15 -3121 ($ $)) (-15 -3128 ($ |#1| (-409 |#1|))) (-15 -3535 (|#1| $)))) +((-3128 (((-51) (-950 |#1|) (-409 (-950 |#1|)) (-1181)) 17) (((-51) (-411 (-950 |#1|)) (-1181)) 18))) +(((-919 |#1|) (-10 -7 (-15 -3128 ((-51) (-411 (-950 |#1|)) (-1181))) (-15 -3128 ((-51) (-950 |#1|) (-409 (-950 |#1|)) (-1181)))) (-13 (-309) (-147))) (T -919)) +((-3128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-409 (-950 *6))) (-5 *5 (-1181)) (-5 *3 (-950 *6)) (-4 *6 (-13 (-309) (-147))) (-5 *2 (-51)) (-5 *1 (-919 *6)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-51)) (-5 *1 (-919 *5))))) +(-10 -7 (-15 -3128 ((-51) (-411 (-950 |#1|)) (-1181))) (-15 -3128 ((-51) (-950 |#1|) (-409 (-950 |#1|)) (-1181)))) +((-3129 ((|#4| (-644 |#4|)) 149) (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-3566 (((-1175 |#4|) (-644 (-1175 |#4|))) 142) (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 63) ((|#4| (-644 |#4|)) 71) ((|#4| |#4| |#4|) 109))) +(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3566 (|#4| |#4| |#4|)) (-15 -3566 (|#4| (-644 |#4|))) (-15 -3566 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3566 ((-1175 |#4|) (-644 (-1175 |#4|)))) (-15 -3129 (|#4| |#4| |#4|)) (-15 -3129 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3129 (|#4| (-644 |#4|)))) (-796) (-853) (-309) (-954 |#3| |#1| |#2|)) (T -920)) +((-3129 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *6 *4 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)))) (-3129 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-954 *5 *3 *4)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *6)))) (-3129 (*1 *2 *2 *2) (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-954 *5 *3 *4)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175 *7))) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-1175 *7)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) (-3566 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-954 *5 *3 *4)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *6)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *6 *4 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)))) (-3566 (*1 *2 *2 *2) (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-954 *5 *3 *4))))) +(-10 -7 (-15 -3566 (|#4| |#4| |#4|)) (-15 -3566 (|#4| (-644 |#4|))) (-15 -3566 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3566 ((-1175 |#4|) (-644 (-1175 |#4|)))) (-15 -3129 (|#4| |#4| |#4|)) (-15 -3129 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3129 (|#4| (-644 |#4|)))) +((-3142 (((-909 (-550)) (-975)) 38) (((-909 (-550)) (-644 (-550))) 35)) (-3130 (((-909 (-550)) (-644 (-550))) 70) (((-909 (-550)) (-923)) 71)) (-3141 (((-909 (-550))) 39)) (-3139 (((-909 (-550))) 55) (((-909 (-550)) (-644 (-550))) 54)) (-3138 (((-909 (-550))) 53) (((-909 (-550)) (-644 (-550))) 52)) (-3137 (((-909 (-550))) 51) (((-909 (-550)) (-644 (-550))) 50)) (-3136 (((-909 (-550))) 49) (((-909 (-550)) (-644 (-550))) 48)) (-3135 (((-909 (-550))) 47) (((-909 (-550)) (-644 (-550))) 46)) (-3140 (((-909 (-550))) 57) (((-909 (-550)) (-644 (-550))) 56)) (-3134 (((-909 (-550)) (-644 (-550))) 75) (((-909 (-550)) (-923)) 77)) (-3133 (((-909 (-550)) (-644 (-550))) 72) (((-909 (-550)) (-923)) 73)) (-3131 (((-909 (-550)) (-644 (-550))) 68) (((-909 (-550)) (-923)) 69)) (-3132 (((-909 (-550)) (-644 (-923))) 60))) +(((-921) (-10 -7 (-15 -3130 ((-909 (-550)) (-923))) (-15 -3130 ((-909 (-550)) (-644 (-550)))) (-15 -3131 ((-909 (-550)) (-923))) (-15 -3131 ((-909 (-550)) (-644 (-550)))) (-15 -3132 ((-909 (-550)) (-644 (-923)))) (-15 -3133 ((-909 (-550)) (-923))) (-15 -3133 ((-909 (-550)) (-644 (-550)))) (-15 -3134 ((-909 (-550)) (-923))) (-15 -3134 ((-909 (-550)) (-644 (-550)))) (-15 -3135 ((-909 (-550)) (-644 (-550)))) (-15 -3135 ((-909 (-550)))) (-15 -3136 ((-909 (-550)) (-644 (-550)))) (-15 -3136 ((-909 (-550)))) (-15 -3137 ((-909 (-550)) (-644 (-550)))) (-15 -3137 ((-909 (-550)))) (-15 -3138 ((-909 (-550)) (-644 (-550)))) (-15 -3138 ((-909 (-550)))) (-15 -3139 ((-909 (-550)) (-644 (-550)))) (-15 -3139 ((-909 (-550)))) (-15 -3140 ((-909 (-550)) (-644 (-550)))) (-15 -3140 ((-909 (-550)))) (-15 -3141 ((-909 (-550)))) (-15 -3142 ((-909 (-550)) (-644 (-550)))) (-15 -3142 ((-909 (-550)) (-975))))) (T -921)) +((-3142 (*1 *2 *3) (-12 (-5 *3 (-975)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3141 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3140 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3139 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3138 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3137 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3136 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3135 (*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-644 (-923))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(-10 -7 (-15 -3130 ((-909 (-550)) (-923))) (-15 -3130 ((-909 (-550)) (-644 (-550)))) (-15 -3131 ((-909 (-550)) (-923))) (-15 -3131 ((-909 (-550)) (-644 (-550)))) (-15 -3132 ((-909 (-550)) (-644 (-923)))) (-15 -3133 ((-909 (-550)) (-923))) (-15 -3133 ((-909 (-550)) (-644 (-550)))) (-15 -3134 ((-909 (-550)) (-923))) (-15 -3134 ((-909 (-550)) (-644 (-550)))) (-15 -3135 ((-909 (-550)) (-644 (-550)))) (-15 -3135 ((-909 (-550)))) (-15 -3136 ((-909 (-550)) (-644 (-550)))) (-15 -3136 ((-909 (-550)))) (-15 -3137 ((-909 (-550)) (-644 (-550)))) (-15 -3137 ((-909 (-550)))) (-15 -3138 ((-909 (-550)) (-644 (-550)))) (-15 -3138 ((-909 (-550)))) (-15 -3139 ((-909 (-550)) (-644 (-550)))) (-15 -3139 ((-909 (-550)))) (-15 -3140 ((-909 (-550)) (-644 (-550)))) (-15 -3140 ((-909 (-550)))) (-15 -3141 ((-909 (-550)))) (-15 -3142 ((-909 (-550)) (-644 (-550)))) (-15 -3142 ((-909 (-550)) (-975)))) +((-3144 (((-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181))) 14)) (-3143 (((-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181))) 13))) +(((-922 |#1|) (-10 -7 (-15 -3143 ((-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -3144 ((-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181))))) (-456)) (T -922)) +((-3144 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-950 *4))) (-5 *3 (-644 (-1181))) (-4 *4 (-456)) (-5 *1 (-922 *4)))) (-3143 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-950 *4))) (-5 *3 (-644 (-1181))) (-4 *4 (-456)) (-5 *1 (-922 *4))))) +(-10 -7 (-15 -3143 ((-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -3144 ((-644 (-950 |#1|)) (-644 (-950 |#1|)) (-644 (-1181))))) +((-2970 (((-112) $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3566 (($ $ $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3069 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-774)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ $ $) NIL))) +(((-923) (-13 (-797) (-729) (-10 -8 (-15 -3566 ($ $ $)) (-6 (-4429 "*"))))) (T -923)) +((-3566 (*1 *1 *1 *1) (-5 *1 (-923)))) +(-13 (-797) (-729) (-10 -8 (-15 -3566 ($ $ $)) (-6 (-4429 "*")))) ((|NonNegativeInteger|) (> |#1| 0)) -((-4378 (((-315 |#1|) (-480)) 16))) -(((-923 |#1|) (-10 -7 (-15 -4378 ((-315 |#1|) (-480)))) (-560)) (T -923)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-315 *4)) (-5 *1 (-923 *4)) (-4 *4 (-560))))) -(-10 -7 (-15 -4378 ((-315 |#1|) (-480)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-924) (-140)) (T -924)) -((-3144 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-2 (|:| -4386 (-643 *1)) (|:| -2572 *1))) (-5 *3 (-643 *1)))) (-3143 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-924))))) -(-13 (-455) (-10 -8 (-15 -3144 ((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $))) (-15 -3143 ((-3 (-643 $) "failed") (-643 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-3509 (((-1174 |#2|) (-643 |#2|) (-643 |#2|)) 17) (((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-643 |#2|) (-643 |#2|)) 13))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3509 ((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-643 |#2|) (-643 |#2|))) (-15 -3509 ((-1174 |#2|) (-643 |#2|) (-643 |#2|)))) (-1180) (-365)) (T -925)) -((-3509 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-1180)))) (-3509 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1238 *4 *5)) (-5 *3 (-643 *5)) (-14 *4 (-1180)) (-4 *5 (-365)) (-5 *1 (-925 *4 *5))))) -(-10 -7 (-15 -3509 ((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-643 |#2|) (-643 |#2|))) (-15 -3509 ((-1174 |#2|) (-643 |#2|) (-643 |#2|)))) -((-3145 ((|#2| (-643 |#1|) (-643 |#1|)) 29))) -(((-926 |#1| |#2|) (-10 -7 (-15 -3145 (|#2| (-643 |#1|) (-643 |#1|)))) (-365) (-1245 |#1|)) (T -926)) -((-3145 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) (-5 *1 (-926 *4 *2))))) -(-10 -7 (-15 -3145 (|#2| (-643 |#1|) (-643 |#1|)))) -((-3147 (((-549) (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162)) 177)) (-3166 ((|#4| |#4|) 196)) (-3151 (((-643 (-410 (-949 |#1|))) (-643 (-1180))) 149)) (-3165 (((-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-643 (-643 |#4|)) (-773) (-773) (-549)) 88)) (-3155 (((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-643 |#4|)) 69)) (-3164 (((-691 |#4|) (-691 |#4|) (-643 |#4|)) 65)) (-3148 (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162)) 189)) (-3146 (((-549) (-691 |#4|) (-922) (-1162)) 169) (((-549) (-691 |#4|) (-643 (-1180)) (-922) (-1162)) 168) (((-549) (-691 |#4|) (-643 |#4|) (-922) (-1162)) 167) (((-549) (-691 |#4|) (-1162)) 157) (((-549) (-691 |#4|) (-643 (-1180)) (-1162)) 156) (((-549) (-691 |#4|) (-643 |#4|) (-1162)) 155) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-922)) 154) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)) (-922)) 153) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|) (-922)) 152) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|)) 151) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180))) 150) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|)) 146)) (-3152 ((|#4| (-949 |#1|)) 80)) (-3162 (((-112) (-643 |#4|) (-643 (-643 |#4|))) 193)) (-3161 (((-643 (-643 (-549))) (-549) (-549)) 162)) (-3160 (((-643 (-643 |#4|)) (-643 (-643 |#4|))) 107)) (-3159 (((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|))))) 102)) (-3158 (((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|))))) 101)) (-3167 (((-112) (-643 (-949 |#1|))) 19) (((-112) (-643 |#4|)) 15)) (-3153 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-643 |#4|)) (|:| |n0| (-643 |#4|))) (-643 |#4|) (-643 |#4|)) 84)) (-3157 (((-643 |#4|) |#4|) 57)) (-3150 (((-643 (-410 (-949 |#1|))) (-643 |#4|)) 145) (((-691 (-410 (-949 |#1|))) (-691 |#4|)) 66) (((-410 (-949 |#1|)) |#4|) 142)) (-3149 (((-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))))) (|:| |rgsz| (-549))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-773) (-1162) (-549)) 113)) (-3154 (((-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))) (-691 |#4|) (-773)) 100)) (-3163 (((-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-691 |#4|) (-773)) 124)) (-3156 (((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| -1748 (-691 (-410 (-949 |#1|)))) (|:| |vec| (-643 (-410 (-949 |#1|)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) 56))) -(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-922))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-922) (-1162))) (-15 -3147 ((-549) (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3148 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3149 ((-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))))) (|:| |rgsz| (-549))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-773) (-1162) (-549))) (-15 -3150 ((-410 (-949 |#1|)) |#4|)) (-15 -3150 ((-691 (-410 (-949 |#1|))) (-691 |#4|))) (-15 -3150 ((-643 (-410 (-949 |#1|))) (-643 |#4|))) (-15 -3151 ((-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3152 (|#4| (-949 |#1|))) (-15 -3153 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-643 |#4|)) (|:| |n0| (-643 |#4|))) (-643 |#4|) (-643 |#4|))) (-15 -3154 ((-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))) (-691 |#4|) (-773))) (-15 -3155 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-643 |#4|))) (-15 -3156 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| -1748 (-691 (-410 (-949 |#1|)))) (|:| |vec| (-643 (-410 (-949 |#1|)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (-15 -3157 ((-643 |#4|) |#4|)) (-15 -3158 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3159 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3160 ((-643 (-643 |#4|)) (-643 (-643 |#4|)))) (-15 -3161 ((-643 (-643 (-549))) (-549) (-549))) (-15 -3162 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3163 ((-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-691 |#4|) (-773))) (-15 -3164 ((-691 |#4|) (-691 |#4|) (-643 |#4|))) (-15 -3165 ((-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-643 (-643 |#4|)) (-773) (-773) (-549))) (-15 -3166 (|#4| |#4|)) (-15 -3167 ((-112) (-643 |#4|))) (-15 -3167 ((-112) (-643 (-949 |#1|))))) (-13 (-308) (-147)) (-13 (-852) (-616 (-1180))) (-795) (-953 |#1| |#3| |#2|)) (T -927)) -((-3167 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-953 *3 *5 *4)))) (-3165 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-5 *4 (-691 *12)) (-5 *5 (-643 (-410 (-949 *9)))) (-5 *6 (-643 (-643 *12))) (-5 *7 (-773)) (-5 *8 (-549)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-953 *9 *11 *10)) (-4 *10 (-13 (-852) (-616 (-1180)))) (-4 *11 (-795)) (-5 *2 (-2 (|:| |eqzro| (-643 *12)) (|:| |neqzro| (-643 *12)) (|:| |wcond| (-643 (-949 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *9)))) (|:| -2190 (-643 (-1269 (-410 (-949 *9))))))))) (-5 *1 (-927 *9 *10 *11 *12)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *7)) (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-773)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (-5 *1 (-927 *5 *6 *7 *8)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *5 *6 *7 *8)))) (-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-927 *4 *5 *6 *7)) (-5 *3 (-549)) (-4 *7 (-953 *4 *6 *5)))) (-3160 (*1 *2 *2) (-12 (-5 *2 (-643 (-643 *6))) (-4 *6 (-953 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *6)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 *7))))) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 *7))))) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3157 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 *3)) (-5 *1 (-927 *4 *5 *6 *3)) (-4 *3 (-953 *4 *6 *5)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1748 (-691 (-410 (-949 *4)))) (|:| |vec| (-643 (-410 (-949 *4)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3155 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) (-5 *3 (-643 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-953 *4 *6 *5)) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 *8))))) (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-773)))) (-3153 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-4 *7 (-953 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-643 *7)) (|:| |n0| (-643 *7)))) (-5 *1 (-927 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-953 *4 *6 *5)) (-5 *1 (-927 *4 *5 *6 *2)) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-691 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)))) (-3150 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-410 (-949 *4))) (-5 *1 (-927 *4 *5 *6 *3)) (-4 *3 (-953 *4 *6 *5)))) (-3149 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-691 *11)) (-5 *4 (-643 (-410 (-949 *8)))) (-5 *5 (-773)) (-5 *6 (-1162)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-953 *8 *10 *9)) (-4 *9 (-13 (-852) (-616 (-1180)))) (-4 *10 (-795)) (-5 *2 (-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 *11)) (|:| |neqzro| (-643 *11)) (|:| |wcond| (-643 (-949 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *8)))) (|:| -2190 (-643 (-1269 (-410 (-949 *8)))))))))) (|:| |rgsz| (-549)))) (-5 *1 (-927 *8 *9 *10 *11)) (-5 *7 (-549)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) (|:| |wcond| (-643 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *4 (-1162)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-953 *5 *7 *6)) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-922)) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) (-5 *6 (-1162)) (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *7 *8 *9 *10)))) (-3146 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 *10)) (-5 *5 (-922)) (-5 *6 (-1162)) (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *7 *8 *9 *10)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-1162)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 *9)) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-922)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) (|:| |wcond| (-643 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *5 (-922)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) (|:| |wcond| (-643 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) (-5 *1 (-927 *6 *7 *8 *9)) (-5 *4 (-643 *9)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) (|:| |wcond| (-643 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) (-5 *1 (-927 *4 *5 *6 *7)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-643 (-1180))) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) -(-10 -7 (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-922))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-922) (-1162))) (-15 -3147 ((-549) (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3148 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3149 ((-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))))) (|:| |rgsz| (-549))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-773) (-1162) (-549))) (-15 -3150 ((-410 (-949 |#1|)) |#4|)) (-15 -3150 ((-691 (-410 (-949 |#1|))) (-691 |#4|))) (-15 -3150 ((-643 (-410 (-949 |#1|))) (-643 |#4|))) (-15 -3151 ((-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3152 (|#4| (-949 |#1|))) (-15 -3153 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-643 |#4|)) (|:| |n0| (-643 |#4|))) (-643 |#4|) (-643 |#4|))) (-15 -3154 ((-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))) (-691 |#4|) (-773))) (-15 -3155 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-643 |#4|))) (-15 -3156 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| -1748 (-691 (-410 (-949 |#1|)))) (|:| |vec| (-643 (-410 (-949 |#1|)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (-15 -3157 ((-643 |#4|) |#4|)) (-15 -3158 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3159 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3160 ((-643 (-643 |#4|)) (-643 (-643 |#4|)))) (-15 -3161 ((-643 (-643 (-549))) (-549) (-549))) (-15 -3162 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3163 ((-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-691 |#4|) (-773))) (-15 -3164 ((-691 |#4|) (-691 |#4|) (-643 |#4|))) (-15 -3165 ((-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-643 (-643 |#4|)) (-773) (-773) (-549))) (-15 -3166 (|#4| |#4|)) (-15 -3167 ((-112) (-643 |#4|))) (-15 -3167 ((-112) (-643 (-949 |#1|))))) -((-4306 (($ $ (-1092 (-225))) 124) (($ $ (-1092 (-225)) (-1092 (-225))) 125)) (-3297 (((-1092 (-225)) $) 73)) (-3298 (((-1092 (-225)) $) 72)) (-3191 (((-1092 (-225)) $) 74)) (-3172 (((-549) (-549)) 66)) (-3176 (((-549) (-549)) 61)) (-3174 (((-549) (-549)) 64)) (-3170 (((-112) (-112)) 68)) (-3173 (((-549)) 65)) (-3538 (($ $ (-1092 (-225))) 128) (($ $) 129)) (-3193 (($ (-1 (-946 (-225)) (-225)) (-1092 (-225))) 143) (($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 144)) (-3179 (($ (-1 (-225) (-225)) (-1092 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3192 (($ (-1 (-225) (-225)) (-1092 (-225))) 139) (($ (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225))) 140) (($ (-643 (-1 (-225) (-225))) (-1092 (-225))) 148) (($ (-643 (-1 (-225) (-225))) (-1092 (-225)) (-1092 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 142) (($ $ (-1092 (-225))) 130)) (-3178 (((-112) $) 69)) (-3169 (((-549)) 70)) (-3177 (((-549)) 59)) (-3175 (((-549)) 62)) (-3299 (((-643 (-643 (-946 (-225)))) $) 35)) (-3168 (((-112) (-112)) 71)) (-4378 (((-865) $) 169)) (-3171 (((-112)) 67))) -(((-928) (-13 (-958) (-10 -8 (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -3178 ((-112) $)) (-15 -4306 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3177 ((-549))) (-15 -3176 ((-549) (-549))) (-15 -3175 ((-549))) (-15 -3174 ((-549) (-549))) (-15 -3173 ((-549))) (-15 -3172 ((-549) (-549))) (-15 -3171 ((-112))) (-15 -3170 ((-112) (-112))) (-15 -3169 ((-549))) (-15 -3168 ((-112) (-112)))))) (T -928)) -((-3192 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3193 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3179 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3179 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-4306 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-4306 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3538 (*1 *1 *1) (-5 *1 (-928))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3177 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3175 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3173 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3171 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3169 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(-13 (-958) (-10 -8 (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -3178 ((-112) $)) (-15 -4306 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3177 ((-549))) (-15 -3176 ((-549) (-549))) (-15 -3175 ((-549))) (-15 -3174 ((-549) (-549))) (-15 -3173 ((-549))) (-15 -3172 ((-549) (-549))) (-15 -3171 ((-112))) (-15 -3170 ((-112) (-112))) (-15 -3169 ((-549))) (-15 -3168 ((-112) (-112))))) -((-3179 (((-928) |#1| (-1180)) 17) (((-928) |#1| (-1180) (-1092 (-225))) 21)) (-3192 (((-928) |#1| |#1| (-1180) (-1092 (-225))) 19) (((-928) |#1| (-1180) (-1092 (-225))) 15))) -(((-929 |#1|) (-10 -7 (-15 -3192 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3192 ((-928) |#1| |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180)))) (-616 (-538))) (T -929)) -((-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538))))) (-3179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538))))) (-3192 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538))))) (-3192 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538)))))) -(-10 -7 (-15 -3192 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3192 ((-928) |#1| |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180)))) -((-4306 (($ $ (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 123)) (-3296 (((-1092 (-225)) $) 64)) (-3297 (((-1092 (-225)) $) 63)) (-3298 (((-1092 (-225)) $) 62)) (-3190 (((-643 (-643 (-225))) $) 69)) (-3191 (((-1092 (-225)) $) 65)) (-3184 (((-549) (-549)) 57)) (-3188 (((-549) (-549)) 52)) (-3186 (((-549) (-549)) 55)) (-3182 (((-112) (-112)) 59)) (-3185 (((-549)) 56)) (-3538 (($ $ (-1092 (-225))) 126) (($ $) 127)) (-3193 (($ (-1 (-946 (-225)) (-225)) (-1092 (-225))) 133) (($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 134)) (-3192 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 137) (($ $ (-1092 (-225))) 129)) (-3181 (((-549)) 60)) (-3189 (((-549)) 50)) (-3187 (((-549)) 53)) (-3299 (((-643 (-643 (-946 (-225)))) $) 153)) (-3180 (((-112) (-112)) 61)) (-4378 (((-865) $) 151)) (-3183 (((-112)) 58))) -(((-930) (-13 (-977) (-10 -8 (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3190 ((-643 (-643 (-225))) $)) (-15 -3189 ((-549))) (-15 -3188 ((-549) (-549))) (-15 -3187 ((-549))) (-15 -3186 ((-549) (-549))) (-15 -3185 ((-549))) (-15 -3184 ((-549) (-549))) (-15 -3183 ((-112))) (-15 -3182 ((-112) (-112))) (-15 -3181 ((-549))) (-15 -3180 ((-112) (-112)))))) (T -930)) -((-3193 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3193 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3192 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3192 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-4306 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-3538 (*1 *1 *1) (-5 *1 (-930))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-930)))) (-3189 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3187 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3185 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3183 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930)))) (-3181 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) -(-13 (-977) (-10 -8 (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3190 ((-643 (-643 (-225))) $)) (-15 -3189 ((-549))) (-15 -3188 ((-549) (-549))) (-15 -3187 ((-549))) (-15 -3186 ((-549) (-549))) (-15 -3185 ((-549))) (-15 -3184 ((-549) (-549))) (-15 -3183 ((-112))) (-15 -3182 ((-112) (-112))) (-15 -3181 ((-549))) (-15 -3180 ((-112) (-112))))) -((-3194 (((-643 (-1092 (-225))) (-643 (-643 (-946 (-225))))) 34))) -(((-931) (-10 -7 (-15 -3194 ((-643 (-1092 (-225))) (-643 (-643 (-946 (-225)))))))) (T -931)) -((-3194 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-1092 (-225)))) (-5 *1 (-931))))) -(-10 -7 (-15 -3194 ((-643 (-1092 (-225))) (-643 (-643 (-946 (-225))))))) -((-3196 (((-315 (-549)) (-1180)) 16)) (-3197 (((-315 (-549)) (-1180)) 14)) (-4384 (((-315 (-549)) (-1180)) 12)) (-3195 (((-315 (-549)) (-1180) (-509)) 19))) -(((-932) (-10 -7 (-15 -3195 ((-315 (-549)) (-1180) (-509))) (-15 -4384 ((-315 (-549)) (-1180))) (-15 -3196 ((-315 (-549)) (-1180))) (-15 -3197 ((-315 (-549)) (-1180))))) (T -932)) -((-3197 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-509)) (-5 *2 (-315 (-549))) (-5 *1 (-932))))) -(-10 -7 (-15 -3195 ((-315 (-549)) (-1180) (-509))) (-15 -4384 ((-315 (-549)) (-1180))) (-15 -3196 ((-315 (-549)) (-1180))) (-15 -3197 ((-315 (-549)) (-1180)))) -((-3196 ((|#2| |#2|) 28)) (-3197 ((|#2| |#2|) 29)) (-4384 ((|#2| |#2|) 27)) (-3195 ((|#2| |#2| (-509)) 26))) -(((-933 |#1| |#2|) (-10 -7 (-15 -3195 (|#2| |#2| (-509))) (-15 -4384 (|#2| |#2|)) (-15 -3196 (|#2| |#2|)) (-15 -3197 (|#2| |#2|))) (-1104) (-424 |#1|)) (T -933)) -((-3197 (*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) (-3196 (*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) (-4384 (*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1104)) (-5 *1 (-933 *4 *2)) (-4 *2 (-424 *4))))) -(-10 -7 (-15 -3195 (|#2| |#2| (-509))) (-15 -4384 (|#2| |#2|)) (-15 -3196 (|#2| |#2|)) (-15 -3197 (|#2| |#2|))) -((-3199 (((-891 |#1| |#3|) |#2| (-893 |#1|) (-891 |#1| |#3|)) 25)) (-3198 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3198 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3199 ((-891 |#1| |#3|) |#2| (-893 |#1|) (-891 |#1| |#3|)))) (-1104) (-889 |#1|) (-13 (-1104) (-1041 |#2|))) (T -934)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-13 (-1104) (-1041 *3))) (-4 *3 (-889 *5)) (-5 *1 (-934 *5 *3 *6)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1104) (-1041 *5))) (-4 *5 (-889 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-934 *4 *5 *6))))) -(-10 -7 (-15 -3198 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3199 ((-891 |#1| |#3|) |#2| (-893 |#1|) (-891 |#1| |#3|)))) -((-3199 (((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)) 30))) -(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-1104) (-13 (-560) (-889 |#1|)) (-13 (-424 |#2|) (-616 (-893 |#1|)) (-889 |#1|) (-1041 (-613 $)))) (T -935)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-13 (-424 *6) (-616 *4) (-889 *5) (-1041 (-613 $)))) (-5 *4 (-893 *5)) (-4 *6 (-13 (-560) (-889 *5))) (-5 *1 (-935 *5 *6 *3))))) -(-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) -((-3199 (((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|)) 13))) -(((-936 |#1|) (-10 -7 (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|)))) (-548)) (T -936)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 (-549) *3)) (-5 *4 (-893 (-549))) (-4 *3 (-548)) (-5 *1 (-936 *3))))) -(-10 -7 (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|)))) -((-3199 (((-891 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-891 |#1| |#2|)) 57))) -(((-937 |#1| |#2|) (-10 -7 (-15 -3199 ((-891 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-891 |#1| |#2|)))) (-1104) (-13 (-1104) (-1041 (-613 $)) (-616 (-893 |#1|)) (-889 |#1|))) (T -937)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1104)) (-4 *6 (-13 (-1104) (-1041 (-613 $)) (-616 *4) (-889 *5))) (-5 *4 (-893 *5)) (-5 *1 (-937 *5 *6))))) -(-10 -7 (-15 -3199 ((-891 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-891 |#1| |#2|)))) -((-3199 (((-888 |#1| |#2| |#3|) |#3| (-893 |#1|) (-888 |#1| |#2| |#3|)) 17))) -(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-888 |#1| |#2| |#3|) |#3| (-893 |#1|) (-888 |#1| |#2| |#3|)))) (-1104) (-889 |#1|) (-668 |#2|)) (T -938)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-888 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-889 *5)) (-4 *3 (-668 *6)) (-5 *1 (-938 *5 *6 *3))))) -(-10 -7 (-15 -3199 ((-888 |#1| |#2| |#3|) |#3| (-893 |#1|) (-888 |#1| |#2| |#3|)))) -((-3199 (((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|)) 17 (|has| |#3| (-889 |#1|))) (((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-893 |#1|) (-891 |#1| |#5|))) 16))) -(((-939 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-893 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-889 |#1|)) (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|))) |%noBranch|)) (-1104) (-795) (-852) (-13 (-1052) (-889 |#1|)) (-13 (-953 |#4| |#2| |#3|) (-616 (-893 |#1|)))) (T -939)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-13 (-953 *8 *6 *7) (-616 *4))) (-5 *4 (-893 *5)) (-4 *7 (-889 *5)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-13 (-1052) (-889 *5))) (-5 *1 (-939 *5 *6 *7 *8 *3)))) (-3199 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-893 *6) (-891 *6 *3))) (-4 *8 (-852)) (-5 *2 (-891 *6 *3)) (-5 *4 (-893 *6)) (-4 *6 (-1104)) (-4 *3 (-13 (-953 *9 *7 *8) (-616 *4))) (-4 *7 (-795)) (-4 *9 (-13 (-1052) (-889 *6))) (-5 *1 (-939 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-893 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-889 |#1|)) (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|))) |%noBranch|)) -((-3629 (((-315 (-549)) (-1180) (-643 (-1 (-112) |#1|))) 18) (((-315 (-549)) (-1180) (-1 (-112) |#1|)) 15))) -(((-940 |#1|) (-10 -7 (-15 -3629 ((-315 (-549)) (-1180) (-1 (-112) |#1|))) (-15 -3629 ((-315 (-549)) (-1180) (-643 (-1 (-112) |#1|))))) (-1219)) (T -940)) -((-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) (-5 *2 (-315 (-549))) (-5 *1 (-940 *5)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) (-5 *2 (-315 (-549))) (-5 *1 (-940 *5))))) -(-10 -7 (-15 -3629 ((-315 (-549)) (-1180) (-1 (-112) |#1|))) (-15 -3629 ((-315 (-549)) (-1180) (-643 (-1 (-112) |#1|))))) -((-3629 ((|#2| |#2| (-643 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3629 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3629 (|#2| |#2| (-643 (-1 (-112) |#3|))))) (-1104) (-424 |#1|) (-1219)) (T -941)) -((-3629 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1104)) (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4)))) (-3629 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1104)) (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4))))) -(-10 -7 (-15 -3629 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3629 (|#2| |#2| (-643 (-1 (-112) |#3|))))) -((-3199 (((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)) 25))) -(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-1104) (-13 (-560) (-889 |#1|) (-616 (-893 |#1|))) (-994 |#2|)) (T -942)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-994 *6)) (-4 *6 (-13 (-560) (-889 *5) (-616 *4))) (-5 *4 (-893 *5)) (-5 *1 (-942 *5 *6 *3))))) -(-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) -((-3199 (((-891 |#1| (-1180)) (-1180) (-893 |#1|) (-891 |#1| (-1180))) 18))) -(((-943 |#1|) (-10 -7 (-15 -3199 ((-891 |#1| (-1180)) (-1180) (-893 |#1|) (-891 |#1| (-1180))))) (-1104)) (T -943)) -((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 (-1180))) (-5 *3 (-1180)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-5 *1 (-943 *5))))) -(-10 -7 (-15 -3199 ((-891 |#1| (-1180)) (-1180) (-893 |#1|) (-891 |#1| (-1180))))) -((-3200 (((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) 34)) (-3199 (((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-1 |#3| (-643 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) 33))) -(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-1 |#3| (-643 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-15 -3200 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))))) (-1104) (-1052) (-13 (-1052) (-616 (-893 |#1|)) (-1041 |#2|))) (T -944)) -((-3200 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-893 *6))) (-5 *5 (-1 (-891 *6 *8) *8 (-893 *6) (-891 *6 *8))) (-4 *6 (-1104)) (-4 *8 (-13 (-1052) (-616 (-893 *6)) (-1041 *7))) (-5 *2 (-891 *6 *8)) (-4 *7 (-1052)) (-5 *1 (-944 *6 *7 *8)))) (-3199 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-643 (-893 *7))) (-5 *5 (-1 *9 (-643 *9))) (-5 *6 (-1 (-891 *7 *9) *9 (-893 *7) (-891 *7 *9))) (-4 *7 (-1104)) (-4 *9 (-13 (-1052) (-616 (-893 *7)) (-1041 *8))) (-5 *2 (-891 *7 *9)) (-5 *3 (-643 *9)) (-4 *8 (-1052)) (-5 *1 (-944 *7 *8 *9))))) -(-10 -7 (-15 -3199 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-1 |#3| (-643 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-15 -3200 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))))) -((-3208 (((-1174 (-410 (-549))) (-549)) 81)) (-3207 (((-1174 (-549)) (-549)) 84)) (-3758 (((-1174 (-549)) (-549)) 78)) (-3206 (((-549) (-1174 (-549))) 74)) (-3205 (((-1174 (-410 (-549))) (-549)) 65)) (-3204 (((-1174 (-549)) (-549)) 49)) (-3203 (((-1174 (-549)) (-549)) 86)) (-3202 (((-1174 (-549)) (-549)) 85)) (-3201 (((-1174 (-410 (-549))) (-549)) 67))) -(((-945) (-10 -7 (-15 -3201 ((-1174 (-410 (-549))) (-549))) (-15 -3202 ((-1174 (-549)) (-549))) (-15 -3203 ((-1174 (-549)) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -3205 ((-1174 (-410 (-549))) (-549))) (-15 -3206 ((-549) (-1174 (-549)))) (-15 -3758 ((-1174 (-549)) (-549))) (-15 -3207 ((-1174 (-549)) (-549))) (-15 -3208 ((-1174 (-410 (-549))) (-549))))) (T -945)) -((-3208 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3207 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3758 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-549)) (-5 *1 (-945)))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3202 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) -(-10 -7 (-15 -3201 ((-1174 (-410 (-549))) (-549))) (-15 -3202 ((-1174 (-549)) (-549))) (-15 -3203 ((-1174 (-549)) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -3205 ((-1174 (-410 (-549))) (-549))) (-15 -3206 ((-549) (-1174 (-549)))) (-15 -3758 ((-1174 (-549)) (-549))) (-15 -3207 ((-1174 (-549)) (-549))) (-15 -3208 ((-1174 (-410 (-549))) (-549)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773)) NIL (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-4138 (($ (-643 |#1|)) 9)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) NIL (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4264 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-4148 (((-112) $ (-773)) NIL)) (-4265 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-4200 (($ $ (-643 |#1|)) 25)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 18) (($ $ (-1236 (-549))) NIL)) (-4268 ((|#1| $ $) NIL (|has| |#1| (-1052)))) (-4343 (((-922) $) 13)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4266 (($ $ $) 23)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538)))) (($ (-643 |#1|)) 14)) (-3953 (($ (-643 |#1|)) NIL)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4271 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-728))) (($ $ |#1|) NIL (|has| |#1| (-728)))) (-4389 (((-773) $) 11 (|has| $ (-6 -4425))))) -(((-946 |#1|) (-983 |#1|) (-1052)) (T -946)) -NIL -(-983 |#1|) -((-3211 (((-484 |#1| |#2|) (-949 |#2|)) 22)) (-3214 (((-247 |#1| |#2|) (-949 |#2|)) 35)) (-3212 (((-949 |#2|) (-484 |#1| |#2|)) 27)) (-3210 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-3213 (((-949 |#2|) (-247 |#1| |#2|)) 32)) (-3209 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-947 |#1| |#2|) (-10 -7 (-15 -3209 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3210 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3211 ((-484 |#1| |#2|) (-949 |#2|))) (-15 -3212 ((-949 |#2|) (-484 |#1| |#2|))) (-15 -3213 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -3214 ((-247 |#1| |#2|) (-949 |#2|)))) (-643 (-1180)) (-1052)) (T -947)) -((-3214 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-247 *4 *5)) (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180))))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-484 *4 *5)) (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-247 *4 *5)) (-5 *1 (-947 *4 *5)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-484 *4 *5)) (-5 *1 (-947 *4 *5))))) -(-10 -7 (-15 -3209 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3210 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3211 ((-484 |#1| |#2|) (-949 |#2|))) (-15 -3212 ((-949 |#2|) (-484 |#1| |#2|))) (-15 -3213 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -3214 ((-247 |#1| |#2|) (-949 |#2|)))) -((-3215 (((-643 |#2|) |#2| |#2|) 10)) (-3218 (((-773) (-643 |#1|)) 48 (|has| |#1| (-850)))) (-3216 (((-643 |#2|) |#2|) 11)) (-3219 (((-773) (-643 |#1|) (-549) (-549)) 52 (|has| |#1| (-850)))) (-3217 ((|#1| |#2|) 38 (|has| |#1| (-850))))) -(((-948 |#1| |#2|) (-10 -7 (-15 -3215 ((-643 |#2|) |#2| |#2|)) (-15 -3216 ((-643 |#2|) |#2|)) (IF (|has| |#1| (-850)) (PROGN (-15 -3217 (|#1| |#2|)) (-15 -3218 ((-773) (-643 |#1|))) (-15 -3219 ((-773) (-643 |#1|) (-549) (-549)))) |%noBranch|)) (-365) (-1245 |#1|)) (T -948)) -((-3219 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-549)) (-4 *5 (-850)) (-4 *5 (-365)) (-5 *2 (-773)) (-5 *1 (-948 *5 *6)) (-4 *6 (-1245 *5)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-850)) (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-948 *4 *5)) (-4 *5 (-1245 *4)))) (-3217 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-850)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1245 *2)))) (-3216 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) (-4 *3 (-1245 *4)))) (-3215 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3215 ((-643 |#2|) |#2| |#2|)) (-15 -3216 ((-643 |#2|) |#2|)) (IF (|has| |#1| (-850)) (PROGN (-15 -3217 (|#1| |#2|)) (-15 -3218 ((-773) (-643 |#1|))) (-15 -3219 ((-773) (-643 |#1|) (-549) (-549)))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1180)) $) 16)) (-3487 (((-1174 $) $ (-1180)) 21) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1180))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) 8) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1180) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1180) $) NIL)) (-4188 (($ $ $ (-1180)) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1180)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 (-1180)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1180) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1180) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) (-1180)) NIL) (($ (-1174 $) (-1180)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1180)) NIL)) (-3223 (((-534 (-1180)) $) NIL) (((-773) $ (-1180)) NIL) (((-643 (-773)) $ (-643 (-1180))) NIL)) (-1770 (($ (-1 (-534 (-1180)) (-534 (-1180))) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3486 (((-3 (-1180) #3="failed") $) 19)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1180)) (|:| -2564 (-773))) #3#) $) NIL)) (-4244 (($ $ (-1180)) 29 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1180) |#1|) NIL) (($ $ (-643 (-1180)) (-643 |#1|)) NIL) (($ $ (-1180) $) NIL) (($ $ (-643 (-1180)) (-643 $)) NIL)) (-4189 (($ $ (-1180)) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4380 (((-534 (-1180)) $) NIL) (((-773) $ (-1180)) NIL) (((-643 (-773)) $ (-643 (-1180))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1180) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1180) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1180) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1180)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 25) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1180)) 27) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-949 |#1|) (-13 (-953 |#1| (-534 (-1180)) (-1180)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1180))) |%noBranch|))) (-1052)) (T -949)) -((-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052))))) -(-13 (-953 |#1| (-534 (-1180)) (-1180)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1180))) |%noBranch|))) -((-4390 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 19))) -(((-950 |#1| |#2|) (-10 -7 (-15 -4390 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1052) (-1052)) (T -950)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-949 *6)) (-5 *1 (-950 *5 *6))))) -(-10 -7 (-15 -4390 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) -((-3487 (((-1238 |#1| (-949 |#2|)) (-949 |#2|) (-1266 |#1|)) 18))) -(((-951 |#1| |#2|) (-10 -7 (-15 -3487 ((-1238 |#1| (-949 |#2|)) (-949 |#2|) (-1266 |#1|)))) (-1180) (-1052)) (T -951)) -((-3487 (*1 *2 *3 *4) (-12 (-5 *4 (-1266 *5)) (-14 *5 (-1180)) (-4 *6 (-1052)) (-5 *2 (-1238 *5 (-949 *6))) (-5 *1 (-951 *5 *6)) (-5 *3 (-949 *6))))) -(-10 -7 (-15 -3487 ((-1238 |#1| (-949 |#2|)) (-949 |#2|) (-1266 |#1|)))) -((-3222 (((-773) $) 88) (((-773) $ (-643 |#4|)) 93)) (-4206 (($ $) 203)) (-4401 (((-408 $) $) 195)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 141)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL) (((-3 (-549) #2#) $) NIL) (((-3 |#4| #2#) $) 74)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) 73)) (-4188 (($ $ $ |#4|) 95)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 131) (((-691 |#2|) (-691 $)) 121)) (-3926 (($ $) 210) (($ $ |#4|) 213)) (-3221 (((-643 $) $) 77)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 229) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 222)) (-3224 (((-643 $) $) 34)) (-3294 (($ |#2| |#3|) NIL) (($ $ |#4| (-773)) NIL) (($ $ (-643 |#4|) (-643 (-773))) 71)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#4|) 192)) (-3226 (((-3 (-643 $) "failed") $) 52)) (-3225 (((-3 (-643 $) "failed") $) 39)) (-3227 (((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-773))) "failed") $) 57)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 134)) (-3108 (((-408 (-1174 $)) (-1174 $)) 147)) (-3109 (((-408 (-1174 $)) (-1174 $)) 145)) (-4164 (((-408 $) $) 165)) (-4199 (($ $ (-643 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-643 |#4|) (-643 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-643 |#4|) (-643 $)) NIL)) (-4189 (($ $ |#4|) 97)) (-4402 (((-893 (-380)) $) 243) (((-893 (-549)) $) 236) (((-538) $) 251)) (-3220 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 184)) (-4109 ((|#2| $ |#3|) NIL) (($ $ |#4| (-773)) 62) (($ $ (-643 |#4|) (-643 (-773))) 69)) (-3105 (((-3 $ #1#) $) 186)) (-3662 (((-112) $ $) 216))) -(((-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -3105 ((-3 |#1| #1="failed") |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) #1#) (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3106 ((-3 (-1269 |#1|) #1#) (-691 |#1|))) (-15 -3926 (|#1| |#1| |#4|)) (-15 -3220 (|#1| |#1| |#4|)) (-15 -4189 (|#1| |#1| |#4|)) (-15 -4188 (|#1| |#1| |#1| |#4|)) (-15 -3221 ((-643 |#1|) |#1|)) (-15 -3222 ((-773) |#1| (-643 |#4|))) (-15 -3222 ((-773) |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-773))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3294 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -3294 (|#1| |#1| |#4| (-773))) (-15 -4194 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3224 ((-643 |#1|) |#1|)) (-15 -4109 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4109 (|#1| |#1| |#4| (-773))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#4| #2="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4109 (|#2| |#1| |#3|)) (-15 -3577 ((-3 (-549) #2#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #2#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #2#) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) (-953 |#2| |#3| |#4|) (-1052) (-795) (-852)) (T -952)) -NIL -(-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -3105 ((-3 |#1| #1="failed") |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) #1#) (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3106 ((-3 (-1269 |#1|) #1#) (-691 |#1|))) (-15 -3926 (|#1| |#1| |#4|)) (-15 -3220 (|#1| |#1| |#4|)) (-15 -4189 (|#1| |#1| |#4|)) (-15 -4188 (|#1| |#1| |#1| |#4|)) (-15 -3221 ((-643 |#1|) |#1|)) (-15 -3222 ((-773) |#1| (-643 |#4|))) (-15 -3222 ((-773) |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-773))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3294 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -3294 (|#1| |#1| |#4| (-773))) (-15 -4194 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3224 ((-643 |#1|) |#1|)) (-15 -4109 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4109 (|#1| |#1| |#4| (-773))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#4| #2="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4109 (|#2| |#1| |#3|)) (-15 -3577 ((-3 (-549) #2#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #2#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #2#) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#3|) $) 112)) (-3487 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 |#3|)) 113)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) 138)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) ((|#3| $) 139)) (-4188 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-4391 (($ $) 156)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-1769 (($ $ |#1| |#2| $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| |#3| (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| |#3| (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-3488 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| |#2|) 155) (($ $ |#3| (-773)) 121) (($ $ (-643 |#3|) (-643 (-773))) 120)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 122)) (-3223 ((|#2| $) 172) (((-773) $ |#3|) 124) (((-643 (-773)) $ (-643 |#3|)) 123)) (-1770 (($ (-1 |#2| |#2|) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-3486 (((-3 |#3| "failed") $) 125)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3663 (((-1162) $) 10)) (-3226 (((-3 (-643 $) "failed") $) 116)) (-3225 (((-3 (-643 $) "failed") $) 117)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) "failed") $) 115)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-643 |#3|) (-643 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-643 |#3|) (-643 $)) 140)) (-4189 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-4242 (($ $ |#3|) 46) (($ $ (-643 |#3|)) 45) (($ $ |#3| (-773)) 44) (($ $ (-643 |#3|) (-643 (-773))) 43)) (-4380 ((|#2| $) 152) (((-773) $ |#3|) 132) (((-643 (-773)) $ (-643 |#3|)) 131)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| |#3| (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| |#3| (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| |#3| (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-560))) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ |#2|) 157) (($ $ |#3| (-773)) 130) (($ $ (-643 |#3|) (-643 (-773))) 129)) (-3105 (((-3 $ "failed") $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#3|) 42) (($ $ (-643 |#3|)) 41) (($ $ |#3| (-773)) 40) (($ $ (-643 |#3|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-953 |#1| |#2| |#3|) (-140) (-1052) (-795) (-852)) (T -953)) -((-3926 (*1 *1 *1) (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-4380 (*1 *2 *1 *3) (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4380 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 (-773))))) (-4109 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *2 (-852)))) (-4109 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) (-3224 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-3487 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-1174 *1)) (-4 *1 (-953 *4 *5 *3)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-1174 *3)))) (-3486 (*1 *2 *1) (|partial| -12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3223 (*1 *2 *1 *3) (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-773)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 (-773))))) (-4194 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-953 *4 *5 *3)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *2 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1052)) (-4 *1 (-953 *4 *5 *3)) (-4 *5 (-795)) (-4 *3 (-852)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-773)))))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-773)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-773)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *5)))) (-3221 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-4188 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4189 (*1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-172)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-455)))) (-3926 (*1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-455)))) (-4206 (*1 *1 *1) (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-4401 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-408 *1)) (-4 *1 (-953 *3 *4 *5))))) -(-13 (-903 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1041 |t#3|) (-379 |t#1|) (-10 -8 (-15 -4380 ((-773) $ |t#3|)) (-15 -4380 ((-643 (-773)) $ (-643 |t#3|))) (-15 -4109 ($ $ |t#3| (-773))) (-15 -4109 ($ $ (-643 |t#3|) (-643 (-773)))) (-15 -3224 ((-643 $) $)) (-15 -3487 ((-1174 $) $ |t#3|)) (-15 -3487 ((-1174 |t#1|) $)) (-15 -3486 ((-3 |t#3| "failed") $)) (-15 -3223 ((-773) $ |t#3|)) (-15 -3223 ((-643 (-773)) $ (-643 |t#3|))) (-15 -4194 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |t#3|)) (-15 -3294 ($ $ |t#3| (-773))) (-15 -3294 ($ $ (-643 |t#3|) (-643 (-773)))) (-15 -3488 ($ (-1174 |t#1|) |t#3|)) (-15 -3488 ($ (-1174 $) |t#3|)) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |var| |t#3|) (|:| -2564 (-773))) "failed") $)) (-15 -3222 ((-773) $)) (-15 -3222 ((-773) $ (-643 |t#3|))) (-15 -3485 ((-643 |t#3|) $)) (-15 -3221 ((-643 $) $)) (IF (|has| |t#1| (-616 (-538))) (IF (|has| |t#3| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-616 (-893 (-549)))) (IF (|has| |t#3| (-616 (-893 (-549)))) (-6 (-616 (-893 (-549)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-616 (-893 (-380)))) (IF (|has| |t#3| (-616 (-893 (-380)))) (-6 (-616 (-893 (-380)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-889 (-549))) (IF (|has| |t#3| (-889 (-549))) (-6 (-889 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-889 (-380))) (IF (|has| |t#3| (-889 (-380))) (-6 (-889 (-380))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4188 ($ $ $ |t#3|)) (-15 -4189 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -3220 ($ $ |t#3|)) (-15 -3926 ($ $)) (-15 -3926 ($ $ |t#3|)) (-15 -4401 ((-408 $) $)) (-15 -4206 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4423)) (-6 -4423) |%noBranch|) (IF (|has| |t#1| (-913)) (-6 (-913)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 |#3|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-728) . T) ((-903 |#3|) . T) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) ((-913) |has| |#1| (-913)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1041 |#3|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) |has| |#1| (-913))) -((-3485 (((-643 |#2|) |#5|) 40)) (-3487 (((-1174 |#5|) |#5| |#2| (-1174 |#5|)) 23) (((-410 (-1174 |#5|)) |#5| |#2|) 16)) (-3488 ((|#5| (-410 (-1174 |#5|)) |#2|) 30)) (-3486 (((-3 |#2| "failed") |#5|) 71)) (-3226 (((-3 (-643 |#5|) "failed") |#5|) 65)) (-3228 (((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-549))) "failed") |#5|) 53)) (-3225 (((-3 (-643 |#5|) "failed") |#5|) 67)) (-3227 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-549))) "failed") |#5|) 57))) -(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3485 ((-643 |#2|) |#5|)) (-15 -3486 ((-3 |#2| "failed") |#5|)) (-15 -3487 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -3488 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -3487 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3225 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3227 ((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-549))) "failed") |#5|)) (-15 -3228 ((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-549))) "failed") |#5|))) (-795) (-852) (-1052) (-953 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4378 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -954)) -((-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2564 (-549)))) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3227 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-549)))) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3226 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3225 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) (-4 *7 (-953 *6 *5 *4)) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-5 *1 (-954 *5 *4 *6 *7 *3)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) (-5 *1 (-954 *5 *4 *6 *7 *2)) (-4 *7 (-953 *6 *5 *4)))) (-3487 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-410 (-1174 *3))) (-5 *1 (-954 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3486 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-1052)) (-4 *6 (-953 *5 *4 *2)) (-4 *2 (-852)) (-5 *1 (-954 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *6)) (-15 -3399 (*6 $)) (-15 -3398 (*6 $))))))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *5)) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) -(-10 -7 (-15 -3485 ((-643 |#2|) |#5|)) (-15 -3486 ((-3 |#2| "failed") |#5|)) (-15 -3487 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -3488 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -3487 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3225 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3227 ((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-549))) "failed") |#5|)) (-15 -3228 ((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-549))) "failed") |#5|))) -((-4390 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4390 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-795) (-852) (-1052) (-953 |#3| |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773)))))) (T -955)) -((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-852)) (-4 *8 (-1052)) (-4 *6 (-795)) (-4 *2 (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773)))))) (-5 *1 (-955 *6 *7 *8 *5 *2)) (-4 *5 (-953 *8 *6 *7))))) -(-10 -7 (-15 -4390 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3229 (((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#3| (-773)) 49)) (-3230 (((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) (-410 (-549)) (-773)) 44)) (-3232 (((-2 (|:| -2564 (-773)) (|:| -4386 |#4|) (|:| |radicand| (-643 |#4|))) |#4| (-773)) 65)) (-3231 (((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#5| (-773)) 74 (|has| |#3| (-455))))) -(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3229 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#3| (-773))) (-15 -3230 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) (-410 (-549)) (-773))) (IF (|has| |#3| (-455)) (-15 -3231 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#5| (-773))) |%noBranch|) (-15 -3232 ((-2 (|:| -2564 (-773)) (|:| -4386 |#4|) (|:| |radicand| (-643 |#4|))) |#4| (-773)))) (-795) (-852) (-560) (-953 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4378 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -956)) -((-3232 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *3 (-953 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| (-643 *3)))) (-5 *1 (-956 *5 *6 *7 *3 *8)) (-5 *4 (-773)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4378 ($ *3)) (-15 -3399 (*3 $)) (-15 -3398 (*3 $))))))) (-3231 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *8 (-953 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *3))) (-5 *1 (-956 *5 *6 *7 *8 *3)) (-5 *4 (-773)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $))))))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-549))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *8 (-953 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *9) (|:| |radicand| *9))) (-5 *1 (-956 *5 *6 *7 *8 *9)) (-5 *4 (-773)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $))))))) (-3229 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-560)) (-4 *7 (-953 *3 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *8) (|:| |radicand| *8))) (-5 *1 (-956 *5 *6 *3 *7 *8)) (-5 *4 (-773)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) -(-10 -7 (-15 -3229 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#3| (-773))) (-15 -3230 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) (-410 (-549)) (-773))) (IF (|has| |#3| (-455)) (-15 -3231 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#5| (-773))) |%noBranch|) (-15 -3232 ((-2 (|:| -2564 (-773)) (|:| -4386 |#4|) (|:| |radicand| (-643 |#4|))) |#4| (-773)))) -((-2968 (((-112) $ $) NIL)) (-3233 (($ (-1123)) 8)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (((-1123) $) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 11))) -(((-957) (-13 (-1104) (-615 (-1123)) (-10 -8 (-15 -3233 ($ (-1123)))))) (T -957)) -((-3233 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-957))))) -(-13 (-1104) (-615 (-1123)) (-10 -8 (-15 -3233 ($ (-1123))))) -((-3297 (((-1092 (-225)) $) 8)) (-3298 (((-1092 (-225)) $) 9)) (-3299 (((-643 (-643 (-946 (-225)))) $) 10)) (-4378 (((-865) $) 6))) -(((-958) (-140)) (T -958)) -((-3299 (*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-643 (-643 (-946 (-225))))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225)))))) -(-13 (-615 (-865)) (-10 -8 (-15 -3299 ((-643 (-643 (-946 (-225)))) $)) (-15 -3298 ((-1092 (-225)) $)) (-15 -3297 ((-1092 (-225)) $)))) -(((-615 (-865)) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 78 (|has| |#1| (-560)))) (-2241 (($ $) 79 (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 34)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) 31)) (-3890 (((-3 $ "failed") $) 42)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-1769 (($ $ |#1| |#2| $) 62)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 17)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-3223 ((|#2| $) 24)) (-1770 (($ (-1 |#2| |#2|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (($ $) 28)) (-3594 ((|#1| $) 26)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 51)) (-1971 ((|#1| $) NIL)) (-4170 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-560))))) (-3889 (((-3 $ "failed") $ $) 91 (|has| |#1| (-560))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-560)))) (-4380 ((|#2| $) 22)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) 46) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 41) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ |#2|) 37)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 15 T CONST)) (-1768 (($ $ $ (-773)) 74 (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) 84 (|has| |#1| (-560)))) (-3510 (($) 27 T CONST)) (-3067 (($) 12 T CONST)) (-3455 (((-112) $ $) 83)) (-4381 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 69) (($ $ (-773)) 67)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-959 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| |#2| (-131)) (-15 -4170 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1052) (-794)) (T -959)) -((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *2 (-794))))) -(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| |#2| (-131)) (-15 -4170 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) -((-3234 (((-3 (-691 |#1|) "failed") |#2| (-922)) 18))) -(((-960 |#1| |#2|) (-10 -7 (-15 -3234 ((-3 (-691 |#1|) "failed") |#2| (-922)))) (-560) (-660 |#1|)) (T -960)) -((-3234 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-922)) (-4 *5 (-560)) (-5 *2 (-691 *5)) (-5 *1 (-960 *5 *3)) (-4 *3 (-660 *5))))) -(-10 -7 (-15 -3234 ((-3 (-691 |#1|) "failed") |#2| (-922)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) 19 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 18 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 16)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 15)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 11 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) 20 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 17) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 21)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 14)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 8 (|has| $ (-6 -4425))))) -(((-961 |#1|) (-19 |#1|) (-1219)) (T -961)) +((-4380 (((-316 |#1|) (-481)) 16))) +(((-924 |#1|) (-10 -7 (-15 -4380 ((-316 |#1|) (-481)))) (-561)) (T -924)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-316 *4)) (-5 *1 (-924 *4)) (-4 *4 (-561))))) +(-10 -7 (-15 -4380 ((-316 |#1|) (-481)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-2575 (((-112) $) 35)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-925) (-140)) (T -925)) +((-3146 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-2 (|:| -4388 (-644 *1)) (|:| -2574 *1))) (-5 *3 (-644 *1)))) (-3145 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-925))))) +(-13 (-456) (-10 -8 (-15 -3146 ((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $))) (-15 -3145 ((-3 (-644 $) "failed") (-644 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-456) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-3511 (((-1175 |#2|) (-644 |#2|) (-644 |#2|)) 17) (((-1239 |#1| |#2|) (-1239 |#1| |#2|) (-644 |#2|) (-644 |#2|)) 13))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3511 ((-1239 |#1| |#2|) (-1239 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -3511 ((-1175 |#2|) (-644 |#2|) (-644 |#2|)))) (-1181) (-366)) (T -926)) +((-3511 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-366)) (-5 *2 (-1175 *5)) (-5 *1 (-926 *4 *5)) (-14 *4 (-1181)))) (-3511 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1239 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1181)) (-4 *5 (-366)) (-5 *1 (-926 *4 *5))))) +(-10 -7 (-15 -3511 ((-1239 |#1| |#2|) (-1239 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -3511 ((-1175 |#2|) (-644 |#2|) (-644 |#2|)))) +((-3147 ((|#2| (-644 |#1|) (-644 |#1|)) 29))) +(((-927 |#1| |#2|) (-10 -7 (-15 -3147 (|#2| (-644 |#1|) (-644 |#1|)))) (-366) (-1246 |#1|)) (T -927)) +((-3147 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-366)) (-4 *2 (-1246 *4)) (-5 *1 (-927 *4 *2))))) +(-10 -7 (-15 -3147 (|#2| (-644 |#1|) (-644 |#1|)))) +((-3149 (((-550) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-1163)) 177)) (-3168 ((|#4| |#4|) 196)) (-3153 (((-644 (-411 (-950 |#1|))) (-644 (-1181))) 149)) (-3167 (((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))) (-692 |#4|) (-644 (-411 (-950 |#1|))) (-644 (-644 |#4|)) (-774) (-774) (-550)) 88)) (-3157 (((-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-644 |#4|)) 69)) (-3166 (((-692 |#4|) (-692 |#4|) (-644 |#4|)) 65)) (-3150 (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-1163)) 189)) (-3148 (((-550) (-692 |#4|) (-923) (-1163)) 169) (((-550) (-692 |#4|) (-644 (-1181)) (-923) (-1163)) 168) (((-550) (-692 |#4|) (-644 |#4|) (-923) (-1163)) 167) (((-550) (-692 |#4|) (-1163)) 157) (((-550) (-692 |#4|) (-644 (-1181)) (-1163)) 156) (((-550) (-692 |#4|) (-644 |#4|) (-1163)) 155) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-923)) 154) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 (-1181)) (-923)) 153) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 |#4|) (-923)) 152) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|)) 151) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 (-1181))) 150) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 |#4|)) 146)) (-3154 ((|#4| (-950 |#1|)) 80)) (-3164 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 193)) (-3163 (((-644 (-644 (-550))) (-550) (-550)) 162)) (-3162 (((-644 (-644 |#4|)) (-644 (-644 |#4|))) 107)) (-3161 (((-774) (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|))))) 102)) (-3160 (((-774) (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|))))) 101)) (-3169 (((-112) (-644 (-950 |#1|))) 19) (((-112) (-644 |#4|)) 15)) (-3155 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|)) 84)) (-3159 (((-644 |#4|) |#4|) 57)) (-3152 (((-644 (-411 (-950 |#1|))) (-644 |#4|)) 145) (((-692 (-411 (-950 |#1|))) (-692 |#4|)) 66) (((-411 (-950 |#1|)) |#4|) 142)) (-3151 (((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))))))) (|:| |rgsz| (-550))) (-692 |#4|) (-644 (-411 (-950 |#1|))) (-774) (-1163) (-550)) 113)) (-3156 (((-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))) (-692 |#4|) (-774)) 100)) (-3165 (((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) (-692 |#4|) (-774)) 124)) (-3158 (((-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-2 (|:| -1750 (-692 (-411 (-950 |#1|)))) (|:| |vec| (-644 (-411 (-950 |#1|)))) (|:| -3515 (-774)) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) 56))) +(((-928 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 |#4|))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 (-1181)))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 |#4|) (-923))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 (-1181)) (-923))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-923))) (-15 -3148 ((-550) (-692 |#4|) (-644 |#4|) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-644 (-1181)) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-644 |#4|) (-923) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-644 (-1181)) (-923) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-923) (-1163))) (-15 -3149 ((-550) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-1163))) (-15 -3150 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-1163))) (-15 -3151 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))))))) (|:| |rgsz| (-550))) (-692 |#4|) (-644 (-411 (-950 |#1|))) (-774) (-1163) (-550))) (-15 -3152 ((-411 (-950 |#1|)) |#4|)) (-15 -3152 ((-692 (-411 (-950 |#1|))) (-692 |#4|))) (-15 -3152 ((-644 (-411 (-950 |#1|))) (-644 |#4|))) (-15 -3153 ((-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -3154 (|#4| (-950 |#1|))) (-15 -3155 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -3156 ((-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))) (-692 |#4|) (-774))) (-15 -3157 ((-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-644 |#4|))) (-15 -3158 ((-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-2 (|:| -1750 (-692 (-411 (-950 |#1|)))) (|:| |vec| (-644 (-411 (-950 |#1|)))) (|:| -3515 (-774)) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (-15 -3159 ((-644 |#4|) |#4|)) (-15 -3160 ((-774) (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3161 ((-774) (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3162 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -3163 ((-644 (-644 (-550))) (-550) (-550))) (-15 -3164 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3165 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) (-692 |#4|) (-774))) (-15 -3166 ((-692 |#4|) (-692 |#4|) (-644 |#4|))) (-15 -3167 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))) (-692 |#4|) (-644 (-411 (-950 |#1|))) (-644 (-644 |#4|)) (-774) (-774) (-550))) (-15 -3168 (|#4| |#4|)) (-15 -3169 ((-112) (-644 |#4|))) (-15 -3169 ((-112) (-644 (-950 |#1|))))) (-13 (-309) (-147)) (-13 (-853) (-617 (-1181))) (-796) (-954 |#1| |#3| |#2|)) (T -928)) +((-3169 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6 *7)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-13 (-309) (-147))) (-4 *4 (-13 (-853) (-617 (-1181)))) (-4 *5 (-796)) (-5 *1 (-928 *3 *4 *5 *2)) (-4 *2 (-954 *3 *5 *4)))) (-3167 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) (-5 *4 (-692 *12)) (-5 *5 (-644 (-411 (-950 *9)))) (-5 *6 (-644 (-644 *12))) (-5 *7 (-774)) (-5 *8 (-550)) (-4 *9 (-13 (-309) (-147))) (-4 *12 (-954 *9 *11 *10)) (-4 *10 (-13 (-853) (-617 (-1181)))) (-4 *11 (-796)) (-5 *2 (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) (|:| |wcond| (-644 (-950 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *9)))) (|:| -2192 (-644 (-1270 (-411 (-950 *9))))))))) (-5 *1 (-928 *9 *10 *11 *12)))) (-3166 (*1 *2 *2 *3) (-12 (-5 *2 (-692 *7)) (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *1 (-928 *4 *5 *6 *7)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *8)) (-5 *4 (-774)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (-5 *1 (-928 *5 *6 *7 *8)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-112)) (-5 *1 (-928 *5 *6 *7 *8)))) (-3163 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-644 (-644 (-550)))) (-5 *1 (-928 *4 *5 *6 *7)) (-5 *3 (-550)) (-4 *7 (-954 *4 *6 *5)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-954 *3 *5 *4)) (-4 *3 (-13 (-309) (-147))) (-4 *4 (-13 (-853) (-617 (-1181)))) (-4 *5 (-796)) (-5 *1 (-928 *3 *4 *5 *6)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-774)) (-5 *1 (-928 *4 *5 *6 *7)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-774)) (-5 *1 (-928 *4 *5 *6 *7)))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-644 *3)) (-5 *1 (-928 *4 *5 *6 *3)) (-4 *3 (-954 *4 *6 *5)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1750 (-692 (-411 (-950 *4)))) (|:| |vec| (-644 (-411 (-950 *4)))) (|:| -3515 (-774)) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) (|:| -2192 (-644 (-1270 (-411 (-950 *4))))))) (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5)))) (-3157 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) (|:| -2192 (-644 (-1270 (-411 (-950 *4))))))) (-5 *3 (-644 *7)) (-4 *4 (-13 (-309) (-147))) (-4 *7 (-954 *4 *6 *5)) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *1 (-928 *4 *5 *6 *7)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *8)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 *8))))) (-5 *1 (-928 *5 *6 *7 *8)) (-5 *4 (-774)))) (-3155 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-4 *7 (-954 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) (-5 *1 (-928 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-309) (-147))) (-4 *2 (-954 *4 *6 *5)) (-5 *1 (-928 *4 *5 *6 *2)) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-644 (-411 (-950 *4)))) (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-644 (-411 (-950 *4)))) (-5 *1 (-928 *4 *5 *6 *7)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-692 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-692 (-411 (-950 *4)))) (-5 *1 (-928 *4 *5 *6 *7)))) (-3152 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-411 (-950 *4))) (-5 *1 (-928 *4 *5 *6 *3)) (-4 *3 (-954 *4 *6 *5)))) (-3151 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-692 *11)) (-5 *4 (-644 (-411 (-950 *8)))) (-5 *5 (-774)) (-5 *6 (-1163)) (-4 *8 (-13 (-309) (-147))) (-4 *11 (-954 *8 *10 *9)) (-4 *9 (-13 (-853) (-617 (-1181)))) (-4 *10 (-796)) (-5 *2 (-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) (|:| |wcond| (-644 (-950 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *8)))) (|:| -2192 (-644 (-1270 (-411 (-950 *8)))))))))) (|:| |rgsz| (-550)))) (-5 *1 (-928 *8 *9 *10 *11)) (-5 *7 (-550)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-950 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) (|:| -2192 (-644 (-1270 (-411 (-950 *4)))))))))) (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) (-5 *4 (-1163)) (-4 *5 (-13 (-309) (-147))) (-4 *8 (-954 *5 *7 *6)) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *9)) (-5 *4 (-923)) (-5 *5 (-1163)) (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *6 *7 *8 *9)))) (-3148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-692 *10)) (-5 *4 (-644 (-1181))) (-5 *5 (-923)) (-5 *6 (-1163)) (-4 *10 (-954 *7 *9 *8)) (-4 *7 (-13 (-309) (-147))) (-4 *8 (-13 (-853) (-617 (-1181)))) (-4 *9 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *7 *8 *9 *10)))) (-3148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-692 *10)) (-5 *4 (-644 *10)) (-5 *5 (-923)) (-5 *6 (-1163)) (-4 *10 (-954 *7 *9 *8)) (-4 *7 (-13 (-309) (-147))) (-4 *8 (-13 (-853) (-617 (-1181)))) (-4 *9 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *7 *8 *9 *10)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *8)) (-5 *4 (-1163)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *9)) (-5 *4 (-644 (-1181))) (-5 *5 (-1163)) (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *6 *7 *8 *9)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1163)) (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *6 *7 *8 *9)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *8)) (-5 *4 (-923)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) (-5 *1 (-928 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *9)) (-5 *4 (-644 (-1181))) (-5 *5 (-923)) (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-950 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *6)))) (|:| -2192 (-644 (-1270 (-411 (-950 *6)))))))))) (-5 *1 (-928 *6 *7 *8 *9)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-692 *9)) (-5 *5 (-923)) (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-950 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *6)))) (|:| -2192 (-644 (-1270 (-411 (-950 *6)))))))))) (-5 *1 (-928 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-692 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-950 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) (|:| -2192 (-644 (-1270 (-411 (-950 *4)))))))))) (-5 *1 (-928 *4 *5 *6 *7)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *8)) (-5 *4 (-644 (-1181))) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) (-5 *1 (-928 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-692 *8)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) (-5 *1 (-928 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(-10 -7 (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 |#4|))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 (-1181)))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 |#4|) (-923))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-644 (-1181)) (-923))) (-15 -3148 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-692 |#4|) (-923))) (-15 -3148 ((-550) (-692 |#4|) (-644 |#4|) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-644 (-1181)) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-644 |#4|) (-923) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-644 (-1181)) (-923) (-1163))) (-15 -3148 ((-550) (-692 |#4|) (-923) (-1163))) (-15 -3149 ((-550) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-1163))) (-15 -3150 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|))))))))) (-1163))) (-15 -3151 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))))))) (|:| |rgsz| (-550))) (-692 |#4|) (-644 (-411 (-950 |#1|))) (-774) (-1163) (-550))) (-15 -3152 ((-411 (-950 |#1|)) |#4|)) (-15 -3152 ((-692 (-411 (-950 |#1|))) (-692 |#4|))) (-15 -3152 ((-644 (-411 (-950 |#1|))) (-644 |#4|))) (-15 -3153 ((-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -3154 (|#4| (-950 |#1|))) (-15 -3155 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -3156 ((-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))) (-692 |#4|) (-774))) (-15 -3157 ((-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-644 |#4|))) (-15 -3158 ((-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))) (-2 (|:| -1750 (-692 (-411 (-950 |#1|)))) (|:| |vec| (-644 (-411 (-950 |#1|)))) (|:| -3515 (-774)) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (-15 -3159 ((-644 |#4|) |#4|)) (-15 -3160 ((-774) (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3161 ((-774) (-644 (-2 (|:| -3515 (-774)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3162 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -3163 ((-644 (-644 (-550))) (-550) (-550))) (-15 -3164 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3165 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) (-692 |#4|) (-774))) (-15 -3166 ((-692 |#4|) (-692 |#4|) (-644 |#4|))) (-15 -3167 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1270 (-411 (-950 |#1|)))) (|:| -2192 (-644 (-1270 (-411 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550)))) (-692 |#4|) (-644 (-411 (-950 |#1|))) (-644 (-644 |#4|)) (-774) (-774) (-550))) (-15 -3168 (|#4| |#4|)) (-15 -3169 ((-112) (-644 |#4|))) (-15 -3169 ((-112) (-644 (-950 |#1|))))) +((-4308 (($ $ (-1093 (-226))) 124) (($ $ (-1093 (-226)) (-1093 (-226))) 125)) (-3299 (((-1093 (-226)) $) 73)) (-3300 (((-1093 (-226)) $) 72)) (-3193 (((-1093 (-226)) $) 74)) (-3174 (((-550) (-550)) 66)) (-3178 (((-550) (-550)) 61)) (-3176 (((-550) (-550)) 64)) (-3172 (((-112) (-112)) 68)) (-3175 (((-550)) 65)) (-3540 (($ $ (-1093 (-226))) 128) (($ $) 129)) (-3195 (($ (-1 (-947 (-226)) (-226)) (-1093 (-226))) 143) (($ (-1 (-947 (-226)) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226))) 144)) (-3181 (($ (-1 (-226) (-226)) (-1093 (-226))) 151) (($ (-1 (-226) (-226))) 155)) (-3194 (($ (-1 (-226) (-226)) (-1093 (-226))) 139) (($ (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226))) 140) (($ (-644 (-1 (-226) (-226))) (-1093 (-226))) 148) (($ (-644 (-1 (-226) (-226))) (-1093 (-226)) (-1093 (-226))) 149) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226))) 141) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226))) 142) (($ $ (-1093 (-226))) 130)) (-3180 (((-112) $) 69)) (-3171 (((-550)) 70)) (-3179 (((-550)) 59)) (-3177 (((-550)) 62)) (-3301 (((-644 (-644 (-947 (-226)))) $) 35)) (-3170 (((-112) (-112)) 71)) (-4380 (((-866) $) 169)) (-3173 (((-112)) 67))) +(((-929) (-13 (-959) (-10 -8 (-15 -3194 ($ (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ (-644 (-1 (-226) (-226))) (-1093 (-226)))) (-15 -3194 ($ (-644 (-1 (-226) (-226))) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)))) (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3181 ($ (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3181 ($ (-1 (-226) (-226)))) (-15 -3194 ($ $ (-1093 (-226)))) (-15 -3180 ((-112) $)) (-15 -4308 ($ $ (-1093 (-226)))) (-15 -4308 ($ $ (-1093 (-226)) (-1093 (-226)))) (-15 -3540 ($ $ (-1093 (-226)))) (-15 -3540 ($ $)) (-15 -3193 ((-1093 (-226)) $)) (-15 -3179 ((-550))) (-15 -3178 ((-550) (-550))) (-15 -3177 ((-550))) (-15 -3176 ((-550) (-550))) (-15 -3175 ((-550))) (-15 -3174 ((-550) (-550))) (-15 -3173 ((-112))) (-15 -3172 ((-112) (-112))) (-15 -3171 ((-550))) (-15 -3170 ((-112) (-112)))))) (T -929)) +((-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3194 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1 (-226) (-226)))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3194 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-1 (-226) (-226)))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3194 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3194 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3195 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3195 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-929)))) (-3194 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) (-4308 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) (-3540 (*1 *1 *1) (-5 *1 (-929))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) (-3179 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3177 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3175 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3173 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3171 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(-13 (-959) (-10 -8 (-15 -3194 ($ (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ (-644 (-1 (-226) (-226))) (-1093 (-226)))) (-15 -3194 ($ (-644 (-1 (-226) (-226))) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)))) (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3181 ($ (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3181 ($ (-1 (-226) (-226)))) (-15 -3194 ($ $ (-1093 (-226)))) (-15 -3180 ((-112) $)) (-15 -4308 ($ $ (-1093 (-226)))) (-15 -4308 ($ $ (-1093 (-226)) (-1093 (-226)))) (-15 -3540 ($ $ (-1093 (-226)))) (-15 -3540 ($ $)) (-15 -3193 ((-1093 (-226)) $)) (-15 -3179 ((-550))) (-15 -3178 ((-550) (-550))) (-15 -3177 ((-550))) (-15 -3176 ((-550) (-550))) (-15 -3175 ((-550))) (-15 -3174 ((-550) (-550))) (-15 -3173 ((-112))) (-15 -3172 ((-112) (-112))) (-15 -3171 ((-550))) (-15 -3170 ((-112) (-112))))) +((-3181 (((-929) |#1| (-1181)) 17) (((-929) |#1| (-1181) (-1093 (-226))) 21)) (-3194 (((-929) |#1| |#1| (-1181) (-1093 (-226))) 19) (((-929) |#1| (-1181) (-1093 (-226))) 15))) +(((-930 |#1|) (-10 -7 (-15 -3194 ((-929) |#1| (-1181) (-1093 (-226)))) (-15 -3194 ((-929) |#1| |#1| (-1181) (-1093 (-226)))) (-15 -3181 ((-929) |#1| (-1181) (-1093 (-226)))) (-15 -3181 ((-929) |#1| (-1181)))) (-617 (-539))) (T -930)) +((-3181 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-5 *2 (-929)) (-5 *1 (-930 *3)) (-4 *3 (-617 (-539))))) (-3181 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1181)) (-5 *5 (-1093 (-226))) (-5 *2 (-929)) (-5 *1 (-930 *3)) (-4 *3 (-617 (-539))))) (-3194 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1181)) (-5 *5 (-1093 (-226))) (-5 *2 (-929)) (-5 *1 (-930 *3)) (-4 *3 (-617 (-539))))) (-3194 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1181)) (-5 *5 (-1093 (-226))) (-5 *2 (-929)) (-5 *1 (-930 *3)) (-4 *3 (-617 (-539)))))) +(-10 -7 (-15 -3194 ((-929) |#1| (-1181) (-1093 (-226)))) (-15 -3194 ((-929) |#1| |#1| (-1181) (-1093 (-226)))) (-15 -3181 ((-929) |#1| (-1181) (-1093 (-226)))) (-15 -3181 ((-929) |#1| (-1181)))) +((-4308 (($ $ (-1093 (-226)) (-1093 (-226)) (-1093 (-226))) 123)) (-3298 (((-1093 (-226)) $) 64)) (-3299 (((-1093 (-226)) $) 63)) (-3300 (((-1093 (-226)) $) 62)) (-3192 (((-644 (-644 (-226))) $) 69)) (-3193 (((-1093 (-226)) $) 65)) (-3186 (((-550) (-550)) 57)) (-3190 (((-550) (-550)) 52)) (-3188 (((-550) (-550)) 55)) (-3184 (((-112) (-112)) 59)) (-3187 (((-550)) 56)) (-3540 (($ $ (-1093 (-226))) 126) (($ $) 127)) (-3195 (($ (-1 (-947 (-226)) (-226)) (-1093 (-226))) 133) (($ (-1 (-947 (-226)) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226))) 134)) (-3194 (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226))) 136) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226))) 137) (($ $ (-1093 (-226))) 129)) (-3183 (((-550)) 60)) (-3191 (((-550)) 50)) (-3189 (((-550)) 53)) (-3301 (((-644 (-644 (-947 (-226)))) $) 153)) (-3182 (((-112) (-112)) 61)) (-4380 (((-866) $) 151)) (-3185 (((-112)) 58))) +(((-931) (-13 (-978) (-10 -8 (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)))) (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ $ (-1093 (-226)))) (-15 -4308 ($ $ (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3540 ($ $ (-1093 (-226)))) (-15 -3540 ($ $)) (-15 -3193 ((-1093 (-226)) $)) (-15 -3192 ((-644 (-644 (-226))) $)) (-15 -3191 ((-550))) (-15 -3190 ((-550) (-550))) (-15 -3189 ((-550))) (-15 -3188 ((-550) (-550))) (-15 -3187 ((-550))) (-15 -3186 ((-550) (-550))) (-15 -3185 ((-112))) (-15 -3184 ((-112) (-112))) (-15 -3183 ((-550))) (-15 -3182 ((-112) (-112)))))) (T -931)) +((-3195 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-931)))) (-3195 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-931)))) (-3194 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-931)))) (-3194 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-931)))) (-3194 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) (-4308 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) (-3540 (*1 *1 *1) (-5 *1 (-931))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-226)))) (-5 *1 (-931)))) (-3191 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3189 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3187 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3185 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931)))) (-3183 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931))))) +(-13 (-978) (-10 -8 (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)))) (-15 -3195 ($ (-1 (-947 (-226)) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)))) (-15 -3194 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3194 ($ $ (-1093 (-226)))) (-15 -4308 ($ $ (-1093 (-226)) (-1093 (-226)) (-1093 (-226)))) (-15 -3540 ($ $ (-1093 (-226)))) (-15 -3540 ($ $)) (-15 -3193 ((-1093 (-226)) $)) (-15 -3192 ((-644 (-644 (-226))) $)) (-15 -3191 ((-550))) (-15 -3190 ((-550) (-550))) (-15 -3189 ((-550))) (-15 -3188 ((-550) (-550))) (-15 -3187 ((-550))) (-15 -3186 ((-550) (-550))) (-15 -3185 ((-112))) (-15 -3184 ((-112) (-112))) (-15 -3183 ((-550))) (-15 -3182 ((-112) (-112))))) +((-3196 (((-644 (-1093 (-226))) (-644 (-644 (-947 (-226))))) 34))) +(((-932) (-10 -7 (-15 -3196 ((-644 (-1093 (-226))) (-644 (-644 (-947 (-226)))))))) (T -932)) +((-3196 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *2 (-644 (-1093 (-226)))) (-5 *1 (-932))))) +(-10 -7 (-15 -3196 ((-644 (-1093 (-226))) (-644 (-644 (-947 (-226))))))) +((-3198 (((-316 (-550)) (-1181)) 16)) (-3199 (((-316 (-550)) (-1181)) 14)) (-4386 (((-316 (-550)) (-1181)) 12)) (-3197 (((-316 (-550)) (-1181) (-510)) 19))) +(((-933) (-10 -7 (-15 -3197 ((-316 (-550)) (-1181) (-510))) (-15 -4386 ((-316 (-550)) (-1181))) (-15 -3198 ((-316 (-550)) (-1181))) (-15 -3199 ((-316 (-550)) (-1181))))) (T -933)) +((-3199 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-510)) (-5 *2 (-316 (-550))) (-5 *1 (-933))))) +(-10 -7 (-15 -3197 ((-316 (-550)) (-1181) (-510))) (-15 -4386 ((-316 (-550)) (-1181))) (-15 -3198 ((-316 (-550)) (-1181))) (-15 -3199 ((-316 (-550)) (-1181)))) +((-3198 ((|#2| |#2|) 28)) (-3199 ((|#2| |#2|) 29)) (-4386 ((|#2| |#2|) 27)) (-3197 ((|#2| |#2| (-510)) 26))) +(((-934 |#1| |#2|) (-10 -7 (-15 -3197 (|#2| |#2| (-510))) (-15 -4386 (|#2| |#2|)) (-15 -3198 (|#2| |#2|)) (-15 -3199 (|#2| |#2|))) (-1105) (-425 |#1|)) (T -934)) +((-3199 (*1 *2 *2) (-12 (-4 *3 (-1105)) (-5 *1 (-934 *3 *2)) (-4 *2 (-425 *3)))) (-3198 (*1 *2 *2) (-12 (-4 *3 (-1105)) (-5 *1 (-934 *3 *2)) (-4 *2 (-425 *3)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-1105)) (-5 *1 (-934 *3 *2)) (-4 *2 (-425 *3)))) (-3197 (*1 *2 *2 *3) (-12 (-5 *3 (-510)) (-4 *4 (-1105)) (-5 *1 (-934 *4 *2)) (-4 *2 (-425 *4))))) +(-10 -7 (-15 -3197 (|#2| |#2| (-510))) (-15 -4386 (|#2| |#2|)) (-15 -3198 (|#2| |#2|)) (-15 -3199 (|#2| |#2|))) +((-3201 (((-892 |#1| |#3|) |#2| (-894 |#1|) (-892 |#1| |#3|)) 25)) (-3200 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3200 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3201 ((-892 |#1| |#3|) |#2| (-894 |#1|) (-892 |#1| |#3|)))) (-1105) (-890 |#1|) (-13 (-1105) (-1042 |#2|))) (T -935)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *6 (-13 (-1105) (-1042 *3))) (-4 *3 (-890 *5)) (-5 *1 (-935 *5 *3 *6)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1105) (-1042 *5))) (-4 *5 (-890 *4)) (-4 *4 (-1105)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-935 *4 *5 *6))))) +(-10 -7 (-15 -3200 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3201 ((-892 |#1| |#3|) |#2| (-894 |#1|) (-892 |#1| |#3|)))) +((-3201 (((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)) 30))) +(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -3201 ((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)))) (-1105) (-13 (-561) (-890 |#1|)) (-13 (-425 |#2|) (-617 (-894 |#1|)) (-890 |#1|) (-1042 (-614 $)))) (T -936)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *3)) (-4 *5 (-1105)) (-4 *3 (-13 (-425 *6) (-617 *4) (-890 *5) (-1042 (-614 $)))) (-5 *4 (-894 *5)) (-4 *6 (-13 (-561) (-890 *5))) (-5 *1 (-936 *5 *6 *3))))) +(-10 -7 (-15 -3201 ((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)))) +((-3201 (((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|)) 13))) +(((-937 |#1|) (-10 -7 (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|)))) (-549)) (T -937)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 (-550) *3)) (-5 *4 (-894 (-550))) (-4 *3 (-549)) (-5 *1 (-937 *3))))) +(-10 -7 (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|)))) +((-3201 (((-892 |#1| |#2|) (-614 |#2|) (-894 |#1|) (-892 |#1| |#2|)) 57))) +(((-938 |#1| |#2|) (-10 -7 (-15 -3201 ((-892 |#1| |#2|) (-614 |#2|) (-894 |#1|) (-892 |#1| |#2|)))) (-1105) (-13 (-1105) (-1042 (-614 $)) (-617 (-894 |#1|)) (-890 |#1|))) (T -938)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *6)) (-5 *3 (-614 *6)) (-4 *5 (-1105)) (-4 *6 (-13 (-1105) (-1042 (-614 $)) (-617 *4) (-890 *5))) (-5 *4 (-894 *5)) (-5 *1 (-938 *5 *6))))) +(-10 -7 (-15 -3201 ((-892 |#1| |#2|) (-614 |#2|) (-894 |#1|) (-892 |#1| |#2|)))) +((-3201 (((-889 |#1| |#2| |#3|) |#3| (-894 |#1|) (-889 |#1| |#2| |#3|)) 17))) +(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -3201 ((-889 |#1| |#2| |#3|) |#3| (-894 |#1|) (-889 |#1| |#2| |#3|)))) (-1105) (-890 |#1|) (-669 |#2|)) (T -939)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *6 (-890 *5)) (-4 *3 (-669 *6)) (-5 *1 (-939 *5 *6 *3))))) +(-10 -7 (-15 -3201 ((-889 |#1| |#2| |#3|) |#3| (-894 |#1|) (-889 |#1| |#2| |#3|)))) +((-3201 (((-892 |#1| |#5|) |#5| (-894 |#1|) (-892 |#1| |#5|)) 17 (|has| |#3| (-890 |#1|))) (((-892 |#1| |#5|) |#5| (-894 |#1|) (-892 |#1| |#5|) (-1 (-892 |#1| |#5|) |#3| (-894 |#1|) (-892 |#1| |#5|))) 16))) +(((-940 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3201 ((-892 |#1| |#5|) |#5| (-894 |#1|) (-892 |#1| |#5|) (-1 (-892 |#1| |#5|) |#3| (-894 |#1|) (-892 |#1| |#5|)))) (IF (|has| |#3| (-890 |#1|)) (-15 -3201 ((-892 |#1| |#5|) |#5| (-894 |#1|) (-892 |#1| |#5|))) |%noBranch|)) (-1105) (-796) (-853) (-13 (-1053) (-890 |#1|)) (-13 (-954 |#4| |#2| |#3|) (-617 (-894 |#1|)))) (T -940)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *3)) (-4 *5 (-1105)) (-4 *3 (-13 (-954 *8 *6 *7) (-617 *4))) (-5 *4 (-894 *5)) (-4 *7 (-890 *5)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-13 (-1053) (-890 *5))) (-5 *1 (-940 *5 *6 *7 *8 *3)))) (-3201 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-892 *6 *3) *8 (-894 *6) (-892 *6 *3))) (-4 *8 (-853)) (-5 *2 (-892 *6 *3)) (-5 *4 (-894 *6)) (-4 *6 (-1105)) (-4 *3 (-13 (-954 *9 *7 *8) (-617 *4))) (-4 *7 (-796)) (-4 *9 (-13 (-1053) (-890 *6))) (-5 *1 (-940 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3201 ((-892 |#1| |#5|) |#5| (-894 |#1|) (-892 |#1| |#5|) (-1 (-892 |#1| |#5|) |#3| (-894 |#1|) (-892 |#1| |#5|)))) (IF (|has| |#3| (-890 |#1|)) (-15 -3201 ((-892 |#1| |#5|) |#5| (-894 |#1|) (-892 |#1| |#5|))) |%noBranch|)) +((-3631 (((-316 (-550)) (-1181) (-644 (-1 (-112) |#1|))) 18) (((-316 (-550)) (-1181) (-1 (-112) |#1|)) 15))) +(((-941 |#1|) (-10 -7 (-15 -3631 ((-316 (-550)) (-1181) (-1 (-112) |#1|))) (-15 -3631 ((-316 (-550)) (-1181) (-644 (-1 (-112) |#1|))))) (-1220)) (T -941)) +((-3631 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1220)) (-5 *2 (-316 (-550))) (-5 *1 (-941 *5)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1220)) (-5 *2 (-316 (-550))) (-5 *1 (-941 *5))))) +(-10 -7 (-15 -3631 ((-316 (-550)) (-1181) (-1 (-112) |#1|))) (-15 -3631 ((-316 (-550)) (-1181) (-644 (-1 (-112) |#1|))))) +((-3631 ((|#2| |#2| (-644 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -3631 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3631 (|#2| |#2| (-644 (-1 (-112) |#3|))))) (-1105) (-425 |#1|) (-1220)) (T -942)) +((-3631 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1220)) (-4 *4 (-1105)) (-5 *1 (-942 *4 *2 *5)) (-4 *2 (-425 *4)))) (-3631 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1220)) (-4 *4 (-1105)) (-5 *1 (-942 *4 *2 *5)) (-4 *2 (-425 *4))))) +(-10 -7 (-15 -3631 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3631 (|#2| |#2| (-644 (-1 (-112) |#3|))))) +((-3201 (((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)) 25))) +(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -3201 ((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)))) (-1105) (-13 (-561) (-890 |#1|) (-617 (-894 |#1|))) (-995 |#2|)) (T -943)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *3)) (-4 *5 (-1105)) (-4 *3 (-995 *6)) (-4 *6 (-13 (-561) (-890 *5) (-617 *4))) (-5 *4 (-894 *5)) (-5 *1 (-943 *5 *6 *3))))) +(-10 -7 (-15 -3201 ((-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)))) +((-3201 (((-892 |#1| (-1181)) (-1181) (-894 |#1|) (-892 |#1| (-1181))) 18))) +(((-944 |#1|) (-10 -7 (-15 -3201 ((-892 |#1| (-1181)) (-1181) (-894 |#1|) (-892 |#1| (-1181))))) (-1105)) (T -944)) +((-3201 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 (-1181))) (-5 *3 (-1181)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-5 *1 (-944 *5))))) +(-10 -7 (-15 -3201 ((-892 |#1| (-1181)) (-1181) (-894 |#1|) (-892 |#1| (-1181))))) +((-3202 (((-892 |#1| |#3|) (-644 |#3|) (-644 (-894 |#1|)) (-892 |#1| |#3|) (-1 (-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|))) 34)) (-3201 (((-892 |#1| |#3|) (-644 |#3|) (-644 (-894 |#1|)) (-1 |#3| (-644 |#3|)) (-892 |#1| |#3|) (-1 (-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|))) 33))) +(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -3201 ((-892 |#1| |#3|) (-644 |#3|) (-644 (-894 |#1|)) (-1 |#3| (-644 |#3|)) (-892 |#1| |#3|) (-1 (-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)))) (-15 -3202 ((-892 |#1| |#3|) (-644 |#3|) (-644 (-894 |#1|)) (-892 |#1| |#3|) (-1 (-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|))))) (-1105) (-1053) (-13 (-1053) (-617 (-894 |#1|)) (-1042 |#2|))) (T -945)) +((-3202 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-894 *6))) (-5 *5 (-1 (-892 *6 *8) *8 (-894 *6) (-892 *6 *8))) (-4 *6 (-1105)) (-4 *8 (-13 (-1053) (-617 (-894 *6)) (-1042 *7))) (-5 *2 (-892 *6 *8)) (-4 *7 (-1053)) (-5 *1 (-945 *6 *7 *8)))) (-3201 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-644 (-894 *7))) (-5 *5 (-1 *9 (-644 *9))) (-5 *6 (-1 (-892 *7 *9) *9 (-894 *7) (-892 *7 *9))) (-4 *7 (-1105)) (-4 *9 (-13 (-1053) (-617 (-894 *7)) (-1042 *8))) (-5 *2 (-892 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1053)) (-5 *1 (-945 *7 *8 *9))))) +(-10 -7 (-15 -3201 ((-892 |#1| |#3|) (-644 |#3|) (-644 (-894 |#1|)) (-1 |#3| (-644 |#3|)) (-892 |#1| |#3|) (-1 (-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|)))) (-15 -3202 ((-892 |#1| |#3|) (-644 |#3|) (-644 (-894 |#1|)) (-892 |#1| |#3|) (-1 (-892 |#1| |#3|) |#3| (-894 |#1|) (-892 |#1| |#3|))))) +((-3210 (((-1175 (-411 (-550))) (-550)) 81)) (-3209 (((-1175 (-550)) (-550)) 84)) (-3760 (((-1175 (-550)) (-550)) 78)) (-3208 (((-550) (-1175 (-550))) 74)) (-3207 (((-1175 (-411 (-550))) (-550)) 65)) (-3206 (((-1175 (-550)) (-550)) 49)) (-3205 (((-1175 (-550)) (-550)) 86)) (-3204 (((-1175 (-550)) (-550)) 85)) (-3203 (((-1175 (-411 (-550))) (-550)) 67))) +(((-946) (-10 -7 (-15 -3203 ((-1175 (-411 (-550))) (-550))) (-15 -3204 ((-1175 (-550)) (-550))) (-15 -3205 ((-1175 (-550)) (-550))) (-15 -3206 ((-1175 (-550)) (-550))) (-15 -3207 ((-1175 (-411 (-550))) (-550))) (-15 -3208 ((-550) (-1175 (-550)))) (-15 -3760 ((-1175 (-550)) (-550))) (-15 -3209 ((-1175 (-550)) (-550))) (-15 -3210 ((-1175 (-411 (-550))) (-550))))) (T -946)) +((-3210 (*1 *2 *3) (-12 (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3209 (*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-1175 (-550))) (-5 *2 (-550)) (-5 *1 (-946)))) (-3207 (*1 *2 *3) (-12 (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3206 (*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-946)) (-5 *3 (-550))))) +(-10 -7 (-15 -3203 ((-1175 (-411 (-550))) (-550))) (-15 -3204 ((-1175 (-550)) (-550))) (-15 -3205 ((-1175 (-550)) (-550))) (-15 -3206 ((-1175 (-550)) (-550))) (-15 -3207 ((-1175 (-411 (-550))) (-550))) (-15 -3208 ((-550) (-1175 (-550)))) (-15 -3760 ((-1175 (-550)) (-550))) (-15 -3209 ((-1175 (-550)) (-550))) (-15 -3210 ((-1175 (-411 (-550))) (-550)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4272 (($ (-774)) NIL (|has| |#1| (-23)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-4140 (($ (-644 |#1|)) 9)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4269 (((-692 |#1|) $ $) NIL (|has| |#1| (-1053)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4266 ((|#1| $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1053))))) (-4150 (((-112) $ (-774)) NIL)) (-4267 ((|#1| $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1053))))) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-4202 (($ $ (-644 |#1|)) 25)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 18) (($ $ (-1237 (-550))) NIL)) (-4270 ((|#1| $ $) NIL (|has| |#1| (-1053)))) (-4345 (((-923) $) 13)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-4268 (($ $ $) 23)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539)))) (($ (-644 |#1|)) 14)) (-3955 (($ (-644 |#1|)) NIL)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4271 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4273 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-729))) (($ $ |#1|) NIL (|has| |#1| (-729)))) (-4391 (((-774) $) 11 (|has| $ (-6 -4427))))) +(((-947 |#1|) (-984 |#1|) (-1053)) (T -947)) +NIL +(-984 |#1|) +((-3213 (((-485 |#1| |#2|) (-950 |#2|)) 22)) (-3216 (((-248 |#1| |#2|) (-950 |#2|)) 35)) (-3214 (((-950 |#2|) (-485 |#1| |#2|)) 27)) (-3212 (((-248 |#1| |#2|) (-485 |#1| |#2|)) 57)) (-3215 (((-950 |#2|) (-248 |#1| |#2|)) 32)) (-3211 (((-485 |#1| |#2|) (-248 |#1| |#2|)) 48))) +(((-948 |#1| |#2|) (-10 -7 (-15 -3211 ((-485 |#1| |#2|) (-248 |#1| |#2|))) (-15 -3212 ((-248 |#1| |#2|) (-485 |#1| |#2|))) (-15 -3213 ((-485 |#1| |#2|) (-950 |#2|))) (-15 -3214 ((-950 |#2|) (-485 |#1| |#2|))) (-15 -3215 ((-950 |#2|) (-248 |#1| |#2|))) (-15 -3216 ((-248 |#1| |#2|) (-950 |#2|)))) (-644 (-1181)) (-1053)) (T -948)) +((-3216 (*1 *2 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1053)) (-5 *2 (-248 *4 *5)) (-5 *1 (-948 *4 *5)) (-14 *4 (-644 (-1181))))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) (-5 *2 (-950 *5)) (-5 *1 (-948 *4 *5)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) (-5 *2 (-950 *5)) (-5 *1 (-948 *4 *5)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1053)) (-5 *2 (-485 *4 *5)) (-5 *1 (-948 *4 *5)) (-14 *4 (-644 (-1181))))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) (-5 *2 (-248 *4 *5)) (-5 *1 (-948 *4 *5)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) (-5 *2 (-485 *4 *5)) (-5 *1 (-948 *4 *5))))) +(-10 -7 (-15 -3211 ((-485 |#1| |#2|) (-248 |#1| |#2|))) (-15 -3212 ((-248 |#1| |#2|) (-485 |#1| |#2|))) (-15 -3213 ((-485 |#1| |#2|) (-950 |#2|))) (-15 -3214 ((-950 |#2|) (-485 |#1| |#2|))) (-15 -3215 ((-950 |#2|) (-248 |#1| |#2|))) (-15 -3216 ((-248 |#1| |#2|) (-950 |#2|)))) +((-3217 (((-644 |#2|) |#2| |#2|) 10)) (-3220 (((-774) (-644 |#1|)) 48 (|has| |#1| (-851)))) (-3218 (((-644 |#2|) |#2|) 11)) (-3221 (((-774) (-644 |#1|) (-550) (-550)) 52 (|has| |#1| (-851)))) (-3219 ((|#1| |#2|) 38 (|has| |#1| (-851))))) +(((-949 |#1| |#2|) (-10 -7 (-15 -3217 ((-644 |#2|) |#2| |#2|)) (-15 -3218 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-851)) (PROGN (-15 -3219 (|#1| |#2|)) (-15 -3220 ((-774) (-644 |#1|))) (-15 -3221 ((-774) (-644 |#1|) (-550) (-550)))) |%noBranch|)) (-366) (-1246 |#1|)) (T -949)) +((-3221 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-550)) (-4 *5 (-851)) (-4 *5 (-366)) (-5 *2 (-774)) (-5 *1 (-949 *5 *6)) (-4 *6 (-1246 *5)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-851)) (-4 *4 (-366)) (-5 *2 (-774)) (-5 *1 (-949 *4 *5)) (-4 *5 (-1246 *4)))) (-3219 (*1 *2 *3) (-12 (-4 *2 (-366)) (-4 *2 (-851)) (-5 *1 (-949 *2 *3)) (-4 *3 (-1246 *2)))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-366)) (-5 *2 (-644 *3)) (-5 *1 (-949 *4 *3)) (-4 *3 (-1246 *4)))) (-3217 (*1 *2 *3 *3) (-12 (-4 *4 (-366)) (-5 *2 (-644 *3)) (-5 *1 (-949 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -3217 ((-644 |#2|) |#2| |#2|)) (-15 -3218 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-851)) (PROGN (-15 -3219 (|#1| |#2|)) (-15 -3220 ((-774) (-644 |#1|))) (-15 -3221 ((-774) (-644 |#1|) (-550) (-550)))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1181)) $) 16)) (-3489 (((-1175 $) $ (-1181)) 21) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1181))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) 8) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-1181) #2#) $) NIL)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-1181) $) NIL)) (-4190 (($ $ $ (-1181)) NIL (|has| |#1| (-173)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ (-1181)) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-535 (-1181)) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1181) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1181) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#1|) (-1181)) NIL) (($ (-1175 $) (-1181)) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-535 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1181)) NIL)) (-3225 (((-535 (-1181)) $) NIL) (((-774) $ (-1181)) NIL) (((-644 (-774)) $ (-644 (-1181))) NIL)) (-1772 (($ (-1 (-535 (-1181)) (-535 (-1181))) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3488 (((-3 (-1181) #3="failed") $) 19)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-1181)) (|:| -2566 (-774))) #3#) $) NIL)) (-4246 (($ $ (-1181)) 29 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1181) |#1|) NIL) (($ $ (-644 (-1181)) (-644 |#1|)) NIL) (($ $ (-1181) $) NIL) (($ $ (-644 (-1181)) (-644 $)) NIL)) (-4191 (($ $ (-1181)) NIL (|has| |#1| (-173)))) (-4244 (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-4382 (((-535 (-1181)) $) NIL) (((-774) $ (-1181)) NIL) (((-644 (-774)) $ (-644 (-1181))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-1181) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-1181) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-1181) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) NIL (|has| |#1| (-456))) (($ $ (-1181)) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) 25) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1181)) 27) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-535 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-950 |#1|) (-13 (-954 |#1| (-535 (-1181)) (-1181)) (-10 -8 (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1181))) |%noBranch|))) (-1053)) (T -950)) +((-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-950 *3)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053))))) +(-13 (-954 |#1| (-535 (-1181)) (-1181)) (-10 -8 (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1181))) |%noBranch|))) +((-4392 (((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)) 19))) +(((-951 |#1| |#2|) (-10 -7 (-15 -4392 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) (-1053) (-1053)) (T -951)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-5 *2 (-950 *6)) (-5 *1 (-951 *5 *6))))) +(-10 -7 (-15 -4392 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) +((-3489 (((-1239 |#1| (-950 |#2|)) (-950 |#2|) (-1267 |#1|)) 18))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3489 ((-1239 |#1| (-950 |#2|)) (-950 |#2|) (-1267 |#1|)))) (-1181) (-1053)) (T -952)) +((-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-1267 *5)) (-14 *5 (-1181)) (-4 *6 (-1053)) (-5 *2 (-1239 *5 (-950 *6))) (-5 *1 (-952 *5 *6)) (-5 *3 (-950 *6))))) +(-10 -7 (-15 -3489 ((-1239 |#1| (-950 |#2|)) (-950 |#2|) (-1267 |#1|)))) +((-3224 (((-774) $) 88) (((-774) $ (-644 |#4|)) 93)) (-4208 (($ $) 203)) (-4403 (((-409 $) $) 195)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 141)) (-3579 (((-3 |#2| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL) (((-3 (-550) #2#) $) NIL) (((-3 |#4| #2#) $) 74)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) NIL) (((-550) $) NIL) ((|#4| $) 73)) (-4190 (($ $ $ |#4|) 95)) (-2429 (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) 131) (((-692 |#2|) (-692 $)) 121)) (-3928 (($ $) 210) (($ $ |#4|) 213)) (-3223 (((-644 $) $) 77)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 229) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 222)) (-3226 (((-644 $) $) 34)) (-3296 (($ |#2| |#3|) NIL) (($ $ |#4| (-774)) NIL) (($ $ (-644 |#4|) (-644 (-774))) 71)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#4|) 192)) (-3228 (((-3 (-644 $) "failed") $) 52)) (-3227 (((-3 (-644 $) "failed") $) 39)) (-3229 (((-3 (-2 (|:| |var| |#4|) (|:| -2566 (-774))) "failed") $) 57)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 134)) (-3110 (((-409 (-1175 $)) (-1175 $)) 147)) (-3111 (((-409 (-1175 $)) (-1175 $)) 145)) (-4166 (((-409 $) $) 165)) (-4201 (($ $ (-644 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL)) (-4191 (($ $ |#4|) 97)) (-4404 (((-894 (-381)) $) 243) (((-894 (-550)) $) 236) (((-539) $) 251)) (-3222 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 184)) (-4111 ((|#2| $ |#3|) NIL) (($ $ |#4| (-774)) 62) (($ $ (-644 |#4|) (-644 (-774))) 69)) (-3107 (((-3 $ #1#) $) 186)) (-3664 (((-112) $ $) 216))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -3107 ((-3 |#1| #1="failed") |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3111 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3110 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3109 ((-3 (-644 (-1175 |#1|)) #1#) (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3108 ((-3 (-1270 |#1|) #1#) (-692 |#1|))) (-15 -3928 (|#1| |#1| |#4|)) (-15 -3222 (|#1| |#1| |#4|)) (-15 -4191 (|#1| |#1| |#4|)) (-15 -4190 (|#1| |#1| |#1| |#4|)) (-15 -3223 ((-644 |#1|) |#1|)) (-15 -3224 ((-774) |#1| (-644 |#4|))) (-15 -3224 ((-774) |#1|)) (-15 -3229 ((-3 (-2 (|:| |var| |#4|) (|:| -2566 (-774))) "failed") |#1|)) (-15 -3228 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3227 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3296 (|#1| |#1| (-644 |#4|) (-644 (-774)))) (-15 -3296 (|#1| |#1| |#4| (-774))) (-15 -4196 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1| |#4|)) (-15 -3226 ((-644 |#1|) |#1|)) (-15 -4111 (|#1| |#1| (-644 |#4|) (-644 (-774)))) (-15 -4111 (|#1| |#1| |#4| (-774))) (-15 -2429 ((-692 |#2|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -3579 ((-3 |#4| #2="failed") |#1|)) (-15 -3578 (|#4| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#4| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#4| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3296 (|#1| |#2| |#3|)) (-15 -4111 (|#2| |#1| |#3|)) (-15 -3579 ((-3 (-550) #2#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #2#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #2#) |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3664 ((-112) |#1| |#1|))) (-954 |#2| |#3| |#4|) (-1053) (-796) (-853)) (T -953)) +NIL +(-10 -8 (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -3107 ((-3 |#1| #1="failed") |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3111 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3110 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3109 ((-3 (-644 (-1175 |#1|)) #1#) (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3108 ((-3 (-1270 |#1|) #1#) (-692 |#1|))) (-15 -3928 (|#1| |#1| |#4|)) (-15 -3222 (|#1| |#1| |#4|)) (-15 -4191 (|#1| |#1| |#4|)) (-15 -4190 (|#1| |#1| |#1| |#4|)) (-15 -3223 ((-644 |#1|) |#1|)) (-15 -3224 ((-774) |#1| (-644 |#4|))) (-15 -3224 ((-774) |#1|)) (-15 -3229 ((-3 (-2 (|:| |var| |#4|) (|:| -2566 (-774))) "failed") |#1|)) (-15 -3228 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3227 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3296 (|#1| |#1| (-644 |#4|) (-644 (-774)))) (-15 -3296 (|#1| |#1| |#4| (-774))) (-15 -4196 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1| |#4|)) (-15 -3226 ((-644 |#1|) |#1|)) (-15 -4111 (|#1| |#1| (-644 |#4|) (-644 (-774)))) (-15 -4111 (|#1| |#1| |#4| (-774))) (-15 -2429 ((-692 |#2|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -3579 ((-3 |#4| #2="failed") |#1|)) (-15 -3578 (|#4| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#4| |#1|)) (-15 -4201 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -4201 (|#1| |#1| |#4| |#2|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3296 (|#1| |#2| |#3|)) (-15 -4111 (|#2| |#1| |#3|)) (-15 -3579 ((-3 (-550) #2#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #2#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #2#) |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3664 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 |#3|) $) 112)) (-3489 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2243 (($ $) 90 (|has| |#1| (-561)))) (-2241 (((-112) $) 92 (|has| |#1| (-561)))) (-3224 (((-774) $) 114) (((-774) $ (-644 |#3|)) 113)) (-1408 (((-3 $ "failed") $ $) 20)) (-3112 (((-409 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-914)))) (-4208 (($ $) 100 (|has| |#1| (-456)))) (-4403 (((-409 $) $) 99 (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-914)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| #2="failed") $) 166) (((-3 (-411 (-550)) #2#) $) 163 (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) 161 (|has| |#1| (-1042 (-550)))) (((-3 |#3| #2#) $) 138)) (-3578 ((|#1| $) 165) (((-411 (-550)) $) 164 (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) 162 (|has| |#1| (-1042 (-550)))) ((|#3| $) 139)) (-4190 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-4393 (($ $) 156)) (-2429 (((-692 (-550)) (-692 $)) 136 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 135 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 134) (((-692 |#1|) (-692 $)) 133)) (-3892 (((-3 $ "failed") $) 37)) (-3928 (($ $) 178 (|has| |#1| (-456))) (($ $ |#3|) 107 (|has| |#1| (-456)))) (-3223 (((-644 $) $) 111)) (-4157 (((-112) $) 98 (|has| |#1| (-914)))) (-1771 (($ $ |#1| |#2| $) 174)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 86 (-12 (|has| |#3| (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 85 (-12 (|has| |#3| (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-2575 (((-112) $) 35)) (-2583 (((-774) $) 171)) (-3490 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-3226 (((-644 $) $) 128)) (-4371 (((-112) $) 154)) (-3296 (($ |#1| |#2|) 155) (($ $ |#3| (-774)) 121) (($ $ (-644 |#3|) (-644 (-774))) 120)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#3|) 122)) (-3225 ((|#2| $) 172) (((-774) $ |#3|) 124) (((-644 (-774)) $ (-644 |#3|)) 123)) (-1772 (($ (-1 |#2| |#2|) $) 173)) (-4392 (($ (-1 |#1| |#1|) $) 153)) (-3488 (((-3 |#3| "failed") $) 125)) (-3297 (($ $) 151)) (-3596 ((|#1| $) 150)) (-2071 (($ (-644 $)) 96 (|has| |#1| (-456))) (($ $ $) 95 (|has| |#1| (-456)))) (-3665 (((-1163) $) 10)) (-3228 (((-3 (-644 $) "failed") $) 116)) (-3227 (((-3 (-644 $) "failed") $) 117)) (-3229 (((-3 (-2 (|:| |var| |#3|) (|:| -2566 (-774))) "failed") $) 115)) (-3666 (((-1124) $) 11)) (-1974 (((-112) $) 168)) (-1973 ((|#1| $) 169)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-456)))) (-3566 (($ (-644 $)) 94 (|has| |#1| (-456))) (($ $ $) 93 (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-914)))) (-4166 (((-409 $) $) 101 (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-4191 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-4244 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-774)) 44) (($ $ (-644 |#3|) (-644 (-774))) 43)) (-4382 ((|#2| $) 152) (((-774) $ |#3|) 132) (((-644 (-774)) $ (-644 |#3|)) 131)) (-4404 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) 83 (-12 (|has| |#3| (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) 82 (-12 (|has| |#3| (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) 177 (|has| |#1| (-456))) (($ $ |#3|) 108 (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 106 (-3258 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-561))) (($ (-411 (-550))) 80 (-3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))))) (-4251 (((-644 |#1|) $) 170)) (-4111 ((|#1| $ |#2|) 157) (($ $ |#3| (-774)) 130) (($ $ (-644 |#3|) (-644 (-774))) 129)) (-3107 (((-3 $ "failed") $) 81 (-3962 (-3258 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) 32 T CONST)) (-1770 (($ $ $ (-774)) 175 (|has| |#1| (-173)))) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 91 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-774)) 40) (($ $ (-644 |#3|) (-644 (-774))) 39)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 158 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 160 (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) 159 (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-954 |#1| |#2| |#3|) (-140) (-1053) (-796) (-853)) (T -954)) +((-3928 (*1 *1 *1) (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456)))) (-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-954 *4 *5 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-774)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 (-774))))) (-4111 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-954 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *2 (-853)))) (-4111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-774))) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)))) (-3226 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-954 *3 *4 *5)))) (-3489 (*1 *2 *1 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-1175 *1)) (-4 *1 (-954 *4 *5 *3)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-1175 *3)))) (-3488 (*1 *2 *1) (|partial| -12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3225 (*1 *2 *1 *3) (-12 (-4 *1 (-954 *4 *5 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-774)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 (-774))))) (-4196 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-954 *4 *5 *3)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-954 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *2 (-853)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-774))) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)))) (-3490 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *4)) (-4 *4 (-1053)) (-4 *1 (-954 *4 *5 *3)) (-4 *5 (-796)) (-4 *3 (-853)))) (-3490 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-954 *4 *5 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-954 *3 *4 *5)))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-954 *3 *4 *5)))) (-3229 (*1 *2 *1) (|partial| -12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| |var| *5) (|:| -2566 (-774)))))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-774)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-774)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *5)))) (-3223 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-954 *3 *4 *5)))) (-4190 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *3 (-173)))) (-4191 (*1 *1 *1 *2) (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *3 (-173)))) (-3222 (*1 *1 *1 *2) (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *3 (-456)))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *3 (-456)))) (-4208 (*1 *1 *1) (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456)))) (-4403 (*1 *2 *1) (-12 (-4 *3 (-456)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-409 *1)) (-4 *1 (-954 *3 *4 *5))))) +(-13 (-904 |t#3|) (-328 |t#1| |t#2|) (-311 $) (-518 |t#3| |t#1|) (-518 |t#3| $) (-1042 |t#3|) (-380 |t#1|) (-10 -8 (-15 -4382 ((-774) $ |t#3|)) (-15 -4382 ((-644 (-774)) $ (-644 |t#3|))) (-15 -4111 ($ $ |t#3| (-774))) (-15 -4111 ($ $ (-644 |t#3|) (-644 (-774)))) (-15 -3226 ((-644 $) $)) (-15 -3489 ((-1175 $) $ |t#3|)) (-15 -3489 ((-1175 |t#1|) $)) (-15 -3488 ((-3 |t#3| "failed") $)) (-15 -3225 ((-774) $ |t#3|)) (-15 -3225 ((-644 (-774)) $ (-644 |t#3|))) (-15 -4196 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |t#3|)) (-15 -3296 ($ $ |t#3| (-774))) (-15 -3296 ($ $ (-644 |t#3|) (-644 (-774)))) (-15 -3490 ($ (-1175 |t#1|) |t#3|)) (-15 -3490 ($ (-1175 $) |t#3|)) (-15 -3227 ((-3 (-644 $) "failed") $)) (-15 -3228 ((-3 (-644 $) "failed") $)) (-15 -3229 ((-3 (-2 (|:| |var| |t#3|) (|:| -2566 (-774))) "failed") $)) (-15 -3224 ((-774) $)) (-15 -3224 ((-774) $ (-644 |t#3|))) (-15 -3487 ((-644 |t#3|) $)) (-15 -3223 ((-644 $) $)) (IF (|has| |t#1| (-617 (-539))) (IF (|has| |t#3| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-617 (-894 (-550)))) (IF (|has| |t#3| (-617 (-894 (-550)))) (-6 (-617 (-894 (-550)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-617 (-894 (-381)))) (IF (|has| |t#3| (-617 (-894 (-381)))) (-6 (-617 (-894 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-890 (-550))) (IF (|has| |t#3| (-890 (-550))) (-6 (-890 (-550))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-890 (-381))) (IF (|has| |t#3| (-890 (-381))) (-6 (-890 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4190 ($ $ $ |t#3|)) (-15 -4191 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-456)) (PROGN (-6 (-456)) (-15 -3222 ($ $ |t#3|)) (-15 -3928 ($ $)) (-15 -3928 ($ $ |t#3|)) (-15 -4403 ((-409 $) $)) (-15 -4208 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4425)) (-6 -4425) |%noBranch|) (IF (|has| |t#1| (-914)) (-6 (-914)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 |#3|) . T) ((-619 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-617 (-539)) -12 (|has| |#1| (-617 (-539))) (|has| |#3| (-617 (-539)))) ((-617 (-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#3| (-617 (-894 (-381))))) ((-617 (-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#3| (-617 (-894 (-550))))) ((-292) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-311 $) . T) ((-328 |#1| |#2|) . T) ((-380 |#1|) . T) ((-416 |#1|) . T) ((-456) -3962 (|has| |#1| (-914)) (|has| |#1| (-456))) ((-518 |#3| |#1|) . T) ((-518 |#3| $) . T) ((-518 $ $) . T) ((-561) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-729) . T) ((-904 |#3|) . T) ((-890 (-381)) -12 (|has| |#1| (-890 (-381))) (|has| |#3| (-890 (-381)))) ((-890 (-550)) -12 (|has| |#1| (-890 (-550))) (|has| |#3| (-890 (-550)))) ((-914) |has| |#1| (-914)) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1042 |#3|) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) |has| |#1| (-914))) +((-3487 (((-644 |#2|) |#5|) 40)) (-3489 (((-1175 |#5|) |#5| |#2| (-1175 |#5|)) 23) (((-411 (-1175 |#5|)) |#5| |#2|) 16)) (-3490 ((|#5| (-411 (-1175 |#5|)) |#2|) 30)) (-3488 (((-3 |#2| "failed") |#5|) 71)) (-3228 (((-3 (-644 |#5|) "failed") |#5|) 65)) (-3230 (((-3 (-2 (|:| |val| |#5|) (|:| -2566 (-550))) "failed") |#5|) 53)) (-3227 (((-3 (-644 |#5|) "failed") |#5|) 67)) (-3229 (((-3 (-2 (|:| |var| |#2|) (|:| -2566 (-550))) "failed") |#5|) 57))) +(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3487 ((-644 |#2|) |#5|)) (-15 -3488 ((-3 |#2| "failed") |#5|)) (-15 -3489 ((-411 (-1175 |#5|)) |#5| |#2|)) (-15 -3490 (|#5| (-411 (-1175 |#5|)) |#2|)) (-15 -3489 ((-1175 |#5|) |#5| |#2| (-1175 |#5|))) (-15 -3227 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3228 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3229 ((-3 (-2 (|:| |var| |#2|) (|:| -2566 (-550))) "failed") |#5|)) (-15 -3230 ((-3 (-2 (|:| |val| |#5|) (|:| -2566 (-550))) "failed") |#5|))) (-796) (-853) (-1053) (-954 |#3| |#1| |#2|) (-13 (-366) (-10 -8 (-15 -4380 ($ |#4|)) (-15 -3401 (|#4| $)) (-15 -3400 (|#4| $))))) (T -955)) +((-3230 (*1 *2 *3) (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2566 (-550)))) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) (-3229 (*1 *2 *3) (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2566 (-550)))) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) (-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) (-3227 (*1 *2 *3) (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) (-3489 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))) (-4 *7 (-954 *6 *5 *4)) (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-1053)) (-5 *1 (-955 *5 *4 *6 *7 *3)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-1175 *2))) (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-1053)) (-4 *2 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))) (-5 *1 (-955 *5 *4 *6 *7 *2)) (-4 *7 (-954 *6 *5 *4)))) (-3489 (*1 *2 *3 *4) (-12 (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *5 *4)) (-5 *2 (-411 (-1175 *3))) (-5 *1 (-955 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) (-3488 (*1 *2 *3) (|partial| -12 (-4 *4 (-796)) (-4 *5 (-1053)) (-4 *6 (-954 *5 *4 *2)) (-4 *2 (-853)) (-5 *1 (-955 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *6)) (-15 -3401 (*6 $)) (-15 -3400 (*6 $))))))) (-3487 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-644 *5)) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) +(-10 -7 (-15 -3487 ((-644 |#2|) |#5|)) (-15 -3488 ((-3 |#2| "failed") |#5|)) (-15 -3489 ((-411 (-1175 |#5|)) |#5| |#2|)) (-15 -3490 (|#5| (-411 (-1175 |#5|)) |#2|)) (-15 -3489 ((-1175 |#5|) |#5| |#2| (-1175 |#5|))) (-15 -3227 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3228 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3229 ((-3 (-2 (|:| |var| |#2|) (|:| -2566 (-550))) "failed") |#5|)) (-15 -3230 ((-3 (-2 (|:| |val| |#5|) (|:| -2566 (-550))) "failed") |#5|))) +((-4392 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4392 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-796) (-853) (-1053) (-954 |#3| |#1| |#2|) (-13 (-1105) (-10 -8 (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-774)))))) (T -956)) +((-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-853)) (-4 *8 (-1053)) (-4 *6 (-796)) (-4 *2 (-13 (-1105) (-10 -8 (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-774)))))) (-5 *1 (-956 *6 *7 *8 *5 *2)) (-4 *5 (-954 *8 *6 *7))))) +(-10 -7 (-15 -4392 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3231 (((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) |#3| (-774)) 49)) (-3232 (((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) (-411 (-550)) (-774)) 44)) (-3234 (((-2 (|:| -2566 (-774)) (|:| -4388 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-774)) 65)) (-3233 (((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) |#5| (-774)) 74 (|has| |#3| (-456))))) +(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3231 ((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) |#3| (-774))) (-15 -3232 ((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) (-411 (-550)) (-774))) (IF (|has| |#3| (-456)) (-15 -3233 ((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) |#5| (-774))) |%noBranch|) (-15 -3234 ((-2 (|:| -2566 (-774)) (|:| -4388 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-774)))) (-796) (-853) (-561) (-954 |#3| |#1| |#2|) (-13 (-366) (-10 -8 (-15 -4380 ($ |#4|)) (-15 -3401 (|#4| $)) (-15 -3400 (|#4| $))))) (T -957)) +((-3234 (*1 *2 *3 *4) (-12 (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-561)) (-4 *3 (-954 *7 *5 *6)) (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *3) (|:| |radicand| (-644 *3)))) (-5 *1 (-957 *5 *6 *7 *3 *8)) (-5 *4 (-774)) (-4 *8 (-13 (-366) (-10 -8 (-15 -4380 ($ *3)) (-15 -3401 (*3 $)) (-15 -3400 (*3 $))))))) (-3233 (*1 *2 *3 *4) (-12 (-4 *7 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-561)) (-4 *8 (-954 *7 *5 *6)) (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *3) (|:| |radicand| *3))) (-5 *1 (-957 *5 *6 *7 *8 *3)) (-5 *4 (-774)) (-4 *3 (-13 (-366) (-10 -8 (-15 -4380 ($ *8)) (-15 -3401 (*8 $)) (-15 -3400 (*8 $))))))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-550))) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-561)) (-4 *8 (-954 *7 *5 *6)) (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *9) (|:| |radicand| *9))) (-5 *1 (-957 *5 *6 *7 *8 *9)) (-5 *4 (-774)) (-4 *9 (-13 (-366) (-10 -8 (-15 -4380 ($ *8)) (-15 -3401 (*8 $)) (-15 -3400 (*8 $))))))) (-3231 (*1 *2 *3 *4) (-12 (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-561)) (-4 *7 (-954 *3 *5 *6)) (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *8) (|:| |radicand| *8))) (-5 *1 (-957 *5 *6 *3 *7 *8)) (-5 *4 (-774)) (-4 *8 (-13 (-366) (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) +(-10 -7 (-15 -3231 ((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) |#3| (-774))) (-15 -3232 ((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) (-411 (-550)) (-774))) (IF (|has| |#3| (-456)) (-15 -3233 ((-2 (|:| -2566 (-774)) (|:| -4388 |#5|) (|:| |radicand| |#5|)) |#5| (-774))) |%noBranch|) (-15 -3234 ((-2 (|:| -2566 (-774)) (|:| -4388 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-774)))) +((-2970 (((-112) $ $) NIL)) (-3235 (($ (-1124)) 8)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 15) (((-1124) $) 12)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 11))) +(((-958) (-13 (-1105) (-616 (-1124)) (-10 -8 (-15 -3235 ($ (-1124)))))) (T -958)) +((-3235 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-958))))) +(-13 (-1105) (-616 (-1124)) (-10 -8 (-15 -3235 ($ (-1124))))) +((-3299 (((-1093 (-226)) $) 8)) (-3300 (((-1093 (-226)) $) 9)) (-3301 (((-644 (-644 (-947 (-226)))) $) 10)) (-4380 (((-866) $) 6))) +(((-959) (-140)) (T -959)) +((-3301 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-644 (-644 (-947 (-226))))))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1093 (-226))))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1093 (-226)))))) +(-13 (-616 (-866)) (-10 -8 (-15 -3301 ((-644 (-644 (-947 (-226)))) $)) (-15 -3300 ((-1093 (-226)) $)) (-15 -3299 ((-1093 (-226)) $)))) +(((-616 (-866)) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 78 (|has| |#1| (-561)))) (-2243 (($ $) 79 (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 34)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-4393 (($ $) 31)) (-3892 (((-3 $ "failed") $) 42)) (-3928 (($ $) NIL (|has| |#1| (-456)))) (-1771 (($ $ |#1| |#2| $) 62)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) 17)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| |#2|) NIL)) (-3225 ((|#2| $) 24)) (-1772 (($ (-1 |#2| |#2|) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3297 (($ $) 28)) (-3596 ((|#1| $) 26)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) 51)) (-1973 ((|#1| $) NIL)) (-4172 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-561))))) (-3891 (((-3 $ "failed") $ $) 91 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-561)))) (-4382 ((|#2| $) 22)) (-3222 ((|#1| $) NIL (|has| |#1| (-456)))) (-4380 (((-866) $) NIL) (($ (-550)) 46) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 41) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ |#2|) 37)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) 15 T CONST)) (-1770 (($ $ $ (-774)) 74 (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) 84 (|has| |#1| (-561)))) (-3512 (($) 27 T CONST)) (-3069 (($) 12 T CONST)) (-3457 (((-112) $ $) 83)) (-4383 (($ $ |#1|) 92 (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) 69) (($ $ (-774)) 67)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-960 |#1| |#2|) (-13 (-328 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -4172 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4425)) (-6 -4425) |%noBranch|))) (-1053) (-795)) (T -960)) +((-4172 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *2 (-795))))) +(-13 (-328 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -4172 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4425)) (-6 -4425) |%noBranch|))) +((-3236 (((-3 (-692 |#1|) "failed") |#2| (-923)) 18))) +(((-961 |#1| |#2|) (-10 -7 (-15 -3236 ((-3 (-692 |#1|) "failed") |#2| (-923)))) (-561) (-661 |#1|)) (T -961)) +((-3236 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-923)) (-4 *5 (-561)) (-5 *2 (-692 *5)) (-5 *1 (-961 *5 *3)) (-4 *3 (-661 *5))))) +(-10 -7 (-15 -3236 ((-3 (-692 |#1|) "failed") |#2| (-923)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) |#1|) 19 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 18 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 16)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) |#1|) 15)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) 11 (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) 20 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) 17) (($ $ (-1237 (-550))) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) 21)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 14)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4391 (((-774) $) 8 (|has| $ (-6 -4427))))) +(((-962 |#1|) (-19 |#1|) (-1220)) (T -962)) NIL (-19 |#1|) -((-4273 (((-961 |#2|) (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|) 16)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|) 18)) (-4390 (((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)) 13))) -(((-962 |#1| |#2|) (-10 -7 (-15 -4273 ((-961 |#2|) (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4390 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) (-1219) (-1219)) (T -962)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-961 *6)) (-5 *1 (-962 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-962 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-961 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-961 *5)) (-5 *1 (-962 *6 *5))))) -(-10 -7 (-15 -4273 ((-961 |#2|) (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4390 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) -((-3235 (($ $ (-1095 $)) 7) (($ $ (-1180)) 6))) -(((-963) (-140)) (T -963)) -((-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-963)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-1180))))) -(-13 (-10 -8 (-15 -3235 ($ $ (-1180))) (-15 -3235 ($ $ (-1095 $))))) -((-3236 (((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)) (-1180)) 30) (((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180))) 31) (((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 |#1|))) (-949 |#1|) (-1180) (-949 |#1|) (-1180)) 49))) -(((-964 |#1|) (-10 -7 (-15 -3236 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 |#1|))) (-949 |#1|) (-1180) (-949 |#1|) (-1180))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)) (-1180)))) (-13 (-365) (-147))) (T -964)) -((-3236 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-5 *5 (-1180)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *6))) (|:| |prim| (-1174 *6)))) (-5 *1 (-964 *6)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-964 *5)))) (-3236 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-1180)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 *5)))) (-5 *1 (-964 *5))))) -(-10 -7 (-15 -3236 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 |#1|))) (-949 |#1|) (-1180) (-949 |#1|) (-1180))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)) (-1180)))) -((-3239 (((-643 |#1|) |#1| |#1|) 47)) (-4155 (((-112) |#1|) 44)) (-3238 ((|#1| |#1|) 80)) (-3237 ((|#1| |#1|) 79))) -(((-965 |#1|) (-10 -7 (-15 -4155 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3239 ((-643 |#1|) |#1| |#1|))) (-548)) (T -965)) -((-3239 (*1 *2 *3 *3) (-12 (-5 *2 (-643 *3)) (-5 *1 (-965 *3)) (-4 *3 (-548)))) (-3238 (*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548)))) (-3237 (*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548)))) (-4155 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-965 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -4155 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3239 ((-643 |#1|) |#1| |#1|))) -((-3240 (((-1275) (-865)) 9))) -(((-966) (-10 -7 (-15 -3240 ((-1275) (-865))))) (T -966)) -((-3240 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-966))))) -(-10 -7 (-15 -3240 ((-1275) (-865)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2805 (($ $ $) 65 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))) (-1407 (((-3 $ "failed") $ $) 52 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-3540 (((-773)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3241 ((|#2| $) 22)) (-3242 ((|#1| $) 21)) (-4156 (($) NIL (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) CONST)) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (-3395 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2573 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (-2934 (($ $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3260 (($ $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3243 (($ |#1| |#2|) 20)) (-2188 (((-922) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-2563 (($ (-922)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3664 (((-1123) $) NIL)) (-3410 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-2756 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4378 (((-865) $) 14)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 42 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) CONST)) (-3067 (($) 25 (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) CONST)) (-2966 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-2967 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3455 (((-112) $ $) 19)) (-3087 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3088 (((-112) $ $) 69 (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-4381 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4269 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4271 (($ $ $) 45 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (** (($ $ (-549)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-773)) 32 (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))) (($ $ (-922)) NIL (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (* (($ (-549) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-773) $) 48 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))) (($ (-922) $) NIL (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))) (($ $ $) 28 (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))))) -(((-967 |#1| |#2|) (-13 (-1104) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-728)) (IF (|has| |#2| (-728)) (-6 (-728)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-852)) (IF (|has| |#2| (-852)) (-6 (-852)) |%noBranch|) |%noBranch|) (-15 -3243 ($ |#1| |#2|)) (-15 -3242 (|#1| $)) (-15 -3241 (|#2| $)))) (-1104) (-1104)) (T -967)) -((-3243 (*1 *1 *2 *3) (-12 (-5 *1 (-967 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3242 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1104)))) (-3241 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *3 *2)) (-4 *3 (-1104))))) -(-13 (-1104) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-728)) (IF (|has| |#2| (-728)) (-6 (-728)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-852)) (IF (|has| |#2| (-852)) (-6 (-852)) |%noBranch|) |%noBranch|) (-15 -3243 ($ |#1| |#2|)) (-15 -3242 (|#1| $)) (-15 -3241 (|#2| $)))) -((-3826 (((-1106) $) 12)) (-3244 (($ (-509) (-1106)) 14)) (-3973 (((-509) $) 9)) (-4378 (((-865) $) 24))) -(((-968) (-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3826 ((-1106) $)) (-15 -3244 ($ (-509) (-1106)))))) (T -968)) -((-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-968)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968)))) (-3244 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-968))))) -(-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3826 ((-1106) $)) (-15 -3244 ($ (-509) (-1106))))) -((-2968 (((-112) $ $) NIL)) (-3258 (($) NIL T CONST)) (-3255 (($ $ $) 30)) (-3746 (($ $) 24)) (-3663 (((-1162) $) NIL)) (-3252 (((-693 |#1|) $) 36)) (-3249 (((-693 (-875 $ $)) $) 55)) (-3251 (((-693 $) $) 45)) (-3248 (((-693 (-875 $ $)) $) 56)) (-3247 (((-693 (-875 $ $)) $) 57)) (-3250 (((-693 (-875 $ $)) $) 54)) (-3254 (($ $ $) 31)) (-3664 (((-1123) $) NIL)) (-3257 (($) NIL T CONST)) (-3253 (($ $ $) 32)) (-3245 (($ $ $) 29)) (-3246 (($ $ $) 27)) (-4378 (((-865) $) 59) (($ |#1|) 12)) (-3662 (((-112) $ $) NIL)) (-3256 (($ $ $) 28)) (-3455 (((-112) $ $) NIL))) -(((-969 |#1|) (-13 (-970) (-618 |#1|) (-10 -8 (-15 -3252 ((-693 |#1|) $)) (-15 -3251 ((-693 $) $)) (-15 -3250 ((-693 (-875 $ $)) $)) (-15 -3249 ((-693 (-875 $ $)) $)) (-15 -3248 ((-693 (-875 $ $)) $)) (-15 -3247 ((-693 (-875 $ $)) $)) (-15 -3246 ($ $ $)) (-15 -3245 ($ $ $)))) (-1104)) (T -969)) -((-3252 (*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-693 (-969 *3))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3246 (*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104)))) (-3245 (*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104))))) -(-13 (-970) (-618 |#1|) (-10 -8 (-15 -3252 ((-693 |#1|) $)) (-15 -3251 ((-693 $) $)) (-15 -3250 ((-693 (-875 $ $)) $)) (-15 -3249 ((-693 (-875 $ $)) $)) (-15 -3248 ((-693 (-875 $ $)) $)) (-15 -3247 ((-693 (-875 $ $)) $)) (-15 -3246 ($ $ $)) (-15 -3245 ($ $ $)))) -((-2968 (((-112) $ $) 7)) (-3258 (($) 20 T CONST)) (-3255 (($ $ $) 16)) (-3746 (($ $) 18)) (-3663 (((-1162) $) 10)) (-3254 (($ $ $) 15)) (-3664 (((-1123) $) 11)) (-3257 (($) 19 T CONST)) (-3253 (($ $ $) 14)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3256 (($ $ $) 17)) (-3455 (((-112) $ $) 6))) -(((-970) (-140)) (T -970)) -((-3258 (*1 *1) (-4 *1 (-970))) (-3257 (*1 *1) (-4 *1 (-970))) (-3746 (*1 *1 *1) (-4 *1 (-970))) (-3256 (*1 *1 *1 *1) (-4 *1 (-970))) (-3255 (*1 *1 *1 *1) (-4 *1 (-970))) (-3254 (*1 *1 *1 *1) (-4 *1 (-970))) (-3253 (*1 *1 *1 *1) (-4 *1 (-970)))) -(-13 (-1104) (-10 -8 (-15 -3258 ($) -4384) (-15 -3257 ($) -4384) (-15 -3746 ($ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3254 ($ $ $)) (-15 -3253 ($ $ $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3259 (($ $ $) 44)) (-3941 (($ $ $) 45)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3260 ((|#1| $) 46)) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-971 |#1|) (-140) (-852)) (T -971)) -((-3260 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3260 (|t#1| $)) (-15 -3941 ($ $ $)) (-15 -3259 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-3272 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|) 105)) (-4187 ((|#2| |#2| |#2|) 103)) (-3273 (((-2 (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|) 107)) (-3274 (((-2 (|:| |coef1| |#2|) (|:| -3564 |#2|)) |#2| |#2|) 109)) (-3281 (((-2 (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|) 131 (|has| |#1| (-455)))) (-3288 (((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 56)) (-3262 (((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 80)) (-3263 (((-2 (|:| |coef1| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 82)) (-3271 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3266 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 89)) (-3276 (((-2 (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|) 121)) (-3269 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 92)) (-3278 (((-643 (-773)) |#2| |#2|) 102)) (-3286 ((|#1| |#2| |#2|) 50)) (-3280 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|) 129 (|has| |#1| (-455)))) (-3279 ((|#1| |#2| |#2|) 127 (|has| |#1| (-455)))) (-3287 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 54)) (-3261 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 79)) (-4188 ((|#1| |#2| |#2|) 76)) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|) 41)) (-3285 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3270 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3610 ((|#2| |#2| |#2|) 93)) (-3265 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 87)) (-3264 ((|#2| |#2| |#2| (-773)) 85)) (-3564 ((|#2| |#2| |#2|) 135 (|has| |#1| (-455)))) (-3889 (((-1269 |#2|) (-1269 |#2|) |#1|) 22)) (-3282 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|) 46)) (-3275 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|) 119)) (-4189 ((|#1| |#2|) 116)) (-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 91)) (-3267 ((|#2| |#2| |#2| (-773)) 90)) (-3277 (((-643 |#2|) |#2| |#2|) 99)) (-3284 ((|#2| |#2| |#1| |#1| (-773)) 62)) (-3283 ((|#1| |#1| |#1| (-773)) 61)) (* (((-1269 |#2|) |#1| (-1269 |#2|)) 17))) -(((-972 |#1| |#2|) (-10 -7 (-15 -4188 (|#1| |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3264 (|#2| |#2| |#2| (-773))) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3266 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3267 (|#2| |#2| |#2| (-773))) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3269 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3610 (|#2| |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4187 (|#2| |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3274 ((-2 (|:| |coef1| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -4189 (|#1| |#2|)) (-15 -3275 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3276 ((-2 (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3277 ((-643 |#2|) |#2| |#2|)) (-15 -3278 ((-643 (-773)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -3279 (|#1| |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3281 ((-2 (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -3889 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -4184 ((-2 (|:| -4386 |#1|) (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3282 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3283 (|#1| |#1| |#1| (-773))) (-15 -3284 (|#2| |#2| |#1| |#1| (-773))) (-15 -3285 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3286 (|#1| |#2| |#2|)) (-15 -3287 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3288 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|))) (-560) (-1245 |#1|)) (T -972)) -((-3288 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3287 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3286 (*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) (-3285 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3284 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3283 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *2 (-560)) (-5 *1 (-972 *2 *4)) (-4 *4 (-1245 *2)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4184 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -4386 *4) (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3889 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) (-5 *1 (-972 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) (-5 *1 (-972 *3 *4)))) (-3564 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3281 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3279 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3279 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-4 *2 (-455)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-773))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3276 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4189 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4189 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4189 (*1 *2 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3564 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3564 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3564 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4187 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3610 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3269 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3268 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3267 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4)))) (-3266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3265 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3264 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4188 (*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2))))) -(-10 -7 (-15 -4188 (|#1| |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3264 (|#2| |#2| |#2| (-773))) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3266 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3267 (|#2| |#2| |#2| (-773))) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3269 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3610 (|#2| |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4187 (|#2| |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3274 ((-2 (|:| |coef1| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -4189 (|#1| |#2|)) (-15 -3275 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3276 ((-2 (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3277 ((-643 |#2|) |#2| |#2|)) (-15 -3278 ((-643 (-773)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -3279 (|#1| |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3281 ((-2 (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -3889 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -4184 ((-2 (|:| -4386 |#1|) (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3282 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3283 (|#1| |#1| |#1| (-773))) (-15 -3284 (|#2| |#2| |#1| |#1| (-773))) (-15 -3285 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3286 (|#1| |#2| |#2|)) (-15 -3287 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3288 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|))) -((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 10)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-973) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $))))) (T -973)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-973)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-973))))) -(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) 39)) (-4156 (($) NIL T CONST)) (-3290 (((-643 (-643 (-549))) (-643 (-549))) 48)) (-3289 (((-549) $) 72)) (-3291 (($ (-643 (-549))) 18)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4402 (((-643 (-549)) $) 13)) (-3410 (($ $) 52)) (-4378 (((-865) $) 68) (((-643 (-549)) $) 11)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 8 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 26)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 25)) (-4271 (($ $ $) 28)) (* (($ (-922) $) NIL) (($ (-773) $) 37))) -(((-974) (-13 (-799) (-616 (-643 (-549))) (-615 (-643 (-549))) (-10 -8 (-15 -3291 ($ (-643 (-549)))) (-15 -3290 ((-643 (-643 (-549))) (-643 (-549)))) (-15 -3289 ((-549) $)) (-15 -3410 ($ $))))) (T -974)) -((-3291 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-974)))) (-3290 (*1 *2 *3) (-12 (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-974)) (-5 *3 (-643 (-549))))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-974)))) (-3410 (*1 *1 *1) (-5 *1 (-974)))) -(-13 (-799) (-616 (-643 (-549))) (-615 (-643 (-549))) (-10 -8 (-15 -3291 ($ (-643 (-549)))) (-15 -3290 ((-643 (-643 (-549))) (-643 (-549)))) (-15 -3289 ((-549) $)) (-15 -3410 ($ $)))) -((-4381 (($ $ |#2|) 31)) (-4269 (($ $) 23) (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-549)) $) 27) (($ $ (-410 (-549))) 29))) -(((-975 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4381 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-976 |#2| |#3| |#4|) (-1052) (-794) (-852)) (T -975)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4381 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#3|) $) 86)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-3293 (((-112) $) 85)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-643 |#3|) (-643 |#2|)) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4380 ((|#2| $) 76)) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-976 |#1| |#2| |#3|) (-140) (-1052) (-794) (-852)) (T -976)) -((-3594 (*1 *2 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *3 (-794)) (-4 *4 (-852)) (-4 *2 (-1052)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *2 *4)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *2 (-794)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-976 *4 *3 *2)) (-4 *4 (-1052)) (-4 *3 (-794)) (-4 *2 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 *5)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-794)) (-4 *6 (-852)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) (-5 *2 (-643 *5)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3294 ($ $ |t#3| |t#2|)) (-15 -3294 ($ $ (-643 |t#3|) (-643 |t#2|))) (-15 -3295 ($ $)) (-15 -3594 (|t#1| $)) (-15 -4380 (|t#2| $)) (-15 -3485 ((-643 |t#3|) $)) (-15 -3293 ((-112) $)) (-15 -3292 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-291) |has| |#1| (-560)) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-3296 (((-1092 (-225)) $) 8)) (-3297 (((-1092 (-225)) $) 9)) (-3298 (((-1092 (-225)) $) 10)) (-3299 (((-643 (-643 (-946 (-225)))) $) 11)) (-4378 (((-865) $) 6))) -(((-977) (-140)) (T -977)) -((-3299 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-643 (-643 (-946 (-225))))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) -(-13 (-615 (-865)) (-10 -8 (-15 -3299 ((-643 (-643 (-946 (-225)))) $)) (-15 -3298 ((-1092 (-225)) $)) (-15 -3297 ((-1092 (-225)) $)) (-15 -3296 ((-1092 (-225)) $)))) -(((-615 (-865)) . T)) -((-3485 (((-643 |#4|) $) 23)) (-3309 (((-112) $) 55)) (-3300 (((-112) $) 54)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#4|) 42)) (-3305 (((-112) $) 56)) (-3307 (((-112) $ $) 62)) (-3306 (((-112) $ $) 65)) (-3308 (((-112) $) 60)) (-3301 (((-643 |#5|) (-643 |#5|) $) 98)) (-3302 (((-643 |#5|) (-643 |#5|) $) 95)) (-3303 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3315 (((-643 |#4|) $) 27)) (-3314 (((-112) |#4| $) 34)) (-3304 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3311 (($ $ |#4|) 39)) (-3313 (($ $ |#4|) 38)) (-3312 (($ $ |#4|) 40)) (-3455 (((-112) $ $) 46))) -(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3300 ((-112) |#1|)) (-15 -3301 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3302 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3303 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3304 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3305 ((-112) |#1|)) (-15 -3306 ((-112) |#1| |#1|)) (-15 -3307 ((-112) |#1| |#1|)) (-15 -3308 ((-112) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3310 ((-2 (|:| |under| |#1|) (|:| -3534 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 ((-112) |#4| |#1|)) (-15 -3315 ((-643 |#4|) |#1|)) (-15 -3485 ((-643 |#4|) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-979 |#2| |#3| |#4| |#5|) (-1052) (-795) (-852) (-1068 |#2| |#3| |#4|)) (T -978)) -NIL -(-10 -8 (-15 -3300 ((-112) |#1|)) (-15 -3301 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3302 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3303 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3304 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3305 ((-112) |#1|)) (-15 -3306 ((-112) |#1| |#1|)) (-15 -3307 ((-112) |#1| |#1|)) (-15 -3308 ((-112) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3310 ((-2 (|:| |under| |#1|) (|:| -3534 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 ((-112) |#4| |#1|)) (-15 -3315 ((-643 |#4|) |#1|)) (-15 -3485 ((-643 |#4|) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425)))) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)))) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-3664 (((-1123) $) 11)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-979 |#1| |#2| |#3| |#4|) (-140) (-1052) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -979)) -((-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-1068 *3 *4 *2)) (-4 *2 (-852)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) (-3314 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *5 *3 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112)))) (-3313 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *5 (-1068 *3 *4 *2)))) (-3312 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *5 (-1068 *3 *4 *2)))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *5 (-1068 *3 *4 *2)))) (-3310 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3534 *1) (|:| |upper| *1))) (-4 *1 (-979 *4 *5 *3 *6)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3307 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3306 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3304 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3302 (*1 *2 *2 *1) (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)))) (-3301 (*1 *2 *2 *1) (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) -(-13 (-1104) (-151 |t#4|) (-615 (-643 |t#4|)) (-10 -8 (-6 -4425) (-15 -3577 ((-3 $ "failed") (-643 |t#4|))) (-15 -3576 ($ (-643 |t#4|))) (-15 -3600 (|t#3| $)) (-15 -3485 ((-643 |t#3|) $)) (-15 -3315 ((-643 |t#3|) $)) (-15 -3314 ((-112) |t#3| $)) (-15 -3313 ($ $ |t#3|)) (-15 -3312 ($ $ |t#3|)) (-15 -3311 ($ $ |t#3|)) (-15 -3310 ((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |t#3|)) (-15 -3309 ((-112) $)) (IF (|has| |t#1| (-560)) (PROGN (-15 -3308 ((-112) $)) (-15 -3307 ((-112) $ $)) (-15 -3306 ((-112) $ $)) (-15 -3305 ((-112) $)) (-15 -3304 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3303 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3302 ((-643 |t#4|) (-643 |t#4|) $)) (-15 -3301 ((-643 |t#4|) (-643 |t#4|) $)) (-15 -3300 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-1104) . T) ((-1219) . T)) -((-3317 (((-643 |#4|) |#4| |#4|) 136)) (-3340 (((-643 |#4|) (-643 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-643 |#4|) (-643 |#4|)) 126 (|has| |#1| (-455)))) (-3327 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 44)) (-3326 (((-112) |#4|) 43)) (-3339 (((-643 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3322 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-1 (-112) |#4|) (-643 |#4|)) 24)) (-3323 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|)) 30)) (-3324 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|)) 31)) (-3335 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|)) 90)) (-3337 (((-643 |#4|) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3338 (((-643 |#4|) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3316 (((-643 |#4|) (-643 |#4|)) 128)) (-3332 (((-643 |#4|) (-643 |#4|) (-643 |#4|) (-112)) 59) (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 61)) (-3333 ((|#4| |#4| (-643 |#4|)) 60)) (-3341 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 132 (|has| |#1| (-455)))) (-3343 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 135 (|has| |#1| (-455)))) (-3342 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 134 (|has| |#1| (-455)))) (-3318 (((-643 |#4|) (-643 |#4|) (-643 |#4|) (-1 (-643 |#4|) (-643 |#4|))) 105) (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 107) (((-643 |#4|) (-643 |#4|) |#4|) 140) (((-643 |#4|) |#4| |#4|) 137) (((-643 |#4|) (-643 |#4|)) 106)) (-3346 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3325 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 52)) (-3321 (((-112) (-643 |#4|)) 79)) (-3320 (((-112) (-643 |#4|) (-643 (-643 |#4|))) 67)) (-3329 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 37)) (-3328 (((-112) |#4|) 36)) (-3345 (((-643 |#4|) (-643 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3344 (((-643 |#4|) (-643 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3334 (((-643 |#4|) (-643 |#4|)) 83)) (-3336 (((-643 |#4|) (-643 |#4|)) 97)) (-3319 (((-112) (-643 |#4|) (-643 |#4|)) 65)) (-3331 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 50)) (-3330 (((-112) |#4|) 45))) -(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 ((-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) |#4| |#4|)) (-15 -3316 ((-643 |#4|) (-643 |#4|))) (-15 -3317 ((-643 |#4|) |#4| |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-1 (-643 |#4|) (-643 |#4|)))) (-15 -3319 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3320 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3321 ((-112) (-643 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-1 (-112) |#4|) (-643 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3326 ((-112) |#4|)) (-15 -3327 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3328 ((-112) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3330 ((-112) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-112))) (-15 -3333 (|#4| |#4| (-643 |#4|))) (-15 -3334 ((-643 |#4|) (-643 |#4|))) (-15 -3335 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|))) (-15 -3336 ((-643 |#4|) (-643 |#4|))) (-15 -3337 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3338 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3339 ((-643 |#4|) |#4|)) (-15 -3340 ((-643 |#4|) (-643 |#4|))) (-15 -3340 ((-643 |#4|) (-643 |#4|) (-112))) (-15 -3341 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3342 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3343 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -3344 ((-643 |#4|) (-643 |#4|))) (-15 -3345 ((-643 |#4|) (-643 |#4|))) (-15 -3346 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) |%noBranch|)) (-560) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -980)) -((-3346 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3343 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3342 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3340 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3338 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-980 *5 *6 *7 *8)))) (-3337 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-643 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *1 (-980 *6 *7 *8 *9)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3335 (*1 *2 *3) (|partial| -12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -3748 (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *2)))) (-3332 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3332 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *5 *6 *7 *8)))) (-3319 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3318 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-643 *7) (-643 *7))) (-5 *2 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3318 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3318 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *3)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) -(-10 -7 (-15 -3318 ((-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) |#4| |#4|)) (-15 -3316 ((-643 |#4|) (-643 |#4|))) (-15 -3317 ((-643 |#4|) |#4| |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-1 (-643 |#4|) (-643 |#4|)))) (-15 -3319 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3320 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3321 ((-112) (-643 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-1 (-112) |#4|) (-643 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3326 ((-112) |#4|)) (-15 -3327 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3328 ((-112) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3330 ((-112) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-112))) (-15 -3333 (|#4| |#4| (-643 |#4|))) (-15 -3334 ((-643 |#4|) (-643 |#4|))) (-15 -3335 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|))) (-15 -3336 ((-643 |#4|) (-643 |#4|))) (-15 -3337 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3338 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3339 ((-643 |#4|) |#4|)) (-15 -3340 ((-643 |#4|) (-643 |#4|))) (-15 -3340 ((-643 |#4|) (-643 |#4|) (-112))) (-15 -3341 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3342 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3343 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -3344 ((-643 |#4|) (-643 |#4|))) (-15 -3345 ((-643 |#4|) (-643 |#4|))) (-15 -3346 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) |%noBranch|)) -((-3347 (((-2 (|:| R (-691 |#1|)) (|:| A (-691 |#1|)) (|:| |Ainv| (-691 |#1|))) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3349 (((-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)) 44)) (-3348 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-981 |#1|) (-10 -7 (-15 -3347 ((-2 (|:| R (-691 |#1|)) (|:| A (-691 |#1|)) (|:| |Ainv| (-691 |#1|))) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3348 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3349 ((-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)))) (-365)) (T -981)) -((-3349 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-643 (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5))))) (-5 *1 (-981 *5)) (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)))) (-3348 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-691 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-981 *5)))) (-3347 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-691 *6)) (|:| A (-691 *6)) (|:| |Ainv| (-691 *6)))) (-5 *1 (-981 *6)) (-5 *3 (-691 *6))))) -(-10 -7 (-15 -3347 ((-2 (|:| R (-691 |#1|)) (|:| A (-691 |#1|)) (|:| |Ainv| (-691 |#1|))) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3348 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3349 ((-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)))) -((-4401 (((-408 |#4|) |#4|) 56))) -(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-408 |#4|) |#4|))) (-852) (-795) (-455) (-953 |#3| |#2| |#1|)) (T -982)) -((-4401 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-455)) (-5 *2 (-408 *3)) (-5 *1 (-982 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) -(-10 -7 (-15 -4401 ((-408 |#4|) |#4|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-4270 (($ (-773)) 113 (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-4138 (($ (-643 |#1|)) 119)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) 106 (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4264 ((|#1| $) 103 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-4148 (((-112) $ (-773)) 10)) (-4265 ((|#1| $) 104 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-4200 (($ $ (-643 |#1|)) 117)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-4268 ((|#1| $ $) 107 (|has| |#1| (-1052)))) (-4343 (((-922) $) 118)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-4266 (($ $ $) 105)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538)))) (($ (-643 |#1|)) 120)) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4269 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4271 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-549) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-728))) (($ $ |#1|) 108 (|has| |#1| (-728)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-983 |#1|) (-140) (-1052)) (T -983)) -((-4138 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-983 *3)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1052)) (-5 *2 (-922)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-1052)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-983 *3)) (-4 *3 (-1052))))) -(-13 (-1268 |t#1|) (-620 (-643 |t#1|)) (-10 -8 (-15 -4138 ($ (-643 |t#1|))) (-15 -4343 ((-922) $)) (-15 -4266 ($ $ $)) (-15 -4200 ($ $ (-643 |t#1|))))) -(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-620 (-643 |#1|)) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-19 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T) ((-1268 |#1|) . T)) -((-4390 (((-946 |#2|) (-1 |#2| |#1|) (-946 |#1|)) 17))) -(((-984 |#1| |#2|) (-10 -7 (-15 -4390 ((-946 |#2|) (-1 |#2| |#1|) (-946 |#1|)))) (-1052) (-1052)) (T -984)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-946 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-946 *6)) (-5 *1 (-984 *5 *6))))) -(-10 -7 (-15 -4390 ((-946 |#2|) (-1 |#2| |#1|) (-946 |#1|)))) -((-3352 ((|#1| (-946 |#1|)) 14)) (-3351 ((|#1| (-946 |#1|)) 13)) (-3350 ((|#1| (-946 |#1|)) 12)) (-3354 ((|#1| (-946 |#1|)) 16)) (-3358 ((|#1| (-946 |#1|)) 24)) (-3353 ((|#1| (-946 |#1|)) 15)) (-3355 ((|#1| (-946 |#1|)) 17)) (-3357 ((|#1| (-946 |#1|)) 23)) (-3356 ((|#1| (-946 |#1|)) 22))) -(((-985 |#1|) (-10 -7 (-15 -3350 (|#1| (-946 |#1|))) (-15 -3351 (|#1| (-946 |#1|))) (-15 -3352 (|#1| (-946 |#1|))) (-15 -3353 (|#1| (-946 |#1|))) (-15 -3354 (|#1| (-946 |#1|))) (-15 -3355 (|#1| (-946 |#1|))) (-15 -3356 (|#1| (-946 |#1|))) (-15 -3357 (|#1| (-946 |#1|))) (-15 -3358 (|#1| (-946 |#1|)))) (-1052)) (T -985)) -((-3358 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(-10 -7 (-15 -3350 (|#1| (-946 |#1|))) (-15 -3351 (|#1| (-946 |#1|))) (-15 -3352 (|#1| (-946 |#1|))) (-15 -3353 (|#1| (-946 |#1|))) (-15 -3354 (|#1| (-946 |#1|))) (-15 -3355 (|#1| (-946 |#1|))) (-15 -3356 (|#1| (-946 |#1|))) (-15 -3357 (|#1| (-946 |#1|))) (-15 -3358 (|#1| (-946 |#1|)))) -((-3376 (((-3 |#1| "failed") |#1|) 18)) (-3364 (((-3 |#1| "failed") |#1|) 6)) (-3374 (((-3 |#1| "failed") |#1|) 16)) (-3362 (((-3 |#1| "failed") |#1|) 4)) (-3378 (((-3 |#1| "failed") |#1|) 20)) (-3366 (((-3 |#1| "failed") |#1|) 8)) (-3359 (((-3 |#1| "failed") |#1| (-773)) 1)) (-3361 (((-3 |#1| "failed") |#1|) 3)) (-3360 (((-3 |#1| "failed") |#1|) 2)) (-3379 (((-3 |#1| "failed") |#1|) 21)) (-3367 (((-3 |#1| "failed") |#1|) 9)) (-3377 (((-3 |#1| "failed") |#1|) 19)) (-3365 (((-3 |#1| "failed") |#1|) 7)) (-3375 (((-3 |#1| "failed") |#1|) 17)) (-3363 (((-3 |#1| "failed") |#1|) 5)) (-3382 (((-3 |#1| "failed") |#1|) 24)) (-3370 (((-3 |#1| "failed") |#1|) 12)) (-3380 (((-3 |#1| "failed") |#1|) 22)) (-3368 (((-3 |#1| "failed") |#1|) 10)) (-3384 (((-3 |#1| "failed") |#1|) 26)) (-3372 (((-3 |#1| "failed") |#1|) 14)) (-3385 (((-3 |#1| "failed") |#1|) 27)) (-3373 (((-3 |#1| "failed") |#1|) 15)) (-3383 (((-3 |#1| "failed") |#1|) 25)) (-3371 (((-3 |#1| "failed") |#1|) 13)) (-3381 (((-3 |#1| "failed") |#1|) 23)) (-3369 (((-3 |#1| "failed") |#1|) 11))) -(((-986 |#1|) (-140) (-1205)) (T -986)) -((-3385 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3384 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3376 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3375 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3359 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-773)) (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(-13 (-10 -7 (-15 -3359 ((-3 |t#1| "failed") |t#1| (-773))) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -3375 ((-3 |t#1| "failed") |t#1|)) (-15 -3376 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)) (-15 -3384 ((-3 |t#1| "failed") |t#1|)) (-15 -3385 ((-3 |t#1| "failed") |t#1|)))) -((-3387 ((|#4| |#4| (-643 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3386 ((|#4| |#4| (-643 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4390 ((|#4| (-1 |#4| (-949 |#1|)) |#4|) 31))) -(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3386 (|#4| |#4| |#3|)) (-15 -3386 (|#4| |#4| (-643 |#3|))) (-15 -3387 (|#4| |#4| |#3|)) (-15 -3387 (|#4| |#4| (-643 |#3|))) (-15 -4390 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) (-1052) (-795) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180))))) (-953 (-949 |#1|) |#2| |#3|)) (T -987)) -((-4390 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1052)) (-4 *2 (-953 (-949 *4) *5 *6)) (-4 *5 (-795)) (-4 *6 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1="failed") (-1180)))))) (-5 *1 (-987 *4 *5 *6 *2)))) (-3387 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) (-4 *2 (-953 (-949 *4) *5 *6)))) (-3387 (*1 *2 *2 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) (-4 *2 (-953 (-949 *4) *5 *6)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3))))) -(-10 -7 (-15 -3386 (|#4| |#4| |#3|)) (-15 -3386 (|#4| |#4| (-643 |#3|))) (-15 -3387 (|#4| |#4| |#3|)) (-15 -3387 (|#4| |#4| (-643 |#3|))) (-15 -4390 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) -((-3388 ((|#2| |#3|) 35)) (-4351 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|) 79)) (-4350 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) 100))) -(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|)) (-15 -3388 (|#2| |#3|))) (-352) (-1245 |#1|) (-1245 |#2|) (-726 |#2| |#3|)) (T -988)) -((-3388 (*1 *2 *3) (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-988 *4 *2 *3 *5)) (-4 *4 (-352)) (-4 *5 (-726 *2 *3)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-988 *4 *3 *5 *6)) (-4 *6 (-726 *3 *5)))) (-4350 (*1 *2) (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-726 *4 *5))))) -(-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|)) (-15 -3388 (|#2| |#3|))) -((-2968 (((-112) $ $) NIL)) (-3825 (((-3 (-112) #1="failed") $) 71)) (-4081 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3392 (($ $ (-3 (-112) #1#)) 72)) (-3393 (($ (-643 |#4|) |#4|) 25)) (-3663 (((-1162) $) NIL)) (-3389 (($ $) 69)) (-3664 (((-1123) $) NIL)) (-3827 (((-112) $) 70)) (-3996 (($) 30)) (-3390 ((|#4| $) 74)) (-3391 (((-643 |#4|) $) 73)) (-4378 (((-865) $) 68)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-989 |#1| |#2| |#3| |#4|) (-13 (-1104) (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3393 ($ (-643 |#4|) |#4|)) (-15 -3825 ((-3 (-112) #1="failed") $)) (-15 -3392 ($ $ (-3 (-112) #1#))) (-15 -3827 ((-112) $)) (-15 -3391 ((-643 |#4|) $)) (-15 -3390 (|#4| $)) (-15 -3389 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -4081 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-852) (-795) (-953 |#1| |#3| |#2|)) (T -989)) -((-3996 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3)))) (-3393 (*1 *1 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-953 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *1 (-989 *4 *5 *6 *3)))) (-3825 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3827 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3391 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-643 *6)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)))) (-3389 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3)))) (-4081 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3))))) -(-13 (-1104) (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3393 ($ (-643 |#4|) |#4|)) (-15 -3825 ((-3 (-112) #1="failed") $)) (-15 -3392 ($ $ (-3 (-112) #1#))) (-15 -3827 ((-112) $)) (-15 -3391 ((-643 |#4|) $)) (-15 -3390 (|#4| $)) (-15 -3389 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -4081 ($ $)) |%noBranch|) |%noBranch|))) -((-3394 (((-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549)))) (-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549))))) 82))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3394 ((-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549)))) (-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549))))))) (-643 (-1180)) (-773)) (T -990)) -((-3394 (*1 *2 *2) (-12 (-5 *2 (-989 (-410 (-549)) (-866 *3) (-239 *4 (-773)) (-247 *3 (-410 (-549))))) (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-990 *3 *4))))) -(-10 -7 (-15 -3394 ((-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549)))) (-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549))))))) -((-3691 (((-112) |#5| |#5|) 44)) (-3694 (((-112) |#5| |#5|) 59)) (-3699 (((-112) |#5| (-643 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3695 (((-112) (-643 |#4|) (-643 |#4|)) 65)) (-3701 (((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 70)) (-3690 (((-1275)) 32)) (-3689 (((-1275) (-1162) (-1162) (-1162)) 28)) (-3700 (((-643 |#5|) (-643 |#5|)) 100)) (-3702 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) 92)) (-3703 (((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112)) 122)) (-3693 (((-112) |#5| |#5|) 53)) (-3698 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3696 (((-112) (-643 |#4|) (-643 |#4|)) 64)) (-3697 (((-112) (-643 |#4|) (-643 |#4|)) 66)) (-4131 (((-112) (-643 |#4|) (-643 |#4|)) 67)) (-3704 (((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3692 (((-643 |#5|) (-643 |#5|)) 49))) -(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -991)) -((-3704 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) (-5 *1 (-991 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) (-4 *4 (-1074 *6 *7 *8 *9)))) (-3703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) (-5 *1 (-991 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-991 *5 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-4131 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3690 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3689 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) -(-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4263 (((-1180) $) 15)) (-3826 (((-1162) $) 16)) (-3646 (($ (-1180) (-1162)) 14)) (-4378 (((-865) $) 13))) -(((-992) (-13 (-615 (-865)) (-10 -8 (-15 -3646 ($ (-1180) (-1162))) (-15 -4263 ((-1180) $)) (-15 -3826 ((-1162) $))))) (T -992)) -((-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-992)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-992)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-992))))) -(-13 (-615 (-865)) (-10 -8 (-15 -3646 ($ (-1180) (-1162))) (-15 -4263 ((-1180) $)) (-15 -3826 ((-1162) $)))) -((-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1180) #1#) $) 66) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) 96)) (-3576 ((|#2| $) NIL) (((-1180) $) 61) (((-410 (-549)) $) NIL) (((-549) $) 93)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 115) (((-691 |#2|) (-691 $)) 28)) (-3395 (($) 99)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 76) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 85)) (-3397 (($ $) 10)) (-3868 (((-3 $ "failed") $) 20)) (-4390 (($ (-1 |#2| |#2|) $) 22)) (-3869 (($) 16)) (-3532 (($ $) 55)) (-4242 (($ $) NIL) (($ $ (-773)) NIL) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3396 (($ $) 12)) (-4402 (((-893 (-549)) $) 71) (((-893 (-380)) $) 80) (((-538) $) 40) (((-380) $) 44) (((-225) $) 48)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 91) (($ |#2|) NIL) (($ (-1180)) 58)) (-3530 (((-773)) 31)) (-3088 (((-112) $ $) 51))) -(((-993 |#1| |#2|) (-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3395 (|#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-994 |#2|) (-560)) (T -993)) -((-3530 (*1 *2) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))) -(-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3395 (|#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 ((|#1| $) 147 (|has| |#1| (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 138 (|has| |#1| (-913)))) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-913)))) (-1753 (((-112) $ $) 65)) (-4055 (((-549) $) 128 (|has| |#1| (-822)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 185) (((-3 (-1180) #2#) $) 136 (|has| |#1| (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) 119 (|has| |#1| (-1041 (-549)))) (((-3 (-549) #2#) $) 117 (|has| |#1| (-1041 (-549))))) (-3576 ((|#1| $) 186) (((-1180) $) 137 (|has| |#1| (-1041 (-1180)))) (((-410 (-549)) $) 120 (|has| |#1| (-1041 (-549)))) (((-549) $) 118 (|has| |#1| (-1041 (-549))))) (-2964 (($ $ $) 61)) (-2427 (((-691 (-549)) (-691 $)) 160 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 159 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 158) (((-691 |#1|) (-691 $)) 157)) (-3890 (((-3 $ "failed") $) 37)) (-3395 (($) 145 (|has| |#1| (-548)))) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-3606 (((-112) $) 130 (|has| |#1| (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 154 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 153 (|has| |#1| (-889 (-380))))) (-2573 (((-112) $) 35)) (-3397 (($ $) 149)) (-3399 ((|#1| $) 151)) (-3868 (((-3 $ "failed") $) 116 (|has| |#1| (-1154)))) (-3607 (((-112) $) 129 (|has| |#1| (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) 58)) (-2934 (($ $ $) 126 (|has| |#1| (-852)))) (-3260 (($ $ $) 125 (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) 177)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3869 (($) 115 (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3532 (($ $) 146 (|has| |#1| (-308)))) (-3534 ((|#1| $) 143 (|has| |#1| (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 140 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 139 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 179 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 178 (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) 64)) (-4231 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4242 (($ $) 176 (|has| |#1| (-233))) (($ $ (-773)) 174 (|has| |#1| (-233))) (($ $ (-1180)) 172 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 171 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 170 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 169 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3396 (($ $) 148)) (-3398 ((|#1| $) 150)) (-4402 (((-893 (-549)) $) 156 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 155 (|has| |#1| (-616 (-893 (-380))))) (((-538) $) 133 (|has| |#1| (-616 (-538)))) (((-380) $) 132 (|has| |#1| (-1023))) (((-225) $) 131 (|has| |#1| (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 142 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ |#1|) 189) (($ (-1180)) 135 (|has| |#1| (-1041 (-1180))))) (-3105 (((-3 $ "failed") $) 134 (-3960 (|has| |#1| (-145)) (-3256 (|has| $ (-145)) (|has| |#1| (-913)))))) (-3530 (((-773)) 32 T CONST)) (-3535 ((|#1| $) 144 (|has| |#1| (-548)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 127 (|has| |#1| (-822)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 175 (|has| |#1| (-233))) (($ $ (-773)) 173 (|has| |#1| (-233))) (($ $ (-1180)) 168 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 167 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 166 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 165 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2966 (((-112) $ $) 123 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 122 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 124 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 121 (|has| |#1| (-852)))) (-4381 (($ $ $) 73) (($ |#1| |#1|) 152)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) -(((-994 |#1|) (-140) (-560)) (T -994)) -((-4381 (*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) (-3532 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) (-3395 (*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-560)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548))))) -(-13 (-365) (-38 |t#1|) (-1041 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-887 |t#1|) (-403 |t#1|) (-10 -8 (-15 -4381 ($ |t#1| |t#1|)) (-15 -3399 (|t#1| $)) (-15 -3398 (|t#1| $)) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-1041 (-549))) (PROGN (-6 (-1041 (-549))) (-6 (-1041 (-410 (-549))))) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1041 (-1180))) (-6 (-1041 (-1180))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3533 (|t#1| $)) (-15 -3532 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3395 ($)) (-15 -3535 (|t#1| $)) (-15 -3534 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-913)) (-6 (-913)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 #2=(-1180)) |has| |#1| (-1041 (-1180))) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-225)) |has| |#1| (-1023)) ((-616 (-380)) |has| |#1| (-1023)) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) . T) ((-719 |#1|) . T) ((-719 $) . T) ((-728) . T) ((-793) |has| |#1| (-822)) ((-794) |has| |#1| (-822)) ((-796) |has| |#1| (-822)) ((-799) |has| |#1| (-822)) ((-822) |has| |#1| (-822)) ((-850) |has| |#1| (-822)) ((-852) -3960 (|has| |#1| (-852)) (|has| |#1| (-822))) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-913) |has| |#1| (-913)) ((-924) . T) ((-1023) |has| |#1| (-1023)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-549))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #2#) |has| |#1| (-1041 (-1180))) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-1154)) ((-1219) . T) ((-1224) . T)) -((-4390 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) (-560) (-560) (-994 |#1|) (-994 |#2|)) (T -995)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-4 *2 (-994 *6)) (-5 *1 (-995 *5 *6 *4 *2)) (-4 *4 (-994 *5))))) -(-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3400 (($ (-1145 |#1| |#2|)) 11)) (-3528 (((-1145 |#1| |#2|) $) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL))) -(((-996 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3400 ($ (-1145 |#1| |#2|))) (-15 -3528 ((-1145 |#1| |#2|) $)) (-15 -4231 (|#2| $ (-239 |#1| |#2|))))) (-922) (-365)) (T -996)) -((-3400 (*1 *1 *2) (-12 (-5 *2 (-1145 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) (-5 *1 (-996 *3 *4)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1145 *3 *4)) (-5 *1 (-996 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) (-5 *1 (-996 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3400 ($ (-1145 |#1| |#2|))) (-15 -3528 ((-1145 |#1| |#2|) $)) (-15 -4231 (|#2| $ (-239 |#1| |#2|))))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 9)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-997) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $))))) (T -997)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-997))))) -(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-3403 (($ $) 47)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-4265 (((-773) $) 46)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-3402 ((|#1| $) 45)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3405 ((|#1| |#1| $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3404 ((|#1| $) 48)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-3401 ((|#1| $) 44)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-998 |#1|) (-140) (-1219)) (T -998)) -((-3405 (*1 *2 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-3403 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3405 (|t#1| |t#1| $)) (-15 -3404 (|t#1| $)) (-15 -3403 ($ $)) (-15 -4265 ((-773) $)) (-15 -3402 (|t#1| $)) (-15 -3401 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4075 ((|#1| $) 12)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL (|has| |#1| (-548)))) (-3424 (((-112) $) NIL (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| |#1| (-548)))) (-3406 (($ |#1| |#1| |#1| |#1|) 16)) (-2573 (((-112) $) NIL)) (-3536 ((|#1| $) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-3407 ((|#1| $) 15)) (-3408 ((|#1| $) 14)) (-3409 ((|#1| $) 13)) (-3664 (((-1123) $) NIL)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4242 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3410 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-1063)))) (-3510 (($) 8 T CONST)) (-3067 (($) 10 T CONST)) (-3072 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-365))))) -(((-999 |#1|) (-1001 |#1|) (-172)) (T -999)) -NIL -(-1001 |#1|) -((-3608 (((-112) $) 43)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 46)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 44)) (-3425 (((-3 (-410 (-549)) "failed") $) 78)) (-3424 (((-112) $) 72)) (-3423 (((-410 (-549)) $) 76)) (-2573 (((-112) $) 42)) (-3536 ((|#2| $) 22)) (-4390 (($ (-1 |#2| |#2|) $) 19)) (-2806 (($ $) 58)) (-4242 (($ $) NIL) (($ $ (-773)) NIL) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-4402 (((-538) $) 67)) (-3410 (($ $) 17)) (-4378 (((-865) $) 53) (($ (-549)) 39) (($ |#2|) 37) (($ (-410 (-549))) NIL)) (-3530 (((-773)) 10)) (-3807 ((|#2| $) 71)) (-3455 (((-112) $ $) 26)) (-3088 (((-112) $ $) 69)) (-4269 (($ $) 30) (($ $ $) 29)) (-4271 (($ $ $) 27)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) -(((-1000 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -3088 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 -2806 (|#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -2573 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-1001 |#2|) (-172)) (T -1000)) -((-3530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-1000 *3 *4)) (-4 *3 (-1001 *4))))) -(-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -3088 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 -2806 (|#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -2573 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 127 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 125 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 122)) (-3576 (((-549) $) 126 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 124 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 123)) (-2427 (((-691 (-549)) (-691 $)) 97 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 96 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 95) (((-691 |#1|) (-691 $)) 94)) (-3890 (((-3 $ "failed") $) 37)) (-4075 ((|#1| $) 87)) (-3425 (((-3 (-410 (-549)) "failed") $) 83 (|has| |#1| (-548)))) (-3424 (((-112) $) 85 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 84 (|has| |#1| (-548)))) (-3406 (($ |#1| |#1| |#1| |#1|) 88)) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 89)) (-2934 (($ $ $) 76 (|has| |#1| (-852)))) (-3260 (($ $ $) 75 (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) 98)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 80 (|has| |#1| (-365)))) (-3407 ((|#1| $) 90)) (-3408 ((|#1| $) 91)) (-3409 ((|#1| $) 92)) (-3664 (((-1123) $) 11)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 100 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 99 (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-4242 (($ $) 121 (|has| |#1| (-233))) (($ $ (-773)) 119 (|has| |#1| (-233))) (($ $ (-1180)) 117 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 116 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 115 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 114 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-4402 (((-538) $) 81 (|has| |#1| (-616 (-538))))) (-3410 (($ $) 93)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ (-410 (-549))) 70 (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3807 ((|#1| $) 86 (|has| |#1| (-1063)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 120 (|has| |#1| (-233))) (($ $ (-773)) 118 (|has| |#1| (-233))) (($ $ (-1180)) 113 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 112 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 111 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 110 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2966 (((-112) $ $) 73 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 72 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 74 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 71 (|has| |#1| (-852)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 79 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-549))) 78 (|has| |#1| (-365))) (($ (-410 (-549)) $) 77 (|has| |#1| (-365))))) -(((-1001 |#1|) (-140) (-172)) (T -1001)) -((-3410 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3406 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549)))))) -(-13 (-38 |t#1|) (-415 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -3410 ($ $)) (-15 -3409 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3536 (|t#1| $)) (-15 -3406 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4075 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -3807 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-365))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-648 #1#) |has| |#1| (-365)) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-365)) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-365)) ((-642 |#1|) . T) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-365)) ((-719 |#1|) . T) ((-728) . T) ((-852) |has| |#1| (-852)) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) |has| |#1| (-365)) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1059 #1#) |has| |#1| (-365)) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-4390 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) (-1001 |#2|) (-172) (-1001 |#4|) (-172)) (T -1002)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-1001 *6)) (-5 *1 (-1002 *4 *5 *2 *6)) (-4 *4 (-1001 *5))))) -(-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3403 (($ $) 23)) (-3411 (($ (-643 |#1|)) 33)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-4265 (((-773) $) 26)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 28)) (-4039 (($ |#1| $) 17)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3402 ((|#1| $) 27)) (-1370 ((|#1| $) 22)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3405 ((|#1| |#1| $) 16)) (-3827 (((-112) $) 18)) (-3996 (($) NIL)) (-3404 ((|#1| $) 21)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-3401 ((|#1| $) 30)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1003 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -3411 ($ (-643 |#1|))))) (-1104)) (T -1003)) -((-3411 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1003 *3))))) -(-13 (-998 |#1|) (-10 -8 (-15 -3411 ($ (-643 |#1|))))) -((-3438 (($ $) 12)) (-3412 (($ $ (-549)) 13))) -(((-1004 |#1|) (-10 -8 (-15 -3438 (|#1| |#1|)) (-15 -3412 (|#1| |#1| (-549)))) (-1005)) (T -1004)) -NIL -(-10 -8 (-15 -3438 (|#1| |#1|)) (-15 -3412 (|#1| |#1| (-549)))) -((-3438 (($ $) 6)) (-3412 (($ $ (-549)) 7)) (** (($ $ (-410 (-549))) 8))) -(((-1005) (-140)) (T -1005)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-410 (-549))))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-549)))) (-3438 (*1 *1 *1) (-4 *1 (-1005)))) -(-13 (-10 -8 (-15 -3438 ($ $)) (-15 -3412 ($ $ (-549))) (-15 ** ($ $ (-410 (-549)))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1815 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-2241 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2239 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-1957 (((-691 (-410 |#2|)) (-1269 $)) NIL) (((-691 (-410 |#2|))) NIL)) (-3754 (((-410 |#2|) $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-410 |#2|) (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4401 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1753 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3540 (((-773)) NIL (|has| (-410 |#2|) (-370)))) (-1829 (((-112)) NIL)) (-1828 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-3 (-410 |#2|) #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-410 |#2|) $) NIL)) (-1967 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 81) (($ (-1269 |#2|) |#2|) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-352)))) (-2964 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1956 (((-691 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-691 $) (-1269 $)) NIL) (((-691 (-410 |#2|)) (-691 $)) NIL)) (-1820 (((-1269 $) (-1269 $)) NIL)) (-4274 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-1807 (((-643 (-643 |#1|))) NIL (|has| |#1| (-370)))) (-1832 (((-112) |#1| |#1|) NIL)) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| (-410 |#2|) (-370)))) (-1827 (((-112)) NIL)) (-1826 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2963 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| (-410 |#2|) (-365)))) (-3926 (($ $) NIL)) (-3236 (($) NIL (|has| (-410 |#2|) (-352)))) (-1848 (((-112) $) NIL (|has| (-410 |#2|) (-352)))) (-1941 (($ $ (-773)) NIL (|has| (-410 |#2|) (-352))) (($ $) NIL (|has| (-410 |#2|) (-352)))) (-4155 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4203 (((-922) $) NIL (|has| (-410 |#2|) (-352))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-352)))) (-2573 (((-112) $) NIL)) (-3801 (((-773)) NIL)) (-1821 (((-1269 $) (-1269 $)) NIL)) (-3536 (((-410 |#2|) $) NIL)) (-1808 (((-643 (-949 |#1|)) (-1180)) NIL (|has| |#1| (-365)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2192 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-2188 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-3481 ((|#3| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3663 (((-1162) $) NIL)) (-1816 (((-691 (-410 |#2|))) 57)) (-1818 (((-691 (-410 |#2|))) 56)) (-2806 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1813 (($ (-1269 |#2|) |#2|) 82)) (-1817 (((-691 (-410 |#2|))) 55)) (-1819 (((-691 (-410 |#2|))) 54)) (-1812 (((-2 (|:| |num| (-691 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1814 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 88)) (-1825 (((-1269 $)) 51)) (-4350 (((-1269 $)) 50)) (-1824 (((-112) $) NIL)) (-1823 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3869 (($) NIL (|has| (-410 |#2|) (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-1810 (((-3 |#2| #3="failed")) 70)) (-3664 (((-1123) $) NIL)) (-1834 (((-773)) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-3564 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-410 |#2|) (-352)))) (-4164 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1752 (((-773) $) NIL (|has| (-410 |#2|) (-365)))) (-4231 ((|#1| $ |#1| |#1|) NIL)) (-1811 (((-3 |#2| #3#)) 68)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-4189 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 47)) (-1942 (((-773) $) NIL (|has| (-410 |#2|) (-352))) (((-3 (-773) "failed") $ $) NIL (|has| (-410 |#2|) (-352)))) (-4242 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-2571 (((-691 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3605 ((|#3|) 58)) (-1842 (($) NIL (|has| (-410 |#2|) (-352)))) (-3644 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 83) (((-691 (-410 |#2|)) (-1269 $)) NIL)) (-4402 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-410 |#2|) (-352)))) (-1822 (((-1269 $) (-1269 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1041 (-410 (-549)))))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3105 (($ $) NIL (|has| (-410 |#2|) (-352))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2770 ((|#3| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-1831 (((-112)) 65)) (-1830 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-2240 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1809 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1833 (((-112)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-549)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-549))) NIL (|has| (-410 |#2|) (-365))))) -(((-1006 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1224) (-1245 |#1|) (-1245 (-410 |#2|)) (-410 |#2|) (-773)) (T -1006)) -NIL -(-344 |#1| |#2| |#3|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3418 (((-643 (-549)) $) 73)) (-3414 (($ (-643 (-549))) 81)) (-3533 (((-549) $) 48 (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) 60) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) 57 (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) 60 (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3416 (((-643 (-549)) $) 79)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) 45)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) 50)) (-3417 (((-1157 (-549)) $) 78)) (-3413 (($ (-643 (-549)) (-643 (-549))) 82)) (-3534 (((-549) $) 64 (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) 15 (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) 47)) (-3415 (((-643 (-549)) $) 80)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) 107) (($ (-549)) 51) (($ $) NIL) (($ (-410 (-549))) 27) (($ (-549)) 51) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) 25)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) 13 T CONST)) (-3535 (((-549) $) 62 (|has| (-549) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) 14 T CONST)) (-3067 (($) 17 T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) 21)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) 40 (|has| (-549) (-852)))) (-4381 (($ $ $) 36) (($ (-549) (-549)) 38)) (-4269 (($ $) 23) (($ $ $) 30)) (-4271 (($ $ $) 28)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 32) (($ $ $) 34) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) 32) (($ $ (-549)) NIL))) -(((-1007 |#1|) (-13 (-994 (-549)) (-615 (-410 (-549))) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -3418 ((-643 (-549)) $)) (-15 -3417 ((-1157 (-549)) $)) (-15 -3416 ((-643 (-549)) $)) (-15 -3415 ((-643 (-549)) $)) (-15 -3414 ($ (-643 (-549)))) (-15 -3413 ($ (-643 (-549)) (-643 (-549)))))) (-549)) (T -1007)) -((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3413 (*1 *1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) -(-13 (-994 (-549)) (-615 (-410 (-549))) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -3418 ((-643 (-549)) $)) (-15 -3417 ((-1157 (-549)) $)) (-15 -3416 ((-643 (-549)) $)) (-15 -3415 ((-643 (-549)) $)) (-15 -3414 ($ (-643 (-549)))) (-15 -3413 ($ (-643 (-549)) (-643 (-549)))))) -((-3419 (((-51) (-410 (-549)) (-549)) 9))) -(((-1008) (-10 -7 (-15 -3419 ((-51) (-410 (-549)) (-549))))) (T -1008)) -((-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-549))) (-5 *4 (-549)) (-5 *2 (-51)) (-5 *1 (-1008))))) -(-10 -7 (-15 -3419 ((-51) (-410 (-549)) (-549)))) -((-3540 (((-549)) 23)) (-3422 (((-549)) 28)) (-3421 (((-1275) (-549)) 26)) (-3420 (((-549) (-549)) 29) (((-549)) 22))) -(((-1009) (-10 -7 (-15 -3420 ((-549))) (-15 -3540 ((-549))) (-15 -3420 ((-549) (-549))) (-15 -3421 ((-1275) (-549))) (-15 -3422 ((-549))))) (T -1009)) -((-3422 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1009)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) (-3540 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) (-3420 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009))))) -(-10 -7 (-15 -3420 ((-549))) (-15 -3540 ((-549))) (-15 -3420 ((-549) (-549))) (-15 -3421 ((-1275) (-549))) (-15 -3422 ((-549)))) -((-4165 (((-408 |#1|) |#1|) 43)) (-4164 (((-408 |#1|) |#1|) 41))) -(((-1010 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|))) (-1245 (-410 (-549)))) (T -1010)) -((-4165 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549)))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549))))))) -(-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|))) -((-3425 (((-3 (-410 (-549)) "failed") |#1|) 15)) (-3424 (((-112) |#1|) 14)) (-3423 (((-410 (-549)) |#1|) 10))) -(((-1011 |#1|) (-10 -7 (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|))) (-1041 (-410 (-549)))) (T -1011)) -((-3425 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1041 (-410 (-549)))))) (-3423 (*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2))))) -(-10 -7 (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|))) -((-4219 ((|#2| $ "value" |#2|) 12)) (-4231 ((|#2| $ "value") 10)) (-3429 (((-112) $ $) 18))) -(((-1012 |#1| |#2|) (-10 -8 (-15 -4219 (|#2| |#1| "value" |#2|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -4231 (|#2| |#1| "value"))) (-1013 |#2|) (-1219)) (T -1012)) -NIL -(-10 -8 (-15 -4219 (|#2| |#1| "value" |#2|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -4231 (|#2| |#1| "value"))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ "value") 48)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1013 |#1|) (-140) (-1219)) (T -1013)) -((-3945 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3)))) (-3432 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-549)))) (-3429 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *1)) (|has| *1 (-6 -4426)) (-4 *1 (-1013 *3)) (-4 *3 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) (-3426 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -3945 ((-643 $) $)) (-15 -3432 ((-643 $) $)) (-15 -3950 ((-112) $)) (-15 -3826 (|t#1| $)) (-15 -4231 (|t#1| $ "value")) (-15 -4065 ((-112) $)) (-15 -3431 ((-643 |t#1|) $)) (-15 -3430 ((-549) $ $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -3429 ((-112) $ $)) (-15 -3428 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -3427 ($ $ (-643 $))) (-15 -4219 (|t#1| $ "value" |t#1|)) (-15 -3426 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-3438 (($ $) 9) (($ $ (-922)) 49) (($ (-410 (-549))) 13) (($ (-549)) 15)) (-3603 (((-3 $ "failed") (-1174 $) (-922) (-865)) 24) (((-3 $ "failed") (-1174 $) (-922)) 32)) (-3412 (($ $ (-549)) 58)) (-3530 (((-773)) 18)) (-3604 (((-643 $) (-1174 $)) NIL) (((-643 $) (-1174 (-410 (-549)))) 63) (((-643 $) (-1174 (-549))) 68) (((-643 $) (-949 $)) 72) (((-643 $) (-949 (-410 (-549)))) 76) (((-643 $) (-949 (-549))) 80)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ $ (-410 (-549))) 53))) -(((-1014 |#1|) (-10 -8 (-15 -3438 (|#1| (-549))) (-15 -3438 (|#1| (-410 (-549)))) (-15 -3438 (|#1| |#1| (-922))) (-15 -3604 ((-643 |#1|) (-949 (-549)))) (-15 -3604 ((-643 |#1|) (-949 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-949 |#1|))) (-15 -3604 ((-643 |#1|) (-1174 (-549)))) (-15 -3604 ((-643 |#1|) (-1174 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-1174 |#1|))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922) (-865))) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3412 (|#1| |#1| (-549))) (-15 -3438 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -3530 ((-773))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) (-1015)) (T -1014)) -((-3530 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1014 *3)) (-4 *3 (-1015))))) -(-10 -8 (-15 -3438 (|#1| (-549))) (-15 -3438 (|#1| (-410 (-549)))) (-15 -3438 (|#1| |#1| (-922))) (-15 -3604 ((-643 |#1|) (-949 (-549)))) (-15 -3604 ((-643 |#1|) (-949 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-949 |#1|))) (-15 -3604 ((-643 |#1|) (-1174 (-549)))) (-15 -3604 ((-643 |#1|) (-1174 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-1174 |#1|))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922) (-865))) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3412 (|#1| |#1| (-549))) (-15 -3438 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -3530 ((-773))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102)) (-2241 (($ $) 103)) (-2239 (((-112) $) 105)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 122)) (-4401 (((-408 $) $) 123)) (-3438 (($ $) 86) (($ $ (-922)) 72) (($ (-410 (-549))) 71) (($ (-549)) 70)) (-1753 (((-112) $ $) 113)) (-4055 (((-549) $) 139)) (-4156 (($) 18 T CONST)) (-3603 (((-3 $ "failed") (-1174 $) (-922) (-865)) 80) (((-3 $ "failed") (-1174 $) (-922)) 79)) (-3577 (((-3 (-549) #1="failed") $) 99 (|has| (-410 (-549)) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 97 (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-3 (-410 (-549)) #1#) $) 94)) (-3576 (((-549) $) 98 (|has| (-410 (-549)) (-1041 (-549)))) (((-410 (-549)) $) 96 (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-410 (-549)) $) 95)) (-3434 (($ $ (-865)) 69)) (-3433 (($ $ (-865)) 68)) (-2964 (($ $ $) 117)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 116)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111)) (-4155 (((-112) $) 124)) (-3606 (((-112) $) 137)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 85)) (-3607 (((-112) $) 138)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120)) (-2934 (($ $ $) 136)) (-3260 (($ $ $) 135)) (-3435 (((-3 (-1174 $) "failed") $) 81)) (-3437 (((-3 (-865) "failed") $) 83)) (-3436 (((-3 (-1174 $) "failed") $) 82)) (-2069 (($ (-643 $)) 109) (($ $ $) 108)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 125)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110)) (-3564 (($ (-643 $)) 107) (($ $ $) 106)) (-4164 (((-408 $) $) 121)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118)) (-3889 (((-3 $ "failed") $ $) 101)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112)) (-1752 (((-773) $) 114)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 129) (($ $) 100) (($ (-410 (-549))) 93) (($ (-549)) 92) (($ (-410 (-549))) 89)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 104)) (-4201 (((-410 (-549)) $ $) 67)) (-3604 (((-643 $) (-1174 $)) 78) (((-643 $) (-1174 (-410 (-549)))) 77) (((-643 $) (-1174 (-549))) 76) (((-643 $) (-949 $)) 75) (((-643 $) (-949 (-410 (-549)))) 74) (((-643 $) (-949 (-549))) 73)) (-3807 (($ $) 140)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 133)) (-2967 (((-112) $ $) 132)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 134)) (-3088 (((-112) $ $) 131)) (-4381 (($ $ $) 130)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 126) (($ $ (-410 (-549))) 84)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ (-410 (-549)) $) 128) (($ $ (-410 (-549))) 127) (($ (-549) $) 91) (($ $ (-549)) 90) (($ (-410 (-549)) $) 88) (($ $ (-410 (-549))) 87))) -(((-1015) (-140)) (T -1015)) -((-3438 (*1 *1 *1) (-4 *1 (-1015))) (-3437 (*1 *2 *1) (|partial| -12 (-4 *1 (-1015)) (-5 *2 (-865)))) (-3436 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015)))) (-3435 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015)))) (-3603 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-5 *4 (-865)) (-4 *1 (-1015)))) (-3603 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1174 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3438 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-922)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1015)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1015)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865)))) (-3433 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865)))) (-4201 (*1 *2 *1 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-410 (-549)))))) -(-13 (-147) (-850) (-172) (-365) (-415 (-410 (-549))) (-38 (-549)) (-38 (-410 (-549))) (-1005) (-10 -8 (-15 -3437 ((-3 (-865) "failed") $)) (-15 -3436 ((-3 (-1174 $) "failed") $)) (-15 -3435 ((-3 (-1174 $) "failed") $)) (-15 -3603 ((-3 $ "failed") (-1174 $) (-922) (-865))) (-15 -3603 ((-3 $ "failed") (-1174 $) (-922))) (-15 -3604 ((-643 $) (-1174 $))) (-15 -3604 ((-643 $) (-1174 (-410 (-549))))) (-15 -3604 ((-643 $) (-1174 (-549)))) (-15 -3604 ((-643 $) (-949 $))) (-15 -3604 ((-643 $) (-949 (-410 (-549))))) (-15 -3604 ((-643 $) (-949 (-549)))) (-15 -3438 ($ $ (-922))) (-15 -3438 ($ $)) (-15 -3438 ($ (-410 (-549)))) (-15 -3438 ($ (-549))) (-15 -3434 ($ $ (-865))) (-15 -3433 ($ $ (-865))) (-15 -4201 ((-410 (-549)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 #2=(-549)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-415 (-410 (-549))) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 #2#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 #2#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 #2#) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-924) . T) ((-1005) . T) ((-1041 (-410 (-549))) . T) ((-1041 (-549)) |has| (-410 (-549)) (-1041 (-549))) ((-1054 #1#) . T) ((-1054 #2#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 #2#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-3439 (((-2 (|:| |ans| |#2|) (|:| -3541 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -3439 ((-2 (|:| |ans| |#2|) (|:| -3541 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-27) (-424 |#1|))) (T -1016)) -((-3439 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1180)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-643 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1205) (-27) (-424 *8))) (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112)))) (-5 *1 (-1016 *8 *4))))) -(-10 -7 (-15 -3439 ((-2 (|:| |ans| |#2|) (|:| -3541 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3440 (((-3 (-643 |#2|) "failed") (-549) |#2| |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1017 |#1| |#2|) (-10 -7 (-15 -3440 ((-3 (-643 |#2|) "failed") (-549) |#2| |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-27) (-424 |#1|))) (T -1017)) -((-3440 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1180)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-643 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1205) (-27) (-424 *8))) (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) (-5 *2 (-643 *4)) (-5 *1 (-1017 *8 *4))))) -(-10 -7 (-15 -3440 ((-3 (-643 |#2|) "failed") (-549) |#2| |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3443 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)) 38)) (-3441 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 69)) (-3442 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 74))) -(((-1018 |#1| |#2|) (-10 -7 (-15 -3441 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3442 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -3443 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1041 (-549))) (-1245 |#1|)) (T -1018)) -((-3443 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1041 *4))) (-5 *4 (-549)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1018 *6 *3)))) (-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5)))) (-3441 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -3497 *6))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -3441 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3442 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -3443 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)))) -((-3444 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-3445 (((-3 (-643 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34))) -(((-1019 |#1| |#2|) (-10 -7 (-15 -3444 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3445 ((-3 (-643 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1041 (-549))) (-1245 |#1|)) (T -1019)) -((-3445 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-410 *5))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-410 *5)))) (-3444 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -3497 *6))) (-5 *1 (-1019 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -3444 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3445 ((-3 (-643 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) -((-3446 (((-1 |#1|) (-643 (-2 (|:| -3826 |#1|) (|:| -1623 (-549))))) 37)) (-3504 (((-1 |#1|) (-1100 |#1|)) 44)) (-3447 (((-1 |#1|) (-1269 |#1|) (-1269 (-549)) (-549)) 34))) -(((-1020 |#1|) (-10 -7 (-15 -3504 ((-1 |#1|) (-1100 |#1|))) (-15 -3446 ((-1 |#1|) (-643 (-2 (|:| -3826 |#1|) (|:| -1623 (-549)))))) (-15 -3447 ((-1 |#1|) (-1269 |#1|) (-1269 (-549)) (-549)))) (-1104)) (T -1020)) -((-3447 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-549))) (-5 *5 (-549)) (-4 *6 (-1104)) (-5 *2 (-1 *6)) (-5 *1 (-1020 *6)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3826 *4) (|:| -1623 (-549))))) (-4 *4 (-1104)) (-5 *2 (-1 *4)) (-5 *1 (-1020 *4)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1100 *4)) (-4 *4 (-1104)) (-5 *2 (-1 *4)) (-5 *1 (-1020 *4))))) -(-10 -7 (-15 -3504 ((-1 |#1|) (-1100 |#1|))) (-15 -3446 ((-1 |#1|) (-643 (-2 (|:| -3826 |#1|) (|:| -1623 (-549)))))) (-15 -3447 ((-1 |#1|) (-1269 |#1|) (-1269 (-549)) (-549)))) -((-4203 (((-773) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1021)) -((-4203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-773)) (-5 *1 (-1021 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2968 (((-112) $ $) NIL)) (-3448 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1022) (-13 (-1086) (-10 -8 (-15 -3448 ((-1138) $)) (-15 -3653 ((-1138) $))))) (T -1022)) -((-3448 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022))))) -(-13 (-1086) (-10 -8 (-15 -3448 ((-1138) $)) (-15 -3653 ((-1138) $)))) -((-4402 (((-225) $) 6) (((-380) $) 9))) -(((-1023) (-140)) (T -1023)) -NIL -(-13 (-616 (-225)) (-616 (-380))) -(((-616 (-225)) . T) ((-616 (-380)) . T)) -((-3538 (((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 32) (((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 29)) (-3451 (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 34) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549))) 30) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 33) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|) 28)) (-3450 (((-643 (-410 (-549))) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) 20)) (-3449 (((-410 (-549)) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 17))) -(((-1024 |#1|) (-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3449 ((-410 (-549)) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3450 ((-643 (-410 (-549))) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))))) (-1245 (-549))) (T -1024)) -((-3450 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *2 (-643 (-410 (-549)))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549))))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *2 (-410 (-549))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549))))) (-3538 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) (-3538 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *4 (-410 (-549))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-410 (-549))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549)))))) -(-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3449 ((-410 (-549)) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3450 ((-643 (-410 (-549))) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))))) -((-3538 (((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 35) (((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 32)) (-3451 (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 30) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549))) 26) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 28) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|) 24))) -(((-1025 |#1|) (-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-1245 (-410 (-549)))) (T -1025)) -((-3538 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))))) (-3538 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *4 (-410 (-549))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *5)) (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *4) (|:| -3541 *4)))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))) (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549))))))) -(-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) -((-4004 (((-643 (-380)) (-949 (-549)) (-380)) 28) (((-643 (-380)) (-949 (-410 (-549))) (-380)) 27)) (-4399 (((-643 (-643 (-380))) (-643 (-949 (-549))) (-643 (-1180)) (-380)) 37))) -(((-1026) (-10 -7 (-15 -4004 ((-643 (-380)) (-949 (-410 (-549))) (-380))) (-15 -4004 ((-643 (-380)) (-949 (-549)) (-380))) (-15 -4399 ((-643 (-643 (-380))) (-643 (-949 (-549))) (-643 (-1180)) (-380))))) (T -1026)) -((-4399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-643 (-1180))) (-5 *2 (-643 (-643 (-380)))) (-5 *1 (-1026)) (-5 *5 (-380)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) (-5 *4 (-380)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) (-5 *4 (-380))))) -(-10 -7 (-15 -4004 ((-643 (-380)) (-949 (-410 (-549))) (-380))) (-15 -4004 ((-643 (-380)) (-949 (-549)) (-380))) (-15 -4399 ((-643 (-643 (-380))) (-643 (-949 (-549))) (-643 (-1180)) (-380)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 75)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL) (($ $ (-922)) NIL) (($ (-410 (-549))) NIL) (($ (-549)) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) 70)) (-4156 (($) NIL T CONST)) (-3603 (((-3 $ #1="failed") (-1174 $) (-922) (-865)) NIL) (((-3 $ #1#) (-1174 $) (-922)) 55)) (-3577 (((-3 (-410 (-549)) #2="failed") $) NIL (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-3 (-410 (-549)) #2#) $) NIL) (((-3 |#1| #2#) $) 116) (((-3 (-549) #2#) $) NIL (-3960 (|has| (-410 (-549)) (-1041 (-549))) (|has| |#1| (-1041 (-549)))))) (-3576 (((-410 (-549)) $) 17 (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-410 (-549)) $) 17) ((|#1| $) 117) (((-549) $) NIL (-3960 (|has| (-410 (-549)) (-1041 (-549))) (|has| |#1| (-1041 (-549)))))) (-3434 (($ $ (-865)) 47)) (-3433 (($ $ (-865)) 48)) (-2964 (($ $ $) NIL)) (-3602 (((-410 (-549)) $ $) 21)) (-3890 (((-3 $ "failed") $) 88)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) 66)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL)) (-3607 (((-112) $) 69)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3435 (((-3 (-1174 $) #1#) $) 83)) (-3437 (((-3 (-865) #1#) $) 82)) (-3436 (((-3 (-1174 $) #1#) $) 80)) (-3452 (((-3 (-1064 $ (-1174 $)) "failed") $) 78)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 89)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4378 (((-865) $) 87) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ $) 63) (($ (-410 (-549))) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 119)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ $) 27)) (-3604 (((-643 $) (-1174 $)) 61) (((-643 $) (-1174 (-410 (-549)))) NIL) (((-643 $) (-1174 (-549))) NIL) (((-643 $) (-949 $)) NIL) (((-643 $) (-949 (-410 (-549)))) NIL) (((-643 $) (-949 (-549))) NIL)) (-3453 (($ (-1064 $ (-1174 $)) (-865)) 46)) (-3807 (($ $) 22)) (-3510 (($) 32 T CONST)) (-3067 (($) 39 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 76)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 24)) (-4381 (($ $ $) 37)) (-4269 (($ $) 38) (($ $ $) 74)) (-4271 (($ $ $) 112)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ $ (-410 (-549))) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 98) (($ $ $) 104) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ (-549) $) 98) (($ $ (-549)) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1027 |#1|) (-13 (-1015) (-415 |#1|) (-38 |#1|) (-10 -8 (-15 -3453 ($ (-1064 $ (-1174 $)) (-865))) (-15 -3452 ((-3 (-1064 $ (-1174 $)) "failed") $)) (-15 -3602 ((-410 (-549)) $ $)))) (-13 (-850) (-365) (-1023))) (T -1027)) -((-3453 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 (-1027 *4) (-1174 (-1027 *4)))) (-5 *3 (-865)) (-5 *1 (-1027 *4)) (-4 *4 (-13 (-850) (-365) (-1023))))) (-3452 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064 (-1027 *3) (-1174 (-1027 *3)))) (-5 *1 (-1027 *3)) (-4 *3 (-13 (-850) (-365) (-1023))))) (-3602 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1027 *3)) (-4 *3 (-13 (-850) (-365) (-1023)))))) -(-13 (-1015) (-415 |#1|) (-38 |#1|) (-10 -8 (-15 -3453 ($ (-1064 $ (-1174 $)) (-865))) (-15 -3452 ((-3 (-1064 $ (-1174 $)) "failed") $)) (-15 -3602 ((-410 (-549)) $ $)))) -((-3454 (((-2 (|:| -3687 |#2|) (|:| -2902 (-643 |#1|))) |#2| (-643 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2| |#1|)) (-15 -3454 ((-2 (|:| -3687 |#2|) (|:| -2902 (-643 |#1|))) |#2| (-643 |#1|)))) (-365) (-660 |#1|)) (T -1028)) -((-3454 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3687 *3) (|:| -2902 (-643 *5)))) (-5 *1 (-1028 *5 *3)) (-5 *4 (-643 *5)) (-4 *3 (-660 *5)))) (-3454 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1028 *3 *2)) (-4 *2 (-660 *3))))) -(-10 -7 (-15 -3454 (|#2| |#2| |#1|)) (-15 -3454 ((-2 (|:| -3687 |#2|) (|:| -2902 (-643 |#1|))) |#2| (-643 |#1|)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3456 ((|#1| $ |#1|) 14)) (-4219 ((|#1| $ |#1|) 12)) (-3458 (($ |#1|) 10)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4231 ((|#1| $) 11)) (-3457 ((|#1| $) 13)) (-4378 (((-865) $) 21 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3455 (((-112) $ $) 9))) -(((-1029 |#1|) (-13 (-1219) (-10 -8 (-15 -3458 ($ |#1|)) (-15 -4231 (|#1| $)) (-15 -4219 (|#1| $ |#1|)) (-15 -3457 (|#1| $)) (-15 -3456 (|#1| $ |#1|)) (-15 -3455 ((-112) $ $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) (-1219)) (T -1029)) -((-3458 (*1 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-3457 (*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-3456 (*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-3455 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (-15 -3458 ($ |#1|)) (-15 -4231 (|#1| $)) (-15 -4219 (|#1| $ |#1|)) (-15 -3457 (|#1| $)) (-15 -3456 (|#1| $ |#1|)) (-15 -3455 ((-112) $ $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) 118) (((-643 $) (-643 |#4|) (-112)) 119) (((-643 $) (-643 |#4|) (-112) (-112)) 117) (((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 112)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 66)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) 29 (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 45)) (-4117 ((|#4| |#4| $) 69)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-3617 (((-112) |#4| $) NIL)) (-3615 (((-112) |#4| $) NIL)) (-3618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3862 (((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112)) 133)) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 19 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 23)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) NIL)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 110)) (-4229 (((-3 |#4| #1#) $) 42)) (-3612 (((-643 $) |#4| $) 93)) (-3614 (((-3 (-112) (-643 $)) |#4| $) NIL)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3658 (((-643 $) |#4| $) 115) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 116) (((-643 $) |#4| (-643 $)) NIL)) (-3863 (((-643 $) (-643 |#4|) (-112) (-112) (-112)) 128)) (-3864 (($ |#4| $) 82) (($ (-643 |#4|) $) 83) (((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4129 (((-643 |#4|) $) NIL)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 40)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) 59)) (-4200 (($ $ |#4|) NIL) (((-643 $) |#4| $) 95) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 89)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 14)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-3313 (($ $ |#3|) 54)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 35) (((-643 |#4|) $) 46)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-3609 (((-643 $) |#4| $) 92) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-3616 (((-112) |#4| $) NIL)) (-4365 (((-112) |#3| $) 65)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1030 |#1| |#2| |#3| |#4|) (-13 (-1074 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -1030)) -((-3864 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *3))) (-5 *1 (-1030 *5 *6 *7 *3)) (-4 *3 (-1068 *5 *6 *7)))) (-4114 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) (-5 *1 (-1030 *5 *6 *7 *8)))) (-4114 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) (-5 *1 (-1030 *5 *6 *7 *8)))) (-3863 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) (-5 *1 (-1030 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1030 *5 *6 *7 *8))))) (-5 *1 (-1030 *5 *6 *7 *8)) (-5 *3 (-643 *8))))) -(-13 (-1074 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) -((-3459 (((-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549))))))) (-691 (-410 (-949 (-549))))) 67)) (-3460 (((-643 (-691 (-315 (-549)))) (-315 (-549)) (-691 (-410 (-949 (-549))))) 52)) (-3461 (((-643 (-315 (-549))) (-691 (-410 (-949 (-549))))) 45)) (-3465 (((-643 (-691 (-315 (-549)))) (-691 (-410 (-949 (-549))))) 87)) (-3463 (((-691 (-315 (-549))) (-691 (-315 (-549)))) 38)) (-3464 (((-643 (-691 (-315 (-549)))) (-643 (-691 (-315 (-549))))) 76)) (-3462 (((-3 (-691 (-315 (-549))) "failed") (-691 (-410 (-949 (-549))))) 84))) -(((-1031) (-10 -7 (-15 -3459 ((-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549))))))) (-691 (-410 (-949 (-549)))))) (-15 -3460 ((-643 (-691 (-315 (-549)))) (-315 (-549)) (-691 (-410 (-949 (-549)))))) (-15 -3461 ((-643 (-315 (-549))) (-691 (-410 (-949 (-549)))))) (-15 -3462 ((-3 (-691 (-315 (-549))) "failed") (-691 (-410 (-949 (-549)))))) (-15 -3463 ((-691 (-315 (-549))) (-691 (-315 (-549))))) (-15 -3464 ((-643 (-691 (-315 (-549)))) (-643 (-691 (-315 (-549)))))) (-15 -3465 ((-643 (-691 (-315 (-549)))) (-691 (-410 (-949 (-549)))))))) (T -1031)) -((-3465 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031)))) (-3462 (*1 *2 *3) (|partial| -12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-315 (-549)))) (-5 *1 (-1031)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *4 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031)) (-5 *3 (-315 (-549))))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549)))))))) (-5 *1 (-1031))))) -(-10 -7 (-15 -3459 ((-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549))))))) (-691 (-410 (-949 (-549)))))) (-15 -3460 ((-643 (-691 (-315 (-549)))) (-315 (-549)) (-691 (-410 (-949 (-549)))))) (-15 -3461 ((-643 (-315 (-549))) (-691 (-410 (-949 (-549)))))) (-15 -3462 ((-3 (-691 (-315 (-549))) "failed") (-691 (-410 (-949 (-549)))))) (-15 -3463 ((-691 (-315 (-549))) (-691 (-315 (-549))))) (-15 -3464 ((-643 (-691 (-315 (-549)))) (-643 (-691 (-315 (-549)))))) (-15 -3465 ((-643 (-691 (-315 (-549)))) (-691 (-410 (-949 (-549))))))) -((-3469 (((-643 (-691 |#1|)) (-643 (-691 |#1|))) 73) (((-691 |#1|) (-691 |#1|)) 72) (((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-643 (-691 |#1|))) 71) (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 68)) (-3468 (((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922)) 66) (((-691 |#1|) (-691 |#1|) (-922)) 65)) (-3470 (((-643 (-691 (-549))) (-643 (-643 (-549)))) 84) (((-643 (-691 (-549))) (-643 (-905 (-549))) (-549)) 83) (((-691 (-549)) (-643 (-549))) 80) (((-691 (-549)) (-905 (-549)) (-549)) 78)) (-3467 (((-691 (-949 |#1|)) (-773)) 98)) (-3466 (((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922)) 52 (|has| |#1| (-6 (-4427 "*")))) (((-691 |#1|) (-691 |#1|) (-922)) 50 (|has| |#1| (-6 (-4427 "*")))))) -(((-1032 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-691 |#1|) (-691 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) |%noBranch|) (-15 -3467 ((-691 (-949 |#1|)) (-773))) (-15 -3468 ((-691 |#1|) (-691 |#1|) (-922))) (-15 -3468 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) (-15 -3469 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3469 ((-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3470 ((-691 (-549)) (-905 (-549)) (-549))) (-15 -3470 ((-691 (-549)) (-643 (-549)))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-905 (-549))) (-549))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-643 (-549)))))) (-1052)) (T -1032)) -((-3470 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-549)))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-1032 *4)) (-4 *4 (-1052)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-905 (-549)))) (-5 *4 (-549)) (-5 *2 (-643 (-691 *4))) (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1032 *4)) (-4 *4 (-1052)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-549))) (-5 *4 (-549)) (-5 *2 (-691 *4)) (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3469 (*1 *2 *2 *2) (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3469 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-691 (-949 *4))) (-5 *1 (-1032 *4)) (-4 *4 (-1052)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) (-4 *4 (-1052)) (-5 *1 (-1032 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-691 |#1|) (-691 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) |%noBranch|) (-15 -3467 ((-691 (-949 |#1|)) (-773))) (-15 -3468 ((-691 |#1|) (-691 |#1|) (-922))) (-15 -3468 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) (-15 -3469 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3469 ((-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3470 ((-691 (-549)) (-905 (-549)) (-549))) (-15 -3470 ((-691 (-549)) (-643 (-549)))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-905 (-549))) (-549))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-643 (-549)))))) -((-3474 (((-691 |#1|) (-643 (-691 |#1|)) (-1269 |#1|)) 71 (|has| |#1| (-308)))) (-3842 (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 (-1269 |#1|))) 111 (|has| |#1| (-365))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 |#1|)) 118 (|has| |#1| (-365)))) (-3478 (((-1269 |#1|) (-643 (-1269 |#1|)) (-549)) 136 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3477 (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-922)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112)) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|))) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112) (-549) (-549)) 121 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3476 (((-112) (-643 (-691 |#1|))) 104 (|has| |#1| (-365))) (((-112) (-643 (-691 |#1|)) (-549)) 107 (|has| |#1| (-365)))) (-3473 (((-1269 (-1269 |#1|)) (-643 (-691 |#1|)) (-1269 |#1|)) 68 (|has| |#1| (-308)))) (-3472 (((-691 |#1|) (-643 (-691 |#1|)) (-691 |#1|)) 48)) (-3471 (((-691 |#1|) (-1269 (-1269 |#1|))) 41)) (-3475 (((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-549)) 95 (|has| |#1| (-365))) (((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|))) 94 (|has| |#1| (-365))) (((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-112) (-549)) 102 (|has| |#1| (-365))))) -(((-1033 |#1|) (-10 -7 (-15 -3471 ((-691 |#1|) (-1269 (-1269 |#1|)))) (-15 -3472 ((-691 |#1|) (-643 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3473 ((-1269 (-1269 |#1|)) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3474 ((-691 |#1|) (-643 (-691 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-112) (-549))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112) (-549) (-549))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-922))) (-15 -3478 ((-1269 |#1|) (-643 (-1269 |#1|)) (-549)))) |%noBranch|) |%noBranch|)) (-1052)) (T -1033)) -((-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1269 *5))) (-5 *4 (-549)) (-5 *2 (-1269 *5)) (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1052)) (-5 *2 (-643 (-643 (-691 *4)))) (-5 *1 (-1033 *4)) (-5 *3 (-643 (-691 *4))))) (-3477 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1052)) (-5 *2 (-643 (-643 (-691 *6)))) (-5 *1 (-1033 *6)) (-5 *3 (-643 (-691 *6))))) (-3842 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3842 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-4 *4 (-1052)) (-5 *2 (-112)) (-5 *1 (-1033 *4)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-112)) (-5 *1 (-1033 *5)))) (-3475 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-5 *2 (-691 *5)) (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-1052)))) (-3475 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-5 *1 (-1033 *4)) (-4 *4 (-365)) (-4 *4 (-1052)))) (-3475 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-643 (-691 *6))) (-5 *4 (-112)) (-5 *5 (-549)) (-5 *2 (-691 *6)) (-5 *1 (-1033 *6)) (-4 *6 (-365)) (-4 *6 (-1052)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) (-4 *5 (-1052)) (-5 *2 (-691 *5)) (-5 *1 (-1033 *5)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-4 *5 (-308)) (-4 *5 (-1052)) (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1033 *5)) (-5 *4 (-1269 *5)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-4 *4 (-1052)) (-5 *1 (-1033 *4)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1052)) (-5 *2 (-691 *4)) (-5 *1 (-1033 *4))))) -(-10 -7 (-15 -3471 ((-691 |#1|) (-1269 (-1269 |#1|)))) (-15 -3472 ((-691 |#1|) (-643 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3473 ((-1269 (-1269 |#1|)) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3474 ((-691 |#1|) (-643 (-691 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-112) (-549))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112) (-549) (-549))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-922))) (-15 -3478 ((-1269 |#1|) (-643 (-1269 |#1|)) (-549)))) |%noBranch|) |%noBranch|)) -((-3479 ((|#1| (-922) |#1|) 18))) -(((-1034 |#1|) (-10 -7 (-15 -3479 (|#1| (-922) |#1|))) (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $))))) (T -1034)) -((-3479 (*1 *2 *3 *2) (-12 (-5 *3 (-922)) (-5 *1 (-1034 *2)) (-4 *2 (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)))))))) -(-10 -7 (-15 -3479 (|#1| (-922) |#1|))) -((-3480 ((|#1| |#1| (-922)) 18))) -(((-1035 |#1|) (-10 -7 (-15 -3480 (|#1| |#1| (-922)))) (-13 (-1104) (-10 -8 (-15 * ($ $ $))))) (T -1035)) -((-3480 (*1 *2 *2 *3) (-12 (-5 *3 (-922)) (-5 *1 (-1035 *2)) (-4 *2 (-13 (-1104) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3480 (|#1| |#1| (-922)))) -((-4378 ((|#1| (-312)) 11) (((-1275) |#1|) 9))) -(((-1036 |#1|) (-10 -7 (-15 -4378 ((-1275) |#1|)) (-15 -4378 (|#1| (-312)))) (-1219)) (T -1036)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1036 *2)) (-4 *2 (-1219)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1275)) (-5 *1 (-1036 *3)) (-4 *3 (-1219))))) -(-10 -7 (-15 -4378 ((-1275) |#1|)) (-15 -4378 (|#1| (-312)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ |#4|) 25)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3481 ((|#4| $) 27)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 46) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3530 (((-773)) 43 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 21 T CONST)) (-3067 (($) 23 T CONST)) (-3455 (((-112) $ $) 40)) (-4269 (($ $) 31) (($ $ $) NIL)) (-4271 (($ $ $) 29)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -4378 ($ |#4|)) (-15 -3481 (|#4| $)))) (-365) (-795) (-852) (-953 |#1| |#2| |#3|) (-643 |#4|)) (T -1037)) -((-4274 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) (-3481 (*1 *2 *1) (-12 (-4 *2 (-953 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-14 *6 (-643 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -4378 ($ |#4|)) (-15 -3481 (|#4| $)))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2372 (((-1275) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-3483 (((-112) (-112)) 43)) (-3482 (((-112) (-112)) 42)) (-4219 (((-51) $ (-1180) (-51)) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 (-51) #1="failed") (-1180) $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-3 (-51) #1#) (-1180) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-51) $ (-1180) (-51)) NIL (|has| $ (-6 -4426)))) (-3517 (((-51) $ (-1180)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1180) $) NIL (|has| (-1180) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2375 (((-1180) $) NIL (|has| (-1180) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-2816 (((-643 (-1180)) $) 37)) (-2382 (((-112) (-1180) $) NIL)) (-1369 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-2377 (((-643 (-1180)) $) NIL)) (-2378 (((-112) (-1180) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4232 (((-51) $) NIL (|has| (-1180) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) "failed") (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL)) (-2373 (($ $ (-51)) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-51)) (-643 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-294 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-643 (-294 (-51)))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2379 (((-643 (-51)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-51) $ (-1180)) 39) (((-51) $ (-1180) (-51)) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-773) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104)))) (((-773) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-4378 (((-865) $) 41 (-3960 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-615 (-865))) (|has| (-51) (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1038) (-13 (-1196 (-1180) (-51)) (-10 -7 (-15 -3483 ((-112) (-112))) (-15 -3482 ((-112) (-112))) (-6 -4425)))) (T -1038)) -((-3483 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038))))) -(-13 (-1196 (-1180) (-51)) (-10 -7 (-15 -3483 ((-112) (-112))) (-15 -3482 ((-112) (-112))) (-6 -4425))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 9)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1039) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $))))) (T -1039)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1039))))) -(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)))) -((-3576 ((|#2| $) 10))) -(((-1040 |#1| |#2|) (-10 -8 (-15 -3576 (|#2| |#1|))) (-1041 |#2|) (-1219)) (T -1040)) -NIL -(-10 -8 (-15 -3576 (|#2| |#1|))) -((-3577 (((-3 |#1| "failed") $) 9)) (-3576 ((|#1| $) 8)) (-4378 (($ |#1|) 6))) -(((-1041 |#1|) (-140) (-1219)) (T -1041)) -((-3577 (*1 *2 *1) (|partial| -12 (-4 *1 (-1041 *2)) (-4 *2 (-1219)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1219))))) -(-13 (-618 |t#1|) (-10 -8 (-15 -3577 ((-3 |t#1| "failed") $)) (-15 -3576 (|t#1| $)))) -(((-618 |#1|) . T)) -((-3484 (((-643 (-643 (-294 (-410 (-949 |#2|))))) (-643 (-949 |#2|)) (-643 (-1180))) 38))) -(((-1042 |#1| |#2|) (-10 -7 (-15 -3484 ((-643 (-643 (-294 (-410 (-949 |#2|))))) (-643 (-949 |#2|)) (-643 (-1180))))) (-560) (-13 (-560) (-1041 |#1|))) (T -1042)) -((-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-4 *6 (-13 (-560) (-1041 *5))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *6)))))) (-5 *1 (-1042 *5 *6))))) -(-10 -7 (-15 -3484 ((-643 (-643 (-294 (-410 (-949 |#2|))))) (-643 (-949 |#2|)) (-643 (-1180))))) -((-3485 (((-643 (-1180)) (-410 (-949 |#1|))) 17)) (-3487 (((-410 (-1174 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180)) 24)) (-3488 (((-410 (-949 |#1|)) (-410 (-1174 (-410 (-949 |#1|)))) (-1180)) 26)) (-3486 (((-3 (-1180) "failed") (-410 (-949 |#1|))) 20)) (-4199 (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-294 (-410 (-949 |#1|))))) 32) (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|)))) 33) (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-1180)) (-643 (-410 (-949 |#1|)))) 28) (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))) 29)) (-4378 (((-410 (-949 |#1|)) |#1|) 11))) -(((-1043 |#1|) (-10 -7 (-15 -3485 ((-643 (-1180)) (-410 (-949 |#1|)))) (-15 -3486 ((-3 (-1180) "failed") (-410 (-949 |#1|)))) (-15 -3487 ((-410 (-1174 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -3488 ((-410 (-949 |#1|)) (-410 (-1174 (-410 (-949 |#1|)))) (-1180))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-1180)) (-643 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4378 ((-410 (-949 |#1|)) |#1|))) (-560)) (T -1043)) -((-4378 (*1 *2 *3) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-560)))) (-4199 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-5 *2 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *1 (-1043 *4)))) (-4199 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-5 *2 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *1 (-1043 *4)))) (-4199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-643 (-1180))) (-5 *4 (-643 (-410 (-949 *5)))) (-5 *2 (-410 (-949 *5))) (-4 *5 (-560)) (-5 *1 (-1043 *5)))) (-4199 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-1043 *4)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 (-410 (-949 *5))))) (-5 *4 (-1180)) (-5 *2 (-410 (-949 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-560)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-410 (-1174 (-410 (-949 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-410 (-949 *5))))) (-3486 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-1180)) (-5 *1 (-1043 *4)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-1180))) (-5 *1 (-1043 *4))))) -(-10 -7 (-15 -3485 ((-643 (-1180)) (-410 (-949 |#1|)))) (-15 -3486 ((-3 (-1180) "failed") (-410 (-949 |#1|)))) (-15 -3487 ((-410 (-1174 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -3488 ((-410 (-949 |#1|)) (-410 (-1174 (-410 (-949 |#1|)))) (-1180))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-1180)) (-643 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4378 ((-410 (-949 |#1|)) |#1|))) -((-3489 (((-380)) 17)) (-3504 (((-1 (-380)) (-380) (-380)) 22)) (-3497 (((-1 (-380)) (-773)) 50)) (-3490 (((-380)) 37)) (-3493 (((-1 (-380)) (-380) (-380)) 38)) (-3491 (((-380)) 29)) (-3494 (((-1 (-380)) (-380)) 30)) (-3492 (((-380) (-773)) 45)) (-3495 (((-1 (-380)) (-773)) 46)) (-3496 (((-1 (-380)) (-773) (-773)) 49)) (-3808 (((-1 (-380)) (-773) (-773)) 47))) -(((-1044) (-10 -7 (-15 -3489 ((-380))) (-15 -3490 ((-380))) (-15 -3491 ((-380))) (-15 -3492 ((-380) (-773))) (-15 -3504 ((-1 (-380)) (-380) (-380))) (-15 -3493 ((-1 (-380)) (-380) (-380))) (-15 -3494 ((-1 (-380)) (-380))) (-15 -3495 ((-1 (-380)) (-773))) (-15 -3808 ((-1 (-380)) (-773) (-773))) (-15 -3496 ((-1 (-380)) (-773) (-773))) (-15 -3497 ((-1 (-380)) (-773))))) (T -1044)) -((-3497 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3496 (*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3808 (*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3494 (*1 *2 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) (-3504 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-380)) (-5 *1 (-1044)))) (-3491 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044)))) (-3490 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044)))) (-3489 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) -(-10 -7 (-15 -3489 ((-380))) (-15 -3490 ((-380))) (-15 -3491 ((-380))) (-15 -3492 ((-380) (-773))) (-15 -3504 ((-1 (-380)) (-380) (-380))) (-15 -3493 ((-1 (-380)) (-380) (-380))) (-15 -3494 ((-1 (-380)) (-380))) (-15 -3495 ((-1 (-380)) (-773))) (-15 -3808 ((-1 (-380)) (-773) (-773))) (-15 -3496 ((-1 (-380)) (-773) (-773))) (-15 -3497 ((-1 (-380)) (-773)))) -((-4164 (((-408 |#1|) |#1|) 33))) -(((-1045 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|))) (-1245 (-410 (-949 (-549))))) (T -1045)) -((-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1045 *3)) (-4 *3 (-1245 (-410 (-949 (-549)))))))) -(-10 -7 (-15 -4164 ((-408 |#1|) |#1|))) -((-3498 (((-410 (-408 (-949 |#1|))) (-410 (-949 |#1|))) 14))) -(((-1046 |#1|) (-10 -7 (-15 -3498 ((-410 (-408 (-949 |#1|))) (-410 (-949 |#1|))))) (-308)) (T -1046)) -((-3498 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-408 (-949 *4)))) (-5 *1 (-1046 *4))))) -(-10 -7 (-15 -3498 ((-410 (-408 (-949 |#1|))) (-410 (-949 |#1|))))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4156 (($) 18 T CONST)) (-3502 ((|#1| $) 23)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3501 ((|#1| $) 22)) (-3499 ((|#1|) 20 T CONST)) (-4378 (((-865) $) 12)) (-3500 ((|#1| $) 21)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) -(((-1047 |#1|) (-140) (-23)) (T -1047)) -((-3502 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))) (-3499 (*1 *2) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3502 (|t#1| $)) (-15 -3501 (|t#1| $)) (-15 -3500 (|t#1| $)) (-15 -3499 (|t#1|) -4384))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3503 (($) 25 T CONST)) (-4156 (($) 18 T CONST)) (-3502 ((|#1| $) 23)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3501 ((|#1| $) 22)) (-3499 ((|#1|) 20 T CONST)) (-4378 (((-865) $) 12)) (-3500 ((|#1| $) 21)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) +((-4275 (((-962 |#2|) (-1 |#2| |#1| |#2|) (-962 |#1|) |#2|) 16)) (-4276 ((|#2| (-1 |#2| |#1| |#2|) (-962 |#1|) |#2|) 18)) (-4392 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 13))) +(((-963 |#1| |#2|) (-10 -7 (-15 -4275 ((-962 |#2|) (-1 |#2| |#1| |#2|) (-962 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-962 |#1|) |#2|)) (-15 -4392 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1220) (-1220)) (T -963)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-962 *6)) (-5 *1 (-963 *5 *6)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-962 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-963 *5 *2)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-962 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-5 *2 (-962 *5)) (-5 *1 (-963 *6 *5))))) +(-10 -7 (-15 -4275 ((-962 |#2|) (-1 |#2| |#1| |#2|) (-962 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-962 |#1|) |#2|)) (-15 -4392 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) +((-3237 (($ $ (-1096 $)) 7) (($ $ (-1181)) 6))) +(((-964) (-140)) (T -964)) +((-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 *1)) (-4 *1 (-964)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-1181))))) +(-13 (-10 -8 (-15 -3237 ($ $ (-1181))) (-15 -3237 ($ $ (-1096 $))))) +((-3238 (((-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-644 (-950 |#1|)) (-644 (-1181)) (-1181)) 30) (((-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-644 (-950 |#1|)) (-644 (-1181))) 31) (((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1175 |#1|))) (-950 |#1|) (-1181) (-950 |#1|) (-1181)) 49))) +(((-965 |#1|) (-10 -7 (-15 -3238 ((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1175 |#1|))) (-950 |#1|) (-1181) (-950 |#1|) (-1181))) (-15 -3238 ((-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -3238 ((-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-644 (-950 |#1|)) (-644 (-1181)) (-1181)))) (-13 (-366) (-147))) (T -965)) +((-3238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-950 *6))) (-5 *4 (-644 (-1181))) (-5 *5 (-1181)) (-4 *6 (-13 (-366) (-147))) (-5 *2 (-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 *6))) (|:| |prim| (-1175 *6)))) (-5 *1 (-965 *6)))) (-3238 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-644 (-1181))) (-4 *5 (-13 (-366) (-147))) (-5 *2 (-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 *5))) (|:| |prim| (-1175 *5)))) (-5 *1 (-965 *5)))) (-3238 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-1181)) (-4 *5 (-13 (-366) (-147))) (-5 *2 (-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1175 *5)))) (-5 *1 (-965 *5))))) +(-10 -7 (-15 -3238 ((-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1175 |#1|))) (-950 |#1|) (-1181) (-950 |#1|) (-1181))) (-15 -3238 ((-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-644 (-950 |#1|)) (-644 (-1181)))) (-15 -3238 ((-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-644 (-950 |#1|)) (-644 (-1181)) (-1181)))) +((-3241 (((-644 |#1|) |#1| |#1|) 47)) (-4157 (((-112) |#1|) 44)) (-3240 ((|#1| |#1|) 80)) (-3239 ((|#1| |#1|) 79))) +(((-966 |#1|) (-10 -7 (-15 -4157 ((-112) |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -3241 ((-644 |#1|) |#1| |#1|))) (-549)) (T -966)) +((-3241 (*1 *2 *3 *3) (-12 (-5 *2 (-644 *3)) (-5 *1 (-966 *3)) (-4 *3 (-549)))) (-3240 (*1 *2 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-549)))) (-3239 (*1 *2 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-549)))) (-4157 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-966 *3)) (-4 *3 (-549))))) +(-10 -7 (-15 -4157 ((-112) |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -3241 ((-644 |#1|) |#1| |#1|))) +((-3242 (((-1276) (-866)) 9))) +(((-967) (-10 -7 (-15 -3242 ((-1276) (-866))))) (T -967)) +((-3242 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-967))))) +(-10 -7 (-15 -3242 ((-1276) (-866)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))))) (-2807 (($ $ $) 65 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))))) (-1408 (((-3 $ "failed") $ $) 52 (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))))) (-3542 (((-774)) 36 (-12 (|has| |#1| (-371)) (|has| |#2| (-371))))) (-3243 ((|#2| $) 22)) (-3244 ((|#1| $) 21)) (-4158 (($) NIL (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))) CONST)) (-3892 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (-3397 (($) NIL (-12 (|has| |#1| (-371)) (|has| |#2| (-371))))) (-2575 (((-112) $) NIL (-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (-2936 (($ $ $) NIL (-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))))) (-3262 (($ $ $) NIL (-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))))) (-3245 (($ |#1| |#2|) 20)) (-2190 (((-923) $) NIL (-12 (|has| |#1| (-371)) (|has| |#2| (-371))))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 39 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))))) (-2565 (($ (-923)) NIL (-12 (|has| |#1| (-371)) (|has| |#2| (-371))))) (-3666 (((-1124) $) NIL)) (-3412 (($ $ $) NIL (-12 (|has| |#1| (-477)) (|has| |#2| (-477))))) (-2758 (($ $ $) NIL (-12 (|has| |#1| (-477)) (|has| |#2| (-477))))) (-4380 (((-866) $) 14)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 42 (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))) CONST)) (-3069 (($) 25 (-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) CONST)) (-2968 (((-112) $ $) NIL (-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))))) (-2969 (((-112) $ $) NIL (-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))))) (-3457 (((-112) $ $) 19)) (-3089 (((-112) $ $) NIL (-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))))) (-3090 (((-112) $ $) 69 (-3962 (-12 (|has| |#1| (-796)) (|has| |#2| (-796))) (-12 (|has| |#1| (-853)) (|has| |#2| (-853)))))) (-4383 (($ $ $) NIL (-12 (|has| |#1| (-477)) (|has| |#2| (-477))))) (-4271 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4273 (($ $ $) 45 (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796)))))) (** (($ $ (-550)) NIL (-12 (|has| |#1| (-477)) (|has| |#2| (-477)))) (($ $ (-774)) 32 (-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (($ $ (-923)) NIL (-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (* (($ (-550) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-774) $) 48 (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796))))) (($ (-923) $) NIL (-3962 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-796)) (|has| |#2| (-796))))) (($ $ $) 28 (-3962 (-12 (|has| |#1| (-477)) (|has| |#2| (-477))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))))) +(((-968 |#1| |#2|) (-13 (-1105) (-10 -8 (IF (|has| |#1| (-371)) (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-729)) (IF (|has| |#2| (-729)) (-6 (-729)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-477)) (IF (|has| |#2| (-477)) (-6 (-477)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-796)) (IF (|has| |#2| (-796)) (-6 (-796)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-853)) (IF (|has| |#2| (-853)) (-6 (-853)) |%noBranch|) |%noBranch|) (-15 -3245 ($ |#1| |#2|)) (-15 -3244 (|#1| $)) (-15 -3243 (|#2| $)))) (-1105) (-1105)) (T -968)) +((-3245 (*1 *1 *2 *3) (-12 (-5 *1 (-968 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-3244 (*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-968 *2 *3)) (-4 *3 (-1105)))) (-3243 (*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-968 *3 *2)) (-4 *3 (-1105))))) +(-13 (-1105) (-10 -8 (IF (|has| |#1| (-371)) (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-729)) (IF (|has| |#2| (-729)) (-6 (-729)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-477)) (IF (|has| |#2| (-477)) (-6 (-477)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-796)) (IF (|has| |#2| (-796)) (-6 (-796)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-853)) (IF (|has| |#2| (-853)) (-6 (-853)) |%noBranch|) |%noBranch|) (-15 -3245 ($ |#1| |#2|)) (-15 -3244 (|#1| $)) (-15 -3243 (|#2| $)))) +((-3828 (((-1107) $) 12)) (-3246 (($ (-510) (-1107)) 14)) (-3975 (((-510) $) 9)) (-4380 (((-866) $) 24))) +(((-969) (-13 (-616 (-866)) (-10 -8 (-15 -3975 ((-510) $)) (-15 -3828 ((-1107) $)) (-15 -3246 ($ (-510) (-1107)))))) (T -969)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-969)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-969)))) (-3246 (*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-1107)) (-5 *1 (-969))))) +(-13 (-616 (-866)) (-10 -8 (-15 -3975 ((-510) $)) (-15 -3828 ((-1107) $)) (-15 -3246 ($ (-510) (-1107))))) +((-2970 (((-112) $ $) NIL)) (-3260 (($) NIL T CONST)) (-3257 (($ $ $) 30)) (-3748 (($ $) 24)) (-3665 (((-1163) $) NIL)) (-3254 (((-694 |#1|) $) 36)) (-3251 (((-694 (-876 $ $)) $) 55)) (-3253 (((-694 $) $) 45)) (-3250 (((-694 (-876 $ $)) $) 56)) (-3249 (((-694 (-876 $ $)) $) 57)) (-3252 (((-694 (-876 $ $)) $) 54)) (-3256 (($ $ $) 31)) (-3666 (((-1124) $) NIL)) (-3259 (($) NIL T CONST)) (-3255 (($ $ $) 32)) (-3247 (($ $ $) 29)) (-3248 (($ $ $) 27)) (-4380 (((-866) $) 59) (($ |#1|) 12)) (-3664 (((-112) $ $) NIL)) (-3258 (($ $ $) 28)) (-3457 (((-112) $ $) NIL))) +(((-970 |#1|) (-13 (-971) (-619 |#1|) (-10 -8 (-15 -3254 ((-694 |#1|) $)) (-15 -3253 ((-694 $) $)) (-15 -3252 ((-694 (-876 $ $)) $)) (-15 -3251 ((-694 (-876 $ $)) $)) (-15 -3250 ((-694 (-876 $ $)) $)) (-15 -3249 ((-694 (-876 $ $)) $)) (-15 -3248 ($ $ $)) (-15 -3247 ($ $ $)))) (-1105)) (T -970)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-970 *3)) (-4 *3 (-1105)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-694 (-970 *3))) (-5 *1 (-970 *3)) (-4 *3 (-1105)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) (-4 *3 (-1105)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) (-4 *3 (-1105)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) (-4 *3 (-1105)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) (-4 *3 (-1105)))) (-3248 (*1 *1 *1 *1) (-12 (-5 *1 (-970 *2)) (-4 *2 (-1105)))) (-3247 (*1 *1 *1 *1) (-12 (-5 *1 (-970 *2)) (-4 *2 (-1105))))) +(-13 (-971) (-619 |#1|) (-10 -8 (-15 -3254 ((-694 |#1|) $)) (-15 -3253 ((-694 $) $)) (-15 -3252 ((-694 (-876 $ $)) $)) (-15 -3251 ((-694 (-876 $ $)) $)) (-15 -3250 ((-694 (-876 $ $)) $)) (-15 -3249 ((-694 (-876 $ $)) $)) (-15 -3248 ($ $ $)) (-15 -3247 ($ $ $)))) +((-2970 (((-112) $ $) 7)) (-3260 (($) 20 T CONST)) (-3257 (($ $ $) 16)) (-3748 (($ $) 18)) (-3665 (((-1163) $) 10)) (-3256 (($ $ $) 15)) (-3666 (((-1124) $) 11)) (-3259 (($) 19 T CONST)) (-3255 (($ $ $) 14)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3258 (($ $ $) 17)) (-3457 (((-112) $ $) 6))) +(((-971) (-140)) (T -971)) +((-3260 (*1 *1) (-4 *1 (-971))) (-3259 (*1 *1) (-4 *1 (-971))) (-3748 (*1 *1 *1) (-4 *1 (-971))) (-3258 (*1 *1 *1 *1) (-4 *1 (-971))) (-3257 (*1 *1 *1 *1) (-4 *1 (-971))) (-3256 (*1 *1 *1 *1) (-4 *1 (-971))) (-3255 (*1 *1 *1 *1) (-4 *1 (-971)))) +(-13 (-1105) (-10 -8 (-15 -3260 ($) -4386) (-15 -3259 ($) -4386) (-15 -3748 ($ $)) (-15 -3258 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3261 (($ $ $) 44)) (-3943 (($ $ $) 45)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3262 ((|#1| $) 46)) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-972 |#1|) (-140) (-853)) (T -972)) +((-3262 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-853)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-853)))) (-3261 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-853))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4427) (-15 -3262 (|t#1| $)) (-15 -3943 ($ $ $)) (-15 -3261 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-3274 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3566 |#2|)) |#2| |#2|) 105)) (-4189 ((|#2| |#2| |#2|) 103)) (-3275 (((-2 (|:| |coef2| |#2|) (|:| -3566 |#2|)) |#2| |#2|) 107)) (-3276 (((-2 (|:| |coef1| |#2|) (|:| -3566 |#2|)) |#2| |#2|) 109)) (-3283 (((-2 (|:| |coef2| |#2|) (|:| -3281 |#1|)) |#2| |#2|) 131 (|has| |#1| (-456)))) (-3290 (((-2 (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|) 56)) (-3264 (((-2 (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|) 80)) (-3265 (((-2 (|:| |coef1| |#2|) (|:| -4190 |#1|)) |#2| |#2|) 82)) (-3273 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3268 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774)) 89)) (-3278 (((-2 (|:| |coef2| |#2|) (|:| -4191 |#1|)) |#2|) 121)) (-3271 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774)) 92)) (-3280 (((-644 (-774)) |#2| |#2|) 102)) (-3288 ((|#1| |#2| |#2|) 50)) (-3282 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3281 |#1|)) |#2| |#2|) 129 (|has| |#1| (-456)))) (-3281 ((|#1| |#2| |#2|) 127 (|has| |#1| (-456)))) (-3289 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|) 54)) (-3263 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|) 79)) (-4190 ((|#1| |#2| |#2|) 76)) (-4186 (((-2 (|:| -4388 |#1|) (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2|) 41)) (-3287 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3272 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3612 ((|#2| |#2| |#2|) 93)) (-3267 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774)) 87)) (-3266 ((|#2| |#2| |#2| (-774)) 85)) (-3566 ((|#2| |#2| |#2|) 135 (|has| |#1| (-456)))) (-3891 (((-1270 |#2|) (-1270 |#2|) |#1|) 22)) (-3284 (((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2|) 46)) (-3277 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4191 |#1|)) |#2|) 119)) (-4191 ((|#1| |#2|) 116)) (-3270 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774)) 91)) (-3269 ((|#2| |#2| |#2| (-774)) 90)) (-3279 (((-644 |#2|) |#2| |#2|) 99)) (-3286 ((|#2| |#2| |#1| |#1| (-774)) 62)) (-3285 ((|#1| |#1| |#1| (-774)) 61)) (* (((-1270 |#2|) |#1| (-1270 |#2|)) 17))) +(((-973 |#1| |#2|) (-10 -7 (-15 -4190 (|#1| |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3264 ((-2 (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3266 (|#2| |#2| |#2| (-774))) (-15 -3267 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3269 (|#2| |#2| |#2| (-774))) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3612 (|#2| |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4189 (|#2| |#2| |#2|)) (-15 -3274 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3566 |#2|)) |#2| |#2|)) (-15 -3275 ((-2 (|:| |coef2| |#2|) (|:| -3566 |#2|)) |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| -3566 |#2|)) |#2| |#2|)) (-15 -4191 (|#1| |#2|)) (-15 -3277 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4191 |#1|)) |#2|)) (-15 -3278 ((-2 (|:| |coef2| |#2|) (|:| -4191 |#1|)) |#2|)) (-15 -3279 ((-644 |#2|) |#2| |#2|)) (-15 -3280 ((-644 (-774)) |#2| |#2|)) (IF (|has| |#1| (-456)) (PROGN (-15 -3281 (|#1| |#2| |#2|)) (-15 -3282 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3281 |#1|)) |#2| |#2|)) (-15 -3283 ((-2 (|:| |coef2| |#2|) (|:| -3281 |#1|)) |#2| |#2|)) (-15 -3566 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1270 |#2|) |#1| (-1270 |#2|))) (-15 -3891 ((-1270 |#2|) (-1270 |#2|) |#1|)) (-15 -4186 ((-2 (|:| -4388 |#1|) (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2|)) (-15 -3284 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2|)) (-15 -3285 (|#1| |#1| |#1| (-774))) (-15 -3286 (|#2| |#2| |#1| |#1| (-774))) (-15 -3287 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3288 (|#1| |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3290 ((-2 (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|))) (-561) (-1246 |#1|)) (T -973)) +((-3290 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4190 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3289 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4190 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3288 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2)))) (-3287 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) (-3286 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-774)) (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) (-3285 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *2 (-561)) (-5 *1 (-973 *2 *4)) (-4 *4 (-1246 *2)))) (-3284 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-4186 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4388 *4) (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3891 (*1 *2 *2 *3) (-12 (-5 *2 (-1270 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-561)) (-5 *1 (-973 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1270 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-561)) (-5 *1 (-973 *3 *4)))) (-3566 (*1 *2 *2 *2) (-12 (-4 *3 (-456)) (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3281 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3281 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3281 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-4 *2 (-456)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 (-774))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4191 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4191 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-4191 (*1 *2 *3) (-12 (-4 *2 (-561)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3566 *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3566 *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3566 *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-4189 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3612 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) (-3271 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *5 *3)) (-4 *3 (-1246 *5)))) (-3270 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *5 *3)) (-4 *3 (-1246 *5)))) (-3269 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-561)) (-5 *1 (-973 *4 *2)) (-4 *2 (-1246 *4)))) (-3268 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *5 *3)) (-4 *3 (-1246 *5)))) (-3267 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *5 *3)) (-4 *3 (-1246 *5)))) (-3266 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-561)) (-5 *1 (-973 *4 *2)) (-4 *2 (-1246 *4)))) (-3265 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4190 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4190 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4190 *4))) (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) (-4190 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2))))) +(-10 -7 (-15 -4190 (|#1| |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3264 ((-2 (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3266 (|#2| |#2| |#2| (-774))) (-15 -3267 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3269 (|#2| |#2| |#2| (-774))) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-774))) (-15 -3612 (|#2| |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4189 (|#2| |#2| |#2|)) (-15 -3274 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3566 |#2|)) |#2| |#2|)) (-15 -3275 ((-2 (|:| |coef2| |#2|) (|:| -3566 |#2|)) |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| -3566 |#2|)) |#2| |#2|)) (-15 -4191 (|#1| |#2|)) (-15 -3277 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4191 |#1|)) |#2|)) (-15 -3278 ((-2 (|:| |coef2| |#2|) (|:| -4191 |#1|)) |#2|)) (-15 -3279 ((-644 |#2|) |#2| |#2|)) (-15 -3280 ((-644 (-774)) |#2| |#2|)) (IF (|has| |#1| (-456)) (PROGN (-15 -3281 (|#1| |#2| |#2|)) (-15 -3282 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3281 |#1|)) |#2| |#2|)) (-15 -3283 ((-2 (|:| |coef2| |#2|) (|:| -3281 |#1|)) |#2| |#2|)) (-15 -3566 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1270 |#2|) |#1| (-1270 |#2|))) (-15 -3891 ((-1270 |#2|) (-1270 |#2|) |#1|)) (-15 -4186 ((-2 (|:| -4388 |#1|) (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2|)) (-15 -3284 ((-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) |#2| |#2|)) (-15 -3285 (|#1| |#1| |#1| (-774))) (-15 -3286 (|#2| |#2| |#1| |#1| (-774))) (-15 -3287 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3288 (|#1| |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|)) (-15 -3290 ((-2 (|:| |coef2| |#2|) (|:| -4190 |#1|)) |#2| |#2|))) +((-2970 (((-112) $ $) NIL)) (-3741 (((-1221) $) 13)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3628 (((-1139) $) 10)) (-4380 (((-866) $) 20) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-974) (-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3741 ((-1221) $))))) (T -974)) +((-3628 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-974)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-974))))) +(-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3741 ((-1221) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) 39)) (-4158 (($) NIL T CONST)) (-3292 (((-644 (-644 (-550))) (-644 (-550))) 48)) (-3291 (((-550) $) 72)) (-3293 (($ (-644 (-550))) 18)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4404 (((-644 (-550)) $) 13)) (-3412 (($ $) 52)) (-4380 (((-866) $) 68) (((-644 (-550)) $) 11)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 8 T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 26)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 25)) (-4273 (($ $ $) 28)) (* (($ (-923) $) NIL) (($ (-774) $) 37))) +(((-975) (-13 (-800) (-617 (-644 (-550))) (-616 (-644 (-550))) (-10 -8 (-15 -3293 ($ (-644 (-550)))) (-15 -3292 ((-644 (-644 (-550))) (-644 (-550)))) (-15 -3291 ((-550) $)) (-15 -3412 ($ $))))) (T -975)) +((-3293 (*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-975)))) (-3292 (*1 *2 *3) (-12 (-5 *2 (-644 (-644 (-550)))) (-5 *1 (-975)) (-5 *3 (-644 (-550))))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-975)))) (-3412 (*1 *1 *1) (-5 *1 (-975)))) +(-13 (-800) (-617 (-644 (-550))) (-616 (-644 (-550))) (-10 -8 (-15 -3293 ($ (-644 (-550)))) (-15 -3292 ((-644 (-644 (-550))) (-644 (-550)))) (-15 -3291 ((-550) $)) (-15 -3412 ($ $)))) +((-4383 (($ $ |#2|) 31)) (-4271 (($ $) 23) (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-411 (-550)) $) 27) (($ $ (-411 (-550))) 29))) +(((-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4383 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) (-977 |#2| |#3| |#4|) (-1053) (-795) (-853)) (T -976)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-411 (-550)))) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 -4383 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 * (|#1| (-923) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 |#3|) $) 86)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-3295 (((-112) $) 85)) (-2575 (((-112) $) 35)) (-4371 (((-112) $) 74)) (-3296 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-644 |#3|) (-644 |#2|)) 87)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4382 ((|#2| $) 76)) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4111 ((|#1| $ |#2|) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-977 |#1| |#2| |#3|) (-140) (-1053) (-795) (-853)) (T -977)) +((-3596 (*1 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *3 (-795)) (-4 *4 (-853)) (-4 *2 (-1053)))) (-3297 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *4 (-853)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *2 *4)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *2 (-795)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-977 *4 *3 *2)) (-4 *4 (-1053)) (-4 *3 (-795)) (-4 *2 (-853)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-795)) (-4 *6 (-853)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-795)) (-4 *5 (-853)) (-5 *2 (-644 *5)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-795)) (-4 *5 (-853)) (-5 *2 (-112)))) (-3294 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *4 (-853))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3296 ($ $ |t#3| |t#2|)) (-15 -3296 ($ $ (-644 |t#3|) (-644 |t#2|))) (-15 -3297 ($ $)) (-15 -3596 (|t#1| $)) (-15 -4382 (|t#2| $)) (-15 -3487 ((-644 |t#3|) $)) (-15 -3295 ((-112) $)) (-15 -3294 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) |has| |#1| (-38 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-292) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-3298 (((-1093 (-226)) $) 8)) (-3299 (((-1093 (-226)) $) 9)) (-3300 (((-1093 (-226)) $) 10)) (-3301 (((-644 (-644 (-947 (-226)))) $) 11)) (-4380 (((-866) $) 6))) +(((-978) (-140)) (T -978)) +((-3301 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-644 (-644 (-947 (-226))))))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1093 (-226))))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1093 (-226))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1093 (-226)))))) +(-13 (-616 (-866)) (-10 -8 (-15 -3301 ((-644 (-644 (-947 (-226)))) $)) (-15 -3300 ((-1093 (-226)) $)) (-15 -3299 ((-1093 (-226)) $)) (-15 -3298 ((-1093 (-226)) $)))) +(((-616 (-866)) . T)) +((-3487 (((-644 |#4|) $) 23)) (-3311 (((-112) $) 55)) (-3302 (((-112) $) 54)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#4|) 42)) (-3307 (((-112) $) 56)) (-3309 (((-112) $ $) 62)) (-3308 (((-112) $ $) 65)) (-3310 (((-112) $) 60)) (-3303 (((-644 |#5|) (-644 |#5|) $) 98)) (-3304 (((-644 |#5|) (-644 |#5|) $) 95)) (-3305 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3317 (((-644 |#4|) $) 27)) (-3316 (((-112) |#4| $) 34)) (-3306 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3313 (($ $ |#4|) 39)) (-3315 (($ $ |#4|) 38)) (-3314 (($ $ |#4|) 40)) (-3457 (((-112) $ $) 46))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3302 ((-112) |#1|)) (-15 -3303 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3304 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3305 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3306 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3307 ((-112) |#1|)) (-15 -3308 ((-112) |#1| |#1|)) (-15 -3309 ((-112) |#1| |#1|)) (-15 -3310 ((-112) |#1|)) (-15 -3311 ((-112) |#1|)) (-15 -3312 ((-2 (|:| |under| |#1|) (|:| -3536 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 (|#1| |#1| |#4|)) (-15 -3315 (|#1| |#1| |#4|)) (-15 -3316 ((-112) |#4| |#1|)) (-15 -3317 ((-644 |#4|) |#1|)) (-15 -3487 ((-644 |#4|) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-980 |#2| |#3| |#4| |#5|) (-1053) (-796) (-853) (-1069 |#2| |#3| |#4|)) (T -979)) +NIL +(-10 -8 (-15 -3302 ((-112) |#1|)) (-15 -3303 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3304 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3305 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3306 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3307 ((-112) |#1|)) (-15 -3308 ((-112) |#1| |#1|)) (-15 -3309 ((-112) |#1| |#1|)) (-15 -3310 ((-112) |#1|)) (-15 -3311 ((-112) |#1|)) (-15 -3312 ((-2 (|:| |under| |#1|) (|:| -3536 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 (|#1| |#1| |#4|)) (-15 -3315 (|#1| |#1| |#4|)) (-15 -3316 ((-112) |#4| |#1|)) (-15 -3317 ((-644 |#4|) |#1|)) (-15 -3487 ((-644 |#4|) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3487 (((-644 |#3|) $) 34)) (-3311 (((-112) $) 27)) (-3302 (((-112) $) 18 (|has| |#1| (-561)))) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) 28)) (-1310 (((-112) $ (-774)) 45)) (-4144 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4427)))) (-4158 (($) 46 T CONST)) (-3307 (((-112) $) 23 (|has| |#1| (-561)))) (-3309 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3308 (((-112) $ $) 24 (|has| |#1| (-561)))) (-3310 (((-112) $) 26 (|has| |#1| (-561)))) (-3303 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 37)) (-3578 (($ (-644 |#4|)) 36)) (-1441 (($ $) 69 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#4| $) 68 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4427)))) (-2126 (((-644 |#4|) $) 53 (|has| $ (-6 -4427)))) (-3602 ((|#3| $) 35)) (-4153 (((-112) $ (-774)) 44)) (-3010 (((-644 |#4|) $) 54 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 48)) (-3317 (((-644 |#3|) $) 33)) (-3316 (((-112) |#3| $) 32)) (-4150 (((-112) $ (-774)) 43)) (-3665 (((-1163) $) 10)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-3666 (((-1124) $) 11)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2128 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) 39)) (-3829 (((-112) $) 42)) (-3998 (($) 41)) (-2127 (((-774) |#4| $) 55 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4427)))) (-3826 (($ $) 40)) (-4404 (((-539) $) 70 (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 61)) (-3313 (($ $ |#3|) 29)) (-3315 (($ $ |#3|) 31)) (-3314 (($ $ |#3|) 30)) (-4380 (((-866) $) 12) (((-644 |#4|) $) 38)) (-3664 (((-112) $ $) 9)) (-2129 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-980 |#1| |#2| |#3| |#4|) (-140) (-1053) (-796) (-853) (-1069 |t#1| |t#2| |t#3|)) (T -980)) +((-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *1 (-980 *3 *4 *5 *6)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *1 (-980 *3 *4 *5 *6)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-1069 *3 *4 *2)) (-4 *2 (-853)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *5)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *5)))) (-3316 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *3 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-4 *6 (-1069 *4 *5 *3)) (-5 *2 (-112)))) (-3315 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *5 (-1069 *3 *4 *2)))) (-3314 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *5 (-1069 *3 *4 *2)))) (-3313 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) (-4 *5 (-1069 *3 *4 *2)))) (-3312 (*1 *2 *1 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-4 *6 (-1069 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3536 *1) (|:| |upper| *1))) (-4 *1 (-980 *4 *5 *3 *6)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3309 (*1 *2 *1 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3308 (*1 *2 *1 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3306 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3305 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3304 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)))) (-3303 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) +(-13 (-1105) (-151 |t#4|) (-616 (-644 |t#4|)) (-10 -8 (-6 -4427) (-15 -3579 ((-3 $ "failed") (-644 |t#4|))) (-15 -3578 ($ (-644 |t#4|))) (-15 -3602 (|t#3| $)) (-15 -3487 ((-644 |t#3|) $)) (-15 -3317 ((-644 |t#3|) $)) (-15 -3316 ((-112) |t#3| $)) (-15 -3315 ($ $ |t#3|)) (-15 -3314 ($ $ |t#3|)) (-15 -3313 ($ $ |t#3|)) (-15 -3312 ((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |t#3|)) (-15 -3311 ((-112) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -3310 ((-112) $)) (-15 -3309 ((-112) $ $)) (-15 -3308 ((-112) $ $)) (-15 -3307 ((-112) $)) (-15 -3306 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3305 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3304 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -3303 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -3302 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-616 (-644 |#4|)) . T) ((-616 (-866)) . T) ((-151 |#4|) . T) ((-617 (-539)) |has| |#4| (-617 (-539))) ((-311 |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-493 |#4|) . T) ((-518 |#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-1105) . T) ((-1220) . T)) +((-3319 (((-644 |#4|) |#4| |#4|) 136)) (-3342 (((-644 |#4|) (-644 |#4|) (-112)) 125 (|has| |#1| (-456))) (((-644 |#4|) (-644 |#4|)) 126 (|has| |#1| (-456)))) (-3329 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 44)) (-3328 (((-112) |#4|) 43)) (-3341 (((-644 |#4|) |#4|) 121 (|has| |#1| (-456)))) (-3324 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|)) 24)) (-3325 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 30)) (-3326 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 31)) (-3337 (((-3 (-2 (|:| |bas| (-480 |#1| |#2| |#3| |#4|)) (|:| -3750 (-644 |#4|))) "failed") (-644 |#4|)) 90)) (-3339 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3340 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3318 (((-644 |#4|) (-644 |#4|)) 128)) (-3334 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112)) 59) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 61)) (-3335 ((|#4| |#4| (-644 |#4|)) 60)) (-3343 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 132 (|has| |#1| (-456)))) (-3345 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 135 (|has| |#1| (-456)))) (-3344 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 134 (|has| |#1| (-456)))) (-3320 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|))) 105) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 107) (((-644 |#4|) (-644 |#4|) |#4|) 140) (((-644 |#4|) |#4| |#4|) 137) (((-644 |#4|) (-644 |#4|)) 106)) (-3348 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-309))))) (-3327 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 52)) (-3323 (((-112) (-644 |#4|)) 79)) (-3322 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 67)) (-3331 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 37)) (-3330 (((-112) |#4|) 36)) (-3347 (((-644 |#4|) (-644 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-309))))) (-3346 (((-644 |#4|) (-644 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-309))))) (-3336 (((-644 |#4|) (-644 |#4|)) 83)) (-3338 (((-644 |#4|) (-644 |#4|)) 97)) (-3321 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3333 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 50)) (-3332 (((-112) |#4|) 45))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3320 ((-644 |#4|) (-644 |#4|))) (-15 -3320 ((-644 |#4|) |#4| |#4|)) (-15 -3318 ((-644 |#4|) (-644 |#4|))) (-15 -3319 ((-644 |#4|) |#4| |#4|)) (-15 -3320 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -3320 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3320 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -3321 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3322 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3323 ((-112) (-644 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3326 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3327 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3328 ((-112) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3330 ((-112) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3332 ((-112) |#4|)) (-15 -3333 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3334 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3334 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3335 (|#4| |#4| (-644 |#4|))) (-15 -3336 ((-644 |#4|) (-644 |#4|))) (-15 -3337 ((-3 (-2 (|:| |bas| (-480 |#1| |#2| |#3| |#4|)) (|:| -3750 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -3338 ((-644 |#4|) (-644 |#4|))) (-15 -3339 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3340 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-456)) (PROGN (-15 -3341 ((-644 |#4|) |#4|)) (-15 -3342 ((-644 |#4|) (-644 |#4|))) (-15 -3342 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -3343 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3344 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3345 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-309)) (IF (|has| |#1| (-147)) (PROGN (-15 -3346 ((-644 |#4|) (-644 |#4|))) (-15 -3347 ((-644 |#4|) (-644 |#4|))) (-15 -3348 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) (-561) (-796) (-853) (-1069 |#1| |#2| |#3|)) (T -981)) +((-3348 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-309)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-309)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3346 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-309)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3345 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3344 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3343 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3342 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *7)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-456)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) (-3340 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-981 *5 *6 *7 *8)))) (-3339 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1069 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-796)) (-4 *8 (-853)) (-5 *1 (-981 *6 *7 *8 *9)))) (-3338 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3337 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-480 *4 *5 *6 *7)) (|:| -3750 (-644 *7)))) (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3335 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *2)))) (-3334 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *7)))) (-3334 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3333 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-981 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-981 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-981 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8)))) (-3321 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7)))) (-3320 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *7)))) (-3320 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3320 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *3)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) (-3320 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) +(-10 -7 (-15 -3320 ((-644 |#4|) (-644 |#4|))) (-15 -3320 ((-644 |#4|) |#4| |#4|)) (-15 -3318 ((-644 |#4|) (-644 |#4|))) (-15 -3319 ((-644 |#4|) |#4| |#4|)) (-15 -3320 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -3320 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3320 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -3321 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3322 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3323 ((-112) (-644 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3326 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3327 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3328 ((-112) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3330 ((-112) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3332 ((-112) |#4|)) (-15 -3333 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3334 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3334 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3335 (|#4| |#4| (-644 |#4|))) (-15 -3336 ((-644 |#4|) (-644 |#4|))) (-15 -3337 ((-3 (-2 (|:| |bas| (-480 |#1| |#2| |#3| |#4|)) (|:| -3750 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -3338 ((-644 |#4|) (-644 |#4|))) (-15 -3339 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3340 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-456)) (PROGN (-15 -3341 ((-644 |#4|) |#4|)) (-15 -3342 ((-644 |#4|) (-644 |#4|))) (-15 -3342 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -3343 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3344 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3345 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-309)) (IF (|has| |#1| (-147)) (PROGN (-15 -3346 ((-644 |#4|) (-644 |#4|))) (-15 -3347 ((-644 |#4|) (-644 |#4|))) (-15 -3348 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) +((-3349 (((-2 (|:| R (-692 |#1|)) (|:| A (-692 |#1|)) (|:| |Ainv| (-692 |#1|))) (-692 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3351 (((-644 (-2 (|:| C (-692 |#1|)) (|:| |g| (-1270 |#1|)))) (-692 |#1|) (-1270 |#1|)) 44)) (-3350 (((-692 |#1|) (-692 |#1|) (-692 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-982 |#1|) (-10 -7 (-15 -3349 ((-2 (|:| R (-692 |#1|)) (|:| A (-692 |#1|)) (|:| |Ainv| (-692 |#1|))) (-692 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3350 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3351 ((-644 (-2 (|:| C (-692 |#1|)) (|:| |g| (-1270 |#1|)))) (-692 |#1|) (-1270 |#1|)))) (-366)) (T -982)) +((-3351 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-5 *2 (-644 (-2 (|:| C (-692 *5)) (|:| |g| (-1270 *5))))) (-5 *1 (-982 *5)) (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)))) (-3350 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-692 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-366)) (-5 *1 (-982 *5)))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-366)) (-5 *2 (-2 (|:| R (-692 *6)) (|:| A (-692 *6)) (|:| |Ainv| (-692 *6)))) (-5 *1 (-982 *6)) (-5 *3 (-692 *6))))) +(-10 -7 (-15 -3349 ((-2 (|:| R (-692 |#1|)) (|:| A (-692 |#1|)) (|:| |Ainv| (-692 |#1|))) (-692 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3350 ((-692 |#1|) (-692 |#1|) (-692 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3351 ((-644 (-2 (|:| C (-692 |#1|)) (|:| |g| (-1270 |#1|)))) (-692 |#1|) (-1270 |#1|)))) +((-4403 (((-409 |#4|) |#4|) 56))) +(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4403 ((-409 |#4|) |#4|))) (-853) (-796) (-456) (-954 |#3| |#2| |#1|)) (T -983)) +((-4403 (*1 *2 *3) (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-456)) (-5 *2 (-409 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-954 *6 *5 *4))))) +(-10 -7 (-15 -4403 ((-409 |#4|) |#4|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-4272 (($ (-774)) 113 (|has| |#1| (-23)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4428))) (($ $) 89 (-12 (|has| |#1| (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2444 (($ $) 91 (|has| $ (-6 -4428)))) (-2445 (($ $) 101)) (-1441 (($ $) 79 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 78 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 52)) (-3845 (((-550) (-1 (-112) |#1|) $) 98) (((-550) |#1| $) 97 (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) 96 (|has| |#1| (-1105)))) (-4140 (($ (-644 |#1|)) 119)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4269 (((-692 |#1|) $ $) 106 (|has| |#1| (-1053)))) (-4048 (($ (-774) |#1|) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 88 (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 87 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4266 ((|#1| $) 103 (-12 (|has| |#1| (-1053)) (|has| |#1| (-1006))))) (-4150 (((-112) $ (-774)) 10)) (-4267 ((|#1| $) 104 (-12 (|has| |#1| (-1053)) (|has| |#1| (-1006))))) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 43 (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2375 (($ $ |#1|) 42 (|has| $ (-6 -4428)))) (-4202 (($ $ (-644 |#1|)) 117)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) 51) ((|#1| $ (-550)) 50) (($ $ (-1237 (-550))) 64)) (-4270 ((|#1| $ $) 107 (|has| |#1| (-1053)))) (-4345 (((-923) $) 118)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-4268 (($ $ $) 105)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 92 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539)))) (($ (-644 |#1|)) 120)) (-3955 (($ (-644 |#1|)) 71)) (-4235 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 84 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-3089 (((-112) $ $) 86 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 83 (|has| |#1| (-853)))) (-4271 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4273 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-550) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-729))) (($ $ |#1|) 108 (|has| |#1| (-729)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-984 |#1|) (-140) (-1053)) (T -984)) +((-4140 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1053)) (-4 *1 (-984 *3)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1053)) (-5 *2 (-923)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1053)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-984 *3)) (-4 *3 (-1053))))) +(-13 (-1269 |t#1|) (-621 (-644 |t#1|)) (-10 -8 (-15 -4140 ($ (-644 |t#1|))) (-15 -4345 ((-923) $)) (-15 -4268 ($ $ $)) (-15 -4202 ($ $ (-644 |t#1|))))) +(((-34) . T) ((-102) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-621 (-644 |#1|)) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-375 |#1|) . T) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-19 |#1|) . T) ((-853) |has| |#1| (-853)) ((-1105) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-1220) . T) ((-1269 |#1|) . T)) +((-4392 (((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)) 17))) +(((-985 |#1| |#2|) (-10 -7 (-15 -4392 ((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)))) (-1053) (-1053)) (T -985)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-947 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-5 *2 (-947 *6)) (-5 *1 (-985 *5 *6))))) +(-10 -7 (-15 -4392 ((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)))) +((-3354 ((|#1| (-947 |#1|)) 14)) (-3353 ((|#1| (-947 |#1|)) 13)) (-3352 ((|#1| (-947 |#1|)) 12)) (-3356 ((|#1| (-947 |#1|)) 16)) (-3360 ((|#1| (-947 |#1|)) 24)) (-3355 ((|#1| (-947 |#1|)) 15)) (-3357 ((|#1| (-947 |#1|)) 17)) (-3359 ((|#1| (-947 |#1|)) 23)) (-3358 ((|#1| (-947 |#1|)) 22))) +(((-986 |#1|) (-10 -7 (-15 -3352 (|#1| (-947 |#1|))) (-15 -3353 (|#1| (-947 |#1|))) (-15 -3354 (|#1| (-947 |#1|))) (-15 -3355 (|#1| (-947 |#1|))) (-15 -3356 (|#1| (-947 |#1|))) (-15 -3357 (|#1| (-947 |#1|))) (-15 -3358 (|#1| (-947 |#1|))) (-15 -3359 (|#1| (-947 |#1|))) (-15 -3360 (|#1| (-947 |#1|)))) (-1053)) (T -986)) +((-3360 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(-10 -7 (-15 -3352 (|#1| (-947 |#1|))) (-15 -3353 (|#1| (-947 |#1|))) (-15 -3354 (|#1| (-947 |#1|))) (-15 -3355 (|#1| (-947 |#1|))) (-15 -3356 (|#1| (-947 |#1|))) (-15 -3357 (|#1| (-947 |#1|))) (-15 -3358 (|#1| (-947 |#1|))) (-15 -3359 (|#1| (-947 |#1|))) (-15 -3360 (|#1| (-947 |#1|)))) +((-3378 (((-3 |#1| "failed") |#1|) 18)) (-3366 (((-3 |#1| "failed") |#1|) 6)) (-3376 (((-3 |#1| "failed") |#1|) 16)) (-3364 (((-3 |#1| "failed") |#1|) 4)) (-3380 (((-3 |#1| "failed") |#1|) 20)) (-3368 (((-3 |#1| "failed") |#1|) 8)) (-3361 (((-3 |#1| "failed") |#1| (-774)) 1)) (-3363 (((-3 |#1| "failed") |#1|) 3)) (-3362 (((-3 |#1| "failed") |#1|) 2)) (-3381 (((-3 |#1| "failed") |#1|) 21)) (-3369 (((-3 |#1| "failed") |#1|) 9)) (-3379 (((-3 |#1| "failed") |#1|) 19)) (-3367 (((-3 |#1| "failed") |#1|) 7)) (-3377 (((-3 |#1| "failed") |#1|) 17)) (-3365 (((-3 |#1| "failed") |#1|) 5)) (-3384 (((-3 |#1| "failed") |#1|) 24)) (-3372 (((-3 |#1| "failed") |#1|) 12)) (-3382 (((-3 |#1| "failed") |#1|) 22)) (-3370 (((-3 |#1| "failed") |#1|) 10)) (-3386 (((-3 |#1| "failed") |#1|) 26)) (-3374 (((-3 |#1| "failed") |#1|) 14)) (-3387 (((-3 |#1| "failed") |#1|) 27)) (-3375 (((-3 |#1| "failed") |#1|) 15)) (-3385 (((-3 |#1| "failed") |#1|) 25)) (-3373 (((-3 |#1| "failed") |#1|) 13)) (-3383 (((-3 |#1| "failed") |#1|) 23)) (-3371 (((-3 |#1| "failed") |#1|) 11))) +(((-987 |#1|) (-140) (-1206)) (T -987)) +((-3387 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3386 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3385 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3384 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3376 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3375 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206)))) (-3361 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-774)) (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(-13 (-10 -7 (-15 -3361 ((-3 |t#1| "failed") |t#1| (-774))) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -3375 ((-3 |t#1| "failed") |t#1|)) (-15 -3376 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)) (-15 -3384 ((-3 |t#1| "failed") |t#1|)) (-15 -3385 ((-3 |t#1| "failed") |t#1|)) (-15 -3386 ((-3 |t#1| "failed") |t#1|)) (-15 -3387 ((-3 |t#1| "failed") |t#1|)))) +((-3389 ((|#4| |#4| (-644 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3388 ((|#4| |#4| (-644 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4392 ((|#4| (-1 |#4| (-950 |#1|)) |#4|) 31))) +(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3388 (|#4| |#4| |#3|)) (-15 -3388 (|#4| |#4| (-644 |#3|))) (-15 -3389 (|#4| |#4| |#3|)) (-15 -3389 (|#4| |#4| (-644 |#3|))) (-15 -4392 (|#4| (-1 |#4| (-950 |#1|)) |#4|))) (-1053) (-796) (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181))))) (-954 (-950 |#1|) |#2| |#3|)) (T -988)) +((-4392 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-950 *4))) (-4 *4 (-1053)) (-4 *2 (-954 (-950 *4) *5 *6)) (-4 *5 (-796)) (-4 *6 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1="failed") (-1181)))))) (-5 *1 (-988 *4 *5 *6 *2)))) (-3389 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1#) (-1181)))))) (-4 *4 (-1053)) (-4 *5 (-796)) (-5 *1 (-988 *4 *5 *6 *2)) (-4 *2 (-954 (-950 *4) *5 *6)))) (-3389 (*1 *2 *2 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1#) (-1181)))))) (-5 *1 (-988 *4 *5 *3 *2)) (-4 *2 (-954 (-950 *4) *5 *3)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1#) (-1181)))))) (-4 *4 (-1053)) (-4 *5 (-796)) (-5 *1 (-988 *4 *5 *6 *2)) (-4 *2 (-954 (-950 *4) *5 *6)))) (-3388 (*1 *2 *2 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1#) (-1181)))))) (-5 *1 (-988 *4 *5 *3 *2)) (-4 *2 (-954 (-950 *4) *5 *3))))) +(-10 -7 (-15 -3388 (|#4| |#4| |#3|)) (-15 -3388 (|#4| |#4| (-644 |#3|))) (-15 -3389 (|#4| |#4| |#3|)) (-15 -3389 (|#4| |#4| (-644 |#3|))) (-15 -4392 (|#4| (-1 |#4| (-950 |#1|)) |#4|))) +((-3390 ((|#2| |#3|) 35)) (-4353 (((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) |#2|) 79)) (-4352 (((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) 100))) +(((-989 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4352 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))))) (-15 -4353 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) |#2|)) (-15 -3390 (|#2| |#3|))) (-353) (-1246 |#1|) (-1246 |#2|) (-727 |#2| |#3|)) (T -989)) +((-3390 (*1 *2 *3) (-12 (-4 *3 (-1246 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-989 *4 *2 *3 *5)) (-4 *4 (-353)) (-4 *5 (-727 *2 *3)))) (-4353 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 *3)) (-5 *2 (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) (-5 *1 (-989 *4 *3 *5 *6)) (-4 *6 (-727 *3 *5)))) (-4352 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| -2192 (-692 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-692 *4)))) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-727 *4 *5))))) +(-10 -7 (-15 -4352 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))))) (-15 -4353 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) |#2|)) (-15 -3390 (|#2| |#3|))) +((-2970 (((-112) $ $) NIL)) (-3827 (((-3 (-112) #1="failed") $) 71)) (-4083 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-309))))) (-3394 (($ $ (-3 (-112) #1#)) 72)) (-3395 (($ (-644 |#4|) |#4|) 25)) (-3665 (((-1163) $) NIL)) (-3391 (($ $) 69)) (-3666 (((-1124) $) NIL)) (-3829 (((-112) $) 70)) (-3998 (($) 30)) (-3392 ((|#4| $) 74)) (-3393 (((-644 |#4|) $) 73)) (-4380 (((-866) $) 68)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-990 |#1| |#2| |#3| |#4|) (-13 (-1105) (-616 (-866)) (-10 -8 (-15 -3998 ($)) (-15 -3395 ($ (-644 |#4|) |#4|)) (-15 -3827 ((-3 (-112) #1="failed") $)) (-15 -3394 ($ $ (-3 (-112) #1#))) (-15 -3829 ((-112) $)) (-15 -3393 ((-644 |#4|) $)) (-15 -3392 (|#4| $)) (-15 -3391 ($ $)) (IF (|has| |#1| (-309)) (IF (|has| |#1| (-147)) (-15 -4083 ($ $)) |%noBranch|) |%noBranch|))) (-456) (-853) (-796) (-954 |#1| |#3| |#2|)) (T -990)) +((-3998 (*1 *1) (-12 (-4 *2 (-456)) (-4 *3 (-853)) (-4 *4 (-796)) (-5 *1 (-990 *2 *3 *4 *5)) (-4 *5 (-954 *2 *4 *3)))) (-3395 (*1 *1 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-954 *4 *6 *5)) (-4 *4 (-456)) (-4 *5 (-853)) (-4 *6 (-796)) (-5 *1 (-990 *4 *5 *6 *3)))) (-3827 (*1 *2 *1) (|partial| -12 (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *2 (-112)) (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4)))) (-3394 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4)))) (-3829 (*1 *2 *1) (-12 (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *2 (-112)) (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4)))) (-3393 (*1 *2 *1) (-12 (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *2 (-644 *6)) (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4)))) (-3392 (*1 *2 *1) (-12 (-4 *2 (-954 *3 *5 *4)) (-5 *1 (-990 *3 *4 *5 *2)) (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)))) (-3391 (*1 *1 *1) (-12 (-4 *2 (-456)) (-4 *3 (-853)) (-4 *4 (-796)) (-5 *1 (-990 *2 *3 *4 *5)) (-4 *5 (-954 *2 *4 *3)))) (-4083 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-309)) (-4 *2 (-456)) (-4 *3 (-853)) (-4 *4 (-796)) (-5 *1 (-990 *2 *3 *4 *5)) (-4 *5 (-954 *2 *4 *3))))) +(-13 (-1105) (-616 (-866)) (-10 -8 (-15 -3998 ($)) (-15 -3395 ($ (-644 |#4|) |#4|)) (-15 -3827 ((-3 (-112) #1="failed") $)) (-15 -3394 ($ $ (-3 (-112) #1#))) (-15 -3829 ((-112) $)) (-15 -3393 ((-644 |#4|) $)) (-15 -3392 (|#4| $)) (-15 -3391 ($ $)) (IF (|has| |#1| (-309)) (IF (|has| |#1| (-147)) (-15 -4083 ($ $)) |%noBranch|) |%noBranch|))) +((-3396 (((-990 (-411 (-550)) (-867 |#1|) (-240 |#2| (-774)) (-248 |#1| (-411 (-550)))) (-990 (-411 (-550)) (-867 |#1|) (-240 |#2| (-774)) (-248 |#1| (-411 (-550))))) 82))) +(((-991 |#1| |#2|) (-10 -7 (-15 -3396 ((-990 (-411 (-550)) (-867 |#1|) (-240 |#2| (-774)) (-248 |#1| (-411 (-550)))) (-990 (-411 (-550)) (-867 |#1|) (-240 |#2| (-774)) (-248 |#1| (-411 (-550))))))) (-644 (-1181)) (-774)) (T -991)) +((-3396 (*1 *2 *2) (-12 (-5 *2 (-990 (-411 (-550)) (-867 *3) (-240 *4 (-774)) (-248 *3 (-411 (-550))))) (-14 *3 (-644 (-1181))) (-14 *4 (-774)) (-5 *1 (-991 *3 *4))))) +(-10 -7 (-15 -3396 ((-990 (-411 (-550)) (-867 |#1|) (-240 |#2| (-774)) (-248 |#1| (-411 (-550)))) (-990 (-411 (-550)) (-867 |#1|) (-240 |#2| (-774)) (-248 |#1| (-411 (-550))))))) +((-3693 (((-112) |#5| |#5|) 44)) (-3696 (((-112) |#5| |#5|) 59)) (-3701 (((-112) |#5| (-644 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3697 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3703 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) 70)) (-3692 (((-1276)) 32)) (-3691 (((-1276) (-1163) (-1163) (-1163)) 28)) (-3702 (((-644 |#5|) (-644 |#5|)) 100)) (-3704 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) 92)) (-3705 (((-644 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 122)) (-3695 (((-112) |#5| |#5|) 53)) (-3700 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3698 (((-112) (-644 |#4|) (-644 |#4|)) 64)) (-3699 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-4133 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-3706 (((-3 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3694 (((-644 |#5|) (-644 |#5|)) 49))) +(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3691 ((-1276) (-1163) (-1163) (-1163))) (-15 -3692 ((-1276))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-644 |#5|) (-644 |#5|))) (-15 -3695 ((-112) |#5| |#5|)) (-15 -3696 ((-112) |#5| |#5|)) (-15 -3697 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3698 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4133 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3700 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3701 ((-112) |#5| |#5|)) (-15 -3701 ((-112) |#5| (-644 |#5|))) (-15 -3702 ((-644 |#5|) (-644 |#5|))) (-15 -3703 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3704 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-15 -3705 ((-644 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3706 ((-3 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -992)) +((-3706 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-992 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1075 *6 *7 *8 *9)))) (-3705 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1075 *6 *7 *8 *9)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-1069 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-992 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1710 *7)))) (-4 *6 (-1069 *3 *4 *5)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-992 *3 *4 *5 *6 *7)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *1 (-992 *3 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-992 *5 *6 *7 *8 *3)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-4133 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *1 (-992 *3 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3692 (*1 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-1276)) (-5 *1 (-992 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) (-3691 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-992 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7))))) +(-10 -7 (-15 -3691 ((-1276) (-1163) (-1163) (-1163))) (-15 -3692 ((-1276))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-644 |#5|) (-644 |#5|))) (-15 -3695 ((-112) |#5| |#5|)) (-15 -3696 ((-112) |#5| |#5|)) (-15 -3697 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3698 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4133 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3700 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3701 ((-112) |#5| |#5|)) (-15 -3701 ((-112) |#5| (-644 |#5|))) (-15 -3702 ((-644 |#5|) (-644 |#5|))) (-15 -3703 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3704 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-15 -3705 ((-644 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3706 ((-3 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-4265 (((-1181) $) 15)) (-3828 (((-1163) $) 16)) (-3648 (($ (-1181) (-1163)) 14)) (-4380 (((-866) $) 13))) +(((-993) (-13 (-616 (-866)) (-10 -8 (-15 -3648 ($ (-1181) (-1163))) (-15 -4265 ((-1181) $)) (-15 -3828 ((-1163) $))))) (T -993)) +((-3648 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1163)) (-5 *1 (-993)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-993)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-993))))) +(-13 (-616 (-866)) (-10 -8 (-15 -3648 ($ (-1181) (-1163))) (-15 -4265 ((-1181) $)) (-15 -3828 ((-1163) $)))) +((-3579 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1181) #1#) $) 66) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 (-550) #1#) $) 96)) (-3578 ((|#2| $) NIL) (((-1181) $) 61) (((-411 (-550)) $) NIL) (((-550) $) 93)) (-2429 (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) 115) (((-692 |#2|) (-692 $)) 28)) (-3397 (($) 99)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 76) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 85)) (-3399 (($ $) 10)) (-3870 (((-3 $ "failed") $) 20)) (-4392 (($ (-1 |#2| |#2|) $) 22)) (-3871 (($) 16)) (-3534 (($ $) 55)) (-4244 (($ $) NIL) (($ $ (-774)) NIL) (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3398 (($ $) 12)) (-4404 (((-894 (-550)) $) 71) (((-894 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-226) $) 48)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) 91) (($ |#2|) NIL) (($ (-1181)) 58)) (-3532 (((-774)) 31)) (-3090 (((-112) $ $) 51))) +(((-994 |#1| |#2|) (-10 -8 (-15 -3090 ((-112) |#1| |#1|)) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -3579 ((-3 (-550) #1="failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -4404 ((-226) |#1|)) (-15 -4404 ((-381) |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4380 (|#1| (-1181))) (-15 -3579 ((-3 (-1181) #1#) |#1|)) (-15 -3578 ((-1181) |#1|)) (-15 -3397 (|#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3398 (|#1| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -2429 ((-692 |#2|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| |#1|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-995 |#2|) (-561)) (T -994)) +((-3532 (*1 *2) (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-994 *3 *4)) (-4 *3 (-995 *4))))) +(-10 -8 (-15 -3090 ((-112) |#1| |#1|)) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -3579 ((-3 (-550) #1="failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -4404 ((-226) |#1|)) (-15 -4404 ((-381) |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4380 (|#1| (-1181))) (-15 -3579 ((-3 (-1181) #1#) |#1|)) (-15 -3578 ((-1181) |#1|)) (-15 -3397 (|#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3398 (|#1| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -3201 ((-892 (-550) |#1|) |#1| (-894 (-550)) (-892 (-550) |#1|))) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -2429 ((-692 |#2|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| |#1|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3535 ((|#1| $) 147 (|has| |#1| (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-3112 (((-409 (-1175 $)) (-1175 $)) 138 (|has| |#1| (-914)))) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 141 (|has| |#1| (-914)))) (-1755 (((-112) $ $) 65)) (-4057 (((-550) $) 128 (|has| |#1| (-823)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| #2="failed") $) 185) (((-3 (-1181) #2#) $) 136 (|has| |#1| (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) 119 (|has| |#1| (-1042 (-550)))) (((-3 (-550) #2#) $) 117 (|has| |#1| (-1042 (-550))))) (-3578 ((|#1| $) 186) (((-1181) $) 137 (|has| |#1| (-1042 (-1181)))) (((-411 (-550)) $) 120 (|has| |#1| (-1042 (-550)))) (((-550) $) 118 (|has| |#1| (-1042 (-550))))) (-2966 (($ $ $) 61)) (-2429 (((-692 (-550)) (-692 $)) 160 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 159 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 158) (((-692 |#1|) (-692 $)) 157)) (-3892 (((-3 $ "failed") $) 37)) (-3397 (($) 145 (|has| |#1| (-549)))) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4157 (((-112) $) 79)) (-3608 (((-112) $) 130 (|has| |#1| (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 154 (|has| |#1| (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 153 (|has| |#1| (-890 (-381))))) (-2575 (((-112) $) 35)) (-3399 (($ $) 149)) (-3401 ((|#1| $) 151)) (-3870 (((-3 $ "failed") $) 116 (|has| |#1| (-1155)))) (-3609 (((-112) $) 129 (|has| |#1| (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) 58)) (-2936 (($ $ $) 126 (|has| |#1| (-853)))) (-3262 (($ $ $) 125 (|has| |#1| (-853)))) (-4392 (($ (-1 |#1| |#1|) $) 177)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3871 (($) 115 (|has| |#1| (-1155)) CONST)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3534 (($ $) 146 (|has| |#1| (-309)))) (-3536 ((|#1| $) 143 (|has| |#1| (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 140 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 139 (|has| |#1| (-914)))) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) 183 (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) 180 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 179 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) 178 (|has| |#1| (-518 (-1181) |#1|)))) (-1754 (((-774) $) 64)) (-4233 (($ $ |#1|) 184 (|has| |#1| (-288 |#1| |#1|)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-4244 (($ $) 176 (|has| |#1| (-234))) (($ $ (-774)) 174 (|has| |#1| (-234))) (($ $ (-1181)) 172 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 171 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 170 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 169 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3398 (($ $) 148)) (-3400 ((|#1| $) 150)) (-4404 (((-894 (-550)) $) 156 (|has| |#1| (-617 (-894 (-550))))) (((-894 (-381)) $) 155 (|has| |#1| (-617 (-894 (-381))))) (((-539) $) 133 (|has| |#1| (-617 (-539)))) (((-381) $) 132 (|has| |#1| (-1024))) (((-226) $) 131 (|has| |#1| (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 142 (-3258 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74) (($ |#1|) 189) (($ (-1181)) 135 (|has| |#1| (-1042 (-1181))))) (-3107 (((-3 $ "failed") $) 134 (-3962 (|has| |#1| (-145)) (-3258 (|has| $ (-145)) (|has| |#1| (-914)))))) (-3532 (((-774)) 32 T CONST)) (-3537 ((|#1| $) 144 (|has| |#1| (-549)))) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3809 (($ $) 127 (|has| |#1| (-823)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $) 175 (|has| |#1| (-234))) (($ $ (-774)) 173 (|has| |#1| (-234))) (($ $ (-1181)) 168 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 167 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 166 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 165 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2968 (((-112) $ $) 123 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 122 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 124 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 121 (|has| |#1| (-853)))) (-4383 (($ $ $) 73) (($ |#1| |#1|) 152)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) +(((-995 |#1|) (-140) (-561)) (T -995)) +((-4383 (*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)))) (-3399 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)))) (-3398 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-309)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-309)))) (-3397 (*1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-549)) (-4 *2 (-561)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-549)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-549))))) +(-13 (-366) (-38 |t#1|) (-1042 |t#1|) (-341 |t#1|) (-232 |t#1|) (-380 |t#1|) (-888 |t#1|) (-404 |t#1|) (-10 -8 (-15 -4383 ($ |t#1| |t#1|)) (-15 -3401 (|t#1| $)) (-15 -3400 (|t#1| $)) (-15 -3399 ($ $)) (-15 -3398 ($ $)) (IF (|has| |t#1| (-1155)) (-6 (-1155)) |%noBranch|) (IF (|has| |t#1| (-1042 (-550))) (PROGN (-6 (-1042 (-550))) (-6 (-1042 (-411 (-550))))) |%noBranch|) (IF (|has| |t#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1042 (-1181))) (-6 (-1042 (-1181))) |%noBranch|) (IF (|has| |t#1| (-309)) (PROGN (-15 -3535 (|t#1| $)) (-15 -3534 ($ $))) |%noBranch|) (IF (|has| |t#1| (-549)) (PROGN (-15 -3397 ($)) (-15 -3537 (|t#1| $)) (-15 -3536 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-914)) (-6 (-914)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 #2=(-1181)) |has| |#1| (-1042 (-1181))) ((-619 |#1|) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-617 (-226)) |has| |#1| (-1024)) ((-617 (-381)) |has| |#1| (-1024)) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-617 (-894 (-381))) |has| |#1| (-617 (-894 (-381)))) ((-617 (-894 (-550))) |has| |#1| (-617 (-894 (-550)))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) . T) ((-288 |#1| $) |has| |#1| (-288 |#1| |#1|)) ((-292) . T) ((-309) . T) ((-311 |#1|) |has| |#1| (-311 |#1|)) ((-366) . T) ((-341 |#1|) . T) ((-380 |#1|) . T) ((-404 |#1|) . T) ((-456) . T) ((-518 (-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((-518 |#1| |#1|) |has| |#1| (-311 |#1|)) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) . T) ((-720 |#1|) . T) ((-720 $) . T) ((-729) . T) ((-794) |has| |#1| (-823)) ((-795) |has| |#1| (-823)) ((-797) |has| |#1| (-823)) ((-800) |has| |#1| (-823)) ((-823) |has| |#1| (-823)) ((-851) |has| |#1| (-823)) ((-853) -3962 (|has| |#1| (-853)) (|has| |#1| (-823))) ((-904 (-1181)) |has| |#1| (-904 (-1181))) ((-890 (-381)) |has| |#1| (-890 (-381))) ((-890 (-550)) |has| |#1| (-890 (-550))) ((-888 |#1|) . T) ((-914) |has| |#1| (-914)) ((-925) . T) ((-1024) |has| |#1| (-1024)) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-550))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 #2#) |has| |#1| (-1042 (-1181))) ((-1042 |#1|) . T) ((-1055 #1#) . T) ((-1055 |#1|) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) |has| |#1| (-1155)) ((-1220) . T) ((-1225) . T)) +((-4392 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#4| (-1 |#2| |#1|) |#3|))) (-561) (-561) (-995 |#1|) (-995 |#2|)) (T -996)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-4 *2 (-995 *6)) (-5 *1 (-996 *5 *6 *4 *2)) (-4 *4 (-995 *5))))) +(-10 -7 (-15 -4392 (|#4| (-1 |#2| |#1|) |#3|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3402 (($ (-1146 |#1| |#2|)) 11)) (-3530 (((-1146 |#1| |#2|) $) 12)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4233 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL))) +(((-997 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3402 ($ (-1146 |#1| |#2|))) (-15 -3530 ((-1146 |#1| |#2|) $)) (-15 -4233 (|#2| $ (-240 |#1| |#2|))))) (-923) (-366)) (T -997)) +((-3402 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 *4)) (-14 *3 (-923)) (-4 *4 (-366)) (-5 *1 (-997 *3 *4)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-5 *1 (-997 *3 *4)) (-14 *3 (-923)) (-4 *4 (-366)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-366)) (-5 *1 (-997 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3402 ($ (-1146 |#1| |#2|))) (-15 -3530 ((-1146 |#1| |#2|) $)) (-15 -4233 (|#2| $ (-240 |#1| |#2|))))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3628 (((-1139) $) 9)) (-4380 (((-866) $) 15) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-998) (-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $))))) (T -998)) +((-3628 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-998))))) +(-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-3405 (($ $) 47)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-4267 (((-774) $) 46)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-3404 ((|#1| $) 45)) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3407 ((|#1| |#1| $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-3406 ((|#1| $) 48)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-3403 ((|#1| $) 44)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-999 |#1|) (-140) (-1220)) (T -999)) +((-3407 (*1 *2 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220)))) (-3405 (*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1220)) (-5 *2 (-774)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4427) (-15 -3407 (|t#1| |t#1| $)) (-15 -3406 (|t#1| $)) (-15 -3405 ($ $)) (-15 -4267 ((-774) $)) (-15 -3404 (|t#1| $)) (-15 -3403 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4077 ((|#1| $) 12)) (-3427 (((-3 (-411 (-550)) "failed") $) NIL (|has| |#1| (-549)))) (-3426 (((-112) $) NIL (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) NIL (|has| |#1| (-549)))) (-3408 (($ |#1| |#1| |#1| |#1|) 16)) (-2575 (((-112) $) NIL)) (-3538 ((|#1| $) NIL)) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-3409 ((|#1| $) 15)) (-3410 ((|#1| $) 14)) (-3411 ((|#1| $) 13)) (-3666 (((-1124) $) NIL)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) NIL (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-518 (-1181) |#1|)))) (-4233 (($ $ |#1|) NIL (|has| |#1| (-288 |#1| |#1|)))) (-4244 (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3412 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550))))))) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3809 ((|#1| $) NIL (|has| |#1| (-1064)))) (-3512 (($) 8 T CONST)) (-3069 (($) 10 T CONST)) (-3074 (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-366))) (($ (-411 (-550)) $) NIL (|has| |#1| (-366))))) +(((-1000 |#1|) (-1002 |#1|) (-173)) (T -1000)) +NIL +(-1002 |#1|) +((-3610 (((-112) $) 43)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 |#2| #1#) $) 46)) (-3578 (((-550) $) NIL) (((-411 (-550)) $) NIL) ((|#2| $) 44)) (-3427 (((-3 (-411 (-550)) "failed") $) 78)) (-3426 (((-112) $) 72)) (-3425 (((-411 (-550)) $) 76)) (-2575 (((-112) $) 42)) (-3538 ((|#2| $) 22)) (-4392 (($ (-1 |#2| |#2|) $) 19)) (-2808 (($ $) 58)) (-4244 (($ $) NIL) (($ $ (-774)) NIL) (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-4404 (((-539) $) 67)) (-3412 (($ $) 17)) (-4380 (((-866) $) 53) (($ (-550)) 39) (($ |#2|) 37) (($ (-411 (-550))) NIL)) (-3532 (((-774)) 10)) (-3809 ((|#2| $) 71)) (-3457 (((-112) $ $) 26)) (-3090 (((-112) $ $) 69)) (-4271 (($ $) 30) (($ $ $) 29)) (-4273 (($ $ $) 27)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL))) +(((-1001 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| (-411 (-550)))) (-15 -3090 ((-112) |#1| |#1|)) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 * (|#1| |#1| (-411 (-550)))) (-15 -2808 (|#1| |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 -2575 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-1002 |#2|) (-173)) (T -1001)) +((-3532 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-774)) (-5 *1 (-1001 *3 *4)) (-4 *3 (-1002 *4))))) +(-10 -8 (-15 -4380 (|#1| (-411 (-550)))) (-15 -3090 ((-112) |#1| |#1|)) (-15 * (|#1| (-411 (-550)) |#1|)) (-15 * (|#1| |#1| (-411 (-550)))) (-15 -2808 (|#1| |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|)) (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1|)) (-15 -3579 ((-3 |#2| #1="failed") |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 -2575 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 * (|#1| (-774) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4273 (|#1| |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3579 (((-3 (-550) #1="failed") $) 127 (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 125 (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) 122)) (-3578 (((-550) $) 126 (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) 124 (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) 123)) (-2429 (((-692 (-550)) (-692 $)) 97 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 96 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 95) (((-692 |#1|) (-692 $)) 94)) (-3892 (((-3 $ "failed") $) 37)) (-4077 ((|#1| $) 87)) (-3427 (((-3 (-411 (-550)) "failed") $) 83 (|has| |#1| (-549)))) (-3426 (((-112) $) 85 (|has| |#1| (-549)))) (-3425 (((-411 (-550)) $) 84 (|has| |#1| (-549)))) (-3408 (($ |#1| |#1| |#1| |#1|) 88)) (-2575 (((-112) $) 35)) (-3538 ((|#1| $) 89)) (-2936 (($ $ $) 76 (|has| |#1| (-853)))) (-3262 (($ $ $) 75 (|has| |#1| (-853)))) (-4392 (($ (-1 |#1| |#1|) $) 98)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 80 (|has| |#1| (-366)))) (-3409 ((|#1| $) 90)) (-3410 ((|#1| $) 91)) (-3411 ((|#1| $) 92)) (-3666 (((-1124) $) 11)) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) 104 (|has| |#1| (-311 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-311 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-295 |#1|))) 101 (|has| |#1| (-311 |#1|))) (($ $ (-644 (-1181)) (-644 |#1|)) 100 (|has| |#1| (-518 (-1181) |#1|))) (($ $ (-1181) |#1|) 99 (|has| |#1| (-518 (-1181) |#1|)))) (-4233 (($ $ |#1|) 105 (|has| |#1| (-288 |#1| |#1|)))) (-4244 (($ $) 121 (|has| |#1| (-234))) (($ $ (-774)) 119 (|has| |#1| (-234))) (($ $ (-1181)) 117 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 116 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 115 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 114 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-4404 (((-539) $) 81 (|has| |#1| (-617 (-539))))) (-3412 (($ $) 93)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 44) (($ (-411 (-550))) 70 (-3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550))))))) (-3107 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3809 ((|#1| $) 86 (|has| |#1| (-1064)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $) 120 (|has| |#1| (-234))) (($ $ (-774)) 118 (|has| |#1| (-234))) (($ $ (-1181)) 113 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 112 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 111 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 110 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2968 (((-112) $ $) 73 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 72 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 74 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 71 (|has| |#1| (-853)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 79 (|has| |#1| (-366)))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-411 (-550))) 78 (|has| |#1| (-366))) (($ (-411 (-550)) $) 77 (|has| |#1| (-366))))) +(((-1002 |#1|) (-140) (-173)) (T -1002)) +((-3412 (*1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-3408 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)) (-4 *2 (-1064)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) (-3427 (*1 *2 *1) (|partial| -12 (-4 *1 (-1002 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550)))))) +(-13 (-38 |t#1|) (-416 |t#1|) (-232 |t#1|) (-341 |t#1|) (-380 |t#1|) (-10 -8 (-15 -3412 ($ $)) (-15 -3411 (|t#1| $)) (-15 -3410 (|t#1| $)) (-15 -3409 (|t#1| $)) (-15 -3538 (|t#1| $)) (-15 -3408 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4077 (|t#1| $)) (IF (|has| |t#1| (-292)) (-6 (-292)) |%noBranch|) (IF (|has| |t#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#1| (-366)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1064)) (-15 -3809 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-549)) (PROGN (-15 -3426 ((-112) $)) (-15 -3425 ((-411 (-550)) $)) (-15 -3427 ((-3 (-411 (-550)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-366)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-366)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-366)) (|has| |#1| (-292))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-366))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) |has| |#1| (-366)) ((-288 |#1| $) |has| |#1| (-288 |#1| |#1|)) ((-292) -3962 (|has| |#1| (-366)) (|has| |#1| (-292))) ((-311 |#1|) |has| |#1| (-311 |#1|)) ((-341 |#1|) . T) ((-380 |#1|) . T) ((-416 |#1|) . T) ((-518 (-1181) |#1|) |has| |#1| (-518 (-1181) |#1|)) ((-518 |#1| |#1|) |has| |#1| (-311 |#1|)) ((-649 #1#) |has| |#1| (-366)) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-366)) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-366)) ((-643 |#1|) . T) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) |has| |#1| (-366)) ((-720 |#1|) . T) ((-729) . T) ((-853) |has| |#1| (-853)) ((-904 (-1181)) |has| |#1| (-904 (-1181))) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1055 #1#) |has| |#1| (-366)) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-366)) (|has| |#1| (-292))) ((-1060 #1#) |has| |#1| (-366)) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-366)) (|has| |#1| (-292))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-4392 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#3| (-1 |#4| |#2|) |#1|))) (-1002 |#2|) (-173) (-1002 |#4|) (-173)) (T -1003)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1002 *6)) (-5 *1 (-1003 *4 *5 *2 *6)) (-4 *4 (-1002 *5))))) +(-10 -7 (-15 -4392 (|#3| (-1 |#4| |#2|) |#1|))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1310 (((-112) $ (-774)) NIL)) (-4158 (($) NIL T CONST)) (-3405 (($ $) 23)) (-3413 (($ (-644 |#1|)) 33)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-4267 (((-774) $) 26)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1370 ((|#1| $) 28)) (-4041 (($ |#1| $) 17)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-3404 ((|#1| $) 27)) (-1371 ((|#1| $) 22)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3407 ((|#1| |#1| $) 16)) (-3829 (((-112) $) 18)) (-3998 (($) NIL)) (-3406 ((|#1| $) 21)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) NIL)) (-3403 ((|#1| $) 30)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1004 |#1|) (-13 (-999 |#1|) (-10 -8 (-15 -3413 ($ (-644 |#1|))))) (-1105)) (T -1004)) +((-3413 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-1004 *3))))) +(-13 (-999 |#1|) (-10 -8 (-15 -3413 ($ (-644 |#1|))))) +((-3440 (($ $) 12)) (-3414 (($ $ (-550)) 13))) +(((-1005 |#1|) (-10 -8 (-15 -3440 (|#1| |#1|)) (-15 -3414 (|#1| |#1| (-550)))) (-1006)) (T -1005)) +NIL +(-10 -8 (-15 -3440 (|#1| |#1|)) (-15 -3414 (|#1| |#1| (-550)))) +((-3440 (($ $) 6)) (-3414 (($ $ (-550)) 7)) (** (($ $ (-411 (-550))) 8))) +(((-1006) (-140)) (T -1006)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1006)) (-5 *2 (-411 (-550))))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1006)) (-5 *2 (-550)))) (-3440 (*1 *1 *1) (-4 *1 (-1006)))) +(-13 (-10 -8 (-15 -3440 ($ $)) (-15 -3414 ($ $ (-550))) (-15 ** ($ $ (-411 (-550)))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1817 (((-2 (|:| |num| (-1270 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| (-411 |#2|) (-366)))) (-2243 (($ $) NIL (|has| (-411 |#2|) (-366)))) (-2241 (((-112) $) NIL (|has| (-411 |#2|) (-366)))) (-1959 (((-692 (-411 |#2|)) (-1270 $)) NIL) (((-692 (-411 |#2|))) NIL)) (-3756 (((-411 |#2|) $) NIL)) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| (-411 |#2|) (-353)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| (-411 |#2|) (-366)))) (-4403 (((-409 $) $) NIL (|has| (-411 |#2|) (-366)))) (-1755 (((-112) $ $) NIL (|has| (-411 |#2|) (-366)))) (-3542 (((-774)) NIL (|has| (-411 |#2|) (-371)))) (-1831 (((-112)) NIL)) (-1830 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| (-411 |#2|) (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| (-411 |#2|) (-1042 (-411 (-550))))) (((-3 (-411 |#2|) #1#) $) NIL)) (-3578 (((-550) $) NIL (|has| (-411 |#2|) (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| (-411 |#2|) (-1042 (-411 (-550))))) (((-411 |#2|) $) NIL)) (-1969 (($ (-1270 (-411 |#2|)) (-1270 $)) NIL) (($ (-1270 (-411 |#2|))) 81) (($ (-1270 |#2|) |#2|) NIL)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-411 |#2|) (-353)))) (-2966 (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-1958 (((-692 (-411 |#2|)) $ (-1270 $)) NIL) (((-692 (-411 |#2|)) $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-411 |#2|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-411 |#2|) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-411 |#2|))) (|:| |vec| (-1270 (-411 |#2|)))) (-692 $) (-1270 $)) NIL) (((-692 (-411 |#2|)) (-692 $)) NIL)) (-1822 (((-1270 $) (-1270 $)) NIL)) (-4276 (($ |#3|) 75) (((-3 $ "failed") (-411 |#3|)) NIL (|has| (-411 |#2|) (-366)))) (-3892 (((-3 $ "failed") $) NIL)) (-1809 (((-644 (-644 |#1|))) NIL (|has| |#1| (-371)))) (-1834 (((-112) |#1| |#1|) NIL)) (-3515 (((-923)) NIL)) (-3397 (($) NIL (|has| (-411 |#2|) (-371)))) (-1829 (((-112)) NIL)) (-1828 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2965 (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| (-411 |#2|) (-366)))) (-3928 (($ $) NIL)) (-3238 (($) NIL (|has| (-411 |#2|) (-353)))) (-1850 (((-112) $) NIL (|has| (-411 |#2|) (-353)))) (-1943 (($ $ (-774)) NIL (|has| (-411 |#2|) (-353))) (($ $) NIL (|has| (-411 |#2|) (-353)))) (-4157 (((-112) $) NIL (|has| (-411 |#2|) (-366)))) (-4205 (((-923) $) NIL (|has| (-411 |#2|) (-353))) (((-835 (-923)) $) NIL (|has| (-411 |#2|) (-353)))) (-2575 (((-112) $) NIL)) (-3803 (((-774)) NIL)) (-1823 (((-1270 $) (-1270 $)) NIL)) (-3538 (((-411 |#2|) $) NIL)) (-1810 (((-644 (-950 |#1|)) (-1181)) NIL (|has| |#1| (-366)))) (-3870 (((-3 $ "failed") $) NIL (|has| (-411 |#2|) (-353)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| (-411 |#2|) (-366)))) (-2194 ((|#3| $) NIL (|has| (-411 |#2|) (-366)))) (-2190 (((-923) $) NIL (|has| (-411 |#2|) (-371)))) (-3483 ((|#3| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| (-411 |#2|) (-366))) (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-3665 (((-1163) $) NIL)) (-1818 (((-692 (-411 |#2|))) 57)) (-1820 (((-692 (-411 |#2|))) 56)) (-2808 (($ $) NIL (|has| (-411 |#2|) (-366)))) (-1815 (($ (-1270 |#2|) |#2|) 82)) (-1819 (((-692 (-411 |#2|))) 55)) (-1821 (((-692 (-411 |#2|))) 54)) (-1814 (((-2 (|:| |num| (-692 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1816 (((-2 (|:| |num| (-1270 |#2|)) (|:| |den| |#2|)) $) 88)) (-1827 (((-1270 $)) 51)) (-4352 (((-1270 $)) 50)) (-1826 (((-112) $) NIL)) (-1825 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3871 (($) NIL (|has| (-411 |#2|) (-353)) CONST)) (-2565 (($ (-923)) NIL (|has| (-411 |#2|) (-371)))) (-1812 (((-3 |#2| #3="failed")) 70)) (-3666 (((-1124) $) NIL)) (-1836 (((-774)) NIL)) (-2574 (($) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-411 |#2|) (-366)))) (-3566 (($ (-644 $)) NIL (|has| (-411 |#2|) (-366))) (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| (-411 |#2|) (-353)))) (-4166 (((-409 $) $) NIL (|has| (-411 |#2|) (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-411 |#2|) (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| (-411 |#2|) (-366)))) (-3891 (((-3 $ "failed") $ $) NIL (|has| (-411 |#2|) (-366)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-411 |#2|) (-366)))) (-1754 (((-774) $) NIL (|has| (-411 |#2|) (-366)))) (-4233 ((|#1| $ |#1| |#1|) NIL)) (-1813 (((-3 |#2| #3#)) 68)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| (-411 |#2|) (-366)))) (-4191 (((-411 |#2|) (-1270 $)) NIL) (((-411 |#2|)) 47)) (-1944 (((-774) $) NIL (|has| (-411 |#2|) (-353))) (((-3 (-774) "failed") $ $) NIL (|has| (-411 |#2|) (-353)))) (-4244 (($ $ (-1 (-411 |#2|) (-411 |#2|)) (-774)) NIL (|has| (-411 |#2|) (-366))) (($ $ (-1 (-411 |#2|) (-411 |#2|))) NIL (|has| (-411 |#2|) (-366))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181) (-774)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-644 (-1181))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-774)) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353)))) (($ $) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353))))) (-2573 (((-692 (-411 |#2|)) (-1270 $) (-1 (-411 |#2|) (-411 |#2|))) NIL (|has| (-411 |#2|) (-366)))) (-3607 ((|#3|) 58)) (-1844 (($) NIL (|has| (-411 |#2|) (-353)))) (-3646 (((-1270 (-411 |#2|)) $ (-1270 $)) NIL) (((-692 (-411 |#2|)) (-1270 $) (-1270 $)) NIL) (((-1270 (-411 |#2|)) $) 83) (((-692 (-411 |#2|)) (-1270 $)) NIL)) (-4404 (((-1270 (-411 |#2|)) $) NIL) (($ (-1270 (-411 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| (-411 |#2|) (-353)))) (-1824 (((-1270 $) (-1270 $)) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 |#2|)) NIL) (($ (-411 (-550))) NIL (-3962 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-1042 (-411 (-550)))))) (($ $) NIL (|has| (-411 |#2|) (-366)))) (-3107 (($ $) NIL (|has| (-411 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-411 |#2|) (-145)))) (-2772 ((|#3| $) NIL)) (-3532 (((-774)) NIL T CONST)) (-1833 (((-112)) 65)) (-1832 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) NIL)) (-2242 (((-112) $ $) NIL (|has| (-411 |#2|) (-366)))) (-1811 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1835 (((-112)) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-1 (-411 |#2|) (-411 |#2|)) (-774)) NIL (|has| (-411 |#2|) (-366))) (($ $ (-1 (-411 |#2|) (-411 |#2|))) NIL (|has| (-411 |#2|) (-366))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181) (-774)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-644 (-1181))) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-1181)) NIL (-12 (|has| (-411 |#2|) (-366)) (|has| (-411 |#2|) (-904 (-1181))))) (($ $ (-774)) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353)))) (($ $) NIL (-3962 (-12 (|has| (-411 |#2|) (-234)) (|has| (-411 |#2|) (-366))) (|has| (-411 |#2|) (-353))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ $) NIL (|has| (-411 |#2|) (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| (-411 |#2|) (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 |#2|)) NIL) (($ (-411 |#2|) $) NIL) (($ (-411 (-550)) $) NIL (|has| (-411 |#2|) (-366))) (($ $ (-411 (-550))) NIL (|has| (-411 |#2|) (-366))))) +(((-1007 |#1| |#2| |#3| |#4| |#5|) (-345 |#1| |#2| |#3|) (-1225) (-1246 |#1|) (-1246 (-411 |#2|)) (-411 |#2|) (-774)) (T -1007)) +NIL +(-345 |#1| |#2| |#3|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3420 (((-644 (-550)) $) 73)) (-3416 (($ (-644 (-550))) 81)) (-3535 (((-550) $) 48 (|has| (-550) (-309)))) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL (|has| (-550) (-823)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #2="failed") $) 60) (((-3 (-1181) #2#) $) NIL (|has| (-550) (-1042 (-1181)))) (((-3 (-411 (-550)) #2#) $) 57 (|has| (-550) (-1042 (-550)))) (((-3 (-550) #2#) $) 60 (|has| (-550) (-1042 (-550))))) (-3578 (((-550) $) NIL) (((-1181) $) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) NIL (|has| (-550) (-1042 (-550)))) (((-550) $) NIL (|has| (-550) (-1042 (-550))))) (-2966 (($ $ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| (-550) (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3397 (($) NIL (|has| (-550) (-549)))) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3418 (((-644 (-550)) $) 79)) (-3608 (((-112) $) NIL (|has| (-550) (-823)))) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (|has| (-550) (-890 (-550)))) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (|has| (-550) (-890 (-381))))) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL)) (-3401 (((-550) $) 45)) (-3870 (((-3 $ "failed") $) NIL (|has| (-550) (-1155)))) (-3609 (((-112) $) NIL (|has| (-550) (-823)))) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-550) (-853)))) (-4392 (($ (-1 (-550) (-550)) $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL)) (-3871 (($) NIL (|has| (-550) (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3534 (($ $) NIL (|has| (-550) (-309))) (((-411 (-550)) $) 50)) (-3419 (((-1158 (-550)) $) 78)) (-3415 (($ (-644 (-550)) (-644 (-550))) 82)) (-3536 (((-550) $) 64 (|has| (-550) (-549)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| (-550) (-914)))) (-4166 (((-409 $) $) NIL)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4201 (($ $ (-644 (-550)) (-644 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-550) (-550)) NIL (|has| (-550) (-311 (-550)))) (($ $ (-295 (-550))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-295 (-550)))) NIL (|has| (-550) (-311 (-550)))) (($ $ (-644 (-1181)) (-644 (-550))) NIL (|has| (-550) (-518 (-1181) (-550)))) (($ $ (-1181) (-550)) NIL (|has| (-550) (-518 (-1181) (-550))))) (-1754 (((-774) $) NIL)) (-4233 (($ $ (-550)) NIL (|has| (-550) (-288 (-550) (-550))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $) 15 (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-3398 (($ $) NIL)) (-3400 (((-550) $) 47)) (-3417 (((-644 (-550)) $) 80)) (-4404 (((-894 (-550)) $) NIL (|has| (-550) (-617 (-894 (-550))))) (((-894 (-381)) $) NIL (|has| (-550) (-617 (-894 (-381))))) (((-539) $) NIL (|has| (-550) (-617 (-539)))) (((-381) $) NIL (|has| (-550) (-1024))) (((-226) $) NIL (|has| (-550) (-1024)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-550) (-914))))) (-4380 (((-866) $) 107) (($ (-550)) 51) (($ $) NIL) (($ (-411 (-550))) 27) (($ (-550)) 51) (($ (-1181)) NIL (|has| (-550) (-1042 (-1181)))) (((-411 (-550)) $) 25)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-550) (-914))) (|has| (-550) (-145))))) (-3532 (((-774)) 13 T CONST)) (-3537 (((-550) $) 62 (|has| (-550) (-549)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3809 (($ $) NIL (|has| (-550) (-823)))) (-3512 (($) 14 T CONST)) (-3069 (($) 17 T CONST)) (-3074 (($ $) NIL (|has| (-550) (-234))) (($ $ (-774)) NIL (|has| (-550) (-234))) (($ $ (-1181)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| (-550) (-904 (-1181)))) (($ $ (-1 (-550) (-550)) (-774)) NIL) (($ $ (-1 (-550) (-550))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-550) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3457 (((-112) $ $) 21)) (-3089 (((-112) $ $) NIL (|has| (-550) (-853)))) (-3090 (((-112) $ $) 40 (|has| (-550) (-853)))) (-4383 (($ $ $) 36) (($ (-550) (-550)) 38)) (-4271 (($ $) 23) (($ $ $) 30)) (-4273 (($ $ $) 28)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 32) (($ $ $) 34) (($ $ (-411 (-550))) NIL) (($ (-411 (-550)) $) NIL) (($ (-550) $) 32) (($ $ (-550)) NIL))) +(((-1008 |#1|) (-13 (-995 (-550)) (-616 (-411 (-550))) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -3420 ((-644 (-550)) $)) (-15 -3419 ((-1158 (-550)) $)) (-15 -3418 ((-644 (-550)) $)) (-15 -3417 ((-644 (-550)) $)) (-15 -3416 ($ (-644 (-550)))) (-15 -3415 ($ (-644 (-550)) (-644 (-550)))))) (-550)) (T -1008)) +((-3534 (*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-1158 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) (-3415 (*1 *1 *2 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) +(-13 (-995 (-550)) (-616 (-411 (-550))) (-10 -8 (-15 -3534 ((-411 (-550)) $)) (-15 -3420 ((-644 (-550)) $)) (-15 -3419 ((-1158 (-550)) $)) (-15 -3418 ((-644 (-550)) $)) (-15 -3417 ((-644 (-550)) $)) (-15 -3416 ($ (-644 (-550)))) (-15 -3415 ($ (-644 (-550)) (-644 (-550)))))) +((-3421 (((-51) (-411 (-550)) (-550)) 9))) +(((-1009) (-10 -7 (-15 -3421 ((-51) (-411 (-550)) (-550))))) (T -1009)) +((-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-550))) (-5 *4 (-550)) (-5 *2 (-51)) (-5 *1 (-1009))))) +(-10 -7 (-15 -3421 ((-51) (-411 (-550)) (-550)))) +((-3542 (((-550)) 23)) (-3424 (((-550)) 28)) (-3423 (((-1276) (-550)) 26)) (-3422 (((-550) (-550)) 29) (((-550)) 22))) +(((-1010) (-10 -7 (-15 -3422 ((-550))) (-15 -3542 ((-550))) (-15 -3422 ((-550) (-550))) (-15 -3423 ((-1276) (-550))) (-15 -3424 ((-550))))) (T -1010)) +((-3424 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1010)))) (-3422 (*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010)))) (-3542 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010)))) (-3422 (*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010))))) +(-10 -7 (-15 -3422 ((-550))) (-15 -3542 ((-550))) (-15 -3422 ((-550) (-550))) (-15 -3423 ((-1276) (-550))) (-15 -3424 ((-550)))) +((-4167 (((-409 |#1|) |#1|) 43)) (-4166 (((-409 |#1|) |#1|) 41))) +(((-1011 |#1|) (-10 -7 (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4167 ((-409 |#1|) |#1|))) (-1246 (-411 (-550)))) (T -1011)) +((-4167 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1011 *3)) (-4 *3 (-1246 (-411 (-550)))))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1011 *3)) (-4 *3 (-1246 (-411 (-550))))))) +(-10 -7 (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4167 ((-409 |#1|) |#1|))) +((-3427 (((-3 (-411 (-550)) "failed") |#1|) 15)) (-3426 (((-112) |#1|) 14)) (-3425 (((-411 (-550)) |#1|) 10))) +(((-1012 |#1|) (-10 -7 (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|))) (-1042 (-411 (-550)))) (T -1012)) +((-3427 (*1 *2 *3) (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-1012 *3)) (-4 *3 (-1042 *2)))) (-3426 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1012 *3)) (-4 *3 (-1042 (-411 (-550)))))) (-3425 (*1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-1012 *3)) (-4 *3 (-1042 *2))))) +(-10 -7 (-15 -3425 ((-411 (-550)) |#1|)) (-15 -3426 ((-112) |#1|)) (-15 -3427 ((-3 (-411 (-550)) "failed") |#1|))) +((-4221 ((|#2| $ "value" |#2|) 12)) (-4233 ((|#2| $ "value") 10)) (-3431 (((-112) $ $) 18))) +(((-1013 |#1| |#2|) (-10 -8 (-15 -4221 (|#2| |#1| "value" |#2|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -4233 (|#2| |#1| "value"))) (-1014 |#2|) (-1220)) (T -1013)) +NIL +(-10 -8 (-15 -4221 (|#2| |#1| "value" |#2|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -4233 (|#2| |#1| "value"))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4158 (($) 7 T CONST)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ "value") 48)) (-3432 (((-550) $ $) 45)) (-4067 (((-112) $) 47)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1014 |#1|) (-140) (-1220)) (T -1014)) +((-3947 (*1 *2 *1) (-12 (-4 *3 (-1220)) (-5 *2 (-644 *1)) (-4 *1 (-1014 *3)))) (-3434 (*1 *2 *1) (-12 (-4 *3 (-1220)) (-5 *2 (-644 *1)) (-4 *1 (-1014 *3)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1220)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1014 *2)) (-4 *2 (-1220)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-644 *3)))) (-3432 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-550)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4428)) (-4 *1 (-1014 *3)) (-4 *3 (-1220)))) (-4221 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4428)) (-4 *1 (-1014 *2)) (-4 *2 (-1220)))) (-3428 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1014 *2)) (-4 *2 (-1220))))) +(-13 (-493 |t#1|) (-10 -8 (-15 -3947 ((-644 $) $)) (-15 -3434 ((-644 $) $)) (-15 -3952 ((-112) $)) (-15 -3828 (|t#1| $)) (-15 -4233 (|t#1| $ "value")) (-15 -4067 ((-112) $)) (-15 -3433 ((-644 |t#1|) $)) (-15 -3432 ((-550) $ $)) (IF (|has| |t#1| (-1105)) (PROGN (-15 -3431 ((-112) $ $)) (-15 -3430 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4428)) (PROGN (-15 -3429 ($ $ (-644 $))) (-15 -4221 (|t#1| $ "value" |t#1|)) (-15 -3428 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-3440 (($ $) 9) (($ $ (-923)) 49) (($ (-411 (-550))) 13) (($ (-550)) 15)) (-3605 (((-3 $ "failed") (-1175 $) (-923) (-866)) 24) (((-3 $ "failed") (-1175 $) (-923)) 32)) (-3414 (($ $ (-550)) 58)) (-3532 (((-774)) 18)) (-3606 (((-644 $) (-1175 $)) NIL) (((-644 $) (-1175 (-411 (-550)))) 63) (((-644 $) (-1175 (-550))) 68) (((-644 $) (-950 $)) 72) (((-644 $) (-950 (-411 (-550)))) 76) (((-644 $) (-950 (-550))) 80)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL) (($ $ (-411 (-550))) 53))) +(((-1015 |#1|) (-10 -8 (-15 -3440 (|#1| (-550))) (-15 -3440 (|#1| (-411 (-550)))) (-15 -3440 (|#1| |#1| (-923))) (-15 -3606 ((-644 |#1|) (-950 (-550)))) (-15 -3606 ((-644 |#1|) (-950 (-411 (-550))))) (-15 -3606 ((-644 |#1|) (-950 |#1|))) (-15 -3606 ((-644 |#1|) (-1175 (-550)))) (-15 -3606 ((-644 |#1|) (-1175 (-411 (-550))))) (-15 -3606 ((-644 |#1|) (-1175 |#1|))) (-15 -3605 ((-3 |#1| "failed") (-1175 |#1|) (-923))) (-15 -3605 ((-3 |#1| "failed") (-1175 |#1|) (-923) (-866))) (-15 ** (|#1| |#1| (-411 (-550)))) (-15 -3414 (|#1| |#1| (-550))) (-15 -3440 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -3532 ((-774))) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923)))) (-1016)) (T -1015)) +((-3532 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1015 *3)) (-4 *3 (-1016))))) +(-10 -8 (-15 -3440 (|#1| (-550))) (-15 -3440 (|#1| (-411 (-550)))) (-15 -3440 (|#1| |#1| (-923))) (-15 -3606 ((-644 |#1|) (-950 (-550)))) (-15 -3606 ((-644 |#1|) (-950 (-411 (-550))))) (-15 -3606 ((-644 |#1|) (-950 |#1|))) (-15 -3606 ((-644 |#1|) (-1175 (-550)))) (-15 -3606 ((-644 |#1|) (-1175 (-411 (-550))))) (-15 -3606 ((-644 |#1|) (-1175 |#1|))) (-15 -3605 ((-3 |#1| "failed") (-1175 |#1|) (-923))) (-15 -3605 ((-3 |#1| "failed") (-1175 |#1|) (-923) (-866))) (-15 ** (|#1| |#1| (-411 (-550)))) (-15 -3414 (|#1| |#1| (-550))) (-15 -3440 (|#1| |#1|)) (-15 ** (|#1| |#1| (-550))) (-15 -3532 ((-774))) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 102)) (-2243 (($ $) 103)) (-2241 (((-112) $) 105)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 122)) (-4403 (((-409 $) $) 123)) (-3440 (($ $) 86) (($ $ (-923)) 72) (($ (-411 (-550))) 71) (($ (-550)) 70)) (-1755 (((-112) $ $) 113)) (-4057 (((-550) $) 139)) (-4158 (($) 18 T CONST)) (-3605 (((-3 $ "failed") (-1175 $) (-923) (-866)) 80) (((-3 $ "failed") (-1175 $) (-923)) 79)) (-3579 (((-3 (-550) #1="failed") $) 99 (|has| (-411 (-550)) (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 97 (|has| (-411 (-550)) (-1042 (-411 (-550))))) (((-3 (-411 (-550)) #1#) $) 94)) (-3578 (((-550) $) 98 (|has| (-411 (-550)) (-1042 (-550)))) (((-411 (-550)) $) 96 (|has| (-411 (-550)) (-1042 (-411 (-550))))) (((-411 (-550)) $) 95)) (-3436 (($ $ (-866)) 69)) (-3435 (($ $ (-866)) 68)) (-2966 (($ $ $) 117)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 116)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 111)) (-4157 (((-112) $) 124)) (-3608 (((-112) $) 137)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 85)) (-3609 (((-112) $) 138)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 120)) (-2936 (($ $ $) 136)) (-3262 (($ $ $) 135)) (-3437 (((-3 (-1175 $) "failed") $) 81)) (-3439 (((-3 (-866) "failed") $) 83)) (-3438 (((-3 (-1175 $) "failed") $) 82)) (-2071 (($ (-644 $)) 109) (($ $ $) 108)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 125)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 110)) (-3566 (($ (-644 $)) 107) (($ $ $) 106)) (-4166 (((-409 $) $) 121)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 118)) (-3891 (((-3 $ "failed") $ $) 101)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 112)) (-1754 (((-774) $) 114)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 115)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 129) (($ $) 100) (($ (-411 (-550))) 93) (($ (-550)) 92) (($ (-411 (-550))) 89)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 104)) (-4203 (((-411 (-550)) $ $) 67)) (-3606 (((-644 $) (-1175 $)) 78) (((-644 $) (-1175 (-411 (-550)))) 77) (((-644 $) (-1175 (-550))) 76) (((-644 $) (-950 $)) 75) (((-644 $) (-950 (-411 (-550)))) 74) (((-644 $) (-950 (-550))) 73)) (-3809 (($ $) 140)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 133)) (-2969 (((-112) $ $) 132)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 134)) (-3090 (((-112) $ $) 131)) (-4383 (($ $ $) 130)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 126) (($ $ (-411 (-550))) 84)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ (-411 (-550)) $) 128) (($ $ (-411 (-550))) 127) (($ (-550) $) 91) (($ $ (-550)) 90) (($ (-411 (-550)) $) 88) (($ $ (-411 (-550))) 87))) +(((-1016) (-140)) (T -1016)) +((-3440 (*1 *1 *1) (-4 *1 (-1016))) (-3439 (*1 *2 *1) (|partial| -12 (-4 *1 (-1016)) (-5 *2 (-866)))) (-3438 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1016)))) (-3437 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1016)))) (-3605 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-5 *4 (-866)) (-4 *1 (-1016)))) (-3605 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-4 *1 (-1016)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-1016)) (-5 *2 (-644 *1)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-1175 (-411 (-550)))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-1175 (-550))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-1016)) (-5 *2 (-644 *1)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-950 (-411 (-550)))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-950 (-550))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) (-3440 (*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-923)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-4 *1 (-1016)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1016)))) (-3436 (*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-866)))) (-3435 (*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-866)))) (-4203 (*1 *2 *1 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-411 (-550)))))) +(-13 (-147) (-851) (-173) (-366) (-416 (-411 (-550))) (-38 (-550)) (-38 (-411 (-550))) (-1006) (-10 -8 (-15 -3439 ((-3 (-866) "failed") $)) (-15 -3438 ((-3 (-1175 $) "failed") $)) (-15 -3437 ((-3 (-1175 $) "failed") $)) (-15 -3605 ((-3 $ "failed") (-1175 $) (-923) (-866))) (-15 -3605 ((-3 $ "failed") (-1175 $) (-923))) (-15 -3606 ((-644 $) (-1175 $))) (-15 -3606 ((-644 $) (-1175 (-411 (-550))))) (-15 -3606 ((-644 $) (-1175 (-550)))) (-15 -3606 ((-644 $) (-950 $))) (-15 -3606 ((-644 $) (-950 (-411 (-550))))) (-15 -3606 ((-644 $) (-950 (-550)))) (-15 -3440 ($ $ (-923))) (-15 -3440 ($ $)) (-15 -3440 ($ (-411 (-550)))) (-15 -3440 ($ (-550))) (-15 -3436 ($ $ (-866))) (-15 -3435 ($ $ (-866))) (-15 -4203 ((-411 (-550)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 #2=(-550)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-416 (-411 (-550))) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 #2#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 #2#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 #2#) . T) ((-720 $) . T) ((-729) . T) ((-794) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-851) . T) ((-853) . T) ((-925) . T) ((-1006) . T) ((-1042 (-411 (-550))) . T) ((-1042 (-550)) |has| (-411 (-550)) (-1042 (-550))) ((-1055 #1#) . T) ((-1055 #2#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 #2#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-3441 (((-2 (|:| |ans| |#2|) (|:| -3543 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1181) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -3441 ((-2 (|:| |ans| |#2|) (|:| -3543 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1181) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-456) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-27) (-425 |#1|))) (T -1017)) +((-3441 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1181)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2320 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1206) (-27) (-425 *8))) (-4 *8 (-13 (-456) (-147) (-1042 *3) (-642 *3))) (-5 *3 (-550)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3543 *4) (|:| |sol?| (-112)))) (-5 *1 (-1017 *8 *4))))) +(-10 -7 (-15 -3441 ((-2 (|:| |ans| |#2|) (|:| -3543 |#2|) (|:| |sol?| (-112))) (-550) |#2| |#2| (-1181) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3442 (((-3 (-644 |#2|) "failed") (-550) |#2| |#2| |#2| (-1181) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3442 ((-3 (-644 |#2|) "failed") (-550) |#2| |#2| |#2| (-1181) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-456) (-147) (-1042 (-550)) (-642 (-550))) (-13 (-1206) (-27) (-425 |#1|))) (T -1018)) +((-3442 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1181)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2320 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1206) (-27) (-425 *8))) (-4 *8 (-13 (-456) (-147) (-1042 *3) (-642 *3))) (-5 *3 (-550)) (-5 *2 (-644 *4)) (-5 *1 (-1018 *8 *4))))) +(-10 -7 (-15 -3442 ((-3 (-644 |#2|) "failed") (-550) |#2| |#2| |#2| (-1181) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2320 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3445 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3689 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)) 38)) (-3443 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-411 |#2|)) (|:| |c| (-411 |#2|)) (|:| -3499 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-1 |#2| |#2|)) 69)) (-3444 (((-2 (|:| |ans| (-411 |#2|)) (|:| |nosol| (-112))) (-411 |#2|) (-411 |#2|)) 74))) +(((-1019 |#1| |#2|) (-10 -7 (-15 -3443 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-411 |#2|)) (|:| |c| (-411 |#2|)) (|:| -3499 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-1 |#2| |#2|))) (-15 -3444 ((-2 (|:| |ans| (-411 |#2|)) (|:| |nosol| (-112))) (-411 |#2|) (-411 |#2|))) (-15 -3445 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3689 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)))) (-13 (-366) (-147) (-1042 (-550))) (-1246 |#1|)) (T -1019)) +((-3445 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1246 *6)) (-4 *6 (-13 (-366) (-147) (-1042 *4))) (-5 *4 (-550)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3689 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1019 *6 *3)))) (-3444 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| |ans| (-411 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-411 *5)))) (-3443 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-411 *6)) (|:| |c| (-411 *6)) (|:| -3499 *6))) (-5 *1 (-1019 *5 *6)) (-5 *3 (-411 *6))))) +(-10 -7 (-15 -3443 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-411 |#2|)) (|:| |c| (-411 |#2|)) (|:| -3499 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-1 |#2| |#2|))) (-15 -3444 ((-2 (|:| |ans| (-411 |#2|)) (|:| |nosol| (-112))) (-411 |#2|) (-411 |#2|))) (-15 -3445 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3689 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-550)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-550) (-1 |#2| |#2|)))) +((-3446 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-411 |#2|)) (|:| |h| |#2|) (|:| |c1| (-411 |#2|)) (|:| |c2| (-411 |#2|)) (|:| -3499 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|) (-1 |#2| |#2|)) 22)) (-3447 (((-3 (-644 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|)) 34))) +(((-1020 |#1| |#2|) (-10 -7 (-15 -3446 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-411 |#2|)) (|:| |h| |#2|) (|:| |c1| (-411 |#2|)) (|:| |c2| (-411 |#2|)) (|:| -3499 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|) (-1 |#2| |#2|))) (-15 -3447 ((-3 (-644 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|)))) (-13 (-366) (-147) (-1042 (-550))) (-1246 |#1|)) (T -1020)) +((-3447 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) (-5 *2 (-644 (-411 *5))) (-5 *1 (-1020 *4 *5)) (-5 *3 (-411 *5)))) (-3446 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-13 (-366) (-147) (-1042 (-550)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-411 *6)) (|:| |h| *6) (|:| |c1| (-411 *6)) (|:| |c2| (-411 *6)) (|:| -3499 *6))) (-5 *1 (-1020 *5 *6)) (-5 *3 (-411 *6))))) +(-10 -7 (-15 -3446 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-411 |#2|)) (|:| |h| |#2|) (|:| |c1| (-411 |#2|)) (|:| |c2| (-411 |#2|)) (|:| -3499 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|) (-1 |#2| |#2|))) (-15 -3447 ((-3 (-644 (-411 |#2|)) "failed") (-411 |#2|) (-411 |#2|) (-411 |#2|)))) +((-3448 (((-1 |#1|) (-644 (-2 (|:| -3828 |#1|) (|:| -1625 (-550))))) 37)) (-3506 (((-1 |#1|) (-1101 |#1|)) 44)) (-3449 (((-1 |#1|) (-1270 |#1|) (-1270 (-550)) (-550)) 34))) +(((-1021 |#1|) (-10 -7 (-15 -3506 ((-1 |#1|) (-1101 |#1|))) (-15 -3448 ((-1 |#1|) (-644 (-2 (|:| -3828 |#1|) (|:| -1625 (-550)))))) (-15 -3449 ((-1 |#1|) (-1270 |#1|) (-1270 (-550)) (-550)))) (-1105)) (T -1021)) +((-3449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1270 *6)) (-5 *4 (-1270 (-550))) (-5 *5 (-550)) (-4 *6 (-1105)) (-5 *2 (-1 *6)) (-5 *1 (-1021 *6)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3828 *4) (|:| -1625 (-550))))) (-4 *4 (-1105)) (-5 *2 (-1 *4)) (-5 *1 (-1021 *4)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1105)) (-5 *2 (-1 *4)) (-5 *1 (-1021 *4))))) +(-10 -7 (-15 -3506 ((-1 |#1|) (-1101 |#1|))) (-15 -3448 ((-1 |#1|) (-644 (-2 (|:| -3828 |#1|) (|:| -1625 (-550)))))) (-15 -3449 ((-1 |#1|) (-1270 |#1|) (-1270 (-550)) (-550)))) +((-4205 (((-774) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4205 ((-774) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-366) (-1246 |#1|) (-1246 (-411 |#2|)) (-345 |#1| |#2| |#3|) (-13 (-371) (-366))) (T -1022)) +((-4205 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-4 *4 (-1246 (-411 *7))) (-4 *8 (-345 *6 *7 *4)) (-4 *9 (-13 (-371) (-366))) (-5 *2 (-774)) (-5 *1 (-1022 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4205 ((-774) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2970 (((-112) $ $) NIL)) (-3450 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-1139) $) 11)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1023) (-13 (-1087) (-10 -8 (-15 -3450 ((-1139) $)) (-15 -3655 ((-1139) $))))) (T -1023)) +((-3450 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1023)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1023))))) +(-13 (-1087) (-10 -8 (-15 -3450 ((-1139) $)) (-15 -3655 ((-1139) $)))) +((-4404 (((-226) $) 6) (((-381) $) 9))) +(((-1024) (-140)) (T -1024)) +NIL +(-13 (-617 (-226)) (-617 (-381))) +(((-617 (-226)) . T) ((-617 (-381)) . T)) +((-3540 (((-3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) "failed") |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) 32) (((-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550))) 29)) (-3453 (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550))) 34) (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-411 (-550))) 30) (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) 33) (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1|) 28)) (-3452 (((-644 (-411 (-550))) (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) 20)) (-3451 (((-411 (-550)) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) 17))) +(((-1025 |#1|) (-10 -7 (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1|)) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-411 (-550)))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) "failed") |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3451 ((-411 (-550)) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3452 ((-644 (-411 (-550))) (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))))) (-1246 (-550))) (T -1025)) +((-3452 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *2 (-644 (-411 (-550)))) (-5 *1 (-1025 *4)) (-4 *4 (-1246 (-550))))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) (-5 *2 (-411 (-550))) (-5 *1 (-1025 *4)) (-4 *4 (-1246 (-550))))) (-3540 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))))) (-3540 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) (-5 *4 (-411 (-550))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))))) (-3453 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-411 (-550))) (-5 *2 (-644 (-2 (|:| -3544 *5) (|:| -3543 *5)))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))) (-5 *4 (-2 (|:| -3544 *5) (|:| -3543 *5))))) (-3453 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))) (-5 *4 (-411 (-550))))) (-3453 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))) (-5 *4 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) (-3453 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550)))))) +(-10 -7 (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1|)) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-411 (-550)))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) "failed") |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3451 ((-411 (-550)) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3452 ((-644 (-411 (-550))) (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))))) +((-3540 (((-3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) "failed") |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) 35) (((-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550))) 32)) (-3453 (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550))) 30) (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-411 (-550))) 26) (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) 28) (((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1|) 24))) +(((-1026 |#1|) (-10 -7 (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1|)) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-411 (-550)))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) "failed") |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) (-1246 (-411 (-550)))) (T -1026)) +((-3540 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 (-411 (-550)))))) (-3540 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) (-5 *4 (-411 (-550))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 *4)))) (-3453 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-411 (-550))) (-5 *2 (-644 (-2 (|:| -3544 *5) (|:| -3543 *5)))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 *5)) (-5 *4 (-2 (|:| -3544 *5) (|:| -3543 *5))))) (-3453 (*1 *2 *3 *4) (-12 (-5 *4 (-411 (-550))) (-5 *2 (-644 (-2 (|:| -3544 *4) (|:| -3543 *4)))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 *4)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 (-411 (-550)))) (-5 *4 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) (-3453 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 (-411 (-550))))))) +(-10 -7 (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1|)) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-411 (-550)))) (-15 -3453 ((-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-411 (-550)))) (-15 -3540 ((-3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) "failed") |#1| (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))) (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) +((-4006 (((-644 (-381)) (-950 (-550)) (-381)) 28) (((-644 (-381)) (-950 (-411 (-550))) (-381)) 27)) (-4401 (((-644 (-644 (-381))) (-644 (-950 (-550))) (-644 (-1181)) (-381)) 37))) +(((-1027) (-10 -7 (-15 -4006 ((-644 (-381)) (-950 (-411 (-550))) (-381))) (-15 -4006 ((-644 (-381)) (-950 (-550)) (-381))) (-15 -4401 ((-644 (-644 (-381))) (-644 (-950 (-550))) (-644 (-1181)) (-381))))) (T -1027)) +((-4401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-644 (-1181))) (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1027)) (-5 *5 (-381)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-550))) (-5 *2 (-644 (-381))) (-5 *1 (-1027)) (-5 *4 (-381)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-411 (-550)))) (-5 *2 (-644 (-381))) (-5 *1 (-1027)) (-5 *4 (-381))))) +(-10 -7 (-15 -4006 ((-644 (-381)) (-950 (-411 (-550))) (-381))) (-15 -4006 ((-644 (-381)) (-950 (-550)) (-381))) (-15 -4401 ((-644 (-644 (-381))) (-644 (-950 (-550))) (-644 (-1181)) (-381)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 75)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-3440 (($ $) NIL) (($ $ (-923)) NIL) (($ (-411 (-550))) NIL) (($ (-550)) NIL)) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) 70)) (-4158 (($) NIL T CONST)) (-3605 (((-3 $ #1="failed") (-1175 $) (-923) (-866)) NIL) (((-3 $ #1#) (-1175 $) (-923)) 55)) (-3579 (((-3 (-411 (-550)) #2="failed") $) NIL (|has| (-411 (-550)) (-1042 (-411 (-550))))) (((-3 (-411 (-550)) #2#) $) NIL) (((-3 |#1| #2#) $) 116) (((-3 (-550) #2#) $) NIL (-3962 (|has| (-411 (-550)) (-1042 (-550))) (|has| |#1| (-1042 (-550)))))) (-3578 (((-411 (-550)) $) 17 (|has| (-411 (-550)) (-1042 (-411 (-550))))) (((-411 (-550)) $) 17) ((|#1| $) 117) (((-550) $) NIL (-3962 (|has| (-411 (-550)) (-1042 (-550))) (|has| |#1| (-1042 (-550)))))) (-3436 (($ $ (-866)) 47)) (-3435 (($ $ (-866)) 48)) (-2966 (($ $ $) NIL)) (-3604 (((-411 (-550)) $ $) 21)) (-3892 (((-3 $ "failed") $) 88)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-3608 (((-112) $) 66)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL)) (-3609 (((-112) $) 69)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3437 (((-3 (-1175 $) #1#) $) 83)) (-3439 (((-3 (-866) #1#) $) 82)) (-3438 (((-3 (-1175 $) #1#) $) 80)) (-3454 (((-3 (-1065 $ (-1175 $)) "failed") $) 78)) (-2071 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 89)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4380 (((-866) $) 87) (($ (-550)) NIL) (($ (-411 (-550))) NIL) (($ $) 63) (($ (-411 (-550))) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL) (($ |#1|) 119)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-4203 (((-411 (-550)) $ $) 27)) (-3606 (((-644 $) (-1175 $)) 61) (((-644 $) (-1175 (-411 (-550)))) NIL) (((-644 $) (-1175 (-550))) NIL) (((-644 $) (-950 $)) NIL) (((-644 $) (-950 (-411 (-550)))) NIL) (((-644 $) (-950 (-550))) NIL)) (-3455 (($ (-1065 $ (-1175 $)) (-866)) 46)) (-3809 (($ $) 22)) (-3512 (($) 32 T CONST)) (-3069 (($) 39 T CONST)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 76)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 24)) (-4383 (($ $ $) 37)) (-4271 (($ $) 38) (($ $ $) 74)) (-4273 (($ $ $) 112)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL) (($ $ (-411 (-550))) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 98) (($ $ $) 104) (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL) (($ (-550) $) 98) (($ $ (-550)) NIL) (($ (-411 (-550)) $) NIL) (($ $ (-411 (-550))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1028 |#1|) (-13 (-1016) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -3455 ($ (-1065 $ (-1175 $)) (-866))) (-15 -3454 ((-3 (-1065 $ (-1175 $)) "failed") $)) (-15 -3604 ((-411 (-550)) $ $)))) (-13 (-851) (-366) (-1024))) (T -1028)) +((-3455 (*1 *1 *2 *3) (-12 (-5 *2 (-1065 (-1028 *4) (-1175 (-1028 *4)))) (-5 *3 (-866)) (-5 *1 (-1028 *4)) (-4 *4 (-13 (-851) (-366) (-1024))))) (-3454 (*1 *2 *1) (|partial| -12 (-5 *2 (-1065 (-1028 *3) (-1175 (-1028 *3)))) (-5 *1 (-1028 *3)) (-4 *3 (-13 (-851) (-366) (-1024))))) (-3604 (*1 *2 *1 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-1028 *3)) (-4 *3 (-13 (-851) (-366) (-1024)))))) +(-13 (-1016) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -3455 ($ (-1065 $ (-1175 $)) (-866))) (-15 -3454 ((-3 (-1065 $ (-1175 $)) "failed") $)) (-15 -3604 ((-411 (-550)) $ $)))) +((-3456 (((-2 (|:| -3689 |#2|) (|:| -2904 (-644 |#1|))) |#2| (-644 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -3456 (|#2| |#2| |#1|)) (-15 -3456 ((-2 (|:| -3689 |#2|) (|:| -2904 (-644 |#1|))) |#2| (-644 |#1|)))) (-366) (-661 |#1|)) (T -1029)) +((-3456 (*1 *2 *3 *4) (-12 (-4 *5 (-366)) (-5 *2 (-2 (|:| -3689 *3) (|:| -2904 (-644 *5)))) (-5 *1 (-1029 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-661 *5)))) (-3456 (*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-1029 *3 *2)) (-4 *2 (-661 *3))))) +(-10 -7 (-15 -3456 (|#2| |#2| |#1|)) (-15 -3456 ((-2 (|:| -3689 |#2|) (|:| -2904 (-644 |#1|))) |#2| (-644 |#1|)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3458 ((|#1| $ |#1|) 14)) (-4221 ((|#1| $ |#1|) 12)) (-3460 (($ |#1|) 10)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4233 ((|#1| $) 11)) (-3459 ((|#1| $) 13)) (-4380 (((-866) $) 21 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3457 (((-112) $ $) 9))) +(((-1030 |#1|) (-13 (-1220) (-10 -8 (-15 -3460 ($ |#1|)) (-15 -4233 (|#1| $)) (-15 -4221 (|#1| $ |#1|)) (-15 -3459 (|#1| $)) (-15 -3458 (|#1| $ |#1|)) (-15 -3457 ((-112) $ $)) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|))) (-1220)) (T -1030)) +((-3460 (*1 *1 *2) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) (-4233 (*1 *2 *1) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) (-4221 (*1 *2 *1 *2) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) (-3459 (*1 *2 *1) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) (-3458 (*1 *2 *1 *2) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) (-3457 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1030 *3)) (-4 *3 (-1220))))) +(-13 (-1220) (-10 -8 (-15 -3460 ($ |#1|)) (-15 -4233 (|#1| $)) (-15 -4221 (|#1| $ |#1|)) (-15 -3459 (|#1| $)) (-15 -3458 (|#1| $ |#1|)) (-15 -3457 ((-112) $ $)) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) NIL)) (-4116 (((-644 $) (-644 |#4|)) 118) (((-644 $) (-644 |#4|) (-112)) 119) (((-644 $) (-644 |#4|) (-112) (-112)) 117) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3487 (((-644 |#3|) $) NIL)) (-3311 (((-112) $) NIL)) (-3302 (((-112) $) NIL (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4122 ((|#4| |#4| $) NIL)) (-4208 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| $) 112)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4144 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) 66)) (-4158 (($) NIL T CONST)) (-3307 (((-112) $) 29 (|has| |#1| (-561)))) (-3309 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3308 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3310 (((-112) $) NIL (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3303 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3578 (($ (-644 |#4|)) NIL)) (-4232 (((-3 $ #1#) $) 45)) (-4119 ((|#4| |#4| $) 69)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-3832 (($ |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4117 ((|#4| |#4| $) NIL)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) NIL)) (-3619 (((-112) |#4| $) NIL)) (-3617 (((-112) |#4| $) NIL)) (-3620 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3864 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 133)) (-2126 (((-644 |#4|) $) 18 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3602 ((|#3| $) 38)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#4|) $) 19 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-2130 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 23)) (-3317 (((-644 |#3|) $) NIL)) (-3316 (((-112) |#3| $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3613 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-3612 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| |#4| $) 110)) (-4231 (((-3 |#4| #1#) $) 42)) (-3614 (((-644 $) |#4| $) 93)) (-3616 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3660 (((-644 $) |#4| $) 115) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 116) (((-644 $) |#4| (-644 $)) NIL)) (-3865 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 128)) (-3866 (($ |#4| $) 82) (($ (-644 |#4|) $) 83) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4131 (((-644 |#4|) $) NIL)) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4133 (((-112) $ $) NIL)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4121 ((|#4| |#4| $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-3 |#4| #1#) $) 40)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4113 (((-3 $ #1#) $ |#4|) 59)) (-4202 (($ $ |#4|) NIL) (((-644 $) |#4| $) 95) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 89)) (-2128 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 17)) (-3998 (($) 14)) (-4382 (((-774) $) NIL)) (-2127 (((-774) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (((-774) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) 13)) (-4404 (((-539) $) NIL (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 22)) (-3313 (($ $ |#3|) 52)) (-3315 (($ $ |#3|) 54)) (-4118 (($ $) NIL)) (-3314 (($ $ |#3|) NIL)) (-4380 (((-866) $) 35) (((-644 |#4|) $) 46)) (-4112 (((-774) $) NIL (|has| |#3| (-371)))) (-3664 (((-112) $ $) NIL)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3611 (((-644 $) |#4| $) 92) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-2129 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) NIL)) (-3618 (((-112) |#4| $) NIL)) (-4367 (((-112) |#3| $) 65)) (-3457 (((-112) $ $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1031 |#1| |#2| |#3| |#4|) (-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3866 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3865 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3864 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|)) (T -1031)) +((-3866 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *3))) (-5 *1 (-1031 *5 *6 *7 *3)) (-4 *3 (-1069 *5 *6 *7)))) (-4116 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *8))) (-5 *1 (-1031 *5 *6 *7 *8)))) (-4116 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *8))) (-5 *1 (-1031 *5 *6 *7 *8)))) (-3865 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *8))) (-5 *1 (-1031 *5 *6 *7 *8)))) (-3864 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1031 *5 *6 *7 *8))))) (-5 *1 (-1031 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3866 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3865 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3864 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) +((-3461 (((-644 (-2 (|:| |radval| (-316 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-644 (-692 (-316 (-550))))))) (-692 (-411 (-950 (-550))))) 67)) (-3462 (((-644 (-692 (-316 (-550)))) (-316 (-550)) (-692 (-411 (-950 (-550))))) 52)) (-3463 (((-644 (-316 (-550))) (-692 (-411 (-950 (-550))))) 45)) (-3467 (((-644 (-692 (-316 (-550)))) (-692 (-411 (-950 (-550))))) 87)) (-3465 (((-692 (-316 (-550))) (-692 (-316 (-550)))) 38)) (-3466 (((-644 (-692 (-316 (-550)))) (-644 (-692 (-316 (-550))))) 76)) (-3464 (((-3 (-692 (-316 (-550))) "failed") (-692 (-411 (-950 (-550))))) 84))) +(((-1032) (-10 -7 (-15 -3461 ((-644 (-2 (|:| |radval| (-316 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-644 (-692 (-316 (-550))))))) (-692 (-411 (-950 (-550)))))) (-15 -3462 ((-644 (-692 (-316 (-550)))) (-316 (-550)) (-692 (-411 (-950 (-550)))))) (-15 -3463 ((-644 (-316 (-550))) (-692 (-411 (-950 (-550)))))) (-15 -3464 ((-3 (-692 (-316 (-550))) "failed") (-692 (-411 (-950 (-550)))))) (-15 -3465 ((-692 (-316 (-550))) (-692 (-316 (-550))))) (-15 -3466 ((-644 (-692 (-316 (-550)))) (-644 (-692 (-316 (-550)))))) (-15 -3467 ((-644 (-692 (-316 (-550)))) (-692 (-411 (-950 (-550)))))))) (T -1032)) +((-3467 (*1 *2 *3) (-12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-692 (-316 (-550))))) (-5 *1 (-1032)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-644 (-692 (-316 (-550))))) (-5 *1 (-1032)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-692 (-316 (-550)))) (-5 *1 (-1032)))) (-3464 (*1 *2 *3) (|partial| -12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 (-692 (-316 (-550)))) (-5 *1 (-1032)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-316 (-550)))) (-5 *1 (-1032)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-692 (-316 (-550))))) (-5 *1 (-1032)) (-5 *3 (-316 (-550))))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-2 (|:| |radval| (-316 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-644 (-692 (-316 (-550)))))))) (-5 *1 (-1032))))) +(-10 -7 (-15 -3461 ((-644 (-2 (|:| |radval| (-316 (-550))) (|:| |radmult| (-550)) (|:| |radvect| (-644 (-692 (-316 (-550))))))) (-692 (-411 (-950 (-550)))))) (-15 -3462 ((-644 (-692 (-316 (-550)))) (-316 (-550)) (-692 (-411 (-950 (-550)))))) (-15 -3463 ((-644 (-316 (-550))) (-692 (-411 (-950 (-550)))))) (-15 -3464 ((-3 (-692 (-316 (-550))) "failed") (-692 (-411 (-950 (-550)))))) (-15 -3465 ((-692 (-316 (-550))) (-692 (-316 (-550))))) (-15 -3466 ((-644 (-692 (-316 (-550)))) (-644 (-692 (-316 (-550)))))) (-15 -3467 ((-644 (-692 (-316 (-550)))) (-692 (-411 (-950 (-550))))))) +((-3471 (((-644 (-692 |#1|)) (-644 (-692 |#1|))) 73) (((-692 |#1|) (-692 |#1|)) 72) (((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-644 (-692 |#1|))) 71) (((-692 |#1|) (-692 |#1|) (-692 |#1|)) 68)) (-3470 (((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-923)) 66) (((-692 |#1|) (-692 |#1|) (-923)) 65)) (-3472 (((-644 (-692 (-550))) (-644 (-644 (-550)))) 84) (((-644 (-692 (-550))) (-644 (-906 (-550))) (-550)) 83) (((-692 (-550)) (-644 (-550))) 80) (((-692 (-550)) (-906 (-550)) (-550)) 78)) (-3469 (((-692 (-950 |#1|)) (-774)) 98)) (-3468 (((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-923)) 52 (|has| |#1| (-6 (-4429 "*")))) (((-692 |#1|) (-692 |#1|) (-923)) 50 (|has| |#1| (-6 (-4429 "*")))))) +(((-1033 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4429 "*"))) (-15 -3468 ((-692 |#1|) (-692 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4429 "*"))) (-15 -3468 ((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-923))) |%noBranch|) (-15 -3469 ((-692 (-950 |#1|)) (-774))) (-15 -3470 ((-692 |#1|) (-692 |#1|) (-923))) (-15 -3470 ((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-923))) (-15 -3471 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -3471 ((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3471 ((-692 |#1|) (-692 |#1|))) (-15 -3471 ((-644 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3472 ((-692 (-550)) (-906 (-550)) (-550))) (-15 -3472 ((-692 (-550)) (-644 (-550)))) (-15 -3472 ((-644 (-692 (-550))) (-644 (-906 (-550))) (-550))) (-15 -3472 ((-644 (-692 (-550))) (-644 (-644 (-550)))))) (-1053)) (T -1033)) +((-3472 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-550)))) (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-1033 *4)) (-4 *4 (-1053)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-906 (-550)))) (-5 *4 (-550)) (-5 *2 (-644 (-692 *4))) (-5 *1 (-1033 *5)) (-4 *5 (-1053)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-1033 *4)) (-4 *4 (-1053)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-906 (-550))) (-5 *4 (-550)) (-5 *2 (-692 *4)) (-5 *1 (-1033 *5)) (-4 *5 (-1053)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-644 (-692 *3))) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-692 *3))) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-692 *4))) (-5 *3 (-923)) (-4 *4 (-1053)) (-5 *1 (-1033 *4)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *2 (-692 *4)) (-5 *3 (-923)) (-4 *4 (-1053)) (-5 *1 (-1033 *4)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-692 (-950 *4))) (-5 *1 (-1033 *4)) (-4 *4 (-1053)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-692 *4))) (-5 *3 (-923)) (|has| *4 (-6 (-4429 "*"))) (-4 *4 (-1053)) (-5 *1 (-1033 *4)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-692 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4429 "*"))) (-4 *4 (-1053)) (-5 *1 (-1033 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4429 "*"))) (-15 -3468 ((-692 |#1|) (-692 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4429 "*"))) (-15 -3468 ((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-923))) |%noBranch|) (-15 -3469 ((-692 (-950 |#1|)) (-774))) (-15 -3470 ((-692 |#1|) (-692 |#1|) (-923))) (-15 -3470 ((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-923))) (-15 -3471 ((-692 |#1|) (-692 |#1|) (-692 |#1|))) (-15 -3471 ((-644 (-692 |#1|)) (-644 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3471 ((-692 |#1|) (-692 |#1|))) (-15 -3471 ((-644 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3472 ((-692 (-550)) (-906 (-550)) (-550))) (-15 -3472 ((-692 (-550)) (-644 (-550)))) (-15 -3472 ((-644 (-692 (-550))) (-644 (-906 (-550))) (-550))) (-15 -3472 ((-644 (-692 (-550))) (-644 (-644 (-550)))))) +((-3476 (((-692 |#1|) (-644 (-692 |#1|)) (-1270 |#1|)) 71 (|has| |#1| (-309)))) (-3844 (((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-1270 (-1270 |#1|))) 111 (|has| |#1| (-366))) (((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-1270 |#1|)) 118 (|has| |#1| (-366)))) (-3480 (((-1270 |#1|) (-644 (-1270 |#1|)) (-550)) 136 (-12 (|has| |#1| (-366)) (|has| |#1| (-371))))) (-3479 (((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-923)) 124 (-12 (|has| |#1| (-366)) (|has| |#1| (-371)))) (((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-112)) 123 (-12 (|has| |#1| (-366)) (|has| |#1| (-371)))) (((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|))) 122 (-12 (|has| |#1| (-366)) (|has| |#1| (-371)))) (((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-112) (-550) (-550)) 121 (-12 (|has| |#1| (-366)) (|has| |#1| (-371))))) (-3478 (((-112) (-644 (-692 |#1|))) 104 (|has| |#1| (-366))) (((-112) (-644 (-692 |#1|)) (-550)) 107 (|has| |#1| (-366)))) (-3475 (((-1270 (-1270 |#1|)) (-644 (-692 |#1|)) (-1270 |#1|)) 68 (|has| |#1| (-309)))) (-3474 (((-692 |#1|) (-644 (-692 |#1|)) (-692 |#1|)) 48)) (-3473 (((-692 |#1|) (-1270 (-1270 |#1|))) 41)) (-3477 (((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)) (-550)) 95 (|has| |#1| (-366))) (((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|))) 94 (|has| |#1| (-366))) (((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)) (-112) (-550)) 102 (|has| |#1| (-366))))) +(((-1034 |#1|) (-10 -7 (-15 -3473 ((-692 |#1|) (-1270 (-1270 |#1|)))) (-15 -3474 ((-692 |#1|) (-644 (-692 |#1|)) (-692 |#1|))) (IF (|has| |#1| (-309)) (PROGN (-15 -3475 ((-1270 (-1270 |#1|)) (-644 (-692 |#1|)) (-1270 |#1|))) (-15 -3476 ((-692 |#1|) (-644 (-692 |#1|)) (-1270 |#1|)))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-15 -3477 ((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)) (-112) (-550))) (-15 -3477 ((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3477 ((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)) (-550))) (-15 -3478 ((-112) (-644 (-692 |#1|)) (-550))) (-15 -3478 ((-112) (-644 (-692 |#1|)))) (-15 -3844 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-1270 |#1|))) (-15 -3844 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-1270 (-1270 |#1|))))) |%noBranch|) (IF (|has| |#1| (-371)) (IF (|has| |#1| (-366)) (PROGN (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-112) (-550) (-550))) (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)))) (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-112))) (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-923))) (-15 -3480 ((-1270 |#1|) (-644 (-1270 |#1|)) (-550)))) |%noBranch|) |%noBranch|)) (-1053)) (T -1034)) +((-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1270 *5))) (-5 *4 (-550)) (-5 *2 (-1270 *5)) (-5 *1 (-1034 *5)) (-4 *5 (-366)) (-4 *5 (-371)) (-4 *5 (-1053)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-366)) (-4 *5 (-371)) (-4 *5 (-1053)) (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-644 (-692 *5))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-366)) (-4 *5 (-371)) (-4 *5 (-1053)) (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-644 (-692 *5))))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-366)) (-4 *4 (-371)) (-4 *4 (-1053)) (-5 *2 (-644 (-644 (-692 *4)))) (-5 *1 (-1034 *4)) (-5 *3 (-644 (-692 *4))))) (-3479 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-550)) (-4 *6 (-366)) (-4 *6 (-371)) (-4 *6 (-1053)) (-5 *2 (-644 (-644 (-692 *6)))) (-5 *1 (-1034 *6)) (-5 *3 (-644 (-692 *6))))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-1270 (-1270 *5))) (-4 *5 (-366)) (-4 *5 (-1053)) (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-644 (-692 *5))))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-1270 *5)) (-4 *5 (-366)) (-4 *5 (-1053)) (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) (-5 *3 (-644 (-692 *5))))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-644 (-692 *4))) (-4 *4 (-366)) (-4 *4 (-1053)) (-5 *2 (-112)) (-5 *1 (-1034 *4)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-692 *5))) (-5 *4 (-550)) (-4 *5 (-366)) (-4 *5 (-1053)) (-5 *2 (-112)) (-5 *1 (-1034 *5)))) (-3477 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-692 *5))) (-5 *4 (-550)) (-5 *2 (-692 *5)) (-5 *1 (-1034 *5)) (-4 *5 (-366)) (-4 *5 (-1053)))) (-3477 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-692 *4))) (-5 *2 (-692 *4)) (-5 *1 (-1034 *4)) (-4 *4 (-366)) (-4 *4 (-1053)))) (-3477 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-692 *6))) (-5 *4 (-112)) (-5 *5 (-550)) (-5 *2 (-692 *6)) (-5 *1 (-1034 *6)) (-4 *6 (-366)) (-4 *6 (-1053)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-692 *5))) (-5 *4 (-1270 *5)) (-4 *5 (-309)) (-4 *5 (-1053)) (-5 *2 (-692 *5)) (-5 *1 (-1034 *5)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-692 *5))) (-4 *5 (-309)) (-4 *5 (-1053)) (-5 *2 (-1270 (-1270 *5))) (-5 *1 (-1034 *5)) (-5 *4 (-1270 *5)))) (-3474 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-692 *4))) (-5 *2 (-692 *4)) (-4 *4 (-1053)) (-5 *1 (-1034 *4)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1270 (-1270 *4))) (-4 *4 (-1053)) (-5 *2 (-692 *4)) (-5 *1 (-1034 *4))))) +(-10 -7 (-15 -3473 ((-692 |#1|) (-1270 (-1270 |#1|)))) (-15 -3474 ((-692 |#1|) (-644 (-692 |#1|)) (-692 |#1|))) (IF (|has| |#1| (-309)) (PROGN (-15 -3475 ((-1270 (-1270 |#1|)) (-644 (-692 |#1|)) (-1270 |#1|))) (-15 -3476 ((-692 |#1|) (-644 (-692 |#1|)) (-1270 |#1|)))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-15 -3477 ((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)) (-112) (-550))) (-15 -3477 ((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3477 ((-692 |#1|) (-644 (-692 |#1|)) (-644 (-692 |#1|)) (-550))) (-15 -3478 ((-112) (-644 (-692 |#1|)) (-550))) (-15 -3478 ((-112) (-644 (-692 |#1|)))) (-15 -3844 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-1270 |#1|))) (-15 -3844 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-1270 (-1270 |#1|))))) |%noBranch|) (IF (|has| |#1| (-371)) (IF (|has| |#1| (-366)) (PROGN (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-112) (-550) (-550))) (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)))) (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-112))) (-15 -3479 ((-644 (-644 (-692 |#1|))) (-644 (-692 |#1|)) (-923))) (-15 -3480 ((-1270 |#1|) (-644 (-1270 |#1|)) (-550)))) |%noBranch|) |%noBranch|)) +((-3481 ((|#1| (-923) |#1|) 18))) +(((-1035 |#1|) (-10 -7 (-15 -3481 (|#1| (-923) |#1|))) (-13 (-1105) (-10 -8 (-15 -4273 ($ $ $))))) (T -1035)) +((-3481 (*1 *2 *3 *2) (-12 (-5 *3 (-923)) (-5 *1 (-1035 *2)) (-4 *2 (-13 (-1105) (-10 -8 (-15 -4273 ($ $ $)))))))) +(-10 -7 (-15 -3481 (|#1| (-923) |#1|))) +((-3482 ((|#1| |#1| (-923)) 18))) +(((-1036 |#1|) (-10 -7 (-15 -3482 (|#1| |#1| (-923)))) (-13 (-1105) (-10 -8 (-15 * ($ $ $))))) (T -1036)) +((-3482 (*1 *2 *2 *3) (-12 (-5 *3 (-923)) (-5 *1 (-1036 *2)) (-4 *2 (-13 (-1105) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3482 (|#1| |#1| (-923)))) +((-4380 ((|#1| (-313)) 11) (((-1276) |#1|) 9))) +(((-1037 |#1|) (-10 -7 (-15 -4380 ((-1276) |#1|)) (-15 -4380 (|#1| (-313)))) (-1220)) (T -1037)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1037 *2)) (-4 *2 (-1220)))) (-4380 (*1 *2 *3) (-12 (-5 *2 (-1276)) (-5 *1 (-1037 *3)) (-4 *3 (-1220))))) +(-10 -7 (-15 -4380 ((-1276) |#1|)) (-15 -4380 (|#1| (-313)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-4276 (($ |#4|) 25)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-3483 ((|#4| $) 27)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 46) (($ (-550)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3532 (((-774)) 43 T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 21 T CONST)) (-3069 (($) 23 T CONST)) (-3457 (((-112) $ $) 40)) (-4271 (($ $) 31) (($ $ $) NIL)) (-4273 (($ $ $) 29)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1038 |#1| |#2| |#3| |#4| |#5|) (-13 (-173) (-38 |#1|) (-10 -8 (-15 -4276 ($ |#4|)) (-15 -4380 ($ |#4|)) (-15 -3483 (|#4| $)))) (-366) (-796) (-853) (-954 |#1| |#2| |#3|) (-644 |#4|)) (T -1038)) +((-4276 (*1 *1 *2) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1038 *3 *4 *5 *2 *6)) (-4 *2 (-954 *3 *4 *5)) (-14 *6 (-644 *2)))) (-4380 (*1 *1 *2) (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1038 *3 *4 *5 *2 *6)) (-4 *2 (-954 *3 *4 *5)) (-14 *6 (-644 *2)))) (-3483 (*1 *2 *1) (-12 (-4 *2 (-954 *3 *4 *5)) (-5 *1 (-1038 *3 *4 *5 *2 *6)) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-14 *6 (-644 *2))))) +(-13 (-173) (-38 |#1|) (-10 -8 (-15 -4276 ($ |#4|)) (-15 -4380 ($ |#4|)) (-15 -3483 (|#4| $)))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-2374 (((-1276) $ (-1181) (-1181)) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-3485 (((-112) (-112)) 43)) (-3484 (((-112) (-112)) 42)) (-4221 (((-51) $ (-1181) (-51)) NIL)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 (-51) #1="failed") (-1181) $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-3831 (($ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-3 (-51) #1#) (-1181) $) NIL)) (-3832 (($ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-1686 (((-51) $ (-1181) (-51)) NIL (|has| $ (-6 -4428)))) (-3519 (((-51) $ (-1181)) NIL)) (-2126 (((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-644 (-51)) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-1181) $) NIL (|has| (-1181) (-853)))) (-3010 (((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-644 (-51)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105))))) (-2377 (((-1181) $) NIL (|has| (-1181) (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4428))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-2818 (((-644 (-1181)) $) 37)) (-2384 (((-112) (-1181) $) NIL)) (-1370 (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL)) (-4041 (($ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL)) (-2379 (((-644 (-1181)) $) NIL)) (-2380 (((-112) (-1181) $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-4234 (((-51) $) NIL (|has| (-1181) (-853)))) (-1442 (((-3 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) "failed") (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL)) (-2375 (($ $ (-51)) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-295 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-644 (-51)) (-644 (-51))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-295 (-51))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-644 (-295 (-51)))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105))))) (-2381 (((-644 (-51)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 (((-51) $ (-1181)) 39) (((-51) $ (-1181) (-51)) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (((-774) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105)))) (((-774) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-4380 (((-866) $) 41 (-3962 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-616 (-866))) (|has| (-51) (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1039) (-13 (-1197 (-1181) (-51)) (-10 -7 (-15 -3485 ((-112) (-112))) (-15 -3484 ((-112) (-112))) (-6 -4427)))) (T -1039)) +((-3485 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1039)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1039))))) +(-13 (-1197 (-1181) (-51)) (-10 -7 (-15 -3485 ((-112) (-112))) (-15 -3484 ((-112) (-112))) (-6 -4427))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3628 (((-1139) $) 9)) (-4380 (((-866) $) 15) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1040) (-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $))))) (T -1040)) +((-3628 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1040))))) +(-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)))) +((-3578 ((|#2| $) 10))) +(((-1041 |#1| |#2|) (-10 -8 (-15 -3578 (|#2| |#1|))) (-1042 |#2|) (-1220)) (T -1041)) +NIL +(-10 -8 (-15 -3578 (|#2| |#1|))) +((-3579 (((-3 |#1| "failed") $) 9)) (-3578 ((|#1| $) 8)) (-4380 (($ |#1|) 6))) +(((-1042 |#1|) (-140) (-1220)) (T -1042)) +((-3579 (*1 *2 *1) (|partial| -12 (-4 *1 (-1042 *2)) (-4 *2 (-1220)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-1220))))) +(-13 (-619 |t#1|) (-10 -8 (-15 -3579 ((-3 |t#1| "failed") $)) (-15 -3578 (|t#1| $)))) +(((-619 |#1|) . T)) +((-3486 (((-644 (-644 (-295 (-411 (-950 |#2|))))) (-644 (-950 |#2|)) (-644 (-1181))) 38))) +(((-1043 |#1| |#2|) (-10 -7 (-15 -3486 ((-644 (-644 (-295 (-411 (-950 |#2|))))) (-644 (-950 |#2|)) (-644 (-1181))))) (-561) (-13 (-561) (-1042 |#1|))) (T -1043)) +((-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *6))) (-5 *4 (-644 (-1181))) (-4 *6 (-13 (-561) (-1042 *5))) (-4 *5 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *6)))))) (-5 *1 (-1043 *5 *6))))) +(-10 -7 (-15 -3486 ((-644 (-644 (-295 (-411 (-950 |#2|))))) (-644 (-950 |#2|)) (-644 (-1181))))) +((-3487 (((-644 (-1181)) (-411 (-950 |#1|))) 17)) (-3489 (((-411 (-1175 (-411 (-950 |#1|)))) (-411 (-950 |#1|)) (-1181)) 24)) (-3490 (((-411 (-950 |#1|)) (-411 (-1175 (-411 (-950 |#1|)))) (-1181)) 26)) (-3488 (((-3 (-1181) "failed") (-411 (-950 |#1|))) 20)) (-4201 (((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-644 (-295 (-411 (-950 |#1|))))) 32) (((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|)))) 33) (((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-644 (-1181)) (-644 (-411 (-950 |#1|)))) 28) (((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|))) 29)) (-4380 (((-411 (-950 |#1|)) |#1|) 11))) +(((-1044 |#1|) (-10 -7 (-15 -3487 ((-644 (-1181)) (-411 (-950 |#1|)))) (-15 -3488 ((-3 (-1181) "failed") (-411 (-950 |#1|)))) (-15 -3489 ((-411 (-1175 (-411 (-950 |#1|)))) (-411 (-950 |#1|)) (-1181))) (-15 -3490 ((-411 (-950 |#1|)) (-411 (-1175 (-411 (-950 |#1|)))) (-1181))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|)))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-644 (-1181)) (-644 (-411 (-950 |#1|))))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-644 (-295 (-411 (-950 |#1|)))))) (-15 -4380 ((-411 (-950 |#1|)) |#1|))) (-561)) (T -1044)) +((-4380 (*1 *2 *3) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-1044 *3)) (-4 *3 (-561)))) (-4201 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-295 (-411 (-950 *4))))) (-5 *2 (-411 (-950 *4))) (-4 *4 (-561)) (-5 *1 (-1044 *4)))) (-4201 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-411 (-950 *4)))) (-5 *2 (-411 (-950 *4))) (-4 *4 (-561)) (-5 *1 (-1044 *4)))) (-4201 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-1181))) (-5 *4 (-644 (-411 (-950 *5)))) (-5 *2 (-411 (-950 *5))) (-4 *5 (-561)) (-5 *1 (-1044 *5)))) (-4201 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-411 (-950 *4))) (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-1044 *4)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-1175 (-411 (-950 *5))))) (-5 *4 (-1181)) (-5 *2 (-411 (-950 *5))) (-5 *1 (-1044 *5)) (-4 *5 (-561)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-561)) (-5 *2 (-411 (-1175 (-411 (-950 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-411 (-950 *5))))) (-3488 (*1 *2 *3) (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-5 *2 (-1181)) (-5 *1 (-1044 *4)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-5 *2 (-644 (-1181))) (-5 *1 (-1044 *4))))) +(-10 -7 (-15 -3487 ((-644 (-1181)) (-411 (-950 |#1|)))) (-15 -3488 ((-3 (-1181) "failed") (-411 (-950 |#1|)))) (-15 -3489 ((-411 (-1175 (-411 (-950 |#1|)))) (-411 (-950 |#1|)) (-1181))) (-15 -3490 ((-411 (-950 |#1|)) (-411 (-1175 (-411 (-950 |#1|)))) (-1181))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|)))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-644 (-1181)) (-644 (-411 (-950 |#1|))))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-295 (-411 (-950 |#1|))))) (-15 -4201 ((-411 (-950 |#1|)) (-411 (-950 |#1|)) (-644 (-295 (-411 (-950 |#1|)))))) (-15 -4380 ((-411 (-950 |#1|)) |#1|))) +((-3491 (((-381)) 17)) (-3506 (((-1 (-381)) (-381) (-381)) 22)) (-3499 (((-1 (-381)) (-774)) 50)) (-3492 (((-381)) 37)) (-3495 (((-1 (-381)) (-381) (-381)) 38)) (-3493 (((-381)) 29)) (-3496 (((-1 (-381)) (-381)) 30)) (-3494 (((-381) (-774)) 45)) (-3497 (((-1 (-381)) (-774)) 46)) (-3498 (((-1 (-381)) (-774) (-774)) 49)) (-3810 (((-1 (-381)) (-774) (-774)) 47))) +(((-1045) (-10 -7 (-15 -3491 ((-381))) (-15 -3492 ((-381))) (-15 -3493 ((-381))) (-15 -3494 ((-381) (-774))) (-15 -3506 ((-1 (-381)) (-381) (-381))) (-15 -3495 ((-1 (-381)) (-381) (-381))) (-15 -3496 ((-1 (-381)) (-381))) (-15 -3497 ((-1 (-381)) (-774))) (-15 -3810 ((-1 (-381)) (-774) (-774))) (-15 -3498 ((-1 (-381)) (-774) (-774))) (-15 -3499 ((-1 (-381)) (-774))))) (T -1045)) +((-3499 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045)))) (-3498 (*1 *2 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045)))) (-3810 (*1 *2 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045)))) (-3496 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1045)) (-5 *3 (-381)))) (-3495 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1045)) (-5 *3 (-381)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1045)) (-5 *3 (-381)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-381)) (-5 *1 (-1045)))) (-3493 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1045)))) (-3492 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1045)))) (-3491 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1045))))) +(-10 -7 (-15 -3491 ((-381))) (-15 -3492 ((-381))) (-15 -3493 ((-381))) (-15 -3494 ((-381) (-774))) (-15 -3506 ((-1 (-381)) (-381) (-381))) (-15 -3495 ((-1 (-381)) (-381) (-381))) (-15 -3496 ((-1 (-381)) (-381))) (-15 -3497 ((-1 (-381)) (-774))) (-15 -3810 ((-1 (-381)) (-774) (-774))) (-15 -3498 ((-1 (-381)) (-774) (-774))) (-15 -3499 ((-1 (-381)) (-774)))) +((-4166 (((-409 |#1|) |#1|) 33))) +(((-1046 |#1|) (-10 -7 (-15 -4166 ((-409 |#1|) |#1|))) (-1246 (-411 (-950 (-550))))) (T -1046)) +((-4166 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1046 *3)) (-4 *3 (-1246 (-411 (-950 (-550)))))))) +(-10 -7 (-15 -4166 ((-409 |#1|) |#1|))) +((-3500 (((-411 (-409 (-950 |#1|))) (-411 (-950 |#1|))) 14))) +(((-1047 |#1|) (-10 -7 (-15 -3500 ((-411 (-409 (-950 |#1|))) (-411 (-950 |#1|))))) (-309)) (T -1047)) +((-3500 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-309)) (-5 *2 (-411 (-409 (-950 *4)))) (-5 *1 (-1047 *4))))) +(-10 -7 (-15 -3500 ((-411 (-409 (-950 |#1|))) (-411 (-950 |#1|))))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4158 (($) 18 T CONST)) (-3504 ((|#1| $) 23)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3503 ((|#1| $) 22)) (-3501 ((|#1|) 20 T CONST)) (-4380 (((-866) $) 12)) (-3502 ((|#1| $) 21)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16))) (((-1048 |#1|) (-140) (-23)) (T -1048)) -((-3503 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) -(-13 (-1047 |t#1|) (-10 -8 (-15 -3503 ($) -4384))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1047 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 (-782 |#1| (-866 |#2|)))))) (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-4114 (((-643 $) (-643 (-782 |#1| (-866 |#2|)))) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112)) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112) (-112)) NIL)) (-3485 (((-643 (-866 |#2|)) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-4120 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4206 (((-643 (-2 (|:| |val| (-782 |#1| (-866 |#2|))) (|:| -1708 $))) (-782 |#1| (-866 |#2|)) $) NIL)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ (-866 |#2|)) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 (-782 |#1| (-866 |#2|)) #1="failed") $ (-866 |#2|)) NIL)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) NIL (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))) $ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-3301 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-3576 (($ (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-4230 (((-3 $ #1#) $) NIL)) (-4117 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104))))) (-3830 (($ (-782 |#1| (-866 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-782 |#1| (-866 |#2|))) (|:| |den| |#1|)) (-782 |#1| (-866 |#2|)) $) NIL (|has| |#1| (-560)))) (-4126 (((-112) (-782 |#1| (-866 |#2|)) $ (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-4115 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4274 (((-782 |#1| (-866 |#2|)) (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $ (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (((-782 |#1| (-866 |#2|)) (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $ (-782 |#1| (-866 |#2|))) NIL (|has| $ (-6 -4425))) (((-782 |#1| (-866 |#2|)) (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-4128 (((-2 (|:| -4293 (-643 (-782 |#1| (-866 |#2|)))) (|:| -1870 (-643 (-782 |#1| (-866 |#2|))))) $) NIL)) (-3617 (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-3615 (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-3618 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-2124 (((-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4127 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-3600 (((-866 |#2|) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-782 |#1| (-866 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104))))) (-2128 (($ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $) NIL)) (-3315 (((-643 (-866 |#2|)) $) NIL)) (-3314 (((-112) (-866 |#2|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3611 (((-3 (-782 |#1| (-866 |#2|)) (-643 $)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-3610 (((-643 (-2 (|:| |val| (-782 |#1| (-866 |#2|))) (|:| -1708 $))) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4229 (((-3 (-782 |#1| (-866 |#2|)) #1#) $) NIL)) (-3612 (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL)) (-3614 (((-3 (-112) (-643 $)) (-782 |#1| (-866 |#2|)) $) NIL)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-3658 (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-643 $)) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) (-643 $)) NIL)) (-3864 (($ (-782 |#1| (-866 |#2|)) $) NIL) (($ (-643 (-782 |#1| (-866 |#2|))) $) NIL)) (-4129 (((-643 (-782 |#1| (-866 |#2|))) $) NIL)) (-4123 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-4118 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| (-782 |#1| (-866 |#2|))) (|:| |den| |#1|)) (-782 |#1| (-866 |#2|)) $) NIL (|has| |#1| (-560)))) (-4124 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-4119 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 (-782 |#1| (-866 |#2|)) #1#) $) NIL)) (-1441 (((-3 (-782 |#1| (-866 |#2|)) "failed") (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL)) (-4111 (((-3 $ #1#) $ (-782 |#1| (-866 |#2|))) NIL)) (-4200 (($ $ (-782 |#1| (-866 |#2|))) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) (-643 $)) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-643 $)) NIL)) (-2126 (((-112) (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|)))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ $ (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ $ (-294 (-782 |#1| (-866 |#2|)))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ $ (-643 (-294 (-782 |#1| (-866 |#2|))))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4380 (((-773) $) NIL)) (-2125 (((-773) (-782 |#1| (-866 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (((-773) (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-782 |#1| (-866 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-3311 (($ $ (-866 |#2|)) NIL)) (-3313 (($ $ (-866 |#2|)) NIL)) (-4116 (($ $) NIL)) (-3312 (($ $ (-866 |#2|)) NIL)) (-4378 (((-865) $) NIL) (((-643 (-782 |#1| (-866 |#2|))) $) NIL)) (-4110 (((-773) $) NIL (|has| (-866 |#2|) (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 (-782 |#1| (-866 |#2|))))) #1#) (-643 (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 (-782 |#1| (-866 |#2|))))) #1#) (-643 (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-4122 (((-112) $ (-1 (-112) (-782 |#1| (-866 |#2|)) (-643 (-782 |#1| (-866 |#2|))))) NIL)) (-3609 (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) (-643 $)) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-643 $)) NIL)) (-2127 (((-112) (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 (-866 |#2|)) $) NIL)) (-3616 (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-4365 (((-112) (-866 |#2|) $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1049 |#1| |#2|) (-13 (-1074 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) (-10 -8 (-15 -4114 ((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112) (-112))))) (-455) (-643 (-1180))) (T -1049)) -((-4114 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1049 *5 *6))))) -(-13 (-1074 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) (-10 -8 (-15 -4114 ((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112) (-112))))) -((-3504 (((-1 (-549)) (-1092 (-549))) 32)) (-3508 (((-549) (-549) (-549) (-549) (-549)) 29)) (-3506 (((-1 (-549)) |RationalNumber|) NIL)) (-3507 (((-1 (-549)) |RationalNumber|) NIL)) (-3505 (((-1 (-549)) (-549) |RationalNumber|) NIL))) -(((-1050) (-10 -7 (-15 -3504 ((-1 (-549)) (-1092 (-549)))) (-15 -3505 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -3506 ((-1 (-549)) |RationalNumber|)) (-15 -3507 ((-1 (-549)) |RationalNumber|)) (-15 -3508 ((-549) (-549) (-549) (-549) (-549))))) (T -1050)) -((-3508 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1050)))) (-3507 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)))) (-3506 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)) (-5 *3 (-549)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1092 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) -(-10 -7 (-15 -3504 ((-1 (-549)) (-1092 (-549)))) (-15 -3505 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -3506 ((-1 (-549)) |RationalNumber|)) (-15 -3507 ((-1 (-549)) |RationalNumber|)) (-15 -3508 ((-549) (-549) (-549) (-549) (-549)))) -((-4378 (((-865) $) NIL) (($ (-549)) 10))) -(((-1051 |#1|) (-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1052)) (T -1051)) -NIL -(-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-1052) (-140)) (T -1052)) -((-3530 (*1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-773))))) -(-13 (-1060) (-728) (-650 $) (-618 (-549)) (-10 -7 (-15 -3530 ((-773)) -4384) (-6 -4422))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-3509 (((-410 (-949 |#2|)) (-643 |#2|) (-643 |#2|) (-773) (-773)) 60))) -(((-1053 |#1| |#2|) (-10 -7 (-15 -3509 ((-410 (-949 |#2|)) (-643 |#2|) (-643 |#2|) (-773) (-773)))) (-1180) (-365)) (T -1053)) -((-3509 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-773)) (-4 *6 (-365)) (-5 *2 (-410 (-949 *6))) (-5 *1 (-1053 *5 *6)) (-14 *5 (-1180))))) -(-10 -7 (-15 -3509 ((-410 (-949 |#2|)) (-643 |#2|) (-643 |#2|) (-773) (-773)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1054 |#1|) (-140) (-1060)) (T -1054)) -((-3510 (*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060))))) -(-13 (-1104) (-10 -8 (-15 (-3510) ($) -4384) (-15 -3608 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-3525 (((-112) $) 40)) (-3527 (((-112) $) 17)) (-3519 (((-773) $) 13)) (-3518 (((-773) $) 14)) (-3526 (((-112) $) 30)) (-3524 (((-112) $) 42))) -(((-1055 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3518 ((-773) |#1|)) (-15 -3519 ((-773) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|))) (-1056 |#2| |#3| |#4| |#5| |#6|) (-773) (-773) (-1052) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1055)) -NIL -(-10 -8 (-15 -3518 ((-773) |#1|)) (-15 -3519 ((-773) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3525 (((-112) $) 56)) (-1407 (((-3 $ "failed") $ $) 20)) (-3527 (((-112) $) 58)) (-1309 (((-112) $ (-773)) 66)) (-4156 (($) 18 T CONST)) (-3514 (($ $) 39 (|has| |#3| (-308)))) (-3516 ((|#4| $ (-549)) 44)) (-3513 (((-773) $) 38 (|has| |#3| (-560)))) (-3517 ((|#3| $ (-549) (-549)) 46)) (-2124 (((-643 |#3|) $) 73 (|has| $ (-6 -4425)))) (-3512 (((-773) $) 37 (|has| |#3| (-560)))) (-3511 (((-643 |#5|) $) 36 (|has| |#3| (-560)))) (-3519 (((-773) $) 50)) (-3518 (((-773) $) 49)) (-4151 (((-112) $ (-773)) 65)) (-3523 (((-549) $) 54)) (-3521 (((-549) $) 52)) (-3008 (((-643 |#3|) $) 74 (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 53)) (-3520 (((-549) $) 51)) (-3528 (($ (-643 (-643 |#3|))) 59)) (-2128 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4025 (((-643 (-643 |#3|)) $) 48)) (-4148 (((-112) $ (-773)) 64)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-560)))) (-2126 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#3|) (-643 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 (-294 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) 60)) (-3827 (((-112) $) 63)) (-3996 (($) 62)) (-4231 ((|#3| $ (-549) (-549)) 47) ((|#3| $ (-549) (-549) |#3|) 45)) (-3526 (((-112) $) 57)) (-2125 (((-773) |#3| $) 75 (-12 (|has| |#3| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4425)))) (-3824 (($ $) 61)) (-3515 ((|#5| $ (-549)) 43)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4425)))) (-3524 (((-112) $) 55)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-4389 (((-773) $) 67 (|has| $ (-6 -4425))))) -(((-1056 |#1| |#2| |#3| |#4| |#5|) (-140) (-773) (-773) (-1052) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1056)) -((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *5))) (-4 *5 (-1052)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-773)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-773)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-643 (-643 *5))))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1052)))) (-3517 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1052)))) (-4231 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *2 (-1052)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3516 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *2 *7)) (-4 *6 (-1052)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *7 *2)) (-4 *6 (-1052)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-560)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-3514 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-643 *7))))) -(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4425) (IF (|has| |t#3| (-172)) (-6 (-719 |t#3|)) |%noBranch|) (-15 -3528 ($ (-643 (-643 |t#3|)))) (-15 -3527 ((-112) $)) (-15 -3526 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -3524 ((-112) $)) (-15 -3523 ((-549) $)) (-15 -3522 ((-549) $)) (-15 -3521 ((-549) $)) (-15 -3520 ((-549) $)) (-15 -3519 ((-773) $)) (-15 -3518 ((-773) $)) (-15 -4025 ((-643 (-643 |t#3|)) $)) (-15 -4231 (|t#3| $ (-549) (-549))) (-15 -3517 (|t#3| $ (-549) (-549))) (-15 -4231 (|t#3| $ (-549) (-549) |t#3|)) (-15 -3516 (|t#4| $ (-549))) (-15 -3515 (|t#5| $ (-549))) (-15 -4390 ($ (-1 |t#3| |t#3|) $)) (-15 -4390 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-560)) (-15 -3889 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -4381 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -3514 ($ $)) |%noBranch|) (IF (|has| |t#3| (-560)) (PROGN (-15 -3513 ((-773) $)) (-15 -3512 ((-773) $)) (-15 -3511 ((-643 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-615 (-865)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))) ((-648 (-549)) . T) ((-648 |#3|) . T) ((-650 |#3|) . T) ((-642 |#3|) |has| |#3| (-172)) ((-719 |#3|) |has| |#3| (-172)) ((-1054 |#3|) . T) ((-1059 |#3|) . T) ((-1104) . T) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3525 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 47 (|has| |#3| (-308)))) (-3516 (((-239 |#2| |#3|) $ (-549)) 36)) (-3529 (($ (-691 |#3|)) 45)) (-3513 (((-773) $) 49 (|has| |#3| (-560)))) (-3517 ((|#3| $ (-549) (-549)) NIL)) (-2124 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3512 (((-773) $) 51 (|has| |#3| (-560)))) (-3511 (((-643 (-239 |#1| |#3|)) $) 55 (|has| |#3| (-560)))) (-3519 (((-773) $) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#3|))) 31)) (-2128 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4025 (((-643 (-643 |#3|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-560)))) (-2126 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#3|) (-643 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 (-294 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#3| $ (-549) (-549)) NIL) ((|#3| $ (-549) (-549) |#3|) NIL)) (-4343 (((-134)) 59 (|has| |#3| (-365)))) (-3526 (((-112) $) NIL)) (-2125 (((-773) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104)))) (((-773) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 65 (|has| |#3| (-616 (-538))))) (-3515 (((-239 |#1| |#3|) $ (-549)) 40)) (-4378 (((-865) $) 19) (((-691 |#3|) $) 42)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1057 |#1| |#2| |#3|) (-13 (-1056 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-615 (-691 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1277 |#3|)) |%noBranch|) (IF (|has| |#3| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (-15 -3529 ($ (-691 |#3|))))) (-773) (-773) (-1052)) (T -1057)) -((-3529 (*1 *1 *2) (-12 (-5 *2 (-691 *5)) (-4 *5 (-1052)) (-5 *1 (-1057 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773))))) -(-13 (-1056 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-615 (-691 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1277 |#3|)) |%noBranch|) (IF (|has| |#3| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (-15 -3529 ($ (-691 |#3|))))) -((-4274 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4390 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1058 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4390 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4274 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-773) (-773) (-1052) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1056 |#1| |#2| |#3| |#4| |#5|) (-1052) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1056 |#1| |#2| |#7| |#8| |#9|)) (T -1058)) -((-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1052)) (-4 *2 (-1052)) (-14 *5 (-773)) (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *12 (-1056 *5 *6 *2 *10 *11)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1052)) (-4 *10 (-1052)) (-14 *5 (-773)) (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1056 *5 *6 *10 *11 *12)) (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -4390 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4274 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ |#1|) 27))) -(((-1059 |#1|) (-140) (-1060)) (T -1059)) -NIL -(-13 (-21) (-1054 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1054 |#1|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-1060) (-140)) (T -1060)) -NIL -(-13 (-21) (-1115)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4263 (((-1180) $) 11)) (-4168 ((|#1| $) 12)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3646 (($ (-1180) |#1|) 10)) (-4378 (((-865) $) 22 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3455 (((-112) $ $) 17 (|has| |#1| (-1104))))) -(((-1061 |#1| |#2|) (-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) |#1|)) (-15 -4263 ((-1180) $)) (-15 -4168 (|#1| $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) (-1097 |#2|) (-1219)) (T -1061)) -((-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-4 *4 (-1219)) (-5 *1 (-1061 *3 *4)) (-4 *3 (-1097 *4)))) (-4263 (*1 *2 *1) (-12 (-4 *4 (-1219)) (-5 *2 (-1180)) (-5 *1 (-1061 *3 *4)) (-4 *3 (-1097 *4)))) (-4168 (*1 *2 *1) (-12 (-4 *2 (-1097 *3)) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) |#1|)) (-15 -4263 ((-1180) $)) (-15 -4168 (|#1| $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) -((-4202 (($ $) 17)) (-3531 (($ $) 25)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 55)) (-3536 (($ $) 27)) (-3532 (($ $) 12)) (-3534 (($ $) 43)) (-4402 (((-380) $) NIL) (((-225) $) NIL) (((-893 (-380)) $) 36)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 31) (($ (-549)) NIL) (($ (-410 (-549))) 31)) (-3530 (((-773)) 9)) (-3535 (($ $) 45))) -(((-1062 |#1|) (-10 -8 (-15 -3531 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1063)) (T -1062)) -((-3530 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1062 *3)) (-4 *3 (-1063))))) -(-10 -8 (-15 -3531 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 (((-549) $) 97)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4202 (($ $) 95)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 105)) (-1753 (((-112) $ $) 65)) (-4055 (((-549) $) 122)) (-4156 (($) 18 T CONST)) (-3531 (($ $) 94)) (-3577 (((-3 (-549) #1="failed") $) 110) (((-3 (-410 (-549)) #1#) $) 107)) (-3576 (((-549) $) 111) (((-410 (-549)) $) 108)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-3606 (((-112) $) 120)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 101)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 104)) (-3536 (($ $) 100)) (-3607 (((-112) $) 121)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 58)) (-2934 (($ $ $) 119)) (-3260 (($ $ $) 118)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3532 (($ $) 96)) (-3534 (($ $) 98)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4402 (((-380) $) 113) (((-225) $) 112) (((-893 (-380)) $) 102)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ (-549)) 109) (($ (-410 (-549))) 106)) (-3530 (((-773)) 32 T CONST)) (-3535 (($ $) 99)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 123)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 116)) (-2967 (((-112) $ $) 115)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 117)) (-3088 (((-112) $ $) 114)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 103)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) -(((-1063) (-140)) (T -1063)) -((-3807 (*1 *1 *1) (-4 *1 (-1063))) (-3536 (*1 *1 *1) (-4 *1 (-1063))) (-3535 (*1 *1 *1) (-4 *1 (-1063))) (-3534 (*1 *1 *1) (-4 *1 (-1063))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-549)))) (-3532 (*1 *1 *1) (-4 *1 (-1063))) (-4202 (*1 *1 *1) (-4 *1 (-1063))) (-3531 (*1 *1 *1) (-4 *1 (-1063)))) -(-13 (-365) (-850) (-1023) (-1041 (-549)) (-1041 (-410 (-549))) (-1005) (-616 (-893 (-380))) (-889 (-380)) (-147) (-10 -8 (-15 -3536 ($ $)) (-15 -3535 ($ $)) (-15 -3534 ($ $)) (-15 -3533 ((-549) $)) (-15 -3532 ($ $)) (-15 -4202 ($ $)) (-15 -3531 ($ $)) (-15 -3807 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-225)) . T) ((-616 (-380)) . T) ((-616 (-893 (-380))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-889 (-380)) . T) ((-924) . T) ((-1005) . T) ((-1023) . T) ((-1041 (-410 (-549))) . T) ((-1041 (-549)) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) 26)) (-3540 ((|#1| $) 10)) (-4055 (((-549) |#2| $) 116)) (-3603 (((-3 $ #1="failed") |#2| (-922)) 75)) (-3541 ((|#1| $) 31)) (-3602 ((|#1| |#2| $ |#1|) 40)) (-3538 (($ $) 28)) (-3890 (((-3 |#2| #1#) |#2| $) 111)) (-3606 (((-112) |#2| $) NIL)) (-3607 (((-112) |#2| $) NIL)) (-3537 (((-112) |#2| $) 27)) (-3539 ((|#1| $) 117)) (-3542 ((|#1| $) 30)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3605 ((|#2| $) 102)) (-4378 (((-865) $) 92)) (-3662 (((-112) $ $) NIL)) (-4201 ((|#1| |#2| $ |#1|) 41)) (-3604 (((-643 $) |#2|) 77)) (-3455 (((-112) $ $) 97))) -(((-1064 |#1| |#2|) (-13 (-1071 |#1| |#2|) (-10 -8 (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $)) (-15 -3540 (|#1| $)) (-15 -3539 (|#1| $)) (-15 -3538 ($ $)) (-15 -3537 ((-112) |#2| $)) (-15 -3602 (|#1| |#2| $ |#1|)))) (-13 (-850) (-365)) (-1245 |#1|)) (T -1064)) -((-3602 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3542 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3541 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3540 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3539 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3538 (*1 *1 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3537 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-850) (-365))) (-5 *2 (-112)) (-5 *1 (-1064 *4 *3)) (-4 *3 (-1245 *4))))) -(-13 (-1071 |#1| |#2|) (-10 -8 (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $)) (-15 -3540 (|#1| $)) (-15 -3539 (|#1| $)) (-15 -3538 ($ $)) (-15 -3537 ((-112) |#2| $)) (-15 -3602 (|#1| |#2| $ |#1|)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) NIL)) (-4156 (($) NIL T CONST)) (-3543 (($ (-1180)) 10) (($ (-549)) 7)) (-3577 (((-3 (-549) "failed") $) NIL)) (-3576 (((-549) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($) NIL) (($ $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) NIL)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2222 (($ $) NIL)) (-4265 (($ $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2224 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-2223 (($ $) NIL)) (-3824 (($ $) NIL)) (-4402 (((-549) $) 16) (((-538) $) NIL) (((-893 (-549)) $) NIL) (((-380) $) NIL) (((-225) $) NIL) (($ (-1180)) 9)) (-4378 (((-865) $) 23) (($ (-549)) 6) (($ $) NIL) (($ (-549)) 6)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) NIL)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4269 (($ $) 22) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) -(((-1065) (-13 (-548) (-620 (-1180)) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3543 ($ (-1180))) (-15 -3543 ($ (-549)))))) (T -1065)) -((-3543 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1065)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1065))))) -(-13 (-548) (-620 (-1180)) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3543 ($ (-1180))) (-15 -3543 ($ (-549))))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2372 (((-1275) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-3545 (($) 9)) (-4219 (((-51) $ (-1180) (-51)) NIL)) (-3553 (($ $) 32)) (-3556 (($ $) 30)) (-3557 (($ $) 29)) (-3555 (($ $) 31)) (-3552 (($ $) 35)) (-3551 (($ $) 36)) (-3558 (($ $) 28)) (-3554 (($ $) 33)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) 27 (|has| $ (-6 -4425)))) (-2381 (((-3 (-51) #1="failed") (-1180) $) 43)) (-4156 (($) NIL T CONST)) (-3559 (($) 7)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) 53 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-3 (-51) #1#) (-1180) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-3544 (((-3 (-1162) "failed") $ (-1162) (-549)) 74)) (-1684 (((-51) $ (-1180) (-51)) NIL (|has| $ (-6 -4426)))) (-3517 (((-51) $ (-1180)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1180) $) NIL (|has| (-1180) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) 38 (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2375 (((-1180) $) NIL (|has| (-1180) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-2816 (((-643 (-1180)) $) NIL)) (-2382 (((-112) (-1180) $) NIL)) (-1369 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) 46)) (-2377 (((-643 (-1180)) $) NIL)) (-2378 (((-112) (-1180) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-3548 (((-380) $ (-1180)) 52)) (-3547 (((-643 (-1162)) $ (-1162)) 76)) (-4232 (((-51) $) NIL (|has| (-1180) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) "failed") (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL)) (-2373 (($ $ (-51)) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-51)) (-643 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-294 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-643 (-294 (-51)))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2379 (((-643 (-51)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-51) $ (-1180)) NIL) (((-51) $ (-1180) (-51)) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-3546 (($ $ (-1180)) 54)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-773) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104)))) (((-773) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) 40)) (-4233 (($ $ $) 41)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-615 (-865))) (|has| (-51) (-615 (-865)))))) (-3550 (($ $ (-1180) (-380)) 50)) (-3549 (($ $ (-1180) (-380)) 51)) (-3662 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1066) (-13 (-1196 (-1180) (-51)) (-10 -8 (-15 -4233 ($ $ $)) (-15 -3559 ($)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $ (-1180) (-380))) (-15 -3549 ($ $ (-1180) (-380))) (-15 -3548 ((-380) $ (-1180))) (-15 -3547 ((-643 (-1162)) $ (-1162))) (-15 -3546 ($ $ (-1180))) (-15 -3545 ($)) (-15 -3544 ((-3 (-1162) "failed") $ (-1162) (-549))) (-6 -4425)))) (T -1066)) -((-4233 (*1 *1 *1 *1) (-5 *1 (-1066))) (-3559 (*1 *1) (-5 *1 (-1066))) (-3558 (*1 *1 *1) (-5 *1 (-1066))) (-3557 (*1 *1 *1) (-5 *1 (-1066))) (-3556 (*1 *1 *1) (-5 *1 (-1066))) (-3555 (*1 *1 *1) (-5 *1 (-1066))) (-3554 (*1 *1 *1) (-5 *1 (-1066))) (-3553 (*1 *1 *1) (-5 *1 (-1066))) (-3552 (*1 *1 *1) (-5 *1 (-1066))) (-3551 (*1 *1 *1) (-5 *1 (-1066))) (-3550 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066)))) (-3549 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-380)) (-5 *1 (-1066)))) (-3547 (*1 *2 *1 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1066)) (-5 *3 (-1162)))) (-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1066)))) (-3545 (*1 *1) (-5 *1 (-1066))) (-3544 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-1066))))) -(-13 (-1196 (-1180) (-51)) (-10 -8 (-15 -4233 ($ $ $)) (-15 -3559 ($)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $ (-1180) (-380))) (-15 -3549 ($ $ (-1180) (-380))) (-15 -3548 ((-380) $ (-1180))) (-15 -3547 ((-643 (-1162)) $ (-1162))) (-15 -3546 ($ $ (-1180))) (-15 -3545 ($)) (-15 -3544 ((-3 (-1162) "failed") $ (-1162) (-549))) (-6 -4425))) -((-4228 (($ $) 46)) (-3586 (((-112) $ $) 82)) (-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-949 (-410 (-549)))) 253) (((-3 $ "failed") (-949 (-549))) 252) (((-3 $ "failed") (-949 |#2|)) 255)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) NIL) (($ (-949 (-410 (-549)))) 241) (($ (-949 (-549))) 237) (($ (-949 |#2|)) 257)) (-4391 (($ $) NIL) (($ $ |#4|) 44)) (-4126 (((-112) $ $) 131) (((-112) $ (-643 $)) 135)) (-3592 (((-112) $) 60)) (-4184 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 125)) (-3563 (($ $) 160)) (-3574 (($ $) 156)) (-3575 (($ $) 155)) (-3585 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3584 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4127 (((-112) $ $) 143) (((-112) $ (-643 $)) 144)) (-3600 ((|#4| $) 32)) (-3579 (($ $ $) 128)) (-3593 (((-112) $) 59)) (-3599 (((-773) $) 35)) (-3560 (($ $) 174)) (-3561 (($ $) 171)) (-3588 (((-643 $) $) 72)) (-3591 (($ $) 62)) (-3562 (($ $) 167)) (-3589 (((-643 $) $) 69)) (-3590 (($ $) 64)) (-3594 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $) 130)) (-3580 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 126) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |#4|) 127)) (-3581 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $) 121) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |#4|) 123)) (-3583 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3582 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3596 (((-643 $) $) 54)) (-4123 (((-112) $ $) 140) (((-112) $ (-643 $)) 141)) (-4118 (($ $ $) 116)) (-3869 (($ $) 37)) (-4131 (((-112) $ $) 80)) (-4124 (((-112) $ $) 136) (((-112) $ (-643 $)) 138)) (-4119 (($ $ $) 112)) (-3598 (($ $) 41)) (-3564 ((|#2| |#2| $) 164) (($ (-643 $)) NIL) (($ $ $) NIL)) (-3572 (($ $ |#2|) NIL) (($ $ $) 153)) (-3573 (($ $ |#2|) 148) (($ $ $) 151)) (-3597 (($ $) 49)) (-3595 (($ $) 55)) (-4402 (((-893 (-380)) $) NIL) (((-893 (-549)) $) NIL) (((-538) $) NIL) (($ (-949 (-410 (-549)))) 243) (($ (-949 (-549))) 239) (($ (-949 |#2|)) 254) (((-1162) $) 281) (((-949 |#2|) $) 184)) (-4378 (((-865) $) 29) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-949 |#2|) $) 185) (($ (-410 (-549))) NIL) (($ $) NIL)) (-3587 (((-3 (-112) "failed") $ $) 79))) -(((-1067 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 ((-949 |#2|) |#1|)) (-15 -4402 ((-949 |#2|) |#1|)) (-15 -4402 ((-1162) |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -3564 (|#2| |#2| |#1|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#2|)) (-15 -3573 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -4402 (|#1| (-949 |#2|))) (-15 -3576 (|#1| (-949 |#2|))) (-15 -3577 ((-3 |#1| "failed") (-949 |#2|))) (-15 -4402 (|#1| (-949 (-549)))) (-15 -3576 (|#1| (-949 (-549)))) (-15 -3577 ((-3 |#1| "failed") (-949 (-549)))) (-15 -4402 (|#1| (-949 (-410 (-549))))) (-15 -3576 (|#1| (-949 (-410 (-549))))) (-15 -3577 ((-3 |#1| "failed") (-949 (-410 (-549))))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -3578 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3904 (-773))) |#1| |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -4184 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| |#4|)) (-15 -3583 (|#1| |#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3584 (|#1| |#1| |#1| |#4|)) (-15 -3585 (|#1| |#1| |#1| |#4|)) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -4127 ((-112) |#1| (-643 |#1|))) (-15 -4127 ((-112) |#1| |#1|)) (-15 -4123 ((-112) |#1| (-643 |#1|))) (-15 -4123 ((-112) |#1| |#1|)) (-15 -4124 ((-112) |#1| (-643 |#1|))) (-15 -4124 ((-112) |#1| |#1|)) (-15 -4126 ((-112) |#1| (-643 |#1|))) (-15 -4126 ((-112) |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3587 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3588 ((-643 |#1|) |#1|)) (-15 -3589 ((-643 |#1|) |#1|)) (-15 -3590 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3592 ((-112) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -4391 (|#1| |#1| |#4|)) (-15 -3594 (|#1| |#1| |#4|)) (-15 -3595 (|#1| |#1|)) (-15 -3596 ((-643 |#1|) |#1|)) (-15 -3597 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3599 ((-773) |#1|)) (-15 -3600 (|#4| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1068 |#2| |#3| |#4|) (-1052) (-795) (-852)) (T -1067)) -NIL -(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 ((-949 |#2|) |#1|)) (-15 -4402 ((-949 |#2|) |#1|)) (-15 -4402 ((-1162) |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -3564 (|#2| |#2| |#1|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#2|)) (-15 -3573 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -4402 (|#1| (-949 |#2|))) (-15 -3576 (|#1| (-949 |#2|))) (-15 -3577 ((-3 |#1| "failed") (-949 |#2|))) (-15 -4402 (|#1| (-949 (-549)))) (-15 -3576 (|#1| (-949 (-549)))) (-15 -3577 ((-3 |#1| "failed") (-949 (-549)))) (-15 -4402 (|#1| (-949 (-410 (-549))))) (-15 -3576 (|#1| (-949 (-410 (-549))))) (-15 -3577 ((-3 |#1| "failed") (-949 (-410 (-549))))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -3578 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3904 (-773))) |#1| |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -4184 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| |#4|)) (-15 -3583 (|#1| |#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3584 (|#1| |#1| |#1| |#4|)) (-15 -3585 (|#1| |#1| |#1| |#4|)) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -4127 ((-112) |#1| (-643 |#1|))) (-15 -4127 ((-112) |#1| |#1|)) (-15 -4123 ((-112) |#1| (-643 |#1|))) (-15 -4123 ((-112) |#1| |#1|)) (-15 -4124 ((-112) |#1| (-643 |#1|))) (-15 -4124 ((-112) |#1| |#1|)) (-15 -4126 ((-112) |#1| (-643 |#1|))) (-15 -4126 ((-112) |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3587 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3588 ((-643 |#1|) |#1|)) (-15 -3589 ((-643 |#1|) |#1|)) (-15 -3590 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3592 ((-112) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -4391 (|#1| |#1| |#4|)) (-15 -3594 (|#1| |#1| |#4|)) (-15 -3595 (|#1| |#1|)) (-15 -3596 ((-643 |#1|) |#1|)) (-15 -3597 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3599 ((-773) |#1|)) (-15 -3600 (|#4| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#3|) $) 112)) (-3487 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 |#3|)) 113)) (-4228 (($ $) 273)) (-3586 (((-112) $ $) 259)) (-1407 (((-3 $ "failed") $ $) 20)) (-4187 (($ $ $) 218 (|has| |#1| (-560)))) (-3568 (((-643 $) $ $) 213 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) 138) (((-3 $ "failed") (-949 (-410 (-549)))) 233 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))) (((-3 $ "failed") (-949 (-549))) 230 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180)))))) (((-3 $ "failed") (-949 |#1|)) 227 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549)))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-548))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-994 (-549)))) (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))))) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) ((|#3| $) 139) (($ (-949 (-410 (-549)))) 232 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))) (($ (-949 (-549))) 229 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180)))))) (($ (-949 |#1|)) 226 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549)))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-548))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-994 (-549)))) (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))))) (-4188 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-560)))) (-4391 (($ $) 156) (($ $ |#3|) 268)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-4126 (((-112) $ $) 258) (((-112) $ (-643 $)) 257)) (-3890 (((-3 $ "failed") $) 37)) (-3592 (((-112) $) 266)) (-4184 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 238)) (-3563 (($ $) 207 (|has| |#1| (-455)))) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-3574 (($ $) 223 (|has| |#1| (-560)))) (-3575 (($ $) 224 (|has| |#1| (-560)))) (-3585 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3584 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1769 (($ $ |#1| |#2| $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| |#3| (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| |#3| (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-4127 (((-112) $ $) 252) (((-112) $ (-643 $)) 251)) (-3565 (($ $ $ $ $) 209 (|has| |#1| (-560)))) (-3600 ((|#3| $) 277)) (-3488 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| |#2|) 155) (($ $ |#3| (-773)) 121) (($ $ (-643 |#3|) (-643 (-773))) 120)) (-3579 (($ $ $) 237)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 122)) (-3593 (((-112) $) 267)) (-3223 ((|#2| $) 172) (((-773) $ |#3|) 124) (((-643 (-773)) $ (-643 |#3|)) 123)) (-3599 (((-773) $) 276)) (-1770 (($ (-1 |#2| |#2|) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-3486 (((-3 |#3| #3="failed") $) 125)) (-3560 (($ $) 204 (|has| |#1| (-455)))) (-3561 (($ $) 205 (|has| |#1| (-455)))) (-3588 (((-643 $) $) 262)) (-3591 (($ $) 265)) (-3562 (($ $) 206 (|has| |#1| (-455)))) (-3589 (((-643 $) $) 263)) (-3590 (($ $) 264)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150) (($ $ |#3|) 269)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $) 236)) (-3580 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 240) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 239)) (-3581 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $) 242) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |#3|) 241)) (-3583 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3582 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3663 (((-1162) $) 10)) (-3610 (($ $ $) 212 (|has| |#1| (-560)))) (-3596 (((-643 $) $) 271)) (-3226 (((-3 (-643 $) #3#) $) 116)) (-3225 (((-3 (-643 $) #3#) $) 117)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) #3#) $) 115)) (-4123 (((-112) $ $) 254) (((-112) $ (-643 $)) 253)) (-4118 (($ $ $) 234)) (-3869 (($ $) 275)) (-4131 (((-112) $ $) 260)) (-4124 (((-112) $ $) 256) (((-112) $ (-643 $)) 255)) (-4119 (($ $ $) 235)) (-3598 (($ $) 274)) (-3664 (((-1123) $) 11)) (-3569 (((-2 (|:| -3564 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-560)))) (-3570 (((-2 (|:| -3564 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-560)))) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-3571 (((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-3572 (($ $ |#1|) 221 (|has| |#1| (-560))) (($ $ $) 219 (|has| |#1| (-560)))) (-3573 (($ $ |#1|) 222 (|has| |#1| (-560))) (($ $ $) 220 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-643 |#3|) (-643 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-643 |#3|) (-643 $)) 140)) (-4189 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-4242 (($ $ |#3|) 46) (($ $ (-643 |#3|)) 45) (($ $ |#3| (-773)) 44) (($ $ (-643 |#3|) (-643 (-773))) 43)) (-4380 ((|#2| $) 152) (((-773) $ |#3|) 132) (((-643 (-773)) $ (-643 |#3|)) 131)) (-3597 (($ $) 272)) (-3595 (($ $) 270)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| |#3| (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| |#3| (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| |#3| (-616 (-538))) (|has| |#1| (-616 (-538))))) (($ (-949 (-410 (-549)))) 231 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))) (($ (-949 (-549))) 228 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180)))))) (($ (-949 |#1|)) 225 (|has| |#3| (-616 (-1180)))) (((-1162) $) 203 (-12 (|has| |#1| (-1041 (-549))) (|has| |#3| (-616 (-1180))))) (((-949 |#1|) $) 202 (|has| |#3| (-616 (-1180))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-949 |#1|) $) 201 (|has| |#3| (-616 (-1180)))) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549)))))) (($ $) 87 (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ |#2|) 157) (($ $ |#3| (-773)) 130) (($ $ (-643 |#3|) (-643 (-773))) 129)) (-3105 (((-3 $ #1#) $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3587 (((-3 (-112) "failed") $ $) 261)) (-3067 (($) 34 T CONST)) (-3566 (($ $ $ $ (-773)) 210 (|has| |#1| (-560)))) (-3567 (($ $ $ (-773)) 211 (|has| |#1| (-560)))) (-3072 (($ $ |#3|) 42) (($ $ (-643 |#3|)) 41) (($ $ |#3| (-773)) 40) (($ $ (-643 |#3|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1068 |#1| |#2| |#3|) (-140) (-1052) (-795) (-852)) (T -1068)) -((-3600 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-773)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3596 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3594 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-4391 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3590 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3589 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3587 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4131 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3586 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-4123 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4123 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-4127 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-3585 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3585 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3584 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3583 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3582 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3581 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3581 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) (-4 *1 (-1068 *4 *5 *3)))) (-3580 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3580 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *4 *5 *3)))) (-4184 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3579 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3578 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3904 (-773)))) (-4 *1 (-1068 *3 *4 *5)))) (-4119 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)))) (-3577 (*1 *1 *2) (|partial| -3960 (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))))) (-3576 (*1 *1 *2) (-3960 (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))))) (-4402 (*1 *1 *2) (-3960 (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))))) (-3577 (*1 *1 *2) (|partial| -3960 (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) (-3576 (*1 *1 *2) (-3960 (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *5 (-616 (-1180))) (-4 *4 (-795)) (-4 *5 (-852)))) (-3575 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3573 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3572 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3573 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3571 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3570 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -3564 *1) (|:| |coef2| *1))) (-4 *1 (-1068 *3 *4 *5)))) (-4188 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3568 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3610 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3567 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *3 (-560)))) (-3566 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *3 (-560)))) (-3565 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3564 (*1 *2 *2 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3561 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455))))) -(-13 (-953 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3600 (|t#3| $)) (-15 -3599 ((-773) $)) (-15 -3869 ($ $)) (-15 -3598 ($ $)) (-15 -4228 ($ $)) (-15 -3597 ($ $)) (-15 -3596 ((-643 $) $)) (-15 -3595 ($ $)) (-15 -3594 ($ $ |t#3|)) (-15 -4391 ($ $ |t#3|)) (-15 -3593 ((-112) $)) (-15 -3592 ((-112) $)) (-15 -3591 ($ $)) (-15 -3590 ($ $)) (-15 -3589 ((-643 $) $)) (-15 -3588 ((-643 $) $)) (-15 -3587 ((-3 (-112) "failed") $ $)) (-15 -4131 ((-112) $ $)) (-15 -3586 ((-112) $ $)) (-15 -4126 ((-112) $ $)) (-15 -4126 ((-112) $ (-643 $))) (-15 -4124 ((-112) $ $)) (-15 -4124 ((-112) $ (-643 $))) (-15 -4123 ((-112) $ $)) (-15 -4123 ((-112) $ (-643 $))) (-15 -4127 ((-112) $ $)) (-15 -4127 ((-112) $ (-643 $))) (-15 -3585 ($ $ $)) (-15 -3584 ($ $ $)) (-15 -3585 ($ $ $ |t#3|)) (-15 -3584 ($ $ $ |t#3|)) (-15 -3583 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -3583 ($ $ $ |t#3|)) (-15 -3582 ($ $ $ |t#3|)) (-15 -3581 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $)) (-15 -3581 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |t#3|)) (-15 -3580 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3580 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |t#3|)) (-15 -4184 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3579 ($ $ $)) (-15 -3578 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $)) (-15 -4119 ($ $ $)) (-15 -4118 ($ $ $)) (IF (|has| |t#3| (-616 (-1180))) (PROGN (-6 (-615 (-949 |t#1|))) (-6 (-616 (-949 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -3577 ((-3 $ "failed") (-949 (-410 (-549))))) (-15 -3576 ($ (-949 (-410 (-549))))) (-15 -4402 ($ (-949 (-410 (-549))))) (-15 -3577 ((-3 $ "failed") (-949 (-549)))) (-15 -3576 ($ (-949 (-549)))) (-15 -4402 ($ (-949 (-549)))) (IF (|has| |t#1| (-994 (-549))) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 |t#1|))) (-15 -3576 ($ (-949 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) (IF (|has| |t#1| (-38 (-410 (-549)))) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 (-549)))) (-15 -3576 ($ (-949 (-549)))) (-15 -4402 ($ (-949 (-549)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 |t#1|))) (-15 -3576 ($ (-949 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-549)))) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 |t#1|))) (-15 -3576 ($ (-949 |t#1|)))))) (-15 -4402 ($ (-949 |t#1|))) (IF (|has| |t#1| (-1041 (-549))) (-6 (-616 (-1162))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-15 -3575 ($ $)) (-15 -3574 ($ $)) (-15 -3573 ($ $ |t#1|)) (-15 -3572 ($ $ |t#1|)) (-15 -3573 ($ $ $)) (-15 -3572 ($ $ $)) (-15 -4187 ($ $ $)) (-15 -3571 ((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3570 ((-2 (|:| -3564 $) (|:| |coef1| $)) $ $)) (-15 -3569 ((-2 (|:| -3564 $) (|:| |coef2| $)) $ $)) (-15 -4188 ($ $ $)) (-15 -3568 ((-643 $) $ $)) (-15 -3610 ($ $ $)) (-15 -3567 ($ $ $ (-773))) (-15 -3566 ($ $ $ $ (-773))) (-15 -3565 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3564 (|t#1| |t#1| $)) (-15 -3563 ($ $)) (-15 -3562 ($ $)) (-15 -3561 ($ $)) (-15 -3560 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 |#3|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-615 (-865)) . T) ((-615 (-949 |#1|)) |has| |#3| (-616 (-1180))) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) ((-616 (-949 |#1|)) |has| |#3| (-616 (-1180))) ((-616 (-1162)) -12 (|has| |#1| (-1041 (-549))) (|has| |#3| (-616 (-1180)))) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-728) . T) ((-903 |#3|) . T) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) ((-953 |#1| |#2| |#3|) . T) ((-913) |has| |#1| (-913)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1041 |#3|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) |has| |#1| (-913))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3601 (((-643 (-1138)) $) 18)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 20)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1069) (-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $))))) (T -1069)) -((-3601 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1069)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1069))))) -(-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $)))) -((-3608 (((-112) |#3| $) 15)) (-3603 (((-3 $ "failed") |#3| (-922)) 29)) (-3890 (((-3 |#3| "failed") |#3| $) 45)) (-3606 (((-112) |#3| $) 19)) (-3607 (((-112) |#3| $) 17))) -(((-1070 |#1| |#2| |#3|) (-10 -8 (-15 -3603 ((-3 |#1| "failed") |#3| (-922))) (-15 -3890 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3606 ((-112) |#3| |#1|)) (-15 -3607 ((-112) |#3| |#1|)) (-15 -3608 ((-112) |#3| |#1|))) (-1071 |#2| |#3|) (-13 (-850) (-365)) (-1245 |#2|)) (T -1070)) -NIL -(-10 -8 (-15 -3603 ((-3 |#1| "failed") |#3| (-922))) (-15 -3890 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3606 ((-112) |#3| |#1|)) (-15 -3607 ((-112) |#3| |#1|)) (-15 -3608 ((-112) |#3| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) |#2| $) 22)) (-4055 (((-549) |#2| $) 23)) (-3603 (((-3 $ "failed") |#2| (-922)) 16)) (-3602 ((|#1| |#2| $ |#1|) 14)) (-3890 (((-3 |#2| "failed") |#2| $) 19)) (-3606 (((-112) |#2| $) 20)) (-3607 (((-112) |#2| $) 21)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3605 ((|#2| $) 18)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-4201 ((|#1| |#2| $ |#1|) 15)) (-3604 (((-643 $) |#2|) 17)) (-3455 (((-112) $ $) 6))) -(((-1071 |#1| |#2|) (-140) (-13 (-850) (-365)) (-1245 |t#1|)) (T -1071)) -((-4055 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-549)))) (-3608 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3607 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3606 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3890 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) (-4 *2 (-1245 *3)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) (-4 *2 (-1245 *3)))) (-3604 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-643 *1)) (-4 *1 (-1071 *4 *3)))) (-3603 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-850) (-365))) (-4 *1 (-1071 *4 *2)) (-4 *2 (-1245 *4)))) (-4201 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2)))) (-3602 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2))))) -(-13 (-1104) (-10 -8 (-15 -4055 ((-549) |t#2| $)) (-15 -3608 ((-112) |t#2| $)) (-15 -3607 ((-112) |t#2| $)) (-15 -3606 ((-112) |t#2| $)) (-15 -3890 ((-3 |t#2| "failed") |t#2| $)) (-15 -3605 (|t#2| $)) (-15 -3604 ((-643 $) |t#2|)) (-15 -3603 ((-3 $ "failed") |t#2| (-922))) (-15 -4201 (|t#1| |t#2| $ |t#1|)) (-15 -3602 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-3860 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773)) 114)) (-3857 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 63)) (-3861 (((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)) 99)) (-3855 (((-773) (-643 |#4|) (-643 |#5|)) 30)) (-3858 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 65) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112)) 67)) (-3859 (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112)) 87)) (-4402 (((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 92)) (-3856 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-112)) 62)) (-3854 (((-773) (-643 |#4|) (-643 |#5|)) 21))) -(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-112))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1072)) -((-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) (-5 *1 (-1072 *4 *5 *6 *7 *8)))) (-3860 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-643 *11)) (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) (-4 *11 (-1074 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-5 *1 (-1072 *7 *8 *9 *10 *11)))) (-3859 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3859 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3858 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1074 *7 *8 *9 *3)))) (-3857 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3857 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3856 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-112))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) -((-3617 (((-112) |#5| $) 26)) (-3615 (((-112) |#5| $) 29)) (-3618 (((-112) |#5| $) 18) (((-112) $) 52)) (-3658 (((-643 $) |#5| $) NIL) (((-643 $) (-643 |#5|) $) 94) (((-643 $) (-643 |#5|) (-643 $)) 92) (((-643 $) |#5| (-643 $)) 95)) (-4200 (($ $ |#5|) NIL) (((-643 $) |#5| $) NIL) (((-643 $) |#5| (-643 $)) 73) (((-643 $) (-643 |#5|) $) 75) (((-643 $) (-643 |#5|) (-643 $)) 77)) (-3609 (((-643 $) |#5| $) NIL) (((-643 $) |#5| (-643 $)) 64) (((-643 $) (-643 |#5|) $) 69) (((-643 $) (-643 |#5|) (-643 $)) 71)) (-3616 (((-112) |#5| $) 32))) -(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4200 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -4200 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -4200 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -4200 ((-643 |#1|) |#5| |#1|)) (-15 -3609 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3609 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3609 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3609 ((-643 |#1|) |#5| |#1|)) (-15 -3658 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3658 ((-643 |#1|) |#5| |#1|)) (-15 -3615 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#1|)) (-15 -3616 ((-112) |#5| |#1|)) (-15 -3617 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#5| |#1|)) (-15 -4200 (|#1| |#1| |#5|))) (-1074 |#2| |#3| |#4| |#5|) (-455) (-795) (-852) (-1068 |#2| |#3| |#4|)) (T -1073)) -NIL -(-10 -8 (-15 -4200 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -4200 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -4200 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -4200 ((-643 |#1|) |#5| |#1|)) (-15 -3609 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3609 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3609 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3609 ((-643 |#1|) |#5| |#1|)) (-15 -3658 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3658 ((-643 |#1|) |#5| |#1|)) (-15 -3615 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#1|)) (-15 -3616 ((-112) |#5| |#1|)) (-15 -3617 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#5| |#1|)) (-15 -4200 (|#1| |#1| |#5|))) -((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-1074 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1074)) -((-3618 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3617 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3616 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-3615 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3614 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-3 (-112) (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *1)))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3611 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-3 *3 (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3610 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-4206 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3658 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3658 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) (-3658 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) (-3658 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) (-3609 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3609 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) (-3609 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) (-3864 (*1 *1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-3864 (*1 *1 *2 *1) (-12 (-5 *2 (-643 *6)) (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)))) (-4200 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) (-4200 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *5 *6 *7 *8))))) -(-13 (-1214 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3618 ((-112) |t#4| $)) (-15 -3617 ((-112) |t#4| $)) (-15 -3616 ((-112) |t#4| $)) (-15 -3618 ((-112) $)) (-15 -3615 ((-112) |t#4| $)) (-15 -3614 ((-3 (-112) (-643 $)) |t#4| $)) (-15 -3613 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |t#4| $)) (-15 -3613 ((-112) |t#4| $)) (-15 -3612 ((-643 $) |t#4| $)) (-15 -3611 ((-3 |t#4| (-643 $)) |t#4| |t#4| $)) (-15 -3610 ((-643 (-2 (|:| |val| |t#4|) (|:| -1708 $))) |t#4| |t#4| $)) (-15 -4206 ((-643 (-2 (|:| |val| |t#4|) (|:| -1708 $))) |t#4| $)) (-15 -3658 ((-643 $) |t#4| $)) (-15 -3658 ((-643 $) (-643 |t#4|) $)) (-15 -3658 ((-643 $) (-643 |t#4|) (-643 $))) (-15 -3658 ((-643 $) |t#4| (-643 $))) (-15 -3609 ((-643 $) |t#4| $)) (-15 -3609 ((-643 $) |t#4| (-643 $))) (-15 -3609 ((-643 $) (-643 |t#4|) $)) (-15 -3609 ((-643 $) (-643 |t#4|) (-643 $))) (-15 -3864 ($ |t#4| $)) (-15 -3864 ($ (-643 |t#4|) $)) (-15 -4200 ((-643 $) |t#4| $)) (-15 -4200 ((-643 $) |t#4| (-643 $))) (-15 -4200 ((-643 $) (-643 |t#4|) $)) (-15 -4200 ((-643 $) (-643 |t#4|) (-643 $))) (-15 -4114 ((-643 $) (-643 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-3625 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|) 86)) (-3622 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 127)) (-3624 (((-643 |#5|) |#4| |#5|) 74)) (-3623 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3708 (((-1275)) 36)) (-3706 (((-1275)) 25)) (-3707 (((-1275) (-1162) (-1162) (-1162)) 32)) (-3705 (((-1275) (-1162) (-1162) (-1162)) 21)) (-3619 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|) 107)) (-3620 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112)) 118) (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3621 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 113))) -(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3619 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3621 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3622 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-112) |#4| |#5|)) (-15 -3623 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3624 ((-643 |#5|) |#4| |#5|)) (-15 -3625 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1075)) -((-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3622 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3621 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *4 (-852)) (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) (-5 *1 (-1075 *6 *7 *4 *8 *9)))) (-3620 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3619 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3708 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3706 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) -(-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3619 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3621 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3622 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-112) |#4| |#5|)) (-15 -3623 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3624 ((-643 |#5|) |#4| |#5|)) (-15 -3625 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) -((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 10)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1076) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $))))) (T -1076)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1076)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-1076))))) -(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $)))) -((-3687 (((-112) $ $) 7))) -(((-1077) (-13 (-1219) (-10 -8 (-15 -3687 ((-112) $ $))))) (T -1077)) -((-3687 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1077))))) -(-13 (-1219) (-10 -8 (-15 -3687 ((-112) $ $)))) -((-2968 (((-112) $ $) NIL)) (-3629 (($ $ (-643 (-1180)) (-1 (-112) (-643 |#3|))) 34)) (-3630 (($ |#3| |#3|) 23) (($ |#3| |#3| (-643 (-1180))) 21)) (-3951 ((|#3| $) 13)) (-3577 (((-3 (-294 |#3|) "failed") $) 60)) (-3576 (((-294 |#3|) $) NIL)) (-3627 (((-643 (-1180)) $) 16)) (-3628 (((-893 |#1|) $) 11)) (-3952 ((|#3| $) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-922)) 41)) (-4378 (((-865) $) 89) (($ (-294 |#3|)) 22)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 38))) -(((-1078 |#1| |#2| |#3|) (-13 (-1104) (-287 |#3| |#3|) (-1041 (-294 |#3|)) (-10 -8 (-15 -3630 ($ |#3| |#3|)) (-15 -3630 ($ |#3| |#3| (-643 (-1180)))) (-15 -3629 ($ $ (-643 (-1180)) (-1 (-112) (-643 |#3|)))) (-15 -3628 ((-893 |#1|) $)) (-15 -3952 (|#3| $)) (-15 -3951 (|#3| $)) (-15 -4231 (|#3| $ |#3| (-922))) (-15 -3627 ((-643 (-1180)) $)))) (-1104) (-13 (-1052) (-889 |#1|) (-616 (-893 |#1|))) (-13 (-424 |#2|) (-889 |#1|) (-616 (-893 |#1|)))) (T -1078)) -((-3630 (*1 *1 *2 *2) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))))) (-3630 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1 (-112) (-643 *6))) (-4 *6 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *6)))) (-3628 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 *2))) (-5 *2 (-893 *3)) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 *2))))) (-3952 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) (-3951 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) (-4231 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) (-3627 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-5 *2 (-643 (-1180))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) -(-13 (-1104) (-287 |#3| |#3|) (-1041 (-294 |#3|)) (-10 -8 (-15 -3630 ($ |#3| |#3|)) (-15 -3630 ($ |#3| |#3| (-643 (-1180)))) (-15 -3629 ($ $ (-643 (-1180)) (-1 (-112) (-643 |#3|)))) (-15 -3628 ((-893 |#1|) $)) (-15 -3952 (|#3| $)) (-15 -3951 (|#3| $)) (-15 -4231 (|#3| $ |#3| (-922))) (-15 -3627 ((-643 (-1180)) $)))) -((-2968 (((-112) $ $) NIL)) (-3973 (((-1180) $) 8)) (-3663 (((-1162) $) 17)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 14))) -(((-1079 |#1|) (-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) (-1180)) (T -1079)) -((-3973 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1079 *3)) (-14 *3 *2)))) -(-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) -((-2968 (((-112) $ $) NIL)) (-3632 (($ (-643 (-1078 |#1| |#2| |#3|))) 14)) (-3631 (((-643 (-1078 |#1| |#2| |#3|)) $) 21)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-922)) 27)) (-4378 (((-865) $) 17)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 20))) -(((-1080 |#1| |#2| |#3|) (-13 (-1104) (-287 |#3| |#3|) (-10 -8 (-15 -3632 ($ (-643 (-1078 |#1| |#2| |#3|)))) (-15 -3631 ((-643 (-1078 |#1| |#2| |#3|)) $)) (-15 -4231 (|#3| $ |#3| (-922))))) (-1104) (-13 (-1052) (-889 |#1|) (-616 (-893 |#1|))) (-13 (-424 |#2|) (-889 |#1|) (-616 (-893 |#1|)))) (T -1080)) -((-3632 (*1 *1 *2) (-12 (-5 *2 (-643 (-1078 *3 *4 *5))) (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1080 *3 *4 *5)))) (-3631 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-5 *2 (-643 (-1078 *3 *4 *5))) (-5 *1 (-1080 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))))) (-4231 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1080 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4))))))) -(-13 (-1104) (-287 |#3| |#3|) (-10 -8 (-15 -3632 ($ (-643 (-1078 |#1| |#2| |#3|)))) (-15 -3631 ((-643 (-1078 |#1| |#2| |#3|)) $)) (-15 -4231 (|#3| $ |#3| (-922))))) -((-3633 (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)) 88) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|))) 92) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112)) 90))) -(((-1081 |#1| |#2|) (-10 -7 (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-643 (-1180))) (T -1081)) -((-3633 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) (-5 *1 (-1081 *4 *5)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180)))))) -(-10 -7 (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 139)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-2241 (($ $) NIL (|has| |#1| (-365)))) (-2239 (((-112) $) NIL (|has| |#1| (-365)))) (-1957 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) 123)) (-3754 ((|#1| $) 128)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3540 (((-773)) 46 (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) 49)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-1956 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 115) (((-691 |#1|) (-691 $)) 110)) (-4274 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-3513 (((-922)) 84)) (-3395 (($) 50 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3236 (($) NIL (|has| |#1| (-352)))) (-1848 (((-112) $) NIL (|has| |#1| (-352)))) (-1941 (($ $ (-773)) NIL (|has| |#1| (-352))) (($ $) NIL (|has| |#1| (-352)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-4203 (((-922) $) NIL (|has| |#1| (-352))) (((-834 (-922)) $) NIL (|has| |#1| (-352)))) (-2573 (((-112) $) NIL)) (-3536 ((|#1| $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-2192 ((|#2| $) 91 (|has| |#1| (-365)))) (-2188 (((-922) $) 148 (|has| |#1| (-370)))) (-3481 ((|#2| $) 64)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-3869 (($) NIL (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) 138 (|has| |#1| (-370)))) (-3664 (((-1123) $) NIL)) (-2572 (($) 130)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-352)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 ((|#1| (-1269 $)) NIL) ((|#1|) 119)) (-1942 (((-773) $) NIL (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) NIL (|has| |#1| (-352)))) (-4242 (($ $) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1 |#1| |#1|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3605 ((|#2|) 80)) (-1842 (($) NIL (|has| |#1| (-352)))) (-3644 (((-1269 |#1|) $ (-1269 $)) 96) (((-691 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 77) (((-691 |#1|) (-1269 $)) 92)) (-4402 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-352)))) (-4378 (((-865) $) 63) (($ (-549)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2770 ((|#2| $) 89)) (-3530 (((-773)) 82 T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 88)) (-2240 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3510 (($) 32 T CONST)) (-3067 (($) 19 T CONST)) (-3072 (($ $) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1 |#1| |#1|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3455 (((-112) $ $) 69)) (-4381 (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) 73) (($ $ $) NIL)) (-4271 (($ $ $) 71)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-549)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-549))) NIL (|has| |#1| (-365))))) -(((-1082 |#1| |#2| |#3|) (-726 |#1| |#2|) (-172) (-1245 |#1|) |#2|) (T -1082)) -NIL -(-726 |#1| |#2|) -((-4164 (((-408 |#3|) |#3|) 18))) -(((-1083 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) (-1245 (-410 (-549))) (-13 (-365) (-147) (-726 (-410 (-549)) |#1|)) (-1245 |#2|)) (T -1083)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-13 (-365) (-147) (-726 (-410 (-549)) *4))) (-5 *2 (-408 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) -((-4164 (((-408 |#3|) |#3|) 19))) -(((-1084 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) (-1245 (-410 (-949 (-549)))) (-13 (-365) (-147) (-726 (-410 (-949 (-549))) |#1|)) (-1245 |#2|)) (T -1084)) -((-4164 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-949 (-549))))) (-4 *5 (-13 (-365) (-147) (-726 (-410 (-949 (-549))) *4))) (-5 *2 (-408 *3)) (-5 *1 (-1084 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) -((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) 16)) (-3260 (($ $ $) 17)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3634 (($) 6)) (-4402 (((-1180) $) 20)) (-4378 (((-865) $) 13)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 15)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 9))) -(((-1085) (-13 (-852) (-616 (-1180)) (-10 -8 (-15 -3634 ($))))) (T -1085)) -((-3634 (*1 *1) (-5 *1 (-1085)))) -(-13 (-852) (-616 (-1180)) (-10 -8 (-15 -3634 ($)))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-1185)) 17) (((-1185) $) 16)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-1086) (-140)) (T -1086)) +((-3504 (*1 *2 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23)))) (-3501 (*1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3504 (|t#1| $)) (-15 -3503 (|t#1| $)) (-15 -3502 (|t#1| $)) (-15 -3501 (|t#1|) -4386))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3505 (($) 25 T CONST)) (-4158 (($) 18 T CONST)) (-3504 ((|#1| $) 23)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3503 ((|#1| $) 22)) (-3501 ((|#1|) 20 T CONST)) (-4380 (((-866) $) 12)) (-3502 ((|#1| $) 21)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16))) +(((-1049 |#1|) (-140) (-23)) (T -1049)) +((-3505 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-23))))) +(-13 (-1048 |t#1|) (-10 -8 (-15 -3505 ($) -4386))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-616 (-866)) . T) ((-1048 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 (-783 |#1| (-867 |#2|)))))) (-644 (-783 |#1| (-867 |#2|)))) NIL)) (-4116 (((-644 $) (-644 (-783 |#1| (-867 |#2|)))) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-112)) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-112) (-112)) NIL)) (-3487 (((-644 (-867 |#2|)) $) NIL)) (-3311 (((-112) $) NIL)) (-3302 (((-112) $) NIL (|has| |#1| (-561)))) (-4127 (((-112) (-783 |#1| (-867 |#2|)) $) NIL) (((-112) $) NIL)) (-4122 (((-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-4208 (((-644 (-2 (|:| |val| (-783 |#1| (-867 |#2|))) (|:| -1710 $))) (-783 |#1| (-867 |#2|)) $) NIL)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ (-867 |#2|)) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4144 (($ (-1 (-112) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 (-783 |#1| (-867 |#2|)) #1="failed") $ (-867 |#2|)) NIL)) (-4158 (($) NIL T CONST)) (-3307 (((-112) $) NIL (|has| |#1| (-561)))) (-3309 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3308 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3310 (((-112) $) NIL (|has| |#1| (-561)))) (-4123 (((-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|))) $ (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) (-1 (-112) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)))) NIL)) (-3303 (((-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|))) $) NIL (|has| |#1| (-561)))) (-3304 (((-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|))) $) NIL (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 (-783 |#1| (-867 |#2|)))) NIL)) (-3578 (($ (-644 (-783 |#1| (-867 |#2|)))) NIL)) (-4232 (((-3 $ #1#) $) NIL)) (-4119 (((-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-783 |#1| (-867 |#2|)) (-1105))))) (-3832 (($ (-783 |#1| (-867 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-783 |#1| (-867 |#2|)) (-1105)))) (($ (-1 (-112) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-783 |#1| (-867 |#2|))) (|:| |den| |#1|)) (-783 |#1| (-867 |#2|)) $) NIL (|has| |#1| (-561)))) (-4128 (((-112) (-783 |#1| (-867 |#2|)) $ (-1 (-112) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)))) NIL)) (-4117 (((-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-4276 (((-783 |#1| (-867 |#2|)) (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) $ (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-783 |#1| (-867 |#2|)) (-1105)))) (((-783 |#1| (-867 |#2|)) (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) $ (-783 |#1| (-867 |#2|))) NIL (|has| $ (-6 -4427))) (((-783 |#1| (-867 |#2|)) (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $ (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) (-1 (-112) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)))) NIL)) (-4130 (((-2 (|:| -4295 (-644 (-783 |#1| (-867 |#2|)))) (|:| -1872 (-644 (-783 |#1| (-867 |#2|))))) $) NIL)) (-3619 (((-112) (-783 |#1| (-867 |#2|)) $) NIL)) (-3617 (((-112) (-783 |#1| (-867 |#2|)) $) NIL)) (-3620 (((-112) (-783 |#1| (-867 |#2|)) $) NIL) (((-112) $) NIL)) (-2126 (((-644 (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4129 (((-112) (-783 |#1| (-867 |#2|)) $) NIL) (((-112) $) NIL)) (-3602 (((-867 |#2|) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-783 |#1| (-867 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-783 |#1| (-867 |#2|)) (-1105))))) (-2130 (($ (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) $) NIL)) (-3317 (((-644 (-867 |#2|)) $) NIL)) (-3316 (((-112) (-867 |#2|) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3613 (((-3 (-783 |#1| (-867 |#2|)) (-644 $)) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-3612 (((-644 (-2 (|:| |val| (-783 |#1| (-867 |#2|))) (|:| -1710 $))) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-4231 (((-3 (-783 |#1| (-867 |#2|)) #1#) $) NIL)) (-3614 (((-644 $) (-783 |#1| (-867 |#2|)) $) NIL)) (-3616 (((-3 (-112) (-644 $)) (-783 |#1| (-867 |#2|)) $) NIL)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) (-783 |#1| (-867 |#2|)) $) NIL) (((-112) (-783 |#1| (-867 |#2|)) $) NIL)) (-3660 (((-644 $) (-783 |#1| (-867 |#2|)) $) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) $) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-644 $)) NIL) (((-644 $) (-783 |#1| (-867 |#2|)) (-644 $)) NIL)) (-3866 (($ (-783 |#1| (-867 |#2|)) $) NIL) (($ (-644 (-783 |#1| (-867 |#2|))) $) NIL)) (-4131 (((-644 (-783 |#1| (-867 |#2|))) $) NIL)) (-4125 (((-112) (-783 |#1| (-867 |#2|)) $) NIL) (((-112) $) NIL)) (-4120 (((-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-4133 (((-112) $ $) NIL)) (-3306 (((-2 (|:| |num| (-783 |#1| (-867 |#2|))) (|:| |den| |#1|)) (-783 |#1| (-867 |#2|)) $) NIL (|has| |#1| (-561)))) (-4126 (((-112) (-783 |#1| (-867 |#2|)) $) NIL) (((-112) $) NIL)) (-4121 (((-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-3 (-783 |#1| (-867 |#2|)) #1#) $) NIL)) (-1442 (((-3 (-783 |#1| (-867 |#2|)) "failed") (-1 (-112) (-783 |#1| (-867 |#2|))) $) NIL)) (-4113 (((-3 $ #1#) $ (-783 |#1| (-867 |#2|))) NIL)) (-4202 (($ $ (-783 |#1| (-867 |#2|))) NIL) (((-644 $) (-783 |#1| (-867 |#2|)) $) NIL) (((-644 $) (-783 |#1| (-867 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) $) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-644 $)) NIL)) (-2128 (((-112) (-1 (-112) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-783 |#1| (-867 |#2|))) (-644 (-783 |#1| (-867 |#2|)))) NIL (-12 (|has| (-783 |#1| (-867 |#2|)) (-311 (-783 |#1| (-867 |#2|)))) (|has| (-783 |#1| (-867 |#2|)) (-1105)))) (($ $ (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|))) NIL (-12 (|has| (-783 |#1| (-867 |#2|)) (-311 (-783 |#1| (-867 |#2|)))) (|has| (-783 |#1| (-867 |#2|)) (-1105)))) (($ $ (-295 (-783 |#1| (-867 |#2|)))) NIL (-12 (|has| (-783 |#1| (-867 |#2|)) (-311 (-783 |#1| (-867 |#2|)))) (|has| (-783 |#1| (-867 |#2|)) (-1105)))) (($ $ (-644 (-295 (-783 |#1| (-867 |#2|))))) NIL (-12 (|has| (-783 |#1| (-867 |#2|)) (-311 (-783 |#1| (-867 |#2|)))) (|has| (-783 |#1| (-867 |#2|)) (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4382 (((-774) $) NIL)) (-2127 (((-774) (-783 |#1| (-867 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-783 |#1| (-867 |#2|)) (-1105)))) (((-774) (-1 (-112) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-783 |#1| (-867 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-783 |#1| (-867 |#2|)))) NIL)) (-3313 (($ $ (-867 |#2|)) NIL)) (-3315 (($ $ (-867 |#2|)) NIL)) (-4118 (($ $) NIL)) (-3314 (($ $ (-867 |#2|)) NIL)) (-4380 (((-866) $) NIL) (((-644 (-783 |#1| (-867 |#2|))) $) NIL)) (-4112 (((-774) $) NIL (|has| (-867 |#2|) (-371)))) (-3664 (((-112) $ $) NIL)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 (-783 |#1| (-867 |#2|))))) #1#) (-644 (-783 |#1| (-867 |#2|))) (-1 (-112) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 (-783 |#1| (-867 |#2|))))) #1#) (-644 (-783 |#1| (-867 |#2|))) (-1 (-112) (-783 |#1| (-867 |#2|))) (-1 (-112) (-783 |#1| (-867 |#2|)) (-783 |#1| (-867 |#2|)))) NIL)) (-4124 (((-112) $ (-1 (-112) (-783 |#1| (-867 |#2|)) (-644 (-783 |#1| (-867 |#2|))))) NIL)) (-3611 (((-644 $) (-783 |#1| (-867 |#2|)) $) NIL) (((-644 $) (-783 |#1| (-867 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) $) NIL) (((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-644 $)) NIL)) (-2129 (((-112) (-1 (-112) (-783 |#1| (-867 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4114 (((-644 (-867 |#2|)) $) NIL)) (-3618 (((-112) (-783 |#1| (-867 |#2|)) $) NIL)) (-4367 (((-112) (-867 |#2|) $) NIL)) (-3457 (((-112) $ $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1050 |#1| |#2|) (-13 (-1075 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|))) (-10 -8 (-15 -4116 ((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-112) (-112))))) (-456) (-644 (-1181))) (T -1050)) +((-4116 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-1050 *5 *6))))) +(-13 (-1075 |#1| (-535 (-867 |#2|)) (-867 |#2|) (-783 |#1| (-867 |#2|))) (-10 -8 (-15 -4116 ((-644 $) (-644 (-783 |#1| (-867 |#2|))) (-112) (-112))))) +((-3506 (((-1 (-550)) (-1093 (-550))) 32)) (-3510 (((-550) (-550) (-550) (-550) (-550)) 29)) (-3508 (((-1 (-550)) |RationalNumber|) NIL)) (-3509 (((-1 (-550)) |RationalNumber|) NIL)) (-3507 (((-1 (-550)) (-550) |RationalNumber|) NIL))) +(((-1051) (-10 -7 (-15 -3506 ((-1 (-550)) (-1093 (-550)))) (-15 -3507 ((-1 (-550)) (-550) |RationalNumber|)) (-15 -3508 ((-1 (-550)) |RationalNumber|)) (-15 -3509 ((-1 (-550)) |RationalNumber|)) (-15 -3510 ((-550) (-550) (-550) (-550) (-550))))) (T -1051)) +((-3510 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1051)))) (-3509 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1051)))) (-3508 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1051)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1051)) (-5 *3 (-550)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1093 (-550))) (-5 *2 (-1 (-550))) (-5 *1 (-1051))))) +(-10 -7 (-15 -3506 ((-1 (-550)) (-1093 (-550)))) (-15 -3507 ((-1 (-550)) (-550) |RationalNumber|)) (-15 -3508 ((-1 (-550)) |RationalNumber|)) (-15 -3509 ((-1 (-550)) |RationalNumber|)) (-15 -3510 ((-550) (-550) (-550) (-550) (-550)))) +((-4380 (((-866) $) NIL) (($ (-550)) 10))) +(((-1052 |#1|) (-10 -8 (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-1053)) (T -1052)) +NIL +(-10 -8 (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-1053) (-140)) (T -1053)) +((-3532 (*1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-774))))) +(-13 (-1061) (-729) (-651 $) (-619 (-550)) (-10 -7 (-15 -3532 ((-774)) -4386) (-6 -4424))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-619 (-550)) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-729) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-3511 (((-411 (-950 |#2|)) (-644 |#2|) (-644 |#2|) (-774) (-774)) 60))) +(((-1054 |#1| |#2|) (-10 -7 (-15 -3511 ((-411 (-950 |#2|)) (-644 |#2|) (-644 |#2|) (-774) (-774)))) (-1181) (-366)) (T -1054)) +((-3511 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-774)) (-4 *6 (-366)) (-5 *2 (-411 (-950 *6))) (-5 *1 (-1054 *5 *6)) (-14 *5 (-1181))))) +(-10 -7 (-15 -3511 ((-411 (-950 |#2|)) (-644 |#2|) (-644 |#2|) (-774) (-774)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 15)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 16 T CONST)) (-3457 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1055 |#1|) (-140) (-1061)) (T -1055)) +((-3512 (*1 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1061)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1055 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1061))))) +(-13 (-1105) (-10 -8 (-15 (-3512) ($) -4386) (-15 -3610 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-3527 (((-112) $) 40)) (-3529 (((-112) $) 17)) (-3521 (((-774) $) 13)) (-3520 (((-774) $) 14)) (-3528 (((-112) $) 30)) (-3526 (((-112) $) 42))) +(((-1056 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3520 ((-774) |#1|)) (-15 -3521 ((-774) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -3528 ((-112) |#1|)) (-15 -3529 ((-112) |#1|))) (-1057 |#2| |#3| |#4| |#5| |#6|) (-774) (-774) (-1053) (-239 |#3| |#4|) (-239 |#2| |#4|)) (T -1056)) +NIL +(-10 -8 (-15 -3520 ((-774) |#1|)) (-15 -3521 ((-774) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -3528 ((-112) |#1|)) (-15 -3529 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3527 (((-112) $) 56)) (-1408 (((-3 $ "failed") $ $) 20)) (-3529 (((-112) $) 58)) (-1310 (((-112) $ (-774)) 66)) (-4158 (($) 18 T CONST)) (-3516 (($ $) 39 (|has| |#3| (-309)))) (-3518 ((|#4| $ (-550)) 44)) (-3515 (((-774) $) 38 (|has| |#3| (-561)))) (-3519 ((|#3| $ (-550) (-550)) 46)) (-2126 (((-644 |#3|) $) 73 (|has| $ (-6 -4427)))) (-3514 (((-774) $) 37 (|has| |#3| (-561)))) (-3513 (((-644 |#5|) $) 36 (|has| |#3| (-561)))) (-3521 (((-774) $) 50)) (-3520 (((-774) $) 49)) (-4153 (((-112) $ (-774)) 65)) (-3525 (((-550) $) 54)) (-3523 (((-550) $) 52)) (-3010 (((-644 |#3|) $) 74 (|has| $ (-6 -4427)))) (-3668 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1105)) (|has| $ (-6 -4427))))) (-3524 (((-550) $) 53)) (-3522 (((-550) $) 51)) (-3530 (($ (-644 (-644 |#3|))) 59)) (-2130 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4027 (((-644 (-644 |#3|)) $) 48)) (-4150 (((-112) $ (-774)) 64)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-561)))) (-2128 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#3|) (-644 |#3|)) 80 (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-644 (-295 |#3|))) 77 (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105))))) (-1311 (((-112) $ $) 60)) (-3829 (((-112) $) 63)) (-3998 (($) 62)) (-4233 ((|#3| $ (-550) (-550)) 47) ((|#3| $ (-550) (-550) |#3|) 45)) (-3528 (((-112) $) 57)) (-2127 (((-774) |#3| $) 75 (-12 (|has| |#3| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4427)))) (-3826 (($ $) 61)) (-3517 ((|#5| $ (-550)) 43)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-2129 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4427)))) (-3526 (((-112) $) 55)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#3|) 40 (|has| |#3| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-4391 (((-774) $) 67 (|has| $ (-6 -4427))))) +(((-1057 |#1| |#2| |#3| |#4| |#5|) (-140) (-774) (-774) (-1053) (-239 |t#2| |t#3|) (-239 |t#1| |t#3|)) (T -1057)) +((-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1053)) (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-550)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-550)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-550)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-550)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-774)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-774)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-644 (-644 *5))))) (-4233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1053)))) (-3519 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1053)))) (-4233 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *2 *6 *7)) (-4 *2 (-1053)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *6 *2 *7)) (-4 *6 (-1053)) (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *6 *7 *2)) (-4 *6 (-1053)) (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))) (-4392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3891 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1057 *3 *4 *2 *5 *6)) (-4 *2 (-1053)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-1057 *3 *4 *2 *5 *6)) (-4 *2 (-1053)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-366)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1057 *2 *3 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-309)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-774)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-774)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-644 *7))))) +(-13 (-111 |t#3| |t#3|) (-493 |t#3|) (-10 -8 (-6 -4427) (IF (|has| |t#3| (-173)) (-6 (-720 |t#3|)) |%noBranch|) (-15 -3530 ($ (-644 (-644 |t#3|)))) (-15 -3529 ((-112) $)) (-15 -3528 ((-112) $)) (-15 -3527 ((-112) $)) (-15 -3526 ((-112) $)) (-15 -3525 ((-550) $)) (-15 -3524 ((-550) $)) (-15 -3523 ((-550) $)) (-15 -3522 ((-550) $)) (-15 -3521 ((-774) $)) (-15 -3520 ((-774) $)) (-15 -4027 ((-644 (-644 |t#3|)) $)) (-15 -4233 (|t#3| $ (-550) (-550))) (-15 -3519 (|t#3| $ (-550) (-550))) (-15 -4233 (|t#3| $ (-550) (-550) |t#3|)) (-15 -3518 (|t#4| $ (-550))) (-15 -3517 (|t#5| $ (-550))) (-15 -4392 ($ (-1 |t#3| |t#3|) $)) (-15 -4392 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-561)) (-15 -3891 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-366)) (-15 -4383 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-309)) (-15 -3516 ($ $)) |%noBranch|) (IF (|has| |t#3| (-561)) (PROGN (-15 -3515 ((-774) $)) (-15 -3514 ((-774) $)) (-15 -3513 ((-644 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-616 (-866)) . T) ((-311 |#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105))) ((-493 |#3|) . T) ((-518 |#3| |#3|) -12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105))) ((-649 (-550)) . T) ((-649 |#3|) . T) ((-651 |#3|) . T) ((-643 |#3|) |has| |#3| (-173)) ((-720 |#3|) |has| |#3| (-173)) ((-1055 |#3|) . T) ((-1060 |#3|) . T) ((-1105) . T) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3527 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3529 (((-112) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4158 (($) NIL T CONST)) (-3516 (($ $) 47 (|has| |#3| (-309)))) (-3518 (((-240 |#2| |#3|) $ (-550)) 36)) (-3531 (($ (-692 |#3|)) 45)) (-3515 (((-774) $) 49 (|has| |#3| (-561)))) (-3519 ((|#3| $ (-550) (-550)) NIL)) (-2126 (((-644 |#3|) $) NIL (|has| $ (-6 -4427)))) (-3514 (((-774) $) 51 (|has| |#3| (-561)))) (-3513 (((-644 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-561)))) (-3521 (((-774) $) NIL)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3525 (((-550) $) NIL)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#3|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-3524 (((-550) $) NIL)) (-3522 (((-550) $) NIL)) (-3530 (($ (-644 (-644 |#3|))) 31)) (-2130 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4027 (((-644 (-644 |#3|)) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-561)))) (-2128 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#3| $ (-550) (-550)) NIL) ((|#3| $ (-550) (-550) |#3|) NIL)) (-4345 (((-134)) 59 (|has| |#3| (-366)))) (-3528 (((-112) $) NIL)) (-2127 (((-774) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105)))) (((-774) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) 65 (|has| |#3| (-617 (-539))))) (-3517 (((-240 |#1| |#3|) $ (-550)) 40)) (-4380 (((-866) $) 19) (((-692 |#3|) $) 42)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-3526 (((-112) $) NIL)) (-3512 (($) 16 T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#3|) NIL (|has| |#3| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1058 |#1| |#2| |#3|) (-13 (-1057 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-616 (-692 |#3|)) (-10 -8 (IF (|has| |#3| (-366)) (-6 (-1278 |#3|)) |%noBranch|) (IF (|has| |#3| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (-15 -3531 ($ (-692 |#3|))))) (-774) (-774) (-1053)) (T -1058)) +((-3531 (*1 *1 *2) (-12 (-5 *2 (-692 *5)) (-4 *5 (-1053)) (-5 *1 (-1058 *3 *4 *5)) (-14 *3 (-774)) (-14 *4 (-774))))) +(-13 (-1057 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-616 (-692 |#3|)) (-10 -8 (IF (|has| |#3| (-366)) (-6 (-1278 |#3|)) |%noBranch|) (IF (|has| |#3| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|) (-15 -3531 ($ (-692 |#3|))))) +((-4276 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4392 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1059 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4392 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4276 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-774) (-774) (-1053) (-239 |#2| |#3|) (-239 |#1| |#3|) (-1057 |#1| |#2| |#3| |#4| |#5|) (-1053) (-239 |#2| |#7|) (-239 |#1| |#7|) (-1057 |#1| |#2| |#7| |#8| |#9|)) (T -1059)) +((-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1053)) (-4 *2 (-1053)) (-14 *5 (-774)) (-14 *6 (-774)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) (-5 *1 (-1059 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1057 *5 *6 *7 *8 *9)) (-4 *12 (-1057 *5 *6 *2 *10 *11)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1053)) (-4 *10 (-1053)) (-14 *5 (-774)) (-14 *6 (-774)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *2 (-1057 *5 *6 *10 *11 *12)) (-5 *1 (-1059 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1057 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) (-4 *12 (-239 *5 *10))))) +(-10 -7 (-15 -4392 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4276 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ |#1|) 27))) +(((-1060 |#1|) (-140) (-1061)) (T -1060)) +NIL +(-13 (-21) (-1055 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-1055 |#1|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-1061) (-140)) (T -1061)) +NIL +(-13 (-21) (-1116)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4265 (((-1181) $) 11)) (-4170 ((|#1| $) 12)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-3648 (($ (-1181) |#1|) 10)) (-4380 (((-866) $) 22 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3457 (((-112) $ $) 17 (|has| |#1| (-1105))))) +(((-1062 |#1| |#2|) (-13 (-1220) (-10 -8 (-15 -3648 ($ (-1181) |#1|)) (-15 -4265 ((-1181) $)) (-15 -4170 (|#1| $)) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|))) (-1098 |#2|) (-1220)) (T -1062)) +((-3648 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-4 *4 (-1220)) (-5 *1 (-1062 *3 *4)) (-4 *3 (-1098 *4)))) (-4265 (*1 *2 *1) (-12 (-4 *4 (-1220)) (-5 *2 (-1181)) (-5 *1 (-1062 *3 *4)) (-4 *3 (-1098 *4)))) (-4170 (*1 *2 *1) (-12 (-4 *2 (-1098 *3)) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1220))))) +(-13 (-1220) (-10 -8 (-15 -3648 ($ (-1181) |#1|)) (-15 -4265 ((-1181) $)) (-15 -4170 (|#1| $)) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|))) +((-4204 (($ $) 17)) (-3533 (($ $) 25)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 55)) (-3538 (($ $) 27)) (-3534 (($ $) 12)) (-3536 (($ $) 43)) (-4404 (((-381) $) NIL) (((-226) $) NIL) (((-894 (-381)) $) 36)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL) (($ (-411 (-550))) 31) (($ (-550)) NIL) (($ (-411 (-550))) 31)) (-3532 (((-774)) 9)) (-3537 (($ $) 45))) +(((-1063 |#1|) (-10 -8 (-15 -3533 (|#1| |#1|)) (-15 -4204 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3538 (|#1| |#1|)) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| (-550))) (-15 -4404 ((-226) |#1|)) (-15 -4404 ((-381) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| |#1|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-1064)) (T -1063)) +((-3532 (*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1063 *3)) (-4 *3 (-1064))))) +(-10 -8 (-15 -3533 (|#1| |#1|)) (-15 -4204 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3538 (|#1| |#1|)) (-15 -3201 ((-892 (-381) |#1|) |#1| (-894 (-381)) (-892 (-381) |#1|))) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| (-550))) (-15 -4404 ((-226) |#1|)) (-15 -4404 ((-381) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| |#1|)) (-15 -3532 ((-774))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3535 (((-550) $) 97)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-4204 (($ $) 95)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-3440 (($ $) 105)) (-1755 (((-112) $ $) 65)) (-4057 (((-550) $) 122)) (-4158 (($) 18 T CONST)) (-3533 (($ $) 94)) (-3579 (((-3 (-550) #1="failed") $) 110) (((-3 (-411 (-550)) #1#) $) 107)) (-3578 (((-550) $) 111) (((-411 (-550)) $) 108)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-4157 (((-112) $) 79)) (-3608 (((-112) $) 120)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 101)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 104)) (-3538 (($ $) 100)) (-3609 (((-112) $) 121)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) 58)) (-2936 (($ $ $) 119)) (-3262 (($ $ $) 118)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-3534 (($ $) 96)) (-3536 (($ $) 98)) (-4166 (((-409 $) $) 82)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-4404 (((-381) $) 113) (((-226) $) 112) (((-894 (-381)) $) 102)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74) (($ (-550)) 109) (($ (-411 (-550))) 106)) (-3532 (((-774)) 32 T CONST)) (-3537 (($ $) 99)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3809 (($ $) 123)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-2968 (((-112) $ $) 116)) (-2969 (((-112) $ $) 115)) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 117)) (-3090 (((-112) $ $) 114)) (-4383 (($ $ $) 73)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77) (($ $ (-411 (-550))) 103)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75))) +(((-1064) (-140)) (T -1064)) +((-3809 (*1 *1 *1) (-4 *1 (-1064))) (-3538 (*1 *1 *1) (-4 *1 (-1064))) (-3537 (*1 *1 *1) (-4 *1 (-1064))) (-3536 (*1 *1 *1) (-4 *1 (-1064))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-550)))) (-3534 (*1 *1 *1) (-4 *1 (-1064))) (-4204 (*1 *1 *1) (-4 *1 (-1064))) (-3533 (*1 *1 *1) (-4 *1 (-1064)))) +(-13 (-366) (-851) (-1024) (-1042 (-550)) (-1042 (-411 (-550))) (-1006) (-617 (-894 (-381))) (-890 (-381)) (-147) (-10 -8 (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -3536 ($ $)) (-15 -3535 ((-550) $)) (-15 -3534 ($ $)) (-15 -4204 ($ $)) (-15 -3533 ($ $)) (-15 -3809 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-617 (-226)) . T) ((-617 (-381)) . T) ((-617 (-894 (-381))) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 $) . T) ((-729) . T) ((-794) . T) ((-795) . T) ((-797) . T) ((-800) . T) ((-851) . T) ((-853) . T) ((-890 (-381)) . T) ((-925) . T) ((-1006) . T) ((-1024) . T) ((-1042 (-411 (-550))) . T) ((-1042 (-550)) . T) ((-1055 #1#) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) |#2| $) 26)) (-3542 ((|#1| $) 10)) (-4057 (((-550) |#2| $) 116)) (-3605 (((-3 $ #1="failed") |#2| (-923)) 75)) (-3543 ((|#1| $) 31)) (-3604 ((|#1| |#2| $ |#1|) 40)) (-3540 (($ $) 28)) (-3892 (((-3 |#2| #1#) |#2| $) 111)) (-3608 (((-112) |#2| $) NIL)) (-3609 (((-112) |#2| $) NIL)) (-3539 (((-112) |#2| $) 27)) (-3541 ((|#1| $) 117)) (-3544 ((|#1| $) 30)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3607 ((|#2| $) 102)) (-4380 (((-866) $) 92)) (-3664 (((-112) $ $) NIL)) (-4203 ((|#1| |#2| $ |#1|) 41)) (-3606 (((-644 $) |#2|) 77)) (-3457 (((-112) $ $) 97))) +(((-1065 |#1| |#2|) (-13 (-1072 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| $)) (-15 -3543 (|#1| $)) (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $)) (-15 -3540 ($ $)) (-15 -3539 ((-112) |#2| $)) (-15 -3604 (|#1| |#2| $ |#1|)))) (-13 (-851) (-366)) (-1246 |#1|)) (T -1065)) +((-3604 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) (-3544 (*1 *2 *1) (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) (-3543 (*1 *2 *1) (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) (-3542 (*1 *2 *1) (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) (-3541 (*1 *2 *1) (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) (-3540 (*1 *1 *1) (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-851) (-366))) (-5 *2 (-112)) (-5 *1 (-1065 *4 *3)) (-4 *3 (-1246 *4))))) +(-13 (-1072 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| $)) (-15 -3543 (|#1| $)) (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $)) (-15 -3540 ($ $)) (-15 -3539 ((-112) |#2| $)) (-15 -3604 (|#1| |#2| $ |#1|)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-2222 (($ $ $ $) NIL)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-4057 (((-550) $) NIL)) (-2764 (($ $ $) NIL)) (-4158 (($) NIL T CONST)) (-3545 (($ (-1181)) 10) (($ (-550)) 7)) (-3579 (((-3 (-550) "failed") $) NIL)) (-3578 (((-550) $) NIL)) (-2966 (($ $ $) NIL)) (-2429 (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-692 (-550)) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3427 (((-3 (-411 (-550)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-3425 (((-411 (-550)) $) NIL)) (-3397 (($) NIL) (($ $) NIL)) (-2965 (($ $ $) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2220 (($ $ $ $) NIL)) (-2228 (($ $ $) NIL)) (-3608 (((-112) $) NIL)) (-1457 (($ $ $) NIL)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL)) (-2575 (((-112) $) NIL)) (-3078 (((-112) $) NIL)) (-3870 (((-3 $ "failed") $) NIL)) (-3609 (((-112) $) NIL)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2221 (($ $ $ $) NIL)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-2224 (($ $) NIL)) (-4267 (($ $) NIL)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2219 (($ $ $) NIL)) (-3871 (($) NIL T CONST)) (-2226 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1455 (($ $) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3079 (((-112) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-4244 (($ $ (-774)) NIL) (($ $) NIL)) (-2225 (($ $) NIL)) (-3826 (($ $) NIL)) (-4404 (((-550) $) 16) (((-539) $) NIL) (((-894 (-550)) $) NIL) (((-381) $) NIL) (((-226) $) NIL) (($ (-1181)) 9)) (-4380 (((-866) $) 23) (($ (-550)) 6) (($ $) NIL) (($ (-550)) 6)) (-3532 (((-774)) NIL T CONST)) (-2229 (((-112) $ $) NIL)) (-3507 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-3099 (($) NIL)) (-2242 (((-112) $ $) NIL)) (-2223 (($ $ $ $) NIL)) (-3809 (($ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL)) (-4271 (($ $) 22) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL))) +(((-1066) (-13 (-549) (-621 (-1181)) (-10 -8 (-6 -4414) (-6 -4419) (-6 -4415) (-15 -3545 ($ (-1181))) (-15 -3545 ($ (-550)))))) (T -1066)) +((-3545 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1066)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1066))))) +(-13 (-549) (-621 (-1181)) (-10 -8 (-6 -4414) (-6 -4419) (-6 -4415) (-15 -3545 ($ (-1181))) (-15 -3545 ($ (-550))))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-2374 (((-1276) $ (-1181) (-1181)) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-3547 (($) 9)) (-4221 (((-51) $ (-1181) (-51)) NIL)) (-3555 (($ $) 32)) (-3558 (($ $) 30)) (-3559 (($ $) 29)) (-3557 (($ $) 31)) (-3554 (($ $) 35)) (-3553 (($ $) 36)) (-3560 (($ $) 28)) (-3556 (($ $) 33)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) 27 (|has| $ (-6 -4427)))) (-2383 (((-3 (-51) #1="failed") (-1181) $) 43)) (-4158 (($) NIL T CONST)) (-3561 (($) 7)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-3831 (($ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) 53 (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-3 (-51) #1#) (-1181) $) NIL)) (-3832 (($ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427)))) (-3546 (((-3 (-1163) "failed") $ (-1163) (-550)) 74)) (-1686 (((-51) $ (-1181) (-51)) NIL (|has| $ (-6 -4428)))) (-3519 (((-51) $ (-1181)) NIL)) (-2126 (((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-644 (-51)) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-1181) $) NIL (|has| (-1181) (-853)))) (-3010 (((-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) 38 (|has| $ (-6 -4427))) (((-644 (-51)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105))))) (-2377 (((-1181) $) NIL (|has| (-1181) (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4428))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-2818 (((-644 (-1181)) $) NIL)) (-2384 (((-112) (-1181) $) NIL)) (-1370 (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL)) (-4041 (($ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) 46)) (-2379 (((-644 (-1181)) $) NIL)) (-2380 (((-112) (-1181) $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-3550 (((-381) $ (-1181)) 52)) (-3549 (((-644 (-1163)) $ (-1163)) 76)) (-4234 (((-51) $) NIL (|has| (-1181) (-853)))) (-1442 (((-3 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) "failed") (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL)) (-2375 (($ $ (-51)) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-295 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL (-12 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-311 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (($ $ (-644 (-51)) (-644 (-51))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-295 (-51))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105)))) (($ $ (-644 (-295 (-51)))) NIL (-12 (|has| (-51) (-311 (-51))) (|has| (-51) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105))))) (-2381 (((-644 (-51)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 (((-51) $ (-1181)) NIL) (((-51) $ (-1181) (-51)) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-3548 (($ $ (-1181)) 54)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105)))) (((-774) (-51) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-51) (-1105)))) (((-774) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) 40)) (-4235 (($ $ $) 41)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-616 (-866))) (|has| (-51) (-616 (-866)))))) (-3552 (($ $ (-1181) (-381)) 50)) (-3551 (($ $ (-1181) (-381)) 51)) (-3664 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 (-1181)) (|:| -2256 (-51)))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-51) (-1105)) (|has| (-2 (|:| -4294 (-1181)) (|:| -2256 (-51))) (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1067) (-13 (-1197 (-1181) (-51)) (-10 -8 (-15 -4235 ($ $ $)) (-15 -3561 ($)) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $ (-1181) (-381))) (-15 -3551 ($ $ (-1181) (-381))) (-15 -3550 ((-381) $ (-1181))) (-15 -3549 ((-644 (-1163)) $ (-1163))) (-15 -3548 ($ $ (-1181))) (-15 -3547 ($)) (-15 -3546 ((-3 (-1163) "failed") $ (-1163) (-550))) (-6 -4427)))) (T -1067)) +((-4235 (*1 *1 *1 *1) (-5 *1 (-1067))) (-3561 (*1 *1) (-5 *1 (-1067))) (-3560 (*1 *1 *1) (-5 *1 (-1067))) (-3559 (*1 *1 *1) (-5 *1 (-1067))) (-3558 (*1 *1 *1) (-5 *1 (-1067))) (-3557 (*1 *1 *1) (-5 *1 (-1067))) (-3556 (*1 *1 *1) (-5 *1 (-1067))) (-3555 (*1 *1 *1) (-5 *1 (-1067))) (-3554 (*1 *1 *1) (-5 *1 (-1067))) (-3553 (*1 *1 *1) (-5 *1 (-1067))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-381)) (-5 *1 (-1067)))) (-3551 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-381)) (-5 *1 (-1067)))) (-3550 (*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-381)) (-5 *1 (-1067)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1067)) (-5 *3 (-1163)))) (-3548 (*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1067)))) (-3547 (*1 *1) (-5 *1 (-1067))) (-3546 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1163)) (-5 *3 (-550)) (-5 *1 (-1067))))) +(-13 (-1197 (-1181) (-51)) (-10 -8 (-15 -4235 ($ $ $)) (-15 -3561 ($)) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $ (-1181) (-381))) (-15 -3551 ($ $ (-1181) (-381))) (-15 -3550 ((-381) $ (-1181))) (-15 -3549 ((-644 (-1163)) $ (-1163))) (-15 -3548 ($ $ (-1181))) (-15 -3547 ($)) (-15 -3546 ((-3 (-1163) "failed") $ (-1163) (-550))) (-6 -4427))) +((-4230 (($ $) 46)) (-3588 (((-112) $ $) 82)) (-3579 (((-3 |#2| #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 (-550) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-950 (-411 (-550)))) 253) (((-3 $ "failed") (-950 (-550))) 252) (((-3 $ "failed") (-950 |#2|)) 255)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) NIL) (((-550) $) NIL) ((|#4| $) NIL) (($ (-950 (-411 (-550)))) 241) (($ (-950 (-550))) 237) (($ (-950 |#2|)) 257)) (-4393 (($ $) NIL) (($ $ |#4|) 44)) (-4128 (((-112) $ $) 131) (((-112) $ (-644 $)) 135)) (-3594 (((-112) $) 60)) (-4186 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 125)) (-3565 (($ $) 160)) (-3576 (($ $) 156)) (-3577 (($ $) 155)) (-3587 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3586 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4129 (((-112) $ $) 143) (((-112) $ (-644 $)) 144)) (-3602 ((|#4| $) 32)) (-3581 (($ $ $) 128)) (-3595 (((-112) $) 59)) (-3601 (((-774) $) 35)) (-3562 (($ $) 174)) (-3563 (($ $) 171)) (-3590 (((-644 $) $) 72)) (-3593 (($ $) 62)) (-3564 (($ $) 167)) (-3591 (((-644 $) $) 69)) (-3592 (($ $) 64)) (-3596 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3580 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-774))) $ $) 130)) (-3582 (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $) 126) (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $ |#4|) 127)) (-3583 (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $) 121) (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $ |#4|) 123)) (-3585 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3584 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3598 (((-644 $) $) 54)) (-4125 (((-112) $ $) 140) (((-112) $ (-644 $)) 141)) (-4120 (($ $ $) 116)) (-3871 (($ $) 37)) (-4133 (((-112) $ $) 80)) (-4126 (((-112) $ $) 136) (((-112) $ (-644 $)) 138)) (-4121 (($ $ $) 112)) (-3600 (($ $) 41)) (-3566 ((|#2| |#2| $) 164) (($ (-644 $)) NIL) (($ $ $) NIL)) (-3574 (($ $ |#2|) NIL) (($ $ $) 153)) (-3575 (($ $ |#2|) 148) (($ $ $) 151)) (-3599 (($ $) 49)) (-3597 (($ $) 55)) (-4404 (((-894 (-381)) $) NIL) (((-894 (-550)) $) NIL) (((-539) $) NIL) (($ (-950 (-411 (-550)))) 243) (($ (-950 (-550))) 239) (($ (-950 |#2|)) 254) (((-1163) $) 281) (((-950 |#2|) $) 184)) (-4380 (((-866) $) 29) (($ (-550)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-950 |#2|) $) 185) (($ (-411 (-550))) NIL) (($ $) NIL)) (-3589 (((-3 (-112) "failed") $ $) 79))) +(((-1068 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4380 (|#1| |#1|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -3566 (|#1| (-644 |#1|))) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 ((-950 |#2|) |#1|)) (-15 -4404 ((-950 |#2|) |#1|)) (-15 -4404 ((-1163) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -3566 (|#2| |#2| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1| |#2|)) (-15 -3575 (|#1| |#1| |#2|)) (-15 -3576 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -4404 (|#1| (-950 |#2|))) (-15 -3578 (|#1| (-950 |#2|))) (-15 -3579 ((-3 |#1| "failed") (-950 |#2|))) (-15 -4404 (|#1| (-950 (-550)))) (-15 -3578 (|#1| (-950 (-550)))) (-15 -3579 ((-3 |#1| "failed") (-950 (-550)))) (-15 -4404 (|#1| (-950 (-411 (-550))))) (-15 -3578 (|#1| (-950 (-411 (-550))))) (-15 -3579 ((-3 |#1| "failed") (-950 (-411 (-550))))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4121 (|#1| |#1| |#1|)) (-15 -3580 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3906 (-774))) |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -4186 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -3582 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1| |#4|)) (-15 -3582 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -3583 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -3305 |#1|)) |#1| |#1| |#4|)) (-15 -3583 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -3584 (|#1| |#1| |#1| |#4|)) (-15 -3585 (|#1| |#1| |#1| |#4|)) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3586 (|#1| |#1| |#1| |#4|)) (-15 -3587 (|#1| |#1| |#1| |#4|)) (-15 -3586 (|#1| |#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -4129 ((-112) |#1| (-644 |#1|))) (-15 -4129 ((-112) |#1| |#1|)) (-15 -4125 ((-112) |#1| (-644 |#1|))) (-15 -4125 ((-112) |#1| |#1|)) (-15 -4126 ((-112) |#1| (-644 |#1|))) (-15 -4126 ((-112) |#1| |#1|)) (-15 -4128 ((-112) |#1| (-644 |#1|))) (-15 -4128 ((-112) |#1| |#1|)) (-15 -3588 ((-112) |#1| |#1|)) (-15 -4133 ((-112) |#1| |#1|)) (-15 -3589 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3590 ((-644 |#1|) |#1|)) (-15 -3591 ((-644 |#1|) |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3594 ((-112) |#1|)) (-15 -3595 ((-112) |#1|)) (-15 -4393 (|#1| |#1| |#4|)) (-15 -3596 (|#1| |#1| |#4|)) (-15 -3597 (|#1| |#1|)) (-15 -3598 ((-644 |#1|) |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3601 ((-774) |#1|)) (-15 -3602 (|#4| |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4380 (|#1| |#4|)) (-15 -3579 ((-3 |#4| #1="failed") |#1|)) (-15 -3578 (|#4| |#1|)) (-15 -3596 (|#2| |#1|)) (-15 -4393 (|#1| |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-1069 |#2| |#3| |#4|) (-1053) (-796) (-853)) (T -1068)) +NIL +(-10 -8 (-15 -4380 (|#1| |#1|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -3566 (|#1| (-644 |#1|))) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 ((-950 |#2|) |#1|)) (-15 -4404 ((-950 |#2|) |#1|)) (-15 -4404 ((-1163) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3565 (|#1| |#1|)) (-15 -3566 (|#2| |#2| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1| |#2|)) (-15 -3575 (|#1| |#1| |#2|)) (-15 -3576 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -4404 (|#1| (-950 |#2|))) (-15 -3578 (|#1| (-950 |#2|))) (-15 -3579 ((-3 |#1| "failed") (-950 |#2|))) (-15 -4404 (|#1| (-950 (-550)))) (-15 -3578 (|#1| (-950 (-550)))) (-15 -3579 ((-3 |#1| "failed") (-950 (-550)))) (-15 -4404 (|#1| (-950 (-411 (-550))))) (-15 -3578 (|#1| (-950 (-411 (-550))))) (-15 -3579 ((-3 |#1| "failed") (-950 (-411 (-550))))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4121 (|#1| |#1| |#1|)) (-15 -3580 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3906 (-774))) |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -4186 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -3582 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1| |#4|)) (-15 -3582 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -3583 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -3305 |#1|)) |#1| |#1| |#4|)) (-15 -3583 ((-2 (|:| -4388 |#1|) (|:| |gap| (-774)) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -3584 (|#1| |#1| |#1| |#4|)) (-15 -3585 (|#1| |#1| |#1| |#4|)) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3586 (|#1| |#1| |#1| |#4|)) (-15 -3587 (|#1| |#1| |#1| |#4|)) (-15 -3586 (|#1| |#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -4129 ((-112) |#1| (-644 |#1|))) (-15 -4129 ((-112) |#1| |#1|)) (-15 -4125 ((-112) |#1| (-644 |#1|))) (-15 -4125 ((-112) |#1| |#1|)) (-15 -4126 ((-112) |#1| (-644 |#1|))) (-15 -4126 ((-112) |#1| |#1|)) (-15 -4128 ((-112) |#1| (-644 |#1|))) (-15 -4128 ((-112) |#1| |#1|)) (-15 -3588 ((-112) |#1| |#1|)) (-15 -4133 ((-112) |#1| |#1|)) (-15 -3589 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3590 ((-644 |#1|) |#1|)) (-15 -3591 ((-644 |#1|) |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3594 ((-112) |#1|)) (-15 -3595 ((-112) |#1|)) (-15 -4393 (|#1| |#1| |#4|)) (-15 -3596 (|#1| |#1| |#4|)) (-15 -3597 (|#1| |#1|)) (-15 -3598 ((-644 |#1|) |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3601 ((-774) |#1|)) (-15 -3602 (|#4| |#1|)) (-15 -4404 ((-539) |#1|)) (-15 -4404 ((-894 (-550)) |#1|)) (-15 -4404 ((-894 (-381)) |#1|)) (-15 -4380 (|#1| |#4|)) (-15 -3579 ((-3 |#4| #1="failed") |#1|)) (-15 -3578 (|#4| |#1|)) (-15 -3596 (|#2| |#1|)) (-15 -4393 (|#1| |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 |#3|) $) 112)) (-3489 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2243 (($ $) 90 (|has| |#1| (-561)))) (-2241 (((-112) $) 92 (|has| |#1| (-561)))) (-3224 (((-774) $) 114) (((-774) $ (-644 |#3|)) 113)) (-4230 (($ $) 273)) (-3588 (((-112) $ $) 259)) (-1408 (((-3 $ "failed") $ $) 20)) (-4189 (($ $ $) 218 (|has| |#1| (-561)))) (-3570 (((-644 $) $ $) 213 (|has| |#1| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-914)))) (-4208 (($ $) 100 (|has| |#1| (-456)))) (-4403 (((-409 $) $) 99 (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-914)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| #2="failed") $) 166) (((-3 (-411 (-550)) #2#) $) 163 (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) 161 (|has| |#1| (-1042 (-550)))) (((-3 |#3| #2#) $) 138) (((-3 $ "failed") (-950 (-411 (-550)))) 233 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181))))) (((-3 $ "failed") (-950 (-550))) 230 (-3962 (-12 (-3748 (|has| |#1| (-38 (-411 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-617 (-1181)))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181)))))) (((-3 $ "failed") (-950 |#1|)) 227 (-3962 (-12 (-3748 (|has| |#1| (-38 (-411 (-550))))) (-3748 (|has| |#1| (-38 (-550)))) (|has| |#3| (-617 (-1181)))) (-12 (-3748 (|has| |#1| (-549))) (-3748 (|has| |#1| (-38 (-411 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-617 (-1181)))) (-12 (-3748 (|has| |#1| (-995 (-550)))) (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181))))))) (-3578 ((|#1| $) 165) (((-411 (-550)) $) 164 (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) 162 (|has| |#1| (-1042 (-550)))) ((|#3| $) 139) (($ (-950 (-411 (-550)))) 232 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181))))) (($ (-950 (-550))) 229 (-3962 (-12 (-3748 (|has| |#1| (-38 (-411 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-617 (-1181)))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181)))))) (($ (-950 |#1|)) 226 (-3962 (-12 (-3748 (|has| |#1| (-38 (-411 (-550))))) (-3748 (|has| |#1| (-38 (-550)))) (|has| |#3| (-617 (-1181)))) (-12 (-3748 (|has| |#1| (-549))) (-3748 (|has| |#1| (-38 (-411 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-617 (-1181)))) (-12 (-3748 (|has| |#1| (-995 (-550)))) (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181))))))) (-4190 (($ $ $ |#3|) 110 (|has| |#1| (-173))) (($ $ $) 214 (|has| |#1| (-561)))) (-4393 (($ $) 156) (($ $ |#3|) 268)) (-2429 (((-692 (-550)) (-692 $)) 136 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 135 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 134) (((-692 |#1|) (-692 $)) 133)) (-4128 (((-112) $ $) 258) (((-112) $ (-644 $)) 257)) (-3892 (((-3 $ "failed") $) 37)) (-3594 (((-112) $) 266)) (-4186 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 238)) (-3565 (($ $) 207 (|has| |#1| (-456)))) (-3928 (($ $) 178 (|has| |#1| (-456))) (($ $ |#3|) 107 (|has| |#1| (-456)))) (-3223 (((-644 $) $) 111)) (-4157 (((-112) $) 98 (|has| |#1| (-914)))) (-3576 (($ $) 223 (|has| |#1| (-561)))) (-3577 (($ $) 224 (|has| |#1| (-561)))) (-3587 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3586 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1771 (($ $ |#1| |#2| $) 174)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 86 (-12 (|has| |#3| (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 85 (-12 (|has| |#3| (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-2575 (((-112) $) 35)) (-2583 (((-774) $) 171)) (-4129 (((-112) $ $) 252) (((-112) $ (-644 $)) 251)) (-3567 (($ $ $ $ $) 209 (|has| |#1| (-561)))) (-3602 ((|#3| $) 277)) (-3490 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-3226 (((-644 $) $) 128)) (-4371 (((-112) $) 154)) (-3296 (($ |#1| |#2|) 155) (($ $ |#3| (-774)) 121) (($ $ (-644 |#3|) (-644 (-774))) 120)) (-3581 (($ $ $) 237)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#3|) 122)) (-3595 (((-112) $) 267)) (-3225 ((|#2| $) 172) (((-774) $ |#3|) 124) (((-644 (-774)) $ (-644 |#3|)) 123)) (-3601 (((-774) $) 276)) (-1772 (($ (-1 |#2| |#2|) $) 173)) (-4392 (($ (-1 |#1| |#1|) $) 153)) (-3488 (((-3 |#3| #3="failed") $) 125)) (-3562 (($ $) 204 (|has| |#1| (-456)))) (-3563 (($ $) 205 (|has| |#1| (-456)))) (-3590 (((-644 $) $) 262)) (-3593 (($ $) 265)) (-3564 (($ $) 206 (|has| |#1| (-456)))) (-3591 (((-644 $) $) 263)) (-3592 (($ $) 264)) (-3297 (($ $) 151)) (-3596 ((|#1| $) 150) (($ $ |#3|) 269)) (-2071 (($ (-644 $)) 96 (|has| |#1| (-456))) (($ $ $) 95 (|has| |#1| (-456)))) (-3580 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-774))) $ $) 236)) (-3582 (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $) 240) (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $ |#3|) 239)) (-3583 (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $) 242) (((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $ |#3|) 241)) (-3585 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3584 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3665 (((-1163) $) 10)) (-3612 (($ $ $) 212 (|has| |#1| (-561)))) (-3598 (((-644 $) $) 271)) (-3228 (((-3 (-644 $) #3#) $) 116)) (-3227 (((-3 (-644 $) #3#) $) 117)) (-3229 (((-3 (-2 (|:| |var| |#3|) (|:| -2566 (-774))) #3#) $) 115)) (-4125 (((-112) $ $) 254) (((-112) $ (-644 $)) 253)) (-4120 (($ $ $) 234)) (-3871 (($ $) 275)) (-4133 (((-112) $ $) 260)) (-4126 (((-112) $ $) 256) (((-112) $ (-644 $)) 255)) (-4121 (($ $ $) 235)) (-3600 (($ $) 274)) (-3666 (((-1124) $) 11)) (-3571 (((-2 (|:| -3566 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-561)))) (-3572 (((-2 (|:| -3566 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-561)))) (-1974 (((-112) $) 168)) (-1973 ((|#1| $) 169)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-456)))) (-3566 ((|#1| |#1| $) 208 (|has| |#1| (-456))) (($ (-644 $)) 94 (|has| |#1| (-456))) (($ $ $) 93 (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-914)))) (-4166 (((-409 $) $) 101 (|has| |#1| (-914)))) (-3573 (((-2 (|:| -3566 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-561)))) (-3891 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-3574 (($ $ |#1|) 221 (|has| |#1| (-561))) (($ $ $) 219 (|has| |#1| (-561)))) (-3575 (($ $ |#1|) 222 (|has| |#1| (-561))) (($ $ $) 220 (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-4191 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-4244 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-774)) 44) (($ $ (-644 |#3|) (-644 (-774))) 43)) (-4382 ((|#2| $) 152) (((-774) $ |#3|) 132) (((-644 (-774)) $ (-644 |#3|)) 131)) (-3599 (($ $) 272)) (-3597 (($ $) 270)) (-4404 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) 83 (-12 (|has| |#3| (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) 82 (-12 (|has| |#3| (-617 (-539))) (|has| |#1| (-617 (-539))))) (($ (-950 (-411 (-550)))) 231 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181))))) (($ (-950 (-550))) 228 (-3962 (-12 (-3748 (|has| |#1| (-38 (-411 (-550))))) (|has| |#1| (-38 (-550))) (|has| |#3| (-617 (-1181)))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#3| (-617 (-1181)))))) (($ (-950 |#1|)) 225 (|has| |#3| (-617 (-1181)))) (((-1163) $) 203 (-12 (|has| |#1| (-1042 (-550))) (|has| |#3| (-617 (-1181))))) (((-950 |#1|) $) 202 (|has| |#3| (-617 (-1181))))) (-3222 ((|#1| $) 177 (|has| |#1| (-456))) (($ $ |#3|) 108 (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 106 (-3258 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-950 |#1|) $) 201 (|has| |#3| (-617 (-1181)))) (($ (-411 (-550))) 80 (-3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550)))))) (($ $) 87 (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) 170)) (-4111 ((|#1| $ |#2|) 157) (($ $ |#3| (-774)) 130) (($ $ (-644 |#3|) (-644 (-774))) 129)) (-3107 (((-3 $ #1#) $) 81 (-3962 (-3258 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) 32 T CONST)) (-1770 (($ $ $ (-774)) 175 (|has| |#1| (-173)))) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 91 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3589 (((-3 (-112) "failed") $ $) 261)) (-3069 (($) 34 T CONST)) (-3568 (($ $ $ $ (-774)) 210 (|has| |#1| (-561)))) (-3569 (($ $ $ (-774)) 211 (|has| |#1| (-561)))) (-3074 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-774)) 40) (($ $ (-644 |#3|) (-644 (-774))) 39)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 158 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 160 (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) 159 (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1069 |#1| |#2| |#3|) (-140) (-1053) (-796) (-853)) (T -1069)) +((-3602 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-774)))) (-3871 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3599 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3598 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1069 *3 *4 *5)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3596 (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-4393 (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3591 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1069 *3 *4 *5)))) (-3590 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1069 *3 *4 *5)))) (-3589 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-4133 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-3588 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-4128 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-4128 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) (-4125 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) (-4129 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) (-4129 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) (-3587 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3586 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3587 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3586 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3585 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3585 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3584 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) (-3583 (*1 *2 *1 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -3305 *1))) (-4 *1 (-1069 *3 *4 *5)))) (-3583 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -3305 *1))) (-4 *1 (-1069 *4 *5 *3)))) (-3582 (*1 *2 *1 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1069 *3 *4 *5)))) (-3582 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1069 *4 *5 *3)))) (-4186 (*1 *2 *1 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1069 *3 *4 *5)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3580 (*1 *2 *1 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3906 (-774)))) (-4 *1 (-1069 *3 *4 *5)))) (-4121 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-4120 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) (-3579 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-411 (-550)))) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-950 (-411 (-550)))) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-950 (-411 (-550)))) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)))) (-3579 (*1 *1 *2) (|partial| -3962 (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))))) (-3578 (*1 *1 *2) (-3962 (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))))) (-4404 (*1 *1 *2) (-3962 (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))))) (-3579 (*1 *1 *2) (|partial| -3962 (-12 (-5 *2 (-950 *3)) (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-3748 (-4 *3 (-38 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 *3)) (-12 (-3748 (-4 *3 (-549))) (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 *3)) (-12 (-3748 (-4 *3 (-995 (-550)))) (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))))) (-3578 (*1 *1 *2) (-3962 (-12 (-5 *2 (-950 *3)) (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-3748 (-4 *3 (-38 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 *3)) (-12 (-3748 (-4 *3 (-549))) (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) (-12 (-5 *2 (-950 *3)) (-12 (-3748 (-4 *3 (-995 (-550)))) (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *5 (-617 (-1181))) (-4 *4 (-796)) (-4 *5 (-853)))) (-3577 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3576 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3574 (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3575 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3574 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3573 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| -3566 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1069 *3 *4 *5)))) (-3572 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| -3566 *1) (|:| |coef1| *1))) (-4 *1 (-1069 *3 *4 *5)))) (-3571 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-2 (|:| -3566 *1) (|:| |coef2| *1))) (-4 *1 (-1069 *3 *4 *5)))) (-4190 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3570 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1069 *3 *4 *5)))) (-3612 (*1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3569 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *3 (-561)))) (-3568 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *3 (-561)))) (-3567 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-561)))) (-3566 (*1 *2 *2 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456)))) (-3565 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456)))) (-3564 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-456))))) +(-13 (-954 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3602 (|t#3| $)) (-15 -3601 ((-774) $)) (-15 -3871 ($ $)) (-15 -3600 ($ $)) (-15 -4230 ($ $)) (-15 -3599 ($ $)) (-15 -3598 ((-644 $) $)) (-15 -3597 ($ $)) (-15 -3596 ($ $ |t#3|)) (-15 -4393 ($ $ |t#3|)) (-15 -3595 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -3593 ($ $)) (-15 -3592 ($ $)) (-15 -3591 ((-644 $) $)) (-15 -3590 ((-644 $) $)) (-15 -3589 ((-3 (-112) "failed") $ $)) (-15 -4133 ((-112) $ $)) (-15 -3588 ((-112) $ $)) (-15 -4128 ((-112) $ $)) (-15 -4128 ((-112) $ (-644 $))) (-15 -4126 ((-112) $ $)) (-15 -4126 ((-112) $ (-644 $))) (-15 -4125 ((-112) $ $)) (-15 -4125 ((-112) $ (-644 $))) (-15 -4129 ((-112) $ $)) (-15 -4129 ((-112) $ (-644 $))) (-15 -3587 ($ $ $)) (-15 -3586 ($ $ $)) (-15 -3587 ($ $ $ |t#3|)) (-15 -3586 ($ $ $ |t#3|)) (-15 -3585 ($ $ $)) (-15 -3584 ($ $ $)) (-15 -3585 ($ $ $ |t#3|)) (-15 -3584 ($ $ $ |t#3|)) (-15 -3583 ((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $)) (-15 -3583 ((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -3305 $)) $ $ |t#3|)) (-15 -3582 ((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -3582 ((-2 (|:| -4388 $) (|:| |gap| (-774)) (|:| -2154 $) (|:| -3305 $)) $ $ |t#3|)) (-15 -4186 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -3581 ($ $ $)) (-15 -3580 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-774))) $ $)) (-15 -4121 ($ $ $)) (-15 -4120 ($ $ $)) (IF (|has| |t#3| (-617 (-1181))) (PROGN (-6 (-616 (-950 |t#1|))) (-6 (-617 (-950 |t#1|))) (IF (|has| |t#1| (-38 (-411 (-550)))) (PROGN (-15 -3579 ((-3 $ "failed") (-950 (-411 (-550))))) (-15 -3578 ($ (-950 (-411 (-550))))) (-15 -4404 ($ (-950 (-411 (-550))))) (-15 -3579 ((-3 $ "failed") (-950 (-550)))) (-15 -3578 ($ (-950 (-550)))) (-15 -4404 ($ (-950 (-550)))) (IF (|has| |t#1| (-995 (-550))) |%noBranch| (PROGN (-15 -3579 ((-3 $ "failed") (-950 |t#1|))) (-15 -3578 ($ (-950 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-550))) (IF (|has| |t#1| (-38 (-411 (-550)))) |%noBranch| (PROGN (-15 -3579 ((-3 $ "failed") (-950 (-550)))) (-15 -3578 ($ (-950 (-550)))) (-15 -4404 ($ (-950 (-550)))) (IF (|has| |t#1| (-549)) |%noBranch| (PROGN (-15 -3579 ((-3 $ "failed") (-950 |t#1|))) (-15 -3578 ($ (-950 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-550))) |%noBranch| (IF (|has| |t#1| (-38 (-411 (-550)))) |%noBranch| (PROGN (-15 -3579 ((-3 $ "failed") (-950 |t#1|))) (-15 -3578 ($ (-950 |t#1|)))))) (-15 -4404 ($ (-950 |t#1|))) (IF (|has| |t#1| (-1042 (-550))) (-6 (-617 (-1163))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3577 ($ $)) (-15 -3576 ($ $)) (-15 -3575 ($ $ |t#1|)) (-15 -3574 ($ $ |t#1|)) (-15 -3575 ($ $ $)) (-15 -3574 ($ $ $)) (-15 -4189 ($ $ $)) (-15 -3573 ((-2 (|:| -3566 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3572 ((-2 (|:| -3566 $) (|:| |coef1| $)) $ $)) (-15 -3571 ((-2 (|:| -3566 $) (|:| |coef2| $)) $ $)) (-15 -4190 ($ $ $)) (-15 -3570 ((-644 $) $ $)) (-15 -3612 ($ $ $)) (-15 -3569 ($ $ $ (-774))) (-15 -3568 ($ $ $ $ (-774))) (-15 -3567 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-456)) (PROGN (-15 -3566 (|t#1| |t#1| $)) (-15 -3565 ($ $)) (-15 -3564 ($ $)) (-15 -3563 ($ $)) (-15 -3562 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 |#3|) . T) ((-619 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-616 (-866)) . T) ((-616 (-950 |#1|)) |has| |#3| (-617 (-1181))) ((-173) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-617 (-539)) -12 (|has| |#1| (-617 (-539))) (|has| |#3| (-617 (-539)))) ((-617 (-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#3| (-617 (-894 (-381))))) ((-617 (-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#3| (-617 (-894 (-550))))) ((-617 (-950 |#1|)) |has| |#3| (-617 (-1181))) ((-617 (-1163)) -12 (|has| |#1| (-1042 (-550))) (|has| |#3| (-617 (-1181)))) ((-292) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-311 $) . T) ((-328 |#1| |#2|) . T) ((-380 |#1|) . T) ((-416 |#1|) . T) ((-456) -3962 (|has| |#1| (-914)) (|has| |#1| (-456))) ((-518 |#3| |#1|) . T) ((-518 |#3| $) . T) ((-518 $ $) . T) ((-561) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456))) ((-729) . T) ((-904 |#3|) . T) ((-890 (-381)) -12 (|has| |#1| (-890 (-381))) (|has| |#3| (-890 (-381)))) ((-890 (-550)) -12 (|has| |#1| (-890 (-550))) (|has| |#3| (-890 (-550)))) ((-954 |#1| |#2| |#3|) . T) ((-914) |has| |#1| (-914)) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 |#1|) . T) ((-1042 |#3|) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) |has| |#1| (-914))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3603 (((-644 (-1139)) $) 18)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 27) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-1139) $) 20)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1070) (-13 (-1087) (-10 -8 (-15 -3603 ((-644 (-1139)) $)) (-15 -3655 ((-1139) $))))) (T -1070)) +((-3603 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-1070)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1070))))) +(-13 (-1087) (-10 -8 (-15 -3603 ((-644 (-1139)) $)) (-15 -3655 ((-1139) $)))) +((-3610 (((-112) |#3| $) 15)) (-3605 (((-3 $ "failed") |#3| (-923)) 29)) (-3892 (((-3 |#3| "failed") |#3| $) 45)) (-3608 (((-112) |#3| $) 19)) (-3609 (((-112) |#3| $) 17))) +(((-1071 |#1| |#2| |#3|) (-10 -8 (-15 -3605 ((-3 |#1| "failed") |#3| (-923))) (-15 -3892 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3608 ((-112) |#3| |#1|)) (-15 -3609 ((-112) |#3| |#1|)) (-15 -3610 ((-112) |#3| |#1|))) (-1072 |#2| |#3|) (-13 (-851) (-366)) (-1246 |#2|)) (T -1071)) +NIL +(-10 -8 (-15 -3605 ((-3 |#1| "failed") |#3| (-923))) (-15 -3892 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3608 ((-112) |#3| |#1|)) (-15 -3609 ((-112) |#3| |#1|)) (-15 -3610 ((-112) |#3| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) |#2| $) 22)) (-4057 (((-550) |#2| $) 23)) (-3605 (((-3 $ "failed") |#2| (-923)) 16)) (-3604 ((|#1| |#2| $ |#1|) 14)) (-3892 (((-3 |#2| "failed") |#2| $) 19)) (-3608 (((-112) |#2| $) 20)) (-3609 (((-112) |#2| $) 21)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3607 ((|#2| $) 18)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-4203 ((|#1| |#2| $ |#1|) 15)) (-3606 (((-644 $) |#2|) 17)) (-3457 (((-112) $ $) 6))) +(((-1072 |#1| |#2|) (-140) (-13 (-851) (-366)) (-1246 |t#1|)) (T -1072)) +((-4057 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-550)))) (-3610 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-112)))) (-3609 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-112)))) (-3608 (*1 *2 *3 *1) (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-112)))) (-3892 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1072 *3 *2)) (-4 *3 (-13 (-851) (-366))) (-4 *2 (-1246 *3)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *2)) (-4 *3 (-13 (-851) (-366))) (-4 *2 (-1246 *3)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-644 *1)) (-4 *1 (-1072 *4 *3)))) (-3605 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-851) (-366))) (-4 *1 (-1072 *4 *2)) (-4 *2 (-1246 *4)))) (-4203 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1072 *2 *3)) (-4 *2 (-13 (-851) (-366))) (-4 *3 (-1246 *2)))) (-3604 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1072 *2 *3)) (-4 *2 (-13 (-851) (-366))) (-4 *3 (-1246 *2))))) +(-13 (-1105) (-10 -8 (-15 -4057 ((-550) |t#2| $)) (-15 -3610 ((-112) |t#2| $)) (-15 -3609 ((-112) |t#2| $)) (-15 -3608 ((-112) |t#2| $)) (-15 -3892 ((-3 |t#2| "failed") |t#2| $)) (-15 -3607 (|t#2| $)) (-15 -3606 ((-644 $) |t#2|)) (-15 -3605 ((-3 $ "failed") |t#2| (-923))) (-15 -4203 (|t#1| |t#2| $ |t#1|)) (-15 -3604 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-3862 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-774)) 114)) (-3859 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774)) 63)) (-3863 (((-1276) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-774)) 99)) (-3857 (((-774) (-644 |#4|) (-644 |#5|)) 30)) (-3860 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774)) 65) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774) (-112)) 67)) (-3861 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 87)) (-4404 (((-1163) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) 92)) (-3858 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-112)) 62)) (-3856 (((-774) (-644 |#4|) (-644 |#5|)) 21))) +(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3856 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3857 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3858 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-112))) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774) (-112))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3862 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-774))) (-15 -4404 ((-1163) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3863 ((-1276) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-774)))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1073)) +((-3863 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *4 (-774)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-1276)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1163)) (-5 *1 (-1073 *4 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1710 *11)))))) (-5 *6 (-774)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1710 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1069 *7 *8 *9)) (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-456)) (-4 *8 (-796)) (-4 *9 (-853)) (-5 *1 (-1073 *7 *8 *9 *10 *11)))) (-3861 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) (-3861 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) (-3860 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3860 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3860 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-774)) (-5 *6 (-112)) (-4 *7 (-456)) (-4 *8 (-796)) (-4 *9 (-853)) (-4 *3 (-1069 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1073 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3)))) (-3859 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-774)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-774)) (-5 *1 (-1073 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3856 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3857 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3858 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-112))) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774) (-112))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3862 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-774))) (-15 -4404 ((-1163) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3863 ((-1276) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-774)))) +((-3619 (((-112) |#5| $) 26)) (-3617 (((-112) |#5| $) 29)) (-3620 (((-112) |#5| $) 18) (((-112) $) 52)) (-3660 (((-644 $) |#5| $) NIL) (((-644 $) (-644 |#5|) $) 94) (((-644 $) (-644 |#5|) (-644 $)) 92) (((-644 $) |#5| (-644 $)) 95)) (-4202 (($ $ |#5|) NIL) (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 73) (((-644 $) (-644 |#5|) $) 75) (((-644 $) (-644 |#5|) (-644 $)) 77)) (-3611 (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 64) (((-644 $) (-644 |#5|) $) 69) (((-644 $) (-644 |#5|) (-644 $)) 71)) (-3618 (((-112) |#5| $) 32))) +(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4202 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -4202 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -4202 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -4202 ((-644 |#1|) |#5| |#1|)) (-15 -3611 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3611 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3611 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3611 ((-644 |#1|) |#5| |#1|)) (-15 -3660 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3660 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3660 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3660 ((-644 |#1|) |#5| |#1|)) (-15 -3617 ((-112) |#5| |#1|)) (-15 -3620 ((-112) |#1|)) (-15 -3618 ((-112) |#5| |#1|)) (-15 -3619 ((-112) |#5| |#1|)) (-15 -3620 ((-112) |#5| |#1|)) (-15 -4202 (|#1| |#1| |#5|))) (-1075 |#2| |#3| |#4| |#5|) (-456) (-796) (-853) (-1069 |#2| |#3| |#4|)) (T -1074)) +NIL +(-10 -8 (-15 -4202 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -4202 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -4202 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -4202 ((-644 |#1|) |#5| |#1|)) (-15 -3611 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3611 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3611 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3611 ((-644 |#1|) |#5| |#1|)) (-15 -3660 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3660 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3660 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3660 ((-644 |#1|) |#5| |#1|)) (-15 -3617 ((-112) |#5| |#1|)) (-15 -3620 ((-112) |#1|)) (-15 -3618 ((-112) |#5| |#1|)) (-15 -3619 ((-112) |#5| |#1|)) (-15 -3620 ((-112) |#5| |#1|)) (-15 -4202 (|#1| |#1| |#5|))) +((-2970 (((-112) $ $) 7)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) 86)) (-4116 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3487 (((-644 |#3|) $) 34)) (-3311 (((-112) $) 27)) (-3302 (((-112) $) 18 (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) 102) (((-112) $) 98)) (-4122 ((|#4| |#4| $) 93)) (-4208 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| $) 127)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) 28)) (-1310 (((-112) $ (-774)) 45)) (-4144 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4158 (($) 46 T CONST)) (-3307 (((-112) $) 23 (|has| |#1| (-561)))) (-3309 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3308 (((-112) $ $) 24 (|has| |#1| (-561)))) (-3310 (((-112) $) 26 (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3303 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 37)) (-3578 (($ (-644 |#4|)) 36)) (-4232 (((-3 $ #1#) $) 83)) (-4119 ((|#4| |#4| $) 90)) (-1441 (($ $) 69 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#4| $) 68 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4117 ((|#4| |#4| $) 88)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) 106)) (-3619 (((-112) |#4| $) 137)) (-3617 (((-112) |#4| $) 134)) (-3620 (((-112) |#4| $) 138) (((-112) $) 135)) (-2126 (((-644 |#4|) $) 53 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) 105) (((-112) $) 104)) (-3602 ((|#3| $) 35)) (-4153 (((-112) $ (-774)) 44)) (-3010 (((-644 |#4|) $) 54 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 48)) (-3317 (((-644 |#3|) $) 33)) (-3316 (((-112) |#3| $) 32)) (-4150 (((-112) $ (-774)) 43)) (-3665 (((-1163) $) 10)) (-3613 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3612 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| |#4| $) 128)) (-4231 (((-3 |#4| #1#) $) 84)) (-3614 (((-644 $) |#4| $) 130)) (-3616 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-3866 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-4131 (((-644 |#4|) $) 108)) (-4125 (((-112) |#4| $) 100) (((-112) $) 96)) (-4120 ((|#4| |#4| $) 91)) (-4133 (((-112) $ $) 111)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) 101) (((-112) $) 97)) (-4121 ((|#4| |#4| $) 92)) (-3666 (((-1124) $) 11)) (-4234 (((-3 |#4| #1#) $) 85)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4113 (((-3 $ #1#) $ |#4|) 79)) (-4202 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2128 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) 39)) (-3829 (((-112) $) 42)) (-3998 (($) 41)) (-4382 (((-774) $) 107)) (-2127 (((-774) |#4| $) 55 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4427)))) (-3826 (($ $) 40)) (-4404 (((-539) $) 70 (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 61)) (-3313 (($ $ |#3|) 29)) (-3315 (($ $ |#3|) 31)) (-4118 (($ $) 89)) (-3314 (($ $ |#3|) 30)) (-4380 (((-866) $) 12) (((-644 |#4|) $) 38)) (-4112 (((-774) $) 77 (|has| |#3| (-371)))) (-3664 (((-112) $ $) 9)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3611 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2129 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) 82)) (-3618 (((-112) |#4| $) 136)) (-4367 (((-112) |#3| $) 81)) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-1075 |#1| |#2| |#3| |#4|) (-140) (-456) (-796) (-853) (-1069 |t#1| |t#2| |t#3|)) (T -1075)) +((-3620 (*1 *2 *3 *1) (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-3619 (*1 *2 *3 *1) (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-3618 (*1 *2 *3 *1) (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-3617 (*1 *2 *3 *1) (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-3616 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3615 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *1)))) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3615 (*1 *2 *3 *1) (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-3614 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3613 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3612 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *1)))) (-4 *1 (-1075 *4 *5 *6 *3)))) (-4208 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *1)))) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3660 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3660 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *7)))) (-3660 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)))) (-3660 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)))) (-3611 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)))) (-3611 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)))) (-3611 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *7)))) (-3611 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)))) (-3866 (*1 *1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *2)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-3866 (*1 *1 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)))) (-4202 (*1 *2 *3 *1) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)))) (-4202 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)))) (-4202 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *7)))) (-4202 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *5 *6 *7 *8))))) +(-13 (-1215 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3620 ((-112) |t#4| $)) (-15 -3619 ((-112) |t#4| $)) (-15 -3618 ((-112) |t#4| $)) (-15 -3620 ((-112) $)) (-15 -3617 ((-112) |t#4| $)) (-15 -3616 ((-3 (-112) (-644 $)) |t#4| $)) (-15 -3615 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |t#4| $)) (-15 -3615 ((-112) |t#4| $)) (-15 -3614 ((-644 $) |t#4| $)) (-15 -3613 ((-3 |t#4| (-644 $)) |t#4| |t#4| $)) (-15 -3612 ((-644 (-2 (|:| |val| |t#4|) (|:| -1710 $))) |t#4| |t#4| $)) (-15 -4208 ((-644 (-2 (|:| |val| |t#4|) (|:| -1710 $))) |t#4| $)) (-15 -3660 ((-644 $) |t#4| $)) (-15 -3660 ((-644 $) (-644 |t#4|) $)) (-15 -3660 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -3660 ((-644 $) |t#4| (-644 $))) (-15 -3611 ((-644 $) |t#4| $)) (-15 -3611 ((-644 $) |t#4| (-644 $))) (-15 -3611 ((-644 $) (-644 |t#4|) $)) (-15 -3611 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -3866 ($ |t#4| $)) (-15 -3866 ($ (-644 |t#4|) $)) (-15 -4202 ((-644 $) |t#4| $)) (-15 -4202 ((-644 $) |t#4| (-644 $))) (-15 -4202 ((-644 $) (-644 |t#4|) $)) (-15 -4202 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -4116 ((-644 $) (-644 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-616 (-644 |#4|)) . T) ((-616 (-866)) . T) ((-151 |#4|) . T) ((-617 (-539)) |has| |#4| (-617 (-539))) ((-311 |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-493 |#4|) . T) ((-518 |#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1105) . T) ((-1215 |#1| |#2| |#3| |#4|) . T) ((-1220) . T)) +((-3627 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|) 86)) (-3624 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|) 127)) (-3626 (((-644 |#5|) |#4| |#5|) 74)) (-3625 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3710 (((-1276)) 36)) (-3708 (((-1276)) 25)) (-3709 (((-1276) (-1163) (-1163) (-1163)) 32)) (-3707 (((-1276) (-1163) (-1163) (-1163)) 21)) (-3621 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#4| |#4| |#5|) 107)) (-3622 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#3| (-112)) 118) (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3623 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|) 113))) +(((-1076 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-1276) (-1163) (-1163) (-1163))) (-15 -3708 ((-1276))) (-15 -3709 ((-1276) (-1163) (-1163) (-1163))) (-15 -3710 ((-1276))) (-15 -3621 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3622 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3622 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#3| (-112))) (-15 -3623 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3624 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3625 ((-112) |#4| |#5|)) (-15 -3625 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3626 ((-644 |#5|) |#4| |#5|)) (-15 -3627 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1076)) +((-3627 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3626 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *5 (-112)) (-4 *8 (-1069 *6 *7 *4)) (-4 *9 (-1075 *6 *7 *4 *8)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *4 (-853)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1710 *9)))) (-5 *1 (-1076 *6 *7 *4 *8 *9)))) (-3622 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1076 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3621 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3710 (*1 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-1276)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) (-3709 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3708 (*1 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-1276)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7))))) +(-10 -7 (-15 -3707 ((-1276) (-1163) (-1163) (-1163))) (-15 -3708 ((-1276))) (-15 -3709 ((-1276) (-1163) (-1163) (-1163))) (-15 -3710 ((-1276))) (-15 -3621 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3622 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3622 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#3| (-112))) (-15 -3623 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3624 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3625 ((-112) |#4| |#5|)) (-15 -3625 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3626 ((-644 |#5|) |#4| |#5|)) (-15 -3627 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|))) +((-2970 (((-112) $ $) NIL)) (-3741 (((-1221) $) 13)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3628 (((-1139) $) 10)) (-4380 (((-866) $) 20) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1077) (-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3741 ((-1221) $))))) (T -1077)) +((-3628 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1077)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-1077))))) +(-13 (-1087) (-10 -8 (-15 -3628 ((-1139) $)) (-15 -3741 ((-1221) $)))) +((-3689 (((-112) $ $) 7))) +(((-1078) (-13 (-1220) (-10 -8 (-15 -3689 ((-112) $ $))))) (T -1078)) +((-3689 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1078))))) +(-13 (-1220) (-10 -8 (-15 -3689 ((-112) $ $)))) +((-2970 (((-112) $ $) NIL)) (-3631 (($ $ (-644 (-1181)) (-1 (-112) (-644 |#3|))) 34)) (-3632 (($ |#3| |#3|) 23) (($ |#3| |#3| (-644 (-1181))) 21)) (-3953 ((|#3| $) 13)) (-3579 (((-3 (-295 |#3|) "failed") $) 60)) (-3578 (((-295 |#3|) $) NIL)) (-3629 (((-644 (-1181)) $) 16)) (-3630 (((-894 |#1|) $) 11)) (-3954 ((|#3| $) 12)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4233 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-923)) 41)) (-4380 (((-866) $) 89) (($ (-295 |#3|)) 22)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 38))) +(((-1079 |#1| |#2| |#3|) (-13 (-1105) (-288 |#3| |#3|) (-1042 (-295 |#3|)) (-10 -8 (-15 -3632 ($ |#3| |#3|)) (-15 -3632 ($ |#3| |#3| (-644 (-1181)))) (-15 -3631 ($ $ (-644 (-1181)) (-1 (-112) (-644 |#3|)))) (-15 -3630 ((-894 |#1|) $)) (-15 -3954 (|#3| $)) (-15 -3953 (|#3| $)) (-15 -4233 (|#3| $ |#3| (-923))) (-15 -3629 ((-644 (-1181)) $)))) (-1105) (-13 (-1053) (-890 |#1|) (-617 (-894 |#1|))) (-13 (-425 |#2|) (-890 |#1|) (-617 (-894 |#1|)))) (T -1079)) +((-3632 (*1 *1 *2 *2) (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) (-5 *1 (-1079 *3 *4 *2)) (-4 *2 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))))) (-3632 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-4 *4 (-1105)) (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))))) (-3631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-1 (-112) (-644 *6))) (-4 *6 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))) (-4 *4 (-1105)) (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1079 *4 *5 *6)))) (-3630 (*1 *2 *1) (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 *2))) (-5 *2 (-894 *3)) (-5 *1 (-1079 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-890 *3) (-617 *2))))) (-3954 (*1 *2 *1) (-12 (-4 *3 (-1105)) (-4 *2 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))) (-5 *1 (-1079 *3 *4 *2)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))))) (-3953 (*1 *2 *1) (-12 (-4 *3 (-1105)) (-4 *2 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))) (-5 *1 (-1079 *3 *4 *2)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))))) (-4233 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1105)) (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))))) (-3629 (*1 *2 *1) (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) (-5 *2 (-644 (-1181))) (-5 *1 (-1079 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-890 *3) (-617 (-894 *3))))))) +(-13 (-1105) (-288 |#3| |#3|) (-1042 (-295 |#3|)) (-10 -8 (-15 -3632 ($ |#3| |#3|)) (-15 -3632 ($ |#3| |#3| (-644 (-1181)))) (-15 -3631 ($ $ (-644 (-1181)) (-1 (-112) (-644 |#3|)))) (-15 -3630 ((-894 |#1|) $)) (-15 -3954 (|#3| $)) (-15 -3953 (|#3| $)) (-15 -4233 (|#3| $ |#3| (-923))) (-15 -3629 ((-644 (-1181)) $)))) +((-2970 (((-112) $ $) NIL)) (-3975 (((-1181) $) 8)) (-3665 (((-1163) $) 17)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 11)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 14))) +(((-1080 |#1|) (-13 (-1105) (-10 -8 (-15 -3975 ((-1181) $)))) (-1181)) (T -1080)) +((-3975 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1080 *3)) (-14 *3 *2)))) +(-13 (-1105) (-10 -8 (-15 -3975 ((-1181) $)))) +((-2970 (((-112) $ $) NIL)) (-3634 (($ (-644 (-1079 |#1| |#2| |#3|))) 14)) (-3633 (((-644 (-1079 |#1| |#2| |#3|)) $) 21)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4233 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-923)) 27)) (-4380 (((-866) $) 17)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 20))) +(((-1081 |#1| |#2| |#3|) (-13 (-1105) (-288 |#3| |#3|) (-10 -8 (-15 -3634 ($ (-644 (-1079 |#1| |#2| |#3|)))) (-15 -3633 ((-644 (-1079 |#1| |#2| |#3|)) $)) (-15 -4233 (|#3| $ |#3| (-923))))) (-1105) (-13 (-1053) (-890 |#1|) (-617 (-894 |#1|))) (-13 (-425 |#2|) (-890 |#1|) (-617 (-894 |#1|)))) (T -1081)) +((-3634 (*1 *1 *2) (-12 (-5 *2 (-644 (-1079 *3 *4 *5))) (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) (-4 *5 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))) (-5 *1 (-1081 *3 *4 *5)))) (-3633 (*1 *2 *1) (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) (-5 *2 (-644 (-1079 *3 *4 *5))) (-5 *1 (-1081 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))))) (-4233 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1105)) (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1081 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4))))))) +(-13 (-1105) (-288 |#3| |#3|) (-10 -8 (-15 -3634 ($ (-644 (-1079 |#1| |#2| |#3|)))) (-15 -3633 ((-644 (-1079 |#1| |#2| |#3|)) $)) (-15 -4233 (|#3| $ |#3| (-923))))) +((-3635 (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112)) 88) (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|))) 92) (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112)) 90))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -3635 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112))) (-15 -3635 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)))) (-15 -3635 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112)))) (-13 (-309) (-147)) (-644 (-1181))) (T -1082)) +((-3635 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) (-5 *1 (-1082 *5 *6)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))))) (-3635 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-147))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *4)) (|:| -3646 (-644 (-950 *4)))))) (-5 *1 (-1082 *4 *5)) (-5 *3 (-644 (-950 *4))) (-14 *5 (-644 (-1181))))) (-3635 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) (-5 *1 (-1082 *5 *6)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181)))))) +(-10 -7 (-15 -3635 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112))) (-15 -3635 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)))) (-15 -3635 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 139)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-366)))) (-2243 (($ $) NIL (|has| |#1| (-366)))) (-2241 (((-112) $) NIL (|has| |#1| (-366)))) (-1959 (((-692 |#1|) (-1270 $)) NIL) (((-692 |#1|)) 123)) (-3756 ((|#1| $) 128)) (-1845 (((-1193 (-923) (-774)) (-550)) NIL (|has| |#1| (-353)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3542 (((-774)) 46 (|has| |#1| (-371)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-1969 (($ (-1270 |#1|) (-1270 $)) NIL) (($ (-1270 |#1|)) 49)) (-1843 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-1958 (((-692 |#1|) $ (-1270 $)) NIL) (((-692 |#1|) $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 115) (((-692 |#1|) (-692 $)) 110)) (-4276 (($ |#2|) 67) (((-3 $ "failed") (-411 |#2|)) NIL (|has| |#1| (-366)))) (-3892 (((-3 $ "failed") $) NIL)) (-3515 (((-923)) 84)) (-3397 (($) 50 (|has| |#1| (-371)))) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-3238 (($) NIL (|has| |#1| (-353)))) (-1850 (((-112) $) NIL (|has| |#1| (-353)))) (-1943 (($ $ (-774)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-4205 (((-923) $) NIL (|has| |#1| (-353))) (((-835 (-923)) $) NIL (|has| |#1| (-353)))) (-2575 (((-112) $) NIL)) (-3538 ((|#1| $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-2194 ((|#2| $) 91 (|has| |#1| (-366)))) (-2190 (((-923) $) 148 (|has| |#1| (-371)))) (-3483 ((|#2| $) 64)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-3871 (($) NIL (|has| |#1| (-353)) CONST)) (-2565 (($ (-923)) 138 (|has| |#1| (-371)))) (-3666 (((-1124) $) NIL)) (-2574 (($) 130)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-1846 (((-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550))))) NIL (|has| |#1| (-353)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-366)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4191 ((|#1| (-1270 $)) NIL) ((|#1|) 119)) (-1944 (((-774) $) NIL (|has| |#1| (-353))) (((-3 (-774) "failed") $ $) NIL (|has| |#1| (-353)))) (-4244 (($ $) NIL (-3962 (-12 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-774)) NIL (-3962 (-12 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-1 |#1| |#1|) (-774)) NIL (|has| |#1| (-366))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-366)))) (-2573 (((-692 |#1|) (-1270 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-366)))) (-3607 ((|#2|) 80)) (-1844 (($) NIL (|has| |#1| (-353)))) (-3646 (((-1270 |#1|) $ (-1270 $)) 96) (((-692 |#1|) (-1270 $) (-1270 $)) NIL) (((-1270 |#1|) $) 77) (((-692 |#1|) (-1270 $)) 92)) (-4404 (((-1270 |#1|) $) NIL) (($ (-1270 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3108 (((-3 (-1270 $) "failed") (-692 $)) NIL (|has| |#1| (-353)))) (-4380 (((-866) $) 63) (($ (-550)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-366))) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-366)) (|has| |#1| (-1042 (-411 (-550))))))) (-3107 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2772 ((|#2| $) 89)) (-3532 (((-774)) 82 T CONST)) (-3664 (((-112) $ $) NIL)) (-2192 (((-1270 $)) 88)) (-2242 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3512 (($) 32 T CONST)) (-3069 (($) 19 T CONST)) (-3074 (($ $) NIL (-3962 (-12 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-774)) NIL (-3962 (-12 (|has| |#1| (-234)) (|has| |#1| (-366))) (|has| |#1| (-353)))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-366)) (|has| |#1| (-904 (-1181))))) (($ $ (-1 |#1| |#1|) (-774)) NIL (|has| |#1| (-366))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-366)))) (-3457 (((-112) $ $) 69)) (-4383 (($ $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) 73) (($ $ $) NIL)) (-4273 (($ $ $) 71)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-411 (-550)) $) NIL (|has| |#1| (-366))) (($ $ (-411 (-550))) NIL (|has| |#1| (-366))))) +(((-1083 |#1| |#2| |#3|) (-727 |#1| |#2|) (-173) (-1246 |#1|) |#2|) (T -1083)) +NIL +(-727 |#1| |#2|) +((-4166 (((-409 |#3|) |#3|) 18))) +(((-1084 |#1| |#2| |#3|) (-10 -7 (-15 -4166 ((-409 |#3|) |#3|))) (-1246 (-411 (-550))) (-13 (-366) (-147) (-727 (-411 (-550)) |#1|)) (-1246 |#2|)) (T -1084)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-1246 (-411 (-550)))) (-4 *5 (-13 (-366) (-147) (-727 (-411 (-550)) *4))) (-5 *2 (-409 *3)) (-5 *1 (-1084 *4 *5 *3)) (-4 *3 (-1246 *5))))) +(-10 -7 (-15 -4166 ((-409 |#3|) |#3|))) +((-4166 (((-409 |#3|) |#3|) 19))) +(((-1085 |#1| |#2| |#3|) (-10 -7 (-15 -4166 ((-409 |#3|) |#3|))) (-1246 (-411 (-950 (-550)))) (-13 (-366) (-147) (-727 (-411 (-950 (-550))) |#1|)) (-1246 |#2|)) (T -1085)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-1246 (-411 (-950 (-550))))) (-4 *5 (-13 (-366) (-147) (-727 (-411 (-950 (-550))) *4))) (-5 *2 (-409 *3)) (-5 *1 (-1085 *4 *5 *3)) (-4 *3 (-1246 *5))))) +(-10 -7 (-15 -4166 ((-409 |#3|) |#3|))) +((-2970 (((-112) $ $) NIL)) (-2936 (($ $ $) 16)) (-3262 (($ $ $) 17)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3636 (($) 6)) (-4404 (((-1181) $) 20)) (-4380 (((-866) $) 13)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 15)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 9))) +(((-1086) (-13 (-853) (-617 (-1181)) (-10 -8 (-15 -3636 ($))))) (T -1086)) +((-3636 (*1 *1) (-5 *1 (-1086)))) +(-13 (-853) (-617 (-1181)) (-10 -8 (-15 -3636 ($)))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-1186)) 17) (((-1186) $) 16)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-1087) (-140)) (T -1087)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-618 #1=(-1185)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T)) -((-3637 ((|#1| |#1| (-1 (-549) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3635 (((-1275)) 21)) (-3636 (((-643 |#1|)) 13))) -(((-1087 |#1|) (-10 -7 (-15 -3635 ((-1275))) (-15 -3636 ((-643 |#1|))) (-15 -3637 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3637 (|#1| |#1| (-1 (-549) |#1| |#1|)))) (-132)) (T -1087)) -((-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2)))) (-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2)))) (-3636 (*1 *2) (-12 (-5 *2 (-643 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-132)))) (-3635 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1087 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -3635 ((-1275))) (-15 -3636 ((-643 |#1|))) (-15 -3637 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3637 (|#1| |#1| (-1 (-549) |#1| |#1|)))) -((-3640 (($ (-109) $) 20)) (-3641 (((-693 (-109)) (-509) $) 19)) (-3996 (($) 7)) (-3639 (($) 21)) (-3638 (($) 22)) (-3642 (((-643 (-175)) $) 10)) (-4378 (((-865) $) 25))) -(((-1088) (-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3642 ((-643 (-175)) $)) (-15 -3641 ((-693 (-109)) (-509) $)) (-15 -3640 ($ (-109) $)) (-15 -3639 ($)) (-15 -3638 ($))))) (T -1088)) -((-3996 (*1 *1) (-5 *1 (-1088))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-643 (-175))) (-5 *1 (-1088)))) (-3641 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-1088)))) (-3640 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1088)))) (-3639 (*1 *1) (-5 *1 (-1088))) (-3638 (*1 *1) (-5 *1 (-1088)))) -(-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3642 ((-643 (-175)) $)) (-15 -3641 ((-693 (-109)) (-509) $)) (-15 -3640 ($ (-109) $)) (-15 -3639 ($)) (-15 -3638 ($)))) -((-3643 (((-1269 (-691 |#1|)) (-643 (-691 |#1|))) 47) (((-1269 (-691 (-949 |#1|))) (-643 (-1180)) (-691 (-949 |#1|))) 75) (((-1269 (-691 (-410 (-949 |#1|)))) (-643 (-1180)) (-691 (-410 (-949 |#1|)))) 92)) (-3644 (((-1269 |#1|) (-691 |#1|) (-643 (-691 |#1|))) 41))) -(((-1089 |#1|) (-10 -7 (-15 -3643 ((-1269 (-691 (-410 (-949 |#1|)))) (-643 (-1180)) (-691 (-410 (-949 |#1|))))) (-15 -3643 ((-1269 (-691 (-949 |#1|))) (-643 (-1180)) (-691 (-949 |#1|)))) (-15 -3643 ((-1269 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3644 ((-1269 |#1|) (-691 |#1|) (-643 (-691 |#1|))))) (-365)) (T -1089)) -((-3644 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-691 *5))) (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 (-1269 *5)) (-5 *1 (-1089 *5)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-1089 *4)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) (-5 *2 (-1269 (-691 (-949 *5)))) (-5 *1 (-1089 *5)) (-5 *4 (-691 (-949 *5))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) (-5 *2 (-1269 (-691 (-410 (-949 *5))))) (-5 *1 (-1089 *5)) (-5 *4 (-691 (-410 (-949 *5))))))) -(-10 -7 (-15 -3643 ((-1269 (-691 (-410 (-949 |#1|)))) (-643 (-1180)) (-691 (-410 (-949 |#1|))))) (-15 -3643 ((-1269 (-691 (-949 |#1|))) (-643 (-1180)) (-691 (-949 |#1|)))) (-15 -3643 ((-1269 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3644 ((-1269 |#1|) (-691 |#1|) (-643 (-691 |#1|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1589 (((-643 (-773)) $) NIL) (((-643 (-773)) $ (-1180)) NIL)) (-1623 (((-773) $) NIL) (((-773) $ (-1180)) NIL)) (-3485 (((-643 (-1091 (-1180))) $) NIL)) (-3487 (((-1174 $) $ (-1091 (-1180))) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1091 (-1180)))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1585 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1091 (-1180)) #2#) $) NIL) (((-3 (-1180) #2#) $) NIL) (((-3 (-1128 |#1| (-1180)) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1091 (-1180)) $) NIL) (((-1180) $) NIL) (((-1128 |#1| (-1180)) $) NIL)) (-4188 (($ $ $ (-1091 (-1180))) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1091 (-1180))) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 (-1091 (-1180))) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1091 (-1180)) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1091 (-1180)) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ (-1180)) NIL) (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) (-1091 (-1180))) NIL) (($ (-1174 $) (-1091 (-1180))) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1091 (-1180))) NIL)) (-3223 (((-534 (-1091 (-1180))) $) NIL) (((-773) $ (-1091 (-1180))) NIL) (((-643 (-773)) $ (-643 (-1091 (-1180)))) NIL)) (-1770 (($ (-1 (-534 (-1091 (-1180))) (-534 (-1091 (-1180)))) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1624 (((-1 $ (-773)) (-1180)) NIL) (((-1 $ (-773)) $) NIL (|has| |#1| (-233)))) (-3486 (((-3 (-1091 (-1180)) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-1587 (((-1091 (-1180)) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1588 (((-112) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1091 (-1180))) (|:| -2564 (-773))) #3#) $) NIL)) (-1586 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1091 (-1180)) |#1|) NIL) (($ $ (-643 (-1091 (-1180))) (-643 |#1|)) NIL) (($ $ (-1091 (-1180)) $) NIL) (($ $ (-643 (-1091 (-1180))) (-643 $)) NIL) (($ $ (-1180) $) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 $)) NIL (|has| |#1| (-233))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-233)))) (-4189 (($ $ (-1091 (-1180))) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1091 (-1180))) NIL) (($ $ (-643 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1590 (((-643 (-1180)) $) NIL)) (-4380 (((-534 (-1091 (-1180))) $) NIL) (((-773) $ (-1091 (-1180))) NIL) (((-643 (-773)) $ (-643 (-1091 (-1180)))) NIL) (((-773) $ (-1180)) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1091 (-1180)) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1091 (-1180)) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1091 (-1180)) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1091 (-1180))) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1091 (-1180))) NIL) (($ (-1180)) NIL) (($ (-1128 |#1| (-1180))) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1091 (-1180))) NIL) (($ $ (-643 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1090 |#1|) (-13 (-254 |#1| (-1180) (-1091 (-1180)) (-534 (-1091 (-1180)))) (-1041 (-1128 |#1| (-1180)))) (-1052)) (T -1090)) -NIL -(-13 (-254 |#1| (-1180) (-1091 (-1180)) (-534 (-1091 (-1180)))) (-1041 (-1128 |#1| (-1180)))) -((-2968 (((-112) $ $) NIL)) (-1623 (((-773) $) NIL)) (-4263 ((|#1| $) 10)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-4203 (((-773) $) 11)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-1624 (($ |#1| (-773)) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4242 (($ $) NIL) (($ $ (-773)) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 16))) -(((-1091 |#1|) (-267 |#1|) (-852)) (T -1091)) -NIL -(-267 |#1|) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4168 (($ |#1| |#1|) 16)) (-4390 (((-643 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-850)))) (-3649 ((|#1| $) 12)) (-3651 ((|#1| $) 11)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3647 (((-549) $) 15)) (-3648 ((|#1| $) 14)) (-3650 ((|#1| $) 13)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4395 (((-643 |#1|) $) 44 (|has| |#1| (-850))) (((-643 |#1|) (-643 $)) 43 (|has| |#1| (-850)))) (-4402 (($ |#1|) 29)) (-4378 (((-865) $) 28 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4169 (($ |#1| |#1|) 10)) (-3652 (($ $ (-549)) 17)) (-3455 (((-112) $ $) 22 (|has| |#1| (-1104))))) -(((-1092 |#1|) (-13 (-1097 |#1|) (-10 -7 (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-643 |#1|))) |%noBranch|))) (-1219)) (T -1092)) -NIL -(-13 (-1097 |#1|) (-10 -7 (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-643 |#1|))) |%noBranch|))) -((-4390 (((-643 |#2|) (-1 |#2| |#1|) (-1092 |#1|)) 29 (|has| |#1| (-850))) (((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|)) 14))) -(((-1093 |#1| |#2|) (-10 -7 (-15 -4390 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1093)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-643 *6)) (-5 *1 (-1093 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1092 *6)) (-5 *1 (-1093 *5 *6))))) -(-10 -7 (-15 -4390 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3645 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1094) (-13 (-1086) (-10 -8 (-15 -3645 ((-643 (-1138)) $))))) (T -1094)) -((-3645 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1094))))) -(-13 (-1086) (-10 -8 (-15 -3645 ((-643 (-1138)) $)))) -((-2968 (((-112) $ $) NIL (|has| (-1092 |#1|) (-1104)))) (-4263 (((-1180) $) NIL)) (-4168 (((-1092 |#1|) $) NIL)) (-3663 (((-1162) $) NIL (|has| (-1092 |#1|) (-1104)))) (-3664 (((-1123) $) NIL (|has| (-1092 |#1|) (-1104)))) (-3646 (($ (-1180) (-1092 |#1|)) NIL)) (-4378 (((-865) $) NIL (|has| (-1092 |#1|) (-1104)))) (-3662 (((-112) $ $) NIL (|has| (-1092 |#1|) (-1104)))) (-3455 (((-112) $ $) NIL (|has| (-1092 |#1|) (-1104))))) -(((-1095 |#1|) (-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) (-1092 |#1|))) (-15 -4263 ((-1180) $)) (-15 -4168 ((-1092 |#1|) $)) (IF (|has| (-1092 |#1|) (-1104)) (-6 (-1104)) |%noBranch|))) (-1219)) (T -1095)) -((-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1092 *4)) (-4 *4 (-1219)) (-5 *1 (-1095 *4)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1095 *3)) (-4 *3 (-1219)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) (-1092 |#1|))) (-15 -4263 ((-1180) $)) (-15 -4168 ((-1092 |#1|) $)) (IF (|has| (-1092 |#1|) (-1104)) (-6 (-1104)) |%noBranch|))) -((-4390 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 19))) -(((-1096 |#1| |#2|) (-10 -7 (-15 -4390 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) (-1219) (-1219)) (T -1096)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1095 *6)) (-5 *1 (-1096 *5 *6))))) -(-10 -7 (-15 -4390 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) -((-4168 (($ |#1| |#1|) 8)) (-3649 ((|#1| $) 11)) (-3651 ((|#1| $) 13)) (-3647 (((-549) $) 9)) (-3648 ((|#1| $) 10)) (-3650 ((|#1| $) 12)) (-4402 (($ |#1|) 6)) (-4169 (($ |#1| |#1|) 15)) (-3652 (($ $ (-549)) 14))) -(((-1097 |#1|) (-140) (-1219)) (T -1097)) -((-4169 (*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1097 *3)) (-4 *3 (-1219)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1219)) (-5 *2 (-549)))) (-4168 (*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) -(-13 (-620 |t#1|) (-10 -8 (-15 -4169 ($ |t#1| |t#1|)) (-15 -3652 ($ $ (-549))) (-15 -3651 (|t#1| $)) (-15 -3650 (|t#1| $)) (-15 -3649 (|t#1| $)) (-15 -3648 (|t#1| $)) (-15 -3647 ((-549) $)) (-15 -4168 ($ |t#1| |t#1|)))) -(((-620 |#1|) . T)) -((-4168 (($ |#1| |#1|) 8)) (-4390 ((|#2| (-1 |#1| |#1|) $) 16)) (-3649 ((|#1| $) 11)) (-3651 ((|#1| $) 13)) (-3647 (((-549) $) 9)) (-3648 ((|#1| $) 10)) (-3650 ((|#1| $) 12)) (-4395 ((|#2| (-643 $)) 18) ((|#2| $) 17)) (-4402 (($ |#1|) 6)) (-4169 (($ |#1| |#1|) 15)) (-3652 (($ $ (-549)) 14))) -(((-1098 |#1| |#2|) (-140) (-850) (-1152 |t#1|)) (T -1098)) -((-4395 (*1 *2 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1152 *4)))) (-4395 (*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1152 *3)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1152 *4))))) -(-13 (-1097 |t#1|) (-10 -8 (-15 -4395 (|t#2| (-643 $))) (-15 -4395 (|t#2| $)) (-15 -4390 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-620 |#1|) . T) ((-1097 |#1|) . T)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-4229 (((-1138) $) 12)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 18) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1099) (-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)) (-15 -4229 ((-1138) $))))) (T -1099)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1099)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1099))))) -(-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)) (-15 -4229 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-1977 (($) NIL (|has| |#1| (-370)))) (-3654 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3656 (($ $ $) 81)) (-3655 (((-112) $ $) 82)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-3659 (($ (-643 |#1|)) NIL) (($) 13)) (-1678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) 74 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4425)))) (-3395 (($) NIL (|has| |#1| (-370)))) (-2124 (((-643 |#1|) $) 19 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2934 ((|#1| $) 55 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3260 ((|#1| $) 53 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 34)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 79)) (-1369 ((|#1| $) 25)) (-4039 (($ |#1| $) 69)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-3664 (((-1123) $) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1370 ((|#1| $) 27)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 21)) (-3996 (($) 11)) (-3657 (($ $ |#1|) NIL) (($ $ $) 80)) (-1567 (($) NIL) (($ (-643 |#1|)) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 16)) (-4402 (((-538) $) 50 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 62)) (-1978 (($ $) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL)) (-1979 (((-773) $) NIL)) (-3660 (($ (-643 |#1|)) NIL) (($) 12)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 |#1|)) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 52)) (-4389 (((-773) $) 10 (|has| $ (-6 -4425))))) -(((-1100 |#1|) (-429 |#1|) (-1104)) (T -1100)) -NIL -(-429 |#1|) -((-3654 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3656 (($ $ $) 10)) (-3657 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1101 |#1| |#2|) (-10 -8 (-15 -3654 (|#1| |#2| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3657 (|#1| |#1| |#1|))) (-1102 |#2|) (-1104)) (T -1101)) -NIL -(-10 -8 (-15 -3654 (|#1| |#2| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3657 (|#1| |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-3654 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3656 (($ $ $) 21)) (-3655 (((-112) $ $) 20)) (-1309 (((-112) $ (-773)) 36)) (-3659 (($) 26) (($ (-643 |#1|)) 25)) (-4142 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4425)))) (-4156 (($) 37 T CONST)) (-1440 (($ $) 60 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 44 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 29)) (-4151 (((-112) $ (-773)) 35)) (-3008 (((-643 |#1|) $) 45 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 39)) (-4148 (((-112) $ (-773)) 34)) (-3663 (((-1162) $) 10)) (-3658 (($ $ $) 24)) (-3664 (((-1123) $) 11)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2126 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 (-294 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 30)) (-3827 (((-112) $) 33)) (-3996 (($) 32)) (-3657 (($ $ $) 23) (($ $ |#1|) 22)) (-2125 (((-773) |#1| $) 46 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4425)))) (-3824 (($ $) 31)) (-4402 (((-538) $) 61 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 52)) (-4378 (((-865) $) 12)) (-3660 (($) 28) (($ (-643 |#1|)) 27)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 38 (|has| $ (-6 -4425))))) -(((-1102 |#1|) (-140) (-1104)) (T -1102)) -((-3661 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3660 (*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) (-3659 (*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3657 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3657 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3656 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3655 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3654 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3654 (*1 *1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) -(-13 (-1104) (-151 |t#1|) (-10 -8 (-6 -4415) (-15 -3661 ((-112) $ $)) (-15 -3660 ($)) (-15 -3660 ($ (-643 |t#1|))) (-15 -3659 ($)) (-15 -3659 ($ (-643 |t#1|))) (-15 -3658 ($ $ $)) (-15 -3657 ($ $ $)) (-15 -3657 ($ $ |t#1|)) (-15 -3656 ($ $ $)) (-15 -3655 ((-112) $ $)) (-15 -3654 ($ $ $)) (-15 -3654 ($ $ |t#1|)) (-15 -3654 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) . T) ((-1219) . T)) -((-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 8)) (-3662 (((-112) $ $) 12))) -(((-1103 |#1|) (-10 -8 (-15 -3662 ((-112) |#1| |#1|)) (-15 -3663 ((-1162) |#1|)) (-15 -3664 ((-1123) |#1|))) (-1104)) (T -1103)) -NIL -(-10 -8 (-15 -3662 ((-112) |#1| |#1|)) (-15 -3663 ((-1162) |#1|)) (-15 -3664 ((-1123) |#1|))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-1104) (-140)) (T -1104)) -((-3664 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1123)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1162)))) (-3662 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) -(-13 (-102) (-615 (-865)) (-10 -8 (-15 -3664 ((-1123) $)) (-15 -3663 ((-1162) $)) (-15 -3662 ((-112) $ $)))) -(((-102) . T) ((-615 (-865)) . T)) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) 36)) (-3668 (($ (-643 (-922))) 72)) (-3670 (((-3 $ #1="failed") $ (-922) (-922)) 83)) (-3395 (($) 40)) (-3666 (((-112) (-922) $) 44)) (-2188 (((-922) $) 66)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 39)) (-3671 (((-3 $ #1#) $ (-922)) 79)) (-3664 (((-1123) $) NIL)) (-3667 (((-1269 $)) 49)) (-3669 (((-643 (-922)) $) 27)) (-3665 (((-773) $ (-922) (-922)) 80)) (-4378 (((-865) $) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 24))) -(((-1105 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -3671 ((-3 $ #1="failed") $ (-922))) (-15 -3670 ((-3 $ #1#) $ (-922) (-922))) (-15 -3669 ((-643 (-922)) $)) (-15 -3668 ($ (-643 (-922)))) (-15 -3667 ((-1269 $))) (-15 -3666 ((-112) (-922) $)) (-15 -3665 ((-773) $ (-922) (-922))))) (-922) (-922)) (T -1105)) -((-3671 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3670 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3668 (*1 *1 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3667 (*1 *2) (-12 (-5 *2 (-1269 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3666 (*1 *2 *3 *1) (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3665 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-773)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-370) (-10 -8 (-15 -3671 ((-3 $ #1="failed") $ (-922))) (-15 -3670 ((-3 $ #1#) $ (-922) (-922))) (-15 -3669 ((-643 (-922)) $)) (-15 -3668 ($ (-643 (-922)))) (-15 -3667 ((-1269 $))) (-15 -3666 ((-112) (-922) $)) (-15 -3665 ((-773) $ (-922) (-922))))) -((-2968 (((-112) $ $) NIL)) (-3681 (((-112) $) NIL)) (-3677 (((-1180) $) NIL)) (-3682 (((-112) $) NIL)) (-3966 (((-1162) $) NIL)) (-3684 (((-112) $) NIL)) (-3686 (((-112) $) NIL)) (-3683 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3680 (((-112) $) NIL)) (-3676 (((-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-3679 (((-112) $) NIL)) (-3675 (((-225) $) NIL)) (-3674 (((-865) $) NIL)) (-3687 (((-112) $ $) NIL)) (-4231 (($ $ (-549)) NIL) (($ $ (-643 (-549))) NIL)) (-3678 (((-643 $) $) NIL)) (-4402 (($ (-1162)) NIL) (($ (-1180)) NIL) (($ (-549)) NIL) (($ (-225)) NIL) (($ (-865)) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL)) (-3672 (($ $) NIL)) (-3673 (($ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3685 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-549) $) NIL))) -(((-1106) (-1107 (-1162) (-1180) (-549) (-225) (-865))) (T -1106)) -NIL -(-1107 (-1162) (-1180) (-549) (-225) (-865)) -((-2968 (((-112) $ $) 7)) (-3681 (((-112) $) 33)) (-3677 ((|#2| $) 28)) (-3682 (((-112) $) 34)) (-3966 ((|#1| $) 29)) (-3684 (((-112) $) 36)) (-3686 (((-112) $) 38)) (-3683 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3680 (((-112) $) 32)) (-3676 ((|#3| $) 27)) (-3664 (((-1123) $) 11)) (-3679 (((-112) $) 31)) (-3675 ((|#4| $) 26)) (-3674 ((|#5| $) 25)) (-3687 (((-112) $ $) 39)) (-4231 (($ $ (-549)) 21) (($ $ (-643 (-549))) 20)) (-3678 (((-643 $) $) 30)) (-4402 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-643 $)) 40)) (-4378 (((-865) $) 12)) (-3672 (($ $) 23)) (-3673 (($ $) 24)) (-3662 (((-112) $ $) 9)) (-3685 (((-112) $) 37)) (-3455 (((-112) $ $) 6)) (-4389 (((-549) $) 22))) -(((-1107 |#1| |#2| |#3| |#4| |#5|) (-140) (-1104) (-1104) (-1104) (-1104) (-1104)) (T -1107)) -((-3687 (*1 *2 *1 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3678 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-1107 *3 *4 *5 *6 *7)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *2 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *2 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *2 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *2)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)))) (-3672 (*1 *1 *1) (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-549)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104))))) -(-13 (-1104) (-620 |t#1|) (-620 |t#2|) (-620 |t#3|) (-620 |t#4|) (-620 |t#4|) (-620 |t#5|) (-620 (-643 $)) (-10 -8 (-15 -3687 ((-112) $ $)) (-15 -3686 ((-112) $)) (-15 -3685 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -3680 ((-112) $)) (-15 -3679 ((-112) $)) (-15 -3678 ((-643 $) $)) (-15 -3966 (|t#1| $)) (-15 -3677 (|t#2| $)) (-15 -3676 (|t#3| $)) (-15 -3675 (|t#4| $)) (-15 -3674 (|t#5| $)) (-15 -3673 ($ $)) (-15 -3672 ($ $)) (-15 -4389 ((-549) $)) (-15 -4231 ($ $ (-549))) (-15 -4231 ($ $ (-643 (-549)))))) -(((-102) . T) ((-615 (-865)) . T) ((-620 (-643 $)) . T) ((-620 |#1|) . T) ((-620 |#2|) . T) ((-620 |#3|) . T) ((-620 |#4|) . T) ((-620 |#5|) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3681 (((-112) $) 45)) (-3677 ((|#2| $) 48)) (-3682 (((-112) $) 20)) (-3966 ((|#1| $) 21)) (-3684 (((-112) $) 42)) (-3686 (((-112) $) 14)) (-3683 (((-112) $) 44)) (-3663 (((-1162) $) NIL)) (-3680 (((-112) $) 46)) (-3676 ((|#3| $) 50)) (-3664 (((-1123) $) NIL)) (-3679 (((-112) $) 47)) (-3675 ((|#4| $) 49)) (-3674 ((|#5| $) 51)) (-3687 (((-112) $ $) 41)) (-4231 (($ $ (-549)) 62) (($ $ (-643 (-549))) 64)) (-3678 (((-643 $) $) 27)) (-4402 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-643 $)) 52)) (-4378 (((-865) $) 28)) (-3672 (($ $) 26)) (-3673 (($ $) 58)) (-3662 (((-112) $ $) NIL)) (-3685 (((-112) $) 23)) (-3455 (((-112) $ $) 40)) (-4389 (((-549) $) 60))) -(((-1108 |#1| |#2| |#3| |#4| |#5|) (-1107 |#1| |#2| |#3| |#4| |#5|) (-1104) (-1104) (-1104) (-1104) (-1104)) (T -1108)) -NIL -(-1107 |#1| |#2| |#3| |#4| |#5|) -((-3804 (((-1275) $) 22)) (-3688 (($ (-1180) (-437) |#2|) 11)) (-4378 (((-865) $) 16))) -(((-1109 |#1| |#2|) (-13 (-399) (-10 -8 (-15 -3688 ($ (-1180) (-437) |#2|)))) (-1104) (-424 |#1|)) (T -1109)) -((-3688 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-437)) (-4 *5 (-1104)) (-5 *1 (-1109 *5 *4)) (-4 *4 (-424 *5))))) -(-13 (-399) (-10 -8 (-15 -3688 ($ (-1180) (-437) |#2|)))) -((-3691 (((-112) |#5| |#5|) 44)) (-3694 (((-112) |#5| |#5|) 59)) (-3699 (((-112) |#5| (-643 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3695 (((-112) (-643 |#4|) (-643 |#4|)) 65)) (-3701 (((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 70)) (-3690 (((-1275)) 32)) (-3689 (((-1275) (-1162) (-1162) (-1162)) 28)) (-3700 (((-643 |#5|) (-643 |#5|)) 101)) (-3702 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) 93)) (-3703 (((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112)) 123)) (-3693 (((-112) |#5| |#5|) 53)) (-3698 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3696 (((-112) (-643 |#4|) (-643 |#4|)) 64)) (-3697 (((-112) (-643 |#4|) (-643 |#4|)) 66)) (-4131 (((-112) (-643 |#4|) (-643 |#4|)) 67)) (-3704 (((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3692 (((-643 |#5|) (-643 |#5|)) 49))) -(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1110)) -((-3704 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) (-5 *1 (-1110 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) (-4 *4 (-1074 *6 *7 *8 *9)))) (-3703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) (-5 *1 (-1110 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1110 *3 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-1110 *3 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-4131 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-1110 *3 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3690 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3689 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) -(-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3719 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|) 108)) (-3709 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|) 80)) (-3712 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 102)) (-3714 (((-643 |#5|) |#4| |#5|) 124)) (-3716 (((-643 |#5|) |#4| |#5|) 131)) (-3718 (((-643 |#5|) |#4| |#5|) 132)) (-3713 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 109)) (-3715 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 130)) (-3717 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3710 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112)) 92) (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3711 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 87)) (-3708 (((-1275)) 36)) (-3706 (((-1275)) 25)) (-3707 (((-1275) (-1162) (-1162) (-1162)) 32)) (-3705 (((-1275) (-1162) (-1162) (-1162)) 21))) -(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3709 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3711 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3717 ((-112) |#4| |#5|)) (-15 -3713 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3714 ((-643 |#5|) |#4| |#5|)) (-15 -3715 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3716 ((-643 |#5|) |#4| |#5|)) (-15 -3717 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3718 ((-643 |#5|) |#4| |#5|)) (-15 -3719 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1111)) -((-3719 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3718 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3716 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3715 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3711 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3710 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *4 (-852)) (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) (-5 *1 (-1111 *6 *7 *4 *8 *9)))) (-3710 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3709 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3708 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3706 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) -(-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3709 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3711 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3717 ((-112) |#4| |#5|)) (-15 -3713 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3714 ((-643 |#5|) |#4| |#5|)) (-15 -3715 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3716 ((-643 |#5|) |#4| |#5|)) (-15 -3717 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3718 ((-643 |#5|) |#4| |#5|)) (-15 -3719 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) -((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-1112 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1112)) -NIL -(-13 (-1074 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1074 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-3730 (((-643 (-549)) (-549) (-549) (-549)) 39)) (-3729 (((-643 (-549)) (-549) (-549) (-549)) 29)) (-3728 (((-643 (-549)) (-549) (-549) (-549)) 34)) (-3727 (((-549) (-549) (-549)) 23)) (-3726 (((-1269 (-549)) (-643 (-549)) (-1269 (-549)) (-549)) 75) (((-1269 (-549)) (-1269 (-549)) (-1269 (-549)) (-549)) 70)) (-3725 (((-643 (-549)) (-643 (-549)) (-643 (-549)) (-112)) 52)) (-3724 (((-691 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549))) 74)) (-3723 (((-691 (-549)) (-643 (-549)) (-643 (-549))) 58)) (-3722 (((-643 (-691 (-549))) (-643 (-549))) 63)) (-3721 (((-643 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549))) 78)) (-3720 (((-691 (-549)) (-643 (-549)) (-643 (-549)) (-643 (-549))) 88))) -(((-1113) (-10 -7 (-15 -3720 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3721 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3722 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -3723 ((-691 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3724 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3725 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-112))) (-15 -3726 ((-1269 (-549)) (-1269 (-549)) (-1269 (-549)) (-549))) (-15 -3726 ((-1269 (-549)) (-643 (-549)) (-1269 (-549)) (-549))) (-15 -3727 ((-549) (-549) (-549))) (-15 -3728 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3729 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3730 ((-643 (-549)) (-549) (-549) (-549))))) (T -1113)) -((-3730 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549)))) (-3729 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549)))) (-3728 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549)))) (-3727 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1113)))) (-3726 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-643 (-549))) (-5 *4 (-549)) (-5 *1 (-1113)))) (-3726 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-549)) (-5 *1 (-1113)))) (-3725 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *3 (-112)) (-5 *1 (-1113)))) (-3724 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-691 (-549))) (-5 *3 (-643 (-549))) (-5 *1 (-1113)))) (-3723 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-1113)))) (-3721 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *3 (-691 (-549))) (-5 *1 (-1113)))) (-3720 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113))))) -(-10 -7 (-15 -3720 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3721 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3722 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -3723 ((-691 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3724 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3725 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-112))) (-15 -3726 ((-1269 (-549)) (-1269 (-549)) (-1269 (-549)) (-549))) (-15 -3726 ((-1269 (-549)) (-643 (-549)) (-1269 (-549)) (-549))) (-15 -3727 ((-549) (-549) (-549))) (-15 -3728 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3729 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3730 ((-643 (-549)) (-549) (-549) (-549)))) -((** (($ $ (-922)) 10))) -(((-1114 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922)))) (-1115)) (T -1114)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-922)))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 15))) -(((-1115) (-140)) (T -1115)) -((* (*1 *1 *1 *1) (-4 *1 (-1115))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-922))))) -(-13 (-1104) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-922))))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL (|has| |#3| (-1104)))) (-3608 (((-112) $) NIL (|has| |#3| (-131)))) (-4139 (($ (-922)) NIL (|has| |#3| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#3| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#3| (-370)))) (-4055 (((-549) $) NIL (|has| |#3| (-850)))) (-4219 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) ((|#3| $) NIL (|has| |#3| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) NIL (|has| |#3| (-1052))) (((-691 |#3|) (-691 $)) NIL (|has| |#3| (-1052)))) (-3890 (((-3 $ "failed") $) NIL (|has| |#3| (-728)))) (-3395 (($) NIL (|has| |#3| (-370)))) (-1684 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#3| $ (-549)) 12)) (-3606 (((-112) $) NIL (|has| |#3| (-850)))) (-2124 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#3| (-728)))) (-3607 (((-112) $) NIL (|has| |#3| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3008 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2128 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#3| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#3| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#3| (-370)))) (-3664 (((-1123) $) NIL (|has| |#3| (-1104)))) (-4232 ((|#3| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#3|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 |#3|) (-643 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2379 (((-643 |#3|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) NIL)) (-4268 ((|#3| $ $) NIL (|has| |#3| (-1052)))) (-1569 (($ (-1269 |#3|)) NIL)) (-4343 (((-134)) NIL (|has| |#3| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052)))) (-2125 (((-773) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425))) (((-773) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#3|) $) NIL) (($ (-549)) NIL (-3960 (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) (($ |#3|) NIL (|has| |#3| (-1104))) (((-865) $) NIL (|has| |#3| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#3| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#3| (-1104)))) (-2127 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#3| (-850)))) (-3510 (($) NIL (|has| |#3| (-131)) CONST)) (-3067 (($) NIL (|has| |#3| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3455 (((-112) $ $) NIL (|has| |#3| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3088 (((-112) $ $) 24 (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-4381 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-4269 (($ $ $) NIL (|has| |#3| (-1052))) (($ $) NIL (|has| |#3| (-1052)))) (-4271 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-773)) NIL (|has| |#3| (-728))) (($ $ (-922)) NIL (|has| |#3| (-728)))) (* (($ (-549) $) NIL (|has| |#3| (-1052))) (($ $ $) NIL (|has| |#3| (-728))) (($ $ |#3|) NIL (|has| |#3| (-728))) (($ |#3| $) NIL (|has| |#3| (-728))) (($ (-773) $) NIL (|has| |#3| (-131))) (($ (-922) $) NIL (|has| |#3| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1116 |#1| |#2| |#3|) (-238 |#1| |#3|) (-773) (-773) (-795)) (T -1116)) -NIL -(-238 |#1| |#3|) -((-3731 (((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 50)) (-3737 (((-549) (-1238 |#2| |#1|)) 97 (|has| |#1| (-455)))) (-3735 (((-549) (-1238 |#2| |#1|)) 79)) (-3732 (((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 60)) (-3736 (((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 96 (|has| |#1| (-455)))) (-3733 (((-643 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 64)) (-3734 (((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 78))) -(((-1117 |#1| |#2|) (-10 -7 (-15 -3731 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3732 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3733 ((-643 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3734 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3735 ((-549) (-1238 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3736 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3737 ((-549) (-1238 |#2| |#1|)))) |%noBranch|)) (-822) (-1180)) (T -1117)) -((-3737 (*1 *2 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3736 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3734 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3733 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 *4)) (-5 *1 (-1117 *4 *5)))) (-3732 (*1 *2 *3 *3) (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4)))) (-3731 (*1 *2 *3 *3) (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4))))) -(-10 -7 (-15 -3731 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3732 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3733 ((-643 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3734 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3735 ((-549) (-1238 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3736 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3737 ((-549) (-1238 |#2| |#1|)))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3739 (((-1185) $) 12)) (-3738 (((-643 (-1185)) $) 14)) (-3740 (($ (-643 (-1185)) (-1185)) 10)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 29)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 17))) -(((-1118) (-13 (-1104) (-10 -8 (-15 -3740 ($ (-643 (-1185)) (-1185))) (-15 -3739 ((-1185) $)) (-15 -3738 ((-643 (-1185)) $))))) (T -1118)) -((-3740 (*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1185))) (-5 *3 (-1185)) (-5 *1 (-1118)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1118)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1118))))) -(-13 (-1104) (-10 -8 (-15 -3740 ($ (-643 (-1185)) (-1185))) (-15 -3739 ((-1185) $)) (-15 -3738 ((-643 (-1185)) $)))) -((-2968 (((-112) $ $) NIL)) (-3741 (($ (-509) (-1118)) 13)) (-3740 (((-1118) $) 19)) (-3973 (((-509) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 26) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1119) (-13 (-1086) (-10 -8 (-15 -3741 ($ (-509) (-1118))) (-15 -3973 ((-509) $)) (-15 -3740 ((-1118) $))))) (T -1119)) -((-3741 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-1119)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1119)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1119))))) -(-13 (-1086) (-10 -8 (-15 -3741 ($ (-509) (-1118))) (-15 -3973 ((-509) $)) (-15 -3740 ((-1118) $)))) -((-4055 (((-3 (-549) #1="failed") |#2| (-1180) |#2| (-1162)) 19) (((-3 (-549) #1#) |#2| (-1180) (-844 |#2|)) 17) (((-3 (-549) #1#) |#2|) 60))) -(((-1120 |#1| |#2|) (-10 -7 (-15 -4055 ((-3 (-549) #1="failed") |#2|)) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) (-844 |#2|))) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) |#2| (-1162)))) (-13 (-560) (-1041 (-549)) (-641 (-549)) (-455)) (-13 (-27) (-1205) (-424 |#1|))) (T -1120)) -((-4055 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-1162)) (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) (-5 *1 (-1120 *6 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))))) (-4055 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) (-5 *1 (-1120 *6 *3)))) (-4055 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4)))))) -(-10 -7 (-15 -4055 ((-3 (-549) #1="failed") |#2|)) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) (-844 |#2|))) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) |#2| (-1162)))) -((-4055 (((-3 (-549) #1="failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)) (-1162)) 38) (((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-844 (-410 (-949 |#1|)))) 33) (((-3 (-549) #1#) (-410 (-949 |#1|))) 14))) -(((-1121 |#1|) (-10 -7 (-15 -4055 ((-3 (-549) #1="failed") (-410 (-949 |#1|)))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-844 (-410 (-949 |#1|))))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)) (-1162)))) (-455)) (T -1121)) -((-4055 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1180)) (-5 *5 (-1162)) (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) (-4055 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 (-410 (-949 *6)))) (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *4))))) -(-10 -7 (-15 -4055 ((-3 (-549) #1="failed") (-410 (-949 |#1|)))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-844 (-410 (-949 |#1|))))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)) (-1162)))) -((-4081 (((-315 (-549)) (-48)) 12))) -(((-1122) (-10 -7 (-15 -4081 ((-315 (-549)) (-48))))) (T -1122)) -((-4081 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-549))) (-5 *1 (-1122))))) -(-10 -7 (-15 -4081 ((-315 (-549)) (-48)))) -((-2968 (((-112) $ $) NIL)) (-2458 (($ $) 44)) (-3608 (((-112) $) 69)) (-3745 (($ $ $) 51)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 97)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) 80)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) 82)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) 77)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) NIL)) (-3576 (((-549) $) NIL)) (-2964 (($ $ $) 63)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 91) (((-691 (-549)) (-691 $)) 32)) (-3890 (((-3 $ "failed") $) NIL)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($) 94) (($ $) 95)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) 92)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) 71)) (-3076 (((-112) $) 68)) (-3746 (($ $) 45)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) 81)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) 78)) (-2934 (($ $ $) 73) (($) 42 T CONST)) (-3260 (($ $ $) 72) (($) 41 T CONST)) (-2222 (($ $) NIL)) (-2188 (((-922) $) 87)) (-4265 (($ $) 76)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2563 (($ (-922)) 86)) (-2224 (($ $) 56)) (-3664 (((-1123) $) 75)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) 66) (($ (-643 $)) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 65)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-2223 (($ $) 57)) (-3824 (($ $) NIL)) (-4402 (((-549) $) 17) (((-538) $) NIL) (((-893 (-549)) $) NIL) (((-380) $) NIL) (((-225) $) NIL)) (-4378 (((-865) $) 35) (($ (-549)) 93) (($ $) NIL) (($ (-549)) 93)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) 40)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) 79)) (-3807 (($ $) 67)) (-2456 (($ $ $) 47)) (-3510 (($) 7 T CONST)) (-3742 (($ $ $) 50)) (-3067 (($) 39 T CONST)) (-2900 (((-1162) $) 26) (((-1162) $ (-112)) 27) (((-1275) (-825) $) 28) (((-1275) (-825) $ (-112)) 29)) (-3744 (($ $) 48)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3743 (($ $ $) 49)) (-2966 (((-112) $ $) 55)) (-2967 (((-112) $ $) 52)) (-3455 (((-112) $ $) 43)) (-3087 (((-112) $ $) 54)) (-3088 (((-112) $ $) 10)) (-2457 (($ $ $) 46)) (-4269 (($ $) 16) (($ $ $) 59)) (-4271 (($ $ $) 58)) (** (($ $ (-922)) NIL) (($ $ (-773)) 61)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 38) (($ $ $) 37))) -(((-1123) (-13 (-548) (-846) (-664) (-823) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3746 ($ $)) (-15 -3745 ($ $ $)) (-15 -3744 ($ $)) (-15 -3743 ($ $ $)) (-15 -3742 ($ $ $))))) (T -1123)) -((-3746 (*1 *1 *1) (-5 *1 (-1123))) (-3745 (*1 *1 *1 *1) (-5 *1 (-1123))) (-3744 (*1 *1 *1) (-5 *1 (-1123))) (-3743 (*1 *1 *1 *1) (-5 *1 (-1123))) (-3742 (*1 *1 *1 *1) (-5 *1 (-1123)))) -(-13 (-548) (-846) (-664) (-823) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3746 ($ $)) (-15 -3745 ($ $ $)) (-15 -3744 ($ $)) (-15 -3743 ($ $ $)) (-15 -3742 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-619 #1=(-1186)) . T) ((-616 (-866)) . T) ((-616 #1#) . T) ((-494 #1#) . T) ((-1105) . T)) +((-3639 ((|#1| |#1| (-1 (-550) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3637 (((-1276)) 21)) (-3638 (((-644 |#1|)) 13))) +(((-1088 |#1|) (-10 -7 (-15 -3637 ((-1276))) (-15 -3638 ((-644 |#1|))) (-15 -3639 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3639 (|#1| |#1| (-1 (-550) |#1| |#1|)))) (-132)) (T -1088)) +((-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-550) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1088 *2)))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1088 *2)))) (-3638 (*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1088 *3)) (-4 *3 (-132)))) (-3637 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1088 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -3637 ((-1276))) (-15 -3638 ((-644 |#1|))) (-15 -3639 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3639 (|#1| |#1| (-1 (-550) |#1| |#1|)))) +((-3642 (($ (-109) $) 20)) (-3643 (((-694 (-109)) (-510) $) 19)) (-3998 (($) 7)) (-3641 (($) 21)) (-3640 (($) 22)) (-3644 (((-644 (-176)) $) 10)) (-4380 (((-866) $) 25))) +(((-1089) (-13 (-616 (-866)) (-10 -8 (-15 -3998 ($)) (-15 -3644 ((-644 (-176)) $)) (-15 -3643 ((-694 (-109)) (-510) $)) (-15 -3642 ($ (-109) $)) (-15 -3641 ($)) (-15 -3640 ($))))) (T -1089)) +((-3998 (*1 *1) (-5 *1 (-1089))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-644 (-176))) (-5 *1 (-1089)))) (-3643 (*1 *2 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-109))) (-5 *1 (-1089)))) (-3642 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1089)))) (-3641 (*1 *1) (-5 *1 (-1089))) (-3640 (*1 *1) (-5 *1 (-1089)))) +(-13 (-616 (-866)) (-10 -8 (-15 -3998 ($)) (-15 -3644 ((-644 (-176)) $)) (-15 -3643 ((-694 (-109)) (-510) $)) (-15 -3642 ($ (-109) $)) (-15 -3641 ($)) (-15 -3640 ($)))) +((-3645 (((-1270 (-692 |#1|)) (-644 (-692 |#1|))) 47) (((-1270 (-692 (-950 |#1|))) (-644 (-1181)) (-692 (-950 |#1|))) 75) (((-1270 (-692 (-411 (-950 |#1|)))) (-644 (-1181)) (-692 (-411 (-950 |#1|)))) 92)) (-3646 (((-1270 |#1|) (-692 |#1|) (-644 (-692 |#1|))) 41))) +(((-1090 |#1|) (-10 -7 (-15 -3645 ((-1270 (-692 (-411 (-950 |#1|)))) (-644 (-1181)) (-692 (-411 (-950 |#1|))))) (-15 -3645 ((-1270 (-692 (-950 |#1|))) (-644 (-1181)) (-692 (-950 |#1|)))) (-15 -3645 ((-1270 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3646 ((-1270 |#1|) (-692 |#1|) (-644 (-692 |#1|))))) (-366)) (T -1090)) +((-3646 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-692 *5))) (-5 *3 (-692 *5)) (-4 *5 (-366)) (-5 *2 (-1270 *5)) (-5 *1 (-1090 *5)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-644 (-692 *4))) (-4 *4 (-366)) (-5 *2 (-1270 (-692 *4))) (-5 *1 (-1090 *4)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1181))) (-4 *5 (-366)) (-5 *2 (-1270 (-692 (-950 *5)))) (-5 *1 (-1090 *5)) (-5 *4 (-692 (-950 *5))))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1181))) (-4 *5 (-366)) (-5 *2 (-1270 (-692 (-411 (-950 *5))))) (-5 *1 (-1090 *5)) (-5 *4 (-692 (-411 (-950 *5))))))) +(-10 -7 (-15 -3645 ((-1270 (-692 (-411 (-950 |#1|)))) (-644 (-1181)) (-692 (-411 (-950 |#1|))))) (-15 -3645 ((-1270 (-692 (-950 |#1|))) (-644 (-1181)) (-692 (-950 |#1|)))) (-15 -3645 ((-1270 (-692 |#1|)) (-644 (-692 |#1|)))) (-15 -3646 ((-1270 |#1|) (-692 |#1|) (-644 (-692 |#1|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1591 (((-644 (-774)) $) NIL) (((-644 (-774)) $ (-1181)) NIL)) (-1625 (((-774) $) NIL) (((-774) $ (-1181)) NIL)) (-3487 (((-644 (-1092 (-1181))) $) NIL)) (-3489 (((-1175 $) $ (-1092 (-1181))) NIL) (((-1175 |#1|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1092 (-1181)))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-1587 (($ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-1092 (-1181)) #2#) $) NIL) (((-3 (-1181) #2#) $) NIL) (((-3 (-1129 |#1| (-1181)) #2#) $) NIL)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-1092 (-1181)) $) NIL) (((-1181) $) NIL) (((-1129 |#1| (-1181)) $) NIL)) (-4190 (($ $ $ (-1092 (-1181))) NIL (|has| |#1| (-173)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ (-1092 (-1181))) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-535 (-1092 (-1181))) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1092 (-1181)) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1092 (-1181)) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-4205 (((-774) $ (-1181)) NIL) (((-774) $) NIL)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3490 (($ (-1175 |#1|) (-1092 (-1181))) NIL) (($ (-1175 $) (-1092 (-1181))) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-535 (-1092 (-1181)))) NIL) (($ $ (-1092 (-1181)) (-774)) NIL) (($ $ (-644 (-1092 (-1181))) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1092 (-1181))) NIL)) (-3225 (((-535 (-1092 (-1181))) $) NIL) (((-774) $ (-1092 (-1181))) NIL) (((-644 (-774)) $ (-644 (-1092 (-1181)))) NIL)) (-1772 (($ (-1 (-535 (-1092 (-1181))) (-535 (-1092 (-1181)))) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-1626 (((-1 $ (-774)) (-1181)) NIL) (((-1 $ (-774)) $) NIL (|has| |#1| (-234)))) (-3488 (((-3 (-1092 (-1181)) #3="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-1589 (((-1092 (-1181)) $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-1590 (((-112) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-1092 (-1181))) (|:| -2566 (-774))) #3#) $) NIL)) (-1588 (($ $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1092 (-1181)) |#1|) NIL) (($ $ (-644 (-1092 (-1181))) (-644 |#1|)) NIL) (($ $ (-1092 (-1181)) $) NIL) (($ $ (-644 (-1092 (-1181))) (-644 $)) NIL) (($ $ (-1181) $) NIL (|has| |#1| (-234))) (($ $ (-644 (-1181)) (-644 $)) NIL (|has| |#1| (-234))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-234))) (($ $ (-644 (-1181)) (-644 |#1|)) NIL (|has| |#1| (-234)))) (-4191 (($ $ (-1092 (-1181))) NIL (|has| |#1| (-173)))) (-4244 (($ $ (-1092 (-1181))) NIL) (($ $ (-644 (-1092 (-1181)))) NIL) (($ $ (-1092 (-1181)) (-774)) NIL) (($ $ (-644 (-1092 (-1181))) (-644 (-774))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1592 (((-644 (-1181)) $) NIL)) (-4382 (((-535 (-1092 (-1181))) $) NIL) (((-774) $ (-1092 (-1181))) NIL) (((-644 (-774)) $ (-644 (-1092 (-1181)))) NIL) (((-774) $ (-1181)) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-1092 (-1181)) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-1092 (-1181)) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-1092 (-1181)) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) NIL (|has| |#1| (-456))) (($ $ (-1092 (-1181))) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-1092 (-1181))) NIL) (($ (-1181)) NIL) (($ (-1129 |#1| (-1181))) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-535 (-1092 (-1181)))) NIL) (($ $ (-1092 (-1181)) (-774)) NIL) (($ $ (-644 (-1092 (-1181))) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-1092 (-1181))) NIL) (($ $ (-644 (-1092 (-1181)))) NIL) (($ $ (-1092 (-1181)) (-774)) NIL) (($ $ (-644 (-1092 (-1181))) (-644 (-774))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-774)) NIL (|has| |#1| (-234))) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1091 |#1|) (-13 (-255 |#1| (-1181) (-1092 (-1181)) (-535 (-1092 (-1181)))) (-1042 (-1129 |#1| (-1181)))) (-1053)) (T -1091)) +NIL +(-13 (-255 |#1| (-1181) (-1092 (-1181)) (-535 (-1092 (-1181)))) (-1042 (-1129 |#1| (-1181)))) +((-2970 (((-112) $ $) NIL)) (-1625 (((-774) $) NIL)) (-4265 ((|#1| $) 10)) (-3579 (((-3 |#1| "failed") $) NIL)) (-3578 ((|#1| $) NIL)) (-4205 (((-774) $) 11)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-1626 (($ |#1| (-774)) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4244 (($ $) NIL) (($ $ (-774)) NIL)) (-4380 (((-866) $) NIL) (($ |#1|) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 16))) +(((-1092 |#1|) (-268 |#1|) (-853)) (T -1092)) +NIL +(-268 |#1|) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4170 (($ |#1| |#1|) 16)) (-4392 (((-644 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-851)))) (-3651 ((|#1| $) 12)) (-3653 ((|#1| $) 11)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3649 (((-550) $) 15)) (-3650 ((|#1| $) 14)) (-3652 ((|#1| $) 13)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4397 (((-644 |#1|) $) 44 (|has| |#1| (-851))) (((-644 |#1|) (-644 $)) 43 (|has| |#1| (-851)))) (-4404 (($ |#1|) 29)) (-4380 (((-866) $) 28 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4171 (($ |#1| |#1|) 10)) (-3654 (($ $ (-550)) 17)) (-3457 (((-112) $ $) 22 (|has| |#1| (-1105))))) +(((-1093 |#1|) (-13 (-1098 |#1|) (-10 -7 (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-1099 |#1| (-644 |#1|))) |%noBranch|))) (-1220)) (T -1093)) +NIL +(-13 (-1098 |#1|) (-10 -7 (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-1099 |#1| (-644 |#1|))) |%noBranch|))) +((-4392 (((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 29 (|has| |#1| (-851))) (((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 14))) +(((-1094 |#1| |#2|) (-10 -7 (-15 -4392 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-851)) (-15 -4392 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) (-1220) (-1220)) (T -1094)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-851)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-644 *6)) (-5 *1 (-1094 *5 *6)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1093 *6)) (-5 *1 (-1094 *5 *6))))) +(-10 -7 (-15 -4392 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-851)) (-15 -4392 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 16) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3647 (((-644 (-1139)) $) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1095) (-13 (-1087) (-10 -8 (-15 -3647 ((-644 (-1139)) $))))) (T -1095)) +((-3647 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-1095))))) +(-13 (-1087) (-10 -8 (-15 -3647 ((-644 (-1139)) $)))) +((-2970 (((-112) $ $) NIL (|has| (-1093 |#1|) (-1105)))) (-4265 (((-1181) $) NIL)) (-4170 (((-1093 |#1|) $) NIL)) (-3665 (((-1163) $) NIL (|has| (-1093 |#1|) (-1105)))) (-3666 (((-1124) $) NIL (|has| (-1093 |#1|) (-1105)))) (-3648 (($ (-1181) (-1093 |#1|)) NIL)) (-4380 (((-866) $) NIL (|has| (-1093 |#1|) (-1105)))) (-3664 (((-112) $ $) NIL (|has| (-1093 |#1|) (-1105)))) (-3457 (((-112) $ $) NIL (|has| (-1093 |#1|) (-1105))))) +(((-1096 |#1|) (-13 (-1220) (-10 -8 (-15 -3648 ($ (-1181) (-1093 |#1|))) (-15 -4265 ((-1181) $)) (-15 -4170 ((-1093 |#1|) $)) (IF (|has| (-1093 |#1|) (-1105)) (-6 (-1105)) |%noBranch|))) (-1220)) (T -1096)) +((-3648 (*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1093 *4)) (-4 *4 (-1220)) (-5 *1 (-1096 *4)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1096 *3)) (-4 *3 (-1220)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-1220))))) +(-13 (-1220) (-10 -8 (-15 -3648 ($ (-1181) (-1093 |#1|))) (-15 -4265 ((-1181) $)) (-15 -4170 ((-1093 |#1|) $)) (IF (|has| (-1093 |#1|) (-1105)) (-6 (-1105)) |%noBranch|))) +((-4392 (((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 19))) +(((-1097 |#1| |#2|) (-10 -7 (-15 -4392 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)))) (-1220) (-1220)) (T -1097)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1096 *6)) (-5 *1 (-1097 *5 *6))))) +(-10 -7 (-15 -4392 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)))) +((-4170 (($ |#1| |#1|) 8)) (-3651 ((|#1| $) 11)) (-3653 ((|#1| $) 13)) (-3649 (((-550) $) 9)) (-3650 ((|#1| $) 10)) (-3652 ((|#1| $) 12)) (-4404 (($ |#1|) 6)) (-4171 (($ |#1| |#1|) 15)) (-3654 (($ $ (-550)) 14))) +(((-1098 |#1|) (-140) (-1220)) (T -1098)) +((-4171 (*1 *1 *2 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1098 *3)) (-4 *3 (-1220)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1098 *3)) (-4 *3 (-1220)) (-5 *2 (-550)))) (-4170 (*1 *1 *2 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220))))) +(-13 (-621 |t#1|) (-10 -8 (-15 -4171 ($ |t#1| |t#1|)) (-15 -3654 ($ $ (-550))) (-15 -3653 (|t#1| $)) (-15 -3652 (|t#1| $)) (-15 -3651 (|t#1| $)) (-15 -3650 (|t#1| $)) (-15 -3649 ((-550) $)) (-15 -4170 ($ |t#1| |t#1|)))) +(((-621 |#1|) . T)) +((-4170 (($ |#1| |#1|) 8)) (-4392 ((|#2| (-1 |#1| |#1|) $) 16)) (-3651 ((|#1| $) 11)) (-3653 ((|#1| $) 13)) (-3649 (((-550) $) 9)) (-3650 ((|#1| $) 10)) (-3652 ((|#1| $) 12)) (-4397 ((|#2| (-644 $)) 18) ((|#2| $) 17)) (-4404 (($ |#1|) 6)) (-4171 (($ |#1| |#1|) 15)) (-3654 (($ $ (-550)) 14))) +(((-1099 |#1| |#2|) (-140) (-851) (-1153 |t#1|)) (T -1099)) +((-4397 (*1 *2 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1099 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1153 *4)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1153 *3)))) (-4392 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1099 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1153 *4))))) +(-13 (-1098 |t#1|) (-10 -8 (-15 -4397 (|t#2| (-644 $))) (-15 -4397 (|t#2| $)) (-15 -4392 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-621 |#1|) . T) ((-1098 |#1|) . T)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-4231 (((-1139) $) 12)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 18) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3655 (((-644 (-1139)) $) 10)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1100) (-13 (-1087) (-10 -8 (-15 -3655 ((-644 (-1139)) $)) (-15 -4231 ((-1139) $))))) (T -1100)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-1100)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1100))))) +(-13 (-1087) (-10 -8 (-15 -3655 ((-644 (-1139)) $)) (-15 -4231 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-1979 (($) NIL (|has| |#1| (-371)))) (-3656 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3658 (($ $ $) 81)) (-3657 (((-112) $ $) 82)) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| |#1| (-371)))) (-3661 (($ (-644 |#1|)) NIL) (($) 13)) (-1680 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3831 (($ |#1| $) 74 (|has| $ (-6 -4427))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4427)))) (-3397 (($) NIL (|has| |#1| (-371)))) (-2126 (((-644 |#1|) $) 19 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2936 ((|#1| $) 55 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3262 ((|#1| $) 53 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 34)) (-2190 (((-923) $) NIL (|has| |#1| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3660 (($ $ $) 79)) (-1370 ((|#1| $) 25)) (-4041 (($ |#1| $) 69)) (-2565 (($ (-923)) NIL (|has| |#1| (-371)))) (-3666 (((-1124) $) NIL)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1371 ((|#1| $) 27)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 21)) (-3998 (($) 11)) (-3659 (($ $ |#1|) NIL) (($ $ $) 80)) (-1569 (($) NIL) (($ (-644 |#1|)) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 16)) (-4404 (((-539) $) 50 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 62)) (-1980 (($ $) NIL (|has| |#1| (-371)))) (-4380 (((-866) $) NIL)) (-1981 (((-774) $) NIL)) (-3662 (($ (-644 |#1|)) NIL) (($) 12)) (-3664 (((-112) $ $) NIL)) (-1372 (($ (-644 |#1|)) NIL)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 52)) (-4391 (((-774) $) 10 (|has| $ (-6 -4427))))) +(((-1101 |#1|) (-430 |#1|) (-1105)) (T -1101)) +NIL +(-430 |#1|) +((-3656 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3658 (($ $ $) 10)) (-3659 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1102 |#1| |#2|) (-10 -8 (-15 -3656 (|#1| |#2| |#1|)) (-15 -3656 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3659 (|#1| |#1| |#1|))) (-1103 |#2|) (-1105)) (T -1102)) +NIL +(-10 -8 (-15 -3656 (|#1| |#2| |#1|)) (-15 -3656 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3659 (|#1| |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-3656 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3658 (($ $ $) 21)) (-3657 (((-112) $ $) 20)) (-1310 (((-112) $ (-774)) 36)) (-3661 (($) 26) (($ (-644 |#1|)) 25)) (-4144 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4427)))) (-4158 (($) 37 T CONST)) (-1441 (($ $) 60 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 59 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4427)))) (-2126 (((-644 |#1|) $) 44 (|has| $ (-6 -4427)))) (-3663 (((-112) $ $) 29)) (-4153 (((-112) $ (-774)) 35)) (-3010 (((-644 |#1|) $) 45 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 39)) (-4150 (((-112) $ (-774)) 34)) (-3665 (((-1163) $) 10)) (-3660 (($ $ $) 24)) (-3666 (((-1124) $) 11)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2128 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#1|) (-644 |#1|)) 51 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 (-295 |#1|))) 48 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 30)) (-3829 (((-112) $) 33)) (-3998 (($) 32)) (-3659 (($ $ $) 23) (($ $ |#1|) 22)) (-2127 (((-774) |#1| $) 46 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4427)))) (-3826 (($ $) 31)) (-4404 (((-539) $) 61 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 52)) (-4380 (((-866) $) 12)) (-3662 (($) 28) (($ (-644 |#1|)) 27)) (-3664 (((-112) $ $) 9)) (-2129 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 38 (|has| $ (-6 -4427))))) +(((-1103 |#1|) (-140) (-1105)) (T -1103)) +((-3663 (*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1105)) (-5 *2 (-112)))) (-3662 (*1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-1103 *3)))) (-3661 (*1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3661 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-1103 *3)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3659 (*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3659 (*1 *1 *1 *2) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3657 (*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1105)) (-5 *2 (-112)))) (-3656 (*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3656 (*1 *1 *1 *2) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) (-3656 (*1 *1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) +(-13 (-1105) (-151 |t#1|) (-10 -8 (-6 -4417) (-15 -3663 ((-112) $ $)) (-15 -3662 ($)) (-15 -3662 ($ (-644 |t#1|))) (-15 -3661 ($)) (-15 -3661 ($ (-644 |t#1|))) (-15 -3660 ($ $ $)) (-15 -3659 ($ $ $)) (-15 -3659 ($ $ |t#1|)) (-15 -3658 ($ $ $)) (-15 -3657 ((-112) $ $)) (-15 -3656 ($ $ $)) (-15 -3656 ($ $ |t#1|)) (-15 -3656 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-616 (-866)) . T) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) . T) ((-1220) . T)) +((-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 8)) (-3664 (((-112) $ $) 12))) +(((-1104 |#1|) (-10 -8 (-15 -3664 ((-112) |#1| |#1|)) (-15 -3665 ((-1163) |#1|)) (-15 -3666 ((-1124) |#1|))) (-1105)) (T -1104)) +NIL +(-10 -8 (-15 -3664 ((-112) |#1| |#1|)) (-15 -3665 ((-1163) |#1|)) (-15 -3666 ((-1124) |#1|))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-1105) (-140)) (T -1105)) +((-3666 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1124)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1163)))) (-3664 (*1 *2 *1 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-112))))) +(-13 (-102) (-616 (-866)) (-10 -8 (-15 -3666 ((-1124) $)) (-15 -3665 ((-1163) $)) (-15 -3664 ((-112) $ $)))) +(((-102) . T) ((-616 (-866)) . T)) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) 36)) (-3670 (($ (-644 (-923))) 72)) (-3672 (((-3 $ #1="failed") $ (-923) (-923)) 83)) (-3397 (($) 40)) (-3668 (((-112) (-923) $) 44)) (-2190 (((-923) $) 66)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) 39)) (-3673 (((-3 $ #1#) $ (-923)) 79)) (-3666 (((-1124) $) NIL)) (-3669 (((-1270 $)) 49)) (-3671 (((-644 (-923)) $) 27)) (-3667 (((-774) $ (-923) (-923)) 80)) (-4380 (((-866) $) 32)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 24))) +(((-1106 |#1| |#2|) (-13 (-371) (-10 -8 (-15 -3673 ((-3 $ #1="failed") $ (-923))) (-15 -3672 ((-3 $ #1#) $ (-923) (-923))) (-15 -3671 ((-644 (-923)) $)) (-15 -3670 ($ (-644 (-923)))) (-15 -3669 ((-1270 $))) (-15 -3668 ((-112) (-923) $)) (-15 -3667 ((-774) $ (-923) (-923))))) (-923) (-923)) (T -1106)) +((-3673 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1106 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3672 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1106 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3669 (*1 *2) (-12 (-5 *2 (-1270 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3668 (*1 *2 *3 *1) (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3667 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-774)) (-5 *1 (-1106 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-371) (-10 -8 (-15 -3673 ((-3 $ #1="failed") $ (-923))) (-15 -3672 ((-3 $ #1#) $ (-923) (-923))) (-15 -3671 ((-644 (-923)) $)) (-15 -3670 ($ (-644 (-923)))) (-15 -3669 ((-1270 $))) (-15 -3668 ((-112) (-923) $)) (-15 -3667 ((-774) $ (-923) (-923))))) +((-2970 (((-112) $ $) NIL)) (-3683 (((-112) $) NIL)) (-3679 (((-1181) $) NIL)) (-3684 (((-112) $) NIL)) (-3968 (((-1163) $) NIL)) (-3686 (((-112) $) NIL)) (-3688 (((-112) $) NIL)) (-3685 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-3682 (((-112) $) NIL)) (-3678 (((-550) $) NIL)) (-3666 (((-1124) $) NIL)) (-3681 (((-112) $) NIL)) (-3677 (((-226) $) NIL)) (-3676 (((-866) $) NIL)) (-3689 (((-112) $ $) NIL)) (-4233 (($ $ (-550)) NIL) (($ $ (-644 (-550))) NIL)) (-3680 (((-644 $) $) NIL)) (-4404 (($ (-1163)) NIL) (($ (-1181)) NIL) (($ (-550)) NIL) (($ (-226)) NIL) (($ (-866)) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL)) (-3674 (($ $) NIL)) (-3675 (($ $) NIL)) (-3664 (((-112) $ $) NIL)) (-3687 (((-112) $) NIL)) (-3457 (((-112) $ $) NIL)) (-4391 (((-550) $) NIL))) +(((-1107) (-1108 (-1163) (-1181) (-550) (-226) (-866))) (T -1107)) +NIL +(-1108 (-1163) (-1181) (-550) (-226) (-866)) +((-2970 (((-112) $ $) 7)) (-3683 (((-112) $) 33)) (-3679 ((|#2| $) 28)) (-3684 (((-112) $) 34)) (-3968 ((|#1| $) 29)) (-3686 (((-112) $) 36)) (-3688 (((-112) $) 38)) (-3685 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3682 (((-112) $) 32)) (-3678 ((|#3| $) 27)) (-3666 (((-1124) $) 11)) (-3681 (((-112) $) 31)) (-3677 ((|#4| $) 26)) (-3676 ((|#5| $) 25)) (-3689 (((-112) $ $) 39)) (-4233 (($ $ (-550)) 21) (($ $ (-644 (-550))) 20)) (-3680 (((-644 $) $) 30)) (-4404 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-644 $)) 40)) (-4380 (((-866) $) 12)) (-3674 (($ $) 23)) (-3675 (($ $) 24)) (-3664 (((-112) $ $) 9)) (-3687 (((-112) $) 37)) (-3457 (((-112) $ $) 6)) (-4391 (((-550) $) 22))) +(((-1108 |#1| |#2| |#3| |#4| |#5|) (-140) (-1105) (-1105) (-1105) (-1105) (-1105)) (T -1108)) +((-3689 (*1 *2 *1 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112)))) (-3680 (*1 *2 *1) (-12 (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-644 *1)) (-4 *1 (-1108 *3 *4 *5 *6 *7)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1108 *2 *3 *4 *5 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *2 *4 *5 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *2 *5 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *2 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *2)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)))) (-3675 (*1 *1 *1) (-12 (-4 *1 (-1108 *2 *3 *4 *5 *6)) (-4 *2 (-1105)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)))) (-3674 (*1 *1 *1) (-12 (-4 *1 (-1108 *2 *3 *4 *5 *6)) (-4 *2 (-1105)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-550)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105))))) +(-13 (-1105) (-621 |t#1|) (-621 |t#2|) (-621 |t#3|) (-621 |t#4|) (-621 |t#4|) (-621 |t#5|) (-621 (-644 $)) (-10 -8 (-15 -3689 ((-112) $ $)) (-15 -3688 ((-112) $)) (-15 -3687 ((-112) $)) (-15 -3686 ((-112) $)) (-15 -3685 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -3680 ((-644 $) $)) (-15 -3968 (|t#1| $)) (-15 -3679 (|t#2| $)) (-15 -3678 (|t#3| $)) (-15 -3677 (|t#4| $)) (-15 -3676 (|t#5| $)) (-15 -3675 ($ $)) (-15 -3674 ($ $)) (-15 -4391 ((-550) $)) (-15 -4233 ($ $ (-550))) (-15 -4233 ($ $ (-644 (-550)))))) +(((-102) . T) ((-616 (-866)) . T) ((-621 (-644 $)) . T) ((-621 |#1|) . T) ((-621 |#2|) . T) ((-621 |#3|) . T) ((-621 |#4|) . T) ((-621 |#5|) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3683 (((-112) $) 45)) (-3679 ((|#2| $) 48)) (-3684 (((-112) $) 20)) (-3968 ((|#1| $) 21)) (-3686 (((-112) $) 42)) (-3688 (((-112) $) 14)) (-3685 (((-112) $) 44)) (-3665 (((-1163) $) NIL)) (-3682 (((-112) $) 46)) (-3678 ((|#3| $) 50)) (-3666 (((-1124) $) NIL)) (-3681 (((-112) $) 47)) (-3677 ((|#4| $) 49)) (-3676 ((|#5| $) 51)) (-3689 (((-112) $ $) 41)) (-4233 (($ $ (-550)) 62) (($ $ (-644 (-550))) 64)) (-3680 (((-644 $) $) 27)) (-4404 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-644 $)) 52)) (-4380 (((-866) $) 28)) (-3674 (($ $) 26)) (-3675 (($ $) 58)) (-3664 (((-112) $ $) NIL)) (-3687 (((-112) $) 23)) (-3457 (((-112) $ $) 40)) (-4391 (((-550) $) 60))) +(((-1109 |#1| |#2| |#3| |#4| |#5|) (-1108 |#1| |#2| |#3| |#4| |#5|) (-1105) (-1105) (-1105) (-1105) (-1105)) (T -1109)) +NIL +(-1108 |#1| |#2| |#3| |#4| |#5|) +((-3806 (((-1276) $) 22)) (-3690 (($ (-1181) (-438) |#2|) 11)) (-4380 (((-866) $) 16))) +(((-1110 |#1| |#2|) (-13 (-400) (-10 -8 (-15 -3690 ($ (-1181) (-438) |#2|)))) (-1105) (-425 |#1|)) (T -1110)) +((-3690 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1181)) (-5 *3 (-438)) (-4 *5 (-1105)) (-5 *1 (-1110 *5 *4)) (-4 *4 (-425 *5))))) +(-13 (-400) (-10 -8 (-15 -3690 ($ (-1181) (-438) |#2|)))) +((-3693 (((-112) |#5| |#5|) 44)) (-3696 (((-112) |#5| |#5|) 59)) (-3701 (((-112) |#5| (-644 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3697 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3703 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) 70)) (-3692 (((-1276)) 32)) (-3691 (((-1276) (-1163) (-1163) (-1163)) 28)) (-3702 (((-644 |#5|) (-644 |#5|)) 101)) (-3704 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) 93)) (-3705 (((-644 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 123)) (-3695 (((-112) |#5| |#5|) 53)) (-3700 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3698 (((-112) (-644 |#4|) (-644 |#4|)) 64)) (-3699 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-4133 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-3706 (((-3 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3694 (((-644 |#5|) (-644 |#5|)) 49))) +(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3691 ((-1276) (-1163) (-1163) (-1163))) (-15 -3692 ((-1276))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-644 |#5|) (-644 |#5|))) (-15 -3695 ((-112) |#5| |#5|)) (-15 -3696 ((-112) |#5| |#5|)) (-15 -3697 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3698 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4133 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3700 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3701 ((-112) |#5| |#5|)) (-15 -3701 ((-112) |#5| (-644 |#5|))) (-15 -3702 ((-644 |#5|) (-644 |#5|))) (-15 -3703 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3704 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-15 -3705 ((-644 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3706 ((-3 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1111)) +((-3706 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-1111 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1075 *6 *7 *8 *9)))) (-3705 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1075 *6 *7 *8 *9)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-1069 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-1111 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1710 *7)))) (-4 *6 (-1069 *3 *4 *5)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1111 *3 *4 *5 *6 *7)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *1 (-1111 *3 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1111 *5 *6 *7 *8 *3)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-4133 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *1 (-1111 *3 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) (-3692 (*1 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-1276)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) (-3691 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7))))) +(-10 -7 (-15 -3691 ((-1276) (-1163) (-1163) (-1163))) (-15 -3692 ((-1276))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-644 |#5|) (-644 |#5|))) (-15 -3695 ((-112) |#5| |#5|)) (-15 -3696 ((-112) |#5| |#5|)) (-15 -3697 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3698 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4133 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3700 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3701 ((-112) |#5| |#5|)) (-15 -3701 ((-112) |#5| (-644 |#5|))) (-15 -3702 ((-644 |#5|) (-644 |#5|))) (-15 -3703 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3704 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-15 -3705 ((-644 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3706 ((-3 (-2 (|:| -3689 (-644 |#4|)) (|:| -1710 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3721 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|) 108)) (-3711 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#4| |#4| |#5|) 80)) (-3714 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|) 102)) (-3716 (((-644 |#5|) |#4| |#5|) 124)) (-3718 (((-644 |#5|) |#4| |#5|) 131)) (-3720 (((-644 |#5|) |#4| |#5|) 132)) (-3715 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|) 109)) (-3717 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|) 130)) (-3719 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3712 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#3| (-112)) 92) (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3713 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|) 87)) (-3710 (((-1276)) 36)) (-3708 (((-1276)) 25)) (-3709 (((-1276) (-1163) (-1163) (-1163)) 32)) (-3707 (((-1276) (-1163) (-1163) (-1163)) 21))) +(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-1276) (-1163) (-1163) (-1163))) (-15 -3708 ((-1276))) (-15 -3709 ((-1276) (-1163) (-1163) (-1163))) (-15 -3710 ((-1276))) (-15 -3711 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3712 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#3| (-112))) (-15 -3713 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3714 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3719 ((-112) |#4| |#5|)) (-15 -3715 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3716 ((-644 |#5|) |#4| |#5|)) (-15 -3717 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3718 ((-644 |#5|) |#4| |#5|)) (-15 -3719 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3720 ((-644 |#5|) |#4| |#5|)) (-15 -3721 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1112)) +((-3721 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3720 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3719 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3718 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3716 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3715 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3719 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3714 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *5 (-112)) (-4 *8 (-1069 *6 *7 *4)) (-4 *9 (-1075 *6 *7 *4 *8)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *4 (-853)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1710 *9)))) (-5 *1 (-1112 *6 *7 *4 *8 *9)))) (-3712 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1112 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3711 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3710 (*1 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-1276)) (-5 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) (-3709 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1112 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7)))) (-3708 (*1 *2) (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-1276)) (-5 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1112 *4 *5 *6 *7 *8)) (-4 *8 (-1075 *4 *5 *6 *7))))) +(-10 -7 (-15 -3707 ((-1276) (-1163) (-1163) (-1163))) (-15 -3708 ((-1276))) (-15 -3709 ((-1276) (-1163) (-1163) (-1163))) (-15 -3710 ((-1276))) (-15 -3711 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3712 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) |#3| (-112))) (-15 -3713 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3714 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#4| |#5|)) (-15 -3719 ((-112) |#4| |#5|)) (-15 -3715 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3716 ((-644 |#5|) |#4| |#5|)) (-15 -3717 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3718 ((-644 |#5|) |#4| |#5|)) (-15 -3719 ((-644 (-2 (|:| |val| (-112)) (|:| -1710 |#5|))) |#4| |#5|)) (-15 -3720 ((-644 |#5|) |#4| |#5|)) (-15 -3721 ((-644 (-2 (|:| |val| |#4|) (|:| -1710 |#5|))) |#4| |#5|))) +((-2970 (((-112) $ $) 7)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) 86)) (-4116 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3487 (((-644 |#3|) $) 34)) (-3311 (((-112) $) 27)) (-3302 (((-112) $) 18 (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) 102) (((-112) $) 98)) (-4122 ((|#4| |#4| $) 93)) (-4208 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| $) 127)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) 28)) (-1310 (((-112) $ (-774)) 45)) (-4144 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4158 (($) 46 T CONST)) (-3307 (((-112) $) 23 (|has| |#1| (-561)))) (-3309 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3308 (((-112) $ $) 24 (|has| |#1| (-561)))) (-3310 (((-112) $) 26 (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3303 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 37)) (-3578 (($ (-644 |#4|)) 36)) (-4232 (((-3 $ #1#) $) 83)) (-4119 ((|#4| |#4| $) 90)) (-1441 (($ $) 69 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#4| $) 68 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4117 ((|#4| |#4| $) 88)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) 106)) (-3619 (((-112) |#4| $) 137)) (-3617 (((-112) |#4| $) 134)) (-3620 (((-112) |#4| $) 138) (((-112) $) 135)) (-2126 (((-644 |#4|) $) 53 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) 105) (((-112) $) 104)) (-3602 ((|#3| $) 35)) (-4153 (((-112) $ (-774)) 44)) (-3010 (((-644 |#4|) $) 54 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 48)) (-3317 (((-644 |#3|) $) 33)) (-3316 (((-112) |#3| $) 32)) (-4150 (((-112) $ (-774)) 43)) (-3665 (((-1163) $) 10)) (-3613 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3612 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| |#4| $) 128)) (-4231 (((-3 |#4| #1#) $) 84)) (-3614 (((-644 $) |#4| $) 130)) (-3616 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-3866 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-4131 (((-644 |#4|) $) 108)) (-4125 (((-112) |#4| $) 100) (((-112) $) 96)) (-4120 ((|#4| |#4| $) 91)) (-4133 (((-112) $ $) 111)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) 101) (((-112) $) 97)) (-4121 ((|#4| |#4| $) 92)) (-3666 (((-1124) $) 11)) (-4234 (((-3 |#4| #1#) $) 85)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4113 (((-3 $ #1#) $ |#4|) 79)) (-4202 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2128 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) 39)) (-3829 (((-112) $) 42)) (-3998 (($) 41)) (-4382 (((-774) $) 107)) (-2127 (((-774) |#4| $) 55 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4427)))) (-3826 (($ $) 40)) (-4404 (((-539) $) 70 (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 61)) (-3313 (($ $ |#3|) 29)) (-3315 (($ $ |#3|) 31)) (-4118 (($ $) 89)) (-3314 (($ $ |#3|) 30)) (-4380 (((-866) $) 12) (((-644 |#4|) $) 38)) (-4112 (((-774) $) 77 (|has| |#3| (-371)))) (-3664 (((-112) $ $) 9)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3611 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2129 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) 82)) (-3618 (((-112) |#4| $) 136)) (-4367 (((-112) |#3| $) 81)) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-1113 |#1| |#2| |#3| |#4|) (-140) (-456) (-796) (-853) (-1069 |t#1| |t#2| |t#3|)) (T -1113)) +NIL +(-13 (-1075 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-616 (-644 |#4|)) . T) ((-616 (-866)) . T) ((-151 |#4|) . T) ((-617 (-539)) |has| |#4| (-617 (-539))) ((-311 |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-493 |#4|) . T) ((-518 |#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1075 |#1| |#2| |#3| |#4|) . T) ((-1105) . T) ((-1215 |#1| |#2| |#3| |#4|) . T) ((-1220) . T)) +((-3732 (((-644 (-550)) (-550) (-550) (-550)) 39)) (-3731 (((-644 (-550)) (-550) (-550) (-550)) 29)) (-3730 (((-644 (-550)) (-550) (-550) (-550)) 34)) (-3729 (((-550) (-550) (-550)) 23)) (-3728 (((-1270 (-550)) (-644 (-550)) (-1270 (-550)) (-550)) 75) (((-1270 (-550)) (-1270 (-550)) (-1270 (-550)) (-550)) 70)) (-3727 (((-644 (-550)) (-644 (-550)) (-644 (-550)) (-112)) 52)) (-3726 (((-692 (-550)) (-644 (-550)) (-644 (-550)) (-692 (-550))) 74)) (-3725 (((-692 (-550)) (-644 (-550)) (-644 (-550))) 58)) (-3724 (((-644 (-692 (-550))) (-644 (-550))) 63)) (-3723 (((-644 (-550)) (-644 (-550)) (-644 (-550)) (-692 (-550))) 78)) (-3722 (((-692 (-550)) (-644 (-550)) (-644 (-550)) (-644 (-550))) 88))) +(((-1114) (-10 -7 (-15 -3722 ((-692 (-550)) (-644 (-550)) (-644 (-550)) (-644 (-550)))) (-15 -3723 ((-644 (-550)) (-644 (-550)) (-644 (-550)) (-692 (-550)))) (-15 -3724 ((-644 (-692 (-550))) (-644 (-550)))) (-15 -3725 ((-692 (-550)) (-644 (-550)) (-644 (-550)))) (-15 -3726 ((-692 (-550)) (-644 (-550)) (-644 (-550)) (-692 (-550)))) (-15 -3727 ((-644 (-550)) (-644 (-550)) (-644 (-550)) (-112))) (-15 -3728 ((-1270 (-550)) (-1270 (-550)) (-1270 (-550)) (-550))) (-15 -3728 ((-1270 (-550)) (-644 (-550)) (-1270 (-550)) (-550))) (-15 -3729 ((-550) (-550) (-550))) (-15 -3730 ((-644 (-550)) (-550) (-550) (-550))) (-15 -3731 ((-644 (-550)) (-550) (-550) (-550))) (-15 -3732 ((-644 (-550)) (-550) (-550) (-550))))) (T -1114)) +((-3732 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1114)) (-5 *3 (-550)))) (-3731 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1114)) (-5 *3 (-550)))) (-3730 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1114)) (-5 *3 (-550)))) (-3729 (*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1114)))) (-3728 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1270 (-550))) (-5 *3 (-644 (-550))) (-5 *4 (-550)) (-5 *1 (-1114)))) (-3728 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1270 (-550))) (-5 *3 (-550)) (-5 *1 (-1114)))) (-3727 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *3 (-112)) (-5 *1 (-1114)))) (-3726 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-692 (-550))) (-5 *3 (-644 (-550))) (-5 *1 (-1114)))) (-3725 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-1114)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-1114)))) (-3723 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *3 (-692 (-550))) (-5 *1 (-1114)))) (-3722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-1114))))) +(-10 -7 (-15 -3722 ((-692 (-550)) (-644 (-550)) (-644 (-550)) (-644 (-550)))) (-15 -3723 ((-644 (-550)) (-644 (-550)) (-644 (-550)) (-692 (-550)))) (-15 -3724 ((-644 (-692 (-550))) (-644 (-550)))) (-15 -3725 ((-692 (-550)) (-644 (-550)) (-644 (-550)))) (-15 -3726 ((-692 (-550)) (-644 (-550)) (-644 (-550)) (-692 (-550)))) (-15 -3727 ((-644 (-550)) (-644 (-550)) (-644 (-550)) (-112))) (-15 -3728 ((-1270 (-550)) (-1270 (-550)) (-1270 (-550)) (-550))) (-15 -3728 ((-1270 (-550)) (-644 (-550)) (-1270 (-550)) (-550))) (-15 -3729 ((-550) (-550) (-550))) (-15 -3730 ((-644 (-550)) (-550) (-550) (-550))) (-15 -3731 ((-644 (-550)) (-550) (-550) (-550))) (-15 -3732 ((-644 (-550)) (-550) (-550) (-550)))) +((** (($ $ (-923)) 10))) +(((-1115 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923)))) (-1116)) (T -1115)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-923)))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 15))) +(((-1116) (-140)) (T -1116)) +((* (*1 *1 *1 *1) (-4 *1 (-1116))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1116)) (-5 *2 (-923))))) +(-13 (-1105) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-923))))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL (|has| |#3| (-1105)))) (-3610 (((-112) $) NIL (|has| |#3| (-131)))) (-4141 (($ (-923)) NIL (|has| |#3| (-1053)))) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-2807 (($ $ $) NIL (|has| |#3| (-796)))) (-1408 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1310 (((-112) $ (-774)) NIL)) (-3542 (((-774)) NIL (|has| |#3| (-371)))) (-4057 (((-550) $) NIL (|has| |#3| (-851)))) (-4221 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105)))) (((-3 (-411 (-550)) #1#) $) NIL (-12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1105)))) (-3578 (((-550) $) NIL (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105)))) (((-411 (-550)) $) NIL (-12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) ((|#3| $) NIL (|has| |#3| (-1105)))) (-2429 (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#3| (-642 (-550))) (|has| |#3| (-1053)))) (((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 $) (-1270 $)) NIL (|has| |#3| (-1053))) (((-692 |#3|) (-692 $)) NIL (|has| |#3| (-1053)))) (-3892 (((-3 $ "failed") $) NIL (|has| |#3| (-729)))) (-3397 (($) NIL (|has| |#3| (-371)))) (-1686 ((|#3| $ (-550) |#3|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#3| $ (-550)) 12)) (-3608 (((-112) $) NIL (|has| |#3| (-851)))) (-2126 (((-644 |#3|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL (|has| |#3| (-729)))) (-3609 (((-112) $) NIL (|has| |#3| (-851)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-3010 (((-644 |#3|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-2130 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#3| |#3|) $) NIL)) (-2190 (((-923) $) NIL (|has| |#3| (-371)))) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#3| (-1105)))) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-2565 (($ (-923)) NIL (|has| |#3| (-371)))) (-3666 (((-1124) $) NIL (|has| |#3| (-1105)))) (-4234 ((|#3| $) NIL (|has| (-550) (-853)))) (-2375 (($ $ |#3|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-311 |#3|)) (|has| |#3| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-2381 (((-644 |#3|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#3| $ (-550) |#3|) NIL) ((|#3| $ (-550)) NIL)) (-4270 ((|#3| $ $) NIL (|has| |#3| (-1053)))) (-1571 (($ (-1270 |#3|)) NIL)) (-4345 (((-134)) NIL (|has| |#3| (-366)))) (-4244 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1 |#3| |#3|) (-774)) NIL (|has| |#3| (-1053))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1053)))) (-2127 (((-774) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427))) (((-774) |#3| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#3| (-1105))))) (-3826 (($ $) NIL)) (-4380 (((-1270 |#3|) $) NIL) (($ (-550)) NIL (-3962 (-12 (|has| |#3| (-1042 (-550))) (|has| |#3| (-1105))) (|has| |#3| (-1053)))) (($ (-411 (-550))) NIL (-12 (|has| |#3| (-1042 (-411 (-550)))) (|has| |#3| (-1105)))) (($ |#3|) NIL (|has| |#3| (-1105))) (((-866) $) NIL (|has| |#3| (-616 (-866))))) (-3532 (((-774)) NIL (|has| |#3| (-1053)) CONST)) (-3664 (((-112) $ $) NIL (|has| |#3| (-1105)))) (-2129 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4427)))) (-3809 (($ $) NIL (|has| |#3| (-851)))) (-3512 (($) NIL (|has| |#3| (-131)) CONST)) (-3069 (($) NIL (|has| |#3| (-729)) CONST)) (-3074 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053)))) (($ $ (-774)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1053)))) (($ $ (-1181)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#3| (-904 (-1181))) (|has| |#3| (-1053)))) (($ $ (-1 |#3| |#3|) (-774)) NIL (|has| |#3| (-1053))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1053)))) (-2968 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-2969 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-3457 (((-112) $ $) NIL (|has| |#3| (-1105)))) (-3089 (((-112) $ $) NIL (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-3090 (((-112) $ $) 24 (-3962 (|has| |#3| (-796)) (|has| |#3| (-851))))) (-4383 (($ $ |#3|) NIL (|has| |#3| (-366)))) (-4271 (($ $ $) NIL (|has| |#3| (-1053))) (($ $) NIL (|has| |#3| (-1053)))) (-4273 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-774)) NIL (|has| |#3| (-729))) (($ $ (-923)) NIL (|has| |#3| (-729)))) (* (($ (-550) $) NIL (|has| |#3| (-1053))) (($ $ $) NIL (|has| |#3| (-729))) (($ $ |#3|) NIL (|has| |#3| (-729))) (($ |#3| $) NIL (|has| |#3| (-729))) (($ (-774) $) NIL (|has| |#3| (-131))) (($ (-923) $) NIL (|has| |#3| (-25)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1117 |#1| |#2| |#3|) (-239 |#1| |#3|) (-774) (-774) (-796)) (T -1117)) +NIL +(-239 |#1| |#3|) +((-3733 (((-644 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 50)) (-3739 (((-550) (-1239 |#2| |#1|)) 97 (|has| |#1| (-456)))) (-3737 (((-550) (-1239 |#2| |#1|)) 79)) (-3734 (((-644 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 60)) (-3738 (((-550) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 96 (|has| |#1| (-456)))) (-3735 (((-644 |#1|) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 64)) (-3736 (((-550) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 78))) +(((-1118 |#1| |#2|) (-10 -7 (-15 -3733 ((-644 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3734 ((-644 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3735 ((-644 |#1|) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3736 ((-550) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3737 ((-550) (-1239 |#2| |#1|))) (IF (|has| |#1| (-456)) (PROGN (-15 -3738 ((-550) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3739 ((-550) (-1239 |#2| |#1|)))) |%noBranch|)) (-823) (-1181)) (T -1118)) +((-3739 (*1 *2 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-456)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-550)) (-5 *1 (-1118 *4 *5)))) (-3738 (*1 *2 *3 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-456)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-550)) (-5 *1 (-1118 *4 *5)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-550)) (-5 *1 (-1118 *4 *5)))) (-3736 (*1 *2 *3 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-550)) (-5 *1 (-1118 *4 *5)))) (-3735 (*1 *2 *3 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-644 *4)) (-5 *1 (-1118 *4 *5)))) (-3734 (*1 *2 *3 *3) (-12 (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-644 (-1239 *5 *4))) (-5 *1 (-1118 *4 *5)) (-5 *3 (-1239 *5 *4)))) (-3733 (*1 *2 *3 *3) (-12 (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-644 (-1239 *5 *4))) (-5 *1 (-1118 *4 *5)) (-5 *3 (-1239 *5 *4))))) +(-10 -7 (-15 -3733 ((-644 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3734 ((-644 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3735 ((-644 |#1|) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3736 ((-550) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3737 ((-550) (-1239 |#2| |#1|))) (IF (|has| |#1| (-456)) (PROGN (-15 -3738 ((-550) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3739 ((-550) (-1239 |#2| |#1|)))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3741 (((-1186) $) 12)) (-3740 (((-644 (-1186)) $) 14)) (-3742 (($ (-644 (-1186)) (-1186)) 10)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 29)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 17))) +(((-1119) (-13 (-1105) (-10 -8 (-15 -3742 ($ (-644 (-1186)) (-1186))) (-15 -3741 ((-1186) $)) (-15 -3740 ((-644 (-1186)) $))))) (T -1119)) +((-3742 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1186))) (-5 *3 (-1186)) (-5 *1 (-1119)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1119)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-1119))))) +(-13 (-1105) (-10 -8 (-15 -3742 ($ (-644 (-1186)) (-1186))) (-15 -3741 ((-1186) $)) (-15 -3740 ((-644 (-1186)) $)))) +((-2970 (((-112) $ $) NIL)) (-3743 (($ (-510) (-1119)) 13)) (-3742 (((-1119) $) 19)) (-3975 (((-510) $) 16)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 26) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1120) (-13 (-1087) (-10 -8 (-15 -3743 ($ (-510) (-1119))) (-15 -3975 ((-510) $)) (-15 -3742 ((-1119) $))))) (T -1120)) +((-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-1119)) (-5 *1 (-1120)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1120)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1120))))) +(-13 (-1087) (-10 -8 (-15 -3743 ($ (-510) (-1119))) (-15 -3975 ((-510) $)) (-15 -3742 ((-1119) $)))) +((-4057 (((-3 (-550) #1="failed") |#2| (-1181) |#2| (-1163)) 19) (((-3 (-550) #1#) |#2| (-1181) (-845 |#2|)) 17) (((-3 (-550) #1#) |#2|) 60))) +(((-1121 |#1| |#2|) (-10 -7 (-15 -4057 ((-3 (-550) #1="failed") |#2|)) (-15 -4057 ((-3 (-550) #1#) |#2| (-1181) (-845 |#2|))) (-15 -4057 ((-3 (-550) #1#) |#2| (-1181) |#2| (-1163)))) (-13 (-561) (-1042 (-550)) (-642 (-550)) (-456)) (-13 (-27) (-1206) (-425 |#1|))) (T -1121)) +((-4057 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-1163)) (-4 *6 (-13 (-561) (-1042 *2) (-642 *2) (-456))) (-5 *2 (-550)) (-5 *1 (-1121 *6 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))))) (-4057 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-845 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) (-4 *6 (-13 (-561) (-1042 *2) (-642 *2) (-456))) (-5 *2 (-550)) (-5 *1 (-1121 *6 *3)))) (-4057 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1042 *2) (-642 *2) (-456))) (-5 *2 (-550)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4)))))) +(-10 -7 (-15 -4057 ((-3 (-550) #1="failed") |#2|)) (-15 -4057 ((-3 (-550) #1#) |#2| (-1181) (-845 |#2|))) (-15 -4057 ((-3 (-550) #1#) |#2| (-1181) |#2| (-1163)))) +((-4057 (((-3 (-550) #1="failed") (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|)) (-1163)) 38) (((-3 (-550) #1#) (-411 (-950 |#1|)) (-1181) (-845 (-411 (-950 |#1|)))) 33) (((-3 (-550) #1#) (-411 (-950 |#1|))) 14))) +(((-1122 |#1|) (-10 -7 (-15 -4057 ((-3 (-550) #1="failed") (-411 (-950 |#1|)))) (-15 -4057 ((-3 (-550) #1#) (-411 (-950 |#1|)) (-1181) (-845 (-411 (-950 |#1|))))) (-15 -4057 ((-3 (-550) #1#) (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|)) (-1163)))) (-456)) (T -1122)) +((-4057 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-411 (-950 *6))) (-5 *4 (-1181)) (-5 *5 (-1163)) (-4 *6 (-456)) (-5 *2 (-550)) (-5 *1 (-1122 *6)))) (-4057 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-845 (-411 (-950 *6)))) (-5 *3 (-411 (-950 *6))) (-4 *6 (-456)) (-5 *2 (-550)) (-5 *1 (-1122 *6)))) (-4057 (*1 *2 *3) (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-456)) (-5 *2 (-550)) (-5 *1 (-1122 *4))))) +(-10 -7 (-15 -4057 ((-3 (-550) #1="failed") (-411 (-950 |#1|)))) (-15 -4057 ((-3 (-550) #1#) (-411 (-950 |#1|)) (-1181) (-845 (-411 (-950 |#1|))))) (-15 -4057 ((-3 (-550) #1#) (-411 (-950 |#1|)) (-1181) (-411 (-950 |#1|)) (-1163)))) +((-4083 (((-316 (-550)) (-48)) 12))) +(((-1123) (-10 -7 (-15 -4083 ((-316 (-550)) (-48))))) (T -1123)) +((-4083 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-550))) (-5 *1 (-1123))))) +(-10 -7 (-15 -4083 ((-316 (-550)) (-48)))) +((-2970 (((-112) $ $) NIL)) (-2460 (($ $) 44)) (-3610 (((-112) $) 69)) (-3747 (($ $ $) 51)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 97)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-2222 (($ $ $ $) 80)) (-4208 (($ $) NIL)) (-4403 (((-409 $) $) NIL)) (-1755 (((-112) $ $) NIL)) (-3542 (((-774)) 82)) (-4057 (((-550) $) NIL)) (-2764 (($ $ $) 77)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) "failed") $) NIL)) (-3578 (((-550) $) NIL)) (-2966 (($ $ $) 63)) (-2429 (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 91) (((-692 (-550)) (-692 $)) 32)) (-3892 (((-3 $ "failed") $) NIL)) (-3427 (((-3 (-411 (-550)) "failed") $) NIL)) (-3426 (((-112) $) NIL)) (-3425 (((-411 (-550)) $) NIL)) (-3397 (($) 94) (($ $) 95)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL)) (-4157 (((-112) $) NIL)) (-2220 (($ $ $ $) NIL)) (-2228 (($ $ $) 92)) (-3608 (((-112) $) NIL)) (-1457 (($ $ $) NIL)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL)) (-2575 (((-112) $) 71)) (-3078 (((-112) $) 68)) (-3748 (($ $) 45)) (-3870 (((-3 $ "failed") $) NIL)) (-3609 (((-112) $) 81)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL)) (-2221 (($ $ $ $) 78)) (-2936 (($ $ $) 73) (($) 42 T CONST)) (-3262 (($ $ $) 72) (($) 41 T CONST)) (-2224 (($ $) NIL)) (-2190 (((-923) $) 87)) (-4267 (($ $) 76)) (-2071 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3665 (((-1163) $) NIL)) (-2219 (($ $ $) NIL)) (-3871 (($) NIL T CONST)) (-2565 (($ (-923)) 86)) (-2226 (($ $) 56)) (-3666 (((-1124) $) 75)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-3566 (($ $ $) 66) (($ (-644 $)) NIL)) (-1455 (($ $) NIL)) (-4166 (((-409 $) $) NIL)) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL)) (-3891 (((-3 $ "failed") $ $) NIL)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3079 (((-112) $) NIL)) (-1754 (((-774) $) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 65)) (-4244 (($ $ (-774)) NIL) (($ $) NIL)) (-2225 (($ $) 57)) (-3826 (($ $) NIL)) (-4404 (((-550) $) 17) (((-539) $) NIL) (((-894 (-550)) $) NIL) (((-381) $) NIL) (((-226) $) NIL)) (-4380 (((-866) $) 35) (($ (-550)) 93) (($ $) NIL) (($ (-550)) 93)) (-3532 (((-774)) NIL T CONST)) (-2229 (((-112) $ $) NIL)) (-3507 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-3099 (($) 40)) (-2242 (((-112) $ $) NIL)) (-2223 (($ $ $ $) 79)) (-3809 (($ $) 67)) (-2458 (($ $ $) 47)) (-3512 (($) 7 T CONST)) (-3744 (($ $ $) 50)) (-3069 (($) 39 T CONST)) (-2902 (((-1163) $) 26) (((-1163) $ (-112)) 27) (((-1276) (-826) $) 28) (((-1276) (-826) $ (-112)) 29)) (-3746 (($ $) 48)) (-3074 (($ $ (-774)) NIL) (($ $) NIL)) (-3745 (($ $ $) 49)) (-2968 (((-112) $ $) 55)) (-2969 (((-112) $ $) 52)) (-3457 (((-112) $ $) 43)) (-3089 (((-112) $ $) 54)) (-3090 (((-112) $ $) 10)) (-2459 (($ $ $) 46)) (-4271 (($ $) 16) (($ $ $) 59)) (-4273 (($ $ $) 58)) (** (($ $ (-923)) NIL) (($ $ (-774)) 61)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 38) (($ $ $) 37))) +(((-1124) (-13 (-549) (-847) (-665) (-824) (-10 -8 (-6 -4414) (-6 -4419) (-6 -4415) (-15 -3748 ($ $)) (-15 -3747 ($ $ $)) (-15 -3746 ($ $)) (-15 -3745 ($ $ $)) (-15 -3744 ($ $ $))))) (T -1124)) +((-3748 (*1 *1 *1) (-5 *1 (-1124))) (-3747 (*1 *1 *1 *1) (-5 *1 (-1124))) (-3746 (*1 *1 *1) (-5 *1 (-1124))) (-3745 (*1 *1 *1 *1) (-5 *1 (-1124))) (-3744 (*1 *1 *1 *1) (-5 *1 (-1124)))) +(-13 (-549) (-847) (-665) (-824) (-10 -8 (-6 -4414) (-6 -4419) (-6 -4415) (-15 -3748 ($ $)) (-15 -3747 ($ $ $)) (-15 -3746 ($ $)) (-15 -3745 ($ $ $)) (-15 -3744 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3748 ((|#1| $) 45)) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-3750 ((|#1| |#1| $) 47)) (-3749 ((|#1| $) 46)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3747 (((-773) $) 44)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1124 |#1|) (-140) (-1219)) (T -1124)) -((-3750 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3750 (|t#1| |t#1| $)) (-15 -3749 (|t#1| $)) (-15 -3748 (|t#1| $)) (-15 -3747 ((-773) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-3754 ((|#3| $) 87)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#3| #1#) $) 50)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#3| $) 47)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) 84) (((-691 |#3|) (-691 $)) 76)) (-4242 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-3753 ((|#3| $) 89)) (-3755 ((|#4| $) 43)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ |#3|) 25)) (** (($ $ (-922)) NIL) (($ $ (-773)) 24) (($ $ (-549)) 95))) -(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -3753 (|#3| |#1|)) (-15 -3754 (|#3| |#1|)) (-15 -3755 (|#4| |#1|)) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -4378 ((-865) |#1|))) (-1126 |#2| |#3| |#4| |#5|) (-773) (-1052) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1125)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -3753 (|#3| |#1|)) (-15 -3754 (|#3| |#1|)) (-15 -3755 (|#4| |#1|)) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3754 ((|#2| $) 77)) (-3525 (((-112) $) 117)) (-1407 (((-3 $ "failed") $ $) 20)) (-3527 (((-112) $) 115)) (-1309 (((-112) $ (-773)) 107)) (-3757 (($ |#2|) 80)) (-4156 (($) 18 T CONST)) (-3514 (($ $) 134 (|has| |#2| (-308)))) (-3516 ((|#3| $ (-549)) 129)) (-3577 (((-3 (-549) #1="failed") $) 92 (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 89 (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #1#) $) 86)) (-3576 (((-549) $) 91 (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) 88 (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) 87)) (-2427 (((-691 (-549)) (-691 $)) 84 (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 83 (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 82) (((-691 |#2|) (-691 $)) 81)) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-773) $) 135 (|has| |#2| (-560)))) (-3517 ((|#2| $ (-549) (-549)) 127)) (-2124 (((-643 |#2|) $) 100 (|has| $ (-6 -4425)))) (-2573 (((-112) $) 35)) (-3512 (((-773) $) 136 (|has| |#2| (-560)))) (-3511 (((-643 |#4|) $) 137 (|has| |#2| (-560)))) (-3519 (((-773) $) 123)) (-3518 (((-773) $) 124)) (-4151 (((-112) $ (-773)) 108)) (-3751 ((|#2| $) 72 (|has| |#2| (-6 (-4427 #2="*"))))) (-3523 (((-549) $) 119)) (-3521 (((-549) $) 121)) (-3008 (((-643 |#2|) $) 99 (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 120)) (-3520 (((-549) $) 122)) (-3528 (($ (-643 (-643 |#2|))) 114)) (-2128 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-4025 (((-643 (-643 |#2|)) $) 125)) (-4148 (((-112) $ (-773)) 109)) (-3663 (((-1162) $) 10)) (-4021 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-560)))) (-2126 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 113)) (-3827 (((-112) $) 110)) (-3996 (($) 111)) (-4231 ((|#2| $ (-549) (-549) |#2|) 128) ((|#2| $ (-549) (-549)) 126)) (-4242 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-773)) 55) (($ $ (-643 (-1180)) (-643 (-773))) 48 (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) 47 (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) 46 (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) 45 (|has| |#2| (-903 (-1180)))) (($ $ (-773)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-3753 ((|#2| $) 76)) (-3756 (($ (-643 |#2|)) 79)) (-3526 (((-112) $) 116)) (-3755 ((|#3| $) 78)) (-3752 ((|#2| $) 73 (|has| |#2| (-6 (-4427 #2#))))) (-2125 (((-773) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4425))) (((-773) |#2| $) 98 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 112)) (-3515 ((|#4| $ (-549)) 130)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 90 (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) 85)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4425)))) (-3524 (((-112) $) 118)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-773)) 53) (($ $ (-643 (-1180)) (-643 (-773))) 52 (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) 51 (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) 50 (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) 49 (|has| |#2| (-903 (-1180)))) (($ $ (-773)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 70 (|has| |#2| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-4389 (((-773) $) 106 (|has| $ (-6 -4425))))) -(((-1126 |#1| |#2| |#3| |#4|) (-140) (-773) (-1052) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1126)) -((-3757 (*1 *1 *2) (-12 (-4 *2 (-1052)) (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-643 *4)) (-4 *4 (-1052)) (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1052)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1052)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4427 #1="*"))) (-4 *2 (-1052)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4427 #1#))) (-4 *2 (-1052)))) (-4021 (*1 *1 *1) (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1056 |t#1| |t#1| |t#2| |t#3| |t#4|) (-415 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-719 |t#2|)) |%noBranch|) (-15 -3757 ($ |t#2|)) (-15 -3756 ($ (-643 |t#2|))) (-15 -3755 (|t#3| $)) (-15 -3754 (|t#2| $)) (-15 -3753 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4427 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3752 (|t#2| $)) (-15 -3751 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -4021 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4427 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 #2=(-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-379 |#2|) . T) ((-415 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-650 |#2|) . T) ((-650 $) . T) ((-642 |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-6 (-4427 #1#)))) ((-641 (-549)) |has| |#2| (-641 (-549))) ((-641 |#2|) . T) ((-719 |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-6 (-4427 #1#)))) ((-728) . T) ((-903 (-1180)) |has| |#2| (-903 (-1180))) ((-1056 |#1| |#1| |#2| |#3| |#4|) . T) ((-1041 #2#) |has| |#2| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#2| (-1041 (-549))) ((-1041 |#2|) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1219) . T)) -((-3760 ((|#4| |#4|) 81)) (-3758 ((|#4| |#4|) 76)) (-3762 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|) 91)) (-3761 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3759 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3758 (|#4| |#4|)) (-15 -3759 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3760 (|#4| |#4|)) (-15 -3761 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3762 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|))) (-308) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -1127)) -((-3762 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-374 *5)) (-4 *4 (-374 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-1127 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1127 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1127 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -3758 (|#4| |#4|)) (-15 -3759 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3760 (|#4| |#4|)) (-15 -3761 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3762 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 18)) (-3485 (((-643 |#2|) $) 174)) (-3487 (((-1174 $) $ |#2|) 60) (((-1174 |#1|) $) 49)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 116 (|has| |#1| (-560)))) (-2241 (($ $) 118 (|has| |#1| (-560)))) (-2239 (((-112) $) 120 (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 |#2|)) 213)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) 167) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 |#2| #2#) $) NIL)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) ((|#2| $) NIL)) (-4188 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-4391 (($ $) 217)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 90)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 |#2|) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) 20)) (-2581 (((-773) $) 30)) (-3488 (($ (-1174 |#1|) |#2|) 54) (($ (-1174 $) |#2|) 71)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) 38)) (-3294 (($ |#1| (-534 |#2|)) 78) (($ $ |#2| (-773)) 58) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#2|) NIL)) (-3223 (((-534 |#2|) $) 205) (((-773) $ |#2|) 206) (((-643 (-773)) $ (-643 |#2|)) 207)) (-1770 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 128)) (-3486 (((-3 |#2| #3="failed") $) 177)) (-3295 (($ $) 216)) (-3594 ((|#1| $) 43)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 39)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 148 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 153 (|has| |#1| (-455))) (($ $ $) 138 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-643 |#2|) (-643 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-643 |#2|) (-643 $)) 194)) (-4189 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4242 (($ $ |#2|) 215) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4380 (((-534 |#2|) $) 201) (((-773) $ |#2|) 196) (((-643 (-773)) $ (-643 |#2|)) 199)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#1| $) 134 (|has| |#1| (-455))) (($ $ |#2|) 137 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 159) (($ (-549)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-560))) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-4249 (((-643 |#1|) $) 162)) (-4109 ((|#1| $ (-534 |#2|)) 80) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 87 T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) 123 (|has| |#1| (-560)))) (-3510 (($) 12 T CONST)) (-3067 (($) 14 T CONST)) (-3072 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3455 (((-112) $ $) 106)) (-4381 (($ $ |#1|) 132 (|has| |#1| (-365)))) (-4269 (($ $) 93) (($ $ $) 104)) (-4271 (($ $ $) 55)) (** (($ $ (-922)) 110) (($ $ (-773)) 109)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 96) (($ $ $) 72) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1128 |#1| |#2|) (-953 |#1| (-534 |#2|) |#2|) (-1052) (-852)) (T -1128)) -NIL -(-953 |#1| (-534 |#2|) |#2|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3915 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 128 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 124 (|has| |#1| (-38 (-410 (-549)))))) (-3917 (($ $) 156 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4246 (((-949 |#1|) $ (-773)) NIL) (((-949 |#1|) $ (-773) (-773)) NIL)) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $ |#2|) NIL) (((-773) $ |#2| (-773)) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4369 (((-112) $) NIL)) (-3294 (($ $ (-643 |#2|) (-643 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-773)) 63) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) 122 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4108 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-549)))))) (-4200 (($ $ (-773)) 16)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4375 (($ $) 120 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (($ $ |#2| $) 106) (($ $ (-643 |#2|) (-643 $)) 99) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL)) (-4242 (($ $ |#2|) 109) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4380 (((-534 |#2|) $) NIL)) (-3763 (((-1 (-1157 |#3|) |#3|) (-643 |#2|) (-643 (-1157 |#3|))) 87)) (-3918 (($ $) 158 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 126 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 18)) (-4378 (((-865) $) 199) (($ (-549)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-560))) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#2|) 70) (($ |#3|) 68)) (-4109 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL) ((|#3| $ (-773)) 43)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 164 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 160 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 168 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-3924 (($ $) 170 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 166 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 162 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 52 T CONST)) (-3067 (($) 62 T CONST)) (-3072 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-773)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 112 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 65) (($ $ (-410 (-549))) 117 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 115 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1129 |#1| |#2| |#3|) (-13 (-742 |#1| |#2|) (-10 -8 (-15 -4109 (|#3| $ (-773))) (-15 -4378 ($ |#2|)) (-15 -4378 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3763 ((-1 (-1157 |#3|) |#3|) (-643 |#2|) (-643 (-1157 |#3|)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ |#2| |#1|)) (-15 -4108 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1052) (-852) (-953 |#1| (-534 |#2|) |#2|)) (T -1129)) -((-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *2 (-953 *4 (-534 *5) *5)) (-5 *1 (-1129 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-852)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *2 (-852)) (-5 *1 (-1129 *3 *2 *4)) (-4 *4 (-953 *3 (-534 *2) *2)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) (-4 *2 (-953 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) (-4 *2 (-953 *3 (-534 *4) *4)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1157 *7))) (-4 *6 (-852)) (-4 *7 (-953 *5 (-534 *6) *6)) (-4 *5 (-1052)) (-5 *2 (-1 (-1157 *7) *7)) (-5 *1 (-1129 *5 *6 *7)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-4 *2 (-852)) (-5 *1 (-1129 *3 *2 *4)) (-4 *4 (-953 *3 (-534 *2) *2)))) (-4108 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1129 *4 *3 *5))) (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *1 (-1129 *4 *3 *5)) (-4 *5 (-953 *4 (-534 *3) *3))))) -(-13 (-742 |#1| |#2|) (-10 -8 (-15 -4109 (|#3| $ (-773))) (-15 -4378 ($ |#2|)) (-15 -4378 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3763 ((-1 (-1157 |#3|) |#3|) (-643 |#2|) (-643 (-1157 |#3|)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ |#2| |#1|)) (-15 -4108 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-1130 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1130)) -NIL -(-13 (-1112 |t#1| |t#2| |t#3| |t#4|) (-786 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-786 |#1| |#2| |#3| |#4|) . T) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1074 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1112 |#1| |#2| |#3| |#4|) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-4004 (((-643 |#2|) |#1|) 15)) (-3769 (((-643 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-643 |#2|) |#1|) 63)) (-3767 (((-643 |#2|) |#2| |#2| |#2|) 45) (((-643 |#2|) |#1|) 61)) (-3764 ((|#2| |#1|) 56)) (-3765 (((-2 (|:| |solns| (-643 |#2|)) (|:| |maps| (-643 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3766 (((-643 |#2|) |#2| |#2|) 42) (((-643 |#2|) |#1|) 60)) (-3768 (((-643 |#2|) |#2| |#2| |#2| |#2|) 46) (((-643 |#2|) |#1|) 62)) (-3773 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3771 ((|#2| |#2| |#2| |#2|) 53)) (-3770 ((|#2| |#2| |#2|) 52)) (-3772 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1131 |#1| |#2|) (-10 -7 (-15 -4004 ((-643 |#2|) |#1|)) (-15 -3764 (|#2| |#1|)) (-15 -3765 ((-2 (|:| |solns| (-643 |#2|)) (|:| |maps| (-643 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3766 ((-643 |#2|) |#1|)) (-15 -3767 ((-643 |#2|) |#1|)) (-15 -3768 ((-643 |#2|) |#1|)) (-15 -3769 ((-643 |#2|) |#1|)) (-15 -3766 ((-643 |#2|) |#2| |#2|)) (-15 -3767 ((-643 |#2|) |#2| |#2| |#2|)) (-15 -3768 ((-643 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3769 ((-643 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3770 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3773 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1245 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (T -1131)) -((-3773 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3772 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3771 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3770 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3769 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3768 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3767 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3766 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3768 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3767 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-2 (|:| |solns| (-643 *5)) (|:| |maps| (-643 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1131 *3 *5)) (-4 *3 (-1245 *5)))) (-3764 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -4004 ((-643 |#2|) |#1|)) (-15 -3764 (|#2| |#1|)) (-15 -3765 ((-2 (|:| |solns| (-643 |#2|)) (|:| |maps| (-643 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3766 ((-643 |#2|) |#1|)) (-15 -3767 ((-643 |#2|) |#1|)) (-15 -3768 ((-643 |#2|) |#1|)) (-15 -3769 ((-643 |#2|) |#1|)) (-15 -3766 ((-643 |#2|) |#2| |#2|)) (-15 -3767 ((-643 |#2|) |#2| |#2| |#2|)) (-15 -3768 ((-643 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3769 ((-643 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3770 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3773 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3774 (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|))))) 118) (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180))) 117) (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|)))) 115) (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 113) (((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|)))) 97) (((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))) (-1180)) 98) (((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|))) 92) (((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)) (-1180)) 82)) (-3775 (((-643 (-643 (-315 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 111) (((-643 (-315 |#1|)) (-410 (-949 |#1|)) (-1180)) 54)) (-3776 (((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-410 (-949 |#1|)) (-1180)) 122) (((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180)) 121))) -(((-1132 |#1|) (-10 -7 (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -3775 ((-643 (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3775 ((-643 (-643 (-315 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-410 (-949 |#1|)) (-1180)))) (-13 (-308) (-147))) (T -1132)) -((-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-315 *5)))) (-5 *1 (-1132 *5)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-315 *5))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-294 (-410 (-949 *5))))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1132 *5))))) -(-10 -7 (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -3775 ((-643 (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3775 ((-643 (-643 (-315 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-410 (-949 |#1|)) (-1180)))) -((-3778 (((-410 (-1174 (-315 |#1|))) (-1269 (-315 |#1|)) (-410 (-1174 (-315 |#1|))) (-549)) 38)) (-3777 (((-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|)))) 49))) -(((-1133 |#1|) (-10 -7 (-15 -3777 ((-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))))) (-15 -3778 ((-410 (-1174 (-315 |#1|))) (-1269 (-315 |#1|)) (-410 (-1174 (-315 |#1|))) (-549)))) (-560)) (T -1133)) -((-3778 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1174 (-315 *5)))) (-5 *3 (-1269 (-315 *5))) (-5 *4 (-549)) (-4 *5 (-560)) (-5 *1 (-1133 *5)))) (-3777 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1174 (-315 *3)))) (-4 *3 (-560)) (-5 *1 (-1133 *3))))) -(-10 -7 (-15 -3777 ((-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))))) (-15 -3778 ((-410 (-1174 (-315 |#1|))) (-1269 (-315 |#1|)) (-410 (-1174 (-315 |#1|))) (-549)))) -((-4004 (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-315 |#1|))) (-643 (-1180))) 246) (((-643 (-294 (-315 |#1|))) (-315 |#1|) (-1180)) 23) (((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)) (-1180)) 29) (((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|))) 28) (((-643 (-294 (-315 |#1|))) (-315 |#1|)) 24))) -(((-1134 |#1|) (-10 -7 (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|) (-1180))) (-15 -4004 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-315 |#1|))) (-643 (-1180))))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (T -1134)) -((-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1134 *5)) (-5 *3 (-643 (-294 (-315 *5)))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-315 *5)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-294 (-315 *5))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-294 (-315 *4))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-315 *4))))) -(-10 -7 (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|) (-1180))) (-15 -4004 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-315 |#1|))) (-643 (-1180))))) -((-3780 ((|#2| |#2|) 30 (|has| |#1| (-852))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3779 ((|#2| |#2|) 29 (|has| |#1| (-852))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1135 |#1| |#2|) (-10 -7 (-15 -3779 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-852)) (PROGN (-15 -3779 (|#2| |#2|)) (-15 -3780 (|#2| |#2|))) |%noBranch|)) (-1219) (-13 (-606 (-549) |#1|) (-10 -7 (-6 -4425) (-6 -4426)))) (T -1135)) -((-3780 (*1 *2 *2) (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3779 (*1 *2 *2) (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3779 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426))))))) -(-10 -7 (-15 -3779 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-852)) (PROGN (-15 -3779 (|#2| |#2|)) (-15 -3780 (|#2| |#2|))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-4320 (((-1168 3 |#1|) $) 141)) (-3790 (((-112) $) 101)) (-3791 (($ $ (-643 (-946 |#1|))) 44) (($ $ (-643 (-643 |#1|))) 104) (($ (-643 (-946 |#1|))) 103) (((-643 (-946 |#1|)) $) 102)) (-3796 (((-112) $) 72)) (-4138 (($ $ (-946 |#1|)) 76) (($ $ (-643 |#1|)) 81) (($ $ (-773)) 83) (($ (-946 |#1|)) 77) (((-946 |#1|) $) 75)) (-3782 (((-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773))) $) 139)) (-3800 (((-773) $) 53)) (-3801 (((-773) $) 52)) (-4319 (($ $ (-773) (-946 |#1|)) 67)) (-3788 (((-112) $) 111)) (-3789 (($ $ (-643 (-643 (-946 |#1|))) (-643 (-171)) (-171)) 118) (($ $ (-643 (-643 (-643 |#1|))) (-643 (-171)) (-171)) 120) (($ $ (-643 (-643 (-946 |#1|))) (-112) (-112)) 115) (($ $ (-643 (-643 (-643 |#1|))) (-112) (-112)) 127) (($ (-643 (-643 (-946 |#1|)))) 116) (($ (-643 (-643 (-946 |#1|))) (-112) (-112)) 117) (((-643 (-643 (-946 |#1|))) $) 114)) (-3941 (($ (-643 $)) 56) (($ $ $) 57)) (-3783 (((-643 (-171)) $) 133)) (-3787 (((-643 (-946 |#1|)) $) 130)) (-3784 (((-643 (-643 (-171))) $) 132)) (-3785 (((-643 (-643 (-643 (-946 |#1|)))) $) NIL)) (-3786 (((-643 (-643 (-643 (-773)))) $) 131)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3797 (((-773) $ (-643 (-946 |#1|))) 65)) (-3794 (((-112) $) 84)) (-3795 (($ $ (-643 (-946 |#1|))) 86) (($ $ (-643 (-643 |#1|))) 92) (($ (-643 (-946 |#1|))) 87) (((-643 (-946 |#1|)) $) 85)) (-3802 (($) 48) (($ (-1168 3 |#1|)) 49)) (-3824 (($ $) 63)) (-3798 (((-643 $) $) 62)) (-4186 (($ (-643 $)) 59)) (-3799 (((-643 $) $) 61)) (-4378 (((-865) $) 146)) (-3792 (((-112) $) 94)) (-3793 (($ $ (-643 (-946 |#1|))) 96) (($ $ (-643 (-643 |#1|))) 99) (($ (-643 (-946 |#1|))) 97) (((-643 (-946 |#1|)) $) 95)) (-3781 (($ $) 140)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1136 |#1|) (-1137 |#1|) (-1052)) (T -1136)) -NIL -(-1137 |#1|) -((-2968 (((-112) $ $) 7)) (-4320 (((-1168 3 |#1|) $) 14)) (-3790 (((-112) $) 30)) (-3791 (($ $ (-643 (-946 |#1|))) 34) (($ $ (-643 (-643 |#1|))) 33) (($ (-643 (-946 |#1|))) 32) (((-643 (-946 |#1|)) $) 31)) (-3796 (((-112) $) 45)) (-4138 (($ $ (-946 |#1|)) 50) (($ $ (-643 |#1|)) 49) (($ $ (-773)) 48) (($ (-946 |#1|)) 47) (((-946 |#1|) $) 46)) (-3782 (((-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773))) $) 16)) (-3800 (((-773) $) 59)) (-3801 (((-773) $) 60)) (-4319 (($ $ (-773) (-946 |#1|)) 51)) (-3788 (((-112) $) 22)) (-3789 (($ $ (-643 (-643 (-946 |#1|))) (-643 (-171)) (-171)) 29) (($ $ (-643 (-643 (-643 |#1|))) (-643 (-171)) (-171)) 28) (($ $ (-643 (-643 (-946 |#1|))) (-112) (-112)) 27) (($ $ (-643 (-643 (-643 |#1|))) (-112) (-112)) 26) (($ (-643 (-643 (-946 |#1|)))) 25) (($ (-643 (-643 (-946 |#1|))) (-112) (-112)) 24) (((-643 (-643 (-946 |#1|))) $) 23)) (-3941 (($ (-643 $)) 58) (($ $ $) 57)) (-3783 (((-643 (-171)) $) 17)) (-3787 (((-643 (-946 |#1|)) $) 21)) (-3784 (((-643 (-643 (-171))) $) 18)) (-3785 (((-643 (-643 (-643 (-946 |#1|)))) $) 19)) (-3786 (((-643 (-643 (-643 (-773)))) $) 20)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3797 (((-773) $ (-643 (-946 |#1|))) 52)) (-3794 (((-112) $) 40)) (-3795 (($ $ (-643 (-946 |#1|))) 44) (($ $ (-643 (-643 |#1|))) 43) (($ (-643 (-946 |#1|))) 42) (((-643 (-946 |#1|)) $) 41)) (-3802 (($) 62) (($ (-1168 3 |#1|)) 61)) (-3824 (($ $) 53)) (-3798 (((-643 $) $) 54)) (-4186 (($ (-643 $)) 56)) (-3799 (((-643 $) $) 55)) (-4378 (((-865) $) 12)) (-3792 (((-112) $) 35)) (-3793 (($ $ (-643 (-946 |#1|))) 39) (($ $ (-643 (-643 |#1|))) 38) (($ (-643 (-946 |#1|))) 37) (((-643 (-946 |#1|)) $) 36)) (-3781 (($ $) 15)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-1137 |#1|) (-140) (-1052)) (T -1137)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-865)))) (-3802 (*1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-1168 3 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-4186 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3799 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)))) (-3798 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)))) (-3824 (*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-643 (-946 *4))) (-4 *1 (-1137 *4)) (-4 *4 (-1052)) (-5 *2 (-773)))) (-4319 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-946 *4)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-946 *3)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3789 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-643 (-946 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) (-4 *1 (-1137 *5)) (-4 *5 (-1052)))) (-3789 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) (-4 *1 (-1137 *5)) (-4 *5 (-1052)))) (-3789 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) (-3789 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 *3)))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *4 (-1052)) (-4 *1 (-1137 *4)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-946 *3)))))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-643 (-773))))))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-643 (-946 *3))))))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-171)))))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-171))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773)))))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-1168 3 *3))))) -(-13 (-1104) (-10 -8 (-15 -3802 ($)) (-15 -3802 ($ (-1168 3 |t#1|))) (-15 -3801 ((-773) $)) (-15 -3800 ((-773) $)) (-15 -3941 ($ (-643 $))) (-15 -3941 ($ $ $)) (-15 -4186 ($ (-643 $))) (-15 -3799 ((-643 $) $)) (-15 -3798 ((-643 $) $)) (-15 -3824 ($ $)) (-15 -3797 ((-773) $ (-643 (-946 |t#1|)))) (-15 -4319 ($ $ (-773) (-946 |t#1|))) (-15 -4138 ($ $ (-946 |t#1|))) (-15 -4138 ($ $ (-643 |t#1|))) (-15 -4138 ($ $ (-773))) (-15 -4138 ($ (-946 |t#1|))) (-15 -4138 ((-946 |t#1|) $)) (-15 -3796 ((-112) $)) (-15 -3795 ($ $ (-643 (-946 |t#1|)))) (-15 -3795 ($ $ (-643 (-643 |t#1|)))) (-15 -3795 ($ (-643 (-946 |t#1|)))) (-15 -3795 ((-643 (-946 |t#1|)) $)) (-15 -3794 ((-112) $)) (-15 -3793 ($ $ (-643 (-946 |t#1|)))) (-15 -3793 ($ $ (-643 (-643 |t#1|)))) (-15 -3793 ($ (-643 (-946 |t#1|)))) (-15 -3793 ((-643 (-946 |t#1|)) $)) (-15 -3792 ((-112) $)) (-15 -3791 ($ $ (-643 (-946 |t#1|)))) (-15 -3791 ($ $ (-643 (-643 |t#1|)))) (-15 -3791 ($ (-643 (-946 |t#1|)))) (-15 -3791 ((-643 (-946 |t#1|)) $)) (-15 -3790 ((-112) $)) (-15 -3789 ($ $ (-643 (-643 (-946 |t#1|))) (-643 (-171)) (-171))) (-15 -3789 ($ $ (-643 (-643 (-643 |t#1|))) (-643 (-171)) (-171))) (-15 -3789 ($ $ (-643 (-643 (-946 |t#1|))) (-112) (-112))) (-15 -3789 ($ $ (-643 (-643 (-643 |t#1|))) (-112) (-112))) (-15 -3789 ($ (-643 (-643 (-946 |t#1|))))) (-15 -3789 ($ (-643 (-643 (-946 |t#1|))) (-112) (-112))) (-15 -3789 ((-643 (-643 (-946 |t#1|))) $)) (-15 -3788 ((-112) $)) (-15 -3787 ((-643 (-946 |t#1|)) $)) (-15 -3786 ((-643 (-643 (-643 (-773)))) $)) (-15 -3785 ((-643 (-643 (-643 (-946 |t#1|)))) $)) (-15 -3784 ((-643 (-643 (-171))) $)) (-15 -3783 ((-643 (-171)) $)) (-15 -3782 ((-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773))) $)) (-15 -3781 ($ $)) (-15 -4320 ((-1168 3 |t#1|) $)) (-15 -4378 ((-865) $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 184) (($ (-1185)) NIL) (((-1185) $) 7)) (-3997 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-678))) 27) (((-112) $ (|[\|\|]| (-1280))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-608))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1119))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-683))) 55) (((-112) $ (|[\|\|]| (-520))) 59) (((-112) $ (|[\|\|]| (-1069))) 63) (((-112) $ (|[\|\|]| (-1281))) 67) (((-112) $ (|[\|\|]| (-528))) 71) (((-112) $ (|[\|\|]| (-1155))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-673))) 83) (((-112) $ (|[\|\|]| (-313))) 87) (((-112) $ (|[\|\|]| (-1039))) 91) (((-112) $ (|[\|\|]| (-180))) 95) (((-112) $ (|[\|\|]| (-973))) 99) (((-112) $ (|[\|\|]| (-1076))) 103) (((-112) $ (|[\|\|]| (-1094))) 107) (((-112) $ (|[\|\|]| (-1099))) 111) (((-112) $ (|[\|\|]| (-628))) 115) (((-112) $ (|[\|\|]| (-1170))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-481))) 131) (((-112) $ (|[\|\|]| (-595))) 135) (((-112) $ (|[\|\|]| (-509))) 139) (((-112) $ (|[\|\|]| (-1162))) 143) (((-112) $ (|[\|\|]| (-549))) 147)) (-3662 (((-112) $ $) NIL)) (-4003 (((-527) $) 20) (((-218) $) 24) (((-678) $) 28) (((-1280) $) 32) (((-138) $) 36) (((-608) $) 40) (((-133) $) 44) (((-1119) $) 48) (((-96) $) 52) (((-683) $) 56) (((-520) $) 60) (((-1069) $) 64) (((-1281) $) 68) (((-528) $) 72) (((-1155) $) 76) (((-154) $) 80) (((-673) $) 84) (((-313) $) 88) (((-1039) $) 92) (((-180) $) 96) (((-973) $) 100) (((-1076) $) 104) (((-1094) $) 108) (((-1099) $) 112) (((-628) $) 116) (((-1170) $) 120) (((-156) $) 124) (((-137) $) 128) (((-481) $) 132) (((-595) $) 136) (((-509) $) 140) (((-1162) $) 144) (((-549) $) 148)) (-3455 (((-112) $ $) NIL))) -(((-1138) (-1140)) (T -1138)) -NIL -(-1140) -((-3803 (((-643 (-1185)) (-1162)) 9))) -(((-1139) (-10 -7 (-15 -3803 ((-643 (-1185)) (-1162))))) (T -1139)) -((-3803 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-1139))))) -(-10 -7 (-15 -3803 ((-643 (-1185)) (-1162)))) -((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-1185)) 17) (((-1185) $) 16)) (-3997 (((-112) $ (|[\|\|]| (-527))) 85) (((-112) $ (|[\|\|]| (-218))) 83) (((-112) $ (|[\|\|]| (-678))) 81) (((-112) $ (|[\|\|]| (-1280))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-608))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1119))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-683))) 67) (((-112) $ (|[\|\|]| (-520))) 65) (((-112) $ (|[\|\|]| (-1069))) 63) (((-112) $ (|[\|\|]| (-1281))) 61) (((-112) $ (|[\|\|]| (-528))) 59) (((-112) $ (|[\|\|]| (-1155))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-673))) 53) (((-112) $ (|[\|\|]| (-313))) 51) (((-112) $ (|[\|\|]| (-1039))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-973))) 45) (((-112) $ (|[\|\|]| (-1076))) 43) (((-112) $ (|[\|\|]| (-1094))) 41) (((-112) $ (|[\|\|]| (-1099))) 39) (((-112) $ (|[\|\|]| (-628))) 37) (((-112) $ (|[\|\|]| (-1170))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-595))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1162))) 23) (((-112) $ (|[\|\|]| (-549))) 21)) (-3662 (((-112) $ $) 9)) (-4003 (((-527) $) 84) (((-218) $) 82) (((-678) $) 80) (((-1280) $) 78) (((-138) $) 76) (((-608) $) 74) (((-133) $) 72) (((-1119) $) 70) (((-96) $) 68) (((-683) $) 66) (((-520) $) 64) (((-1069) $) 62) (((-1281) $) 60) (((-528) $) 58) (((-1155) $) 56) (((-154) $) 54) (((-673) $) 52) (((-313) $) 50) (((-1039) $) 48) (((-180) $) 46) (((-973) $) 44) (((-1076) $) 42) (((-1094) $) 40) (((-1099) $) 38) (((-628) $) 36) (((-1170) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-595) $) 26) (((-509) $) 24) (((-1162) $) 22) (((-549) $) 20)) (-3455 (((-112) $ $) 6))) -(((-1140) (-140)) (T -1140)) -((-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-527)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-218)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-678))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-678)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1280)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-138)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-608)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-133)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1119))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1119)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-96)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-683)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-520)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1069)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1281))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1281)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-528)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1155)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-154)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-673))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-673)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-313))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-313)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1039))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1039)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-180)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-973))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-973)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1076))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1076)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1094)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1099)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-628))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-628)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1170)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-156)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-137)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-481)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-595))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-595)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-509)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1162)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-549))))) -(-13 (-1086) (-1265) (-10 -8 (-15 -3997 ((-112) $ (|[\|\|]| (-527)))) (-15 -4003 ((-527) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-218)))) (-15 -4003 ((-218) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-678)))) (-15 -4003 ((-678) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1280)))) (-15 -4003 ((-1280) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-138)))) (-15 -4003 ((-138) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-608)))) (-15 -4003 ((-608) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-133)))) (-15 -4003 ((-133) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1119)))) (-15 -4003 ((-1119) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-96)))) (-15 -4003 ((-96) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-683)))) (-15 -4003 ((-683) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-520)))) (-15 -4003 ((-520) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1069)))) (-15 -4003 ((-1069) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1281)))) (-15 -4003 ((-1281) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-528)))) (-15 -4003 ((-528) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1155)))) (-15 -4003 ((-1155) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-154)))) (-15 -4003 ((-154) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-673)))) (-15 -4003 ((-673) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-313)))) (-15 -4003 ((-313) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1039)))) (-15 -4003 ((-1039) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-180)))) (-15 -4003 ((-180) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-973)))) (-15 -4003 ((-973) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1076)))) (-15 -4003 ((-1076) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1094)))) (-15 -4003 ((-1094) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1099)))) (-15 -4003 ((-1099) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-628)))) (-15 -4003 ((-628) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1170)))) (-15 -4003 ((-1170) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-156)))) (-15 -4003 ((-156) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-137)))) (-15 -4003 ((-137) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-481)))) (-15 -4003 ((-481) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-595)))) (-15 -4003 ((-595) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -4003 ((-509) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))) (-15 -4003 ((-1162) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-549)))) (-15 -4003 ((-549) $)))) -(((-93) . T) ((-102) . T) ((-618 #1=(-1185)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T) ((-1086) . T) ((-1265) . T)) -((-3806 (((-1275) (-643 (-865))) 22) (((-1275) (-865)) 21)) (-3805 (((-1275) (-643 (-865))) 20) (((-1275) (-865)) 19)) (-3804 (((-1275) (-643 (-865))) 18) (((-1275) (-865)) 10) (((-1275) (-1162) (-865)) 16))) -(((-1141) (-10 -7 (-15 -3804 ((-1275) (-1162) (-865))) (-15 -3804 ((-1275) (-865))) (-15 -3805 ((-1275) (-865))) (-15 -3806 ((-1275) (-865))) (-15 -3804 ((-1275) (-643 (-865)))) (-15 -3805 ((-1275) (-643 (-865)))) (-15 -3806 ((-1275) (-643 (-865)))))) (T -1141)) -((-3806 (*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141))))) -(-10 -7 (-15 -3804 ((-1275) (-1162) (-865))) (-15 -3804 ((-1275) (-865))) (-15 -3805 ((-1275) (-865))) (-15 -3806 ((-1275) (-865))) (-15 -3804 ((-1275) (-643 (-865)))) (-15 -3805 ((-1275) (-643 (-865)))) (-15 -3806 ((-1275) (-643 (-865))))) -((-3810 (($ $ $) 10)) (-3809 (($ $) 9)) (-3813 (($ $ $) 13)) (-3815 (($ $ $) 15)) (-3812 (($ $ $) 12)) (-3814 (($ $ $) 14)) (-3817 (($ $) 17)) (-3816 (($ $) 16)) (-3807 (($ $) 6)) (-3811 (($ $ $) 11) (($ $) 7)) (-3808 (($ $ $) 8))) -(((-1142) (-140)) (T -1142)) -((-3817 (*1 *1 *1) (-4 *1 (-1142))) (-3816 (*1 *1 *1) (-4 *1 (-1142))) (-3815 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3814 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3813 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3812 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3811 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3810 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3809 (*1 *1 *1) (-4 *1 (-1142))) (-3808 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3811 (*1 *1 *1) (-4 *1 (-1142))) (-3807 (*1 *1 *1) (-4 *1 (-1142)))) -(-13 (-10 -8 (-15 -3807 ($ $)) (-15 -3811 ($ $)) (-15 -3808 ($ $ $)) (-15 -3809 ($ $)) (-15 -3810 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -3812 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3814 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3816 ($ $)) (-15 -3817 ($ $)))) -((-2968 (((-112) $ $) 44)) (-3826 ((|#1| $) 17)) (-3818 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3825 (((-112) $) 19)) (-3823 (($ $ |#1|) 30)) (-3821 (($ $ (-112)) 32)) (-3820 (($ $) 33)) (-3822 (($ $ |#2|) 31)) (-3663 (((-1162) $) NIL)) (-3819 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3664 (((-1123) $) NIL)) (-3827 (((-112) $) 16)) (-3996 (($) 13)) (-3824 (($ $) 29)) (-3953 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) 23) (((-643 $) (-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|)))) 26) (((-643 $) |#1| (-643 |#2|)) 28)) (-4354 ((|#2| $) 18)) (-4378 (((-865) $) 53)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 42))) -(((-1143 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3996 ($)) (-15 -3827 ((-112) $)) (-15 -3826 (|#1| $)) (-15 -4354 (|#2| $)) (-15 -3825 ((-112) $)) (-15 -3953 ($ |#1| |#2| (-112))) (-15 -3953 ($ |#1| |#2|)) (-15 -3953 ($ (-2 (|:| |val| |#1|) (|:| -1708 |#2|)))) (-15 -3953 ((-643 $) (-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))))) (-15 -3953 ((-643 $) |#1| (-643 |#2|))) (-15 -3824 ($ $)) (-15 -3823 ($ $ |#1|)) (-15 -3822 ($ $ |#2|)) (-15 -3821 ($ $ (-112))) (-15 -3820 ($ $)) (-15 -3819 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3818 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1104) (-34)) (-13 (-1104) (-34))) (T -1143)) -((-3996 (*1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3826 (*1 *2 *1) (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *2 *3)) (-4 *3 (-13 (-1104) (-34))))) (-4354 (*1 *2 *1) (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-13 (-1104) (-34))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1708 *4))) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *4)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |val| *4) (|:| -1708 *5)))) (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-643 (-1143 *4 *5))) (-5 *1 (-1143 *4 *5)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *5)) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-643 (-1143 *3 *5))) (-5 *1 (-1143 *3 *5)) (-4 *3 (-13 (-1104) (-34))))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3823 (*1 *1 *1 *2) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3822 (*1 *1 *1 *2) (-12 (-5 *1 (-1143 *3 *2)) (-4 *3 (-13 (-1104) (-34))) (-4 *2 (-13 (-1104) (-34))))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3819 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))) (-3818 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34)))))) -(-13 (-1104) (-10 -8 (-15 -3996 ($)) (-15 -3827 ((-112) $)) (-15 -3826 (|#1| $)) (-15 -4354 (|#2| $)) (-15 -3825 ((-112) $)) (-15 -3953 ($ |#1| |#2| (-112))) (-15 -3953 ($ |#1| |#2|)) (-15 -3953 ($ (-2 (|:| |val| |#1|) (|:| -1708 |#2|)))) (-15 -3953 ((-643 $) (-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))))) (-15 -3953 ((-643 $) |#1| (-643 |#2|))) (-15 -3824 ($ $)) (-15 -3823 ($ $ |#1|)) (-15 -3822 ($ $ |#2|)) (-15 -3821 ($ $ (-112))) (-15 -3820 ($ $)) (-15 -3819 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3818 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2968 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3826 (((-1143 |#1| |#2|) $) 27)) (-3835 (($ $) 91)) (-3831 (((-112) (-1143 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3828 (($ $ $ (-643 (-1143 |#1| |#2|))) 108) (($ $ $ (-643 (-1143 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1309 (((-112) $ (-773)) NIL)) (-3426 (((-1143 |#1| |#2|) $ (-1143 |#1| |#2|)) 46 (|has| $ (-6 -4426)))) (-4219 (((-1143 |#1| |#2|) $ #1="value" (-1143 |#1| |#2|)) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 44 (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3833 (((-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) $) 95)) (-3829 (($ (-1143 |#1| |#2|) $) 42)) (-3830 (($ (-1143 |#1| |#2|) $) 34)) (-2124 (((-643 (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 54)) (-3832 (((-112) (-1143 |#1| |#2|) $) 97)) (-3428 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 (-1143 |#1| |#2|)) $) 58 (|has| $ (-6 -4425)))) (-3666 (((-112) (-1143 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-1143 |#1| |#2|) (-1104))))) (-2128 (($ (-1 (-1143 |#1| |#2|) (-1143 |#1| |#2|)) $) 50 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-1143 |#1| |#2|) (-1143 |#1| |#2|)) $) 49)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 (-1143 |#1| |#2|)) $) 56)) (-3950 (((-112) $) 45)) (-3663 (((-1162) $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3664 (((-1123) $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3836 (((-3 $ "failed") $) 89)) (-2126 (((-112) (-1 (-112) (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-1143 |#1| |#2|)))) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104)))) (($ $ (-294 (-1143 |#1| |#2|))) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104)))) (($ $ (-1143 |#1| |#2|) (-1143 |#1| |#2|)) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104)))) (($ $ (-643 (-1143 |#1| |#2|)) (-643 (-1143 |#1| |#2|))) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104))))) (-1310 (((-112) $ $) 53)) (-3827 (((-112) $) 24)) (-3996 (($) 26)) (-4231 (((-1143 |#1| |#2|) $ #1#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425))) (((-773) (-1143 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-1143 |#1| |#2|) (-1104))))) (-3824 (($ $) 52)) (-3953 (($ (-1143 |#1| |#2|)) 10) (($ |#1| |#2| (-643 $)) 13) (($ |#1| |#2| (-643 (-1143 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-643 |#2|)) 18)) (-3834 (((-643 |#2|) $) 96)) (-4378 (((-865) $) 87 (|has| (-1143 |#1| |#2|) (-615 (-865))))) (-3945 (((-643 $) $) 31)) (-3429 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3662 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-2127 (((-112) (-1 (-112) (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 70 (|has| (-1143 |#1| |#2|) (-1104)))) (-4389 (((-773) $) 64 (|has| $ (-6 -4425))))) -(((-1144 |#1| |#2|) (-13 (-1013 (-1143 |#1| |#2|)) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3836 ((-3 $ "failed") $)) (-15 -3835 ($ $)) (-15 -3953 ($ (-1143 |#1| |#2|))) (-15 -3953 ($ |#1| |#2| (-643 $))) (-15 -3953 ($ |#1| |#2| (-643 (-1143 |#1| |#2|)))) (-15 -3953 ($ |#1| |#2| |#1| (-643 |#2|))) (-15 -3834 ((-643 |#2|) $)) (-15 -3833 ((-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) $)) (-15 -3832 ((-112) (-1143 |#1| |#2|) $)) (-15 -3831 ((-112) (-1143 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3830 ($ (-1143 |#1| |#2|) $)) (-15 -3829 ($ (-1143 |#1| |#2|) $)) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)))) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1104) (-34)) (-13 (-1104) (-34))) (T -1144)) -((-3836 (*1 *1 *1) (|partial| -12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3835 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-643 (-1144 *2 *3))) (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-643 (-1143 *2 *3))) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)))) (-3953 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-643 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3832 (*1 *2 *3 *1) (-12 (-5 *3 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *4 *5)))) (-3831 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1143 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *5 *6)))) (-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3828 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-643 (-1143 *3 *4))) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3828 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1143 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) (-5 *1 (-1144 *4 *5))))) -(-13 (-1013 (-1143 |#1| |#2|)) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3836 ((-3 $ "failed") $)) (-15 -3835 ($ $)) (-15 -3953 ($ (-1143 |#1| |#2|))) (-15 -3953 ($ |#1| |#2| (-643 $))) (-15 -3953 ($ |#1| |#2| (-643 (-1143 |#1| |#2|)))) (-15 -3953 ($ |#1| |#2| |#1| (-643 |#2|))) (-15 -3834 ((-643 |#2|) $)) (-15 -3833 ((-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) $)) (-15 -3832 ((-112) (-1143 |#1| |#2|) $)) (-15 -3831 ((-112) (-1143 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3830 ($ (-1143 |#1| |#2|) $)) (-15 -3829 ($ (-1143 |#1| |#2|) $)) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)))) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3838 (($ $) NIL)) (-3754 ((|#2| $) NIL)) (-3525 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3837 (($ (-691 |#2|)) 56)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3757 (($ |#2|) 14)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 69 (|has| |#2| (-308)))) (-3516 (((-239 |#1| |#2|) $ (-549)) 42)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 83)) (-3513 (((-773) $) 71 (|has| |#2| (-560)))) (-3517 ((|#2| $ (-549) (-549)) NIL)) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL)) (-3512 (((-773) $) 73 (|has| |#2| (-560)))) (-3511 (((-643 (-239 |#1| |#2|)) $) 77 (|has| |#2| (-560)))) (-3519 (((-773) $) NIL)) (-4046 (($ |#2|) 25)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#2| $) 67 (|has| |#2| (-6 (-4427 #2="*"))))) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#2|))) 37)) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4025 (((-643 (-643 |#2|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-4021 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) NIL)) (-4242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3753 ((|#2| $) NIL)) (-3756 (($ (-643 |#2|)) 50)) (-3526 (((-112) $) NIL)) (-3755 (((-239 |#1| |#2|) $) NIL)) (-3752 ((|#2| $) 65 (|has| |#2| (-6 (-4427 #2#))))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 89 (|has| |#2| (-616 (-538))))) (-3515 (((-239 |#1| |#2|) $ (-549)) 44)) (-4378 (((-865) $) 47) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) NIL) (((-691 |#2|) $) 52)) (-3530 (((-773)) 23 T CONST)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3510 (($) 16 T CONST)) (-3067 (($) 21 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) 63) (($ $ (-549)) 82 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 59) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 61)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1145 |#1| |#2|) (-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-10 -8 (-15 -4046 ($ |#2|)) (-15 -3838 ($ $)) (-15 -3837 ($ (-691 |#2|))) (IF (|has| |#2| (-6 (-4427 "*"))) (-6 -4414) |%noBranch|) (IF (|has| |#2| (-6 (-4427 "*"))) (IF (|has| |#2| (-6 -4422)) (-6 -4422) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) (-773) (-1052)) (T -1145)) -((-4046 (*1 *1 *2) (-12 (-5 *1 (-1145 *3 *2)) (-14 *3 (-773)) (-4 *2 (-1052)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-1145 *2 *3)) (-14 *2 (-773)) (-4 *3 (-1052)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-691 *4)) (-4 *4 (-1052)) (-5 *1 (-1145 *3 *4)) (-14 *3 (-773))))) -(-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-10 -8 (-15 -4046 ($ |#2|)) (-15 -3838 ($ $)) (-15 -3837 ($ (-691 |#2|))) (IF (|has| |#2| (-6 (-4427 "*"))) (-6 -4414) |%noBranch|) (IF (|has| |#2| (-6 (-4427 "*"))) (IF (|has| |#2| (-6 -4422)) (-6 -4422) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) -((-3851 (($ $) 19)) (-3841 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3849 (((-112) $ $) 24)) (-3853 (($ $) 17)) (-4231 (((-144) $ (-549) (-144)) NIL) (((-144) $ (-549)) NIL) (($ $ (-1236 (-549))) NIL) (($ $ $) 31)) (-4378 (($ (-144)) 29) (((-865) $) NIL))) -(((-1146 |#1|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| (-141))) (-15 -3841 (|#1| |#1| (-144))) (-15 -4378 (|#1| (-144))) (-15 -3849 ((-112) |#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4231 ((-144) |#1| (-549))) (-15 -4231 ((-144) |#1| (-549) (-144)))) (-1147)) (T -1146)) -NIL -(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| (-141))) (-15 -3841 (|#1| |#1| (-144))) (-15 -4378 (|#1| (-144))) (-15 -3849 ((-112) |#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4231 ((-144) |#1| (-549))) (-15 -4231 ((-144) |#1| (-549) (-144)))) -((-2968 (((-112) $ $) 19 (|has| (-144) (-1104)))) (-3850 (($ $) 121)) (-3851 (($ $) 122)) (-3841 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) 119)) (-3847 (((-112) $ $ (-549)) 118)) (-3842 (((-643 $) $ (-144)) 111) (((-643 $) $ (-141)) 110)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| (-144) (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 (((-144) $ (-549) (-144)) 53 (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-3839 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-3844 (($ $ (-1236 (-549)) $) 115)) (-1440 (($ $) 79 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-144) $) 78 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) 54 (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) 52)) (-3849 (((-112) $ $) 120)) (-3843 (((-549) (-1 (-112) (-144)) $) 98) (((-549) (-144) $) 97 (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) 96 (|has| (-144) (-1104))) (((-549) $ $ (-549)) 114) (((-549) (-141) $ (-549)) 113)) (-2124 (((-643 (-144)) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) 116)) (-3846 (((-773) $ $ (-144)) 117)) (-2128 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3852 (($ $) 123)) (-3853 (($ $) 124)) (-4148 (((-112) $ (-773)) 10)) (-3840 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3663 (((-1162) $) 22 (|has| (-144) (-1104)))) (-2449 (($ (-144) $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| (-144) (-1104)))) (-4232 (((-144) $) 43 (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2373 (($ $ (-144)) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 (((-144) $ (-549) (-144)) 51) (((-144) $ (-549)) 50) (($ $ (-1236 (-549))) 64) (($ $ $) 103)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4425))) (((-773) (-144) $) 29 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) 71)) (-4233 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (($ (-144)) 112) (((-865) $) 18 (|has| (-144) (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| (-144) (-1104)))) (-2127 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| (-144) (-852)))) (-2967 (((-112) $ $) 84 (|has| (-144) (-852)))) (-3455 (((-112) $ $) 20 (|has| (-144) (-1104)))) (-3087 (((-112) $ $) 86 (|has| (-144) (-852)))) (-3088 (((-112) $ $) 83 (|has| (-144) (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1147) (-140)) (T -1147)) -((-3853 (*1 *1 *1) (-4 *1 (-1147))) (-3852 (*1 *1 *1) (-4 *1 (-1147))) (-3851 (*1 *1 *1) (-4 *1 (-1147))) (-3850 (*1 *1 *1) (-4 *1 (-1147))) (-3849 (*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112)))) (-3848 (*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112)))) (-3847 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-549)) (-5 *2 (-112)))) (-3846 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-773)))) (-3845 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3844 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-1236 (-549))))) (-3843 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549)) (-5 *3 (-141)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1147)))) (-3842 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-643 *1)) (-4 *1 (-1147)))) (-3842 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-643 *1)) (-4 *1 (-1147)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) (-3840 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144)))) (-3840 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) (-4231 (*1 *1 *1 *1) (-4 *1 (-1147)))) -(-13 (-19 (-144)) (-10 -8 (-15 -3853 ($ $)) (-15 -3852 ($ $)) (-15 -3851 ($ $)) (-15 -3850 ($ $)) (-15 -3849 ((-112) $ $)) (-15 -3848 ((-112) $ $)) (-15 -3847 ((-112) $ $ (-549))) (-15 -3846 ((-773) $ $ (-144))) (-15 -3845 ((-112) $ $ (-144))) (-15 -3844 ($ $ (-1236 (-549)) $)) (-15 -3843 ((-549) $ $ (-549))) (-15 -3843 ((-549) (-141) $ (-549))) (-15 -4378 ($ (-144))) (-15 -3842 ((-643 $) $ (-144))) (-15 -3842 ((-643 $) $ (-141))) (-15 -3841 ($ $ (-144))) (-15 -3841 ($ $ (-141))) (-15 -3840 ($ $ (-144))) (-15 -3840 ($ $ (-141))) (-15 -3839 ($ $ (-144))) (-15 -3839 ($ $ (-141))) (-15 -4231 ($ $ $)))) -(((-34) . T) ((-102) -3960 (|has| (-144) (-1104)) (|has| (-144) (-852))) ((-615 (-865)) -3960 (|has| (-144) (-1104)) (|has| (-144) (-852)) (|has| (-144) (-615 (-865)))) ((-151 #1=(-144)) . T) ((-616 (-538)) |has| (-144) (-616 (-538))) ((-287 #2=(-549) #1#) . T) ((-289 #2# #1#) . T) ((-310 #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-374 #1#) . T) ((-492 #1#) . T) ((-606 #2# #1#) . T) ((-517 #1# #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-653 #1#) . T) ((-19 #1#) . T) ((-852) |has| (-144) (-852)) ((-1104) -3960 (|has| (-144) (-1104)) (|has| (-144) (-852))) ((-1219) . T)) -((-3860 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773)) 112)) (-3857 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 61)) (-3861 (((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)) 97)) (-3855 (((-773) (-643 |#4|) (-643 |#5|)) 30)) (-3858 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 63) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112)) 65)) (-3859 (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112)) 85)) (-4402 (((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 90)) (-3856 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 60)) (-3854 (((-773) (-643 |#4|) (-643 |#5|)) 21))) -(((-1148 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1112 |#1| |#2| |#3| |#4|)) (T -1148)) -((-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1112 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) (-5 *1 (-1148 *4 *5 *6 *7 *8)))) (-3860 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-643 *11)) (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) (-4 *11 (-1112 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-5 *1 (-1148 *7 *8 *9 *10 *11)))) (-3859 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-3859 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3)))) (-3858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) (-3858 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *7 *8 *9 *3 *4)) (-4 *4 (-1112 *7 *8 *9 *3)))) (-3857 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3)))) (-3857 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) (-3856 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) -((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) 124) (((-643 $) (-643 |#4|) (-112)) 125) (((-643 $) (-643 |#4|) (-112) (-112)) 123) (((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 97)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 75)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) 29 (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 45)) (-4117 ((|#4| |#4| $) 78)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-3617 (((-112) |#4| $) NIL)) (-3615 (((-112) |#4| $) NIL)) (-3618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3862 (((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112)) 139)) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 19 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 23)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) NIL)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 117)) (-4229 (((-3 |#4| #1#) $) 42)) (-3612 (((-643 $) |#4| $) 102)) (-3614 (((-3 (-112) (-643 $)) |#4| $) NIL)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3658 (((-643 $) |#4| $) 121) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 122) (((-643 $) |#4| (-643 $)) NIL)) (-3863 (((-643 $) (-643 |#4|) (-112) (-112) (-112)) 134)) (-3864 (($ |#4| $) 88) (($ (-643 |#4|) $) 89) (((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4129 (((-643 |#4|) $) NIL)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 40)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) 59)) (-4200 (($ $ |#4|) NIL) (((-643 $) |#4| $) 104) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 99)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 14)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-3313 (($ $ |#3|) 54)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 35) (((-643 |#4|) $) 46)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-3609 (((-643 $) |#4| $) 66) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-3616 (((-112) |#4| $) NIL)) (-4365 (((-112) |#3| $) 74)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1149 |#1| |#2| |#3| |#4|) (-13 (-1112 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -1149)) -((-3864 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *3))) (-5 *1 (-1149 *5 *6 *7 *3)) (-4 *3 (-1068 *5 *6 *7)))) (-4114 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) (-5 *1 (-1149 *5 *6 *7 *8)))) (-4114 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) (-5 *1 (-1149 *5 *6 *7 *8)))) (-3863 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) (-5 *1 (-1149 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1149 *5 *6 *7 *8))))) (-5 *1 (-1149 *5 *6 *7 *8)) (-5 *3 (-643 *8))))) -(-13 (-1112 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3748 ((|#1| $) 37)) (-3865 (($ (-643 |#1|)) 45)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3750 ((|#1| |#1| $) 40)) (-3749 ((|#1| $) 35)) (-2124 (((-643 |#1|) $) 18 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 22)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 38)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1370 ((|#1| $) 36)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 32)) (-3996 (($) 43)) (-3747 (((-773) $) 30)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 27)) (-4378 (((-865) $) 14 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 17 (|has| |#1| (-1104)))) (-4389 (((-773) $) 31 (|has| $ (-6 -4425))))) -(((-1150 |#1|) (-13 (-1124 |#1|) (-10 -8 (-15 -3865 ($ (-643 |#1|))))) (-1219)) (T -1150)) -((-3865 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1150 *3))))) -(-13 (-1124 |#1|) (-10 -8 (-15 -3865 ($ (-643 |#1|))))) -((-4219 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1236 (-549)) |#2|) 55) ((|#2| $ (-549) |#2|) 52)) (-3866 (((-112) $) 12)) (-2128 (($ (-1 |#2| |#2|) $) 50)) (-4232 ((|#2| $) NIL) (($ $ (-773)) 20)) (-2373 (($ $ |#2|) 51)) (-3867 (((-112) $) 11)) (-4231 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1236 (-549))) 38) ((|#2| $ (-549)) 29) ((|#2| $ (-549) |#2|) NIL)) (-4222 (($ $ $) 58) (($ $ |#2|) NIL)) (-4233 (($ $ $) 40) (($ |#2| $) NIL) (($ (-643 $)) 47) (($ $ |#2|) NIL))) -(((-1151 |#1| |#2|) (-10 -8 (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -4219 (|#2| |#1| #1="last" |#2|)) (-15 -4219 (|#1| |#1| #2="rest" |#1|)) (-15 -4219 (|#2| |#1| #3="first" |#2|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -4231 (|#1| |#1| #2#)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| #3#)) (-15 -4232 (|#2| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4219 (|#2| |#1| #4="value" |#2|)) (-15 -4231 (|#2| |#1| #4#)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|))) (-1152 |#2|) (-1219)) (T -1151)) -NIL -(-10 -8 (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -4219 (|#2| |#1| #1="last" |#2|)) (-15 -4219 (|#1| |#1| #2="rest" |#1|)) (-15 -4219 (|#2| |#1| #3="first" |#2|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -4231 (|#1| |#1| #2#)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| #3#)) (-15 -4232 (|#2| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4219 (|#2| |#1| #4="value" |#2|)) (-15 -4231 (|#2| |#1| #4#)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-2372 (((-1275) $ (-549) (-549)) 98 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 118 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 87 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4425)))) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-1440 (($ $) 100 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4425))) (($ |#1| $) 101 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1684 ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 88)) (-3866 (((-112) $) 84)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) 109)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 96 (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 95 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-2449 (($ $ $ (-549)) 117) (($ |#1| $ (-549)) 116)) (-2377 (((-643 (-549)) $) 93)) (-2378 (((-112) (-549) $) 92)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2373 (($ $ |#1|) 97 (|has| $ (-6 -4426)))) (-3867 (((-112) $) 85)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 91)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1236 (-549))) 113) ((|#1| $ (-549)) 90) ((|#1| $ (-549) |#1|) 89)) (-3430 (((-549) $ $) 45)) (-2450 (($ $ (-1236 (-549))) 115) (($ $ (-549)) 114)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 99 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 108)) (-4222 (($ $ $) 62 (|has| $ (-6 -4426))) (($ $ |#1|) 61 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 79) (($ |#1| $) 78) (($ (-643 $)) 111) (($ $ |#1|) 110)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1152 |#1|) (-140) (-1219)) (T -1152)) -((-3867 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(-13 (-1258 |t#1|) (-653 |t#1|) (-10 -8 (-15 -3867 ((-112) $)) (-15 -3866 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T) ((-1258 |#1|) . T)) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1153 |#1| |#2| |#3|) (-1196 |#1| |#2|) (-1104) (-1104) |#2|) (T -1153)) -NIL -(-1196 |#1| |#2|) -((-2968 (((-112) $ $) 7)) (-3868 (((-3 $ "failed") $) 14)) (-3663 (((-1162) $) 10)) (-3869 (($) 15 T CONST)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) -(((-1154) (-140)) (T -1154)) -((-3869 (*1 *1) (-4 *1 (-1154))) (-3868 (*1 *1 *1) (|partial| -4 *1 (-1154)))) -(-13 (-1104) (-10 -8 (-15 -3869 ($) -4384) (-15 -3868 ((-3 $ "failed") $)))) -(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3871 (((-693 (-1138)) $) 27)) (-3870 (((-1138) $) 15)) (-3872 (((-1138) $) 17)) (-3663 (((-1162) $) NIL)) (-3873 (((-509) $) 13)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 37) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1155) (-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -3872 ((-1138) $)) (-15 -3871 ((-693 (-1138)) $)) (-15 -3870 ((-1138) $))))) (T -1155)) -((-3873 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1155)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-693 (-1138))) (-5 *1 (-1155)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155))))) -(-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -3872 ((-1138) $)) (-15 -3871 ((-693 (-1138)) $)) (-15 -3870 ((-1138) $)))) -((-3876 (((-1157 |#1|) (-1157 |#1|)) 17)) (-3874 (((-1157 |#1|) (-1157 |#1|)) 13)) (-3877 (((-1157 |#1|) (-1157 |#1|) (-549) (-549)) 20)) (-3875 (((-1157 |#1|) (-1157 |#1|)) 15))) -(((-1156 |#1|) (-10 -7 (-15 -3874 ((-1157 |#1|) (-1157 |#1|))) (-15 -3875 ((-1157 |#1|) (-1157 |#1|))) (-15 -3876 ((-1157 |#1|) (-1157 |#1|))) (-15 -3877 ((-1157 |#1|) (-1157 |#1|) (-549) (-549)))) (-13 (-560) (-147))) (T -1156)) -((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-1156 *4)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) -(-10 -7 (-15 -3874 ((-1157 |#1|) (-1157 |#1|))) (-15 -3875 ((-1157 |#1|) (-1157 |#1|))) (-15 -3876 ((-1157 |#1|) (-1157 |#1|))) (-15 -3877 ((-1157 |#1|) (-1157 |#1|) (-549) (-549)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) 67)) (-2372 (((-1275) $ (-549) (-549)) 99 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 129 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-3882 (((-865) $) 56 (|has| |#1| (-1104)))) (-3881 (((-112)) 55 (|has| |#1| (-1104)))) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) 116 (|has| $ (-6 -4426))) (($ $ (-549) $) 142)) (-4217 ((|#1| $ |#1|) 126 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 121 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 123 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 125 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 128 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 113 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 77 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 80)) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2468 (($ $) 14)) (-4230 (($ $) 42) (($ $ (-773)) 111)) (-3887 (((-112) (-643 |#1|) $) 135 (|has| |#1| (-1104)))) (-3888 (($ (-643 |#1|)) 131)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) 79)) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3883 (((-1275) (-549) $) 141 (|has| |#1| (-1104)))) (-2467 (((-773) $) 138)) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-2470 (($ $) 114)) (-2471 (((-112) $) 13)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) 96)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3880 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2469 ((|#1| $) 10)) (-4232 ((|#1| $) 41) (($ $ (-773)) 65)) (-3886 (((-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773))) (-773) $) 36)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3879 (($ (-1 (-112) |#1|) $) 146)) (-3878 (($ (-1 (-112) |#1|) $) 147)) (-2373 (($ $ |#1|) 90 (|has| $ (-6 -4426)))) (-4200 (($ $ (-549)) 45)) (-3867 (((-112) $) 94)) (-2472 (((-112) $) 12)) (-2473 (((-112) $) 137)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 30)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) 20)) (-3996 (($) 60)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) 75) ((|#1| $ (-549) |#1|) NIL)) (-3430 (((-549) $ $) 64)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-3885 (($ (-1 $)) 63)) (-4065 (((-112) $) 91)) (-4223 (($ $) 92)) (-4221 (($ $) 117 (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 59)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 73)) (-3884 (($ |#1| $) 115)) (-4222 (($ $ $) 119 (|has| $ (-6 -4426))) (($ $ |#1|) 120 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 101) (($ |#1| $) 61) (($ (-643 $)) 106) (($ $ |#1|) 100)) (-3292 (($ $) 66)) (-4378 (($ (-643 |#1|)) 130) (((-865) $) 57 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 133 (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1157 |#1|) (-13 (-676 |#1|) (-618 (-643 |#1|)) (-10 -8 (-6 -4426) (-15 -3888 ($ (-643 |#1|))) (IF (|has| |#1| (-1104)) (-15 -3887 ((-112) (-643 |#1|) $)) |%noBranch|) (-15 -3886 ((-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773))) (-773) $)) (-15 -3885 ($ (-1 $))) (-15 -3884 ($ |#1| $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -3883 ((-1275) (-549) $)) (-15 -3882 ((-865) $)) (-15 -3881 ((-112)))) |%noBranch|) (-15 -4218 ($ $ (-549) $)) (-15 -3880 ($ (-1 |#1|))) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)))) (-1219)) (T -1157)) -((-3888 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3887 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112)) (-5 *1 (-1157 *4)))) (-3886 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773)))) (-5 *1 (-1157 *4)) (-4 *4 (-1219)) (-5 *3 (-773)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-1 (-1157 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1219)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *1 (-1157 *2)) (-4 *2 (-1219)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1157 *4)) (-4 *4 (-1104)) (-4 *4 (-1219)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219)))) (-3881 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219)))) (-4218 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1157 *3)) (-4 *3 (-1219)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) -(-13 (-676 |#1|) (-618 (-643 |#1|)) (-10 -8 (-6 -4426) (-15 -3888 ($ (-643 |#1|))) (IF (|has| |#1| (-1104)) (-15 -3887 ((-112) (-643 |#1|) $)) |%noBranch|) (-15 -3886 ((-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773))) (-773) $)) (-15 -3885 ($ (-1 $))) (-15 -3884 ($ |#1| $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -3883 ((-1275) (-549) $)) (-15 -3882 ((-865) $)) (-15 -3881 ((-112)))) |%noBranch|) (-15 -4218 ($ $ (-549) $)) (-15 -3880 ($ (-1 |#1|))) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)))) -((-4233 (((-1157 |#1|) (-1157 (-1157 |#1|))) 15))) -(((-1158 |#1|) (-10 -7 (-15 -4233 ((-1157 |#1|) (-1157 (-1157 |#1|))))) (-1219)) (T -1158)) -((-4233 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1158 *4)) (-4 *4 (-1219))))) -(-10 -7 (-15 -4233 ((-1157 |#1|) (-1157 (-1157 |#1|))))) -((-4273 (((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)) 25)) (-4274 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)) 26)) (-4390 (((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)) 16))) -(((-1159 |#1| |#2|) (-10 -7 (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -4273 ((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|))) (-15 -4274 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)))) (-1219) (-1219)) (T -1159)) -((-4274 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1159 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1157 *6)) (-4 *6 (-1219)) (-4 *3 (-1219)) (-5 *2 (-1157 *3)) (-5 *1 (-1159 *6 *3)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1157 *6)) (-5 *1 (-1159 *5 *6))))) -(-10 -7 (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -4273 ((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|))) (-15 -4274 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)))) -((-4390 (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)) 21))) -(((-1160 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)))) (-1219) (-1219) (-1219)) (T -1160)) -((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-1157 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) (-5 *1 (-1160 *6 *7 *8))))) -(-10 -7 (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)))) -((-2968 (((-112) $ $) 19)) (-3850 (($ $) 121)) (-3851 (($ $) 122)) (-3841 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) 119)) (-3847 (((-112) $ $ (-549)) 118)) (-3966 (($ (-549)) 128)) (-3842 (((-643 $) $ (-144)) 111) (((-643 $) $ (-141)) 110)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| (-144) (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 (((-144) $ (-549) (-144)) 53 (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-3839 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-3844 (($ $ (-1236 (-549)) $) 115)) (-1440 (($ $) 79 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-144) $) 78 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) 54 (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) 52)) (-3849 (((-112) $ $) 120)) (-3843 (((-549) (-1 (-112) (-144)) $) 98) (((-549) (-144) $) 97 (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) 96 (|has| (-144) (-1104))) (((-549) $ $ (-549)) 114) (((-549) (-141) $ (-549)) 113)) (-2124 (((-643 (-144)) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) 116)) (-3846 (((-773) $ $ (-144)) 117)) (-2128 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3852 (($ $) 123)) (-3853 (($ $) 124)) (-4148 (((-112) $ (-773)) 10)) (-3840 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3663 (((-1162) $) 22)) (-2449 (($ (-144) $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21)) (-4232 (((-144) $) 43 (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2373 (($ $ (-144)) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 (((-144) $ (-549) (-144)) 51) (((-144) $ (-549)) 50) (($ $ (-1236 (-549))) 64) (($ $ $) 103)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4425))) (((-773) (-144) $) 29 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) 71)) (-4233 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (($ (-144)) 112) (((-865) $) 18)) (-3662 (((-112) $ $) 23)) (-2127 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4425)))) (-2900 (((-1162) $) 132) (((-1162) $ (-112)) 131) (((-1275) (-825) $) 130) (((-1275) (-825) $ (-112)) 129)) (-2966 (((-112) $ $) 85 (|has| (-144) (-852)))) (-2967 (((-112) $ $) 84 (|has| (-144) (-852)))) (-3455 (((-112) $ $) 20)) (-3087 (((-112) $ $) 86 (|has| (-144) (-852)))) (-3088 (((-112) $ $) 83 (|has| (-144) (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1161) (-140)) (T -1161)) -((-3966 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1161))))) -(-13 (-1147) (-1104) (-823) (-10 -8 (-15 -3966 ($ (-549))))) -(((-34) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 #1=(-144)) . T) ((-616 (-538)) |has| (-144) (-616 (-538))) ((-287 #2=(-549) #1#) . T) ((-289 #2# #1#) . T) ((-310 #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-374 #1#) . T) ((-492 #1#) . T) ((-606 #2# #1#) . T) ((-517 #1# #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-653 #1#) . T) ((-19 #1#) . T) ((-823) . T) ((-852) |has| (-144) (-852)) ((-1104) . T) ((-1147) . T) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3850 (($ $) NIL)) (-3851 (($ $) NIL)) (-3841 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) NIL)) (-3847 (((-112) $ $ (-549)) NIL)) (-3966 (($ (-549)) 8)) (-3842 (((-643 $) $ (-144)) NIL) (((-643 $) $ (-141)) NIL)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-144) (-852))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-144) $ (-549) (-144)) NIL (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-3839 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-3844 (($ $ (-1236 (-549)) $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3830 (($ (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) NIL (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) NIL)) (-3849 (((-112) $ $) NIL)) (-3843 (((-549) (-1 (-112) (-144)) $) NIL) (((-549) (-144) $) NIL (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) NIL (|has| (-144) (-1104))) (((-549) $ $ (-549)) NIL) (((-549) (-141) $ (-549)) NIL)) (-2124 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) NIL)) (-3846 (((-773) $ $ (-144)) NIL)) (-2128 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3852 (($ $) NIL)) (-3853 (($ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3840 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3663 (((-1162) $) NIL)) (-2449 (($ (-144) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-144) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2373 (($ $ (-144)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-144) $ (-549) (-144)) NIL) (((-144) $ (-549)) NIL) (($ $ (-1236 (-549))) NIL) (($ $ $) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (((-773) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) NIL)) (-4233 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (($ (-144)) NIL) (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-2900 (((-1162) $) 19) (((-1162) $ (-112)) 21) (((-1275) (-825) $) 22) (((-1275) (-825) $ (-112)) 23)) (-2966 (((-112) $ $) NIL (|has| (-144) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-144) (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1162) (-1161)) (T -1162)) -NIL -(-1161) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2372 (((-1275) $ (-1162) (-1162)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-1162) |#1|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#1| #1="failed") (-1162) $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#1| #1#) (-1162) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-1162) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-1162)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1162) $) NIL (|has| (-1162) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-1162) $) NIL (|has| (-1162) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-2816 (((-643 (-1162)) $) NIL)) (-2382 (((-112) (-1162) $) NIL)) (-1369 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2377 (((-643 (-1162)) $) NIL)) (-2378 (((-112) (-1162) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-4232 ((|#1| $) NIL (|has| (-1162) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) "failed") (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-1162)) NIL) ((|#1| $ (-1162) |#1|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-615 (-865))) (|has| |#1| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1163 |#1|) (-13 (-1196 (-1162) |#1|) (-10 -7 (-6 -4425))) (-1104)) (T -1163)) -NIL -(-13 (-1196 (-1162) |#1|) (-10 -7 (-6 -4425))) -((-4236 (((-1157 |#1|) (-1157 |#1|)) 84)) (-3890 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 42)) (-3901 (((-1157 |#1|) (-410 (-549)) (-1157 |#1|)) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3904 (((-1157 |#1|) |#1| (-1157 |#1|)) 142 (|has| |#1| (-365)))) (-4239 (((-1157 |#1|) (-1157 |#1|)) 99)) (-3892 (((-1157 (-549)) (-549)) 64)) (-3900 (((-1157 |#1|) (-1157 (-1157 |#1|))) 118 (|has| |#1| (-38 (-410 (-549)))))) (-4235 (((-1157 |#1|) (-549) (-549) (-1157 |#1|)) 104)) (-4370 (((-1157 |#1|) |#1| (-549)) 54)) (-3894 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 67)) (-3902 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 139 (|has| |#1| (-365)))) (-3899 (((-1157 |#1|) |#1| (-1 (-1157 |#1|))) 117 (|has| |#1| (-38 (-410 (-549)))))) (-3903 (((-1157 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1157 |#1|))) 140 (|has| |#1| (-365)))) (-4240 (((-1157 |#1|) (-1157 |#1|)) 98)) (-4241 (((-1157 |#1|) (-1157 |#1|)) 83)) (-4234 (((-1157 |#1|) (-549) (-549) (-1157 |#1|)) 105)) (-4244 (((-1157 |#1|) |#1| (-1157 |#1|)) 114 (|has| |#1| (-38 (-410 (-549)))))) (-3891 (((-1157 (-549)) (-549)) 63)) (-3893 (((-1157 |#1|) |#1|) 66)) (-4237 (((-1157 |#1|) (-1157 |#1|) (-549) (-549)) 101)) (-3896 (((-1157 |#1|) (-1 |#1| (-549)) (-1157 |#1|)) 73)) (-3889 (((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|)) 40)) (-4238 (((-1157 |#1|) (-1157 |#1|)) 100)) (-4199 (((-1157 |#1|) (-1157 |#1|) |#1|) 78)) (-3895 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3897 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 79)) (-4378 (((-1157 |#1|) |#1|) 74)) (-3898 (((-1157 |#1|) (-1157 (-1157 |#1|))) 89)) (-4381 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 41)) (-4269 (((-1157 |#1|) (-1157 |#1|)) 21) (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 23)) (-4271 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 17)) (* (((-1157 |#1|) (-1157 |#1|) |#1|) 29) (((-1157 |#1|) |#1| (-1157 |#1|)) 26) (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 27))) -(((-1164 |#1|) (-10 -7 (-15 -4271 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3889 ((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|))) (-15 -4381 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3890 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -4370 ((-1157 |#1|) |#1| (-549))) (-15 -3891 ((-1157 (-549)) (-549))) (-15 -3892 ((-1157 (-549)) (-549))) (-15 -3893 ((-1157 |#1|) |#1|)) (-15 -3894 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3895 ((-1157 |#1|) (-1157 |#1|))) (-15 -3896 ((-1157 |#1|) (-1 |#1| (-549)) (-1157 |#1|))) (-15 -4378 ((-1157 |#1|) |#1|)) (-15 -4199 ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3897 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4241 ((-1157 |#1|) (-1157 |#1|))) (-15 -4236 ((-1157 |#1|) (-1157 |#1|))) (-15 -3898 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4240 ((-1157 |#1|) (-1157 |#1|))) (-15 -4239 ((-1157 |#1|) (-1157 |#1|))) (-15 -4238 ((-1157 |#1|) (-1157 |#1|))) (-15 -4237 ((-1157 |#1|) (-1157 |#1|) (-549) (-549))) (-15 -4235 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (-15 -4234 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 -3899 ((-1157 |#1|) |#1| (-1 (-1157 |#1|)))) (-15 -3900 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -3901 ((-1157 |#1|) (-410 (-549)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3902 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3903 ((-1157 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1157 |#1|)))) (-15 -3904 ((-1157 |#1|) |#1| (-1157 |#1|)))) |%noBranch|)) (-1052)) (T -1164)) -((-3904 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1157 *4))) (-4 *4 (-365)) (-4 *4 (-1052)) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)))) (-3902 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3901 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1052)) (-5 *3 (-410 (-549))) (-5 *1 (-1164 *4)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1157 *3))) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)))) (-4244 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4234 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-4235 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-4237 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) (-4 *4 (-1052)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4199 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) (-3896 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3894 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3893 (*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) (-3892 (*1 *2 *3) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) (-5 *3 (-549)))) (-3891 (*1 *2 *3) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) (-5 *3 (-549)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) (-3890 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3889 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) -(-10 -7 (-15 -4271 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3889 ((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|))) (-15 -4381 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3890 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -4370 ((-1157 |#1|) |#1| (-549))) (-15 -3891 ((-1157 (-549)) (-549))) (-15 -3892 ((-1157 (-549)) (-549))) (-15 -3893 ((-1157 |#1|) |#1|)) (-15 -3894 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3895 ((-1157 |#1|) (-1157 |#1|))) (-15 -3896 ((-1157 |#1|) (-1 |#1| (-549)) (-1157 |#1|))) (-15 -4378 ((-1157 |#1|) |#1|)) (-15 -4199 ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3897 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4241 ((-1157 |#1|) (-1157 |#1|))) (-15 -4236 ((-1157 |#1|) (-1157 |#1|))) (-15 -3898 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4240 ((-1157 |#1|) (-1157 |#1|))) (-15 -4239 ((-1157 |#1|) (-1157 |#1|))) (-15 -4238 ((-1157 |#1|) (-1157 |#1|))) (-15 -4237 ((-1157 |#1|) (-1157 |#1|) (-549) (-549))) (-15 -4235 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (-15 -4234 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 -3899 ((-1157 |#1|) |#1| (-1 (-1157 |#1|)))) (-15 -3900 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -3901 ((-1157 |#1|) (-410 (-549)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3902 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3903 ((-1157 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1157 |#1|)))) (-15 -3904 ((-1157 |#1|) |#1| (-1157 |#1|)))) |%noBranch|)) -((-3915 (((-1157 |#1|) (-1157 |#1|)) 107)) (-4071 (((-1157 |#1|) (-1157 |#1|)) 61)) (-3906 (((-2 (|:| -3913 (-1157 |#1|)) (|:| -3914 (-1157 |#1|))) (-1157 |#1|)) 103)) (-3913 (((-1157 |#1|) (-1157 |#1|)) 104)) (-3905 (((-2 (|:| -4070 (-1157 |#1|)) (|:| -4066 (-1157 |#1|))) (-1157 |#1|)) 54)) (-4070 (((-1157 |#1|) (-1157 |#1|)) 55)) (-3917 (((-1157 |#1|) (-1157 |#1|)) 109)) (-4069 (((-1157 |#1|) (-1157 |#1|)) 68)) (-4374 (((-1157 |#1|) (-1157 |#1|)) 40)) (-4375 (((-1157 |#1|) (-1157 |#1|)) 37)) (-3918 (((-1157 |#1|) (-1157 |#1|)) 110)) (-4068 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3916 (((-1157 |#1|) (-1157 |#1|)) 108)) (-4067 (((-1157 |#1|) (-1157 |#1|)) 64)) (-3914 (((-1157 |#1|) (-1157 |#1|)) 105)) (-4066 (((-1157 |#1|) (-1157 |#1|)) 56)) (-3921 (((-1157 |#1|) (-1157 |#1|)) 118)) (-3909 (((-1157 |#1|) (-1157 |#1|)) 93)) (-3919 (((-1157 |#1|) (-1157 |#1|)) 112)) (-3907 (((-1157 |#1|) (-1157 |#1|)) 89)) (-3923 (((-1157 |#1|) (-1157 |#1|)) 122)) (-3911 (((-1157 |#1|) (-1157 |#1|)) 97)) (-3924 (((-1157 |#1|) (-1157 |#1|)) 124)) (-3912 (((-1157 |#1|) (-1157 |#1|)) 99)) (-3922 (((-1157 |#1|) (-1157 |#1|)) 120)) (-3910 (((-1157 |#1|) (-1157 |#1|)) 95)) (-3920 (((-1157 |#1|) (-1157 |#1|)) 114)) (-3908 (((-1157 |#1|) (-1157 |#1|)) 91)) (** (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 41))) -(((-1165 |#1|) (-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3905 ((-2 (|:| -4070 (-1157 |#1|)) (|:| -4066 (-1157 |#1|))) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3906 ((-2 (|:| -3913 (-1157 |#1|)) (|:| -3914 (-1157 |#1|))) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) (-38 (-410 (-549)))) (T -1165)) -((-3924 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-2 (|:| -3913 (-1157 *4)) (|:| -3914 (-1157 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-2 (|:| -4070 (-1157 *4)) (|:| -4066 (-1157 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4375 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3))))) -(-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3905 ((-2 (|:| -4070 (-1157 |#1|)) (|:| -4066 (-1157 |#1|))) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3906 ((-2 (|:| -3913 (-1157 |#1|)) (|:| -3914 (-1157 |#1|))) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) -((-3915 (((-1157 |#1|) (-1157 |#1|)) 60)) (-4071 (((-1157 |#1|) (-1157 |#1|)) 42)) (-3913 (((-1157 |#1|) (-1157 |#1|)) 56)) (-4070 (((-1157 |#1|) (-1157 |#1|)) 38)) (-3917 (((-1157 |#1|) (-1157 |#1|)) 63)) (-4069 (((-1157 |#1|) (-1157 |#1|)) 45)) (-4374 (((-1157 |#1|) (-1157 |#1|)) 34)) (-4375 (((-1157 |#1|) (-1157 |#1|)) 29)) (-3918 (((-1157 |#1|) (-1157 |#1|)) 64)) (-4068 (((-1157 |#1|) (-1157 |#1|)) 46)) (-3916 (((-1157 |#1|) (-1157 |#1|)) 61)) (-4067 (((-1157 |#1|) (-1157 |#1|)) 43)) (-3914 (((-1157 |#1|) (-1157 |#1|)) 58)) (-4066 (((-1157 |#1|) (-1157 |#1|)) 40)) (-3921 (((-1157 |#1|) (-1157 |#1|)) 68)) (-3909 (((-1157 |#1|) (-1157 |#1|)) 50)) (-3919 (((-1157 |#1|) (-1157 |#1|)) 66)) (-3907 (((-1157 |#1|) (-1157 |#1|)) 48)) (-3923 (((-1157 |#1|) (-1157 |#1|)) 71)) (-3911 (((-1157 |#1|) (-1157 |#1|)) 53)) (-3924 (((-1157 |#1|) (-1157 |#1|)) 72)) (-3912 (((-1157 |#1|) (-1157 |#1|)) 54)) (-3922 (((-1157 |#1|) (-1157 |#1|)) 70)) (-3910 (((-1157 |#1|) (-1157 |#1|)) 52)) (-3920 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3908 (((-1157 |#1|) (-1157 |#1|)) 51)) (** (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 36))) -(((-1166 |#1|) (-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) (-38 (-410 (-549)))) (T -1166)) -((-3924 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4375 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) -(-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) -((-3925 (((-961 |#2|) |#2| |#2|) 50)) (-3926 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) -(((-1167 |#1| |#2|) (-10 -7 (-15 -3925 ((-961 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3926 (|#2| |#2| |#1|)) |%noBranch|)) (-560) (-1245 |#1|)) (T -1167)) -((-3926 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-560)) (-5 *1 (-1167 *3 *2)) (-4 *2 (-1245 *3)))) (-3925 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-961 *3)) (-5 *1 (-1167 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3925 ((-961 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3926 (|#2| |#2| |#1|)) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3934 (($ $ (-643 (-773))) 81)) (-4320 (($) 33)) (-3943 (($ $) 51)) (-4183 (((-643 $) $) 60)) (-3949 (((-112) $) 19)) (-3927 (((-643 (-946 |#2|)) $) 88)) (-3928 (($ $) 82)) (-3944 (((-773) $) 47)) (-4046 (($) 32)) (-3937 (($ $ (-643 (-773)) (-946 |#2|)) 74) (($ $ (-643 (-773)) (-773)) 75) (($ $ (-773) (-946 |#2|)) 77)) (-3941 (($ $ $) 57) (($ (-643 $)) 59)) (-3929 (((-773) $) 89)) (-3950 (((-112) $) 15)) (-3663 (((-1162) $) NIL)) (-3948 (((-112) $) 22)) (-3664 (((-1123) $) NIL)) (-3930 (((-171) $) 87)) (-3933 (((-946 |#2|) $) 83)) (-3932 (((-773) $) 84)) (-3931 (((-112) $) 86)) (-3935 (($ $ (-643 (-773)) (-171)) 80)) (-3942 (($ $) 52)) (-4378 (((-865) $) 100)) (-3936 (($ $ (-643 (-773)) (-112)) 79)) (-3945 (((-643 $) $) 11)) (-3946 (($ $ (-773)) 46)) (-3947 (($ $) 43)) (-3662 (((-112) $ $) NIL)) (-3938 (($ $ $ (-946 |#2|) (-773)) 70)) (-3939 (($ $ (-946 |#2|)) 69)) (-3940 (($ $ (-643 (-773)) (-946 |#2|)) 66) (($ $ (-643 (-773)) (-773)) 72) (((-773) $ (-946 |#2|)) 73)) (-3455 (((-112) $ $) 94))) -(((-1168 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3949 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4046 ($)) (-15 -4320 ($)) (-15 -3947 ($ $)) (-15 -3946 ($ $ (-773))) (-15 -3945 ((-643 $) $)) (-15 -3944 ((-773) $)) (-15 -3943 ($ $)) (-15 -3942 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ (-643 $))) (-15 -4183 ((-643 $) $)) (-15 -3940 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3939 ($ $ (-946 |#2|))) (-15 -3938 ($ $ $ (-946 |#2|) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3940 ($ $ (-643 (-773)) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-773))) (-15 -3940 ((-773) $ (-946 |#2|))) (-15 -3937 ($ $ (-773) (-946 |#2|))) (-15 -3936 ($ $ (-643 (-773)) (-112))) (-15 -3935 ($ $ (-643 (-773)) (-171))) (-15 -3934 ($ $ (-643 (-773)))) (-15 -3933 ((-946 |#2|) $)) (-15 -3932 ((-773) $)) (-15 -3931 ((-112) $)) (-15 -3930 ((-171) $)) (-15 -3929 ((-773) $)) (-15 -3928 ($ $)) (-15 -3927 ((-643 (-946 |#2|)) $)))) (-922) (-1052)) (T -1168)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-4046 (*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-4320 (*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3947 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3941 (*1 *1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3940 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-946 *4)) (-4 *4 (-1052)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)))) (-3938 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-946 *5)) (-5 *3 (-773)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3940 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3940 (*1 *2 *1 *3) (-12 (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *2 (-773)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3936 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-112)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-171)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-946 *4)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3928 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-643 (-946 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(-13 (-1104) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3949 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4046 ($)) (-15 -4320 ($)) (-15 -3947 ($ $)) (-15 -3946 ($ $ (-773))) (-15 -3945 ((-643 $) $)) (-15 -3944 ((-773) $)) (-15 -3943 ($ $)) (-15 -3942 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ (-643 $))) (-15 -4183 ((-643 $) $)) (-15 -3940 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3939 ($ $ (-946 |#2|))) (-15 -3938 ($ $ $ (-946 |#2|) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3940 ($ $ (-643 (-773)) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-773))) (-15 -3940 ((-773) $ (-946 |#2|))) (-15 -3937 ($ $ (-773) (-946 |#2|))) (-15 -3936 ($ $ (-643 (-773)) (-112))) (-15 -3935 ($ $ (-643 (-773)) (-171))) (-15 -3934 ($ $ (-643 (-773)))) (-15 -3933 ((-946 |#2|) $)) (-15 -3932 ((-773) $)) (-15 -3931 ((-112) $)) (-15 -3930 ((-171) $)) (-15 -3929 ((-773) $)) (-15 -3928 ($ $)) (-15 -3927 ((-643 (-946 |#2|)) $)))) -((-2968 (((-112) $ $) NIL)) (-3951 ((|#2| $) 11)) (-3952 ((|#1| $) 10)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3953 (($ |#1| |#2|) 9)) (-4378 (((-865) $) 16)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1169 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3953 ($ |#1| |#2|)) (-15 -3952 (|#1| $)) (-15 -3951 (|#2| $)))) (-1104) (-1104)) (T -1169)) -((-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-1169 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *2 *3)) (-4 *3 (-1104)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *3 *2)) (-4 *3 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -3953 ($ |#1| |#2|)) (-15 -3952 (|#1| $)) (-15 -3951 (|#2| $)))) -((-2968 (((-112) $ $) NIL)) (-3954 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1170) (-13 (-1086) (-10 -8 (-15 -3954 ((-1138) $))))) (T -1170)) -((-3954 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1170))))) -(-13 (-1086) (-10 -8 (-15 -3954 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-1178 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 11)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2241 (($ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2239 (((-112) $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-4202 (($ $ (-549)) NIL) (($ $ (-549) (-549)) 75)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-4163 (((-1178 |#1| |#2| |#3|) $) 42)) (-4160 (((-3 (-1178 |#1| |#2| |#3|) "failed") $) 32)) (-4161 (((-1178 |#1| |#2| |#3|) $) 33)) (-3915 (($ $) 116 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 92 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) 112 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 88 (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) 120 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 96 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1178 |#1| |#2| |#3|) #2="failed") $) 34) (((-3 (-1180) #2#) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-3 (-410 (-549)) #2#) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-549) #2#) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-3576 (((-1178 |#1| |#2| |#3|) $) 140) (((-1180) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-410 (-549)) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-549) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-4162 (($ $) 37) (($ (-549) $) 38)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-1178 |#1| |#2| |#3|)) (-691 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-1178 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1178 |#1| |#2| |#3|)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365))))) (-3890 (((-3 $ "failed") $) 54)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 74 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 76 (|has| |#1| (-560)))) (-3395 (($) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3606 (((-112) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3293 (((-112) $) 28)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-889 (-380))) (|has| |#1| (-365)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-889 (-549))) (|has| |#1| (-365))))) (-4203 (((-549) $) NIL) (((-549) $ (-549)) 26)) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL (|has| |#1| (-365)))) (-3399 (((-1178 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-3607 (((-112) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4208 (($ $ (-922)) NIL)) (-4247 (($ (-1 |#1| (-549)) $) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-549)) 19) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-2934 (($ $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3260 (($ $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-4374 (($ $) 81 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4210 (($ (-549) (-1178 |#1| |#2| |#3|)) 36)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 79 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 80 (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3532 (($ $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3534 (((-1178 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 158)) (-3889 (((-3 $ "failed") $ $) 55 (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) 82 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) (-1178 |#1| |#2| |#3|)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-517 (-1180) (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-1178 |#1| |#2| |#3|))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-517 (-1180) (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-294 (-1178 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-294 (-1178 |#1| |#2| |#3|))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1178 |#1| |#2| |#3|)) (-643 (-1178 |#1| |#2| |#3|))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) NIL) (($ $ $) 61 (|has| (-549) (-1115))) (($ $ (-1178 |#1| |#2| |#3|)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-287 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1266 |#2|)) 57) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 56 (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3396 (($ $) NIL (|has| |#1| (-365)))) (-3398 (((-1178 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-4380 (((-549) $) 43)) (-3918 (($ $) 122 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 98 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 118 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 94 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 114 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 90 (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-538) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-616 (-538))) (|has| |#1| (-365)))) (((-380) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-380)) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-616 (-893 (-380)))) (|has| |#1| (-365)))) (((-893 (-549)) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-616 (-893 (-549)))) (|has| |#1| (-365))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 162) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1178 |#1| |#2| |#3|)) 30) (($ (-1266 |#2|)) 25) (($ (-1180)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (($ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560)))) (($ (-410 (-549))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-549))))))) (-4109 ((|#1| $ (-549)) 77)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 12)) (-3535 (((-1178 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 128 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 104 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3919 (($ $) 124 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 100 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 108 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 110 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 106 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 126 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 102 (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3510 (($) 21 T CONST)) (-3067 (($) 16 T CONST)) (-3072 (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2966 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-2967 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3088 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-773)) 60) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 137 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1178 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1178 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1171 |#1| |#2| |#3|) (-13 (-1233 |#1| (-1178 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1171)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1233 |#1| (-1178 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-3955 ((|#2| |#2| (-1095 |#2|)) 26) ((|#2| |#2| (-1180)) 28))) -(((-1172 |#1| |#2|) (-10 -7 (-15 -3955 (|#2| |#2| (-1180))) (-15 -3955 (|#2| |#2| (-1095 |#2|)))) (-13 (-560) (-1041 (-549)) (-641 (-549))) (-13 (-424 |#1|) (-160) (-27) (-1205))) (T -1172)) -((-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1172 *4 *2)))) (-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1172 *4 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205)))))) -(-10 -7 (-15 -3955 (|#2| |#2| (-1180))) (-15 -3955 (|#2| |#2| (-1095 |#2|)))) -((-3955 (((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1095 (-410 (-949 |#1|)))) 31) (((-410 (-949 |#1|)) (-949 |#1|) (-1095 (-949 |#1|))) 44) (((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1180)) 33) (((-410 (-949 |#1|)) (-949 |#1|) (-1180)) 36))) -(((-1173 |#1|) (-10 -7 (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1180))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1095 (-949 |#1|)))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1095 (-410 (-949 |#1|)))))) (-13 (-560) (-1041 (-549)))) (T -1173)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1173 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-949 *5))) (-5 *3 (-949 *5)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 *3)) (-5 *1 (-1173 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-3 (-410 (-949 *5)) (-315 *5))) (-5 *1 (-1173 *5)) (-5 *3 (-410 (-949 *5))))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 (-949 *5))) (-5 *1 (-1173 *5)) (-5 *3 (-949 *5))))) -(-10 -7 (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1180))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1095 (-949 |#1|)))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1095 (-410 (-949 |#1|)))))) -((-2968 (((-112) $ $) 171)) (-3608 (((-112) $) 43)) (-4198 (((-1269 |#1|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#1|)) NIL)) (-3487 (((-1174 $) $ (-1085)) 82) (((-1174 |#1|) $) 71)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) 164 (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) 158 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) 95 (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 115 (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4192 (($ $ (-773)) 61)) (-4191 (($ $ (-773)) 63)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1085) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 80)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4190 (($ $ $) 131)) (-4185 (($ $ $) NIL (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3926 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-773) $) 69)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-3956 (((-865) $ (-865)) 148)) (-4203 (((-773) $ $) NIL (|has| |#1| (-560)))) (-2573 (((-112) $) 48)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) 73) (($ (-1174 $) (-1085)) 89)) (-4208 (($ $ (-773)) 51)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 87) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 153)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4197 (((-1174 |#1|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) 76)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) 60)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 50)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 103 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-4170 (($ $ (-773) |#1| $) 123)) (-3108 (((-408 (-1174 $)) (-1174 $)) 101 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 100 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 108 (|has| |#1| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-643 (-1085)) (-643 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) 54)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 172 (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4380 (((-773) $) 78) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#1| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#1| (-560)))) (-4378 (((-865) $) 149) (($ (-549)) NIL) (($ |#1|) 77) (($ (-1085)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) 41 (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 17 T CONST)) (-3067 (($) 19 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) 120)) (-4381 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 90)) (** (($ $ (-922)) 14) (($ $ (-773)) 12)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 39) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1174 |#1|) (-13 (-1245 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))) (-15 -4170 ($ $ (-773) |#1| $)))) (-1052)) (T -1174)) -((-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-865)) (-5 *1 (-1174 *3)) (-4 *3 (-1052)))) (-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1174 *3)) (-4 *3 (-1052))))) -(-13 (-1245 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))) (-15 -4170 ($ $ (-773) |#1| $)))) -((-4390 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 13))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -4390 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) (-1052) (-1052)) (T -1175)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6))))) -(-10 -7 (-15 -4390 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) -((-4401 (((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 51)) (-4164 (((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 52))) -(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -4401 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) (-795) (-852) (-455) (-953 |#3| |#1| |#2|)) (T -1176)) -((-4401 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7)))))) -(-10 -7 (-15 -4164 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -4401 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 11)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1171 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1178 |#1| |#2| |#3|) #1#) $) 36)) (-3576 (((-1171 |#1| |#2| |#3|) $) NIL) (((-1178 |#1| |#2| |#3|) $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4212 (((-410 (-549)) $) 59)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) (-1171 |#1| |#2| |#3|)) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) 20) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4211 (((-1171 |#1| |#2| |#3|) $) 41)) (-4209 (((-3 (-1171 |#1| |#2| |#3|) "failed") $) NIL)) (-4210 (((-1171 |#1| |#2| |#3|) $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 39 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 40 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $ (-1266 |#2|)) 38)) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 62) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1171 |#1| |#2| |#3|)) 30) (($ (-1178 |#1| |#2| |#3|)) 31) (($ (-1266 |#2|)) 26) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 12)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 22 T CONST)) (-3067 (($) 16 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 24)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1177 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1171 |#1| |#2| |#3|)) (-1041 (-1178 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1177)) -((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1254 |#1| (-1171 |#1| |#2| |#3|)) (-1041 (-1178 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 129)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 119)) (-4243 (((-1238 |#2| |#1|) $ (-773)) 69)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-773)) 85) (($ $ (-773) (-773)) 82)) (-4205 (((-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 173 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 169 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|)))) 118) (($ (-1157 |#1|)) 113)) (-3917 (($ $) 177 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) 25)) (-4248 (($ $) 28)) (-4246 (((-949 |#1|) $ (-773)) 81) (((-949 |#1|) $ (-773) (-773)) 83)) (-3293 (((-112) $) 124)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $) 126) (((-773) $ (-773)) 128)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL)) (-4247 (($ (-1 |#1| (-549)) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 13) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $) 133 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4200 (($ $ (-773)) 15)) (-3889 (((-3 $ "failed") $ $) 26 (|has| |#1| (-560)))) (-4375 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-773)))))) (-4231 ((|#1| $ (-773)) 122) (($ $ $) 132 (|has| (-773) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $ (-1266 |#2|)) 31)) (-4380 (((-773) $) NIL)) (-3918 (($ $) 179 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 175 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 171 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 206) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 130 (|has| |#1| (-172))) (($ (-1238 |#2| |#1|)) 55) (($ (-1266 |#2|)) 36)) (-4249 (((-1157 |#1|) $) 101)) (-4109 ((|#1| $ (-773)) 121)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 58)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 185 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 161 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 181 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 157 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 189 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 165 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-773)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-773)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 191 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 167 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 187 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 163 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 183 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 159 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 17 T CONST)) (-3067 (($) 20 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 198)) (-4271 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ |#1|) 203 (|has| |#1| (-365))) (($ $ $) 138 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 141 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1178 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1178)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-1178 *3 *4 *5)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1178 *4 *5 *6)) (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-4378 (((-865) $) 33) (($ (-1180)) 35)) (-3960 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 46)) (-3957 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 39) (($ $) 40)) (-3964 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 41)) (-3962 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 43)) (-3963 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 42)) (-3961 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 44)) (-3959 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 45))) -(((-1179) (-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -3964 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3963 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3962 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3961 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3960 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ $))))) (T -1179)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3964 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3963 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3962 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3961 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3960 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3957 (*1 *1 *1) (-5 *1 (-1179)))) -(-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -3964 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3963 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3962 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3961 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3960 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ $)))) -((-2968 (((-112) $ $) NIL)) (-3968 (($ $ (-643 (-865))) 62)) (-3969 (($ $ (-643 (-865))) 60)) (-3966 (((-1162) $) 101)) (-3971 (((-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))) $) 108)) (-3972 (((-112) $) 23)) (-3970 (($ $ (-643 (-643 (-865)))) 59) (($ $ (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865))))) 99)) (-4156 (($) 163 T CONST)) (-3974 (((-1275)) 135)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 69) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 76)) (-4046 (($) 122) (($ $) 131)) (-3973 (($ $) 100)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3965 (((-643 $) $) 136)) (-3663 (((-1162) $) 114)) (-3664 (((-1123) $) NIL)) (-4231 (($ $ (-643 (-865))) 61)) (-4402 (((-538) $) 48) (((-1180) $) 49) (((-893 (-549)) $) 80) (((-893 (-380)) $) 78)) (-4378 (((-865) $) 55) (($ (-1162)) 50)) (-3662 (((-112) $ $) NIL)) (-3967 (($ $ (-643 (-865))) 63)) (-2900 (((-1162) $) 34) (((-1162) $ (-112)) 35) (((-1275) (-825) $) 36) (((-1275) (-825) $ (-112)) 37)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 51)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 52))) -(((-1180) (-13 (-852) (-616 (-538)) (-823) (-616 (-1180)) (-618 (-1162)) (-616 (-893 (-549))) (-616 (-893 (-380))) (-889 (-549)) (-889 (-380)) (-10 -8 (-15 -4046 ($)) (-15 -4046 ($ $)) (-15 -3974 ((-1275))) (-15 -3973 ($ $)) (-15 -3972 ((-112) $)) (-15 -3971 ((-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))) $)) (-15 -3970 ($ $ (-643 (-643 (-865))))) (-15 -3970 ($ $ (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))))) (-15 -3969 ($ $ (-643 (-865)))) (-15 -3968 ($ $ (-643 (-865)))) (-15 -3967 ($ $ (-643 (-865)))) (-15 -4231 ($ $ (-643 (-865)))) (-15 -3966 ((-1162) $)) (-15 -3965 ((-643 $) $)) (-15 -4156 ($) -4384)))) (T -1180)) -((-4046 (*1 *1) (-5 *1 (-1180))) (-4046 (*1 *1 *1) (-5 *1 (-1180))) (-3974 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1180)))) (-3973 (*1 *1 *1) (-5 *1 (-1180))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865))))) (-5 *1 (-1180)))) (-3970 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-1180)))) (-3970 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865))))) (-5 *1 (-1180)))) (-3969 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1180)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1180)))) (-4156 (*1 *1) (-5 *1 (-1180)))) -(-13 (-852) (-616 (-538)) (-823) (-616 (-1180)) (-618 (-1162)) (-616 (-893 (-549))) (-616 (-893 (-380))) (-889 (-549)) (-889 (-380)) (-10 -8 (-15 -4046 ($)) (-15 -4046 ($ $)) (-15 -3974 ((-1275))) (-15 -3973 ($ $)) (-15 -3972 ((-112) $)) (-15 -3971 ((-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))) $)) (-15 -3970 ($ $ (-643 (-643 (-865))))) (-15 -3970 ($ $ (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))))) (-15 -3969 ($ $ (-643 (-865)))) (-15 -3968 ($ $ (-643 (-865)))) (-15 -3967 ($ $ (-643 (-865)))) (-15 -4231 ($ $ (-643 (-865)))) (-15 -3966 ((-1162) $)) (-15 -3965 ((-643 $) $)) (-15 -4156 ($) -4384))) -((-3975 (((-1269 |#1|) |#1| (-922)) 18) (((-1269 |#1|) (-643 |#1|)) 25))) -(((-1181 |#1|) (-10 -7 (-15 -3975 ((-1269 |#1|) (-643 |#1|))) (-15 -3975 ((-1269 |#1|) |#1| (-922)))) (-1052)) (T -1181)) -((-3975 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1269 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1052)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4)) (-5 *1 (-1181 *4))))) -(-10 -7 (-15 -3975 ((-1269 |#1|) (-643 |#1|))) (-15 -3975 ((-1269 |#1|) |#1| (-922)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-1769 (($ $ |#1| (-974) $) NIL)) (-2573 (((-112) $) 17)) (-2581 (((-773) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-974)) NIL)) (-3223 (((-974) $) NIL)) (-1770 (($ (-1 (-974) (-974)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-4170 (($ $ (-974) |#1| $) NIL (-12 (|has| (-974) (-131)) (|has| |#1| (-560))))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560)))) (-4380 (((-974) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-974)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 11 T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 21)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1182 |#1|) (-13 (-327 |#1| (-974)) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| (-974) (-131)) (-15 -4170 ($ $ (-974) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1052)) (T -1182)) -((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-974)) (-4 *2 (-131)) (-5 *1 (-1182 *3)) (-4 *3 (-560)) (-4 *3 (-1052))))) -(-13 (-327 |#1| #1=(-974)) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| #1# (-131)) (-15 -4170 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) -((-3976 (((-1184) (-1180) $) 25)) (-3986 (($) 29)) (-3978 (((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) (-1180) $) 22)) (-3980 (((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) $) 41) (((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) 42) (((-1275) (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) 43)) (-3988 (((-1275) (-1180)) 58)) (-3979 (((-1275) (-1180) $) 55) (((-1275) (-1180)) 56) (((-1275)) 57)) (-3984 (((-1275) (-1180)) 37)) (-3982 (((-1180)) 36)) (-3996 (($) 34)) (-3995 (((-439) (-1180) (-439) (-1180) $) 45) (((-439) (-643 (-1180)) (-439) (-1180) $) 49) (((-439) (-1180) (-439)) 46) (((-439) (-1180) (-439) (-1180)) 50)) (-3983 (((-1180)) 35)) (-4378 (((-865) $) 28)) (-3985 (((-1275)) 30) (((-1275) (-1180)) 33)) (-3977 (((-643 (-1180)) (-1180) $) 24)) (-3981 (((-1275) (-1180) (-643 (-1180)) $) 38) (((-1275) (-1180) (-643 (-1180))) 39) (((-1275) (-643 (-1180))) 40))) -(((-1183) (-13 (-615 (-865)) (-10 -8 (-15 -3986 ($)) (-15 -3985 ((-1275))) (-15 -3985 ((-1275) (-1180))) (-15 -3995 ((-439) (-1180) (-439) (-1180) $)) (-15 -3995 ((-439) (-643 (-1180)) (-439) (-1180) $)) (-15 -3995 ((-439) (-1180) (-439))) (-15 -3995 ((-439) (-1180) (-439) (-1180))) (-15 -3984 ((-1275) (-1180))) (-15 -3983 ((-1180))) (-15 -3982 ((-1180))) (-15 -3981 ((-1275) (-1180) (-643 (-1180)) $)) (-15 -3981 ((-1275) (-1180) (-643 (-1180)))) (-15 -3981 ((-1275) (-643 (-1180)))) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3980 ((-1275) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3979 ((-1275) (-1180) $)) (-15 -3979 ((-1275) (-1180))) (-15 -3979 ((-1275))) (-15 -3988 ((-1275) (-1180))) (-15 -3996 ($)) (-15 -3978 ((-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-1180) $)) (-15 -3977 ((-643 (-1180)) (-1180) $)) (-15 -3976 ((-1184) (-1180) $))))) (T -1183)) -((-3986 (*1 *1) (-5 *1 (-1183))) (-3985 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *4 (-1180)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3983 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183)))) (-3982 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183)))) (-3981 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3980 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3979 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3979 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3996 (*1 *1) (-5 *1 (-1183))) (-3978 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *1 (-1183)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1183)) (-5 *3 (-1180)))) (-3976 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1184)) (-5 *1 (-1183))))) -(-13 (-615 (-865)) (-10 -8 (-15 -3986 ($)) (-15 -3985 ((-1275))) (-15 -3985 ((-1275) (-1180))) (-15 -3995 ((-439) (-1180) (-439) (-1180) $)) (-15 -3995 ((-439) (-643 (-1180)) (-439) (-1180) $)) (-15 -3995 ((-439) (-1180) (-439))) (-15 -3995 ((-439) (-1180) (-439) (-1180))) (-15 -3984 ((-1275) (-1180))) (-15 -3983 ((-1180))) (-15 -3982 ((-1180))) (-15 -3981 ((-1275) (-1180) (-643 (-1180)) $)) (-15 -3981 ((-1275) (-1180) (-643 (-1180)))) (-15 -3981 ((-1275) (-643 (-1180)))) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3980 ((-1275) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3979 ((-1275) (-1180) $)) (-15 -3979 ((-1275) (-1180))) (-15 -3979 ((-1275))) (-15 -3988 ((-1275) (-1180))) (-15 -3996 ($)) (-15 -3978 ((-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-1180) $)) (-15 -3977 ((-643 (-1180)) (-1180) $)) (-15 -3976 ((-1184) (-1180) $)))) -((-3990 (((-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) $) 66)) (-3992 (((-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))) (-437) $) 47)) (-3987 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))) 17)) (-3988 (((-1275) $) 73)) (-3993 (((-643 (-1180)) $) 22)) (-3989 (((-1106) $) 60)) (-3994 (((-439) (-1180) $) 27)) (-3991 (((-643 (-1180)) $) 30)) (-3996 (($) 19)) (-3995 (((-439) (-643 (-1180)) (-439) $) 25) (((-439) (-1180) (-439) $) 24)) (-4378 (((-865) $) 9) (((-1192 (-1180) (-439)) $) 13))) -(((-1184) (-13 (-615 (-865)) (-10 -8 (-15 -4378 ((-1192 (-1180) (-439)) $)) (-15 -3996 ($)) (-15 -3995 ((-439) (-643 (-1180)) (-439) $)) (-15 -3995 ((-439) (-1180) (-439) $)) (-15 -3994 ((-439) (-1180) $)) (-15 -3993 ((-643 (-1180)) $)) (-15 -3992 ((-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))) (-437) $)) (-15 -3991 ((-643 (-1180)) $)) (-15 -3990 ((-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) $)) (-15 -3989 ((-1106) $)) (-15 -3988 ((-1275) $)) (-15 -3987 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))))))) (T -1184)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-1192 (-1180) (-439))) (-5 *1 (-1184)))) (-3996 (*1 *1) (-5 *1 (-1184))) (-3995 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *1 (-1184)))) (-3995 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1184)))) (-3994 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-439)) (-5 *1 (-1184)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184)))) (-3992 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) (-5 *1 (-1184)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))))) (-5 *1 (-1184)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1184)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))) (-5 *1 (-1184))))) -(-13 (-615 (-865)) (-10 -8 (-15 -4378 ((-1192 (-1180) (-439)) $)) (-15 -3996 ($)) (-15 -3995 ((-439) (-643 (-1180)) (-439) $)) (-15 -3995 ((-439) (-1180) (-439) $)) (-15 -3994 ((-439) (-1180) $)) (-15 -3993 ((-643 (-1180)) $)) (-15 -3992 ((-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))) (-437) $)) (-15 -3991 ((-643 (-1180)) $)) (-15 -3990 ((-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) $)) (-15 -3989 ((-1106) $)) (-15 -3988 ((-1275) $)) (-15 -3987 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439)))))))) -((-2968 (((-112) $ $) NIL)) (-3577 (((-3 (-549) #1="failed") $) 29) (((-3 (-225) #1#) $) 35) (((-3 (-509) #1#) $) 43) (((-3 (-1162) #1#) $) 47)) (-3576 (((-549) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1162) $) 48)) (-4001 (((-112) $) 53)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4000 (((-3 (-549) (-225) (-509) (-1162) $) $) 55)) (-3999 (((-643 $) $) 57)) (-4402 (((-1106) $) 24) (($ (-1106)) 25)) (-3998 (((-112) $) 56)) (-4378 (((-865) $) 23) (($ (-549)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1162)) 44) (((-538) $) 59) (((-549) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1162) $) 49)) (-3997 (((-112) $ (|[\|\|]| (-549))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1162))) 16)) (-4002 (($ (-509) (-643 $)) 51) (($ $ (-643 $)) 52)) (-3662 (((-112) $ $) NIL)) (-4003 (((-549) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1162) $) 45)) (-3455 (((-112) $ $) 7))) -(((-1185) (-13 (-1265) (-1104) (-1041 (-549)) (-1041 (-225)) (-1041 (-509)) (-1041 (-1162)) (-615 (-538)) (-10 -8 (-15 -4402 ((-1106) $)) (-15 -4402 ($ (-1106))) (-15 -4378 ((-549) $)) (-15 -4003 ((-549) $)) (-15 -4378 ((-225) $)) (-15 -4003 ((-225) $)) (-15 -4378 ((-509) $)) (-15 -4003 ((-509) $)) (-15 -4378 ((-1162) $)) (-15 -4003 ((-1162) $)) (-15 -4002 ($ (-509) (-643 $))) (-15 -4002 ($ $ (-643 $))) (-15 -4001 ((-112) $)) (-15 -4000 ((-3 (-549) (-225) (-509) (-1162) $) $)) (-15 -3999 ((-643 $) $)) (-15 -3998 ((-112) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-549)))) (-15 -3997 ((-112) $ (|[\|\|]| (-225)))) (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -3997 ((-112) $ (|[\|\|]| (-1162))))))) (T -1185)) -((-4402 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) (-4002 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-1185))) (-5 *1 (-1185)))) (-4002 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-3 (-549) (-225) (-509) (-1162) (-1185))) (-5 *1 (-1185)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-1185))))) -(-13 (-1265) (-1104) (-1041 (-549)) (-1041 (-225)) (-1041 (-509)) (-1041 (-1162)) (-615 (-538)) (-10 -8 (-15 -4402 ((-1106) $)) (-15 -4402 ($ (-1106))) (-15 -4378 ((-549) $)) (-15 -4003 ((-549) $)) (-15 -4378 ((-225) $)) (-15 -4003 ((-225) $)) (-15 -4378 ((-509) $)) (-15 -4003 ((-509) $)) (-15 -4378 ((-1162) $)) (-15 -4003 ((-1162) $)) (-15 -4002 ($ (-509) (-643 $))) (-15 -4002 ($ $ (-643 $))) (-15 -4001 ((-112) $)) (-15 -4000 ((-3 (-549) (-225) (-509) (-1162) $) $)) (-15 -3999 ((-643 $) $)) (-15 -3998 ((-112) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-549)))) (-15 -3997 ((-112) $ (|[\|\|]| (-225)))) (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) 22)) (-4156 (($) 12 T CONST)) (-3395 (($) 26)) (-2934 (($ $ $) NIL) (($) 19 T CONST)) (-3260 (($ $ $) NIL) (($) 20 T CONST)) (-2188 (((-922) $) 24)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 23)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-1186 |#1|) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) (-922)) (T -1186)) -((-4156 (*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-922))))) -(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3750 ((|#1| $) 45)) (-1310 (((-112) $ (-774)) 8)) (-4158 (($) 7 T CONST)) (-3752 ((|#1| |#1| $) 47)) (-3751 ((|#1| $) 46)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-1370 ((|#1| $) 40)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-1371 ((|#1| $) 42)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-3749 (((-774) $) 44)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) 43)) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1125 |#1|) (-140) (-1220)) (T -1125)) +((-3752 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1220)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1220)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1220)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1220)) (-5 *2 (-774))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4427) (-15 -3752 (|t#1| |t#1| $)) (-15 -3751 (|t#1| $)) (-15 -3750 (|t#1| $)) (-15 -3749 ((-774) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-3756 ((|#3| $) 87)) (-3579 (((-3 (-550) #1="failed") $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 |#3| #1#) $) 50)) (-3578 (((-550) $) NIL) (((-411 (-550)) $) NIL) ((|#3| $) 47)) (-2429 (((-692 (-550)) (-692 $)) NIL) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL) (((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 $) (-1270 $)) 84) (((-692 |#3|) (-692 $)) 76)) (-4244 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181)) NIL) (($ $ (-774)) NIL) (($ $) NIL)) (-3755 ((|#3| $) 89)) (-3757 ((|#4| $) 43)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-411 (-550))) NIL) (($ |#3|) 25)) (** (($ $ (-923)) NIL) (($ $ (-774)) 24) (($ $ (-550)) 95))) +(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 -3755 (|#3| |#1|)) (-15 -3756 (|#3| |#1|)) (-15 -3757 (|#4| |#1|)) (-15 -2429 ((-692 |#3|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -4380 (|#1| |#3|)) (-15 -3579 ((-3 |#3| #1="failed") |#1|)) (-15 -3578 (|#3| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|) (-774))) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4380 (|#1| (-550))) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923))) (-15 -4380 ((-866) |#1|))) (-1127 |#2| |#3| |#4| |#5|) (-774) (-1053) (-239 |#2| |#3|) (-239 |#2| |#3|)) (T -1126)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-550))) (-15 -3755 (|#3| |#1|)) (-15 -3756 (|#3| |#1|)) (-15 -3757 (|#4| |#1|)) (-15 -2429 ((-692 |#3|) (-692 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 |#3|)) (|:| |vec| (-1270 |#3|))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 |#1|) (-1270 |#1|))) (-15 -2429 ((-692 (-550)) (-692 |#1|))) (-15 -4380 (|#1| |#3|)) (-15 -3579 ((-3 |#3| #1="failed") |#1|)) (-15 -3578 (|#3| |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|) (-774))) (-15 -4244 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4380 (|#1| (-550))) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3756 ((|#2| $) 77)) (-3527 (((-112) $) 117)) (-1408 (((-3 $ "failed") $ $) 20)) (-3529 (((-112) $) 115)) (-1310 (((-112) $ (-774)) 107)) (-3759 (($ |#2|) 80)) (-4158 (($) 18 T CONST)) (-3516 (($ $) 134 (|has| |#2| (-309)))) (-3518 ((|#3| $ (-550)) 129)) (-3579 (((-3 (-550) #1="failed") $) 92 (|has| |#2| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) 89 (|has| |#2| (-1042 (-411 (-550))))) (((-3 |#2| #1#) $) 86)) (-3578 (((-550) $) 91 (|has| |#2| (-1042 (-550)))) (((-411 (-550)) $) 88 (|has| |#2| (-1042 (-411 (-550))))) ((|#2| $) 87)) (-2429 (((-692 (-550)) (-692 $)) 84 (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 83 (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) 82) (((-692 |#2|) (-692 $)) 81)) (-3892 (((-3 $ "failed") $) 37)) (-3515 (((-774) $) 135 (|has| |#2| (-561)))) (-3519 ((|#2| $ (-550) (-550)) 127)) (-2126 (((-644 |#2|) $) 100 (|has| $ (-6 -4427)))) (-2575 (((-112) $) 35)) (-3514 (((-774) $) 136 (|has| |#2| (-561)))) (-3513 (((-644 |#4|) $) 137 (|has| |#2| (-561)))) (-3521 (((-774) $) 123)) (-3520 (((-774) $) 124)) (-4153 (((-112) $ (-774)) 108)) (-3753 ((|#2| $) 72 (|has| |#2| (-6 (-4429 #2="*"))))) (-3525 (((-550) $) 119)) (-3523 (((-550) $) 121)) (-3010 (((-644 |#2|) $) 99 (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-3524 (((-550) $) 120)) (-3522 (((-550) $) 122)) (-3530 (($ (-644 (-644 |#2|))) 114)) (-2130 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-4027 (((-644 (-644 |#2|)) $) 125)) (-4150 (((-112) $ (-774)) 109)) (-3665 (((-1163) $) 10)) (-4023 (((-3 $ "failed") $) 71 (|has| |#2| (-366)))) (-3666 (((-1124) $) 11)) (-3891 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-561)))) (-2128 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) 96 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) 93 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) 113)) (-3829 (((-112) $) 110)) (-3998 (($) 111)) (-4233 ((|#2| $ (-550) (-550) |#2|) 128) ((|#2| $ (-550) (-550)) 126)) (-4244 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-774)) 55) (($ $ (-644 (-1181)) (-644 (-774))) 48 (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) 47 (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) 46 (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) 45 (|has| |#2| (-904 (-1181)))) (($ $ (-774)) 43 (|has| |#2| (-234))) (($ $) 41 (|has| |#2| (-234)))) (-3755 ((|#2| $) 76)) (-3758 (($ (-644 |#2|)) 79)) (-3528 (((-112) $) 116)) (-3757 ((|#3| $) 78)) (-3754 ((|#2| $) 73 (|has| |#2| (-6 (-4429 #2#))))) (-2127 (((-774) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4427))) (((-774) |#2| $) 98 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 112)) (-3517 ((|#4| $ (-550)) 130)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 90 (|has| |#2| (-1042 (-411 (-550))))) (($ |#2|) 85)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2129 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4427)))) (-3526 (((-112) $) 118)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-774)) 53) (($ $ (-644 (-1181)) (-644 (-774))) 52 (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) 51 (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) 50 (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) 49 (|has| |#2| (-904 (-1181)))) (($ $ (-774)) 44 (|has| |#2| (-234))) (($ $) 42 (|has| |#2| (-234)))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#2|) 133 (|has| |#2| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 70 (|has| |#2| (-366)))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-4391 (((-774) $) 106 (|has| $ (-6 -4427))))) +(((-1127 |#1| |#2| |#3| |#4|) (-140) (-774) (-1053) (-239 |t#1| |t#2|) (-239 |t#1| |t#2|)) (T -1127)) +((-3759 (*1 *1 *2) (-12 (-4 *2 (-1053)) (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)))) (-3758 (*1 *1 *2) (-12 (-5 *2 (-644 *4)) (-4 *4 (-1053)) (-4 *1 (-1127 *3 *4 *5 *6)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *4 *2 *5)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1053)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1053)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1127 *3 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1127 *3 *4 *2 *5)) (-4 *4 (-1053)) (-4 *2 (-239 *3 *4)) (-4 *5 (-239 *3 *4)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4429 #1="*"))) (-4 *2 (-1053)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4429 #1#))) (-4 *2 (-1053)))) (-4023 (*1 *1 *1) (|partial| -12 (-4 *1 (-1127 *2 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-366)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1127 *3 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-366))))) +(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1057 |t#1| |t#1| |t#2| |t#3| |t#4|) (-416 |t#2|) (-380 |t#2|) (-10 -8 (IF (|has| |t#2| (-173)) (-6 (-720 |t#2|)) |%noBranch|) (-15 -3759 ($ |t#2|)) (-15 -3758 ($ (-644 |t#2|))) (-15 -3757 (|t#3| $)) (-15 -3756 (|t#2| $)) (-15 -3755 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4429 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3754 (|t#2| $)) (-15 -3753 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-366)) (PROGN (-15 -4023 ((-3 $ "failed") $)) (-15 ** ($ $ (-550)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4429 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-619 #2=(-411 (-550))) |has| |#2| (-1042 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#2|) . T) ((-616 (-866)) . T) ((-232 |#2|) . T) ((-234) |has| |#2| (-234)) ((-311 |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-380 |#2|) . T) ((-416 |#2|) . T) ((-493 |#2|) . T) ((-518 |#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-649 (-550)) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-643 |#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-6 (-4429 #1#)))) ((-642 (-550)) |has| |#2| (-642 (-550))) ((-642 |#2|) . T) ((-720 |#2|) -3962 (|has| |#2| (-173)) (|has| |#2| (-6 (-4429 #1#)))) ((-729) . T) ((-904 (-1181)) |has| |#2| (-904 (-1181))) ((-1057 |#1| |#1| |#2| |#3| |#4|) . T) ((-1042 #2#) |has| |#2| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#2| (-1042 (-550))) ((-1042 |#2|) . T) ((-1055 |#2|) . T) ((-1060 |#2|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1220) . T)) +((-3762 ((|#4| |#4|) 81)) (-3760 ((|#4| |#4|) 76)) (-3764 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2192 (-644 |#3|))) |#4| |#3|) 91)) (-3763 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3761 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1128 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3760 (|#4| |#4|)) (-15 -3761 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3762 (|#4| |#4|)) (-15 -3763 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3764 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2192 (-644 |#3|))) |#4| |#3|))) (-309) (-375 |#1|) (-375 |#1|) (-689 |#1| |#2| |#3|)) (T -1128)) +((-3764 (*1 *2 *3 *4) (-12 (-4 *5 (-309)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2192 (-644 *4)))) (-5 *1 (-1128 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4)))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-309)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1128 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-309)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1128 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-309)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1128 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-309)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1128 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) +(-10 -7 (-15 -3760 (|#4| |#4|)) (-15 -3761 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3762 (|#4| |#4|)) (-15 -3763 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3764 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2192 (-644 |#3|))) |#4| |#3|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 18)) (-3487 (((-644 |#2|) $) 174)) (-3489 (((-1175 $) $ |#2|) 60) (((-1175 |#1|) $) 49)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 116 (|has| |#1| (-561)))) (-2243 (($ $) 118 (|has| |#1| (-561)))) (-2241 (((-112) $) 120 (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 |#2|)) 213)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) 167) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 |#2| #2#) $) NIL)) (-3578 ((|#1| $) 165) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) ((|#2| $) NIL)) (-4190 (($ $ $ |#2|) NIL (|has| |#1| (-173)))) (-4393 (($ $) 217)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) 90)) (-3928 (($ $) NIL (|has| |#1| (-456))) (($ $ |#2|) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-535 |#2|) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| |#1| (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| |#1| (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-2575 (((-112) $) 20)) (-2583 (((-774) $) 30)) (-3490 (($ (-1175 |#1|) |#2|) 54) (($ (-1175 $) |#2|) 71)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) 38)) (-3296 (($ |#1| (-535 |#2|)) 78) (($ $ |#2| (-774)) 58) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ |#2|) NIL)) (-3225 (((-535 |#2|) $) 205) (((-774) $ |#2|) 206) (((-644 (-774)) $ (-644 |#2|)) 207)) (-1772 (($ (-1 (-535 |#2|) (-535 |#2|)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) 128)) (-3488 (((-3 |#2| #3="failed") $) 177)) (-3297 (($ $) 216)) (-3596 ((|#1| $) 43)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-3228 (((-3 (-644 $) #3#) $) NIL)) (-3227 (((-3 (-644 $) #3#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| |#2|) (|:| -2566 (-774))) #3#) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) 39)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 148 (|has| |#1| (-456)))) (-3566 (($ (-644 $)) 153 (|has| |#1| (-456))) (($ $ $) 138 (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-914)))) (-3891 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-561)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-644 |#2|) (-644 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-644 |#2|) (-644 $)) 194)) (-4191 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-4244 (($ $ |#2|) 215) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-4382 (((-535 |#2|) $) 201) (((-774) $ |#2|) 196) (((-644 (-774)) $ (-644 |#2|)) 199)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| |#1| (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| |#1| (-617 (-539))) (|has| |#2| (-617 (-539)))))) (-3222 ((|#1| $) 134 (|has| |#1| (-456))) (($ $ |#2|) 137 (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4380 (((-866) $) 159) (($ (-550)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-561))) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-4251 (((-644 |#1|) $) 162)) (-4111 ((|#1| $ (-535 |#2|)) 80) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-3107 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) 87 T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) 123 (|has| |#1| (-561)))) (-3512 (($) 12 T CONST)) (-3069 (($) 14 T CONST)) (-3074 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-3457 (((-112) $ $) 106)) (-4383 (($ $ |#1|) 132 (|has| |#1| (-366)))) (-4271 (($ $) 93) (($ $ $) 104)) (-4273 (($ $ $) 55)) (** (($ $ (-923)) 110) (($ $ (-774)) 109)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 96) (($ $ $) 72) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1129 |#1| |#2|) (-954 |#1| (-535 |#2|) |#2|) (-1053) (-853)) (T -1129)) +NIL +(-954 |#1| (-535 |#2|) |#2|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 |#2|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3917 (($ $) 152 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 128 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3915 (($ $) 148 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 124 (|has| |#1| (-38 (-411 (-550)))))) (-3919 (($ $) 156 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4248 (((-950 |#1|) $ (-774)) NIL) (((-950 |#1|) $ (-774) (-774)) NIL)) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-774) $ |#2|) NIL) (((-774) $ |#2| (-774)) NIL)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4371 (((-112) $) NIL)) (-3296 (($ $ (-644 |#2|) (-644 (-535 |#2|))) NIL) (($ $ |#2| (-535 |#2|)) NIL) (($ |#1| (-535 |#2|)) NIL) (($ $ |#2| (-774)) 63) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (($ $) 122 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-4246 (($ $ |#2|) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-4110 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-411 (-550)))))) (-4202 (($ $ (-774)) 16)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4377 (($ $) 120 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (($ $ |#2| $) 106) (($ $ (-644 |#2|) (-644 $)) 99) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-4244 (($ $ |#2|) 109) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-4382 (((-535 |#2|) $) NIL)) (-3765 (((-1 (-1158 |#3|) |#3|) (-644 |#2|) (-644 (-1158 |#3|))) 87)) (-3920 (($ $) 158 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 154 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 150 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 126 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 18)) (-4380 (((-866) $) 199) (($ (-550)) NIL) (($ |#1|) 45 (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#2|) 70) (($ |#3|) 68)) (-4111 ((|#1| $ (-535 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL) ((|#3| $ (-774)) 43)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) 164 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 140 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) 160 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 168 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 144 (|has| |#1| (-38 (-411 (-550)))))) (-3926 (($ $) 170 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 146 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 166 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 142 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 162 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 138 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 52 T CONST)) (-3069 (($) 62 T CONST)) (-3074 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-774)) NIL) (($ $ (-644 |#2|) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) 201 (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-774)) 77) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 112 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 65) (($ $ (-411 (-550))) 117 (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) 115 (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1130 |#1| |#2| |#3|) (-13 (-743 |#1| |#2|) (-10 -8 (-15 -4111 (|#3| $ (-774))) (-15 -4380 ($ |#2|)) (-15 -4380 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3765 ((-1 (-1158 |#3|) |#3|) (-644 |#2|) (-644 (-1158 |#3|)))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $ |#2| |#1|)) (-15 -4110 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1053) (-853) (-954 |#1| (-535 |#2|) |#2|)) (T -1130)) +((-4111 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *2 (-954 *4 (-535 *5) *5)) (-5 *1 (-1130 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-853)))) (-4380 (*1 *1 *2) (-12 (-4 *3 (-1053)) (-4 *2 (-853)) (-5 *1 (-1130 *3 *2 *4)) (-4 *4 (-954 *3 (-535 *2) *2)))) (-4380 (*1 *1 *2) (-12 (-4 *3 (-1053)) (-4 *4 (-853)) (-5 *1 (-1130 *3 *4 *2)) (-4 *2 (-954 *3 (-535 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1053)) (-4 *4 (-853)) (-5 *1 (-1130 *3 *4 *2)) (-4 *2 (-954 *3 (-535 *4) *4)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1158 *7))) (-4 *6 (-853)) (-4 *7 (-954 *5 (-535 *6) *6)) (-4 *5 (-1053)) (-5 *2 (-1 (-1158 *7) *7)) (-5 *1 (-1130 *5 *6 *7)))) (-4246 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-4 *2 (-853)) (-5 *1 (-1130 *3 *2 *4)) (-4 *4 (-954 *3 (-535 *2) *2)))) (-4110 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1130 *4 *3 *5))) (-4 *4 (-38 (-411 (-550)))) (-4 *4 (-1053)) (-4 *3 (-853)) (-5 *1 (-1130 *4 *3 *5)) (-4 *5 (-954 *4 (-535 *3) *3))))) +(-13 (-743 |#1| |#2|) (-10 -8 (-15 -4111 (|#3| $ (-774))) (-15 -4380 ($ |#2|)) (-15 -4380 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3765 ((-1 (-1158 |#3|) |#3|) (-644 |#2|) (-644 (-1158 |#3|)))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $ |#2| |#1|)) (-15 -4110 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2970 (((-112) $ $) 7)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) 86)) (-4116 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3487 (((-644 |#3|) $) 34)) (-3311 (((-112) $) 27)) (-3302 (((-112) $) 18 (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) 102) (((-112) $) 98)) (-4122 ((|#4| |#4| $) 93)) (-4208 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| $) 127)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) 28)) (-1310 (((-112) $ (-774)) 45)) (-4144 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4158 (($) 46 T CONST)) (-3307 (((-112) $) 23 (|has| |#1| (-561)))) (-3309 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3308 (((-112) $ $) 24 (|has| |#1| (-561)))) (-3310 (((-112) $) 26 (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3303 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 37)) (-3578 (($ (-644 |#4|)) 36)) (-4232 (((-3 $ #1#) $) 83)) (-4119 ((|#4| |#4| $) 90)) (-1441 (($ $) 69 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#4| $) 68 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4117 ((|#4| |#4| $) 88)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) 106)) (-3619 (((-112) |#4| $) 137)) (-3617 (((-112) |#4| $) 134)) (-3620 (((-112) |#4| $) 138) (((-112) $) 135)) (-2126 (((-644 |#4|) $) 53 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) 105) (((-112) $) 104)) (-3602 ((|#3| $) 35)) (-4153 (((-112) $ (-774)) 44)) (-3010 (((-644 |#4|) $) 54 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 48)) (-3317 (((-644 |#3|) $) 33)) (-3316 (((-112) |#3| $) 32)) (-4150 (((-112) $ (-774)) 43)) (-3665 (((-1163) $) 10)) (-3613 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3612 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| |#4| $) 128)) (-4231 (((-3 |#4| #1#) $) 84)) (-3614 (((-644 $) |#4| $) 130)) (-3616 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-3866 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-4131 (((-644 |#4|) $) 108)) (-4125 (((-112) |#4| $) 100) (((-112) $) 96)) (-4120 ((|#4| |#4| $) 91)) (-4133 (((-112) $ $) 111)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) 101) (((-112) $) 97)) (-4121 ((|#4| |#4| $) 92)) (-3666 (((-1124) $) 11)) (-4234 (((-3 |#4| #1#) $) 85)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4113 (((-3 $ #1#) $ |#4|) 79)) (-4202 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2128 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) 39)) (-3829 (((-112) $) 42)) (-3998 (($) 41)) (-4382 (((-774) $) 107)) (-2127 (((-774) |#4| $) 55 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4427)))) (-3826 (($ $) 40)) (-4404 (((-539) $) 70 (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 61)) (-3313 (($ $ |#3|) 29)) (-3315 (($ $ |#3|) 31)) (-4118 (($ $) 89)) (-3314 (($ $ |#3|) 30)) (-4380 (((-866) $) 12) (((-644 |#4|) $) 38)) (-4112 (((-774) $) 77 (|has| |#3| (-371)))) (-3664 (((-112) $ $) 9)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3611 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2129 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) 82)) (-3618 (((-112) |#4| $) 136)) (-4367 (((-112) |#3| $) 81)) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-1131 |#1| |#2| |#3| |#4|) (-140) (-456) (-796) (-853) (-1069 |t#1| |t#2| |t#3|)) (T -1131)) +NIL +(-13 (-1113 |t#1| |t#2| |t#3| |t#4|) (-787 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-616 (-644 |#4|)) . T) ((-616 (-866)) . T) ((-151 |#4|) . T) ((-617 (-539)) |has| |#4| (-617 (-539))) ((-311 |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-493 |#4|) . T) ((-518 |#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-787 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1075 |#1| |#2| |#3| |#4|) . T) ((-1105) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1215 |#1| |#2| |#3| |#4|) . T) ((-1220) . T)) +((-4006 (((-644 |#2|) |#1|) 15)) (-3771 (((-644 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-644 |#2|) |#1|) 63)) (-3769 (((-644 |#2|) |#2| |#2| |#2|) 45) (((-644 |#2|) |#1|) 61)) (-3766 ((|#2| |#1|) 56)) (-3767 (((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3768 (((-644 |#2|) |#2| |#2|) 42) (((-644 |#2|) |#1|) 60)) (-3770 (((-644 |#2|) |#2| |#2| |#2| |#2|) 46) (((-644 |#2|) |#1|) 62)) (-3775 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3773 ((|#2| |#2| |#2| |#2|) 53)) (-3772 ((|#2| |#2| |#2|) 52)) (-3774 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1132 |#1| |#2|) (-10 -7 (-15 -4006 ((-644 |#2|) |#1|)) (-15 -3766 (|#2| |#1|)) (-15 -3767 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3768 ((-644 |#2|) |#1|)) (-15 -3769 ((-644 |#2|) |#1|)) (-15 -3770 ((-644 |#2|) |#1|)) (-15 -3771 ((-644 |#2|) |#1|)) (-15 -3768 ((-644 |#2|) |#2| |#2|)) (-15 -3769 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -3770 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3771 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2|)) (-15 -3773 (|#2| |#2| |#2| |#2|)) (-15 -3774 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3775 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1246 |#2|) (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (T -1132)) +((-3775 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2)))) (-3774 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2)))) (-3773 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2)))) (-3772 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2)))) (-3771 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3)))) (-3770 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3)))) (-3769 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3)))) (-3768 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) (-3768 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-2 (|:| |solns| (-644 *5)) (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1132 *3 *5)) (-4 *3 (-1246 *5)))) (-3766 (*1 *2 *3) (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -4006 ((-644 |#2|) |#1|)) (-15 -3766 (|#2| |#1|)) (-15 -3767 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3768 ((-644 |#2|) |#1|)) (-15 -3769 ((-644 |#2|) |#1|)) (-15 -3770 ((-644 |#2|) |#1|)) (-15 -3771 ((-644 |#2|) |#1|)) (-15 -3768 ((-644 |#2|) |#2| |#2|)) (-15 -3769 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -3770 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3771 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2|)) (-15 -3773 (|#2| |#2| |#2| |#2|)) (-15 -3774 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3775 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3776 (((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-411 (-950 |#1|))))) 118) (((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-411 (-950 |#1|)))) (-644 (-1181))) 117) (((-644 (-644 (-295 (-316 |#1|)))) (-644 (-411 (-950 |#1|)))) 115) (((-644 (-644 (-295 (-316 |#1|)))) (-644 (-411 (-950 |#1|))) (-644 (-1181))) 113) (((-644 (-295 (-316 |#1|))) (-295 (-411 (-950 |#1|)))) 97) (((-644 (-295 (-316 |#1|))) (-295 (-411 (-950 |#1|))) (-1181)) 98) (((-644 (-295 (-316 |#1|))) (-411 (-950 |#1|))) 92) (((-644 (-295 (-316 |#1|))) (-411 (-950 |#1|)) (-1181)) 82)) (-3777 (((-644 (-644 (-316 |#1|))) (-644 (-411 (-950 |#1|))) (-644 (-1181))) 111) (((-644 (-316 |#1|)) (-411 (-950 |#1|)) (-1181)) 54)) (-3778 (((-1170 (-644 (-316 |#1|)) (-644 (-295 (-316 |#1|)))) (-411 (-950 |#1|)) (-1181)) 122) (((-1170 (-644 (-316 |#1|)) (-644 (-295 (-316 |#1|)))) (-295 (-411 (-950 |#1|))) (-1181)) 121))) +(((-1133 |#1|) (-10 -7 (-15 -3776 ((-644 (-295 (-316 |#1|))) (-411 (-950 |#1|)) (-1181))) (-15 -3776 ((-644 (-295 (-316 |#1|))) (-411 (-950 |#1|)))) (-15 -3776 ((-644 (-295 (-316 |#1|))) (-295 (-411 (-950 |#1|))) (-1181))) (-15 -3776 ((-644 (-295 (-316 |#1|))) (-295 (-411 (-950 |#1|))))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-411 (-950 |#1|))))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-411 (-950 |#1|)))) (-644 (-1181)))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-411 (-950 |#1|)))))) (-15 -3777 ((-644 (-316 |#1|)) (-411 (-950 |#1|)) (-1181))) (-15 -3777 ((-644 (-644 (-316 |#1|))) (-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -3778 ((-1170 (-644 (-316 |#1|)) (-644 (-295 (-316 |#1|)))) (-295 (-411 (-950 |#1|))) (-1181))) (-15 -3778 ((-1170 (-644 (-316 |#1|)) (-644 (-295 (-316 |#1|)))) (-411 (-950 |#1|)) (-1181)))) (-13 (-309) (-147))) (T -1133)) +((-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-1170 (-644 (-316 *5)) (-644 (-295 (-316 *5))))) (-5 *1 (-1133 *5)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-411 (-950 *5)))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-1170 (-644 (-316 *5)) (-644 (-295 (-316 *5))))) (-5 *1 (-1133 *5)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-316 *5)))) (-5 *1 (-1133 *5)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-316 *5))) (-5 *1 (-1133 *5)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-644 (-295 (-411 (-950 *4))))) (-4 *4 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *4))))) (-5 *1 (-1133 *4)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-411 (-950 *5))))) (-5 *4 (-644 (-1181))) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *5))))) (-5 *1 (-1133 *5)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-644 (-411 (-950 *4)))) (-4 *4 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *4))))) (-5 *1 (-1133 *4)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *5))))) (-5 *1 (-1133 *5)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-295 (-411 (-950 *4)))) (-4 *4 (-13 (-309) (-147))) (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1133 *4)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-411 (-950 *5)))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1133 *5)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-13 (-309) (-147))) (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1133 *4)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1133 *5))))) +(-10 -7 (-15 -3776 ((-644 (-295 (-316 |#1|))) (-411 (-950 |#1|)) (-1181))) (-15 -3776 ((-644 (-295 (-316 |#1|))) (-411 (-950 |#1|)))) (-15 -3776 ((-644 (-295 (-316 |#1|))) (-295 (-411 (-950 |#1|))) (-1181))) (-15 -3776 ((-644 (-295 (-316 |#1|))) (-295 (-411 (-950 |#1|))))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-411 (-950 |#1|))))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-411 (-950 |#1|)))) (-644 (-1181)))) (-15 -3776 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-411 (-950 |#1|)))))) (-15 -3777 ((-644 (-316 |#1|)) (-411 (-950 |#1|)) (-1181))) (-15 -3777 ((-644 (-644 (-316 |#1|))) (-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -3778 ((-1170 (-644 (-316 |#1|)) (-644 (-295 (-316 |#1|)))) (-295 (-411 (-950 |#1|))) (-1181))) (-15 -3778 ((-1170 (-644 (-316 |#1|)) (-644 (-295 (-316 |#1|)))) (-411 (-950 |#1|)) (-1181)))) +((-3780 (((-411 (-1175 (-316 |#1|))) (-1270 (-316 |#1|)) (-411 (-1175 (-316 |#1|))) (-550)) 38)) (-3779 (((-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|)))) 49))) +(((-1134 |#1|) (-10 -7 (-15 -3779 ((-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))))) (-15 -3780 ((-411 (-1175 (-316 |#1|))) (-1270 (-316 |#1|)) (-411 (-1175 (-316 |#1|))) (-550)))) (-561)) (T -1134)) +((-3780 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-411 (-1175 (-316 *5)))) (-5 *3 (-1270 (-316 *5))) (-5 *4 (-550)) (-4 *5 (-561)) (-5 *1 (-1134 *5)))) (-3779 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-411 (-1175 (-316 *3)))) (-4 *3 (-561)) (-5 *1 (-1134 *3))))) +(-10 -7 (-15 -3779 ((-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))) (-411 (-1175 (-316 |#1|))))) (-15 -3780 ((-411 (-1175 (-316 |#1|))) (-1270 (-316 |#1|)) (-411 (-1175 (-316 |#1|))) (-550)))) +((-4006 (((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-316 |#1|))) (-644 (-1181))) 246) (((-644 (-295 (-316 |#1|))) (-316 |#1|) (-1181)) 23) (((-644 (-295 (-316 |#1|))) (-295 (-316 |#1|)) (-1181)) 29) (((-644 (-295 (-316 |#1|))) (-295 (-316 |#1|))) 28) (((-644 (-295 (-316 |#1|))) (-316 |#1|)) 24))) +(((-1135 |#1|) (-10 -7 (-15 -4006 ((-644 (-295 (-316 |#1|))) (-316 |#1|))) (-15 -4006 ((-644 (-295 (-316 |#1|))) (-295 (-316 |#1|)))) (-15 -4006 ((-644 (-295 (-316 |#1|))) (-295 (-316 |#1|)) (-1181))) (-15 -4006 ((-644 (-295 (-316 |#1|))) (-316 |#1|) (-1181))) (-15 -4006 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-316 |#1|))) (-644 (-1181))))) (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (T -1135)) +((-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1181))) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *5))))) (-5 *1 (-1135 *5)) (-5 *3 (-644 (-295 (-316 *5)))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1135 *5)) (-5 *3 (-316 *5)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1135 *5)) (-5 *3 (-295 (-316 *5))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-295 (-316 *4))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-316 *4))))) +(-10 -7 (-15 -4006 ((-644 (-295 (-316 |#1|))) (-316 |#1|))) (-15 -4006 ((-644 (-295 (-316 |#1|))) (-295 (-316 |#1|)))) (-15 -4006 ((-644 (-295 (-316 |#1|))) (-295 (-316 |#1|)) (-1181))) (-15 -4006 ((-644 (-295 (-316 |#1|))) (-316 |#1|) (-1181))) (-15 -4006 ((-644 (-644 (-295 (-316 |#1|)))) (-644 (-295 (-316 |#1|))) (-644 (-1181))))) +((-3782 ((|#2| |#2|) 30 (|has| |#1| (-853))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3781 ((|#2| |#2|) 29 (|has| |#1| (-853))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1136 |#1| |#2|) (-10 -7 (-15 -3781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3782 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-853)) (PROGN (-15 -3781 (|#2| |#2|)) (-15 -3782 (|#2| |#2|))) |%noBranch|)) (-1220) (-13 (-607 (-550) |#1|) (-10 -7 (-6 -4427) (-6 -4428)))) (T -1136)) +((-3782 (*1 *2 *2) (-12 (-4 *3 (-853)) (-4 *3 (-1220)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-13 (-607 (-550) *3) (-10 -7 (-6 -4427) (-6 -4428)))))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-853)) (-4 *3 (-1220)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-13 (-607 (-550) *3) (-10 -7 (-6 -4427) (-6 -4428)))))) (-3782 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-1136 *4 *2)) (-4 *2 (-13 (-607 (-550) *4) (-10 -7 (-6 -4427) (-6 -4428)))))) (-3781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-1136 *4 *2)) (-4 *2 (-13 (-607 (-550) *4) (-10 -7 (-6 -4427) (-6 -4428))))))) +(-10 -7 (-15 -3781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3782 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-853)) (PROGN (-15 -3781 (|#2| |#2|)) (-15 -3782 (|#2| |#2|))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-4322 (((-1169 3 |#1|) $) 141)) (-3792 (((-112) $) 101)) (-3793 (($ $ (-644 (-947 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 104) (($ (-644 (-947 |#1|))) 103) (((-644 (-947 |#1|)) $) 102)) (-3798 (((-112) $) 72)) (-4140 (($ $ (-947 |#1|)) 76) (($ $ (-644 |#1|)) 81) (($ $ (-774)) 83) (($ (-947 |#1|)) 77) (((-947 |#1|) $) 75)) (-3784 (((-2 (|:| -4284 (-774)) (|:| |curves| (-774)) (|:| |polygons| (-774)) (|:| |constructs| (-774))) $) 139)) (-3802 (((-774) $) 53)) (-3803 (((-774) $) 52)) (-4321 (($ $ (-774) (-947 |#1|)) 67)) (-3790 (((-112) $) 111)) (-3791 (($ $ (-644 (-644 (-947 |#1|))) (-644 (-172)) (-172)) 118) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-172)) (-172)) 120) (($ $ (-644 (-644 (-947 |#1|))) (-112) (-112)) 115) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 127) (($ (-644 (-644 (-947 |#1|)))) 116) (($ (-644 (-644 (-947 |#1|))) (-112) (-112)) 117) (((-644 (-644 (-947 |#1|))) $) 114)) (-3943 (($ (-644 $)) 56) (($ $ $) 57)) (-3785 (((-644 (-172)) $) 133)) (-3789 (((-644 (-947 |#1|)) $) 130)) (-3786 (((-644 (-644 (-172))) $) 132)) (-3787 (((-644 (-644 (-644 (-947 |#1|)))) $) NIL)) (-3788 (((-644 (-644 (-644 (-774)))) $) 131)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3799 (((-774) $ (-644 (-947 |#1|))) 65)) (-3796 (((-112) $) 84)) (-3797 (($ $ (-644 (-947 |#1|))) 86) (($ $ (-644 (-644 |#1|))) 92) (($ (-644 (-947 |#1|))) 87) (((-644 (-947 |#1|)) $) 85)) (-3804 (($) 48) (($ (-1169 3 |#1|)) 49)) (-3826 (($ $) 63)) (-3800 (((-644 $) $) 62)) (-4188 (($ (-644 $)) 59)) (-3801 (((-644 $) $) 61)) (-4380 (((-866) $) 146)) (-3794 (((-112) $) 94)) (-3795 (($ $ (-644 (-947 |#1|))) 96) (($ $ (-644 (-644 |#1|))) 99) (($ (-644 (-947 |#1|))) 97) (((-644 (-947 |#1|)) $) 95)) (-3783 (($ $) 140)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1137 |#1|) (-1138 |#1|) (-1053)) (T -1137)) +NIL +(-1138 |#1|) +((-2970 (((-112) $ $) 7)) (-4322 (((-1169 3 |#1|) $) 14)) (-3792 (((-112) $) 30)) (-3793 (($ $ (-644 (-947 |#1|))) 34) (($ $ (-644 (-644 |#1|))) 33) (($ (-644 (-947 |#1|))) 32) (((-644 (-947 |#1|)) $) 31)) (-3798 (((-112) $) 45)) (-4140 (($ $ (-947 |#1|)) 50) (($ $ (-644 |#1|)) 49) (($ $ (-774)) 48) (($ (-947 |#1|)) 47) (((-947 |#1|) $) 46)) (-3784 (((-2 (|:| -4284 (-774)) (|:| |curves| (-774)) (|:| |polygons| (-774)) (|:| |constructs| (-774))) $) 16)) (-3802 (((-774) $) 59)) (-3803 (((-774) $) 60)) (-4321 (($ $ (-774) (-947 |#1|)) 51)) (-3790 (((-112) $) 22)) (-3791 (($ $ (-644 (-644 (-947 |#1|))) (-644 (-172)) (-172)) 29) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-172)) (-172)) 28) (($ $ (-644 (-644 (-947 |#1|))) (-112) (-112)) 27) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 26) (($ (-644 (-644 (-947 |#1|)))) 25) (($ (-644 (-644 (-947 |#1|))) (-112) (-112)) 24) (((-644 (-644 (-947 |#1|))) $) 23)) (-3943 (($ (-644 $)) 58) (($ $ $) 57)) (-3785 (((-644 (-172)) $) 17)) (-3789 (((-644 (-947 |#1|)) $) 21)) (-3786 (((-644 (-644 (-172))) $) 18)) (-3787 (((-644 (-644 (-644 (-947 |#1|)))) $) 19)) (-3788 (((-644 (-644 (-644 (-774)))) $) 20)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3799 (((-774) $ (-644 (-947 |#1|))) 52)) (-3796 (((-112) $) 40)) (-3797 (($ $ (-644 (-947 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 43) (($ (-644 (-947 |#1|))) 42) (((-644 (-947 |#1|)) $) 41)) (-3804 (($) 62) (($ (-1169 3 |#1|)) 61)) (-3826 (($ $) 53)) (-3800 (((-644 $) $) 54)) (-4188 (($ (-644 $)) 56)) (-3801 (((-644 $) $) 55)) (-4380 (((-866) $) 12)) (-3794 (((-112) $) 35)) (-3795 (($ $ (-644 (-947 |#1|))) 39) (($ $ (-644 (-644 |#1|))) 38) (($ (-644 (-947 |#1|))) 37) (((-644 (-947 |#1|)) $) 36)) (-3783 (($ $) 15)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-1138 |#1|) (-140) (-1053)) (T -1138)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-866)))) (-3804 (*1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-1169 3 *3)) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053)))) (-4188 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3801 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-644 *1)) (-4 *1 (-1138 *3)))) (-3800 (*1 *2 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-644 *1)) (-4 *1 (-1138 *3)))) (-3826 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-947 *4))) (-4 *1 (-1138 *4)) (-4 *4 (-1053)) (-5 *2 (-774)))) (-4321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-947 *4)) (-4 *1 (-1138 *4)) (-4 *4 (-1053)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-947 *3)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112)))) (-3791 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-947 *5)))) (-5 *3 (-644 (-172))) (-5 *4 (-172)) (-4 *1 (-1138 *5)) (-4 *5 (-1053)))) (-3791 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-172))) (-5 *4 (-172)) (-4 *1 (-1138 *5)) (-4 *5 (-1053)))) (-3791 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-947 *4)))) (-5 *3 (-112)) (-4 *1 (-1138 *4)) (-4 *4 (-1053)))) (-3791 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) (-4 *1 (-1138 *4)) (-4 *4 (-1053)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-947 *3)))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) (-3791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-947 *4)))) (-5 *3 (-112)) (-4 *4 (-1053)) (-4 *1 (-1138 *4)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-947 *3)))))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-644 (-774))))))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-644 (-947 *3))))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-172)))))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-172))))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| -4284 (-774)) (|:| |curves| (-774)) (|:| |polygons| (-774)) (|:| |constructs| (-774)))))) (-3783 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053)))) (-4322 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-1169 3 *3))))) +(-13 (-1105) (-10 -8 (-15 -3804 ($)) (-15 -3804 ($ (-1169 3 |t#1|))) (-15 -3803 ((-774) $)) (-15 -3802 ((-774) $)) (-15 -3943 ($ (-644 $))) (-15 -3943 ($ $ $)) (-15 -4188 ($ (-644 $))) (-15 -3801 ((-644 $) $)) (-15 -3800 ((-644 $) $)) (-15 -3826 ($ $)) (-15 -3799 ((-774) $ (-644 (-947 |t#1|)))) (-15 -4321 ($ $ (-774) (-947 |t#1|))) (-15 -4140 ($ $ (-947 |t#1|))) (-15 -4140 ($ $ (-644 |t#1|))) (-15 -4140 ($ $ (-774))) (-15 -4140 ($ (-947 |t#1|))) (-15 -4140 ((-947 |t#1|) $)) (-15 -3798 ((-112) $)) (-15 -3797 ($ $ (-644 (-947 |t#1|)))) (-15 -3797 ($ $ (-644 (-644 |t#1|)))) (-15 -3797 ($ (-644 (-947 |t#1|)))) (-15 -3797 ((-644 (-947 |t#1|)) $)) (-15 -3796 ((-112) $)) (-15 -3795 ($ $ (-644 (-947 |t#1|)))) (-15 -3795 ($ $ (-644 (-644 |t#1|)))) (-15 -3795 ($ (-644 (-947 |t#1|)))) (-15 -3795 ((-644 (-947 |t#1|)) $)) (-15 -3794 ((-112) $)) (-15 -3793 ($ $ (-644 (-947 |t#1|)))) (-15 -3793 ($ $ (-644 (-644 |t#1|)))) (-15 -3793 ($ (-644 (-947 |t#1|)))) (-15 -3793 ((-644 (-947 |t#1|)) $)) (-15 -3792 ((-112) $)) (-15 -3791 ($ $ (-644 (-644 (-947 |t#1|))) (-644 (-172)) (-172))) (-15 -3791 ($ $ (-644 (-644 (-644 |t#1|))) (-644 (-172)) (-172))) (-15 -3791 ($ $ (-644 (-644 (-947 |t#1|))) (-112) (-112))) (-15 -3791 ($ $ (-644 (-644 (-644 |t#1|))) (-112) (-112))) (-15 -3791 ($ (-644 (-644 (-947 |t#1|))))) (-15 -3791 ($ (-644 (-644 (-947 |t#1|))) (-112) (-112))) (-15 -3791 ((-644 (-644 (-947 |t#1|))) $)) (-15 -3790 ((-112) $)) (-15 -3789 ((-644 (-947 |t#1|)) $)) (-15 -3788 ((-644 (-644 (-644 (-774)))) $)) (-15 -3787 ((-644 (-644 (-644 (-947 |t#1|)))) $)) (-15 -3786 ((-644 (-644 (-172))) $)) (-15 -3785 ((-644 (-172)) $)) (-15 -3784 ((-2 (|:| -4284 (-774)) (|:| |curves| (-774)) (|:| |polygons| (-774)) (|:| |constructs| (-774))) $)) (-15 -3783 ($ $)) (-15 -4322 ((-1169 3 |t#1|) $)) (-15 -4380 ((-866) $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 184) (($ (-1186)) NIL) (((-1186) $) 7)) (-3999 (((-112) $ (|[\|\|]| (-528))) 19) (((-112) $ (|[\|\|]| (-219))) 23) (((-112) $ (|[\|\|]| (-679))) 27) (((-112) $ (|[\|\|]| (-1281))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-609))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1120))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-684))) 55) (((-112) $ (|[\|\|]| (-521))) 59) (((-112) $ (|[\|\|]| (-1070))) 63) (((-112) $ (|[\|\|]| (-1282))) 67) (((-112) $ (|[\|\|]| (-529))) 71) (((-112) $ (|[\|\|]| (-1156))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-674))) 83) (((-112) $ (|[\|\|]| (-314))) 87) (((-112) $ (|[\|\|]| (-1040))) 91) (((-112) $ (|[\|\|]| (-181))) 95) (((-112) $ (|[\|\|]| (-974))) 99) (((-112) $ (|[\|\|]| (-1077))) 103) (((-112) $ (|[\|\|]| (-1095))) 107) (((-112) $ (|[\|\|]| (-1100))) 111) (((-112) $ (|[\|\|]| (-629))) 115) (((-112) $ (|[\|\|]| (-1171))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-482))) 131) (((-112) $ (|[\|\|]| (-596))) 135) (((-112) $ (|[\|\|]| (-510))) 139) (((-112) $ (|[\|\|]| (-1163))) 143) (((-112) $ (|[\|\|]| (-550))) 147)) (-3664 (((-112) $ $) NIL)) (-4005 (((-528) $) 20) (((-219) $) 24) (((-679) $) 28) (((-1281) $) 32) (((-138) $) 36) (((-609) $) 40) (((-133) $) 44) (((-1120) $) 48) (((-96) $) 52) (((-684) $) 56) (((-521) $) 60) (((-1070) $) 64) (((-1282) $) 68) (((-529) $) 72) (((-1156) $) 76) (((-154) $) 80) (((-674) $) 84) (((-314) $) 88) (((-1040) $) 92) (((-181) $) 96) (((-974) $) 100) (((-1077) $) 104) (((-1095) $) 108) (((-1100) $) 112) (((-629) $) 116) (((-1171) $) 120) (((-156) $) 124) (((-137) $) 128) (((-482) $) 132) (((-596) $) 136) (((-510) $) 140) (((-1163) $) 144) (((-550) $) 148)) (-3457 (((-112) $ $) NIL))) +(((-1139) (-1141)) (T -1139)) +NIL +(-1141) +((-3805 (((-644 (-1186)) (-1163)) 9))) +(((-1140) (-10 -7 (-15 -3805 ((-644 (-1186)) (-1163))))) (T -1140)) +((-3805 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-644 (-1186))) (-5 *1 (-1140))))) +(-10 -7 (-15 -3805 ((-644 (-1186)) (-1163)))) +((-2970 (((-112) $ $) 7)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-1186)) 17) (((-1186) $) 16)) (-3999 (((-112) $ (|[\|\|]| (-528))) 85) (((-112) $ (|[\|\|]| (-219))) 83) (((-112) $ (|[\|\|]| (-679))) 81) (((-112) $ (|[\|\|]| (-1281))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-609))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1120))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-684))) 67) (((-112) $ (|[\|\|]| (-521))) 65) (((-112) $ (|[\|\|]| (-1070))) 63) (((-112) $ (|[\|\|]| (-1282))) 61) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1156))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-674))) 53) (((-112) $ (|[\|\|]| (-314))) 51) (((-112) $ (|[\|\|]| (-1040))) 49) (((-112) $ (|[\|\|]| (-181))) 47) (((-112) $ (|[\|\|]| (-974))) 45) (((-112) $ (|[\|\|]| (-1077))) 43) (((-112) $ (|[\|\|]| (-1095))) 41) (((-112) $ (|[\|\|]| (-1100))) 39) (((-112) $ (|[\|\|]| (-629))) 37) (((-112) $ (|[\|\|]| (-1171))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-482))) 29) (((-112) $ (|[\|\|]| (-596))) 27) (((-112) $ (|[\|\|]| (-510))) 25) (((-112) $ (|[\|\|]| (-1163))) 23) (((-112) $ (|[\|\|]| (-550))) 21)) (-3664 (((-112) $ $) 9)) (-4005 (((-528) $) 84) (((-219) $) 82) (((-679) $) 80) (((-1281) $) 78) (((-138) $) 76) (((-609) $) 74) (((-133) $) 72) (((-1120) $) 70) (((-96) $) 68) (((-684) $) 66) (((-521) $) 64) (((-1070) $) 62) (((-1282) $) 60) (((-529) $) 58) (((-1156) $) 56) (((-154) $) 54) (((-674) $) 52) (((-314) $) 50) (((-1040) $) 48) (((-181) $) 46) (((-974) $) 44) (((-1077) $) 42) (((-1095) $) 40) (((-1100) $) 38) (((-629) $) 36) (((-1171) $) 34) (((-156) $) 32) (((-137) $) 30) (((-482) $) 28) (((-596) $) 26) (((-510) $) 24) (((-1163) $) 22) (((-550) $) 20)) (-3457 (((-112) $ $) 6))) +(((-1141) (-140)) (T -1141)) +((-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-528)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-219)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-679)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1281))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1281)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-138)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-609))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-609)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-133)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1120))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1120)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-96)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-684)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-521))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-521)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1070)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1282))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1282)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-529)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1156)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-154)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-674)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-314)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1040)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-181)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-974))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-974)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1077)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1095)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1100))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1100)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-629))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-629)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1171)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-156)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-137)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-482))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-482)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-596))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-596)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-510)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1163)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-550))))) +(-13 (-1087) (-1266) (-10 -8 (-15 -3999 ((-112) $ (|[\|\|]| (-528)))) (-15 -4005 ((-528) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-219)))) (-15 -4005 ((-219) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-679)))) (-15 -4005 ((-679) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1281)))) (-15 -4005 ((-1281) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-138)))) (-15 -4005 ((-138) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-609)))) (-15 -4005 ((-609) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-133)))) (-15 -4005 ((-133) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1120)))) (-15 -4005 ((-1120) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-96)))) (-15 -4005 ((-96) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-684)))) (-15 -4005 ((-684) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-521)))) (-15 -4005 ((-521) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1070)))) (-15 -4005 ((-1070) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1282)))) (-15 -4005 ((-1282) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-529)))) (-15 -4005 ((-529) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1156)))) (-15 -4005 ((-1156) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-154)))) (-15 -4005 ((-154) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-674)))) (-15 -4005 ((-674) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-314)))) (-15 -4005 ((-314) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1040)))) (-15 -4005 ((-1040) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-181)))) (-15 -4005 ((-181) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-974)))) (-15 -4005 ((-974) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1077)))) (-15 -4005 ((-1077) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1095)))) (-15 -4005 ((-1095) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1100)))) (-15 -4005 ((-1100) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-629)))) (-15 -4005 ((-629) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1171)))) (-15 -4005 ((-1171) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-156)))) (-15 -4005 ((-156) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-137)))) (-15 -4005 ((-137) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-482)))) (-15 -4005 ((-482) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-596)))) (-15 -4005 ((-596) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-510)))) (-15 -4005 ((-510) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-1163)))) (-15 -4005 ((-1163) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-550)))) (-15 -4005 ((-550) $)))) +(((-93) . T) ((-102) . T) ((-619 #1=(-1186)) . T) ((-616 (-866)) . T) ((-616 #1#) . T) ((-494 #1#) . T) ((-1105) . T) ((-1087) . T) ((-1266) . T)) +((-3808 (((-1276) (-644 (-866))) 22) (((-1276) (-866)) 21)) (-3807 (((-1276) (-644 (-866))) 20) (((-1276) (-866)) 19)) (-3806 (((-1276) (-644 (-866))) 18) (((-1276) (-866)) 10) (((-1276) (-1163) (-866)) 16))) +(((-1142) (-10 -7 (-15 -3806 ((-1276) (-1163) (-866))) (-15 -3806 ((-1276) (-866))) (-15 -3807 ((-1276) (-866))) (-15 -3808 ((-1276) (-866))) (-15 -3806 ((-1276) (-644 (-866)))) (-15 -3807 ((-1276) (-644 (-866)))) (-15 -3808 ((-1276) (-644 (-866)))))) (T -1142)) +((-3808 (*1 *2 *3) (-12 (-5 *3 (-644 (-866))) (-5 *2 (-1276)) (-5 *1 (-1142)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-644 (-866))) (-5 *2 (-1276)) (-5 *1 (-1142)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-644 (-866))) (-5 *2 (-1276)) (-5 *1 (-1142)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142))))) +(-10 -7 (-15 -3806 ((-1276) (-1163) (-866))) (-15 -3806 ((-1276) (-866))) (-15 -3807 ((-1276) (-866))) (-15 -3808 ((-1276) (-866))) (-15 -3806 ((-1276) (-644 (-866)))) (-15 -3807 ((-1276) (-644 (-866)))) (-15 -3808 ((-1276) (-644 (-866))))) +((-3812 (($ $ $) 10)) (-3811 (($ $) 9)) (-3815 (($ $ $) 13)) (-3817 (($ $ $) 15)) (-3814 (($ $ $) 12)) (-3816 (($ $ $) 14)) (-3819 (($ $) 17)) (-3818 (($ $) 16)) (-3809 (($ $) 6)) (-3813 (($ $ $) 11) (($ $) 7)) (-3810 (($ $ $) 8))) +(((-1143) (-140)) (T -1143)) +((-3819 (*1 *1 *1) (-4 *1 (-1143))) (-3818 (*1 *1 *1) (-4 *1 (-1143))) (-3817 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3816 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3815 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3814 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3813 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3812 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3811 (*1 *1 *1) (-4 *1 (-1143))) (-3810 (*1 *1 *1 *1) (-4 *1 (-1143))) (-3813 (*1 *1 *1) (-4 *1 (-1143))) (-3809 (*1 *1 *1) (-4 *1 (-1143)))) +(-13 (-10 -8 (-15 -3809 ($ $)) (-15 -3813 ($ $)) (-15 -3810 ($ $ $)) (-15 -3811 ($ $)) (-15 -3812 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3814 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3816 ($ $ $)) (-15 -3817 ($ $ $)) (-15 -3818 ($ $)) (-15 -3819 ($ $)))) +((-2970 (((-112) $ $) 44)) (-3828 ((|#1| $) 17)) (-3820 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3827 (((-112) $) 19)) (-3825 (($ $ |#1|) 30)) (-3823 (($ $ (-112)) 32)) (-3822 (($ $) 33)) (-3824 (($ $ |#2|) 31)) (-3665 (((-1163) $) NIL)) (-3821 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3666 (((-1124) $) NIL)) (-3829 (((-112) $) 16)) (-3998 (($) 13)) (-3826 (($ $) 29)) (-3955 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1710 |#2|))) 23) (((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -1710 |#2|)))) 26) (((-644 $) |#1| (-644 |#2|)) 28)) (-4356 ((|#2| $) 18)) (-4380 (((-866) $) 53)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 42))) +(((-1144 |#1| |#2|) (-13 (-1105) (-10 -8 (-15 -3998 ($)) (-15 -3829 ((-112) $)) (-15 -3828 (|#1| $)) (-15 -4356 (|#2| $)) (-15 -3827 ((-112) $)) (-15 -3955 ($ |#1| |#2| (-112))) (-15 -3955 ($ |#1| |#2|)) (-15 -3955 ($ (-2 (|:| |val| |#1|) (|:| -1710 |#2|)))) (-15 -3955 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -1710 |#2|))))) (-15 -3955 ((-644 $) |#1| (-644 |#2|))) (-15 -3826 ($ $)) (-15 -3825 ($ $ |#1|)) (-15 -3824 ($ $ |#2|)) (-15 -3823 ($ $ (-112))) (-15 -3822 ($ $)) (-15 -3821 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3820 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1105) (-34)) (-13 (-1105) (-34))) (T -1144)) +((-3998 (*1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))))) (-3828 (*1 *2 *1) (-12 (-4 *2 (-13 (-1105) (-34))) (-5 *1 (-1144 *2 *3)) (-4 *3 (-13 (-1105) (-34))))) (-4356 (*1 *2 *1) (-12 (-4 *2 (-13 (-1105) (-34))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-13 (-1105) (-34))))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))))) (-3955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3955 (*1 *1 *2 *3) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1710 *4))) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1144 *3 *4)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -1710 *5)))) (-4 *4 (-13 (-1105) (-34))) (-4 *5 (-13 (-1105) (-34))) (-5 *2 (-644 (-1144 *4 *5))) (-5 *1 (-1144 *4 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1105) (-34))) (-5 *2 (-644 (-1144 *3 *5))) (-5 *1 (-1144 *3 *5)) (-4 *3 (-13 (-1105) (-34))))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3825 (*1 *1 *1 *2) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3824 (*1 *1 *1 *2) (-12 (-5 *1 (-1144 *3 *2)) (-4 *3 (-13 (-1105) (-34))) (-4 *2 (-13 (-1105) (-34))))) (-3823 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3821 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1105) (-34))) (-4 *6 (-13 (-1105) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *5 *6)))) (-3820 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1105) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *4 *5)) (-4 *4 (-13 (-1105) (-34)))))) +(-13 (-1105) (-10 -8 (-15 -3998 ($)) (-15 -3829 ((-112) $)) (-15 -3828 (|#1| $)) (-15 -4356 (|#2| $)) (-15 -3827 ((-112) $)) (-15 -3955 ($ |#1| |#2| (-112))) (-15 -3955 ($ |#1| |#2|)) (-15 -3955 ($ (-2 (|:| |val| |#1|) (|:| -1710 |#2|)))) (-15 -3955 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -1710 |#2|))))) (-15 -3955 ((-644 $) |#1| (-644 |#2|))) (-15 -3826 ($ $)) (-15 -3825 ($ $ |#1|)) (-15 -3824 ($ $ |#2|)) (-15 -3823 ($ $ (-112))) (-15 -3822 ($ $)) (-15 -3821 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3820 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2970 (((-112) $ $) NIL (|has| (-1144 |#1| |#2|) (-1105)))) (-3828 (((-1144 |#1| |#2|) $) 27)) (-3837 (($ $) 91)) (-3833 (((-112) (-1144 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3830 (($ $ $ (-644 (-1144 |#1| |#2|))) 108) (($ $ $ (-644 (-1144 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1310 (((-112) $ (-774)) NIL)) (-3428 (((-1144 |#1| |#2|) $ (-1144 |#1| |#2|)) 46 (|has| $ (-6 -4428)))) (-4221 (((-1144 |#1| |#2|) $ #1="value" (-1144 |#1| |#2|)) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 44 (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-3835 (((-644 (-2 (|:| |val| |#1|) (|:| -1710 |#2|))) $) 95)) (-3831 (($ (-1144 |#1| |#2|) $) 42)) (-3832 (($ (-1144 |#1| |#2|) $) 34)) (-2126 (((-644 (-1144 |#1| |#2|)) $) NIL (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 54)) (-3834 (((-112) (-1144 |#1| |#2|) $) 97)) (-3430 (((-112) $ $) NIL (|has| (-1144 |#1| |#2|) (-1105)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 (-1144 |#1| |#2|)) $) 58 (|has| $ (-6 -4427)))) (-3668 (((-112) (-1144 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-1144 |#1| |#2|) (-1105))))) (-2130 (($ (-1 (-1144 |#1| |#2|) (-1144 |#1| |#2|)) $) 50 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-1144 |#1| |#2|) (-1144 |#1| |#2|)) $) 49)) (-4150 (((-112) $ (-774)) NIL)) (-3433 (((-644 (-1144 |#1| |#2|)) $) 56)) (-3952 (((-112) $) 45)) (-3665 (((-1163) $) NIL (|has| (-1144 |#1| |#2|) (-1105)))) (-3666 (((-1124) $) NIL (|has| (-1144 |#1| |#2|) (-1105)))) (-3838 (((-3 $ "failed") $) 89)) (-2128 (((-112) (-1 (-112) (-1144 |#1| |#2|)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-1144 |#1| |#2|)))) NIL (-12 (|has| (-1144 |#1| |#2|) (-311 (-1144 |#1| |#2|))) (|has| (-1144 |#1| |#2|) (-1105)))) (($ $ (-295 (-1144 |#1| |#2|))) NIL (-12 (|has| (-1144 |#1| |#2|) (-311 (-1144 |#1| |#2|))) (|has| (-1144 |#1| |#2|) (-1105)))) (($ $ (-1144 |#1| |#2|) (-1144 |#1| |#2|)) NIL (-12 (|has| (-1144 |#1| |#2|) (-311 (-1144 |#1| |#2|))) (|has| (-1144 |#1| |#2|) (-1105)))) (($ $ (-644 (-1144 |#1| |#2|)) (-644 (-1144 |#1| |#2|))) NIL (-12 (|has| (-1144 |#1| |#2|) (-311 (-1144 |#1| |#2|))) (|has| (-1144 |#1| |#2|) (-1105))))) (-1311 (((-112) $ $) 53)) (-3829 (((-112) $) 24)) (-3998 (($) 26)) (-4233 (((-1144 |#1| |#2|) $ #1#) NIL)) (-3432 (((-550) $ $) NIL)) (-4067 (((-112) $) 47)) (-2127 (((-774) (-1 (-112) (-1144 |#1| |#2|)) $) NIL (|has| $ (-6 -4427))) (((-774) (-1144 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-1144 |#1| |#2|) (-1105))))) (-3826 (($ $) 52)) (-3955 (($ (-1144 |#1| |#2|)) 10) (($ |#1| |#2| (-644 $)) 13) (($ |#1| |#2| (-644 (-1144 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-644 |#2|)) 18)) (-3836 (((-644 |#2|) $) 96)) (-4380 (((-866) $) 87 (|has| (-1144 |#1| |#2|) (-616 (-866))))) (-3947 (((-644 $) $) 31)) (-3431 (((-112) $ $) NIL (|has| (-1144 |#1| |#2|) (-1105)))) (-3664 (((-112) $ $) NIL (|has| (-1144 |#1| |#2|) (-1105)))) (-2129 (((-112) (-1 (-112) (-1144 |#1| |#2|)) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 70 (|has| (-1144 |#1| |#2|) (-1105)))) (-4391 (((-774) $) 64 (|has| $ (-6 -4427))))) +(((-1145 |#1| |#2|) (-13 (-1014 (-1144 |#1| |#2|)) (-10 -8 (-6 -4428) (-6 -4427) (-15 -3838 ((-3 $ "failed") $)) (-15 -3837 ($ $)) (-15 -3955 ($ (-1144 |#1| |#2|))) (-15 -3955 ($ |#1| |#2| (-644 $))) (-15 -3955 ($ |#1| |#2| (-644 (-1144 |#1| |#2|)))) (-15 -3955 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -3836 ((-644 |#2|) $)) (-15 -3835 ((-644 (-2 (|:| |val| |#1|) (|:| -1710 |#2|))) $)) (-15 -3834 ((-112) (-1144 |#1| |#2|) $)) (-15 -3833 ((-112) (-1144 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3832 ($ (-1144 |#1| |#2|) $)) (-15 -3831 ($ (-1144 |#1| |#2|) $)) (-15 -3830 ($ $ $ (-644 (-1144 |#1| |#2|)))) (-15 -3830 ($ $ $ (-644 (-1144 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1105) (-34)) (-13 (-1105) (-34))) (T -1145)) +((-3838 (*1 *1 *1) (|partial| -12 (-5 *1 (-1145 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-1145 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4)))) (-3955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1145 *2 *3))) (-5 *1 (-1145 *2 *3)) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) (-3955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1144 *2 *3))) (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))) (-5 *1 (-1145 *2 *3)))) (-3955 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1105) (-34))) (-5 *1 (-1145 *2 *3)) (-4 *2 (-13 (-1105) (-34))))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-644 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1145 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))))) (-3834 (*1 *2 *3 *1) (-12 (-5 *3 (-1144 *4 *5)) (-4 *4 (-13 (-1105) (-34))) (-4 *5 (-13 (-1105) (-34))) (-5 *2 (-112)) (-5 *1 (-1145 *4 *5)))) (-3833 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1144 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1105) (-34))) (-4 *6 (-13 (-1105) (-34))) (-5 *2 (-112)) (-5 *1 (-1145 *5 *6)))) (-3832 (*1 *1 *2 *1) (-12 (-5 *2 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4)))) (-3830 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-644 (-1144 *3 *4))) (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4)))) (-3830 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1144 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1105) (-34))) (-4 *5 (-13 (-1105) (-34))) (-5 *1 (-1145 *4 *5))))) +(-13 (-1014 (-1144 |#1| |#2|)) (-10 -8 (-6 -4428) (-6 -4427) (-15 -3838 ((-3 $ "failed") $)) (-15 -3837 ($ $)) (-15 -3955 ($ (-1144 |#1| |#2|))) (-15 -3955 ($ |#1| |#2| (-644 $))) (-15 -3955 ($ |#1| |#2| (-644 (-1144 |#1| |#2|)))) (-15 -3955 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -3836 ((-644 |#2|) $)) (-15 -3835 ((-644 (-2 (|:| |val| |#1|) (|:| -1710 |#2|))) $)) (-15 -3834 ((-112) (-1144 |#1| |#2|) $)) (-15 -3833 ((-112) (-1144 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3832 ($ (-1144 |#1| |#2|) $)) (-15 -3831 ($ (-1144 |#1| |#2|) $)) (-15 -3830 ($ $ $ (-644 (-1144 |#1| |#2|)))) (-15 -3830 ($ $ $ (-644 (-1144 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3840 (($ $) NIL)) (-3756 ((|#2| $) NIL)) (-3527 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3839 (($ (-692 |#2|)) 56)) (-3529 (((-112) $) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-3759 (($ |#2|) 14)) (-4158 (($) NIL T CONST)) (-3516 (($ $) 69 (|has| |#2| (-309)))) (-3518 (((-240 |#1| |#2|) $ (-550)) 42)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 |#2| #1#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) ((|#2| $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) 83)) (-3515 (((-774) $) 71 (|has| |#2| (-561)))) (-3519 ((|#2| $ (-550) (-550)) NIL)) (-2126 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-2575 (((-112) $) NIL)) (-3514 (((-774) $) 73 (|has| |#2| (-561)))) (-3513 (((-644 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-561)))) (-3521 (((-774) $) NIL)) (-4048 (($ |#2|) 25)) (-3520 (((-774) $) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-3753 ((|#2| $) 67 (|has| |#2| (-6 (-4429 #2="*"))))) (-3525 (((-550) $) NIL)) (-3523 (((-550) $) NIL)) (-3010 (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3524 (((-550) $) NIL)) (-3522 (((-550) $) NIL)) (-3530 (($ (-644 (-644 |#2|))) 37)) (-2130 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4027 (((-644 (-644 |#2|)) $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-4023 (((-3 $ "failed") $) 80 (|has| |#2| (-366)))) (-3666 (((-1124) $) NIL)) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-2128 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ (-550) (-550) |#2|) NIL) ((|#2| $ (-550) (-550)) NIL)) (-4244 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3755 ((|#2| $) NIL)) (-3758 (($ (-644 |#2|)) 50)) (-3528 (((-112) $) NIL)) (-3757 (((-240 |#1| |#2|) $) NIL)) (-3754 ((|#2| $) 65 (|has| |#2| (-6 (-4429 #2#))))) (-2127 (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-3826 (($ $) NIL)) (-4404 (((-539) $) 89 (|has| |#2| (-617 (-539))))) (-3517 (((-240 |#1| |#2|) $ (-550)) 44)) (-4380 (((-866) $) 47) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#2| (-1042 (-411 (-550))))) (($ |#2|) NIL) (((-692 |#2|) $) 52)) (-3532 (((-774)) 23 T CONST)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3526 (((-112) $) NIL)) (-3512 (($) 16 T CONST)) (-3069 (($) 21 T CONST)) (-3074 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-774)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) 63) (($ $ (-550)) 82 (|has| |#2| (-366)))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1146 |#1| |#2|) (-13 (-1127 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-616 (-692 |#2|)) (-10 -8 (-15 -4048 ($ |#2|)) (-15 -3840 ($ $)) (-15 -3839 ($ (-692 |#2|))) (IF (|has| |#2| (-6 (-4429 "*"))) (-6 -4416) |%noBranch|) (IF (|has| |#2| (-6 (-4429 "*"))) (IF (|has| |#2| (-6 -4424)) (-6 -4424) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|))) (-774) (-1053)) (T -1146)) +((-4048 (*1 *1 *2) (-12 (-5 *1 (-1146 *3 *2)) (-14 *3 (-774)) (-4 *2 (-1053)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-774)) (-4 *3 (-1053)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-692 *4)) (-4 *4 (-1053)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-774))))) +(-13 (-1127 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-616 (-692 |#2|)) (-10 -8 (-15 -4048 ($ |#2|)) (-15 -3840 ($ $)) (-15 -3839 ($ (-692 |#2|))) (IF (|has| |#2| (-6 (-4429 "*"))) (-6 -4416) |%noBranch|) (IF (|has| |#2| (-6 (-4429 "*"))) (IF (|has| |#2| (-6 -4424)) (-6 -4424) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-617 (-539))) (-6 (-617 (-539))) |%noBranch|))) +((-3853 (($ $) 19)) (-3843 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3851 (((-112) $ $) 24)) (-3855 (($ $) 17)) (-4233 (((-144) $ (-550) (-144)) NIL) (((-144) $ (-550)) NIL) (($ $ (-1237 (-550))) NIL) (($ $ $) 31)) (-4380 (($ (-144)) 29) (((-866) $) NIL))) +(((-1147 |#1|) (-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1| (-141))) (-15 -3843 (|#1| |#1| (-144))) (-15 -4380 (|#1| (-144))) (-15 -3851 ((-112) |#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -4233 ((-144) |#1| (-550))) (-15 -4233 ((-144) |#1| (-550) (-144)))) (-1148)) (T -1147)) +NIL +(-10 -8 (-15 -4380 ((-866) |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -3843 (|#1| |#1| (-141))) (-15 -3843 (|#1| |#1| (-144))) (-15 -4380 (|#1| (-144))) (-15 -3851 ((-112) |#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -4233 ((-144) |#1| (-550))) (-15 -4233 ((-144) |#1| (-550) (-144)))) +((-2970 (((-112) $ $) 19 (|has| (-144) (-1105)))) (-3852 (($ $) 121)) (-3853 (($ $) 122)) (-3843 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-3850 (((-112) $ $) 119)) (-3849 (((-112) $ $ (-550)) 118)) (-3844 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-1902 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-853)))) (-1900 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4428))) (($ $) 89 (-12 (|has| (-144) (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-853)))) (-1310 (((-112) $ (-774)) 8)) (-4221 (((-144) $ (-550) (-144)) 53 (|has| $ (-6 -4428))) (((-144) $ (-1237 (-550)) (-144)) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-3841 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2444 (($ $) 91 (|has| $ (-6 -4428)))) (-2445 (($ $) 101)) (-3846 (($ $ (-1237 (-550)) $) 115)) (-1441 (($ $) 79 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ (-144) $) 78 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4427)))) (-4276 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4427))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4427)))) (-1686 (((-144) $ (-550) (-144)) 54 (|has| $ (-6 -4428)))) (-3519 (((-144) $ (-550)) 52)) (-3851 (((-112) $ $) 120)) (-3845 (((-550) (-1 (-112) (-144)) $) 98) (((-550) (-144) $) 97 (|has| (-144) (-1105))) (((-550) (-144) $ (-550)) 96 (|has| (-144) (-1105))) (((-550) $ $ (-550)) 114) (((-550) (-141) $ (-550)) 113)) (-2126 (((-644 (-144)) $) 31 (|has| $ (-6 -4427)))) (-4048 (($ (-774) (-144)) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 88 (|has| (-144) (-853)))) (-3943 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-853)))) (-3010 (((-644 (-144)) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 87 (|has| (-144) (-853)))) (-3847 (((-112) $ $ (-144)) 116)) (-3848 (((-774) $ $ (-144)) 117)) (-2130 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3854 (($ $) 123)) (-3855 (($ $) 124)) (-4150 (((-112) $ (-774)) 10)) (-3842 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3665 (((-1163) $) 22 (|has| (-144) (-1105)))) (-2451 (($ (-144) $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| (-144) (-1105)))) (-4234 (((-144) $) 43 (|has| (-550) (-853)))) (-1442 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2375 (($ $ (-144)) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-2381 (((-644 (-144)) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 (((-144) $ (-550) (-144)) 51) (((-144) $ (-550)) 50) (($ $ (-1237 (-550))) 64) (($ $ $) 103)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-2127 (((-774) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4427))) (((-774) (-144) $) 29 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 92 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| (-144) (-617 (-539))))) (-3955 (($ (-644 (-144))) 71)) (-4235 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (($ (-144)) 112) (((-866) $) 18 (|has| (-144) (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| (-144) (-1105)))) (-2129 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 85 (|has| (-144) (-853)))) (-2969 (((-112) $ $) 84 (|has| (-144) (-853)))) (-3457 (((-112) $ $) 20 (|has| (-144) (-1105)))) (-3089 (((-112) $ $) 86 (|has| (-144) (-853)))) (-3090 (((-112) $ $) 83 (|has| (-144) (-853)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1148) (-140)) (T -1148)) +((-3855 (*1 *1 *1) (-4 *1 (-1148))) (-3854 (*1 *1 *1) (-4 *1 (-1148))) (-3853 (*1 *1 *1) (-4 *1 (-1148))) (-3852 (*1 *1 *1) (-4 *1 (-1148))) (-3851 (*1 *2 *1 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-112)))) (-3850 (*1 *2 *1 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-112)))) (-3849 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (-550)) (-5 *2 (-112)))) (-3848 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (-144)) (-5 *2 (-774)))) (-3847 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3846 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1237 (-550))))) (-3845 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-550)))) (-3845 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-550)) (-5 *3 (-141)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1148)))) (-3844 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1148)))) (-3844 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1148)))) (-3843 (*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-144)))) (-3843 (*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-141)))) (-3842 (*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-144)))) (-3842 (*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-141)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-144)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-141)))) (-4233 (*1 *1 *1 *1) (-4 *1 (-1148)))) +(-13 (-19 (-144)) (-10 -8 (-15 -3855 ($ $)) (-15 -3854 ($ $)) (-15 -3853 ($ $)) (-15 -3852 ($ $)) (-15 -3851 ((-112) $ $)) (-15 -3850 ((-112) $ $)) (-15 -3849 ((-112) $ $ (-550))) (-15 -3848 ((-774) $ $ (-144))) (-15 -3847 ((-112) $ $ (-144))) (-15 -3846 ($ $ (-1237 (-550)) $)) (-15 -3845 ((-550) $ $ (-550))) (-15 -3845 ((-550) (-141) $ (-550))) (-15 -4380 ($ (-144))) (-15 -3844 ((-644 $) $ (-144))) (-15 -3844 ((-644 $) $ (-141))) (-15 -3843 ($ $ (-144))) (-15 -3843 ($ $ (-141))) (-15 -3842 ($ $ (-144))) (-15 -3842 ($ $ (-141))) (-15 -3841 ($ $ (-144))) (-15 -3841 ($ $ (-141))) (-15 -4233 ($ $ $)))) +(((-34) . T) ((-102) -3962 (|has| (-144) (-1105)) (|has| (-144) (-853))) ((-616 (-866)) -3962 (|has| (-144) (-1105)) (|has| (-144) (-853)) (|has| (-144) (-616 (-866)))) ((-151 #1=(-144)) . T) ((-617 (-539)) |has| (-144) (-617 (-539))) ((-288 #2=(-550) #1#) . T) ((-290 #2# #1#) . T) ((-311 #1#) -12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))) ((-375 #1#) . T) ((-493 #1#) . T) ((-607 #2# #1#) . T) ((-518 #1# #1#) -12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))) ((-654 #1#) . T) ((-19 #1#) . T) ((-853) |has| (-144) (-853)) ((-1105) -3962 (|has| (-144) (-1105)) (|has| (-144) (-853))) ((-1220) . T)) +((-3862 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-774)) 112)) (-3859 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774)) 61)) (-3863 (((-1276) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-774)) 97)) (-3857 (((-774) (-644 |#4|) (-644 |#5|)) 30)) (-3860 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774)) 63) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774) (-112)) 65)) (-3861 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 85)) (-4404 (((-1163) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) 90)) (-3858 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|) 60)) (-3856 (((-774) (-644 |#4|) (-644 |#5|)) 21))) +(((-1149 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3856 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3857 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3858 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774) (-112))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3862 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-774))) (-15 -4404 ((-1163) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3863 ((-1276) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-774)))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|) (-1113 |#1| |#2| |#3| |#4|)) (T -1149)) +((-3863 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *4 (-774)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-1276)) (-5 *1 (-1149 *5 *6 *7 *8 *9)))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1113 *4 *5 *6 *7)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1163)) (-5 *1 (-1149 *4 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1710 *11)))))) (-5 *6 (-774)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1710 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1069 *7 *8 *9)) (-4 *11 (-1113 *7 *8 *9 *10)) (-4 *7 (-456)) (-4 *8 (-796)) (-4 *9 (-853)) (-5 *1 (-1149 *7 *8 *9 *10 *11)))) (-3861 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1149 *5 *6 *7 *8 *9)))) (-3861 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1149 *5 *6 *7 *8 *9)))) (-3860 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1149 *5 *6 *7 *3 *4)) (-4 *4 (-1113 *5 *6 *7 *3)))) (-3860 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1149 *6 *7 *8 *3 *4)) (-4 *4 (-1113 *6 *7 *8 *3)))) (-3860 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-774)) (-5 *6 (-112)) (-4 *7 (-456)) (-4 *8 (-796)) (-4 *9 (-853)) (-4 *3 (-1069 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1149 *7 *8 *9 *3 *4)) (-4 *4 (-1113 *7 *8 *9 *3)))) (-3859 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1149 *5 *6 *7 *3 *4)) (-4 *4 (-1113 *5 *6 *7 *3)))) (-3859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1149 *6 *7 *8 *3 *4)) (-4 *4 (-1113 *6 *7 *8 *3)))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) (-5 *1 (-1149 *5 *6 *7 *3 *4)) (-4 *4 (-1113 *5 *6 *7 *3)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-774)) (-5 *1 (-1149 *5 *6 *7 *8 *9)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-774)) (-5 *1 (-1149 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3856 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3857 ((-774) (-644 |#4|) (-644 |#5|))) (-15 -3858 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3859 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774) (-112))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5| (-774))) (-15 -3860 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) |#4| |#5|)) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3861 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3862 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))))) (-774))) (-15 -4404 ((-1163) (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|)))) (-15 -3863 ((-1276) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1710 |#5|))) (-774)))) +((-2970 (((-112) $ $) NIL)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) NIL)) (-4116 (((-644 $) (-644 |#4|)) 124) (((-644 $) (-644 |#4|) (-112)) 125) (((-644 $) (-644 |#4|) (-112) (-112)) 123) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3487 (((-644 |#3|) $) NIL)) (-3311 (((-112) $) NIL)) (-3302 (((-112) $) NIL (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4122 ((|#4| |#4| $) NIL)) (-4208 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| $) 97)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4144 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) 75)) (-4158 (($) NIL T CONST)) (-3307 (((-112) $) 29 (|has| |#1| (-561)))) (-3309 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3308 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3310 (((-112) $) NIL (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3303 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3578 (($ (-644 |#4|)) NIL)) (-4232 (((-3 $ #1#) $) 45)) (-4119 ((|#4| |#4| $) 78)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-3832 (($ |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4117 ((|#4| |#4| $) NIL)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) NIL)) (-3619 (((-112) |#4| $) NIL)) (-3617 (((-112) |#4| $) NIL)) (-3620 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3864 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 139)) (-2126 (((-644 |#4|) $) 18 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3602 ((|#3| $) 38)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#4|) $) 19 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-2130 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 23)) (-3317 (((-644 |#3|) $) NIL)) (-3316 (((-112) |#3| $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-3613 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-3612 (((-644 (-2 (|:| |val| |#4|) (|:| -1710 $))) |#4| |#4| $) 117)) (-4231 (((-3 |#4| #1#) $) 42)) (-3614 (((-644 $) |#4| $) 102)) (-3616 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3615 (((-644 (-2 (|:| |val| (-112)) (|:| -1710 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3660 (((-644 $) |#4| $) 121) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 122) (((-644 $) |#4| (-644 $)) NIL)) (-3865 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 134)) (-3866 (($ |#4| $) 88) (($ (-644 |#4|) $) 89) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4131 (((-644 |#4|) $) NIL)) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4133 (((-112) $ $) NIL)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4121 ((|#4| |#4| $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-3 |#4| #1#) $) 40)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4113 (((-3 $ #1#) $ |#4|) 59)) (-4202 (($ $ |#4|) NIL) (((-644 $) |#4| $) 104) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 99)) (-2128 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 17)) (-3998 (($) 14)) (-4382 (((-774) $) NIL)) (-2127 (((-774) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (((-774) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) 13)) (-4404 (((-539) $) NIL (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 22)) (-3313 (($ $ |#3|) 52)) (-3315 (($ $ |#3|) 54)) (-4118 (($ $) NIL)) (-3314 (($ $ |#3|) NIL)) (-4380 (((-866) $) 35) (((-644 |#4|) $) 46)) (-4112 (((-774) $) NIL (|has| |#3| (-371)))) (-3664 (((-112) $ $) NIL)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3611 (((-644 $) |#4| $) 66) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-2129 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) NIL)) (-3618 (((-112) |#4| $) NIL)) (-4367 (((-112) |#3| $) 74)) (-3457 (((-112) $ $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1150 |#1| |#2| |#3| |#4|) (-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3866 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3865 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3864 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-456) (-796) (-853) (-1069 |#1| |#2| |#3|)) (T -1150)) +((-3866 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *3))) (-5 *1 (-1150 *5 *6 *7 *3)) (-4 *3 (-1069 *5 *6 *7)))) (-4116 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *8))) (-5 *1 (-1150 *5 *6 *7 *8)))) (-4116 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *8))) (-5 *1 (-1150 *5 *6 *7 *8)))) (-3865 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *8))) (-5 *1 (-1150 *5 *6 *7 *8)))) (-3864 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1150 *5 *6 *7 *8))))) (-5 *1 (-1150 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3866 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -4116 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3865 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3864 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3750 ((|#1| $) 37)) (-3867 (($ (-644 |#1|)) 45)) (-1310 (((-112) $ (-774)) NIL)) (-4158 (($) NIL T CONST)) (-3752 ((|#1| |#1| $) 40)) (-3751 ((|#1| $) 35)) (-2126 (((-644 |#1|) $) 18 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 22)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-1370 ((|#1| $) 38)) (-4041 (($ |#1| $) 41)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-1371 ((|#1| $) 36)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 32)) (-3998 (($) 43)) (-3749 (((-774) $) 30)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 27)) (-4380 (((-866) $) 14 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-1372 (($ (-644 |#1|)) NIL)) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 17 (|has| |#1| (-1105)))) (-4391 (((-774) $) 31 (|has| $ (-6 -4427))))) +(((-1151 |#1|) (-13 (-1125 |#1|) (-10 -8 (-15 -3867 ($ (-644 |#1|))))) (-1220)) (T -1151)) +((-3867 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-1151 *3))))) +(-13 (-1125 |#1|) (-10 -8 (-15 -3867 ($ (-644 |#1|))))) +((-4221 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1237 (-550)) |#2|) 55) ((|#2| $ (-550) |#2|) 52)) (-3868 (((-112) $) 12)) (-2130 (($ (-1 |#2| |#2|) $) 50)) (-4234 ((|#2| $) NIL) (($ $ (-774)) 20)) (-2375 (($ $ |#2|) 51)) (-3869 (((-112) $) 11)) (-4233 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1237 (-550))) 38) ((|#2| $ (-550)) 29) ((|#2| $ (-550) |#2|) NIL)) (-4224 (($ $ $) 58) (($ $ |#2|) NIL)) (-4235 (($ $ $) 40) (($ |#2| $) NIL) (($ (-644 $)) 47) (($ $ |#2|) NIL))) +(((-1152 |#1| |#2|) (-10 -8 (-15 -3868 ((-112) |#1|)) (-15 -3869 ((-112) |#1|)) (-15 -4221 (|#2| |#1| (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550))) (-15 -2375 (|#1| |#1| |#2|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -4221 (|#2| |#1| (-1237 (-550)) |#2|)) (-15 -4221 (|#2| |#1| #1="last" |#2|)) (-15 -4221 (|#1| |#1| #2="rest" |#1|)) (-15 -4221 (|#2| |#1| #3="first" |#2|)) (-15 -4224 (|#1| |#1| |#2|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4233 (|#2| |#1| #1#)) (-15 -4233 (|#1| |#1| #2#)) (-15 -4234 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| #3#)) (-15 -4234 (|#2| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4221 (|#2| |#1| #4="value" |#2|)) (-15 -4233 (|#2| |#1| #4#)) (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|))) (-1153 |#2|) (-1220)) (T -1152)) +NIL +(-10 -8 (-15 -3868 ((-112) |#1|)) (-15 -3869 ((-112) |#1|)) (-15 -4221 (|#2| |#1| (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550) |#2|)) (-15 -4233 (|#2| |#1| (-550))) (-15 -2375 (|#1| |#1| |#2|)) (-15 -4235 (|#1| |#1| |#2|)) (-15 -4235 (|#1| (-644 |#1|))) (-15 -4233 (|#1| |#1| (-1237 (-550)))) (-15 -4221 (|#2| |#1| (-1237 (-550)) |#2|)) (-15 -4221 (|#2| |#1| #1="last" |#2|)) (-15 -4221 (|#1| |#1| #2="rest" |#1|)) (-15 -4221 (|#2| |#1| #3="first" |#2|)) (-15 -4224 (|#1| |#1| |#2|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4233 (|#2| |#1| #1#)) (-15 -4233 (|#1| |#1| #2#)) (-15 -4234 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| #3#)) (-15 -4234 (|#2| |#1|)) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#1|)) (-15 -4221 (|#2| |#1| #4="value" |#2|)) (-15 -4233 (|#2| |#1| #4#)) (-15 -2130 (|#1| (-1 |#2| |#2|) |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-4228 ((|#1| $) 66)) (-4230 (($ $) 68)) (-2374 (((-1276) $ (-550) (-550)) 98 (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) 53 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-4220 (($ $ $) 57 (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) 55 (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) 59 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4428))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 118 (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) 87 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4427)))) (-4229 ((|#1| $) 67)) (-4158 (($) 7 T CONST)) (-4232 (($ $) 74) (($ $ (-774)) 72)) (-1441 (($ $) 100 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4427))) (($ |#1| $) 101 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1686 ((|#1| $ (-550) |#1|) 86 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 88)) (-3868 (((-112) $) 84)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-4048 (($ (-774) |#1|) 109)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 96 (|has| (-550) (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 95 (|has| (-550) (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4231 ((|#1| $) 71) (($ $ (-774)) 69)) (-2451 (($ $ $ (-550)) 117) (($ |#1| $ (-550)) 116)) (-2379 (((-644 (-550)) $) 93)) (-2380 (((-112) (-550) $) 92)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 77) (($ $ (-774)) 75)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2375 (($ $ |#1|) 97 (|has| $ (-6 -4428)))) (-3869 (((-112) $) 85)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 91)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1237 (-550))) 113) ((|#1| $ (-550)) 90) ((|#1| $ (-550) |#1|) 89)) (-3432 (((-550) $ $) 45)) (-2452 (($ $ (-1237 (-550))) 115) (($ $ (-550)) 114)) (-4067 (((-112) $) 47)) (-4225 (($ $) 63)) (-4223 (($ $) 60 (|has| $ (-6 -4428)))) (-4226 (((-774) $) 64)) (-4227 (($ $) 65)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4404 (((-539) $) 99 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 108)) (-4224 (($ $ $) 62 (|has| $ (-6 -4428))) (($ $ |#1|) 61 (|has| $ (-6 -4428)))) (-4235 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1153 |#1|) (-140) (-1220)) (T -1153)) +((-3869 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1220)) (-5 *2 (-112))))) +(-13 (-1259 |t#1|) (-654 |t#1|) (-10 -8 (-15 -3869 ((-112) $)) (-15 -3868 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-1014 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1220) . T) ((-1259 |#1|) . T)) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#2| $ |#1| |#2|) NIL)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) NIL)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-2818 (((-644 |#1|) $) NIL)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2379 (((-644 |#1|) $) NIL)) (-2380 (((-112) |#1| $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1154 |#1| |#2| |#3|) (-1197 |#1| |#2|) (-1105) (-1105) |#2|) (T -1154)) +NIL +(-1197 |#1| |#2|) +((-2970 (((-112) $ $) 7)) (-3870 (((-3 $ "failed") $) 14)) (-3665 (((-1163) $) 10)) (-3871 (($) 15 T CONST)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3457 (((-112) $ $) 6))) +(((-1155) (-140)) (T -1155)) +((-3871 (*1 *1) (-4 *1 (-1155))) (-3870 (*1 *1 *1) (|partial| -4 *1 (-1155)))) +(-13 (-1105) (-10 -8 (-15 -3871 ($) -4386) (-15 -3870 ((-3 $ "failed") $)))) +(((-102) . T) ((-616 (-866)) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3873 (((-694 (-1139)) $) 27)) (-3872 (((-1139) $) 15)) (-3874 (((-1139) $) 17)) (-3665 (((-1163) $) NIL)) (-3875 (((-510) $) 13)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 37) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1156) (-13 (-1087) (-10 -8 (-15 -3875 ((-510) $)) (-15 -3874 ((-1139) $)) (-15 -3873 ((-694 (-1139)) $)) (-15 -3872 ((-1139) $))))) (T -1156)) +((-3875 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1156)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1156)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-694 (-1139))) (-5 *1 (-1156)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1156))))) +(-13 (-1087) (-10 -8 (-15 -3875 ((-510) $)) (-15 -3874 ((-1139) $)) (-15 -3873 ((-694 (-1139)) $)) (-15 -3872 ((-1139) $)))) +((-3878 (((-1158 |#1|) (-1158 |#1|)) 17)) (-3876 (((-1158 |#1|) (-1158 |#1|)) 13)) (-3879 (((-1158 |#1|) (-1158 |#1|) (-550) (-550)) 20)) (-3877 (((-1158 |#1|) (-1158 |#1|)) 15))) +(((-1157 |#1|) (-10 -7 (-15 -3876 ((-1158 |#1|) (-1158 |#1|))) (-15 -3877 ((-1158 |#1|) (-1158 |#1|))) (-15 -3878 ((-1158 |#1|) (-1158 |#1|))) (-15 -3879 ((-1158 |#1|) (-1158 |#1|) (-550) (-550)))) (-13 (-561) (-147))) (T -1157)) +((-3879 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1157 *4)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1157 *3)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1157 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1157 *3))))) +(-10 -7 (-15 -3876 ((-1158 |#1|) (-1158 |#1|))) (-15 -3877 ((-1158 |#1|) (-1158 |#1|))) (-15 -3878 ((-1158 |#1|) (-1158 |#1|))) (-15 -3879 ((-1158 |#1|) (-1158 |#1|) (-550) (-550)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) NIL)) (-4228 ((|#1| $) NIL)) (-4230 (($ $) 67)) (-2374 (((-1276) $ (-550) (-550)) 99 (|has| $ (-6 -4428)))) (-4218 (($ $ (-550)) 129 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-3884 (((-866) $) 56 (|has| |#1| (-1105)))) (-3883 (((-112)) 55 (|has| |#1| (-1105)))) (-3428 ((|#1| $ |#1|) NIL (|has| $ (-6 -4428)))) (-4220 (($ $ $) 116 (|has| $ (-6 -4428))) (($ $ (-550) $) 142)) (-4219 ((|#1| $ |#1|) 126 (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) 121 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ #2="first" |#1|) 123 (|has| $ (-6 -4428))) (($ $ #3="rest" $) 125 (|has| $ (-6 -4428))) ((|#1| $ #4="last" |#1|) 128 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 113 (|has| $ (-6 -4428))) ((|#1| $ (-550) |#1|) 77 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 80)) (-4229 ((|#1| $) NIL)) (-4158 (($) NIL T CONST)) (-2470 (($ $) 14)) (-4232 (($ $) 42) (($ $ (-774)) 111)) (-3889 (((-112) (-644 |#1|) $) 135 (|has| |#1| (-1105)))) (-3890 (($ (-644 |#1|)) 131)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) 79)) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3868 (((-112) $) NIL)) (-2126 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3885 (((-1276) (-550) $) 141 (|has| |#1| (-1105)))) (-2469 (((-774) $) 138)) (-3434 (((-644 $) $) NIL)) (-3430 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4150 (((-112) $ (-774)) NIL)) (-3433 (((-644 |#1|) $) NIL)) (-3952 (((-112) $) NIL)) (-2472 (($ $) 114)) (-2473 (((-112) $) 13)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-4231 ((|#1| $) NIL) (($ $ (-774)) NIL)) (-2451 (($ $ $ (-550)) NIL) (($ |#1| $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) 96)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-3882 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2471 ((|#1| $) 10)) (-4234 ((|#1| $) 41) (($ $ (-774)) 65)) (-3888 (((-2 (|:| |cycle?| (-112)) (|:| -2997 (-774)) (|:| |period| (-774))) (-774) $) 36)) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3881 (($ (-1 (-112) |#1|) $) 146)) (-3880 (($ (-1 (-112) |#1|) $) 147)) (-2375 (($ $ |#1|) 90 (|has| $ (-6 -4428)))) (-4202 (($ $ (-550)) 45)) (-3869 (((-112) $) 94)) (-2474 (((-112) $) 12)) (-2475 (((-112) $) 137)) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 30)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) 20)) (-3998 (($) 60)) (-4233 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1237 (-550))) NIL) ((|#1| $ (-550)) 75) ((|#1| $ (-550) |#1|) NIL)) (-3432 (((-550) $ $) 64)) (-2452 (($ $ (-1237 (-550))) NIL) (($ $ (-550)) NIL)) (-3887 (($ (-1 $)) 63)) (-4067 (((-112) $) 91)) (-4225 (($ $) 92)) (-4223 (($ $) 117 (|has| $ (-6 -4428)))) (-4226 (((-774) $) NIL)) (-4227 (($ $) NIL)) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 59)) (-4404 (((-539) $) NIL (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 73)) (-3886 (($ |#1| $) 115)) (-4224 (($ $ $) 119 (|has| $ (-6 -4428))) (($ $ |#1|) 120 (|has| $ (-6 -4428)))) (-4235 (($ $ $) 101) (($ |#1| $) 61) (($ (-644 $)) 106) (($ $ |#1|) 100)) (-3294 (($ $) 66)) (-4380 (($ (-644 |#1|)) 130) (((-866) $) 57 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) NIL)) (-3431 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 133 (|has| |#1| (-1105)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1158 |#1|) (-13 (-677 |#1|) (-619 (-644 |#1|)) (-10 -8 (-6 -4428) (-15 -3890 ($ (-644 |#1|))) (IF (|has| |#1| (-1105)) (-15 -3889 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -3888 ((-2 (|:| |cycle?| (-112)) (|:| -2997 (-774)) (|:| |period| (-774))) (-774) $)) (-15 -3887 ($ (-1 $))) (-15 -3886 ($ |#1| $)) (IF (|has| |#1| (-1105)) (PROGN (-15 -3885 ((-1276) (-550) $)) (-15 -3884 ((-866) $)) (-15 -3883 ((-112)))) |%noBranch|) (-15 -4220 ($ $ (-550) $)) (-15 -3882 ($ (-1 |#1|))) (-15 -3882 ($ (-1 |#1| |#1|) |#1|)) (-15 -3881 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 (-112) |#1|) $)))) (-1220)) (T -1158)) +((-3890 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3)))) (-3889 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1105)) (-4 *4 (-1220)) (-5 *2 (-112)) (-5 *1 (-1158 *4)))) (-3888 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2997 (-774)) (|:| |period| (-774)))) (-5 *1 (-1158 *4)) (-4 *4 (-1220)) (-5 *3 (-774)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-1 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1220)))) (-3886 (*1 *1 *2 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1220)))) (-3885 (*1 *2 *3 *1) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1158 *4)) (-4 *4 (-1105)) (-4 *4 (-1220)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-1158 *3)) (-4 *3 (-1105)) (-4 *3 (-1220)))) (-3883 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1105)) (-4 *3 (-1220)))) (-4220 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1158 *3)) (-4 *3 (-1220)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3)))) (-3882 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3))))) +(-13 (-677 |#1|) (-619 (-644 |#1|)) (-10 -8 (-6 -4428) (-15 -3890 ($ (-644 |#1|))) (IF (|has| |#1| (-1105)) (-15 -3889 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -3888 ((-2 (|:| |cycle?| (-112)) (|:| -2997 (-774)) (|:| |period| (-774))) (-774) $)) (-15 -3887 ($ (-1 $))) (-15 -3886 ($ |#1| $)) (IF (|has| |#1| (-1105)) (PROGN (-15 -3885 ((-1276) (-550) $)) (-15 -3884 ((-866) $)) (-15 -3883 ((-112)))) |%noBranch|) (-15 -4220 ($ $ (-550) $)) (-15 -3882 ($ (-1 |#1|))) (-15 -3882 ($ (-1 |#1| |#1|) |#1|)) (-15 -3881 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 (-112) |#1|) $)))) +((-4235 (((-1158 |#1|) (-1158 (-1158 |#1|))) 15))) +(((-1159 |#1|) (-10 -7 (-15 -4235 ((-1158 |#1|) (-1158 (-1158 |#1|))))) (-1220)) (T -1159)) +((-4235 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-1220))))) +(-10 -7 (-15 -4235 ((-1158 |#1|) (-1158 (-1158 |#1|))))) +((-4275 (((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)) 25)) (-4276 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)) 26)) (-4392 (((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|)) 16))) +(((-1160 |#1| |#2|) (-10 -7 (-15 -4392 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -4275 ((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))) (-15 -4276 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)))) (-1220) (-1220)) (T -1160)) +((-4276 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-1160 *5 *2)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1158 *6)) (-4 *6 (-1220)) (-4 *3 (-1220)) (-5 *2 (-1158 *3)) (-5 *1 (-1160 *6 *3)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1158 *6)) (-5 *1 (-1160 *5 *6))))) +(-10 -7 (-15 -4392 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -4275 ((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))) (-15 -4276 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)))) +((-4392 (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)) 21))) +(((-1161 |#1| |#2| |#3|) (-10 -7 (-15 -4392 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)))) (-1220) (-1220) (-1220)) (T -1161)) +((-4392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-1158 *7)) (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-1158 *8)) (-5 *1 (-1161 *6 *7 *8))))) +(-10 -7 (-15 -4392 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)))) +((-2970 (((-112) $ $) 19)) (-3852 (($ $) 121)) (-3853 (($ $) 122)) (-3843 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-3850 (((-112) $ $) 119)) (-3849 (((-112) $ $ (-550)) 118)) (-3968 (($ (-550)) 128)) (-3844 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-1902 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-853)))) (-1900 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4428))) (($ $) 89 (-12 (|has| (-144) (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-853)))) (-1310 (((-112) $ (-774)) 8)) (-4221 (((-144) $ (-550) (-144)) 53 (|has| $ (-6 -4428))) (((-144) $ (-1237 (-550)) (-144)) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-3841 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2444 (($ $) 91 (|has| $ (-6 -4428)))) (-2445 (($ $) 101)) (-3846 (($ $ (-1237 (-550)) $) 115)) (-1441 (($ $) 79 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ (-144) $) 78 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4427)))) (-4276 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4427))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4427)))) (-1686 (((-144) $ (-550) (-144)) 54 (|has| $ (-6 -4428)))) (-3519 (((-144) $ (-550)) 52)) (-3851 (((-112) $ $) 120)) (-3845 (((-550) (-1 (-112) (-144)) $) 98) (((-550) (-144) $) 97 (|has| (-144) (-1105))) (((-550) (-144) $ (-550)) 96 (|has| (-144) (-1105))) (((-550) $ $ (-550)) 114) (((-550) (-141) $ (-550)) 113)) (-2126 (((-644 (-144)) $) 31 (|has| $ (-6 -4427)))) (-4048 (($ (-774) (-144)) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 88 (|has| (-144) (-853)))) (-3943 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-853)))) (-3010 (((-644 (-144)) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 87 (|has| (-144) (-853)))) (-3847 (((-112) $ $ (-144)) 116)) (-3848 (((-774) $ $ (-144)) 117)) (-2130 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3854 (($ $) 123)) (-3855 (($ $) 124)) (-4150 (((-112) $ (-774)) 10)) (-3842 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3665 (((-1163) $) 22)) (-2451 (($ (-144) $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21)) (-4234 (((-144) $) 43 (|has| (-550) (-853)))) (-1442 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2375 (($ $ (-144)) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-2381 (((-644 (-144)) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 (((-144) $ (-550) (-144)) 51) (((-144) $ (-550)) 50) (($ $ (-1237 (-550))) 64) (($ $ $) 103)) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-2127 (((-774) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4427))) (((-774) (-144) $) 29 (-12 (|has| (-144) (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 92 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| (-144) (-617 (-539))))) (-3955 (($ (-644 (-144))) 71)) (-4235 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (($ (-144)) 112) (((-866) $) 18)) (-3664 (((-112) $ $) 23)) (-2129 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4427)))) (-2902 (((-1163) $) 132) (((-1163) $ (-112)) 131) (((-1276) (-826) $) 130) (((-1276) (-826) $ (-112)) 129)) (-2968 (((-112) $ $) 85 (|has| (-144) (-853)))) (-2969 (((-112) $ $) 84 (|has| (-144) (-853)))) (-3457 (((-112) $ $) 20)) (-3089 (((-112) $ $) 86 (|has| (-144) (-853)))) (-3090 (((-112) $ $) 83 (|has| (-144) (-853)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1162) (-140)) (T -1162)) +((-3968 (*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1162))))) +(-13 (-1148) (-1105) (-824) (-10 -8 (-15 -3968 ($ (-550))))) +(((-34) . T) ((-102) . T) ((-616 (-866)) . T) ((-151 #1=(-144)) . T) ((-617 (-539)) |has| (-144) (-617 (-539))) ((-288 #2=(-550) #1#) . T) ((-290 #2# #1#) . T) ((-311 #1#) -12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))) ((-375 #1#) . T) ((-493 #1#) . T) ((-607 #2# #1#) . T) ((-518 #1# #1#) -12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))) ((-654 #1#) . T) ((-19 #1#) . T) ((-824) . T) ((-853) |has| (-144) (-853)) ((-1105) . T) ((-1148) . T) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3852 (($ $) NIL)) (-3853 (($ $) NIL)) (-3843 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-3850 (((-112) $ $) NIL)) (-3849 (((-112) $ $ (-550)) NIL)) (-3968 (($ (-550)) 8)) (-3844 (((-644 $) $ (-144)) NIL) (((-644 $) $ (-141)) NIL)) (-1902 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-853)))) (-1900 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| (-144) (-853))))) (-3312 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 (((-144) $ (-550) (-144)) NIL (|has| $ (-6 -4428))) (((-144) $ (-1237 (-550)) (-144)) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-3841 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-3846 (($ $ (-1237 (-550)) $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-3832 (($ (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4427))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4427)))) (-1686 (((-144) $ (-550) (-144)) NIL (|has| $ (-6 -4428)))) (-3519 (((-144) $ (-550)) NIL)) (-3851 (((-112) $ $) NIL)) (-3845 (((-550) (-1 (-112) (-144)) $) NIL) (((-550) (-144) $) NIL (|has| (-144) (-1105))) (((-550) (-144) $ (-550)) NIL (|has| (-144) (-1105))) (((-550) $ $ (-550)) NIL) (((-550) (-141) $ (-550)) NIL)) (-2126 (((-644 (-144)) $) NIL (|has| $ (-6 -4427)))) (-4048 (($ (-774) (-144)) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| (-144) (-853)))) (-3943 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-853)))) (-3010 (((-644 (-144)) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-2377 (((-550) $) NIL (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| (-144) (-853)))) (-3847 (((-112) $ $ (-144)) NIL)) (-3848 (((-774) $ $ (-144)) NIL)) (-2130 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3854 (($ $) NIL)) (-3855 (($ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3842 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3665 (((-1163) $) NIL)) (-2451 (($ (-144) $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-144) $) NIL (|has| (-550) (-853)))) (-1442 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2375 (($ $ (-144)) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-311 (-144))) (|has| (-144) (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-2381 (((-644 (-144)) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 (((-144) $ (-550) (-144)) NIL) (((-144) $ (-550)) NIL) (($ $ (-1237 (-550))) NIL) (($ $ $) NIL)) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-2127 (((-774) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427))) (((-774) (-144) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-144) (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-144) (-617 (-539))))) (-3955 (($ (-644 (-144))) NIL)) (-4235 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (($ (-144)) NIL) (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2129 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4427)))) (-2902 (((-1163) $) 19) (((-1163) $ (-112)) 21) (((-1276) (-826) $) 22) (((-1276) (-826) $ (-112)) 23)) (-2968 (((-112) $ $) NIL (|has| (-144) (-853)))) (-2969 (((-112) $ $) NIL (|has| (-144) (-853)))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (|has| (-144) (-853)))) (-3090 (((-112) $ $) NIL (|has| (-144) (-853)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1163) (-1162)) (T -1163)) +NIL +(-1162) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)) (|has| |#1| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL)) (-2374 (((-1276) $ (-1163) (-1163)) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-1163) |#1|) NIL)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#1| #1="failed") (-1163) $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#1| #1#) (-1163) $) NIL)) (-3832 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-1163) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-1163)) NIL)) (-2126 (((-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-1163) $) NIL (|has| (-1163) (-853)))) (-3010 (((-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-1163) $) NIL (|has| (-1163) (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)) (|has| |#1| (-1105))))) (-2818 (((-644 (-1163)) $) NIL)) (-2384 (((-112) (-1163) $) NIL)) (-1370 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL)) (-2379 (((-644 (-1163)) $) NIL)) (-2380 (((-112) (-1163) $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)) (|has| |#1| (-1105))))) (-4234 ((|#1| $) NIL (|has| (-1163) (-853)))) (-1442 (((-3 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) "failed") (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL (-12 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-311 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-1163)) NIL) ((|#1| $ (-1163) |#1|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-616 (-866))) (|has| |#1| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)) (|has| |#1| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 (-1163)) (|:| -2256 |#1|)) (-1105)) (|has| |#1| (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1164 |#1|) (-13 (-1197 (-1163) |#1|) (-10 -7 (-6 -4427))) (-1105)) (T -1164)) +NIL +(-13 (-1197 (-1163) |#1|) (-10 -7 (-6 -4427))) +((-4238 (((-1158 |#1|) (-1158 |#1|)) 84)) (-3892 (((-3 (-1158 |#1|) "failed") (-1158 |#1|)) 42)) (-3903 (((-1158 |#1|) (-411 (-550)) (-1158 |#1|)) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3906 (((-1158 |#1|) |#1| (-1158 |#1|)) 142 (|has| |#1| (-366)))) (-4241 (((-1158 |#1|) (-1158 |#1|)) 99)) (-3894 (((-1158 (-550)) (-550)) 64)) (-3902 (((-1158 |#1|) (-1158 (-1158 |#1|))) 118 (|has| |#1| (-38 (-411 (-550)))))) (-4237 (((-1158 |#1|) (-550) (-550) (-1158 |#1|)) 104)) (-4372 (((-1158 |#1|) |#1| (-550)) 54)) (-3896 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 67)) (-3904 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 139 (|has| |#1| (-366)))) (-3901 (((-1158 |#1|) |#1| (-1 (-1158 |#1|))) 117 (|has| |#1| (-38 (-411 (-550)))))) (-3905 (((-1158 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1158 |#1|))) 140 (|has| |#1| (-366)))) (-4242 (((-1158 |#1|) (-1158 |#1|)) 98)) (-4243 (((-1158 |#1|) (-1158 |#1|)) 83)) (-4236 (((-1158 |#1|) (-550) (-550) (-1158 |#1|)) 105)) (-4246 (((-1158 |#1|) |#1| (-1158 |#1|)) 114 (|has| |#1| (-38 (-411 (-550)))))) (-3893 (((-1158 (-550)) (-550)) 63)) (-3895 (((-1158 |#1|) |#1|) 66)) (-4239 (((-1158 |#1|) (-1158 |#1|) (-550) (-550)) 101)) (-3898 (((-1158 |#1|) (-1 |#1| (-550)) (-1158 |#1|)) 73)) (-3891 (((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|)) 40)) (-4240 (((-1158 |#1|) (-1158 |#1|)) 100)) (-4201 (((-1158 |#1|) (-1158 |#1|) |#1|) 78)) (-3897 (((-1158 |#1|) (-1158 |#1|)) 69)) (-3899 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 79)) (-4380 (((-1158 |#1|) |#1|) 74)) (-3900 (((-1158 |#1|) (-1158 (-1158 |#1|))) 89)) (-4383 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 41)) (-4271 (((-1158 |#1|) (-1158 |#1|)) 21) (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 23)) (-4273 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 17)) (* (((-1158 |#1|) (-1158 |#1|) |#1|) 29) (((-1158 |#1|) |#1| (-1158 |#1|)) 26) (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 27))) +(((-1165 |#1|) (-10 -7 (-15 -4273 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4271 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4271 ((-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -3891 ((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|))) (-15 -4383 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3892 ((-3 (-1158 |#1|) "failed") (-1158 |#1|))) (-15 -4372 ((-1158 |#1|) |#1| (-550))) (-15 -3893 ((-1158 (-550)) (-550))) (-15 -3894 ((-1158 (-550)) (-550))) (-15 -3895 ((-1158 |#1|) |#1|)) (-15 -3896 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3897 ((-1158 |#1|) (-1158 |#1|))) (-15 -3898 ((-1158 |#1|) (-1 |#1| (-550)) (-1158 |#1|))) (-15 -4380 ((-1158 |#1|) |#1|)) (-15 -4201 ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -3899 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4243 ((-1158 |#1|) (-1158 |#1|))) (-15 -4238 ((-1158 |#1|) (-1158 |#1|))) (-15 -3900 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -4242 ((-1158 |#1|) (-1158 |#1|))) (-15 -4241 ((-1158 |#1|) (-1158 |#1|))) (-15 -4240 ((-1158 |#1|) (-1158 |#1|))) (-15 -4239 ((-1158 |#1|) (-1158 |#1|) (-550) (-550))) (-15 -4237 ((-1158 |#1|) (-550) (-550) (-1158 |#1|))) (-15 -4236 ((-1158 |#1|) (-550) (-550) (-1158 |#1|))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 -3901 ((-1158 |#1|) |#1| (-1 (-1158 |#1|)))) (-15 -3902 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3903 ((-1158 |#1|) (-411 (-550)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-15 -3904 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3905 ((-1158 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1158 |#1|)))) (-15 -3906 ((-1158 |#1|) |#1| (-1158 |#1|)))) |%noBranch|)) (-1053)) (T -1165)) +((-3906 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-550))) (-5 *5 (-1 (-1158 *4))) (-4 *4 (-366)) (-4 *4 (-1053)) (-5 *2 (-1158 *4)) (-5 *1 (-1165 *4)))) (-3904 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3903 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1053)) (-5 *3 (-411 (-550))) (-5 *1 (-1165 *4)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1165 *4)) (-4 *4 (-38 (-411 (-550)))) (-4 *4 (-1053)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1158 *3))) (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)))) (-4246 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4236 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) (-4237 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) (-4239 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4242 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1165 *4)) (-4 *4 (-1053)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4243 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3899 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4201 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4380 (*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1053)))) (-3898 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1 *4 (-550))) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3896 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3895 (*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1053)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1158 (-550))) (-5 *1 (-1165 *4)) (-4 *4 (-1053)) (-5 *3 (-550)))) (-3893 (*1 *2 *3) (-12 (-5 *2 (-1158 (-550))) (-5 *1 (-1165 *4)) (-4 *4 (-1053)) (-5 *3 (-550)))) (-4372 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1053)))) (-3892 (*1 *2 *2) (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4383 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-3891 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4271 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) (-4273 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) +(-10 -7 (-15 -4273 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4271 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4271 ((-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -3891 ((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|))) (-15 -4383 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3892 ((-3 (-1158 |#1|) "failed") (-1158 |#1|))) (-15 -4372 ((-1158 |#1|) |#1| (-550))) (-15 -3893 ((-1158 (-550)) (-550))) (-15 -3894 ((-1158 (-550)) (-550))) (-15 -3895 ((-1158 |#1|) |#1|)) (-15 -3896 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3897 ((-1158 |#1|) (-1158 |#1|))) (-15 -3898 ((-1158 |#1|) (-1 |#1| (-550)) (-1158 |#1|))) (-15 -4380 ((-1158 |#1|) |#1|)) (-15 -4201 ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -3899 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4243 ((-1158 |#1|) (-1158 |#1|))) (-15 -4238 ((-1158 |#1|) (-1158 |#1|))) (-15 -3900 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -4242 ((-1158 |#1|) (-1158 |#1|))) (-15 -4241 ((-1158 |#1|) (-1158 |#1|))) (-15 -4240 ((-1158 |#1|) (-1158 |#1|))) (-15 -4239 ((-1158 |#1|) (-1158 |#1|) (-550) (-550))) (-15 -4237 ((-1158 |#1|) (-550) (-550) (-1158 |#1|))) (-15 -4236 ((-1158 |#1|) (-550) (-550) (-1158 |#1|))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 -3901 ((-1158 |#1|) |#1| (-1 (-1158 |#1|)))) (-15 -3902 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3903 ((-1158 |#1|) (-411 (-550)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-366)) (PROGN (-15 -3904 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3905 ((-1158 |#1|) (-1 |#1| (-550)) |#1| (-1 (-1158 |#1|)))) (-15 -3906 ((-1158 |#1|) |#1| (-1158 |#1|)))) |%noBranch|)) +((-3917 (((-1158 |#1|) (-1158 |#1|)) 107)) (-4073 (((-1158 |#1|) (-1158 |#1|)) 61)) (-3908 (((-2 (|:| -3915 (-1158 |#1|)) (|:| -3916 (-1158 |#1|))) (-1158 |#1|)) 103)) (-3915 (((-1158 |#1|) (-1158 |#1|)) 104)) (-3907 (((-2 (|:| -4072 (-1158 |#1|)) (|:| -4068 (-1158 |#1|))) (-1158 |#1|)) 54)) (-4072 (((-1158 |#1|) (-1158 |#1|)) 55)) (-3919 (((-1158 |#1|) (-1158 |#1|)) 109)) (-4071 (((-1158 |#1|) (-1158 |#1|)) 68)) (-4376 (((-1158 |#1|) (-1158 |#1|)) 40)) (-4377 (((-1158 |#1|) (-1158 |#1|)) 37)) (-3920 (((-1158 |#1|) (-1158 |#1|)) 110)) (-4070 (((-1158 |#1|) (-1158 |#1|)) 69)) (-3918 (((-1158 |#1|) (-1158 |#1|)) 108)) (-4069 (((-1158 |#1|) (-1158 |#1|)) 64)) (-3916 (((-1158 |#1|) (-1158 |#1|)) 105)) (-4068 (((-1158 |#1|) (-1158 |#1|)) 56)) (-3923 (((-1158 |#1|) (-1158 |#1|)) 118)) (-3911 (((-1158 |#1|) (-1158 |#1|)) 93)) (-3921 (((-1158 |#1|) (-1158 |#1|)) 112)) (-3909 (((-1158 |#1|) (-1158 |#1|)) 89)) (-3925 (((-1158 |#1|) (-1158 |#1|)) 122)) (-3913 (((-1158 |#1|) (-1158 |#1|)) 97)) (-3926 (((-1158 |#1|) (-1158 |#1|)) 124)) (-3914 (((-1158 |#1|) (-1158 |#1|)) 99)) (-3924 (((-1158 |#1|) (-1158 |#1|)) 120)) (-3912 (((-1158 |#1|) (-1158 |#1|)) 95)) (-3922 (((-1158 |#1|) (-1158 |#1|)) 114)) (-3910 (((-1158 |#1|) (-1158 |#1|)) 91)) (** (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 41))) +(((-1166 |#1|) (-10 -7 (-15 -4377 ((-1158 |#1|) (-1158 |#1|))) (-15 -4376 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3907 ((-2 (|:| -4072 (-1158 |#1|)) (|:| -4068 (-1158 |#1|))) (-1158 |#1|))) (-15 -4072 ((-1158 |#1|) (-1158 |#1|))) (-15 -4068 ((-1158 |#1|) (-1158 |#1|))) (-15 -4073 ((-1158 |#1|) (-1158 |#1|))) (-15 -4069 ((-1158 |#1|) (-1158 |#1|))) (-15 -4071 ((-1158 |#1|) (-1158 |#1|))) (-15 -4070 ((-1158 |#1|) (-1158 |#1|))) (-15 -3909 ((-1158 |#1|) (-1158 |#1|))) (-15 -3910 ((-1158 |#1|) (-1158 |#1|))) (-15 -3911 ((-1158 |#1|) (-1158 |#1|))) (-15 -3912 ((-1158 |#1|) (-1158 |#1|))) (-15 -3913 ((-1158 |#1|) (-1158 |#1|))) (-15 -3914 ((-1158 |#1|) (-1158 |#1|))) (-15 -3908 ((-2 (|:| -3915 (-1158 |#1|)) (|:| -3916 (-1158 |#1|))) (-1158 |#1|))) (-15 -3915 ((-1158 |#1|) (-1158 |#1|))) (-15 -3916 ((-1158 |#1|) (-1158 |#1|))) (-15 -3917 ((-1158 |#1|) (-1158 |#1|))) (-15 -3918 ((-1158 |#1|) (-1158 |#1|))) (-15 -3919 ((-1158 |#1|) (-1158 |#1|))) (-15 -3920 ((-1158 |#1|) (-1158 |#1|))) (-15 -3921 ((-1158 |#1|) (-1158 |#1|))) (-15 -3922 ((-1158 |#1|) (-1158 |#1|))) (-15 -3923 ((-1158 |#1|) (-1158 |#1|))) (-15 -3924 ((-1158 |#1|) (-1158 |#1|))) (-15 -3925 ((-1158 |#1|) (-1158 |#1|))) (-15 -3926 ((-1158 |#1|) (-1158 |#1|)))) (-38 (-411 (-550)))) (T -1166)) +((-3926 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-38 (-411 (-550)))) (-5 *2 (-2 (|:| -3915 (-1158 *4)) (|:| -3916 (-1158 *4)))) (-5 *1 (-1166 *4)) (-5 *3 (-1158 *4)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-38 (-411 (-550)))) (-5 *2 (-2 (|:| -4072 (-1158 *4)) (|:| -4068 (-1158 *4)))) (-5 *1 (-1166 *4)) (-5 *3 (-1158 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4376 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3))))) +(-10 -7 (-15 -4377 ((-1158 |#1|) (-1158 |#1|))) (-15 -4376 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3907 ((-2 (|:| -4072 (-1158 |#1|)) (|:| -4068 (-1158 |#1|))) (-1158 |#1|))) (-15 -4072 ((-1158 |#1|) (-1158 |#1|))) (-15 -4068 ((-1158 |#1|) (-1158 |#1|))) (-15 -4073 ((-1158 |#1|) (-1158 |#1|))) (-15 -4069 ((-1158 |#1|) (-1158 |#1|))) (-15 -4071 ((-1158 |#1|) (-1158 |#1|))) (-15 -4070 ((-1158 |#1|) (-1158 |#1|))) (-15 -3909 ((-1158 |#1|) (-1158 |#1|))) (-15 -3910 ((-1158 |#1|) (-1158 |#1|))) (-15 -3911 ((-1158 |#1|) (-1158 |#1|))) (-15 -3912 ((-1158 |#1|) (-1158 |#1|))) (-15 -3913 ((-1158 |#1|) (-1158 |#1|))) (-15 -3914 ((-1158 |#1|) (-1158 |#1|))) (-15 -3908 ((-2 (|:| -3915 (-1158 |#1|)) (|:| -3916 (-1158 |#1|))) (-1158 |#1|))) (-15 -3915 ((-1158 |#1|) (-1158 |#1|))) (-15 -3916 ((-1158 |#1|) (-1158 |#1|))) (-15 -3917 ((-1158 |#1|) (-1158 |#1|))) (-15 -3918 ((-1158 |#1|) (-1158 |#1|))) (-15 -3919 ((-1158 |#1|) (-1158 |#1|))) (-15 -3920 ((-1158 |#1|) (-1158 |#1|))) (-15 -3921 ((-1158 |#1|) (-1158 |#1|))) (-15 -3922 ((-1158 |#1|) (-1158 |#1|))) (-15 -3923 ((-1158 |#1|) (-1158 |#1|))) (-15 -3924 ((-1158 |#1|) (-1158 |#1|))) (-15 -3925 ((-1158 |#1|) (-1158 |#1|))) (-15 -3926 ((-1158 |#1|) (-1158 |#1|)))) +((-3917 (((-1158 |#1|) (-1158 |#1|)) 60)) (-4073 (((-1158 |#1|) (-1158 |#1|)) 42)) (-3915 (((-1158 |#1|) (-1158 |#1|)) 56)) (-4072 (((-1158 |#1|) (-1158 |#1|)) 38)) (-3919 (((-1158 |#1|) (-1158 |#1|)) 63)) (-4071 (((-1158 |#1|) (-1158 |#1|)) 45)) (-4376 (((-1158 |#1|) (-1158 |#1|)) 34)) (-4377 (((-1158 |#1|) (-1158 |#1|)) 29)) (-3920 (((-1158 |#1|) (-1158 |#1|)) 64)) (-4070 (((-1158 |#1|) (-1158 |#1|)) 46)) (-3918 (((-1158 |#1|) (-1158 |#1|)) 61)) (-4069 (((-1158 |#1|) (-1158 |#1|)) 43)) (-3916 (((-1158 |#1|) (-1158 |#1|)) 58)) (-4068 (((-1158 |#1|) (-1158 |#1|)) 40)) (-3923 (((-1158 |#1|) (-1158 |#1|)) 68)) (-3911 (((-1158 |#1|) (-1158 |#1|)) 50)) (-3921 (((-1158 |#1|) (-1158 |#1|)) 66)) (-3909 (((-1158 |#1|) (-1158 |#1|)) 48)) (-3925 (((-1158 |#1|) (-1158 |#1|)) 71)) (-3913 (((-1158 |#1|) (-1158 |#1|)) 53)) (-3926 (((-1158 |#1|) (-1158 |#1|)) 72)) (-3914 (((-1158 |#1|) (-1158 |#1|)) 54)) (-3924 (((-1158 |#1|) (-1158 |#1|)) 70)) (-3912 (((-1158 |#1|) (-1158 |#1|)) 52)) (-3922 (((-1158 |#1|) (-1158 |#1|)) 69)) (-3910 (((-1158 |#1|) (-1158 |#1|)) 51)) (** (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 36))) +(((-1167 |#1|) (-10 -7 (-15 -4377 ((-1158 |#1|) (-1158 |#1|))) (-15 -4376 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4072 ((-1158 |#1|) (-1158 |#1|))) (-15 -4068 ((-1158 |#1|) (-1158 |#1|))) (-15 -4073 ((-1158 |#1|) (-1158 |#1|))) (-15 -4069 ((-1158 |#1|) (-1158 |#1|))) (-15 -4071 ((-1158 |#1|) (-1158 |#1|))) (-15 -4070 ((-1158 |#1|) (-1158 |#1|))) (-15 -3909 ((-1158 |#1|) (-1158 |#1|))) (-15 -3910 ((-1158 |#1|) (-1158 |#1|))) (-15 -3911 ((-1158 |#1|) (-1158 |#1|))) (-15 -3912 ((-1158 |#1|) (-1158 |#1|))) (-15 -3913 ((-1158 |#1|) (-1158 |#1|))) (-15 -3914 ((-1158 |#1|) (-1158 |#1|))) (-15 -3915 ((-1158 |#1|) (-1158 |#1|))) (-15 -3916 ((-1158 |#1|) (-1158 |#1|))) (-15 -3917 ((-1158 |#1|) (-1158 |#1|))) (-15 -3918 ((-1158 |#1|) (-1158 |#1|))) (-15 -3919 ((-1158 |#1|) (-1158 |#1|))) (-15 -3920 ((-1158 |#1|) (-1158 |#1|))) (-15 -3921 ((-1158 |#1|) (-1158 |#1|))) (-15 -3922 ((-1158 |#1|) (-1158 |#1|))) (-15 -3923 ((-1158 |#1|) (-1158 |#1|))) (-15 -3924 ((-1158 |#1|) (-1158 |#1|))) (-15 -3925 ((-1158 |#1|) (-1158 |#1|))) (-15 -3926 ((-1158 |#1|) (-1158 |#1|)))) (-38 (-411 (-550)))) (T -1167)) +((-3926 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4376 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) +(-10 -7 (-15 -4377 ((-1158 |#1|) (-1158 |#1|))) (-15 -4376 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -4072 ((-1158 |#1|) (-1158 |#1|))) (-15 -4068 ((-1158 |#1|) (-1158 |#1|))) (-15 -4073 ((-1158 |#1|) (-1158 |#1|))) (-15 -4069 ((-1158 |#1|) (-1158 |#1|))) (-15 -4071 ((-1158 |#1|) (-1158 |#1|))) (-15 -4070 ((-1158 |#1|) (-1158 |#1|))) (-15 -3909 ((-1158 |#1|) (-1158 |#1|))) (-15 -3910 ((-1158 |#1|) (-1158 |#1|))) (-15 -3911 ((-1158 |#1|) (-1158 |#1|))) (-15 -3912 ((-1158 |#1|) (-1158 |#1|))) (-15 -3913 ((-1158 |#1|) (-1158 |#1|))) (-15 -3914 ((-1158 |#1|) (-1158 |#1|))) (-15 -3915 ((-1158 |#1|) (-1158 |#1|))) (-15 -3916 ((-1158 |#1|) (-1158 |#1|))) (-15 -3917 ((-1158 |#1|) (-1158 |#1|))) (-15 -3918 ((-1158 |#1|) (-1158 |#1|))) (-15 -3919 ((-1158 |#1|) (-1158 |#1|))) (-15 -3920 ((-1158 |#1|) (-1158 |#1|))) (-15 -3921 ((-1158 |#1|) (-1158 |#1|))) (-15 -3922 ((-1158 |#1|) (-1158 |#1|))) (-15 -3923 ((-1158 |#1|) (-1158 |#1|))) (-15 -3924 ((-1158 |#1|) (-1158 |#1|))) (-15 -3925 ((-1158 |#1|) (-1158 |#1|))) (-15 -3926 ((-1158 |#1|) (-1158 |#1|)))) +((-3927 (((-962 |#2|) |#2| |#2|) 50)) (-3928 ((|#2| |#2| |#1|) 19 (|has| |#1| (-309))))) +(((-1168 |#1| |#2|) (-10 -7 (-15 -3927 ((-962 |#2|) |#2| |#2|)) (IF (|has| |#1| (-309)) (-15 -3928 (|#2| |#2| |#1|)) |%noBranch|)) (-561) (-1246 |#1|)) (T -1168)) +((-3928 (*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-4 *3 (-561)) (-5 *1 (-1168 *3 *2)) (-4 *2 (-1246 *3)))) (-3927 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-962 *3)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -3927 ((-962 |#2|) |#2| |#2|)) (IF (|has| |#1| (-309)) (-15 -3928 (|#2| |#2| |#1|)) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3936 (($ $ (-644 (-774))) 81)) (-4322 (($) 33)) (-3945 (($ $) 51)) (-4185 (((-644 $) $) 60)) (-3951 (((-112) $) 19)) (-3929 (((-644 (-947 |#2|)) $) 88)) (-3930 (($ $) 82)) (-3946 (((-774) $) 47)) (-4048 (($) 32)) (-3939 (($ $ (-644 (-774)) (-947 |#2|)) 74) (($ $ (-644 (-774)) (-774)) 75) (($ $ (-774) (-947 |#2|)) 77)) (-3943 (($ $ $) 57) (($ (-644 $)) 59)) (-3931 (((-774) $) 89)) (-3952 (((-112) $) 15)) (-3665 (((-1163) $) NIL)) (-3950 (((-112) $) 22)) (-3666 (((-1124) $) NIL)) (-3932 (((-172) $) 87)) (-3935 (((-947 |#2|) $) 83)) (-3934 (((-774) $) 84)) (-3933 (((-112) $) 86)) (-3937 (($ $ (-644 (-774)) (-172)) 80)) (-3944 (($ $) 52)) (-4380 (((-866) $) 100)) (-3938 (($ $ (-644 (-774)) (-112)) 79)) (-3947 (((-644 $) $) 11)) (-3948 (($ $ (-774)) 46)) (-3949 (($ $) 43)) (-3664 (((-112) $ $) NIL)) (-3940 (($ $ $ (-947 |#2|) (-774)) 70)) (-3941 (($ $ (-947 |#2|)) 69)) (-3942 (($ $ (-644 (-774)) (-947 |#2|)) 66) (($ $ (-644 (-774)) (-774)) 72) (((-774) $ (-947 |#2|)) 73)) (-3457 (((-112) $ $) 94))) +(((-1169 |#1| |#2|) (-13 (-1105) (-10 -8 (-15 -3952 ((-112) $)) (-15 -3951 ((-112) $)) (-15 -3950 ((-112) $)) (-15 -4048 ($)) (-15 -4322 ($)) (-15 -3949 ($ $)) (-15 -3948 ($ $ (-774))) (-15 -3947 ((-644 $) $)) (-15 -3946 ((-774) $)) (-15 -3945 ($ $)) (-15 -3944 ($ $)) (-15 -3943 ($ $ $)) (-15 -3943 ($ (-644 $))) (-15 -4185 ((-644 $) $)) (-15 -3942 ($ $ (-644 (-774)) (-947 |#2|))) (-15 -3941 ($ $ (-947 |#2|))) (-15 -3940 ($ $ $ (-947 |#2|) (-774))) (-15 -3939 ($ $ (-644 (-774)) (-947 |#2|))) (-15 -3942 ($ $ (-644 (-774)) (-774))) (-15 -3939 ($ $ (-644 (-774)) (-774))) (-15 -3942 ((-774) $ (-947 |#2|))) (-15 -3939 ($ $ (-774) (-947 |#2|))) (-15 -3938 ($ $ (-644 (-774)) (-112))) (-15 -3937 ($ $ (-644 (-774)) (-172))) (-15 -3936 ($ $ (-644 (-774)))) (-15 -3935 ((-947 |#2|) $)) (-15 -3934 ((-774) $)) (-15 -3933 ((-112) $)) (-15 -3932 ((-172) $)) (-15 -3931 ((-774) $)) (-15 -3930 ($ $)) (-15 -3929 ((-644 (-947 |#2|)) $)))) (-923) (-1053)) (T -1169)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-4048 (*1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-4322 (*1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-644 (-1169 *3 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3945 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-3944 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-3943 (*1 *1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-644 (-1169 *3 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-644 (-1169 *3 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-774))) (-5 *3 (-947 *5)) (-4 *5 (-1053)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-947 *4)) (-4 *4 (-1053)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)))) (-3940 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-947 *5)) (-5 *3 (-774)) (-4 *5 (-1053)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-774))) (-5 *3 (-947 *5)) (-4 *5 (-1053)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)))) (-3942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-774))) (-5 *3 (-774)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1053)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-774))) (-5 *3 (-774)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1053)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-947 *5)) (-4 *5 (-1053)) (-5 *2 (-774)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-947 *5)) (-4 *5 (-1053)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)))) (-3938 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-774))) (-5 *3 (-112)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1053)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-774))) (-5 *3 (-172)) (-5 *1 (-1169 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1053)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-774))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-947 *4)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-172)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-644 (-947 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(-13 (-1105) (-10 -8 (-15 -3952 ((-112) $)) (-15 -3951 ((-112) $)) (-15 -3950 ((-112) $)) (-15 -4048 ($)) (-15 -4322 ($)) (-15 -3949 ($ $)) (-15 -3948 ($ $ (-774))) (-15 -3947 ((-644 $) $)) (-15 -3946 ((-774) $)) (-15 -3945 ($ $)) (-15 -3944 ($ $)) (-15 -3943 ($ $ $)) (-15 -3943 ($ (-644 $))) (-15 -4185 ((-644 $) $)) (-15 -3942 ($ $ (-644 (-774)) (-947 |#2|))) (-15 -3941 ($ $ (-947 |#2|))) (-15 -3940 ($ $ $ (-947 |#2|) (-774))) (-15 -3939 ($ $ (-644 (-774)) (-947 |#2|))) (-15 -3942 ($ $ (-644 (-774)) (-774))) (-15 -3939 ($ $ (-644 (-774)) (-774))) (-15 -3942 ((-774) $ (-947 |#2|))) (-15 -3939 ($ $ (-774) (-947 |#2|))) (-15 -3938 ($ $ (-644 (-774)) (-112))) (-15 -3937 ($ $ (-644 (-774)) (-172))) (-15 -3936 ($ $ (-644 (-774)))) (-15 -3935 ((-947 |#2|) $)) (-15 -3934 ((-774) $)) (-15 -3933 ((-112) $)) (-15 -3932 ((-172) $)) (-15 -3931 ((-774) $)) (-15 -3930 ($ $)) (-15 -3929 ((-644 (-947 |#2|)) $)))) +((-2970 (((-112) $ $) NIL)) (-3953 ((|#2| $) 11)) (-3954 ((|#1| $) 10)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-3955 (($ |#1| |#2|) 9)) (-4380 (((-866) $) 16)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1170 |#1| |#2|) (-13 (-1105) (-10 -8 (-15 -3955 ($ |#1| |#2|)) (-15 -3954 (|#1| $)) (-15 -3953 (|#2| $)))) (-1105) (-1105)) (T -1170)) +((-3955 (*1 *1 *2 *3) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-3954 (*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-1105)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-1105))))) +(-13 (-1105) (-10 -8 (-15 -3955 ($ |#1| |#2|)) (-15 -3954 (|#1| $)) (-15 -3953 (|#2| $)))) +((-2970 (((-112) $ $) NIL)) (-3956 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 15) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1171) (-13 (-1087) (-10 -8 (-15 -3956 ((-1139) $))))) (T -1171)) +((-3956 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1171))))) +(-13 (-1087) (-10 -8 (-15 -3956 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-1179 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-309)) (|has| |#1| (-366))))) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 11)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-2243 (($ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-2241 (((-112) $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-4204 (($ $ (-550)) NIL) (($ $ (-550) (-550)) 75)) (-4207 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) NIL)) (-4165 (((-1179 |#1| |#2| |#3|) $) 42)) (-4162 (((-3 (-1179 |#1| |#2| |#3|) "failed") $) 32)) (-4163 (((-1179 |#1| |#2| |#3|) $) 33)) (-3917 (($ $) 116 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 92 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) 112 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 88 (|has| |#1| (-38 (-411 (-550)))))) (-4057 (((-550) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-4252 (($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) NIL)) (-3919 (($ $) 120 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 96 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-1179 |#1| |#2| |#3|) #2="failed") $) 34) (((-3 (-1181) #2#) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-1181))) (|has| |#1| (-366)))) (((-3 (-411 (-550)) #2#) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366)))) (((-3 (-550) #2#) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366))))) (-3578 (((-1179 |#1| |#2| |#3|) $) 140) (((-1181) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-1181))) (|has| |#1| (-366)))) (((-411 (-550)) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366)))) (((-550) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366))))) (-4164 (($ $) 37) (($ (-550) $) 38)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-1179 |#1| |#2| |#3|)) (-692 $)) NIL (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 (-1179 |#1| |#2| |#3|))) (|:| |vec| (-1270 (-1179 |#1| |#2| |#3|)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-642 (-550))) (|has| |#1| (-366)))) (((-692 (-550)) (-692 $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-642 (-550))) (|has| |#1| (-366))))) (-3892 (((-3 $ "failed") $) 54)) (-4161 (((-411 (-950 |#1|)) $ (-550)) 74 (|has| |#1| (-561))) (((-411 (-950 |#1|)) $ (-550) (-550)) 76 (|has| |#1| (-561)))) (-3397 (($) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-549)) (|has| |#1| (-366))))) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3608 (((-112) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-3295 (((-112) $) 28)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-890 (-381))) (|has| |#1| (-366)))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-890 (-550))) (|has| |#1| (-366))))) (-4205 (((-550) $) NIL) (((-550) $ (-550)) 26)) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL (|has| |#1| (-366)))) (-3401 (((-1179 |#1| |#2| |#3|) $) 44 (|has| |#1| (-366)))) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3870 (((-3 $ "failed") $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1155)) (|has| |#1| (-366))))) (-3609 (((-112) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-4210 (($ $ (-923)) NIL)) (-4249 (($ (-1 |#1| (-550)) $) NIL)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-550)) 19) (($ $ (-1086) (-550)) NIL) (($ $ (-644 (-1086)) (-644 (-550))) NIL)) (-2936 (($ $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-3262 (($ $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-366)))) (-4376 (($ $) 81 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4212 (($ (-550) (-1179 |#1| |#2| |#3|)) 36)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-4246 (($ $) 79 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 80 (|has| |#1| (-38 (-411 (-550)))))) (-3871 (($) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1155)) (|has| |#1| (-366))) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3534 (($ $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-309)) (|has| |#1| (-366))))) (-3536 (((-1179 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-549)) (|has| |#1| (-366))))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-550)) 158)) (-3891 (((-3 $ "failed") $ $) 55 (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) 82 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1181) (-1179 |#1| |#2| |#3|)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-518 (-1181) (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-644 (-1181)) (-644 (-1179 |#1| |#2| |#3|))) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-518 (-1181) (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-644 (-295 (-1179 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-311 (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-295 (-1179 |#1| |#2| |#3|))) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-311 (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-311 (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-644 (-1179 |#1| |#2| |#3|)) (-644 (-1179 |#1| |#2| |#3|))) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-311 (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-550)) NIL) (($ $ $) 61 (|has| (-550) (-1116))) (($ $ (-1179 |#1| |#2| |#3|)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-288 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|))) (|has| |#1| (-366))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-1 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|))) NIL (|has| |#1| (-366))) (($ $ (-1 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|)) (-774)) NIL (|has| |#1| (-366))) (($ $ (-1267 |#2|)) 57) (($ $ (-774)) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 56 (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181) (-774)) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-644 (-1181))) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-3398 (($ $) NIL (|has| |#1| (-366)))) (-3400 (((-1179 |#1| |#2| |#3|) $) 46 (|has| |#1| (-366)))) (-4382 (((-550) $) 43)) (-3920 (($ $) 122 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 98 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 118 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 94 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 114 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 90 (|has| |#1| (-38 (-411 (-550)))))) (-4404 (((-539) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-617 (-539))) (|has| |#1| (-366)))) (((-381) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-366)))) (((-226) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-366)))) (((-894 (-381)) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-617 (-894 (-381)))) (|has| |#1| (-366)))) (((-894 (-550)) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-617 (-894 (-550)))) (|has| |#1| (-366))))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) 162) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1179 |#1| |#2| |#3|)) 30) (($ (-1267 |#2|)) 25) (($ (-1181)) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-1181))) (|has| |#1| (-366)))) (($ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (|has| |#1| (-561)))) (($ (-411 (-550))) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366))) (|has| |#1| (-38 (-411 (-550))))))) (-4111 ((|#1| $ (-550)) 77)) (-3107 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-145)) (|has| |#1| (-366))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 12)) (-3537 (((-1179 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-549)) (|has| |#1| (-366))))) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) 128 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 104 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-3921 (($ $) 124 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 100 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 108 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 110 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 106 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 126 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 102 (|has| |#1| (-38 (-411 (-550)))))) (-3809 (($ $) NIL (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-3512 (($) 21 T CONST)) (-3069 (($) 16 T CONST)) (-3074 (($ $ (-1 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|))) NIL (|has| |#1| (-366))) (($ $ (-1 (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|)) (-774)) NIL (|has| |#1| (-366))) (($ $ (-774)) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181) (-774)) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-644 (-1181))) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-2968 (((-112) $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-2969 (((-112) $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-3090 (((-112) $ $) NIL (-3962 (-12 (|has| (-1179 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1179 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) 49 (|has| |#1| (-366))) (($ (-1179 |#1| |#2| |#3|) (-1179 |#1| |#2| |#3|)) 50 (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-774)) 60) (($ $ (-550)) NIL (|has| |#1| (-366))) (($ $ $) 83 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 137 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1179 |#1| |#2| |#3|)) 48 (|has| |#1| (-366))) (($ (-1179 |#1| |#2| |#3|) $) 47 (|has| |#1| (-366))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1172 |#1| |#2| |#3|) (-13 (-1234 |#1| (-1179 |#1| |#2| |#3|)) (-10 -8 (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -1172)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1234 |#1| (-1179 |#1| |#2| |#3|)) (-10 -8 (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-3957 ((|#2| |#2| (-1096 |#2|)) 26) ((|#2| |#2| (-1181)) 28))) +(((-1173 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| |#2| (-1181))) (-15 -3957 (|#2| |#2| (-1096 |#2|)))) (-13 (-561) (-1042 (-550)) (-642 (-550))) (-13 (-425 |#1|) (-160) (-27) (-1206))) (T -1173)) +((-3957 (*1 *2 *2 *3) (-12 (-5 *3 (-1096 *2)) (-4 *2 (-13 (-425 *4) (-160) (-27) (-1206))) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1173 *4 *2)))) (-3957 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-425 *4) (-160) (-27) (-1206)))))) +(-10 -7 (-15 -3957 (|#2| |#2| (-1181))) (-15 -3957 (|#2| |#2| (-1096 |#2|)))) +((-3957 (((-3 (-411 (-950 |#1|)) (-316 |#1|)) (-411 (-950 |#1|)) (-1096 (-411 (-950 |#1|)))) 31) (((-411 (-950 |#1|)) (-950 |#1|) (-1096 (-950 |#1|))) 44) (((-3 (-411 (-950 |#1|)) (-316 |#1|)) (-411 (-950 |#1|)) (-1181)) 33) (((-411 (-950 |#1|)) (-950 |#1|) (-1181)) 36))) +(((-1174 |#1|) (-10 -7 (-15 -3957 ((-411 (-950 |#1|)) (-950 |#1|) (-1181))) (-15 -3957 ((-3 (-411 (-950 |#1|)) (-316 |#1|)) (-411 (-950 |#1|)) (-1181))) (-15 -3957 ((-411 (-950 |#1|)) (-950 |#1|) (-1096 (-950 |#1|)))) (-15 -3957 ((-3 (-411 (-950 |#1|)) (-316 |#1|)) (-411 (-950 |#1|)) (-1096 (-411 (-950 |#1|)))))) (-13 (-561) (-1042 (-550)))) (T -1174)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-411 (-950 *5)))) (-5 *3 (-411 (-950 *5))) (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1174 *5)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-950 *5))) (-5 *3 (-950 *5)) (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-411 *3)) (-5 *1 (-1174 *5)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-3 (-411 (-950 *5)) (-316 *5))) (-5 *1 (-1174 *5)) (-5 *3 (-411 (-950 *5))))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-411 (-950 *5))) (-5 *1 (-1174 *5)) (-5 *3 (-950 *5))))) +(-10 -7 (-15 -3957 ((-411 (-950 |#1|)) (-950 |#1|) (-1181))) (-15 -3957 ((-3 (-411 (-950 |#1|)) (-316 |#1|)) (-411 (-950 |#1|)) (-1181))) (-15 -3957 ((-411 (-950 |#1|)) (-950 |#1|) (-1096 (-950 |#1|)))) (-15 -3957 ((-3 (-411 (-950 |#1|)) (-316 |#1|)) (-411 (-950 |#1|)) (-1096 (-411 (-950 |#1|)))))) +((-2970 (((-112) $ $) 171)) (-3610 (((-112) $) 43)) (-4200 (((-1270 |#1|) $ (-774)) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4198 (($ (-1175 |#1|)) NIL)) (-3489 (((-1175 $) $ (-1086)) 82) (((-1175 |#1|) $) 71)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) 164 (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1086))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $ $) 158 (|has| |#1| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) 95 (|has| |#1| (-914)))) (-4208 (($ $) NIL (|has| |#1| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 115 (|has| |#1| (-914)))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-4194 (($ $ (-774)) 61)) (-4193 (($ $ (-774)) 63)) (-4185 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-456)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#1| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-1086) #2#) $) NIL)) (-3578 ((|#1| $) NIL) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-1086) $) NIL)) (-4190 (($ $ $ (-1086)) NIL (|has| |#1| (-173))) ((|#1| $ $) 160 (|has| |#1| (-173)))) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) 80)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) NIL) (((-692 |#1|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-4192 (($ $ $) 131)) (-4187 (($ $ $) NIL (|has| |#1| (-561)))) (-4186 (((-2 (|:| -4388 |#1|) (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-3928 (($ $) 165 (|has| |#1| (-456))) (($ $ (-1086)) NIL (|has| |#1| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-774) $) 69)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1086) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1086) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-3958 (((-866) $ (-866)) 148)) (-4205 (((-774) $ $) NIL (|has| |#1| (-561)))) (-2575 (((-112) $) 48)) (-2583 (((-774) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| |#1| (-1155)))) (-3490 (($ (-1175 |#1|) (-1086)) 73) (($ (-1175 $) (-1086)) 89)) (-4210 (($ $ (-774)) 51)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) 87) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1086)) NIL) (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 153)) (-3225 (((-774) $) NIL) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-1772 (($ (-1 (-774) (-774)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4199 (((-1175 |#1|) $) NIL)) (-3488 (((-3 (-1086) #4="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) 76)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) NIL (|has| |#1| (-456)))) (-3665 (((-1163) $) NIL)) (-4195 (((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774)) 60)) (-3228 (((-3 (-644 $) #4#) $) NIL)) (-3227 (((-3 (-644 $) #4#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-1086)) (|:| -2566 (-774))) #4#) $) NIL)) (-4246 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3871 (($) NIL (|has| |#1| (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) 50)) (-1973 ((|#1| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 103 (|has| |#1| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-456))) (($ $ $) 167 (|has| |#1| (-456)))) (-4172 (($ $ (-774) |#1| $) 123)) (-3110 (((-409 (-1175 $)) (-1175 $)) 101 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 100 (|has| |#1| (-914)))) (-4166 (((-409 $) $) 108 (|has| |#1| (-914)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1086) |#1|) NIL) (($ $ (-644 (-1086)) (-644 |#1|)) NIL) (($ $ (-1086) $) NIL) (($ $ (-644 (-1086)) (-644 $)) NIL)) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-411 $) (-411 $) (-411 $)) NIL (|has| |#1| (-561))) ((|#1| (-411 $) |#1|) NIL (|has| |#1| (-366))) (((-411 $) $ (-411 $)) NIL (|has| |#1| (-561)))) (-4197 (((-3 $ #5="failed") $ (-774)) 54)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 172 (|has| |#1| (-366)))) (-4191 (($ $ (-1086)) NIL (|has| |#1| (-173))) ((|#1| $) 156 (|has| |#1| (-173)))) (-4244 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4382 (((-774) $) 78) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-1086) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) 162 (|has| |#1| (-456))) (($ $ (-1086)) NIL (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-914))))) (-4188 (((-3 $ #5#) $ $) NIL (|has| |#1| (-561))) (((-3 (-411 $) #5#) (-411 $) $) NIL (|has| |#1| (-561)))) (-4380 (((-866) $) 149) (($ (-550)) NIL) (($ |#1|) 77) (($ (-1086)) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) 41 (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) 17 T CONST)) (-3069 (($) 19 T CONST)) (-3074 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3457 (((-112) $ $) 120)) (-4383 (($ $ |#1|) 173 (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 90)) (** (($ $ (-923)) 14) (($ $ (-774)) 12)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 39) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1175 |#1|) (-13 (-1246 |#1|) (-10 -8 (-15 -3958 ((-866) $ (-866))) (-15 -4172 ($ $ (-774) |#1| $)))) (-1053)) (T -1175)) +((-3958 (*1 *2 *1 *2) (-12 (-5 *2 (-866)) (-5 *1 (-1175 *3)) (-4 *3 (-1053)))) (-4172 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1175 *3)) (-4 *3 (-1053))))) +(-13 (-1246 |#1|) (-10 -8 (-15 -3958 ((-866) $ (-866))) (-15 -4172 ($ $ (-774) |#1| $)))) +((-4392 (((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)) 13))) +(((-1176 |#1| |#2|) (-10 -7 (-15 -4392 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)))) (-1053) (-1053)) (T -1176)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-5 *2 (-1175 *6)) (-5 *1 (-1176 *5 *6))))) +(-10 -7 (-15 -4392 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)))) +((-4403 (((-409 (-1175 (-411 |#4|))) (-1175 (-411 |#4|))) 51)) (-4166 (((-409 (-1175 (-411 |#4|))) (-1175 (-411 |#4|))) 52))) +(((-1177 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-409 (-1175 (-411 |#4|))) (-1175 (-411 |#4|)))) (-15 -4403 ((-409 (-1175 (-411 |#4|))) (-1175 (-411 |#4|))))) (-796) (-853) (-456) (-954 |#3| |#1| |#2|)) (T -1177)) +((-4403 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-456)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-409 (-1175 (-411 *7)))) (-5 *1 (-1177 *4 *5 *6 *7)) (-5 *3 (-1175 (-411 *7))))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-456)) (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-409 (-1175 (-411 *7)))) (-5 *1 (-1177 *4 *5 *6 *7)) (-5 *3 (-1175 (-411 *7)))))) +(-10 -7 (-15 -4166 ((-409 (-1175 (-411 |#4|))) (-1175 (-411 |#4|)))) (-15 -4403 ((-409 (-1175 (-411 |#4|))) (-1175 (-411 |#4|))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 11)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) NIL) (($ $ (-411 (-550)) (-411 (-550))) NIL)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) NIL)) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-1172 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1179 |#1| |#2| |#3|) #1#) $) 36)) (-3578 (((-1172 |#1| |#2| |#3|) $) NIL) (((-1179 |#1| |#2| |#3|) $) NIL)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4214 (((-411 (-550)) $) 59)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-4215 (($ (-411 (-550)) (-1172 |#1| |#2| |#3|)) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) NIL) (((-411 (-550)) $ (-411 (-550))) NIL)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) NIL) (($ $ (-411 (-550))) NIL)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-411 (-550))) 20) (($ $ (-1086) (-411 (-550))) NIL) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4213 (((-1172 |#1| |#2| |#3|) $) 41)) (-4211 (((-3 (-1172 |#1| |#2| |#3|) "failed") $) NIL)) (-4212 (((-1172 |#1| |#2| |#3|) $) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-4246 (($ $) 39 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 40 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) NIL)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) NIL) (($ $ $) NIL (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $ (-1267 |#2|)) 38)) (-4382 (((-411 (-550)) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) 62) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1172 |#1| |#2| |#3|)) 30) (($ (-1179 |#1| |#2| |#3|)) 31) (($ (-1267 |#2|)) 26) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 12)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 22 T CONST)) (-3069 (($) 16 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 24)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1178 |#1| |#2| |#3|) (-13 (-1255 |#1| (-1172 |#1| |#2| |#3|)) (-1042 (-1179 |#1| |#2| |#3|)) (-619 (-1267 |#2|)) (-10 -8 (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -1178)) +((-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1255 |#1| (-1172 |#1| |#2| |#3|)) (-1042 (-1179 |#1| |#2| |#3|)) (-619 (-1267 |#2|)) (-10 -8 (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 129)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 119)) (-4245 (((-1239 |#2| |#1|) $ (-774)) 69)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-774)) 85) (($ $ (-774) (-774)) 82)) (-4207 (((-1158 (-2 (|:| |k| (-774)) (|:| |c| |#1|))) $) 105)) (-3917 (($ $) 173 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 149 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3915 (($ $) 169 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 145 (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-1158 (-2 (|:| |k| (-774)) (|:| |c| |#1|)))) 118) (($ (-1158 |#1|)) 113)) (-3919 (($ $) 177 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 153 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) 25)) (-4250 (($ $) 28)) (-4248 (((-950 |#1|) $ (-774)) 81) (((-950 |#1|) $ (-774) (-774)) 83)) (-3295 (((-112) $) 124)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-774) $) 126) (((-774) $ (-774)) 128)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) NIL)) (-4249 (($ (-1 |#1| (-550)) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) 13) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (($ $) 135 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-4246 (($ $) 133 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-4202 (($ $ (-774)) 15)) (-3891 (((-3 $ "failed") $ $) 26 (|has| |#1| (-561)))) (-4377 (($ $) 137 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-774)))))) (-4233 ((|#1| $ (-774)) 122) (($ $ $) 132 (|has| (-774) (-1116)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $ (-1267 |#2|)) 31)) (-4382 (((-774) $) NIL)) (-3920 (($ $) 179 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 155 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 175 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 151 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 171 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 147 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) 206) (($ (-550)) NIL) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 130 (|has| |#1| (-173))) (($ (-1239 |#2| |#1|)) 55) (($ (-1267 |#2|)) 36)) (-4251 (((-1158 |#1|) $) 101)) (-4111 ((|#1| $ (-774)) 121)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 58)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) 185 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 161 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) 181 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 157 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 189 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 165 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-774)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-774)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 191 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 167 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 187 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 163 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 183 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 159 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 17 T CONST)) (-3069 (($) 20 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) 198)) (-4273 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ |#1|) 203 (|has| |#1| (-366))) (($ $ $) 138 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 141 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1179 |#1| |#2| |#3|) (-13 (-1263 |#1|) (-10 -8 (-15 -4380 ($ (-1239 |#2| |#1|))) (-15 -4245 ((-1239 |#2| |#1|) $ (-774))) (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -1179)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3) (-5 *1 (-1179 *3 *4 *5)))) (-4245 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1179 *4 *5 *6)) (-4 *4 (-1053)) (-14 *5 (-1181)) (-14 *6 *4))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1263 |#1|) (-10 -8 (-15 -4380 ($ (-1239 |#2| |#1|))) (-15 -4245 ((-1239 |#2| |#1|) $ (-774))) (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-4380 (((-866) $) 33) (($ (-1181)) 35)) (-3962 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 46)) (-3959 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-3966 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 41)) (-3964 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 43)) (-3965 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 42)) (-3963 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 44)) (-3961 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $))) 45))) +(((-1180) (-13 (-616 (-866)) (-10 -8 (-15 -4380 ($ (-1181))) (-15 -3966 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3965 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3964 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3963 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3962 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3961 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3959 ($ $))))) (T -1180)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3966 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3965 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3964 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3963 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3962 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3961 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) (-5 *1 (-1180)))) (-3959 (*1 *1 *1) (-5 *1 (-1180)))) +(-13 (-616 (-866)) (-10 -8 (-15 -4380 ($ (-1181))) (-15 -3966 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3965 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3964 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3963 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3962 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3961 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) (|:| CF (-316 (-169 (-381)))) (|:| |switch| $)))) (-15 -3959 ($ $)))) +((-2970 (((-112) $ $) NIL)) (-3970 (($ $ (-644 (-866))) 62)) (-3971 (($ $ (-644 (-866))) 60)) (-3968 (((-1163) $) 101)) (-3973 (((-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866)))) $) 108)) (-3974 (((-112) $) 23)) (-3972 (($ $ (-644 (-644 (-866)))) 59) (($ $ (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866))))) 99)) (-4158 (($) 163 T CONST)) (-3976 (((-1276)) 135)) (-3201 (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 69) (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 76)) (-4048 (($) 122) (($ $) 131)) (-3975 (($ $) 100)) (-2936 (($ $ $) NIL)) (-3262 (($ $ $) NIL)) (-3967 (((-644 $) $) 136)) (-3665 (((-1163) $) 114)) (-3666 (((-1124) $) NIL)) (-4233 (($ $ (-644 (-866))) 61)) (-4404 (((-539) $) 48) (((-1181) $) 49) (((-894 (-550)) $) 80) (((-894 (-381)) $) 78)) (-4380 (((-866) $) 55) (($ (-1163)) 50)) (-3664 (((-112) $ $) NIL)) (-3969 (($ $ (-644 (-866))) 63)) (-2902 (((-1163) $) 34) (((-1163) $ (-112)) 35) (((-1276) (-826) $) 36) (((-1276) (-826) $ (-112)) 37)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 51)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) 52))) +(((-1181) (-13 (-853) (-617 (-539)) (-824) (-617 (-1181)) (-619 (-1163)) (-617 (-894 (-550))) (-617 (-894 (-381))) (-890 (-550)) (-890 (-381)) (-10 -8 (-15 -4048 ($)) (-15 -4048 ($ $)) (-15 -3976 ((-1276))) (-15 -3975 ($ $)) (-15 -3974 ((-112) $)) (-15 -3973 ((-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866)))) $)) (-15 -3972 ($ $ (-644 (-644 (-866))))) (-15 -3972 ($ $ (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866)))))) (-15 -3971 ($ $ (-644 (-866)))) (-15 -3970 ($ $ (-644 (-866)))) (-15 -3969 ($ $ (-644 (-866)))) (-15 -4233 ($ $ (-644 (-866)))) (-15 -3968 ((-1163) $)) (-15 -3967 ((-644 $) $)) (-15 -4158 ($) -4386)))) (T -1181)) +((-4048 (*1 *1) (-5 *1 (-1181))) (-4048 (*1 *1 *1) (-5 *1 (-1181))) (-3976 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1181)))) (-3975 (*1 *1 *1) (-5 *1 (-1181))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866))))) (-5 *1 (-1181)))) (-3972 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-866)))) (-5 *1 (-1181)))) (-3972 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866))))) (-5 *1 (-1181)))) (-3971 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181)))) (-3970 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181)))) (-3969 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1181)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1181)))) (-4158 (*1 *1) (-5 *1 (-1181)))) +(-13 (-853) (-617 (-539)) (-824) (-617 (-1181)) (-619 (-1163)) (-617 (-894 (-550))) (-617 (-894 (-381))) (-890 (-550)) (-890 (-381)) (-10 -8 (-15 -4048 ($)) (-15 -4048 ($ $)) (-15 -3976 ((-1276))) (-15 -3975 ($ $)) (-15 -3974 ((-112) $)) (-15 -3973 ((-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866)))) $)) (-15 -3972 ($ $ (-644 (-644 (-866))))) (-15 -3972 ($ $ (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) (|:| |args| (-644 (-866)))))) (-15 -3971 ($ $ (-644 (-866)))) (-15 -3970 ($ $ (-644 (-866)))) (-15 -3969 ($ $ (-644 (-866)))) (-15 -4233 ($ $ (-644 (-866)))) (-15 -3968 ((-1163) $)) (-15 -3967 ((-644 $) $)) (-15 -4158 ($) -4386))) +((-3977 (((-1270 |#1|) |#1| (-923)) 18) (((-1270 |#1|) (-644 |#1|)) 25))) +(((-1182 |#1|) (-10 -7 (-15 -3977 ((-1270 |#1|) (-644 |#1|))) (-15 -3977 ((-1270 |#1|) |#1| (-923)))) (-1053)) (T -1182)) +((-3977 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1270 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1053)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1053)) (-5 *2 (-1270 *4)) (-5 *1 (-1182 *4))))) +(-10 -7 (-15 -3977 ((-1270 |#1|) (-644 |#1|))) (-15 -3977 ((-1270 |#1|) |#1| (-923)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| |#1| (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| |#1| (-1042 (-411 (-550))))) (((-3 |#1| #1#) $) NIL)) (-3578 (((-550) $) NIL (|has| |#1| (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| |#1| (-1042 (-411 (-550))))) ((|#1| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-456)))) (-1771 (($ $ |#1| (-975) $) NIL)) (-2575 (((-112) $) 17)) (-2583 (((-774) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-975)) NIL)) (-3225 (((-975) $) NIL)) (-1772 (($ (-1 (-975) (-975)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#1| $) NIL)) (-4172 (($ $ (-975) |#1| $) NIL (-12 (|has| (-975) (-131)) (|has| |#1| (-561))))) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-4382 (((-975) $) NIL)) (-3222 ((|#1| $) NIL (|has| |#1| (-456)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) NIL) (($ (-411 (-550))) NIL (-3962 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-1042 (-411 (-550))))))) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ (-975)) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#1| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3512 (($) 11 T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 21)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1183 |#1|) (-13 (-328 |#1| (-975)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-975) (-131)) (-15 -4172 ($ $ (-975) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4425)) (-6 -4425) |%noBranch|))) (-1053)) (T -1183)) +((-4172 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-975)) (-4 *2 (-131)) (-5 *1 (-1183 *3)) (-4 *3 (-561)) (-4 *3 (-1053))))) +(-13 (-328 |#1| #1=(-975)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| #1# (-131)) (-15 -4172 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4425)) (-6 -4425) |%noBranch|))) +((-3978 (((-1185) (-1181) $) 25)) (-3988 (($) 29)) (-3980 (((-3 (|:| |fst| (-438)) (|:| -4344 #1="void")) (-1181) $) 22)) (-3982 (((-1276) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 #1#)) $) 41) (((-1276) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) 42) (((-1276) (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) 43)) (-3990 (((-1276) (-1181)) 58)) (-3981 (((-1276) (-1181) $) 55) (((-1276) (-1181)) 56) (((-1276)) 57)) (-3986 (((-1276) (-1181)) 37)) (-3984 (((-1181)) 36)) (-3998 (($) 34)) (-3997 (((-440) (-1181) (-440) (-1181) $) 45) (((-440) (-644 (-1181)) (-440) (-1181) $) 49) (((-440) (-1181) (-440)) 46) (((-440) (-1181) (-440) (-1181)) 50)) (-3985 (((-1181)) 35)) (-4380 (((-866) $) 28)) (-3987 (((-1276)) 30) (((-1276) (-1181)) 33)) (-3979 (((-644 (-1181)) (-1181) $) 24)) (-3983 (((-1276) (-1181) (-644 (-1181)) $) 38) (((-1276) (-1181) (-644 (-1181))) 39) (((-1276) (-644 (-1181))) 40))) +(((-1184) (-13 (-616 (-866)) (-10 -8 (-15 -3988 ($)) (-15 -3987 ((-1276))) (-15 -3987 ((-1276) (-1181))) (-15 -3997 ((-440) (-1181) (-440) (-1181) $)) (-15 -3997 ((-440) (-644 (-1181)) (-440) (-1181) $)) (-15 -3997 ((-440) (-1181) (-440))) (-15 -3997 ((-440) (-1181) (-440) (-1181))) (-15 -3986 ((-1276) (-1181))) (-15 -3985 ((-1181))) (-15 -3984 ((-1181))) (-15 -3983 ((-1276) (-1181) (-644 (-1181)) $)) (-15 -3983 ((-1276) (-1181) (-644 (-1181)))) (-15 -3983 ((-1276) (-644 (-1181)))) (-15 -3982 ((-1276) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 #1="void")) $)) (-15 -3982 ((-1276) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 #1#)))) (-15 -3982 ((-1276) (-3 (|:| |fst| (-438)) (|:| -4344 #1#)))) (-15 -3981 ((-1276) (-1181) $)) (-15 -3981 ((-1276) (-1181))) (-15 -3981 ((-1276))) (-15 -3990 ((-1276) (-1181))) (-15 -3998 ($)) (-15 -3980 ((-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-1181) $)) (-15 -3979 ((-644 (-1181)) (-1181) $)) (-15 -3978 ((-1185) (-1181) $))))) (T -1184)) +((-3988 (*1 *1) (-5 *1 (-1184))) (-3987 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3997 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1184)))) (-3997 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-644 (-1181))) (-5 *4 (-1181)) (-5 *1 (-1184)))) (-3997 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1184)))) (-3997 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1184)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3985 (*1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1184)))) (-3984 (*1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1184)))) (-3983 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3983 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3982 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1181)) (-5 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1="void"))) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-5 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3981 (*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3981 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) (-3998 (*1 *1) (-5 *1 (-1184))) (-3980 (*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-5 *1 (-1184)))) (-3979 (*1 *2 *3 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1184)) (-5 *3 (-1181)))) (-3978 (*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-1185)) (-5 *1 (-1184))))) +(-13 (-616 (-866)) (-10 -8 (-15 -3988 ($)) (-15 -3987 ((-1276))) (-15 -3987 ((-1276) (-1181))) (-15 -3997 ((-440) (-1181) (-440) (-1181) $)) (-15 -3997 ((-440) (-644 (-1181)) (-440) (-1181) $)) (-15 -3997 ((-440) (-1181) (-440))) (-15 -3997 ((-440) (-1181) (-440) (-1181))) (-15 -3986 ((-1276) (-1181))) (-15 -3985 ((-1181))) (-15 -3984 ((-1181))) (-15 -3983 ((-1276) (-1181) (-644 (-1181)) $)) (-15 -3983 ((-1276) (-1181) (-644 (-1181)))) (-15 -3983 ((-1276) (-644 (-1181)))) (-15 -3982 ((-1276) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 #1="void")) $)) (-15 -3982 ((-1276) (-1181) (-3 (|:| |fst| (-438)) (|:| -4344 #1#)))) (-15 -3982 ((-1276) (-3 (|:| |fst| (-438)) (|:| -4344 #1#)))) (-15 -3981 ((-1276) (-1181) $)) (-15 -3981 ((-1276) (-1181))) (-15 -3981 ((-1276))) (-15 -3990 ((-1276) (-1181))) (-15 -3998 ($)) (-15 -3980 ((-3 (|:| |fst| (-438)) (|:| -4344 #1#)) (-1181) $)) (-15 -3979 ((-644 (-1181)) (-1181) $)) (-15 -3978 ((-1185) (-1181) $)))) +((-3992 (((-644 (-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550))))))))) $) 66)) (-3994 (((-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550)))))))) (-438) $) 47)) (-3989 (($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-440))))) 17)) (-3990 (((-1276) $) 73)) (-3995 (((-644 (-1181)) $) 22)) (-3991 (((-1107) $) 60)) (-3996 (((-440) (-1181) $) 27)) (-3993 (((-644 (-1181)) $) 30)) (-3998 (($) 19)) (-3997 (((-440) (-644 (-1181)) (-440) $) 25) (((-440) (-1181) (-440) $) 24)) (-4380 (((-866) $) 9) (((-1193 (-1181) (-440)) $) 13))) +(((-1185) (-13 (-616 (-866)) (-10 -8 (-15 -4380 ((-1193 (-1181) (-440)) $)) (-15 -3998 ($)) (-15 -3997 ((-440) (-644 (-1181)) (-440) $)) (-15 -3997 ((-440) (-1181) (-440) $)) (-15 -3996 ((-440) (-1181) $)) (-15 -3995 ((-644 (-1181)) $)) (-15 -3994 ((-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550)))))))) (-438) $)) (-15 -3993 ((-644 (-1181)) $)) (-15 -3992 ((-644 (-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550))))))))) $)) (-15 -3991 ((-1107) $)) (-15 -3990 ((-1276) $)) (-15 -3989 ($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-440))))))))) (T -1185)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-1193 (-1181) (-440))) (-5 *1 (-1185)))) (-3998 (*1 *1) (-5 *1 (-1185))) (-3997 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-644 (-1181))) (-5 *1 (-1185)))) (-3997 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1185)))) (-3996 (*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-440)) (-5 *1 (-1185)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1185)))) (-3994 (*1 *2 *3 *1) (-12 (-5 *3 (-438)) (-5 *2 (-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550))))))))) (-5 *1 (-1185)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1185)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550)))))))))) (-5 *1 (-1185)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1185)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1185)))) (-3989 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-440))))) (-5 *1 (-1185))))) +(-13 (-616 (-866)) (-10 -8 (-15 -4380 ((-1193 (-1181) (-440)) $)) (-15 -3998 ($)) (-15 -3997 ((-440) (-644 (-1181)) (-440) $)) (-15 -3997 ((-440) (-1181) (-440) $)) (-15 -3996 ((-440) (-1181) $)) (-15 -3995 ((-644 (-1181)) $)) (-15 -3994 ((-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550)))))))) (-438) $)) (-15 -3993 ((-644 (-1181)) $)) (-15 -3992 ((-644 (-644 (-3 (|:| -3975 (-1181)) (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550))))))))) $)) (-15 -3991 ((-1107) $)) (-15 -3990 ((-1276) $)) (-15 -3989 ($ (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-440)))))))) +((-2970 (((-112) $ $) NIL)) (-3579 (((-3 (-550) #1="failed") $) 29) (((-3 (-226) #1#) $) 35) (((-3 (-510) #1#) $) 43) (((-3 (-1163) #1#) $) 47)) (-3578 (((-550) $) 30) (((-226) $) 36) (((-510) $) 40) (((-1163) $) 48)) (-4003 (((-112) $) 53)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4002 (((-3 (-550) (-226) (-510) (-1163) $) $) 55)) (-4001 (((-644 $) $) 57)) (-4404 (((-1107) $) 24) (($ (-1107)) 25)) (-4000 (((-112) $) 56)) (-4380 (((-866) $) 23) (($ (-550)) 26) (($ (-226)) 32) (($ (-510)) 38) (($ (-1163)) 44) (((-539) $) 59) (((-550) $) 31) (((-226) $) 37) (((-510) $) 41) (((-1163) $) 49)) (-3999 (((-112) $ (|[\|\|]| (-550))) 10) (((-112) $ (|[\|\|]| (-226))) 13) (((-112) $ (|[\|\|]| (-510))) 19) (((-112) $ (|[\|\|]| (-1163))) 16)) (-4004 (($ (-510) (-644 $)) 51) (($ $ (-644 $)) 52)) (-3664 (((-112) $ $) NIL)) (-4005 (((-550) $) 27) (((-226) $) 33) (((-510) $) 39) (((-1163) $) 45)) (-3457 (((-112) $ $) 7))) +(((-1186) (-13 (-1266) (-1105) (-1042 (-550)) (-1042 (-226)) (-1042 (-510)) (-1042 (-1163)) (-616 (-539)) (-10 -8 (-15 -4404 ((-1107) $)) (-15 -4404 ($ (-1107))) (-15 -4380 ((-550) $)) (-15 -4005 ((-550) $)) (-15 -4380 ((-226) $)) (-15 -4005 ((-226) $)) (-15 -4380 ((-510) $)) (-15 -4005 ((-510) $)) (-15 -4380 ((-1163) $)) (-15 -4005 ((-1163) $)) (-15 -4004 ($ (-510) (-644 $))) (-15 -4004 ($ $ (-644 $))) (-15 -4003 ((-112) $)) (-15 -4002 ((-3 (-550) (-226) (-510) (-1163) $) $)) (-15 -4001 ((-644 $) $)) (-15 -4000 ((-112) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-550)))) (-15 -3999 ((-112) $ (|[\|\|]| (-226)))) (-15 -3999 ((-112) $ (|[\|\|]| (-510)))) (-15 -3999 ((-112) $ (|[\|\|]| (-1163))))))) (T -1186)) +((-4404 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1186)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-1186)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1186)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1186)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1186)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1186)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1186)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1186)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1186)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1186)))) (-4004 (*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-1186))) (-5 *1 (-1186)))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-1186)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))) (-4002 (*1 *2 *1) (-12 (-5 *2 (-3 (-550) (-226) (-510) (-1163) (-1186))) (-5 *1 (-1186)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-1186)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)) (-5 *1 (-1186)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1186)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)) (-5 *1 (-1186)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-1186))))) +(-13 (-1266) (-1105) (-1042 (-550)) (-1042 (-226)) (-1042 (-510)) (-1042 (-1163)) (-616 (-539)) (-10 -8 (-15 -4404 ((-1107) $)) (-15 -4404 ($ (-1107))) (-15 -4380 ((-550) $)) (-15 -4005 ((-550) $)) (-15 -4380 ((-226) $)) (-15 -4005 ((-226) $)) (-15 -4380 ((-510) $)) (-15 -4005 ((-510) $)) (-15 -4380 ((-1163) $)) (-15 -4005 ((-1163) $)) (-15 -4004 ($ (-510) (-644 $))) (-15 -4004 ($ $ (-644 $))) (-15 -4003 ((-112) $)) (-15 -4002 ((-3 (-550) (-226) (-510) (-1163) $) $)) (-15 -4001 ((-644 $) $)) (-15 -4000 ((-112) $)) (-15 -3999 ((-112) $ (|[\|\|]| (-550)))) (-15 -3999 ((-112) $ (|[\|\|]| (-226)))) (-15 -3999 ((-112) $ (|[\|\|]| (-510)))) (-15 -3999 ((-112) $ (|[\|\|]| (-1163)))))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) 22)) (-4158 (($) 12 T CONST)) (-3397 (($) 26)) (-2936 (($ $ $) NIL) (($) 19 T CONST)) (-3262 (($ $ $) NIL) (($) 20 T CONST)) (-2190 (((-923) $) 24)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) 23)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-1187 |#1|) (-13 (-847) (-10 -8 (-15 -4158 ($) -4386))) (-923)) (T -1187)) +((-4158 (*1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-923))))) +(-13 (-847) (-10 -8 (-15 -4158 ($) -4386))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) 19 T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) 12 T CONST)) (-3260 (($ $ $) NIL) (($) 18 T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) 21)) (-4158 (($ $ $) 20)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-1187 |#1|) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) (-922)) (T -1187)) -((-4158 (*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) (-4157 (*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) (-4156 (*1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922))))) -(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) 19 T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) 12 T CONST)) (-3262 (($ $ $) NIL) (($) 18 T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-4159 (($ $ $) 21)) (-4160 (($ $ $) 20)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-1188 |#1|) (-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) (-923)) (T -1188)) +((-4160 (*1 *1 *1 *1) (-12 (-5 *1 (-1188 *2)) (-14 *2 (-923)))) (-4159 (*1 *1 *1 *1) (-12 (-5 *1 (-1188 *2)) (-14 *2 (-923)))) (-4158 (*1 *1) (-12 (-5 *1 (-1188 *2)) (-14 *2 (-923))))) +(-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 7))) -(((-1188) (-1104)) (T -1188)) -NIL -(-1104) -((-4005 (((-643 (-643 (-949 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 67)) (-4004 (((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|)))) 78) (((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|))) 74) (((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180)) 79) (((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180)) 73) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|))))) 106) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|)))) 105) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180))) 107) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 104))) -(((-1189 |#1|) (-10 -7 (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))))) (-15 -4005 ((-643 (-643 (-949 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))))) (-560)) (T -1189)) -((-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-949 *5)))) (-5 *1 (-1189 *5)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) (-5 *3 (-294 (-410 (-949 *4)))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) (-5 *3 (-410 (-949 *4))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) (-5 *1 (-1189 *5)) (-5 *3 (-294 (-410 (-949 *5)))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) (-5 *1 (-1189 *5)) (-5 *3 (-410 (-949 *5))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-1189 *4)) (-5 *3 (-643 (-294 (-410 (-949 *4))))))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-1189 *4)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5)) (-5 *3 (-643 (-294 (-410 (-949 *5))))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5))))) -(-10 -7 (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))))) (-15 -4005 ((-643 (-643 (-949 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))))) -((-4010 (((-1162)) 7)) (-4007 (((-1162)) 11 T CONST)) (-4006 (((-1275) (-1162)) 13)) (-4009 (((-1162)) 8 T CONST)) (-4008 (((-130)) 10 T CONST))) -(((-1190) (-13 (-1219) (-10 -7 (-15 -4010 ((-1162))) (-15 -4009 ((-1162)) -4384) (-15 -4008 ((-130)) -4384) (-15 -4007 ((-1162)) -4384) (-15 -4006 ((-1275) (-1162)))))) (T -1190)) -((-4010 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190)))) (-4009 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190)))) (-4008 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1190)))) (-4007 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1190))))) -(-13 (-1219) (-10 -7 (-15 -4010 ((-1162))) (-15 -4009 ((-1162)) -4384) (-15 -4008 ((-130)) -4384) (-15 -4007 ((-1162)) -4384) (-15 -4006 ((-1275) (-1162))))) -((-4014 (((-643 (-643 |#1|)) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|)))) 56)) (-4017 (((-643 (-643 (-643 |#1|))) (-643 (-643 |#1|))) 38)) (-4018 (((-1193 (-643 |#1|)) (-643 |#1|)) 49)) (-4020 (((-643 (-643 |#1|)) (-643 |#1|)) 45)) (-4023 (((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 (-643 (-643 |#1|)))) 53)) (-4022 (((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 |#1|) (-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|)))) 52)) (-4019 (((-643 (-643 |#1|)) (-643 (-643 |#1|))) 43)) (-4021 (((-643 |#1|) (-643 |#1|)) 46)) (-4013 (((-643 (-643 (-643 |#1|))) (-643 |#1|) (-643 (-643 (-643 |#1|)))) 32)) (-4012 (((-643 (-643 (-643 |#1|))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 (-643 |#1|)))) 29)) (-4011 (((-2 (|:| |fs| (-112)) (|:| |sd| (-643 |#1|)) (|:| |td| (-643 (-643 |#1|)))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 |#1|))) 24)) (-4015 (((-643 (-643 |#1|)) (-643 (-643 (-643 |#1|)))) 58)) (-4016 (((-643 (-643 |#1|)) (-1193 (-643 |#1|))) 60))) -(((-1191 |#1|) (-10 -7 (-15 -4011 ((-2 (|:| |fs| (-112)) (|:| |sd| (-643 |#1|)) (|:| |td| (-643 (-643 |#1|)))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 |#1|)))) (-15 -4012 ((-643 (-643 (-643 |#1|))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4013 ((-643 (-643 (-643 |#1|))) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4014 ((-643 (-643 |#1|)) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4015 ((-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4016 ((-643 (-643 |#1|)) (-1193 (-643 |#1|)))) (-15 -4017 ((-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)))) (-15 -4018 ((-1193 (-643 |#1|)) (-643 |#1|))) (-15 -4019 ((-643 (-643 |#1|)) (-643 (-643 |#1|)))) (-15 -4020 ((-643 (-643 |#1|)) (-643 |#1|))) (-15 -4021 ((-643 |#1|) (-643 |#1|))) (-15 -4022 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 |#1|) (-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))))) (-15 -4023 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 (-643 (-643 |#1|)))))) (-852)) (T -1191)) -((-4023 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-2 (|:| |f1| (-643 *4)) (|:| |f2| (-643 (-643 (-643 *4)))) (|:| |f3| (-643 (-643 *4))) (|:| |f4| (-643 (-643 (-643 *4)))))) (-5 *1 (-1191 *4)) (-5 *3 (-643 (-643 (-643 *4)))))) (-4022 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-852)) (-5 *3 (-643 *6)) (-5 *5 (-643 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-643 *5)) (|:| |f3| *5) (|:| |f4| (-643 *5)))) (-5 *1 (-1191 *6)) (-5 *4 (-643 *5)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-1191 *3)))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)) (-5 *3 (-643 *4)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-852)) (-5 *1 (-1191 *3)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-1193 (-643 *4))) (-5 *1 (-1191 *4)) (-5 *3 (-643 *4)))) (-4017 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 (-643 *4)))) (-5 *1 (-1191 *4)) (-5 *3 (-643 (-643 *4))))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-1193 (-643 *4))) (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)) (-4 *4 (-852)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) (-4 *4 (-852)) (-5 *1 (-1191 *4)))) (-4013 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-643 *4)) (-4 *4 (-852)) (-5 *1 (-1191 *4)))) (-4012 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-643 *5)) (-4 *5 (-852)) (-5 *1 (-1191 *5)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-852)) (-5 *4 (-643 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-643 *4)))) (-5 *1 (-1191 *6)) (-5 *5 (-643 *4))))) -(-10 -7 (-15 -4011 ((-2 (|:| |fs| (-112)) (|:| |sd| (-643 |#1|)) (|:| |td| (-643 (-643 |#1|)))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 |#1|)))) (-15 -4012 ((-643 (-643 (-643 |#1|))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4013 ((-643 (-643 (-643 |#1|))) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4014 ((-643 (-643 |#1|)) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4015 ((-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4016 ((-643 (-643 |#1|)) (-1193 (-643 |#1|)))) (-15 -4017 ((-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)))) (-15 -4018 ((-1193 (-643 |#1|)) (-643 |#1|))) (-15 -4019 ((-643 (-643 |#1|)) (-643 (-643 |#1|)))) (-15 -4020 ((-643 (-643 |#1|)) (-643 |#1|))) (-15 -4021 ((-643 |#1|) (-643 |#1|))) (-15 -4022 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 |#1|) (-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))))) (-15 -4023 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 (-643 (-643 |#1|)))))) -((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1192 |#1| |#2|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104)) (T -1192)) -NIL -(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) -((-4024 (($ (-643 (-643 |#1|))) 10)) (-4025 (((-643 (-643 |#1|)) $) 11)) (-4378 (((-865) $) 36))) -(((-1193 |#1|) (-10 -8 (-15 -4024 ($ (-643 (-643 |#1|)))) (-15 -4025 ((-643 (-643 |#1|)) $)) (-15 -4378 ((-865) $))) (-1104)) (T -1193)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1193 *3)) (-4 *3 (-1104)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1104)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-1193 *3))))) -(-10 -8 (-15 -4024 ($ (-643 (-643 |#1|)))) (-15 -4025 ((-643 (-643 |#1|)) $)) (-15 -4378 ((-865) $))) -((-4026 ((|#1| (-643 |#1|)) 49)) (-4028 ((|#1| |#1| (-549)) 24)) (-4027 (((-1174 |#1|) |#1| (-922)) 20))) -(((-1194 |#1|) (-10 -7 (-15 -4026 (|#1| (-643 |#1|))) (-15 -4027 ((-1174 |#1|) |#1| (-922))) (-15 -4028 (|#1| |#1| (-549)))) (-365)) (T -1194)) -((-4028 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1194 *2)) (-4 *2 (-365)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1174 *3)) (-5 *1 (-1194 *3)) (-4 *3 (-365)))) (-4026 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-1194 *2)) (-4 *2 (-365))))) -(-10 -7 (-15 -4026 (|#1| (-643 |#1|))) (-15 -4027 ((-1174 |#1|) |#1| (-922))) (-15 -4028 (|#1| |#1| (-549)))) -((-4029 (($) 10) (($ (-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)))) 14)) (-3829 (($ (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 39) (((-643 |#3|) $) 41)) (-2128 (($ (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4390 (($ (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1369 (((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 60)) (-4039 (($ (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 16)) (-2377 (((-643 |#2|) $) 19)) (-2378 (((-112) |#2| $) 65)) (-1441 (((-3 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) "failed") (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 64)) (-1370 (((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 69)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2379 (((-643 |#3|) $) 43)) (-4231 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-773) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) NIL) (((-773) |#3| $) NIL) (((-773) (-1 (-112) |#3|) $) 79)) (-4378 (((-865) $) 27)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3455 (((-112) $ $) 51))) -(((-1195 |#1| |#2| |#3|) (-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4029 (|#1| (-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))))) (-15 -4029 (|#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#3|) |#1|)) (-15 -2124 ((-643 |#3|) |#1|)) (-15 -2125 ((-773) |#3| |#1|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -2378 ((-112) |#2| |#1|)) (-15 -2377 ((-643 |#2|) |#1|)) (-15 -3829 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3829 (|#1| (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -3829 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1441 ((-3 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) "failed") (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -1369 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -4039 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1370 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2125 ((-773) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2124 ((-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2125 ((-773) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2126 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2127 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2128 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -4390 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|))) (-1196 |#2| |#3|) (-1104) (-1104)) (T -1195)) -NIL -(-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4029 (|#1| (-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))))) (-15 -4029 (|#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#3|) |#1|)) (-15 -2124 ((-643 |#3|) |#1|)) (-15 -2125 ((-773) |#3| |#1|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -2378 ((-112) |#2| |#1|)) (-15 -2377 ((-643 |#2|) |#1|)) (-15 -3829 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3829 (|#1| (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -3829 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1441 ((-3 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) "failed") (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -1369 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -4039 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1370 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2125 ((-773) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2124 ((-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2125 ((-773) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2126 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2127 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2128 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -4390 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|))) -((-2968 (((-112) $ $) 19 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4029 (($) 73) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 72)) (-2372 (((-1275) $ |#1| |#1|) 100 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#2| $ |#1| |#2|) 74)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 56 (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) 62)) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 47 (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) 63)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 55 (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 57 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 54 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 53 (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 89)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 31 (|has| $ (-6 -4425))) (((-643 |#2|) $) 80 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-2374 ((|#1| $) 97 (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 30 (|has| $ (-6 -4425))) (((-643 |#2|) $) 81 (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-2375 ((|#1| $) 96 (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 35 (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2816 (((-643 |#1|) $) 64)) (-2382 (((-112) |#1| $) 65)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 40)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 41)) (-2377 (((-643 |#1|) $) 94)) (-2378 (((-112) |#1| $) 93)) (-3664 (((-1123) $) 21 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4232 ((|#2| $) 98 (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 52)) (-2373 (($ $ |#2|) 99 (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 42)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 33 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 27 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 26 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 25 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 24 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) 92)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1567 (($) 50) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 49)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 32 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-773) |#2| $) 82 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 51)) (-4378 (((-865) $) 18 (-3960 (|has| |#2| (-615 (-865))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865)))))) (-3662 (((-112) $ $) 23 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 43)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 34 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1196 |#1| |#2|) (-140) (-1104) (-1104)) (T -1196)) -((-4219 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-4029 (*1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-4029 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 *3) (|:| -2254 *4)))) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *1 (-1196 *3 *4)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(-13 (-612 |t#1| |t#2|) (-606 |t#1| |t#2|) (-10 -8 (-15 -4219 (|t#2| $ |t#1| |t#2|)) (-15 -4029 ($)) (-15 -4029 ($ (-643 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|))))) (-15 -4390 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-102) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))) ((-615 (-865)) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-1104)) (|has| |#2| (-615 (-865)))) ((-151 #1#) . T) ((-616 (-538)) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) ((-229 #1#) . T) ((-235 #1#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-492 #1#) . T) ((-492 |#2|) . T) ((-606 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-612 |#1| |#2|) . T) ((-1104) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))) ((-1219) . T)) -((-4035 (((-112)) 29)) (-4032 (((-1275) (-1162)) 31)) (-4036 (((-112)) 41)) (-4033 (((-1275)) 39)) (-4031 (((-1275) (-1162) (-1162)) 30)) (-4037 (((-112)) 42)) (-4039 (((-1275) |#1| |#2|) 53)) (-4030 (((-1275)) 26)) (-4038 (((-3 |#2| "failed") |#1|) 51)) (-4034 (((-1275)) 40))) -(((-1197 |#1| |#2|) (-10 -7 (-15 -4030 ((-1275))) (-15 -4031 ((-1275) (-1162) (-1162))) (-15 -4032 ((-1275) (-1162))) (-15 -4033 ((-1275))) (-15 -4034 ((-1275))) (-15 -4035 ((-112))) (-15 -4036 ((-112))) (-15 -4037 ((-112))) (-15 -4038 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-1275) |#1| |#2|))) (-1104) (-1104)) (T -1197)) -((-4039 (*1 *2 *3 *4) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4038 (*1 *2 *3) (|partial| -12 (-4 *2 (-1104)) (-5 *1 (-1197 *3 *2)) (-4 *3 (-1104)))) (-4037 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4035 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4034 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4033 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)))) (-4031 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)))) (-4030 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(-10 -7 (-15 -4030 ((-1275))) (-15 -4031 ((-1275) (-1162) (-1162))) (-15 -4032 ((-1275) (-1162))) (-15 -4033 ((-1275))) (-15 -4034 ((-1275))) (-15 -4035 ((-112))) (-15 -4036 ((-112))) (-15 -4037 ((-112))) (-15 -4038 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-1275) |#1| |#2|))) -((-4041 (((-1162) (-1162)) 22)) (-4040 (((-51) (-1162)) 25))) -(((-1198) (-10 -7 (-15 -4040 ((-51) (-1162))) (-15 -4041 ((-1162) (-1162))))) (T -1198)) -((-4041 (*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1198)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-1198))))) -(-10 -7 (-15 -4040 ((-51) (-1162))) (-15 -4041 ((-1162) (-1162)))) -((-2968 (((-112) $ $) NIL)) (-4047 (((-643 (-1162)) $) 39)) (-4043 (((-643 (-1162)) $ (-643 (-1162))) 42)) (-4042 (((-643 (-1162)) $ (-643 (-1162))) 41)) (-4044 (((-643 (-1162)) $ (-643 (-1162))) 43)) (-4045 (((-643 (-1162)) $) 38)) (-4046 (($) 28)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4048 (((-643 (-1162)) $) 40)) (-4049 (((-1275) $ (-549)) 35) (((-1275) $) 36)) (-4402 (($ (-865) (-549)) 33) (($ (-865) (-549) (-865)) NIL)) (-4378 (((-865) $) 49) (($ (-865)) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1199) (-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4402 ($ (-865) (-549) (-865))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -4047 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4043 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162))))))) (T -1199)) -((-4402 (*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) (-4402 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) (-4049 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1199)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1199)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4046 (*1 *1) (-5 *1 (-1199))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4044 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4043 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4042 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) -(-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4402 ($ (-865) (-549) (-865))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -4047 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4043 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162)))))) -((-4378 (((-1199) |#1|) 11))) -(((-1200 |#1|) (-10 -7 (-15 -4378 ((-1199) |#1|))) (-1104)) (T -1200)) -((-4378 (*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1200 *3)) (-4 *3 (-1104))))) -(-10 -7 (-15 -4378 ((-1199) |#1|))) -((-2968 (((-112) $ $) NIL)) (-4054 (((-1162) $ (-1162)) 17) (((-1162) $) 16)) (-1865 (((-1162) $ (-1162)) 15)) (-1869 (($ $ (-1162)) NIL)) (-4052 (((-3 (-1162) "failed") $) 11)) (-4053 (((-1162) $) 8)) (-4051 (((-3 (-1162) "failed") $) 12)) (-1866 (((-1162) $) 9)) (-1870 (($ (-391)) NIL) (($ (-391) (-1162)) NIL)) (-3973 (((-391) $) NIL)) (-3663 (((-1162) $) NIL)) (-1867 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4050 (((-112) $) 21)) (-4378 (((-865) $) NIL)) (-1868 (($ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1201) (-13 (-367 (-391) (-1162)) (-10 -8 (-15 -4054 ((-1162) $ (-1162))) (-15 -4054 ((-1162) $)) (-15 -4053 ((-1162) $)) (-15 -4052 ((-3 (-1162) "failed") $)) (-15 -4051 ((-3 (-1162) "failed") $)) (-15 -4050 ((-112) $))))) (T -1201)) -((-4054 (*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4052 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4051 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(-13 (-367 (-391) (-1162)) (-10 -8 (-15 -4054 ((-1162) $ (-1162))) (-15 -4054 ((-1162) $)) (-15 -4053 ((-1162) $)) (-15 -4052 ((-3 (-1162) "failed") $)) (-15 -4051 ((-3 (-1162) "failed") $)) (-15 -4050 ((-112) $)))) -((-4055 (((-3 (-549) "failed") |#1|) 19)) (-4056 (((-3 (-549) "failed") |#1|) 14)) (-4057 (((-549) (-1162)) 33))) -(((-1202 |#1|) (-10 -7 (-15 -4055 ((-3 (-549) "failed") |#1|)) (-15 -4056 ((-3 (-549) "failed") |#1|)) (-15 -4057 ((-549) (-1162)))) (-1052)) (T -1202)) -((-4057 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-1202 *4)) (-4 *4 (-1052)))) (-4056 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052))))) -(-10 -7 (-15 -4055 ((-3 (-549) "failed") |#1|)) (-15 -4056 ((-3 (-549) "failed") |#1|)) (-15 -4057 ((-549) (-1162)))) -((-4058 (((-1136 (-225))) 9))) -(((-1203) (-10 -7 (-15 -4058 ((-1136 (-225)))))) (T -1203)) -((-4058 (*1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1203))))) -(-10 -7 (-15 -4058 ((-1136 (-225))))) -((-4059 (($) 12)) (-3921 (($ $) 36)) (-3919 (($ $) 34)) (-3907 (($ $) 26)) (-3923 (($ $) 18)) (-3924 (($ $) 16)) (-3922 (($ $) 20)) (-3910 (($ $) 31)) (-3920 (($ $) 35)) (-3908 (($ $) 30))) -(((-1204 |#1|) (-10 -8 (-15 -4059 (|#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) (-1205)) (T -1204)) -NIL -(-10 -8 (-15 -4059 (|#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) -((-3915 (($ $) 26)) (-4071 (($ $) 11)) (-3913 (($ $) 27)) (-4070 (($ $) 10)) (-3917 (($ $) 28)) (-4069 (($ $) 9)) (-4059 (($) 16)) (-4374 (($ $) 19)) (-4375 (($ $) 18)) (-3918 (($ $) 29)) (-4068 (($ $) 8)) (-3916 (($ $) 30)) (-4067 (($ $) 7)) (-3914 (($ $) 31)) (-4066 (($ $) 6)) (-3921 (($ $) 20)) (-3909 (($ $) 32)) (-3919 (($ $) 21)) (-3907 (($ $) 33)) (-3923 (($ $) 22)) (-3911 (($ $) 34)) (-3924 (($ $) 23)) (-3912 (($ $) 35)) (-3922 (($ $) 24)) (-3910 (($ $) 36)) (-3920 (($ $) 25)) (-3908 (($ $) 37)) (** (($ $ $) 17))) -(((-1205) (-140)) (T -1205)) -((-4059 (*1 *1) (-4 *1 (-1205)))) -(-13 (-1208) (-95) (-496) (-35) (-285) (-10 -8 (-15 -4059 ($)))) -(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1208) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 19)) (-4064 (($ |#1| (-643 $)) 28) (($ (-643 |#1|)) 35) (($ |#1|) 30)) (-1309 (((-112) $ (-773)) 71)) (-3426 ((|#1| $ |#1|) 14 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 13 (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-2124 (((-643 |#1|) $) 75 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 63)) (-3428 (((-112) $ $) 49 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 61)) (-3008 (((-643 |#1|) $) 76 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 27)) (-4148 (((-112) $ (-773)) 59)) (-3431 (((-643 |#1|) $) 54)) (-3950 (((-112) $) 52)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 105)) (-3827 (((-112) $) 9)) (-3996 (($) 10)) (-4231 ((|#1| $ #1#) NIL)) (-3430 (((-549) $ $) 48)) (-4060 (((-643 $) $) 87)) (-4061 (((-112) $ $) 108)) (-4062 (((-643 $) $) 103)) (-4063 (($ $) 104)) (-4065 (((-112) $) 82)) (-2125 (((-773) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4425))) (((-773) |#1| $) 17 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 86)) (-4378 (((-865) $) 89 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 12)) (-3429 (((-112) $ $) 39 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 37 (|has| |#1| (-1104)))) (-4389 (((-773) $) 57 (|has| $ (-6 -4425))))) -(((-1206 |#1|) (-13 (-1013 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4064 ($ |#1| (-643 $))) (-15 -4064 ($ (-643 |#1|))) (-15 -4064 ($ |#1|)) (-15 -4065 ((-112) $)) (-15 -4063 ($ $)) (-15 -4062 ((-643 $) $)) (-15 -4061 ((-112) $ $)) (-15 -4060 ((-643 $) $)))) (-1104)) (T -1206)) -((-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104)))) (-4064 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-1206 *2))) (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1206 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) (-4063 (*1 *1 *1) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104)))) (-4061 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) -(-13 (-1013 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4064 ($ |#1| (-643 $))) (-15 -4064 ($ (-643 |#1|))) (-15 -4064 ($ |#1|)) (-15 -4065 ((-112) $)) (-15 -4063 ($ $)) (-15 -4062 ((-643 $) $)) (-15 -4061 ((-112) $ $)) (-15 -4060 ((-643 $) $)))) -((-4071 (($ $) 15)) (-4069 (($ $) 12)) (-4068 (($ $) 10)) (-4067 (($ $) 17))) -(((-1207 |#1|) (-10 -8 (-15 -4067 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4071 (|#1| |#1|))) (-1208)) (T -1207)) -NIL -(-10 -8 (-15 -4067 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4071 (|#1| |#1|))) -((-4071 (($ $) 11)) (-4070 (($ $) 10)) (-4069 (($ $) 9)) (-4068 (($ $) 8)) (-4067 (($ $) 7)) (-4066 (($ $) 6))) -(((-1208) (-140)) (T -1208)) -((-4071 (*1 *1 *1) (-4 *1 (-1208))) (-4070 (*1 *1 *1) (-4 *1 (-1208))) (-4069 (*1 *1 *1) (-4 *1 (-1208))) (-4068 (*1 *1 *1) (-4 *1 (-1208))) (-4067 (*1 *1 *1) (-4 *1 (-1208))) (-4066 (*1 *1 *1) (-4 *1 (-1208)))) -(-13 (-10 -8 (-15 -4066 ($ $)) (-15 -4067 ($ $)) (-15 -4068 ($ $)) (-15 -4069 ($ $)) (-15 -4070 ($ $)) (-15 -4071 ($ $)))) -((-4074 ((|#2| |#2|) 98)) (-4077 (((-112) |#2|) 29)) (-4075 ((|#2| |#2|) 33)) (-4076 ((|#2| |#2|) 35)) (-4072 ((|#2| |#2| (-1180)) 92) ((|#2| |#2|) 93)) (-4078 (((-168 |#2|) |#2|) 31)) (-4073 ((|#2| |#2| (-1180)) 94) ((|#2| |#2|) 95))) -(((-1209 |#1| |#2|) (-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4078 ((-168 |#2|) |#2|))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -1209)) -((-4078 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-168 *3)) (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-112)) (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) -(-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4078 ((-168 |#2|) |#2|))) -((-4079 ((|#4| |#4| |#1|) 32)) (-4080 ((|#4| |#4| |#1|) 33))) -(((-1210 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4079 (|#4| |#4| |#1|)) (-15 -4080 (|#4| |#4| |#1|))) (-560) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -1210)) -((-4080 (*1 *2 *2 *3) (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-4079 (*1 *2 *2 *3) (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -4079 (|#4| |#4| |#1|)) (-15 -4080 (|#4| |#4| |#1|))) -((-4098 ((|#2| |#2|) 148)) (-4100 ((|#2| |#2|) 145)) (-4097 ((|#2| |#2|) 136)) (-4099 ((|#2| |#2|) 133)) (-4096 ((|#2| |#2|) 141)) (-4095 ((|#2| |#2|) 129)) (-4084 ((|#2| |#2|) 44)) (-4083 ((|#2| |#2|) 105)) (-4081 ((|#2| |#2|) 88)) (-4094 ((|#2| |#2|) 143)) (-4093 ((|#2| |#2|) 131)) (-4106 ((|#2| |#2|) 153)) (-4104 ((|#2| |#2|) 151)) (-4105 ((|#2| |#2|) 152)) (-4103 ((|#2| |#2|) 150)) (-4082 ((|#2| |#2|) 163)) (-4107 ((|#2| |#2|) 30 (-12 (|has| |#2| (-616 (-893 |#1|))) (|has| |#2| (-889 |#1|)) (|has| |#1| (-616 (-893 |#1|))) (|has| |#1| (-889 |#1|))))) (-4085 ((|#2| |#2|) 89)) (-4086 ((|#2| |#2|) 154)) (-4395 ((|#2| |#2|) 155)) (-4092 ((|#2| |#2|) 142)) (-4091 ((|#2| |#2|) 130)) (-4090 ((|#2| |#2|) 149)) (-4102 ((|#2| |#2|) 147)) (-4089 ((|#2| |#2|) 137)) (-4101 ((|#2| |#2|) 135)) (-4088 ((|#2| |#2|) 139)) (-4087 ((|#2| |#2|) 127))) -(((-1211 |#1| |#2|) (-10 -7 (-15 -4395 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (IF (|has| |#1| (-889 |#1|)) (IF (|has| |#1| (-616 (-893 |#1|))) (IF (|has| |#2| (-616 (-893 |#1|))) (IF (|has| |#2| (-889 |#1|)) (-15 -4107 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-424 |#1|) (-1205))) (T -1211)) -((-4107 (*1 *2 *2) (-12 (-4 *3 (-616 (-893 *3))) (-4 *3 (-889 *3)) (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-616 (-893 *3))) (-4 *2 (-889 *3)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4395 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) -(-10 -7 (-15 -4395 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (IF (|has| |#1| (-889 |#1|)) (IF (|has| |#1| (-616 (-893 |#1|))) (IF (|has| |#2| (-616 (-893 |#1|))) (IF (|has| |#2| (-889 |#1|)) (-15 -4107 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1180)) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4246 (((-949 |#1|) $ (-773)) 20) (((-949 |#1|) $ (-773) (-773)) NIL)) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $ (-1180)) NIL) (((-773) $ (-1180) (-773)) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4369 (((-112) $) NIL)) (-3294 (($ $ (-643 (-1180)) (-643 (-534 (-1180)))) NIL) (($ $ (-1180) (-534 (-1180))) NIL) (($ |#1| (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $ (-1180)) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4108 (($ (-1 $) (-1180) |#1|) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4200 (($ $ (-773)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (($ $ (-1180) $) NIL) (($ $ (-643 (-1180)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL)) (-4242 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4380 (((-534 (-1180)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-560))) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-1180)) NIL) (($ (-949 |#1|)) NIL)) (-4109 ((|#1| $ (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (((-949 |#1|) $ (-773)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1212 |#1|) (-13 (-742 |#1| (-1180)) (-10 -8 (-15 -4109 ((-949 |#1|) $ (-773))) (-15 -4378 ($ (-1180))) (-15 -4378 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ (-1180) |#1|)) (-15 -4108 ($ (-1 $) (-1180) |#1|))) |%noBranch|))) (-1052)) (T -1212)) -((-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-949 *4)) (-5 *1 (-1212 *4)) (-4 *4 (-1052)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-1052)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-5 *1 (-1212 *3)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)))) (-4108 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1180)) (-5 *1 (-1212 *4)) (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052))))) -(-13 (-742 |#1| (-1180)) (-10 -8 (-15 -4109 ((-949 |#1|) $ (-773))) (-15 -4378 ($ (-1180))) (-15 -4378 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ (-1180) |#1|)) (-15 -4108 ($ (-1 $) (-1180) |#1|))) |%noBranch|))) -((-4125 (((-112) |#5| $) 68) (((-112) $) 110)) (-4120 ((|#5| |#5| $) 83)) (-4142 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4121 (((-643 |#5|) (-643 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3577 (((-3 $ "failed") (-643 |#5|)) 135)) (-4230 (((-3 $ "failed") $) 120)) (-4117 ((|#5| |#5| $) 102)) (-4126 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4115 ((|#5| |#5| $) 106)) (-4274 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4128 (((-2 (|:| -4293 (-643 |#5|)) (|:| -1870 (-643 |#5|))) $) 63)) (-4127 (((-112) |#5| $) 66) (((-112) $) 111)) (-3600 ((|#4| $) 116)) (-4229 (((-3 |#5| "failed") $) 118)) (-4129 (((-643 |#5|) $) 55)) (-4123 (((-112) |#5| $) 75) (((-112) $) 115)) (-4118 ((|#5| |#5| $) 89)) (-4131 (((-112) $ $) 29)) (-4124 (((-112) |#5| $) 71) (((-112) $) 113)) (-4119 ((|#5| |#5| $) 86)) (-4232 (((-3 |#5| "failed") $) 117)) (-4200 (($ $ |#5|) 136)) (-4380 (((-773) $) 60)) (-3953 (($ (-643 |#5|)) 133)) (-3311 (($ $ |#4|) 131)) (-3313 (($ $ |#4|) 129)) (-4116 (($ $) 128)) (-4378 (((-865) $) NIL) (((-643 |#5|) $) 121)) (-4110 (((-773) $) 140)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4122 (((-112) $ (-1 (-112) |#5| (-643 |#5|))) 108)) (-4112 (((-643 |#4|) $) 123)) (-4365 (((-112) |#4| $) 126)) (-3455 (((-112) $ $) 20))) -(((-1213 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4110 ((-773) |#1|)) (-15 -4200 (|#1| |#1| |#5|)) (-15 -4142 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4365 ((-112) |#4| |#1|)) (-15 -4112 ((-643 |#4|) |#1|)) (-15 -4230 ((-3 |#1| "failed") |#1|)) (-15 -4229 ((-3 |#5| "failed") |#1|)) (-15 -4232 ((-3 |#5| "failed") |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -4119 (|#5| |#5| |#1|)) (-15 -4120 (|#5| |#5| |#1|)) (-15 -4121 ((-643 |#5|) (-643 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4274 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4123 ((-112) |#1|)) (-15 -4124 ((-112) |#1|)) (-15 -4125 ((-112) |#1|)) (-15 -4122 ((-112) |#1| (-1 (-112) |#5| (-643 |#5|)))) (-15 -4123 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#5| |#1|)) (-15 -4125 ((-112) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4127 ((-112) |#1|)) (-15 -4127 ((-112) |#5| |#1|)) (-15 -4128 ((-2 (|:| -4293 (-643 |#5|)) (|:| -1870 (-643 |#5|))) |#1|)) (-15 -4380 ((-773) |#1|)) (-15 -4129 ((-643 |#5|) |#1|)) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3600 (|#4| |#1|)) (-15 -3577 ((-3 |#1| "failed") (-643 |#5|))) (-15 -4378 ((-643 |#5|) |#1|)) (-15 -3953 (|#1| (-643 |#5|))) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4142 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-1214 |#2| |#3| |#4| |#5|) (-560) (-795) (-852) (-1068 |#2| |#3| |#4|)) (T -1213)) -NIL -(-10 -8 (-15 -4110 ((-773) |#1|)) (-15 -4200 (|#1| |#1| |#5|)) (-15 -4142 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4365 ((-112) |#4| |#1|)) (-15 -4112 ((-643 |#4|) |#1|)) (-15 -4230 ((-3 |#1| "failed") |#1|)) (-15 -4229 ((-3 |#5| "failed") |#1|)) (-15 -4232 ((-3 |#5| "failed") |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -4119 (|#5| |#5| |#1|)) (-15 -4120 (|#5| |#5| |#1|)) (-15 -4121 ((-643 |#5|) (-643 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4274 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4123 ((-112) |#1|)) (-15 -4124 ((-112) |#1|)) (-15 -4125 ((-112) |#1|)) (-15 -4122 ((-112) |#1| (-1 (-112) |#5| (-643 |#5|)))) (-15 -4123 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#5| |#1|)) (-15 -4125 ((-112) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4127 ((-112) |#1|)) (-15 -4127 ((-112) |#5| |#1|)) (-15 -4128 ((-2 (|:| -4293 (-643 |#5|)) (|:| -1870 (-643 |#5|))) |#1|)) (-15 -4380 ((-773) |#1|)) (-15 -4129 ((-643 |#5|) |#1|)) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3600 (|#4| |#1|)) (-15 -3577 ((-3 |#1| "failed") (-643 |#5|))) (-15 -4378 ((-643 |#5|) |#1|)) (-15 -3953 (|#1| (-643 |#5|))) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4142 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) -((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| "failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ "failed") $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-4229 (((-3 |#4| "failed") $) 84)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| "failed") $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ "failed") $ |#4|) 79)) (-4200 (($ $ |#4|) 78)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) -(((-1214 |#1| |#2| |#3| |#4|) (-140) (-560) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1214)) -((-4131 (*1 *2 *1 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *8)))) (-5 *3 (-643 *8)) (-4 *1 (-1214 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *9)))) (-5 *3 (-643 *9)) (-4 *1 (-1214 *6 *7 *8 *9)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *6)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-773)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-2 (|:| -4293 (-643 *6)) (|:| -1870 (-643 *6)))))) (-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4126 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1214 *5 *6 *7 *3)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112)))) (-4125 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4123 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-643 *7))) (-4 *1 (-1214 *4 *5 *6 *7)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4274 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1214 *5 *6 *7 *2)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *2 (-1068 *5 *6 *7)))) (-4121 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1214 *5 *6 *7 *8)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)))) (-4120 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4119 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4118 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4117 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-1068 *2 *3 *4)))) (-4115 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1214 *4 *5 *6 *7)))) (-4113 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| -4293 *1) (|:| -1870 (-643 *7))))) (-5 *3 (-643 *7)) (-4 *1 (-1214 *4 *5 *6 *7)))) (-4232 (*1 *2 *1) (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4229 (*1 *2 *1) (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4230 (*1 *1 *1) (|partial| -12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-1068 *2 *3 *4)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) (-4365 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *3 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112)))) (-4142 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1214 *4 *5 *3 *2)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *2 (-1068 *4 *5 *3)))) (-4111 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-773))))) -(-13 (-979 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4131 ((-112) $ $)) (-15 -4130 ((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |t#4|))) "failed") (-643 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4130 ((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |t#4|))) "failed") (-643 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4129 ((-643 |t#4|) $)) (-15 -4380 ((-773) $)) (-15 -4128 ((-2 (|:| -4293 (-643 |t#4|)) (|:| -1870 (-643 |t#4|))) $)) (-15 -4127 ((-112) |t#4| $)) (-15 -4127 ((-112) $)) (-15 -4126 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4125 ((-112) |t#4| $)) (-15 -4124 ((-112) |t#4| $)) (-15 -4123 ((-112) |t#4| $)) (-15 -4122 ((-112) $ (-1 (-112) |t#4| (-643 |t#4|)))) (-15 -4125 ((-112) $)) (-15 -4124 ((-112) $)) (-15 -4123 ((-112) $)) (-15 -4274 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4121 ((-643 |t#4|) (-643 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4120 (|t#4| |t#4| $)) (-15 -4119 (|t#4| |t#4| $)) (-15 -4118 (|t#4| |t#4| $)) (-15 -4117 (|t#4| |t#4| $)) (-15 -4116 ($ $)) (-15 -4115 (|t#4| |t#4| $)) (-15 -4114 ((-643 $) (-643 |t#4|))) (-15 -4113 ((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |t#4|)))) (-643 |t#4|))) (-15 -4232 ((-3 |t#4| "failed") $)) (-15 -4229 ((-3 |t#4| "failed") $)) (-15 -4230 ((-3 $ "failed") $)) (-15 -4112 ((-643 |t#3|) $)) (-15 -4365 ((-112) |t#3| $)) (-15 -4142 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4111 ((-3 $ "failed") $ |t#4|)) (-15 -4200 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -4110 ((-773) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1219) . T)) -((-4137 (($ |#1| (-643 (-643 (-946 (-225)))) (-112)) 19)) (-4136 (((-112) $ (-112)) 18)) (-4135 (((-112) $) 17)) (-4133 (((-643 (-643 (-946 (-225)))) $) 13)) (-4132 ((|#1| $) 8)) (-4134 (((-112) $) 15))) -(((-1215 |#1|) (-10 -8 (-15 -4132 (|#1| $)) (-15 -4133 ((-643 (-643 (-946 (-225)))) $)) (-15 -4134 ((-112) $)) (-15 -4135 ((-112) $)) (-15 -4136 ((-112) $ (-112))) (-15 -4137 ($ |#1| (-643 (-643 (-946 (-225)))) (-112)))) (-977)) (T -1215)) -((-4137 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-112)) (-5 *1 (-1215 *2)) (-4 *2 (-977)))) (-4136 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4132 (*1 *2 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-977))))) -(-10 -8 (-15 -4132 (|#1| $)) (-15 -4133 ((-643 (-643 (-946 (-225)))) $)) (-15 -4134 ((-112) $)) (-15 -4135 ((-112) $)) (-15 -4136 ((-112) $ (-112))) (-15 -4137 ($ |#1| (-643 (-643 (-946 (-225)))) (-112)))) -((-4139 (((-946 (-225)) (-946 (-225))) 31)) (-4138 (((-946 (-225)) (-225) (-225) (-225) (-225)) 10)) (-4141 (((-643 (-946 (-225))) (-946 (-225)) (-946 (-225)) (-946 (-225)) (-225) (-643 (-643 (-225)))) 60)) (-4268 (((-225) (-946 (-225)) (-946 (-225))) 27)) (-4266 (((-946 (-225)) (-946 (-225)) (-946 (-225))) 28)) (-4140 (((-643 (-643 (-225))) (-549)) 48)) (-4269 (((-946 (-225)) (-946 (-225)) (-946 (-225))) 26)) (-4271 (((-946 (-225)) (-946 (-225)) (-946 (-225))) 24)) (* (((-946 (-225)) (-225) (-946 (-225))) 22))) -(((-1216) (-10 -7 (-15 -4138 ((-946 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-946 (-225)) (-225) (-946 (-225)))) (-15 -4271 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4269 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4268 ((-225) (-946 (-225)) (-946 (-225)))) (-15 -4266 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4139 ((-946 (-225)) (-946 (-225)))) (-15 -4140 ((-643 (-643 (-225))) (-549))) (-15 -4141 ((-643 (-946 (-225))) (-946 (-225)) (-946 (-225)) (-946 (-225)) (-225) (-643 (-643 (-225))))))) (T -1216)) -((-4141 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-643 (-643 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 (-946 *4))) (-5 *1 (-1216)) (-5 *3 (-946 *4)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-1216)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (-4266 (*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (-4268 (*1 *2 *3 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-225)) (-5 *1 (-1216)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-946 (-225))) (-5 *3 (-225)) (-5 *1 (-1216)))) (-4138 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)) (-5 *3 (-225))))) -(-10 -7 (-15 -4138 ((-946 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-946 (-225)) (-225) (-946 (-225)))) (-15 -4271 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4269 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4268 ((-225) (-946 (-225)) (-946 (-225)))) (-15 -4266 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4139 ((-946 (-225)) (-946 (-225)))) (-15 -4140 ((-643 (-643 (-225))) (-549))) (-15 -4141 ((-643 (-946 (-225))) (-946 (-225)) (-946 (-225)) (-946 (-225)) (-225) (-643 (-643 (-225)))))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4142 ((|#1| $ (-773)) 18)) (-4265 (((-773) $) 13)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4378 (((-961 |#1|) $) 12) (($ (-961 |#1|)) 11) (((-865) $) 29 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3455 (((-112) $ $) 22 (|has| |#1| (-1104))))) -(((-1217 |#1|) (-13 (-493 (-961 |#1|)) (-10 -8 (-15 -4142 (|#1| $ (-773))) (-15 -4265 ((-773) $)) (IF (|has| |#1| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) (-1219)) (T -1217)) -((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-1217 *2)) (-4 *2 (-1219)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1217 *3)) (-4 *3 (-1219))))) -(-13 (-493 (-961 |#1|)) (-10 -8 (-15 -4142 (|#1| $ (-773))) (-15 -4265 ((-773) $)) (IF (|has| |#1| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) -((-4145 (((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-549)) 94)) (-4143 (((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 86)) (-4144 (((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 70))) -(((-1218 |#1|) (-10 -7 (-15 -4143 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4144 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4145 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-549)))) (-352)) (T -1218)) -((-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-352)) (-5 *2 (-408 (-1174 (-1174 *5)))) (-5 *1 (-1218 *5)) (-5 *3 (-1174 (-1174 *5))))) (-4144 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-1174 (-1174 *4))))) (-4143 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-1174 (-1174 *4)))))) -(-10 -7 (-15 -4143 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4144 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4145 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-549)))) -NIL -(((-1219) (-140)) (T -1219)) -NIL -(-13 (-10 -7 (-6 -2433))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 9) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1220) (-1086)) (T -1220)) -NIL -(-1086) -((-4149 (((-112)) 18)) (-4146 (((-1275) (-643 |#1|) (-643 |#1|)) 22) (((-1275) (-643 |#1|)) 23)) (-4151 (((-112) |#1| |#1|) 37 (|has| |#1| (-852)))) (-4148 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-4150 ((|#1| (-643 |#1|)) 38 (|has| |#1| (-852))) ((|#1| (-643 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4147 (((-2 (|:| -3649 (-643 |#1|)) (|:| -3648 (-643 |#1|)))) 20))) -(((-1221 |#1|) (-10 -7 (-15 -4146 ((-1275) (-643 |#1|))) (-15 -4146 ((-1275) (-643 |#1|) (-643 |#1|))) (-15 -4147 ((-2 (|:| -3649 (-643 |#1|)) (|:| -3648 (-643 |#1|))))) (-15 -4148 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4148 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4150 (|#1| (-643 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4149 ((-112))) (IF (|has| |#1| (-852)) (PROGN (-15 -4150 (|#1| (-643 |#1|))) (-15 -4151 ((-112) |#1| |#1|))) |%noBranch|)) (-1104)) (T -1221)) -((-4151 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-852)) (-4 *3 (-1104)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-852)) (-5 *1 (-1221 *2)))) (-4149 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1221 *2)) (-4 *2 (-1104)))) (-4148 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1104)) (-5 *2 (-112)) (-5 *1 (-1221 *3)))) (-4148 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) (-4147 (*1 *2) (-12 (-5 *2 (-2 (|:| -3649 (-643 *3)) (|:| -3648 (-643 *3)))) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) (-4146 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4))))) -(-10 -7 (-15 -4146 ((-1275) (-643 |#1|))) (-15 -4146 ((-1275) (-643 |#1|) (-643 |#1|))) (-15 -4147 ((-2 (|:| -3649 (-643 |#1|)) (|:| -3648 (-643 |#1|))))) (-15 -4148 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4148 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4150 (|#1| (-643 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4149 ((-112))) (IF (|has| |#1| (-852)) (PROGN (-15 -4150 (|#1| (-643 |#1|))) (-15 -4151 ((-112) |#1| |#1|))) |%noBranch|)) -((-4152 (((-1275) (-643 (-1180)) (-643 (-1180))) 14) (((-1275) (-643 (-1180))) 12)) (-4154 (((-1275)) 16)) (-4153 (((-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180))))) 20))) -(((-1222) (-10 -7 (-15 -4152 ((-1275) (-643 (-1180)))) (-15 -4152 ((-1275) (-643 (-1180)) (-643 (-1180)))) (-15 -4153 ((-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180)))))) (-15 -4154 ((-1275))))) (T -1222)) -((-4154 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1222)))) (-4153 (*1 *2) (-12 (-5 *2 (-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180))))) (-5 *1 (-1222)))) (-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222))))) -(-10 -7 (-15 -4152 ((-1275) (-643 (-1180)))) (-15 -4152 ((-1275) (-643 (-1180)) (-643 (-1180)))) (-15 -4153 ((-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180)))))) (-15 -4154 ((-1275)))) -((-4206 (($ $) 17)) (-4155 (((-112) $) 28))) -(((-1223 |#1|) (-10 -8 (-15 -4206 (|#1| |#1|)) (-15 -4155 ((-112) |#1|))) (-1224)) (T -1223)) -NIL -(-10 -8 (-15 -4206 (|#1| |#1|)) (-15 -4155 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 57)) (-4401 (((-408 $) $) 58)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-4155 (((-112) $) 59)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 56)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) -(((-1224) (-140)) (T -1224)) -((-4155 (*1 *2 *1) (-12 (-4 *1 (-1224)) (-5 *2 (-112)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224)))) (-4206 (*1 *1 *1) (-4 *1 (-1224))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224))))) -(-13 (-455) (-10 -8 (-15 -4155 ((-112) $)) (-15 -4401 ((-408 $) $)) (-15 -4206 ($ $)) (-15 -4164 ((-408 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-1225) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1225)) -((-4158 (*1 *1 *1 *1) (-5 *1 (-1225))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1225))) (-4156 (*1 *1) (-5 *1 (-1225)))) -(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 9)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 7))) +(((-1189) (-1105)) (T -1189)) +NIL +(-1105) +((-4007 (((-644 (-644 (-950 |#1|))) (-644 (-411 (-950 |#1|))) (-644 (-1181))) 67)) (-4006 (((-644 (-295 (-411 (-950 |#1|)))) (-295 (-411 (-950 |#1|)))) 78) (((-644 (-295 (-411 (-950 |#1|)))) (-411 (-950 |#1|))) 74) (((-644 (-295 (-411 (-950 |#1|)))) (-295 (-411 (-950 |#1|))) (-1181)) 79) (((-644 (-295 (-411 (-950 |#1|)))) (-411 (-950 |#1|)) (-1181)) 73) (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-295 (-411 (-950 |#1|))))) 106) (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-411 (-950 |#1|)))) 105) (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-295 (-411 (-950 |#1|)))) (-644 (-1181))) 107) (((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-411 (-950 |#1|))) (-644 (-1181))) 104))) +(((-1190 |#1|) (-10 -7 (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-295 (-411 (-950 |#1|)))) (-644 (-1181)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-411 (-950 |#1|))))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-295 (-411 (-950 |#1|)))))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-411 (-950 |#1|)) (-1181))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-295 (-411 (-950 |#1|))) (-1181))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-411 (-950 |#1|)))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-295 (-411 (-950 |#1|))))) (-15 -4007 ((-644 (-644 (-950 |#1|))) (-644 (-411 (-950 |#1|))) (-644 (-1181))))) (-561)) (T -1190)) +((-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) (-5 *2 (-644 (-644 (-950 *5)))) (-5 *1 (-1190 *5)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *4))))) (-5 *1 (-1190 *4)) (-5 *3 (-295 (-411 (-950 *4)))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *4))))) (-5 *1 (-1190 *4)) (-5 *3 (-411 (-950 *4))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *5))))) (-5 *1 (-1190 *5)) (-5 *3 (-295 (-411 (-950 *5)))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1181)) (-4 *5 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *5))))) (-5 *1 (-1190 *5)) (-5 *3 (-411 (-950 *5))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-1190 *4)) (-5 *3 (-644 (-295 (-411 (-950 *4))))))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-644 (-411 (-950 *4)))) (-4 *4 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-1190 *4)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1181))) (-4 *5 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-1190 *5)) (-5 *3 (-644 (-295 (-411 (-950 *5))))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-1190 *5))))) +(-10 -7 (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-411 (-950 |#1|))) (-644 (-1181)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-295 (-411 (-950 |#1|)))) (-644 (-1181)))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-411 (-950 |#1|))))) (-15 -4006 ((-644 (-644 (-295 (-411 (-950 |#1|))))) (-644 (-295 (-411 (-950 |#1|)))))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-411 (-950 |#1|)) (-1181))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-295 (-411 (-950 |#1|))) (-1181))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-411 (-950 |#1|)))) (-15 -4006 ((-644 (-295 (-411 (-950 |#1|)))) (-295 (-411 (-950 |#1|))))) (-15 -4007 ((-644 (-644 (-950 |#1|))) (-644 (-411 (-950 |#1|))) (-644 (-1181))))) +((-4012 (((-1163)) 7)) (-4009 (((-1163)) 11 T CONST)) (-4008 (((-1276) (-1163)) 13)) (-4011 (((-1163)) 8 T CONST)) (-4010 (((-130)) 10 T CONST))) +(((-1191) (-13 (-1220) (-10 -7 (-15 -4012 ((-1163))) (-15 -4011 ((-1163)) -4386) (-15 -4010 ((-130)) -4386) (-15 -4009 ((-1163)) -4386) (-15 -4008 ((-1276) (-1163)))))) (T -1191)) +((-4012 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1191)))) (-4011 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1191)))) (-4010 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1191)))) (-4009 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1191)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1191))))) +(-13 (-1220) (-10 -7 (-15 -4012 ((-1163))) (-15 -4011 ((-1163)) -4386) (-15 -4010 ((-130)) -4386) (-15 -4009 ((-1163)) -4386) (-15 -4008 ((-1276) (-1163))))) +((-4016 (((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 56)) (-4019 (((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|))) 38)) (-4020 (((-1194 (-644 |#1|)) (-644 |#1|)) 49)) (-4022 (((-644 (-644 |#1|)) (-644 |#1|)) 45)) (-4025 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))) 53)) (-4024 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|)))) 52)) (-4021 (((-644 (-644 |#1|)) (-644 (-644 |#1|))) 43)) (-4023 (((-644 |#1|) (-644 |#1|)) 46)) (-4015 (((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 32)) (-4014 (((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 29)) (-4013 (((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|))) 24)) (-4017 (((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 58)) (-4018 (((-644 (-644 |#1|)) (-1194 (-644 |#1|))) 60))) +(((-1192 |#1|) (-10 -7 (-15 -4013 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -4014 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4015 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4016 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -4017 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -4018 ((-644 (-644 |#1|)) (-1194 (-644 |#1|)))) (-15 -4019 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -4020 ((-1194 (-644 |#1|)) (-644 |#1|))) (-15 -4021 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -4022 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -4023 ((-644 |#1|) (-644 |#1|))) (-15 -4024 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -4025 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) (-853)) (T -1192)) +((-4025 (*1 *2 *3) (-12 (-4 *4 (-853)) (-5 *2 (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) (-5 *1 (-1192 *4)) (-5 *3 (-644 (-644 (-644 *4)))))) (-4024 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-853)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) (|:| |f4| (-644 *5)))) (-5 *1 (-1192 *6)) (-5 *4 (-644 *5)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-1192 *3)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-853)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1192 *4)) (-5 *3 (-644 *4)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-853)) (-5 *1 (-1192 *3)))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-853)) (-5 *2 (-1194 (-644 *4))) (-5 *1 (-1192 *4)) (-5 *3 (-644 *4)))) (-4019 (*1 *2 *3) (-12 (-4 *4 (-853)) (-5 *2 (-644 (-644 (-644 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-644 (-644 *4))))) (-4018 (*1 *2 *3) (-12 (-5 *3 (-1194 (-644 *4))) (-4 *4 (-853)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1192 *4)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1192 *4)) (-4 *4 (-853)))) (-4016 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-4 *4 (-853)) (-5 *1 (-1192 *4)))) (-4015 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-853)) (-5 *1 (-1192 *4)))) (-4014 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-644 *5)) (-4 *5 (-853)) (-5 *1 (-1192 *5)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-853)) (-5 *4 (-644 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) (-5 *1 (-1192 *6)) (-5 *5 (-644 *4))))) +(-10 -7 (-15 -4013 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -4014 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4015 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4016 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -4017 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -4018 ((-644 (-644 |#1|)) (-1194 (-644 |#1|)))) (-15 -4019 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -4020 ((-1194 (-644 |#1|)) (-644 |#1|))) (-15 -4021 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -4022 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -4023 ((-644 |#1|) (-644 |#1|))) (-15 -4024 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -4025 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) +((-2970 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4031 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2374 (((-1276) $ |#1| |#1|) NIL (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#2| $ |#1| |#2|) NIL)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4158 (($) NIL T CONST)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) NIL)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-644 |#2|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2377 ((|#1| $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-2818 (((-644 |#1|) $) NIL)) (-2384 (((-112) |#1| $) NIL)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2379 (((-644 |#1|) $) NIL)) (-2380 (((-112) |#1| $) NIL)) (-3666 (((-1124) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4234 ((|#2| $) NIL (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL)) (-2375 (($ $ |#2|) NIL (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1569 (($) NIL) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) NIL (-12 (|has| $ (-6 -4427)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (((-774) |#2| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105)))) (((-774) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-4380 (((-866) $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-616 (-866)))))) (-3664 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) NIL)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) NIL (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) NIL (-3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1193 |#1| |#2|) (-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) (-1105) (-1105)) (T -1193)) +NIL +(-13 (-1197 |#1| |#2|) (-10 -7 (-6 -4427))) +((-4026 (($ (-644 (-644 |#1|))) 10)) (-4027 (((-644 (-644 |#1|)) $) 11)) (-4380 (((-866) $) 36))) +(((-1194 |#1|) (-10 -8 (-15 -4026 ($ (-644 (-644 |#1|)))) (-15 -4027 ((-644 (-644 |#1|)) $)) (-15 -4380 ((-866) $))) (-1105)) (T -1194)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-1194 *3)) (-4 *3 (-1105)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1105)))) (-4026 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-1194 *3))))) +(-10 -8 (-15 -4026 ($ (-644 (-644 |#1|)))) (-15 -4027 ((-644 (-644 |#1|)) $)) (-15 -4380 ((-866) $))) +((-4028 ((|#1| (-644 |#1|)) 49)) (-4030 ((|#1| |#1| (-550)) 24)) (-4029 (((-1175 |#1|) |#1| (-923)) 20))) +(((-1195 |#1|) (-10 -7 (-15 -4028 (|#1| (-644 |#1|))) (-15 -4029 ((-1175 |#1|) |#1| (-923))) (-15 -4030 (|#1| |#1| (-550)))) (-366)) (T -1195)) +((-4030 (*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-1195 *2)) (-4 *2 (-366)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1175 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-366)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1195 *2)) (-4 *2 (-366))))) +(-10 -7 (-15 -4028 (|#1| (-644 |#1|))) (-15 -4029 ((-1175 |#1|) |#1| (-923))) (-15 -4030 (|#1| |#1| (-550)))) +((-4031 (($) 10) (($ (-644 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)))) 14)) (-3831 (($ (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2126 (((-644 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) 39) (((-644 |#3|) $) 41)) (-2130 (($ (-1 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4392 (($ (-1 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1370 (((-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) $) 60)) (-4041 (($ (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) $) 16)) (-2379 (((-644 |#2|) $) 19)) (-2380 (((-112) |#2| $) 65)) (-1442 (((-3 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) "failed") (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) 64)) (-1371 (((-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) $) 69)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2381 (((-644 |#3|) $) 43)) (-4233 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) NIL) (((-774) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) $) NIL) (((-774) |#3| $) NIL) (((-774) (-1 (-112) |#3|) $) 79)) (-4380 (((-866) $) 27)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3457 (((-112) $ $) 51))) +(((-1196 |#1| |#2| |#3|) (-10 -8 (-15 -3457 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -4392 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4031 (|#1| (-644 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))))) (-15 -4031 (|#1|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2130 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2127 ((-774) (-1 (-112) |#3|) |#1|)) (-15 -2126 ((-644 |#3|) |#1|)) (-15 -2127 ((-774) |#3| |#1|)) (-15 -4233 (|#3| |#1| |#2| |#3|)) (-15 -4233 (|#3| |#1| |#2|)) (-15 -2381 ((-644 |#3|) |#1|)) (-15 -2380 ((-112) |#2| |#1|)) (-15 -2379 ((-644 |#2|) |#1|)) (-15 -3831 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3831 (|#1| (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -3831 (|#1| (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -1442 ((-3 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) "failed") (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -1370 ((-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -4041 (|#1| (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -1371 ((-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -2127 ((-774) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -2126 ((-644 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2127 ((-774) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2128 ((-112) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2129 ((-112) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2130 (|#1| (-1 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -4392 (|#1| (-1 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|))) (-1197 |#2| |#3|) (-1105) (-1105)) (T -1196)) +NIL +(-10 -8 (-15 -3457 ((-112) |#1| |#1|)) (-15 -4380 ((-866) |#1|)) (-15 -4392 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4031 (|#1| (-644 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))))) (-15 -4031 (|#1|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2130 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2129 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2128 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2127 ((-774) (-1 (-112) |#3|) |#1|)) (-15 -2126 ((-644 |#3|) |#1|)) (-15 -2127 ((-774) |#3| |#1|)) (-15 -4233 (|#3| |#1| |#2| |#3|)) (-15 -4233 (|#3| |#1| |#2|)) (-15 -2381 ((-644 |#3|) |#1|)) (-15 -2380 ((-112) |#2| |#1|)) (-15 -2379 ((-644 |#2|) |#1|)) (-15 -3831 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3831 (|#1| (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -3831 (|#1| (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -1442 ((-3 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) "failed") (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -1370 ((-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -4041 (|#1| (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -1371 ((-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -2127 ((-774) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) |#1|)) (-15 -2126 ((-644 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2127 ((-774) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2128 ((-112) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2129 ((-112) (-1 (-112) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -2130 (|#1| (-1 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|)) (-15 -4392 (|#1| (-1 (-2 (|:| -4294 |#2|) (|:| -2256 |#3|)) (-2 (|:| -4294 |#2|) (|:| -2256 |#3|))) |#1|))) +((-2970 (((-112) $ $) 19 (-3962 (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-4031 (($) 73) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 72)) (-2374 (((-1276) $ |#1| |#1|) 100 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#2| $ |#1| |#2|) 74)) (-1680 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 46 (|has| $ (-6 -4427)))) (-4144 (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 56 (|has| $ (-6 -4427)))) (-2383 (((-3 |#2| #1="failed") |#1| $) 62)) (-4158 (($) 7 T CONST)) (-1441 (($ $) 59 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427))))) (-3831 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 48 (|has| $ (-6 -4427))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 47 (|has| $ (-6 -4427))) (((-3 |#2| #1#) |#1| $) 63)) (-3832 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 55 (|has| $ (-6 -4427)))) (-4276 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 57 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 54 (|has| $ (-6 -4427))) (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 53 (|has| $ (-6 -4427)))) (-1686 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4428)))) (-3519 ((|#2| $ |#1|) 89)) (-2126 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 31 (|has| $ (-6 -4427))) (((-644 |#2|) $) 80 (|has| $ (-6 -4427)))) (-4153 (((-112) $ (-774)) 9)) (-2376 ((|#1| $) 97 (|has| |#1| (-853)))) (-3010 (((-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 30 (|has| $ (-6 -4427))) (((-644 |#2|) $) 81 (|has| $ (-6 -4427)))) (-3668 (((-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427))))) (-2377 ((|#1| $) 96 (|has| |#1| (-853)))) (-2130 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 35 (|has| $ (-6 -4428))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4428)))) (-4392 (($ (-1 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4150 (((-112) $ (-774)) 10)) (-3665 (((-1163) $) 22 (-3962 (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-2818 (((-644 |#1|) $) 64)) (-2384 (((-112) |#1| $) 65)) (-1370 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 40)) (-4041 (($ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 41)) (-2379 (((-644 |#1|) $) 94)) (-2380 (((-112) |#1| $) 93)) (-3666 (((-1124) $) 21 (-3962 (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-4234 ((|#2| $) 98 (|has| |#1| (-853)))) (-1442 (((-3 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) "failed") (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 52)) (-2375 (($ $ |#2|) 99 (|has| $ (-6 -4428)))) (-1371 (((-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 42)) (-2128 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 33 (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))))) 27 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-295 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 26 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) 25 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 24 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4427)) (|has| |#2| (-1105))))) (-2381 (((-644 |#2|) $) 92)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1569 (($) 50) (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 49)) (-2127 (((-774) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 32 (|has| $ (-6 -4427))) (((-774) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| $ (-6 -4427)))) (((-774) |#2| $) 82 (-12 (|has| |#2| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4427)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 60 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))))) (-3955 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 51)) (-4380 (((-866) $) 18 (-3962 (|has| |#2| (-616 (-866))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866)))))) (-3664 (((-112) $ $) 23 (-3962 (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-1372 (($ (-644 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) 43)) (-2129 (((-112) (-1 (-112) (-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) $) 34 (|has| $ (-6 -4427))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (-3962 (|has| |#2| (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1197 |#1| |#2|) (-140) (-1105) (-1105)) (T -1197)) +((-4221 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105)))) (-4031 (*1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -4294 *3) (|:| -2256 *4)))) (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *1 (-1197 *3 *4)))) (-4392 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) +(-13 (-613 |t#1| |t#2|) (-607 |t#1| |t#2|) (-10 -8 (-15 -4221 (|t#2| $ |t#1| |t#2|)) (-15 -4031 ($)) (-15 -4031 ($ (-644 (-2 (|:| -4294 |t#1|) (|:| -2256 |t#2|))))) (-15 -4392 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4294 |#1|) (|:| -2256 |#2|))) . T) ((-102) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))) ((-616 (-866)) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-616 (-866))) (|has| |#2| (-1105)) (|has| |#2| (-616 (-866)))) ((-151 #1#) . T) ((-617 (-539)) |has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-617 (-539))) ((-230 #1#) . T) ((-236 #1#) . T) ((-288 |#1| |#2|) . T) ((-290 |#1| |#2|) . T) ((-311 #1#) -12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) ((-311 |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-493 #1#) . T) ((-493 |#2|) . T) ((-607 |#1| |#2|) . T) ((-518 #1# #1#) -12 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-311 (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)))) (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105))) ((-518 |#2| |#2|) -12 (|has| |#2| (-311 |#2|)) (|has| |#2| (-1105))) ((-613 |#1| |#2|) . T) ((-1105) -3962 (|has| (-2 (|:| -4294 |#1|) (|:| -2256 |#2|)) (-1105)) (|has| |#2| (-1105))) ((-1220) . T)) +((-4037 (((-112)) 29)) (-4034 (((-1276) (-1163)) 31)) (-4038 (((-112)) 41)) (-4035 (((-1276)) 39)) (-4033 (((-1276) (-1163) (-1163)) 30)) (-4039 (((-112)) 42)) (-4041 (((-1276) |#1| |#2|) 53)) (-4032 (((-1276)) 26)) (-4040 (((-3 |#2| "failed") |#1|) 51)) (-4036 (((-1276)) 40))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -4032 ((-1276))) (-15 -4033 ((-1276) (-1163) (-1163))) (-15 -4034 ((-1276) (-1163))) (-15 -4035 ((-1276))) (-15 -4036 ((-1276))) (-15 -4037 ((-112))) (-15 -4038 ((-112))) (-15 -4039 ((-112))) (-15 -4040 ((-3 |#2| "failed") |#1|)) (-15 -4041 ((-1276) |#1| |#2|))) (-1105) (-1105)) (T -1198)) +((-4041 (*1 *2 *3 *4) (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-4040 (*1 *2 *3) (|partial| -12 (-4 *2 (-1105)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-1105)))) (-4039 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-4038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-4037 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-4036 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-4035 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1198 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1105)))) (-4033 (*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1198 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1105)))) (-4032 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) +(-10 -7 (-15 -4032 ((-1276))) (-15 -4033 ((-1276) (-1163) (-1163))) (-15 -4034 ((-1276) (-1163))) (-15 -4035 ((-1276))) (-15 -4036 ((-1276))) (-15 -4037 ((-112))) (-15 -4038 ((-112))) (-15 -4039 ((-112))) (-15 -4040 ((-3 |#2| "failed") |#1|)) (-15 -4041 ((-1276) |#1| |#2|))) +((-4043 (((-1163) (-1163)) 22)) (-4042 (((-51) (-1163)) 25))) +(((-1199) (-10 -7 (-15 -4042 ((-51) (-1163))) (-15 -4043 ((-1163) (-1163))))) (T -1199)) +((-4043 (*1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1199)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-51)) (-5 *1 (-1199))))) +(-10 -7 (-15 -4042 ((-51) (-1163))) (-15 -4043 ((-1163) (-1163)))) +((-2970 (((-112) $ $) NIL)) (-4049 (((-644 (-1163)) $) 39)) (-4045 (((-644 (-1163)) $ (-644 (-1163))) 42)) (-4044 (((-644 (-1163)) $ (-644 (-1163))) 41)) (-4046 (((-644 (-1163)) $ (-644 (-1163))) 43)) (-4047 (((-644 (-1163)) $) 38)) (-4048 (($) 28)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4050 (((-644 (-1163)) $) 40)) (-4051 (((-1276) $ (-550)) 35) (((-1276) $) 36)) (-4404 (($ (-866) (-550)) 33) (($ (-866) (-550) (-866)) NIL)) (-4380 (((-866) $) 49) (($ (-866)) 32)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1200) (-13 (-1105) (-619 (-866)) (-10 -8 (-15 -4404 ($ (-866) (-550))) (-15 -4404 ($ (-866) (-550) (-866))) (-15 -4051 ((-1276) $ (-550))) (-15 -4051 ((-1276) $)) (-15 -4050 ((-644 (-1163)) $)) (-15 -4049 ((-644 (-1163)) $)) (-15 -4048 ($)) (-15 -4047 ((-644 (-1163)) $)) (-15 -4046 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -4045 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -4044 ((-644 (-1163)) $ (-644 (-1163))))))) (T -1200)) +((-4404 (*1 *1 *2 *3) (-12 (-5 *2 (-866)) (-5 *3 (-550)) (-5 *1 (-1200)))) (-4404 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-866)) (-5 *3 (-550)) (-5 *1 (-1200)))) (-4051 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1200)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1200)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200)))) (-4048 (*1 *1) (-5 *1 (-1200))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200)))) (-4046 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200)))) (-4045 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200)))) (-4044 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) +(-13 (-1105) (-619 (-866)) (-10 -8 (-15 -4404 ($ (-866) (-550))) (-15 -4404 ($ (-866) (-550) (-866))) (-15 -4051 ((-1276) $ (-550))) (-15 -4051 ((-1276) $)) (-15 -4050 ((-644 (-1163)) $)) (-15 -4049 ((-644 (-1163)) $)) (-15 -4048 ($)) (-15 -4047 ((-644 (-1163)) $)) (-15 -4046 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -4045 ((-644 (-1163)) $ (-644 (-1163)))) (-15 -4044 ((-644 (-1163)) $ (-644 (-1163)))))) +((-4380 (((-1200) |#1|) 11))) +(((-1201 |#1|) (-10 -7 (-15 -4380 ((-1200) |#1|))) (-1105)) (T -1201)) +((-4380 (*1 *2 *3) (-12 (-5 *2 (-1200)) (-5 *1 (-1201 *3)) (-4 *3 (-1105))))) +(-10 -7 (-15 -4380 ((-1200) |#1|))) +((-2970 (((-112) $ $) NIL)) (-4056 (((-1163) $ (-1163)) 17) (((-1163) $) 16)) (-1867 (((-1163) $ (-1163)) 15)) (-1871 (($ $ (-1163)) NIL)) (-4054 (((-3 (-1163) "failed") $) 11)) (-4055 (((-1163) $) 8)) (-4053 (((-3 (-1163) "failed") $) 12)) (-1868 (((-1163) $) 9)) (-1872 (($ (-392)) NIL) (($ (-392) (-1163)) NIL)) (-3975 (((-392) $) NIL)) (-3665 (((-1163) $) NIL)) (-1869 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4052 (((-112) $) 21)) (-4380 (((-866) $) NIL)) (-1870 (($ $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1202) (-13 (-368 (-392) (-1163)) (-10 -8 (-15 -4056 ((-1163) $ (-1163))) (-15 -4056 ((-1163) $)) (-15 -4055 ((-1163) $)) (-15 -4054 ((-3 (-1163) "failed") $)) (-15 -4053 ((-3 (-1163) "failed") $)) (-15 -4052 ((-112) $))))) (T -1202)) +((-4056 (*1 *2 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1202)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1202)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1202)))) (-4054 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-1202)))) (-4053 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-1202)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) +(-13 (-368 (-392) (-1163)) (-10 -8 (-15 -4056 ((-1163) $ (-1163))) (-15 -4056 ((-1163) $)) (-15 -4055 ((-1163) $)) (-15 -4054 ((-3 (-1163) "failed") $)) (-15 -4053 ((-3 (-1163) "failed") $)) (-15 -4052 ((-112) $)))) +((-4057 (((-3 (-550) "failed") |#1|) 19)) (-4058 (((-3 (-550) "failed") |#1|) 14)) (-4059 (((-550) (-1163)) 33))) +(((-1203 |#1|) (-10 -7 (-15 -4057 ((-3 (-550) "failed") |#1|)) (-15 -4058 ((-3 (-550) "failed") |#1|)) (-15 -4059 ((-550) (-1163)))) (-1053)) (T -1203)) +((-4059 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-550)) (-5 *1 (-1203 *4)) (-4 *4 (-1053)))) (-4058 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1203 *3)) (-4 *3 (-1053)))) (-4057 (*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1203 *3)) (-4 *3 (-1053))))) +(-10 -7 (-15 -4057 ((-3 (-550) "failed") |#1|)) (-15 -4058 ((-3 (-550) "failed") |#1|)) (-15 -4059 ((-550) (-1163)))) +((-4060 (((-1137 (-226))) 9))) +(((-1204) (-10 -7 (-15 -4060 ((-1137 (-226)))))) (T -1204)) +((-4060 (*1 *2) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-1204))))) +(-10 -7 (-15 -4060 ((-1137 (-226))))) +((-4061 (($) 12)) (-3923 (($ $) 36)) (-3921 (($ $) 34)) (-3909 (($ $) 26)) (-3925 (($ $) 18)) (-3926 (($ $) 16)) (-3924 (($ $) 20)) (-3912 (($ $) 31)) (-3922 (($ $) 35)) (-3910 (($ $) 30))) +(((-1205 |#1|) (-10 -8 (-15 -4061 (|#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3910 (|#1| |#1|))) (-1206)) (T -1205)) +NIL +(-10 -8 (-15 -4061 (|#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3910 (|#1| |#1|))) +((-3917 (($ $) 26)) (-4073 (($ $) 11)) (-3915 (($ $) 27)) (-4072 (($ $) 10)) (-3919 (($ $) 28)) (-4071 (($ $) 9)) (-4061 (($) 16)) (-4376 (($ $) 19)) (-4377 (($ $) 18)) (-3920 (($ $) 29)) (-4070 (($ $) 8)) (-3918 (($ $) 30)) (-4069 (($ $) 7)) (-3916 (($ $) 31)) (-4068 (($ $) 6)) (-3923 (($ $) 20)) (-3911 (($ $) 32)) (-3921 (($ $) 21)) (-3909 (($ $) 33)) (-3925 (($ $) 22)) (-3913 (($ $) 34)) (-3926 (($ $) 23)) (-3914 (($ $) 35)) (-3924 (($ $) 24)) (-3912 (($ $) 36)) (-3922 (($ $) 25)) (-3910 (($ $) 37)) (** (($ $ $) 17))) +(((-1206) (-140)) (T -1206)) +((-4061 (*1 *1) (-4 *1 (-1206)))) +(-13 (-1209) (-95) (-497) (-35) (-286) (-10 -8 (-15 -4061 ($)))) +(((-35) . T) ((-95) . T) ((-286) . T) ((-497) . T) ((-1209) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3828 ((|#1| $) 19)) (-4066 (($ |#1| (-644 $)) 28) (($ (-644 |#1|)) 35) (($ |#1|) 30)) (-1310 (((-112) $ (-774)) 71)) (-3428 ((|#1| $ |#1|) 14 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 13 (|has| $ (-6 -4428)))) (-4158 (($) NIL T CONST)) (-2126 (((-644 |#1|) $) 75 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 63)) (-3430 (((-112) $ $) 49 (|has| |#1| (-1105)))) (-4153 (((-112) $ (-774)) 61)) (-3010 (((-644 |#1|) $) 76 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2130 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 27)) (-4150 (((-112) $ (-774)) 59)) (-3433 (((-644 |#1|) $) 54)) (-3952 (((-112) $) 52)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-2128 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 105)) (-3829 (((-112) $) 9)) (-3998 (($) 10)) (-4233 ((|#1| $ #1#) NIL)) (-3432 (((-550) $ $) 48)) (-4062 (((-644 $) $) 87)) (-4063 (((-112) $ $) 108)) (-4064 (((-644 $) $) 103)) (-4065 (($ $) 104)) (-4067 (((-112) $) 82)) (-2127 (((-774) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4427))) (((-774) |#1| $) 17 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3826 (($ $) 86)) (-4380 (((-866) $) 89 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 12)) (-3431 (((-112) $ $) 39 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 37 (|has| |#1| (-1105)))) (-4391 (((-774) $) 57 (|has| $ (-6 -4427))))) +(((-1207 |#1|) (-13 (-1014 |#1|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -4066 ($ |#1| (-644 $))) (-15 -4066 ($ (-644 |#1|))) (-15 -4066 ($ |#1|)) (-15 -4067 ((-112) $)) (-15 -4065 ($ $)) (-15 -4064 ((-644 $) $)) (-15 -4063 ((-112) $ $)) (-15 -4062 ((-644 $) $)))) (-1105)) (T -1207)) +((-4067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-1105)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1207 *2))) (-5 *1 (-1207 *2)) (-4 *2 (-1105)))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-1207 *3)))) (-4066 (*1 *1 *2) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-1105)))) (-4065 (*1 *1 *1) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-1105)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-644 (-1207 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1105)))) (-4063 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-1105)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-644 (-1207 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1105))))) +(-13 (-1014 |#1|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -4066 ($ |#1| (-644 $))) (-15 -4066 ($ (-644 |#1|))) (-15 -4066 ($ |#1|)) (-15 -4067 ((-112) $)) (-15 -4065 ($ $)) (-15 -4064 ((-644 $) $)) (-15 -4063 ((-112) $ $)) (-15 -4062 ((-644 $) $)))) +((-4073 (($ $) 15)) (-4071 (($ $) 12)) (-4070 (($ $) 10)) (-4069 (($ $) 17))) +(((-1208 |#1|) (-10 -8 (-15 -4069 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4073 (|#1| |#1|))) (-1209)) (T -1208)) +NIL +(-10 -8 (-15 -4069 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4073 (|#1| |#1|))) +((-4073 (($ $) 11)) (-4072 (($ $) 10)) (-4071 (($ $) 9)) (-4070 (($ $) 8)) (-4069 (($ $) 7)) (-4068 (($ $) 6))) +(((-1209) (-140)) (T -1209)) +((-4073 (*1 *1 *1) (-4 *1 (-1209))) (-4072 (*1 *1 *1) (-4 *1 (-1209))) (-4071 (*1 *1 *1) (-4 *1 (-1209))) (-4070 (*1 *1 *1) (-4 *1 (-1209))) (-4069 (*1 *1 *1) (-4 *1 (-1209))) (-4068 (*1 *1 *1) (-4 *1 (-1209)))) +(-13 (-10 -8 (-15 -4068 ($ $)) (-15 -4069 ($ $)) (-15 -4070 ($ $)) (-15 -4071 ($ $)) (-15 -4072 ($ $)) (-15 -4073 ($ $)))) +((-4076 ((|#2| |#2|) 98)) (-4079 (((-112) |#2|) 29)) (-4077 ((|#2| |#2|) 33)) (-4078 ((|#2| |#2|) 35)) (-4074 ((|#2| |#2| (-1181)) 92) ((|#2| |#2|) 93)) (-4080 (((-169 |#2|) |#2|) 31)) (-4075 ((|#2| |#2| (-1181)) 94) ((|#2| |#2|) 95))) +(((-1210 |#1| |#2|) (-10 -7 (-15 -4074 (|#2| |#2|)) (-15 -4074 (|#2| |#2| (-1181))) (-15 -4075 (|#2| |#2|)) (-15 -4075 (|#2| |#2| (-1181))) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 ((-112) |#2|)) (-15 -4080 ((-169 |#2|) |#2|))) (-13 (-456) (-1042 (-550)) (-642 (-550))) (-13 (-27) (-1206) (-425 |#1|))) (T -1210)) +((-4080 (*1 *2 *3) (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-169 *3)) (-5 *1 (-1210 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-112)) (-5 *1 (-1210 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3))))) (-4075 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3))))) (-4074 (*1 *2 *2 *3) (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *3)))))) +(-10 -7 (-15 -4074 (|#2| |#2|)) (-15 -4074 (|#2| |#2| (-1181))) (-15 -4075 (|#2| |#2|)) (-15 -4075 (|#2| |#2| (-1181))) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 ((-112) |#2|)) (-15 -4080 ((-169 |#2|) |#2|))) +((-4081 ((|#4| |#4| |#1|) 32)) (-4082 ((|#4| |#4| |#1|) 33))) +(((-1211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4081 (|#4| |#4| |#1|)) (-15 -4082 (|#4| |#4| |#1|))) (-561) (-375 |#1|) (-375 |#1|) (-689 |#1| |#2| |#3|)) (T -1211)) +((-4082 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1211 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) (-4081 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1211 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) +(-10 -7 (-15 -4081 (|#4| |#4| |#1|)) (-15 -4082 (|#4| |#4| |#1|))) +((-4100 ((|#2| |#2|) 148)) (-4102 ((|#2| |#2|) 145)) (-4099 ((|#2| |#2|) 136)) (-4101 ((|#2| |#2|) 133)) (-4098 ((|#2| |#2|) 141)) (-4097 ((|#2| |#2|) 129)) (-4086 ((|#2| |#2|) 44)) (-4085 ((|#2| |#2|) 105)) (-4083 ((|#2| |#2|) 88)) (-4096 ((|#2| |#2|) 143)) (-4095 ((|#2| |#2|) 131)) (-4108 ((|#2| |#2|) 153)) (-4106 ((|#2| |#2|) 151)) (-4107 ((|#2| |#2|) 152)) (-4105 ((|#2| |#2|) 150)) (-4084 ((|#2| |#2|) 163)) (-4109 ((|#2| |#2|) 30 (-12 (|has| |#2| (-617 (-894 |#1|))) (|has| |#2| (-890 |#1|)) (|has| |#1| (-617 (-894 |#1|))) (|has| |#1| (-890 |#1|))))) (-4087 ((|#2| |#2|) 89)) (-4088 ((|#2| |#2|) 154)) (-4397 ((|#2| |#2|) 155)) (-4094 ((|#2| |#2|) 142)) (-4093 ((|#2| |#2|) 130)) (-4092 ((|#2| |#2|) 149)) (-4104 ((|#2| |#2|) 147)) (-4091 ((|#2| |#2|) 137)) (-4103 ((|#2| |#2|) 135)) (-4090 ((|#2| |#2|) 139)) (-4089 ((|#2| |#2|) 127))) +(((-1212 |#1| |#2|) (-10 -7 (-15 -4397 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (IF (|has| |#1| (-890 |#1|)) (IF (|has| |#1| (-617 (-894 |#1|))) (IF (|has| |#2| (-617 (-894 |#1|))) (IF (|has| |#2| (-890 |#1|)) (-15 -4109 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-456) (-13 (-425 |#1|) (-1206))) (T -1212)) +((-4109 (*1 *2 *2) (-12 (-4 *3 (-617 (-894 *3))) (-4 *3 (-890 *3)) (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-617 (-894 *3))) (-4 *2 (-890 *3)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) (-4397 (*1 *2 *2) (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) +(-10 -7 (-15 -4397 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (IF (|has| |#1| (-890 |#1|)) (IF (|has| |#1| (-617 (-894 |#1|))) (IF (|has| |#2| (-617 (-894 |#1|))) (IF (|has| |#2| (-890 |#1|)) (-15 -4109 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1181)) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4248 (((-950 |#1|) $ (-774)) 20) (((-950 |#1|) $ (-774) (-774)) NIL)) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-774) $ (-1181)) NIL) (((-774) $ (-1181) (-774)) NIL)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4371 (((-112) $) NIL)) (-3296 (($ $ (-644 (-1181)) (-644 (-535 (-1181)))) NIL) (($ $ (-1181) (-535 (-1181))) NIL) (($ |#1| (-535 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-4246 (($ $ (-1181)) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181) |#1|) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-4110 (($ (-1 $) (-1181) |#1|) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4202 (($ $ (-774)) NIL)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4201 (($ $ (-1181) $) NIL) (($ $ (-644 (-1181)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-4244 (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-4382 (((-535 (-1181)) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-1181)) NIL) (($ (-950 |#1|)) NIL)) (-4111 ((|#1| $ (-535 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (((-950 |#1|) $ (-774)) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3074 (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1213 |#1|) (-13 (-743 |#1| (-1181)) (-10 -8 (-15 -4111 ((-950 |#1|) $ (-774))) (-15 -4380 ($ (-1181))) (-15 -4380 ($ (-950 |#1|))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $ (-1181) |#1|)) (-15 -4110 ($ (-1 $) (-1181) |#1|))) |%noBranch|))) (-1053)) (T -1213)) +((-4111 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-950 *4)) (-5 *1 (-1213 *4)) (-4 *4 (-1053)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1213 *3)) (-4 *3 (-1053)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1053)) (-5 *1 (-1213 *3)))) (-4246 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *1 (-1213 *3)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)))) (-4110 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1213 *4))) (-5 *3 (-1181)) (-5 *1 (-1213 *4)) (-4 *4 (-38 (-411 (-550)))) (-4 *4 (-1053))))) +(-13 (-743 |#1| (-1181)) (-10 -8 (-15 -4111 ((-950 |#1|) $ (-774))) (-15 -4380 ($ (-1181))) (-15 -4380 ($ (-950 |#1|))) (IF (|has| |#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $ (-1181) |#1|)) (-15 -4110 ($ (-1 $) (-1181) |#1|))) |%noBranch|))) +((-4127 (((-112) |#5| $) 68) (((-112) $) 110)) (-4122 ((|#5| |#5| $) 83)) (-4144 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4123 (((-644 |#5|) (-644 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3579 (((-3 $ "failed") (-644 |#5|)) 135)) (-4232 (((-3 $ "failed") $) 120)) (-4119 ((|#5| |#5| $) 102)) (-4128 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4117 ((|#5| |#5| $) 106)) (-4276 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4130 (((-2 (|:| -4295 (-644 |#5|)) (|:| -1872 (-644 |#5|))) $) 63)) (-4129 (((-112) |#5| $) 66) (((-112) $) 111)) (-3602 ((|#4| $) 116)) (-4231 (((-3 |#5| "failed") $) 118)) (-4131 (((-644 |#5|) $) 55)) (-4125 (((-112) |#5| $) 75) (((-112) $) 115)) (-4120 ((|#5| |#5| $) 89)) (-4133 (((-112) $ $) 29)) (-4126 (((-112) |#5| $) 71) (((-112) $) 113)) (-4121 ((|#5| |#5| $) 86)) (-4234 (((-3 |#5| "failed") $) 117)) (-4202 (($ $ |#5|) 136)) (-4382 (((-774) $) 60)) (-3955 (($ (-644 |#5|)) 133)) (-3313 (($ $ |#4|) 131)) (-3315 (($ $ |#4|) 129)) (-4118 (($ $) 128)) (-4380 (((-866) $) NIL) (((-644 |#5|) $) 121)) (-4112 (((-774) $) 140)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4124 (((-112) $ (-1 (-112) |#5| (-644 |#5|))) 108)) (-4114 (((-644 |#4|) $) 123)) (-4367 (((-112) |#4| $) 126)) (-3457 (((-112) $ $) 20))) +(((-1214 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4112 ((-774) |#1|)) (-15 -4202 (|#1| |#1| |#5|)) (-15 -4144 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4367 ((-112) |#4| |#1|)) (-15 -4114 ((-644 |#4|) |#1|)) (-15 -4232 ((-3 |#1| "failed") |#1|)) (-15 -4231 ((-3 |#5| "failed") |#1|)) (-15 -4234 ((-3 |#5| "failed") |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -4119 (|#5| |#5| |#1|)) (-15 -4120 (|#5| |#5| |#1|)) (-15 -4121 (|#5| |#5| |#1|)) (-15 -4122 (|#5| |#5| |#1|)) (-15 -4123 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4276 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4125 ((-112) |#1|)) (-15 -4126 ((-112) |#1|)) (-15 -4127 ((-112) |#1|)) (-15 -4124 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -4125 ((-112) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1|)) (-15 -4127 ((-112) |#5| |#1|)) (-15 -4128 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4129 ((-112) |#1|)) (-15 -4129 ((-112) |#5| |#1|)) (-15 -4130 ((-2 (|:| -4295 (-644 |#5|)) (|:| -1872 (-644 |#5|))) |#1|)) (-15 -4382 ((-774) |#1|)) (-15 -4131 ((-644 |#5|) |#1|)) (-15 -4132 ((-3 (-2 (|:| |bas| |#1|) (|:| -3750 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4132 ((-3 (-2 (|:| |bas| |#1|) (|:| -3750 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4133 ((-112) |#1| |#1|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3315 (|#1| |#1| |#4|)) (-15 -3602 (|#4| |#1|)) (-15 -3579 ((-3 |#1| "failed") (-644 |#5|))) (-15 -4380 ((-644 |#5|) |#1|)) (-15 -3955 (|#1| (-644 |#5|))) (-15 -4276 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4276 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4144 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4276 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) (-1215 |#2| |#3| |#4| |#5|) (-561) (-796) (-853) (-1069 |#2| |#3| |#4|)) (T -1214)) +NIL +(-10 -8 (-15 -4112 ((-774) |#1|)) (-15 -4202 (|#1| |#1| |#5|)) (-15 -4144 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4367 ((-112) |#4| |#1|)) (-15 -4114 ((-644 |#4|) |#1|)) (-15 -4232 ((-3 |#1| "failed") |#1|)) (-15 -4231 ((-3 |#5| "failed") |#1|)) (-15 -4234 ((-3 |#5| "failed") |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -4119 (|#5| |#5| |#1|)) (-15 -4120 (|#5| |#5| |#1|)) (-15 -4121 (|#5| |#5| |#1|)) (-15 -4122 (|#5| |#5| |#1|)) (-15 -4123 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4276 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4125 ((-112) |#1|)) (-15 -4126 ((-112) |#1|)) (-15 -4127 ((-112) |#1|)) (-15 -4124 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -4125 ((-112) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1|)) (-15 -4127 ((-112) |#5| |#1|)) (-15 -4128 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4129 ((-112) |#1|)) (-15 -4129 ((-112) |#5| |#1|)) (-15 -4130 ((-2 (|:| -4295 (-644 |#5|)) (|:| -1872 (-644 |#5|))) |#1|)) (-15 -4382 ((-774) |#1|)) (-15 -4131 ((-644 |#5|) |#1|)) (-15 -4132 ((-3 (-2 (|:| |bas| |#1|) (|:| -3750 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4132 ((-3 (-2 (|:| |bas| |#1|) (|:| -3750 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4133 ((-112) |#1| |#1|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3315 (|#1| |#1| |#4|)) (-15 -3602 (|#4| |#1|)) (-15 -3579 ((-3 |#1| "failed") (-644 |#5|))) (-15 -4380 ((-644 |#5|) |#1|)) (-15 -3955 (|#1| (-644 |#5|))) (-15 -4276 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4276 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4144 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4276 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4380 ((-866) |#1|)) (-15 -3457 ((-112) |#1| |#1|))) +((-2970 (((-112) $ $) 7)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) 86)) (-4116 (((-644 $) (-644 |#4|)) 87)) (-3487 (((-644 |#3|) $) 34)) (-3311 (((-112) $) 27)) (-3302 (((-112) $) 18 (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) 102) (((-112) $) 98)) (-4122 ((|#4| |#4| $) 93)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) 28)) (-1310 (((-112) $ (-774)) 45)) (-4144 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4427))) (((-3 |#4| "failed") $ |#3|) 80)) (-4158 (($) 46 T CONST)) (-3307 (((-112) $) 23 (|has| |#1| (-561)))) (-3309 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3308 (((-112) $ $) 24 (|has| |#1| (-561)))) (-3310 (((-112) $) 26 (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3303 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) 37)) (-3578 (($ (-644 |#4|)) 36)) (-4232 (((-3 $ "failed") $) 83)) (-4119 ((|#4| |#4| $) 90)) (-1441 (($ $) 69 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#4| $) 68 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4117 ((|#4| |#4| $) 88)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) 106)) (-2126 (((-644 |#4|) $) 53 (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) 105) (((-112) $) 104)) (-3602 ((|#3| $) 35)) (-4153 (((-112) $ (-774)) 44)) (-3010 (((-644 |#4|) $) 54 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) 48)) (-3317 (((-644 |#3|) $) 33)) (-3316 (((-112) |#3| $) 32)) (-4150 (((-112) $ (-774)) 43)) (-3665 (((-1163) $) 10)) (-4231 (((-3 |#4| "failed") $) 84)) (-4131 (((-644 |#4|) $) 108)) (-4125 (((-112) |#4| $) 100) (((-112) $) 96)) (-4120 ((|#4| |#4| $) 91)) (-4133 (((-112) $ $) 111)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) 101) (((-112) $) 97)) (-4121 ((|#4| |#4| $) 92)) (-3666 (((-1124) $) 11)) (-4234 (((-3 |#4| "failed") $) 85)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4113 (((-3 $ "failed") $ |#4|) 79)) (-4202 (($ $ |#4|) 78)) (-2128 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) 39)) (-3829 (((-112) $) 42)) (-3998 (($) 41)) (-4382 (((-774) $) 107)) (-2127 (((-774) |#4| $) 55 (-12 (|has| |#4| (-1105)) (|has| $ (-6 -4427)))) (((-774) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4427)))) (-3826 (($ $) 40)) (-4404 (((-539) $) 70 (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) 61)) (-3313 (($ $ |#3|) 29)) (-3315 (($ $ |#3|) 31)) (-4118 (($ $) 89)) (-3314 (($ $ |#3|) 30)) (-4380 (((-866) $) 12) (((-644 |#4|) $) 38)) (-4112 (((-774) $) 77 (|has| |#3| (-371)))) (-3664 (((-112) $ $) 9)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-2129 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) 82)) (-4367 (((-112) |#3| $) 81)) (-3457 (((-112) $ $) 6)) (-4391 (((-774) $) 47 (|has| $ (-6 -4427))))) +(((-1215 |#1| |#2| |#3| |#4|) (-140) (-561) (-796) (-853) (-1069 |t#1| |t#2| |t#3|)) (T -1215)) +((-4133 (*1 *2 *1 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-4132 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3750 (-644 *8)))) (-5 *3 (-644 *8)) (-4 *1 (-1215 *5 *6 *7 *8)))) (-4132 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1069 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-796)) (-4 *8 (-853)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3750 (-644 *9)))) (-5 *3 (-644 *9)) (-4 *1 (-1215 *6 *7 *8 *9)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *6)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-774)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-2 (|:| -4295 (-644 *6)) (|:| -1872 (-644 *6)))))) (-4129 (*1 *2 *3 *1) (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-4128 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1215 *5 *6 *7 *3)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-112)))) (-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-4126 (*1 *2 *3 *1) (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-4125 (*1 *2 *3 *1) (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1215 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) (-4276 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1215 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *2 (-1069 *5 *6 *7)))) (-4123 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1215 *5 *6 *7 *8)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)))) (-4122 (*1 *2 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4121 (*1 *2 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4120 (*1 *2 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4119 (*1 *2 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-1215 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-1069 *2 *3 *4)))) (-4117 (*1 *2 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1215 *4 *5 *6 *7)))) (-4115 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| -4295 *1) (|:| -1872 (-644 *7))))) (-5 *3 (-644 *7)) (-4 *1 (-1215 *4 *5 *6 *7)))) (-4234 (*1 *2 *1) (|partial| -12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4231 (*1 *2 *1) (|partial| -12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4232 (*1 *1 *1) (|partial| -12 (-4 *1 (-1215 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-1069 *2 *3 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *5)))) (-4367 (*1 *2 *3 *1) (-12 (-4 *1 (-1215 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *3 (-853)) (-4 *6 (-1069 *4 *5 *3)) (-5 *2 (-112)))) (-4144 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1215 *4 *5 *3 *2)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *3 (-853)) (-4 *2 (-1069 *4 *5 *3)))) (-4113 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *5 (-371)) (-5 *2 (-774))))) +(-13 (-980 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4427) (-6 -4428) (-15 -4133 ((-112) $ $)) (-15 -4132 ((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4132 ((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4131 ((-644 |t#4|) $)) (-15 -4382 ((-774) $)) (-15 -4130 ((-2 (|:| -4295 (-644 |t#4|)) (|:| -1872 (-644 |t#4|))) $)) (-15 -4129 ((-112) |t#4| $)) (-15 -4129 ((-112) $)) (-15 -4128 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4127 ((-112) |t#4| $)) (-15 -4126 ((-112) |t#4| $)) (-15 -4125 ((-112) |t#4| $)) (-15 -4124 ((-112) $ (-1 (-112) |t#4| (-644 |t#4|)))) (-15 -4127 ((-112) $)) (-15 -4126 ((-112) $)) (-15 -4125 ((-112) $)) (-15 -4276 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4123 ((-644 |t#4|) (-644 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4122 (|t#4| |t#4| $)) (-15 -4121 (|t#4| |t#4| $)) (-15 -4120 (|t#4| |t#4| $)) (-15 -4119 (|t#4| |t#4| $)) (-15 -4118 ($ $)) (-15 -4117 (|t#4| |t#4| $)) (-15 -4116 ((-644 $) (-644 |t#4|))) (-15 -4115 ((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |t#4|)))) (-644 |t#4|))) (-15 -4234 ((-3 |t#4| "failed") $)) (-15 -4231 ((-3 |t#4| "failed") $)) (-15 -4232 ((-3 $ "failed") $)) (-15 -4114 ((-644 |t#3|) $)) (-15 -4367 ((-112) |t#3| $)) (-15 -4144 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4113 ((-3 $ "failed") $ |t#4|)) (-15 -4202 ($ $ |t#4|)) (IF (|has| |t#3| (-371)) (-15 -4112 ((-774) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-616 (-644 |#4|)) . T) ((-616 (-866)) . T) ((-151 |#4|) . T) ((-617 (-539)) |has| |#4| (-617 (-539))) ((-311 |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-493 |#4|) . T) ((-518 |#4| |#4|) -12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1105) . T) ((-1220) . T)) +((-4139 (($ |#1| (-644 (-644 (-947 (-226)))) (-112)) 19)) (-4138 (((-112) $ (-112)) 18)) (-4137 (((-112) $) 17)) (-4135 (((-644 (-644 (-947 (-226)))) $) 13)) (-4134 ((|#1| $) 8)) (-4136 (((-112) $) 15))) +(((-1216 |#1|) (-10 -8 (-15 -4134 (|#1| $)) (-15 -4135 ((-644 (-644 (-947 (-226)))) $)) (-15 -4136 ((-112) $)) (-15 -4137 ((-112) $)) (-15 -4138 ((-112) $ (-112))) (-15 -4139 ($ |#1| (-644 (-644 (-947 (-226)))) (-112)))) (-978)) (T -1216)) +((-4139 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-112)) (-5 *1 (-1216 *2)) (-4 *2 (-978)))) (-4138 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-978)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-978)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-978)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-1216 *3)) (-4 *3 (-978)))) (-4134 (*1 *2 *1) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-978))))) +(-10 -8 (-15 -4134 (|#1| $)) (-15 -4135 ((-644 (-644 (-947 (-226)))) $)) (-15 -4136 ((-112) $)) (-15 -4137 ((-112) $)) (-15 -4138 ((-112) $ (-112))) (-15 -4139 ($ |#1| (-644 (-644 (-947 (-226)))) (-112)))) +((-4141 (((-947 (-226)) (-947 (-226))) 31)) (-4140 (((-947 (-226)) (-226) (-226) (-226) (-226)) 10)) (-4143 (((-644 (-947 (-226))) (-947 (-226)) (-947 (-226)) (-947 (-226)) (-226) (-644 (-644 (-226)))) 60)) (-4270 (((-226) (-947 (-226)) (-947 (-226))) 27)) (-4268 (((-947 (-226)) (-947 (-226)) (-947 (-226))) 28)) (-4142 (((-644 (-644 (-226))) (-550)) 48)) (-4271 (((-947 (-226)) (-947 (-226)) (-947 (-226))) 26)) (-4273 (((-947 (-226)) (-947 (-226)) (-947 (-226))) 24)) (* (((-947 (-226)) (-226) (-947 (-226))) 22))) +(((-1217) (-10 -7 (-15 -4140 ((-947 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-947 (-226)) (-226) (-947 (-226)))) (-15 -4273 ((-947 (-226)) (-947 (-226)) (-947 (-226)))) (-15 -4271 ((-947 (-226)) (-947 (-226)) (-947 (-226)))) (-15 -4270 ((-226) (-947 (-226)) (-947 (-226)))) (-15 -4268 ((-947 (-226)) (-947 (-226)) (-947 (-226)))) (-15 -4141 ((-947 (-226)) (-947 (-226)))) (-15 -4142 ((-644 (-644 (-226))) (-550))) (-15 -4143 ((-644 (-947 (-226))) (-947 (-226)) (-947 (-226)) (-947 (-226)) (-226) (-644 (-644 (-226))))))) (T -1217)) +((-4143 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-644 (-644 (-226)))) (-5 *4 (-226)) (-5 *2 (-644 (-947 *4))) (-5 *1 (-1217)) (-5 *3 (-947 *4)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-644 (-644 (-226)))) (-5 *1 (-1217)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) (-4268 (*1 *2 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) (-4270 (*1 *2 *3 *3) (-12 (-5 *3 (-947 (-226))) (-5 *2 (-226)) (-5 *1 (-1217)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) (-4273 (*1 *2 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-947 (-226))) (-5 *3 (-226)) (-5 *1 (-1217)))) (-4140 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)) (-5 *3 (-226))))) +(-10 -7 (-15 -4140 ((-947 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-947 (-226)) (-226) (-947 (-226)))) (-15 -4273 ((-947 (-226)) (-947 (-226)) (-947 (-226)))) (-15 -4271 ((-947 (-226)) (-947 (-226)) (-947 (-226)))) (-15 -4270 ((-226) (-947 (-226)) (-947 (-226)))) (-15 -4268 ((-947 (-226)) (-947 (-226)) (-947 (-226)))) (-15 -4141 ((-947 (-226)) (-947 (-226)))) (-15 -4142 ((-644 (-644 (-226))) (-550))) (-15 -4143 ((-644 (-947 (-226))) (-947 (-226)) (-947 (-226)) (-947 (-226)) (-226) (-644 (-644 (-226)))))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4144 ((|#1| $ (-774)) 18)) (-4267 (((-774) $) 13)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4380 (((-962 |#1|) $) 12) (($ (-962 |#1|)) 11) (((-866) $) 29 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3457 (((-112) $ $) 22 (|has| |#1| (-1105))))) +(((-1218 |#1|) (-13 (-494 (-962 |#1|)) (-10 -8 (-15 -4144 (|#1| $ (-774))) (-15 -4267 ((-774) $)) (IF (|has| |#1| (-616 (-866))) (-6 (-616 (-866))) |%noBranch|) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|))) (-1220)) (T -1218)) +((-4144 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-1218 *2)) (-4 *2 (-1220)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1218 *3)) (-4 *3 (-1220))))) +(-13 (-494 (-962 |#1|)) (-10 -8 (-15 -4144 (|#1| $ (-774))) (-15 -4267 ((-774) $)) (IF (|has| |#1| (-616 (-866))) (-6 (-616 (-866))) |%noBranch|) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|))) +((-4147 (((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-550)) 94)) (-4145 (((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|))) 86)) (-4146 (((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|))) 70))) +(((-1219 |#1|) (-10 -7 (-15 -4145 ((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -4146 ((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -4147 ((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-550)))) (-353)) (T -1219)) +((-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-550)) (-4 *5 (-353)) (-5 *2 (-409 (-1175 (-1175 *5)))) (-5 *1 (-1219 *5)) (-5 *3 (-1175 (-1175 *5))))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-409 (-1175 (-1175 *4)))) (-5 *1 (-1219 *4)) (-5 *3 (-1175 (-1175 *4))))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-409 (-1175 (-1175 *4)))) (-5 *1 (-1219 *4)) (-5 *3 (-1175 (-1175 *4)))))) +(-10 -7 (-15 -4145 ((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -4146 ((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -4147 ((-409 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-550)))) +NIL +(((-1220) (-140)) (T -1220)) +NIL +(-13 (-10 -7 (-6 -2435))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 9) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1221) (-1087)) (T -1221)) +NIL +(-1087) +((-4151 (((-112)) 18)) (-4148 (((-1276) (-644 |#1|) (-644 |#1|)) 22) (((-1276) (-644 |#1|)) 23)) (-4153 (((-112) |#1| |#1|) 37 (|has| |#1| (-853)))) (-4150 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-4152 ((|#1| (-644 |#1|)) 38 (|has| |#1| (-853))) ((|#1| (-644 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4149 (((-2 (|:| -3651 (-644 |#1|)) (|:| -3650 (-644 |#1|)))) 20))) +(((-1222 |#1|) (-10 -7 (-15 -4148 ((-1276) (-644 |#1|))) (-15 -4148 ((-1276) (-644 |#1|) (-644 |#1|))) (-15 -4149 ((-2 (|:| -3651 (-644 |#1|)) (|:| -3650 (-644 |#1|))))) (-15 -4150 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4150 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4152 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4151 ((-112))) (IF (|has| |#1| (-853)) (PROGN (-15 -4152 (|#1| (-644 |#1|))) (-15 -4153 ((-112) |#1| |#1|))) |%noBranch|)) (-1105)) (T -1222)) +((-4153 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-853)) (-4 *3 (-1105)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-853)) (-5 *1 (-1222 *2)))) (-4151 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1105)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-1105)))) (-4150 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1105)) (-5 *2 (-112)) (-5 *1 (-1222 *3)))) (-4150 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1105)))) (-4149 (*1 *2) (-12 (-5 *2 (-2 (|:| -3651 (-644 *3)) (|:| -3650 (-644 *3)))) (-5 *1 (-1222 *3)) (-4 *3 (-1105)))) (-4148 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1105)) (-5 *2 (-1276)) (-5 *1 (-1222 *4)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1105)) (-5 *2 (-1276)) (-5 *1 (-1222 *4))))) +(-10 -7 (-15 -4148 ((-1276) (-644 |#1|))) (-15 -4148 ((-1276) (-644 |#1|) (-644 |#1|))) (-15 -4149 ((-2 (|:| -3651 (-644 |#1|)) (|:| -3650 (-644 |#1|))))) (-15 -4150 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4150 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4152 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4151 ((-112))) (IF (|has| |#1| (-853)) (PROGN (-15 -4152 (|#1| (-644 |#1|))) (-15 -4153 ((-112) |#1| |#1|))) |%noBranch|)) +((-4154 (((-1276) (-644 (-1181)) (-644 (-1181))) 14) (((-1276) (-644 (-1181))) 12)) (-4156 (((-1276)) 16)) (-4155 (((-2 (|:| -3650 (-644 (-1181))) (|:| -3651 (-644 (-1181))))) 20))) +(((-1223) (-10 -7 (-15 -4154 ((-1276) (-644 (-1181)))) (-15 -4154 ((-1276) (-644 (-1181)) (-644 (-1181)))) (-15 -4155 ((-2 (|:| -3650 (-644 (-1181))) (|:| -3651 (-644 (-1181)))))) (-15 -4156 ((-1276))))) (T -1223)) +((-4156 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1223)))) (-4155 (*1 *2) (-12 (-5 *2 (-2 (|:| -3650 (-644 (-1181))) (|:| -3651 (-644 (-1181))))) (-5 *1 (-1223)))) (-4154 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1276)) (-5 *1 (-1223)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1276)) (-5 *1 (-1223))))) +(-10 -7 (-15 -4154 ((-1276) (-644 (-1181)))) (-15 -4154 ((-1276) (-644 (-1181)) (-644 (-1181)))) (-15 -4155 ((-2 (|:| -3650 (-644 (-1181))) (|:| -3651 (-644 (-1181)))))) (-15 -4156 ((-1276)))) +((-4208 (($ $) 17)) (-4157 (((-112) $) 28))) +(((-1224 |#1|) (-10 -8 (-15 -4208 (|#1| |#1|)) (-15 -4157 ((-112) |#1|))) (-1225)) (T -1224)) +NIL +(-10 -8 (-15 -4208 (|#1| |#1|)) (-15 -4157 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 57)) (-4403 (((-409 $) $) 58)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-4157 (((-112) $) 59)) (-2575 (((-112) $) 35)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-4166 (((-409 $) $) 56)) (-3891 (((-3 $ "failed") $ $) 48)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27))) +(((-1225) (-140)) (T -1225)) +((-4157 (*1 *2 *1) (-12 (-4 *1 (-1225)) (-5 *2 (-112)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1225)))) (-4208 (*1 *1 *1) (-4 *1 (-1225))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1225))))) +(-13 (-456) (-10 -8 (-15 -4157 ((-112) $)) (-15 -4403 ((-409 $) $)) (-15 -4208 ($ $)) (-15 -4166 ((-409 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-292) . T) ((-456) . T) ((-561) . T) ((-649 (-550)) . T) ((-649 $) . T) ((-651 $) . T) ((-643 $) . T) ((-720 $) . T) ((-729) . T) ((-1055 $) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-4159 (($ $ $) NIL)) (-4160 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-1226) (-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386)))) (T -1226)) +((-4160 (*1 *1 *1 *1) (-5 *1 (-1226))) (-4159 (*1 *1 *1 *1) (-5 *1 (-1226))) (-4158 (*1 *1) (-5 *1 (-1226)))) +(-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-1226) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1226)) -((-4158 (*1 *1 *1 *1) (-5 *1 (-1226))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1226))) (-4156 (*1 *1) (-5 *1 (-1226)))) -(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-4159 (($ $ $) NIL)) (-4160 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-1227) (-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386)))) (T -1227)) +((-4160 (*1 *1 *1 *1) (-5 *1 (-1227))) (-4159 (*1 *1 *1 *1) (-5 *1 (-1227))) (-4158 (*1 *1) (-5 *1 (-1227)))) +(-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-1227) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1227)) -((-4158 (*1 *1 *1 *1) (-5 *1 (-1227))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1227))) (-4156 (*1 *1) (-5 *1 (-1227)))) -(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-4159 (($ $ $) NIL)) (-4160 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-1228) (-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386)))) (T -1228)) +((-4160 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4159 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4158 (*1 *1) (-5 *1 (-1228)))) +(-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) -(((-1228) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1228)) -((-4158 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4156 (*1 *1) (-5 *1 (-1228)))) -(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) +((-2970 (((-112) $ $) NIL)) (-3542 (((-774)) NIL)) (-4158 (($) NIL T CONST)) (-3397 (($) NIL)) (-2936 (($ $ $) NIL) (($) NIL T CONST)) (-3262 (($ $ $) NIL) (($) NIL T CONST)) (-2190 (((-923) $) NIL)) (-3665 (((-1163) $) NIL)) (-2565 (($ (-923)) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) NIL)) (-4159 (($ $ $) NIL)) (-4160 (($ $ $) NIL)) (-3664 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-3090 (((-112) $ $) NIL))) +(((-1229) (-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386)))) (T -1229)) +((-4160 (*1 *1 *1 *1) (-5 *1 (-1229))) (-4159 (*1 *1 *1 *1) (-5 *1 (-1229))) (-4158 (*1 *1) (-5 *1 (-1229)))) +(-13 (-847) (-10 -8 (-15 -4160 ($ $ $)) (-15 -4159 ($ $ $)) (-15 -4158 ($) -4386))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 10)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2241 (($ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2239 (((-112) $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-4202 (($ $ (-549)) NIL) (($ $ (-549) (-549)) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-4163 (((-1259 |#1| |#2| |#3|) $) NIL)) (-4160 (((-3 (-1259 |#1| |#2| |#3|) "failed") $) NIL)) (-4161 (((-1259 |#1| |#2| |#3|) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1259 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-3 (-410 (-549)) #2#) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-549) #2#) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-3576 (((-1259 |#1| |#2| |#3|) $) NIL) (((-1180) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-410 (-549)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-549) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-4162 (($ $) NIL) (($ (-549) $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-1259 |#1| |#2| |#3|)) (-691 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-1259 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1259 |#1| |#2| |#3|)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365))))) (-3890 (((-3 $ "failed") $) NIL)) (-4159 (((-410 (-949 |#1|)) $ (-549)) NIL (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) NIL (|has| |#1| (-560)))) (-3395 (($) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3606 (((-112) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-889 (-380))) (|has| |#1| (-365)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-889 (-549))) (|has| |#1| (-365))))) (-4203 (((-549) $) NIL) (((-549) $ (-549)) NIL)) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL (|has| |#1| (-365)))) (-3399 (((-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-3607 (((-112) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4208 (($ $ (-922)) NIL)) (-4247 (($ (-1 |#1| (-549)) $) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-549)) 18) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-2934 (($ $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3260 (($ $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4210 (($ (-549) (-1259 |#1| |#2| |#3|)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 27 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 28 (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3532 (($ $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3534 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-549)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1180) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1180) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-294 (-1259 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-294 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1259 |#1| |#2| |#3|)) (-643 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) NIL) (($ $ $) NIL (|has| (-549) (-1115))) (($ $ (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-287 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1266 |#2|)) 26) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 25 (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3396 (($ $) NIL (|has| |#1| (-365)))) (-3398 (((-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-4380 (((-549) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-538) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-616 (-538))) (|has| |#1| (-365)))) (((-380) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-380)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-616 (-893 (-380)))) (|has| |#1| (-365)))) (((-893 (-549)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-616 (-893 (-549)))) (|has| |#1| (-365))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1259 |#1| |#2| |#3|)) NIL) (($ (-1266 |#2|)) 24) (($ (-1180)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (($ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560)))) (($ (-410 (-549))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-549))))))) (-4109 ((|#1| $ (-549)) NIL)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 11)) (-3535 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3510 (($) 20 T CONST)) (-3067 (($) 15 T CONST)) (-3072 (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2966 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-2967 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3088 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 22)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1259 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1229 |#1| |#2| |#3|) (-13 (-1233 |#1| (-1259 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1229)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1233 |#1| (-1259 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-4390 (((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)) 23))) -(((-1230 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4390 ((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)))) (-1052) (-1052) (-1180) (-1180) |#1| |#2|) (T -1230)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5 *7 *9)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1229 *6 *8 *10)) (-5 *1 (-1230 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1180))))) -(-10 -7 (-15 -4390 ((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 110) (($ $ (-549) (-549)) 109)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 185)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 183 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 182 (|has| |#1| (-560)))) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-549) $) 112) (((-549) $ (-549)) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113)) (-4247 (($ (-1 |#1| (-549)) $) 184)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-549)) 73) (($ $ (-1085) (-549)) 88) (($ $ (-643 (-1085)) (-643 (-549))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) 116) (($ $ $) 93 (|has| (-549) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-4380 (((-549) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-549)) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-1231 |#1|) (-140) (-1052)) (T -1231)) -((-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) (-4 *1 (-1231 *3)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1231 *3)) (-4 *3 (-1052)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) (-5 *2 (-410 (-949 *4))))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) (-5 *2 (-410 (-949 *4))))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) (-4244 (*1 *1 *1 *2) (-3960 (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) (-4 *3 (-38 (-410 (-549)))))) (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549))))))))) -(-13 (-1248 |t#1| (-549)) (-10 -8 (-15 -4250 ($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |t#1|))))) (-15 -4247 ($ (-1 |t#1| (-549)) $)) (IF (|has| |t#1| (-560)) (PROGN (-15 -4159 ((-410 (-949 |t#1|)) $ (-549))) (-15 -4159 ((-410 (-949 |t#1|)) $ (-549) (-549)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (IF (|has| |t#1| (-15 -4244 (|t#1| |t#1| (-1180)))) (IF (|has| |t#1| (-15 -3485 ((-643 (-1180)) |t#1|))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1205)) (IF (|has| |t#1| (-963)) (IF (|has| |t#1| (-29 (-549))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1005)) (-6 (-1205))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-549)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-549) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-549) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1224) |has| |#1| (-365)) ((-1248 |#1| #1#) . T)) -((-3608 (((-112) $) 12)) (-3577 (((-3 |#3| #1="failed") $) 17) (((-3 (-1180) #1#) $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL)) (-3576 ((|#3| $) 14) (((-1180) $) NIL) (((-410 (-549)) $) NIL) (((-549) $) NIL))) -(((-1232 |#1| |#2| |#3|) (-10 -8 (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3577 ((-3 |#3| #1#) |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) (-1233 |#2| |#3|) (-1052) (-1262 |#2|)) (T -1232)) -NIL -(-10 -8 (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3577 ((-3 |#3| #1#) |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 ((|#2| $) 242 (-3256 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 110) (($ $ (-549) (-549)) 109)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 117)) (-4163 ((|#2| $) 278)) (-4160 (((-3 |#2| "failed") $) 274)) (-4161 ((|#2| $) 275)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 251 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 248 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) 260 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 185)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#2| #2="failed") $) 281) (((-3 (-549) #2#) $) 271 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-410 (-549)) #2#) $) 269 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-1180) #2#) $) 253 (-3256 (|has| |#2| (-1041 (-1180))) (|has| |#1| (-365))))) (-3576 ((|#2| $) 282) (((-549) $) 270 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-410 (-549)) $) 268 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-1180) $) 252 (-3256 (|has| |#2| (-1041 (-1180))) (|has| |#1| (-365))))) (-4162 (($ $) 277) (($ (-549) $) 276)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-2427 (((-691 |#2|) (-691 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 230 (-3256 (|has| |#2| (-641 (-549))) (|has| |#1| (-365)))) (((-691 (-549)) (-691 $)) 229 (-3256 (|has| |#2| (-641 (-549))) (|has| |#1| (-365))))) (-3890 (((-3 $ "failed") $) 37)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 183 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 182 (|has| |#1| (-560)))) (-3395 (($) 244 (-3256 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3606 (((-112) $) 258 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 236 (-3256 (|has| |#2| (-889 (-380))) (|has| |#1| (-365)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 235 (-3256 (|has| |#2| (-889 (-549))) (|has| |#1| (-365))))) (-4203 (((-549) $) 112) (((-549) $ (-549)) 111)) (-2573 (((-112) $) 35)) (-3397 (($ $) 240 (|has| |#1| (-365)))) (-3399 ((|#2| $) 238 (|has| |#1| (-365)))) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) 272 (-3256 (|has| |#2| (-1154)) (|has| |#1| (-365))))) (-3607 (((-112) $) 259 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-4208 (($ $ (-922)) 113)) (-4247 (($ (-1 |#1| (-549)) $) 184)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-549)) 73) (($ $ (-1085) (-549)) 88) (($ $ (-643 (-1085)) (-643 (-549))) 87)) (-2934 (($ $ $) 262 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-3260 (($ $ $) 263 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-4390 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4210 (($ (-549) |#2|) 279)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3869 (($) 273 (-3256 (|has| |#2| (-1154)) (|has| |#1| (-365))) CONST)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3532 (($ $) 243 (-3256 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3534 ((|#2| $) 246 (-3256 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3108 (((-408 (-1174 $)) (-1174 $)) 249 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-3109 (((-408 (-1174 $)) (-1174 $)) 250 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) |#2|) 223 (-3256 (|has| |#2| (-517 (-1180) |#2|)) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 |#2|)) 222 (-3256 (|has| |#2| (-517 (-1180) |#2|)) (|has| |#1| (-365)))) (($ $ (-643 (-294 |#2|))) 221 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-294 |#2|)) 220 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-643 |#2|) (-643 |#2|)) 218 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) 116) (($ $ $) 93 (|has| (-549) (-1115))) (($ $ |#2|) 217 (-3256 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) 227 (|has| |#1| (-365))) (($ $ (-773)) 96 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 94 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) 101 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) 100 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) 99 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) 98 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3396 (($ $) 241 (|has| |#1| (-365)))) (-3398 ((|#2| $) 239 (|has| |#1| (-365)))) (-4380 (((-549) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-225) $) 257 (-3256 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-380) $) 256 (-3256 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-538) $) 255 (-3256 (|has| |#2| (-616 (-538))) (|has| |#1| (-365)))) (((-893 (-380)) $) 234 (-3256 (|has| |#2| (-616 (-893 (-380)))) (|has| |#1| (-365)))) (((-893 (-549)) $) 233 (-3256 (|has| |#2| (-616 (-893 (-549)))) (|has| |#1| (-365))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 247 (-3256 (-3256 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#1| (-365))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1180)) 254 (-3256 (|has| |#2| (-1041 (-1180))) (|has| |#1| (-365)))) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-549)) 71)) (-3105 (((-3 $ "failed") $) 60 (-3960 (-3256 (-3960 (|has| |#2| (-145)) (-3256 (|has| $ (-145)) (|has| |#2| (-913)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3535 ((|#2| $) 245 (-3256 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) 261 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) 225 (|has| |#1| (-365))) (($ $ (-773)) 97 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 95 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) 105 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) 104 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) 103 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) 102 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2966 (((-112) $ $) 265 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-2967 (((-112) $ $) 266 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 264 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-3088 (((-112) $ $) 267 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-1233 |#1| |#2|) (-140) (-1052) (-1262 |t#1|)) (T -1233)) -((-4380 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1262 *3)) (-5 *2 (-549)))) (-4210 (*1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *4 (-1052)) (-4 *1 (-1233 *4 *3)) (-4 *3 (-1262 *4)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3)))) (-4162 (*1 *1 *1) (-12 (-4 *1 (-1233 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1262 *2)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1262 *3)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) -(-13 (-1231 |t#1|) (-1041 |t#2|) (-618 |t#2|) (-10 -8 (-15 -4210 ($ (-549) |t#2|)) (-15 -4380 ((-549) $)) (-15 -4163 (|t#2| $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)) (-15 -4161 (|t#2| $)) (-15 -4160 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-994 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-549)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 #3=(-1180)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) ((-618 |#1|) |has| |#1| (-172)) ((-618 |#2|) . T) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-616 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-616 (-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-616 (-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-549))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -3960 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-549) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-517 (-1180) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 |#2|) |has| |#1| (-365)) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 |#2|) |has| |#1| (-365)) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 |#2|) |has| |#1| (-365)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-641 (-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549)))) ((-641 |#2|) |has| |#1| (-365)) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 |#2|) |has| |#1| (-365)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-794) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-799) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-822) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-850) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-852) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-852))) (-12 (|has| |#1| (-365)) (|has| |#2| (-822)))) ((-903 (-1180)) -3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180))))) ((-889 (-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-549)))) ((-887 |#2|) |has| |#1| (-365)) ((-913) -12 (|has| |#1| (-365)) (|has| |#2| (-913))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-994 |#2|) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1023) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-1041 (-410 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549)))) ((-1041 (-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549)))) ((-1041 #3#) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) ((-1041 |#2|) . T) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 |#2|) |has| |#1| (-365)) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 |#2|) |has| |#1| (-365)) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) -12 (|has| |#1| (-365)) (|has| |#2| (-1154))) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1219) |has| |#1| (-365)) ((-1224) |has| |#1| (-365)) ((-1231 |#1|) . T) ((-1248 |#1| #1#) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 81)) (-3533 ((|#2| $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-308))))) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 100)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 109) (($ $ (-549) (-549)) 111)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 51)) (-4163 ((|#2| $) 11)) (-4160 (((-3 |#2| "failed") $) 35)) (-4161 ((|#2| $) 36)) (-3915 (($ $) 206 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 182 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) 202 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 178 (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 59)) (-3917 (($ $) 210 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 186 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) 157) (((-3 (-549) #2#) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-3 (-410 (-549)) #2#) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-3 (-1180) #2#) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))))) (-3576 ((|#2| $) 156) (((-549) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-410 (-549)) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-1180) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))))) (-4162 (($ $) 65) (($ (-549) $) 28)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 |#2|) (-691 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549))))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549)))))) (-3890 (((-3 $ "failed") $) 88)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 124 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 126 (|has| |#1| (-560)))) (-3395 (($) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-548))))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3606 (((-112) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-3293 (((-112) $) 74)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-889 (-549)))))) (-4203 (((-549) $) 105) (((-549) $ (-549)) 107)) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL (|has| |#1| (-365)))) (-3399 ((|#2| $) 165 (|has| |#1| (-365)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1154))))) (-3607 (((-112) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-4208 (($ $ (-922)) 148)) (-4247 (($ (-1 |#1| (-549)) $) 144)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-549)) 20) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-2934 (($ $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-3260 (($ $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-4390 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-4374 (($ $) 176 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4210 (($ (-549) |#2|) 10)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 159 (|has| |#1| (-365)))) (-4244 (($ $) 228 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 233 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))))))) (-3869 (($) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1154))) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3532 (($ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-308))))) (-3534 ((|#2| $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-548))))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 138)) (-3889 (((-3 $ "failed") $ $) 128 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) 174 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) |#2|) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|)))) (($ $ (-643 (-1180)) (-643 |#2|)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) 103) (($ $ $) 90 (|has| (-549) (-1115))) (($ $ |#2|) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 149 (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180)) 153 (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180))))))) (-3396 (($ $) NIL (|has| |#1| (-365)))) (-3398 ((|#2| $) 166 (|has| |#1| (-365)))) (-4380 (((-549) $) 12)) (-3918 (($ $) 212 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 188 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 208 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 184 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 204 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 180 (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-225) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1023)))) (((-380) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1023)))) (((-538) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-616 (-538))))) (((-893 (-380)) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-549))))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-365)) (|has| |#2| (-913))))) (-3292 (($ $) 136)) (-4378 (((-865) $) 267) (($ (-549)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1180)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180))))) (($ (-410 (-549))) 169 (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-549)) 85)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-365)) (|has| |#2| (-913))) (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))))) (-3530 (((-773)) 155 T CONST)) (-4204 ((|#1| $) 102)) (-3535 ((|#2| $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-548))))) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 218 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 194 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 214 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 190 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 222 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 198 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 224 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 200 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 220 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 196 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 216 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 192 (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-3510 (($) 13 T CONST)) (-3067 (($) 18 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180))))))) (-2966 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-2967 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-3455 (((-112) $ $) 72)) (-3087 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-3088 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-4269 (($ $) 227) (($ $ $) 78)) (-4271 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-773)) 84) (($ $ (-549)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 172 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1234 |#1| |#2|) (-1233 |#1| |#2|) (-1052) (-1262 |#1|)) (T -1234)) -NIL -(-1233 |#1| |#2|) -((-4166 (((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)) 13)) (-4165 (((-408 |#1|) |#1|) 26)) (-4164 (((-408 |#1|) |#1|) 24))) -(((-1235 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)))) (-1245 (-549))) (T -1235)) -((-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) -(-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)))) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4168 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4390 (((-1157 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-850)))) (-3649 ((|#1| $) 15)) (-3651 ((|#1| $) 12)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3647 (((-549) $) 19)) (-3648 ((|#1| $) 18)) (-3650 ((|#1| $) 13)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4167 (((-112) $) 17)) (-4395 (((-1157 |#1|) $) 41 (|has| |#1| (-850))) (((-1157 |#1|) (-643 $)) 40 (|has| |#1| (-850)))) (-4402 (($ |#1|) 26)) (-4378 (($ (-1092 |#1|)) 25) (((-865) $) 37 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4169 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3652 (($ $ (-549)) 14)) (-3455 (((-112) $ $) 30 (|has| |#1| (-1104))))) -(((-1236 |#1|) (-13 (-1097 |#1|) (-10 -8 (-15 -4169 ($ |#1|)) (-15 -4168 ($ |#1|)) (-15 -4378 ($ (-1092 |#1|))) (-15 -4167 ((-112) $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-1157 |#1|))) |%noBranch|))) (-1219)) (T -1236)) -((-4169 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-4168 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219))))) -(-13 (-1097 |#1|) (-10 -8 (-15 -4169 ($ |#1|)) (-15 -4168 ($ |#1|)) (-15 -4378 ($ (-1092 |#1|))) (-15 -4167 ((-112) $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-1157 |#1|))) |%noBranch|))) -((-4390 (((-1157 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 23 (|has| |#1| (-850))) (((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 17))) -(((-1237 |#1| |#2|) (-10 -7 (-15 -4390 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1237)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1157 *6)) (-5 *1 (-1237 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1236 *6)) (-5 *1 (-1237 *5 *6))))) -(-10 -7 (-15 -4390 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4198 (((-1269 |#2|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#2|)) NIL)) (-3487 (((-1174 $) $ (-1085)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) NIL (|has| |#2| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#2| (-365)))) (-4192 (($ $ (-773)) NIL)) (-4191 (($ $ (-773)) NIL)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-1085) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2964 (($ $ $) NIL (|has| |#2| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#2| (-365)))) (-4190 (($ $ $) NIL)) (-4185 (($ $ $) NIL (|has| |#2| (-560)))) (-4184 (((-2 (|:| -4386 |#2|) (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#2| (-365)))) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1085)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-773) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-4203 (((-773) $ $) NIL (|has| |#2| (-560)))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-3488 (($ (-1174 |#2|) (-1085)) NIL) (($ (-1174 $) (-1085)) NIL)) (-4208 (($ $ (-773)) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-773)) 18) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4197 (((-1174 |#2|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) NIL)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#2| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#2| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-4170 (($ $ (-773) |#2| $) NIL)) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#2|) NIL) (($ $ (-643 (-1085)) (-643 |#2|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#2| (-365)))) (-4231 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-560))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4380 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1085)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#2| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#2| (-560)))) (-4378 (((-865) $) 13) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1085)) NIL) (($ (-1266 |#1|)) 20) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) 14 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1238 |#1| |#2|) (-13 (-1245 |#2|) (-618 (-1266 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#2| $)))) (-1180) (-1052)) (T -1238)) -((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1238 *4 *3)) (-14 *4 (-1180)) (-4 *3 (-1052))))) -(-13 (-1245 |#2|) (-618 (-1266 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#2| $)))) -((-4390 (((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)) 15))) -(((-1239 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 ((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)))) (-1180) (-1052) (-1180) (-1052)) (T -1239)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1238 *5 *6)) (-14 *5 (-1180)) (-4 *6 (-1052)) (-4 *8 (-1052)) (-5 *2 (-1238 *7 *8)) (-5 *1 (-1239 *5 *6 *7 *8)) (-14 *7 (-1180))))) -(-10 -7 (-15 -4390 ((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)))) -((-4173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4171 ((|#1| |#3|) 13)) (-4172 ((|#3| |#3|) 19))) -(((-1240 |#1| |#2| |#3|) (-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-560) (-994 |#1|) (-1245 |#2|)) (T -1240)) -((-4173 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1240 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-1240 *3 *4 *2)) (-4 *2 (-1245 *4)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-1240 *2 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4175 (((-3 |#2| "failed") |#2| (-773) |#1|) 37)) (-4174 (((-3 |#2| "failed") |#2| (-773)) 38)) (-4177 (((-3 (-2 (|:| -3542 |#2|) (|:| -3541 |#2|)) "failed") |#2|) 52)) (-4178 (((-643 |#2|) |#2|) 54)) (-4176 (((-3 |#2| "failed") |#2| |#2|) 48))) -(((-1241 |#1| |#2|) (-10 -7 (-15 -4174 ((-3 |#2| "failed") |#2| (-773))) (-15 -4175 ((-3 |#2| "failed") |#2| (-773) |#1|)) (-15 -4176 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4177 ((-3 (-2 (|:| -3542 |#2|) (|:| -3541 |#2|)) "failed") |#2|)) (-15 -4178 ((-643 |#2|) |#2|))) (-13 (-560) (-147)) (-1245 |#1|)) (T -1241)) -((-4178 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-643 *3)) (-5 *1 (-1241 *4 *3)) (-4 *3 (-1245 *4)))) (-4177 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-1241 *4 *3)) (-4 *3 (-1245 *4)))) (-4176 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))) (-4175 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4)))) (-4174 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4))))) -(-10 -7 (-15 -4174 ((-3 |#2| "failed") |#2| (-773))) (-15 -4175 ((-3 |#2| "failed") |#2| (-773) |#1|)) (-15 -4176 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4177 ((-3 (-2 (|:| -3542 |#2|) (|:| -3541 |#2|)) "failed") |#2|)) (-15 -4178 ((-643 |#2|) |#2|))) -((-4179 (((-3 (-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|) 30))) -(((-1242 |#1| |#2|) (-10 -7 (-15 -4179 ((-3 (-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|))) (-560) (-1245 |#1|)) (T -1242)) -((-4179 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-1242 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -4179 ((-3 (-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|))) -((-4180 ((|#2| |#2| |#2|) 22)) (-4181 ((|#2| |#2| |#2|) 36)) (-4182 ((|#2| |#2| |#2| (-773) (-773)) 44))) -(((-1243 |#1| |#2|) (-10 -7 (-15 -4180 (|#2| |#2| |#2|)) (-15 -4181 (|#2| |#2| |#2|)) (-15 -4182 (|#2| |#2| |#2| (-773) (-773)))) (-1052) (-1245 |#1|)) (T -1243)) -((-4182 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-1243 *4 *2)) (-4 *2 (-1245 *4)))) (-4181 (*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3)))) (-4180 (*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -4180 (|#2| |#2| |#2|)) (-15 -4181 (|#2| |#2| |#2|)) (-15 -4182 (|#2| |#2| |#2| (-773) (-773)))) -((-4198 (((-1269 |#2|) $ (-773)) 129)) (-3485 (((-643 (-1085)) $) 16)) (-4196 (($ (-1174 |#2|)) 80)) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) 21)) (-3110 (((-408 (-1174 $)) (-1174 $)) 204)) (-4206 (($ $) 194)) (-4401 (((-408 $) $) 192)) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 95)) (-4192 (($ $ (-773)) 84)) (-4191 (($ $ (-773)) 86)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3577 (((-3 |#2| #1="failed") $) 132) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 (-1085) #1#) $) NIL)) (-3576 ((|#2| $) 130) (((-410 (-549)) $) NIL) (((-549) $) NIL) (((-1085) $) NIL)) (-4185 (($ $ $) 170)) (-4184 (((-2 (|:| -4386 |#2|) (|:| -2152 $) (|:| -3303 $)) $ $) 172)) (-4203 (((-773) $ $) 189)) (-3868 (((-3 $ "failed") $) 138)) (-3294 (($ |#2| (-773)) NIL) (($ $ (-1085) (-773)) 59) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) 54) (((-643 (-773)) $ (-643 (-1085))) 55)) (-4197 (((-1174 |#2|) $) 72)) (-3486 (((-3 (-1085) "failed") $) 52)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) 83)) (-4244 (($ $) 219)) (-3869 (($) 134)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 201)) (-3108 (((-408 (-1174 $)) (-1174 $)) 101)) (-3109 (((-408 (-1174 $)) (-1174 $)) 99)) (-4164 (((-408 $) $) 120)) (-4199 (($ $ (-643 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#2|) 39) (($ $ (-643 (-1085)) (-643 |#2|)) 36) (($ $ (-1085) $) 32) (($ $ (-643 (-1085)) (-643 $)) 30)) (-1752 (((-773) $) 207)) (-4231 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 212)) (-4242 (($ $ (-1085)) 157) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) 155) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4380 (((-773) $) NIL) (((-773) $ (-1085)) 17) (((-643 (-773)) $ (-643 (-1085))) 23)) (-3220 ((|#2| $) NIL) (($ $ (-1085)) 140)) (-4186 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1085)) 64) (($ (-410 (-549))) NIL) (($ $) NIL))) -(((-1244 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4231 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4231 (|#2| (-410 |#1|) |#2|)) (-15 -4183 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4184 ((-2 (|:| -4386 |#2|) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4185 (|#1| |#1| |#1|)) (-15 -4186 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -4186 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4203 ((-773) |#1| |#1|)) (-15 -4231 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4191 (|#1| |#1| (-773))) (-15 -4192 (|#1| |#1| (-773))) (-15 -4193 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| (-773))) (-15 -4196 (|#1| (-1174 |#2|))) (-15 -4197 ((-1174 |#2|) |#1|)) (-15 -4198 ((-1269 |#2|) |#1| (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| |#2|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3110 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3220 (|#1| |#1| (-1085))) (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3222 ((-773) |#1| (-643 (-1085)))) (-15 -3222 ((-773) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -3294 (|#1| |#1| (-1085) (-773))) (-15 -3223 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -3223 ((-773) |#1| (-1085))) (-15 -3486 ((-3 (-1085) "failed") |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -4380 ((-773) |#1| (-1085))) (-15 -4378 (|#1| (-1085))) (-15 -3577 ((-3 (-1085) #1="failed") |#1|)) (-15 -3576 ((-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1085) |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 ((-773) |#1|)) (-15 -3294 (|#1| |#2| (-773))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3223 ((-773) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -4242 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1085) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1085)))) (-15 -4242 (|#1| |#1| (-1085))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1245 |#2|) (-1052)) (T -1244)) -NIL -(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4231 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4231 (|#2| (-410 |#1|) |#2|)) (-15 -4183 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4184 ((-2 (|:| -4386 |#2|) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4185 (|#1| |#1| |#1|)) (-15 -4186 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -4186 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4203 ((-773) |#1| |#1|)) (-15 -4231 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4191 (|#1| |#1| (-773))) (-15 -4192 (|#1| |#1| (-773))) (-15 -4193 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| (-773))) (-15 -4196 (|#1| (-1174 |#2|))) (-15 -4197 ((-1174 |#2|) |#1|)) (-15 -4198 ((-1269 |#2|) |#1| (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| |#2|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3110 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3220 (|#1| |#1| (-1085))) (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3222 ((-773) |#1| (-643 (-1085)))) (-15 -3222 ((-773) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -3294 (|#1| |#1| (-1085) (-773))) (-15 -3223 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -3223 ((-773) |#1| (-1085))) (-15 -3486 ((-3 (-1085) "failed") |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -4380 ((-773) |#1| (-1085))) (-15 -4378 (|#1| (-1085))) (-15 -3577 ((-3 (-1085) #1="failed") |#1|)) (-15 -3576 ((-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1085) |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 ((-773) |#1|)) (-15 -3294 (|#1| |#2| (-773))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3223 ((-773) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -4242 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1085) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1085)))) (-15 -4242 (|#1| |#1| (-1085))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4198 (((-1269 |#1|) $ (-773)) 240)) (-3485 (((-643 (-1085)) $) 112)) (-4196 (($ (-1174 |#1|)) 238)) (-3487 (((-1174 $) $ (-1085)) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 (-1085))) 113)) (-1407 (((-3 $ "failed") $ $) 20)) (-4187 (($ $ $) 225 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-1753 (((-112) $ $) 210 (|has| |#1| (-365)))) (-4192 (($ $ (-773)) 233)) (-4191 (($ $ (-773)) 232)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) 138)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) (((-1085) $) 139)) (-4188 (($ $ $ (-1085)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2964 (($ $ $) 214 (|has| |#1| (-365)))) (-4391 (($ $) 156)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 213 (|has| |#1| (-365)))) (-4190 (($ $ $) 231)) (-4185 (($ $ $) 222 (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) 221 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 208 (|has| |#1| (-365)))) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1085)) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-773) $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ $) 226 (|has| |#1| (-560)))) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-3868 (((-3 $ "failed") $) 206 (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) 119) (($ (-1174 $) (-1085)) 118)) (-4208 (($ $ (-773)) 237)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) 217 (|has| |#1| (-365)))) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| (-773)) 155) (($ $ (-1085) (-773)) 121) (($ $ (-643 (-1085)) (-643 (-773))) 120)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) 122) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 235)) (-3223 (((-773) $) 172) (((-773) $ (-1085)) 124) (((-643 (-773)) $ (-643 (-1085))) 123)) (-1770 (($ (-1 (-773) (-773)) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-4197 (((-1174 |#1|) $) 239)) (-3486 (((-3 (-1085) #4="failed") $) 125)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3663 (((-1162) $) 10)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) 234)) (-3226 (((-3 (-643 $) #4#) $) 116)) (-3225 (((-3 (-643 $) #4#) $) 117)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) 115)) (-4244 (($ $) 218 (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) 205 (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 215 (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 209 (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ (-1085) |#1|) 143) (($ $ (-643 (-1085)) (-643 |#1|)) 142) (($ $ (-1085) $) 141) (($ $ (-643 (-1085)) (-643 $)) 140)) (-1752 (((-773) $) 211 (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-560)))) (-4195 (((-3 $ "failed") $ (-773)) 236)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 212 (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) 46) (($ $ (-643 (-1085))) 45) (($ $ (-1085) (-773)) 44) (($ $ (-643 (-1085)) (-643 (-773))) 43) (($ $ (-773)) 255) (($ $) 253) (($ $ (-1180)) 252 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 251 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 250 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 249 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-4380 (((-773) $) 152) (((-773) $ (-1085)) 132) (((-643 (-773)) $ (-643 (-1085))) 131)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1085)) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4186 (((-3 $ "failed") $ $) 224 (|has| |#1| (-560))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-560)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ (-1085)) 137) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549)))))) (($ $) 87 (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ (-773)) 157) (($ $ (-1085) (-773)) 130) (($ $ (-643 (-1085)) (-643 (-773))) 129)) (-3105 (((-3 $ #1#) $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1085)) 42) (($ $ (-643 (-1085))) 41) (($ $ (-1085) (-773)) 40) (($ $ (-643 (-1085)) (-643 (-773))) 39) (($ $ (-773)) 256) (($ $) 254) (($ $ (-1180)) 248 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 247 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 246 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 245 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1245 |#1|) (-140) (-1052)) (T -1245)) -((-4198 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-1245 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-5 *2 (-1174 *3)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1052)) (-4 *1 (-1245 *3)))) (-4208 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4195 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4194 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *3)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *4)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4190 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)))) (-4242 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172)))) (-4188 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172)))) (-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)))) (-4203 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)) (-5 *2 (-773)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-4186 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-4186 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)))) (-4185 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-4184 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -4386 *3) (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *3)))) (-4183 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1245 *3)))) (-4231 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549))))))) -(-13 (-953 |t#1| (-773) (-1085)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4198 ((-1269 |t#1|) $ (-773))) (-15 -4197 ((-1174 |t#1|) $)) (-15 -4196 ($ (-1174 |t#1|))) (-15 -4208 ($ $ (-773))) (-15 -4195 ((-3 $ "failed") $ (-773))) (-15 -4194 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -4193 ((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773))) (-15 -4192 ($ $ (-773))) (-15 -4191 ($ $ (-773))) (-15 -4190 ($ $ $)) (-15 -4242 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4189 (|t#1| $)) (-15 -4188 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -4231 ((-410 $) (-410 $) (-410 $))) (-15 -4203 ((-773) $ $)) (-15 -4187 ($ $ $)) (-15 -4186 ((-3 $ "failed") $ $)) (-15 -4186 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -4185 ($ $ $)) (-15 -4184 ((-2 (|:| -4386 |t#1|) (|:| -2152 $) (|:| -3303 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -4183 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4421) (-15 -4231 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (-15 -4244 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-773)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 #3=(-1085)) . T) ((-618 |#1|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| (-1085) (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| (-1085) (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| (-1085) (-616 (-893 (-549))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-560)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #1#) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #3# |#1|) . T) ((-517 #3# $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-648 #2#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #2#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-728) . T) ((-903 #3#) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| (-1085) (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| (-1085) (-889 (-549)))) ((-953 |#1| #1# #3#) . T) ((-913) |has| |#1| (-913)) ((-924) |has| |#1| (-365)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #3#) . T) ((-1041 |#1|) . T) ((-1054 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-1154)) ((-1224) |has| |#1| (-913))) -((-4390 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1246 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) (-1052) (-1245 |#1|) (-1052) (-1245 |#3|)) (T -1246)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1245 *6)) (-5 *1 (-1246 *5 *4 *6 *2)) (-4 *4 (-1245 *5))))) -(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) -((-3485 (((-643 (-1085)) $) 34)) (-4391 (($ $) 31)) (-3294 (($ |#2| |#3|) NIL) (($ $ (-1085) |#3|) 28) (($ $ (-643 (-1085)) (-643 |#3|)) 27)) (-3295 (($ $) 14)) (-3594 ((|#2| $) 12)) (-4380 ((|#3| $) 10))) -(((-1247 |#1| |#2| |#3|) (-10 -8 (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 |#3|))) (-15 -3294 (|#1| |#1| (-1085) |#3|)) (-15 -4391 (|#1| |#1|)) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4380 (|#3| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3594 (|#2| |#1|))) (-1248 |#2| |#3|) (-1052) (-794)) (T -1247)) -NIL -(-10 -8 (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 |#3|))) (-15 -3294 (|#1| |#1| (-1085) |#3|)) (-15 -4391 (|#1| |#1|)) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4380 (|#3| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3594 (|#2| |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4205 (((-1157 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-3293 (((-112) $) 85)) (-4203 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2573 (((-112) $) 35)) (-4208 (($ $ (-922)) 113)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73) (($ $ (-1085) |#2|) 88) (($ $ (-643 (-1085)) (-643 |#2|)) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4200 (($ $ |#2|) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4231 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4380 ((|#2| $) 76)) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-4201 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-1248 |#1| |#2|) (-140) (-1052) (-794)) (T -1248)) -((-4205 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-1157 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-1180)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4208 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4203 (*1 *2 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4202 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4378 (*2 (-1180)))) (-4 *2 (-1052)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4199 (*1 *2 *1 *3) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1157 *3))))) -(-13 (-976 |t#1| |t#2| (-1085)) (-10 -8 (-15 -4205 ((-1157 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4231 (|t#1| $ |t#2|)) (-15 -4263 ((-1180) $)) (-15 -4204 (|t#1| $)) (-15 -4208 ($ $ (-922))) (-15 -4203 (|t#2| $)) (-15 -4203 (|t#2| $ |t#2|)) (-15 -4202 ($ $ |t#2|)) (-15 -4202 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4378 (|t#1| (-1180)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4201 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4200 ($ $ |t#2|)) (IF (|has| |t#2| (-1115)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4199 ((-1157 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1115)) ((-291) |has| |#1| (-560)) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-976 |#1| |#2| (-1085)) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-4206 ((|#2| |#2|) 12)) (-4401 (((-408 |#2|) |#2|) 14)) (-4207 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))) 30))) -(((-1249 |#1| |#2|) (-10 -7 (-15 -4401 ((-408 |#2|) |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4207 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))))) (-560) (-13 (-1245 |#1|) (-560) (-10 -8 (-15 -3564 ($ $ $))))) (T -1249)) -((-4207 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-549)))) (-4 *4 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $))))) (-4 *3 (-560)) (-5 *1 (-1249 *3 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-1249 *3 *2)) (-4 *2 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $))))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-1249 *4 *3)) (-4 *3 (-13 (-1245 *4) (-560) (-10 -8 (-15 -3564 ($ $ $)))))))) -(-10 -7 (-15 -4401 ((-408 |#2|) |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4207 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 11)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1229 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1259 |#1| |#2| |#3|) #1#) $) 22)) (-3576 (((-1229 |#1| |#2| |#3|) $) NIL) (((-1259 |#1| |#2| |#3|) $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4212 (((-410 (-549)) $) 69)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) (-1229 |#1| |#2| |#3|)) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) 30) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4211 (((-1229 |#1| |#2| |#3|) $) 72)) (-4209 (((-3 (-1229 |#1| |#2| |#3|) "failed") $) NIL)) (-4210 (((-1229 |#1| |#2| |#3|) $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 39 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 40 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $ (-1266 |#2|)) 38)) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 109) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1229 |#1| |#2| |#3|)) 16) (($ (-1259 |#1| |#2| |#3|)) 17) (($ (-1266 |#2|)) 36) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 12)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 32 T CONST)) (-3067 (($) 26 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 34)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1250 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1229 |#1| |#2| |#3|)) (-1041 (-1259 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1250)) -((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1254 |#1| (-1229 |#1| |#2| |#3|)) (-1041 (-1259 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-4390 (((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)) 24))) -(((-1251 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4390 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) (-1052) (-1052) (-1180) (-1180) |#1| |#2|) (T -1251)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1180))))) -(-10 -7 (-15 -4390 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) 110) (($ $ (-410 (-549)) (-410 (-549))) 109)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) 183)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) 112) (((-410 (-549)) $ (-410 (-549))) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113) (($ $ (-410 (-549))) 182)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-410 (-549))) 73) (($ $ (-1085) (-410 (-549))) 88) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) 116) (($ $ $) 93 (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-1252 |#1|) (-140) (-1052)) (T -1252)) -((-4250 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))) (-4 *4 (-1052)) (-4 *1 (-1252 *4)))) (-4208 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1252 *3)) (-4 *3 (-1052)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) (-4244 (*1 *1 *1 *2) (-3960 (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) (-4 *3 (-38 (-410 (-549)))))) (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549))))))))) -(-13 (-1248 |t#1| (-410 (-549))) (-10 -8 (-15 -4250 ($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |t#1|))))) (-15 -4208 ($ $ (-410 (-549)))) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (IF (|has| |t#1| (-15 -4244 (|t#1| |t#1| (-1180)))) (IF (|has| |t#1| (-15 -3485 ((-643 (-1180)) |t#1|))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1205)) (IF (|has| |t#1| (-963)) (IF (|has| |t#1| (-29 (-549))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1005)) (-6 (-1205))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-410 (-549))) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-410 (-549)) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1224) |has| |#1| (-365)) ((-1248 |#1| #1#) . T)) -((-3608 (((-112) $) 12)) (-3577 (((-3 |#3| "failed") $) 17)) (-3576 ((|#3| $) 14))) -(((-1253 |#1| |#2| |#3|) (-10 -8 (-15 -3577 ((-3 |#3| "failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) (-1254 |#2| |#3|) (-1052) (-1231 |#2|)) (T -1253)) -NIL -(-10 -8 (-15 -3577 ((-3 |#3| "failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) 110) (($ $ (-410 (-549)) (-410 (-549))) 109)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) 183)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#2| "failed") $) 194)) (-3576 ((|#2| $) 195)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4212 (((-410 (-549)) $) 191)) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) |#2|) 192)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) 112) (((-410 (-549)) $ (-410 (-549))) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113) (($ $ (-410 (-549))) 182)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-410 (-549))) 73) (($ $ (-1085) (-410 (-549))) 88) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4211 ((|#2| $) 190)) (-4209 (((-3 |#2| "failed") $) 188)) (-4210 ((|#2| $) 189)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) 116) (($ $ $) 93 (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-1254 |#1| |#2|) (-140) (-1052) (-1231 |t#1|)) (T -1254)) -((-4380 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) (-5 *2 (-410 (-549))))) (-4213 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-4 *4 (-1052)) (-4 *1 (-1254 *4 *3)) (-4 *3 (-1231 *4)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) (-5 *2 (-410 (-549))))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3)))) (-4209 (*1 *2 *1) (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) -(-13 (-1252 |t#1|) (-1041 |t#2|) (-618 |t#2|) (-10 -8 (-15 -4213 ($ (-410 (-549)) |t#2|)) (-15 -4212 ((-410 (-549)) $)) (-15 -4211 (|t#2| $)) (-15 -4380 ((-410 (-549)) $)) (-15 -4210 (|t#2| $)) (-15 -4209 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-410 (-549))) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 |#2|) . T) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-410 (-549)) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1041 |#2|) . T) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1224) |has| |#1| (-365)) ((-1248 |#1| #1#) . T) ((-1252 |#1|) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 104)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) 116) (($ $ (-410 (-549)) (-410 (-549))) 118)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 54)) (-3915 (($ $) 192 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 168 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) 188 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 164 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) 65)) (-3917 (($ $) 196 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 172 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| "failed") $) NIL)) (-3576 ((|#2| $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) 85)) (-4212 (((-410 (-549)) $) 13)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) |#2|) 11)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) 74)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) 113) (((-410 (-549)) $ (-410 (-549))) 114)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 130) (($ $ (-410 (-549))) 128)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) 33) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 125)) (-4374 (($ $) 162 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4211 ((|#2| $) 12)) (-4209 (((-3 |#2| "failed") $) 44)) (-4210 ((|#2| $) 45)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 101 (|has| |#1| (-365)))) (-4244 (($ $) 146 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 151 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) 122)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) 160 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) 108) (($ $ $) 94 (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 138 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) 16)) (-3918 (($ $) 198 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 174 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 194 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 170 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 190 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 166 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 120)) (-4378 (((-865) $) NIL) (($ (-549)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-549))) 139 (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 107)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 127 T CONST)) (-4204 ((|#1| $) 106)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 204 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 180 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 200 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 176 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 208 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 184 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 210 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 186 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 206 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 182 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 202 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 178 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 21 T CONST)) (-3067 (($) 17 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) 72)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-4269 (($ $) 142) (($ $ $) 78)) (-4271 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-773)) 82) (($ $ (-549)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 158 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1255 |#1| |#2|) (-1254 |#1| |#2|) (-1052) (-1231 |#1|)) (T -1255)) -NIL -(-1254 |#1| |#2|) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 37)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-410 (-549))))) (((-3 (-1250 |#2| |#3| |#4|) #1#) $) 22)) (-3576 (((-549) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-410 (-549))))) (((-1250 |#2| |#3| |#4|) $) NIL)) (-4391 (($ $) 41)) (-3890 (((-3 $ "failed") $) 27)) (-3926 (($ $) NIL (|has| (-1250 |#2| |#3| |#4|) (-455)))) (-1769 (($ $ (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 11)) (-4369 (((-112) $) NIL)) (-3294 (($ (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-3223 (((-320 |#2| |#3| |#4|) $) NIL)) (-1770 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-4390 (($ (-1 (-1250 |#2| |#3| |#4|) (-1250 |#2| |#3| |#4|)) $) NIL)) (-4215 (((-3 (-844 |#2|) "failed") $) 90)) (-3295 (($ $) NIL)) (-3594 (((-1250 |#2| |#3| |#4|) $) 20)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 (((-1250 |#2| |#3| |#4|) $) NIL)) (-3889 (((-3 $ "failed") $ (-1250 |#2| |#3| |#4|)) NIL (|has| (-1250 |#2| |#3| |#4|) (-560))) (((-3 $ "failed") $ $) NIL)) (-4214 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1162))) "failed") $) 74)) (-4380 (((-320 |#2| |#3| |#4|) $) 17)) (-3220 (((-1250 |#2| |#3| |#4|) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-1250 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL (-3960 (|has| (-1250 |#2| |#3| |#4|) (-1041 (-410 (-549)))) (|has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549))))))) (-4249 (((-643 (-1250 |#2| |#3| |#4|)) $) NIL)) (-4109 (((-1250 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-145)))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| (-1250 |#2| |#3| |#4|) (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ (-1250 |#2| |#3| |#4|)) NIL (|has| (-1250 |#2| |#3| |#4|) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-1250 |#2| |#3| |#4|)) NIL) (($ (-1250 |#2| |#3| |#4|) $) NIL) (($ (-410 (-549)) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549))))))) -(((-1256 |#1| |#2| |#3| |#4|) (-13 (-327 (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-560) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4214 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1162))) "failed") $)))) (-13 (-1041 (-549)) (-641 (-549)) (-455)) (-13 (-27) (-1205) (-424 |#1|)) (-1180) |#2|) (T -1256)) -((-4215 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1256 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4))) (-4214 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))))) (|:| |%type| (-1162)))) (-5 *1 (-1256 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4)))) -(-13 (-327 (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-560) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4214 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1162))) "failed") $)))) -((-3826 ((|#2| $) 34)) (-4226 ((|#2| $) 18)) (-4228 (($ $) 52)) (-4216 (($ $ (-549)) 85)) (-1309 (((-112) $ (-773)) 46)) (-3426 ((|#2| $ |#2|) 82)) (-4217 ((|#2| $ |#2|) 78)) (-4219 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3427 (($ $ (-643 $)) 81)) (-4227 ((|#2| $) 17)) (-4230 (($ $) NIL) (($ $ (-773)) 59)) (-3432 (((-643 $) $) 31)) (-3428 (((-112) $ $) 69)) (-4151 (((-112) $ (-773)) 45)) (-4148 (((-112) $ (-773)) 43)) (-3950 (((-112) $) 33)) (-4229 ((|#2| $) 25) (($ $ (-773)) 64)) (-4231 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4065 (((-112) $) 23)) (-4223 (($ $) 55)) (-4221 (($ $) 86)) (-4224 (((-773) $) 58)) (-4225 (($ $) 57)) (-4233 (($ $ $) 77) (($ |#2| $) NIL)) (-3945 (((-643 $) $) 32)) (-3455 (((-112) $ $) 67)) (-4389 (((-773) $) 51))) -(((-1257 |#1| |#2|) (-10 -8 (-15 -4216 (|#1| |#1| (-549))) (-15 -4219 (|#2| |#1| "last" |#2|)) (-15 -4217 (|#2| |#1| |#2|)) (-15 -4219 (|#1| |#1| "rest" |#1|)) (-15 -4219 (|#2| |#1| "first" |#2|)) (-15 -4221 (|#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#2| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#2| |#1| "first")) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -3426 (|#2| |#1| |#2|)) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3427 (|#1| |#1| (-643 |#1|))) (-15 -3428 ((-112) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) (-1258 |#2|) (-1219)) (T -1257)) -NIL -(-10 -8 (-15 -4216 (|#1| |#1| (-549))) (-15 -4219 (|#2| |#1| "last" |#2|)) (-15 -4217 (|#2| |#1| |#2|)) (-15 -4219 (|#1| |#1| "rest" |#1|)) (-15 -4219 (|#2| |#1| "first" |#2|)) (-15 -4221 (|#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#2| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#2| |#1| "first")) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -3426 (|#2| |#1| |#2|)) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3427 (|#1| |#1| (-643 |#1|))) (-15 -3428 ((-112) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ "rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4222 (($ $ $) 62 (|has| $ (-6 -4426))) (($ $ |#1|) 61 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 79) (($ |#1| $) 78)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1258 |#1|) (-140) (-1219)) (T -1258)) -((-4233 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1258 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-4223 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4221 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4220 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4218 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4219 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4217 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) (-4 *3 (-1219))))) -(-13 (-1013 |t#1|) (-10 -8 (-15 -4233 ($ $ $)) (-15 -4233 ($ |t#1| $)) (-15 -4232 (|t#1| $)) (-15 -4231 (|t#1| $ "first")) (-15 -4232 ($ $ (-773))) (-15 -4230 ($ $)) (-15 -4231 ($ $ "rest")) (-15 -4230 ($ $ (-773))) (-15 -4229 (|t#1| $)) (-15 -4231 (|t#1| $ "last")) (-15 -4229 ($ $ (-773))) (-15 -4228 ($ $)) (-15 -4227 (|t#1| $)) (-15 -4226 (|t#1| $)) (-15 -4225 ($ $)) (-15 -4224 ((-773) $)) (-15 -4223 ($ $)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4222 ($ $ $)) (-15 -4222 ($ $ |t#1|)) (-15 -4221 ($ $)) (-15 -4220 (|t#1| $ |t#1|)) (-15 -4219 (|t#1| $ "first" |t#1|)) (-15 -4218 ($ $ $)) (-15 -4219 ($ $ "rest" $)) (-15 -4217 (|t#1| $ |t#1|)) (-15 -4219 (|t#1| $ "last" |t#1|)) (-15 -4216 ($ $ (-549)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 92)) (-4243 (((-1238 |#2| |#1|) $ (-773)) 73)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) 144 (|has| |#1| (-560)))) (-4202 (($ $ (-773)) 129) (($ $ (-773) (-773)) 132)) (-4205 (((-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|))) $) 43)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|)))) 52) (($ (-1157 |#1|)) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4236 (($ $) 136)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4248 (($ $) 142)) (-4246 (((-949 |#1|) $ (-773)) 63) (((-949 |#1|) $ (-773) (-773)) 65)) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $) NIL) (((-773) $ (-773)) NIL)) (-2573 (((-112) $) NIL)) (-4239 (($ $) 119)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4235 (($ (-549) (-549) $) 138)) (-4208 (($ $ (-922)) 141)) (-4247 (($ (-1 |#1| (-549)) $) 113)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 16) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 100)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4240 (($ $) 117)) (-4241 (($ $) 115)) (-4234 (($ (-549) (-549) $) 140)) (-4244 (($ $) 152 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 158 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4237 (($ $ (-549) (-549)) 123)) (-4200 (($ $ (-773)) 125)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4238 (($ $) 121)) (-4199 (((-1157 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-773)))))) (-4231 ((|#1| $ (-773)) 97) (($ $ $) 134 (|has| (-773) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) 110 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $ (-1266 |#2|)) 105)) (-4380 (((-773) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 127)) (-4378 (((-865) $) NIL) (($ (-549)) 26) (($ (-410 (-549))) 150 (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1238 |#2| |#1|)) 83) (($ (-1266 |#2|)) 22)) (-4249 (((-1157 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) 96)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 93)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-773)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-773)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 18 T CONST)) (-3067 (($) 13 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 109)) (-4271 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ |#1|) 147 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) -(((-1259 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (-15 -4241 ($ $)) (-15 -4240 ($ $)) (-15 -4239 ($ $)) (-15 -4238 ($ $)) (-15 -4237 ($ $ (-549) (-549))) (-15 -4236 ($ $)) (-15 -4235 ($ (-549) (-549) $)) (-15 -4234 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1259)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-1259 *3 *4 *5)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1259 *4 *5 *6)) (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4237 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4235 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3))) (-4234 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) -(-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (-15 -4241 ($ $)) (-15 -4240 ($ $)) (-15 -4239 ($ $)) (-15 -4238 ($ $)) (-15 -4237 ($ $ (-549) (-549))) (-15 -4236 ($ $)) (-15 -4235 ($ (-549) (-549) $)) (-15 -4234 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) -((-4390 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) (-1052) (-1052) (-1262 |#1|) (-1262 |#2|)) (T -1260)) -((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *6 *4 *2)) (-4 *4 (-1262 *5))))) -(-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) -((-3608 (((-112) $) 17)) (-3915 (($ $) 106)) (-4071 (($ $) 82)) (-3913 (($ $) 102)) (-4070 (($ $) 78)) (-3917 (($ $) 110)) (-4069 (($ $) 86)) (-4374 (($ $) 76)) (-4375 (($ $) 74)) (-3918 (($ $) 112)) (-4068 (($ $) 88)) (-3916 (($ $) 108)) (-4067 (($ $) 84)) (-3914 (($ $) 104)) (-4066 (($ $) 80)) (-4378 (((-865) $) 62) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3921 (($ $) 118)) (-3909 (($ $) 94)) (-3919 (($ $) 114)) (-3907 (($ $) 90)) (-3923 (($ $) 122)) (-3911 (($ $) 98)) (-3924 (($ $) 124)) (-3912 (($ $) 100)) (-3922 (($ $) 120)) (-3910 (($ $) 96)) (-3920 (($ $) 116)) (-3908 (($ $) 92)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-549))) 72))) -(((-1261 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -3608 ((-112) |#1|)) (-15 -4378 ((-865) |#1|))) (-1262 |#2|) (-1052)) (T -1261)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -3608 ((-112) |#1|)) (-15 -4378 ((-865) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-773)) 110) (($ $ (-773) (-773)) 109)) (-4205 (((-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|)))) 167) (($ (-1157 |#1|)) 165)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4248 (($ $) 164)) (-4246 (((-949 |#1|) $ (-773)) 162) (((-949 |#1|) $ (-773) (-773)) 161)) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $) 112) (((-773) $ (-773)) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113)) (-4247 (($ (-1 |#1| (-549)) $) 163)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-773)) 73) (($ $ (-1085) (-773)) 88) (($ $ (-643 (-1085)) (-643 (-773))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-4244 (($ $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 158 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-4200 (($ $ (-773)) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-773)))))) (-4231 ((|#1| $ (-773)) 116) (($ $ $) 93 (|has| (-773) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-4380 (((-773) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4249 (((-1157 |#1|) $) 166)) (-4109 ((|#1| $ (-773)) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-773)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-773)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) -(((-1262 |#1|) (-140) (-1052)) (T -1262)) -((-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-773)) (|:| |c| *3)))) (-4 *3 (-1052)) (-4 *1 (-1262 *3)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-5 *2 (-1157 *3)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-4 *1 (-1262 *3)))) (-4248 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1262 *3)) (-4 *3 (-1052)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4)))) (-4246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) (-4244 (*1 *1 *1 *2) (-3960 (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) (-4 *3 (-38 (-410 (-549)))))) (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549))))))))) -(-13 (-1248 |t#1| (-773)) (-10 -8 (-15 -4250 ($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |t#1|))))) (-15 -4249 ((-1157 |t#1|) $)) (-15 -4250 ($ (-1157 |t#1|))) (-15 -4248 ($ $)) (-15 -4247 ($ (-1 |t#1| (-549)) $)) (-15 -4246 ((-949 |t#1|) $ (-773))) (-15 -4246 ((-949 |t#1|) $ (-773) (-773))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (IF (|has| |t#1| (-15 -4244 (|t#1| |t#1| (-1180)))) (IF (|has| |t#1| (-15 -3485 ((-643 (-1180)) |t#1|))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1205)) (IF (|has| |t#1| (-963)) (IF (|has| |t#1| (-29 (-549))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1005)) (-6 (-1205))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-773)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-773) |#1|))) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-773) (-1115)) ((-291) |has| |#1| (-560)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) |has| |#1| (-560)) ((-648 #2#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #2#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1248 |#1| #1#) . T)) -((-4253 (((-1 (-1157 |#1|) (-643 (-1157 |#1|))) (-1 |#2| (-643 |#2|))) 24)) (-4252 (((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4251 (((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|)) 13)) (-4256 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4255 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4257 ((|#2| (-1 |#2| (-643 |#2|)) (-643 |#1|)) 60)) (-4258 (((-643 |#2|) (-643 |#1|) (-643 (-1 |#2| (-643 |#2|)))) 66)) (-4254 ((|#2| |#2| |#2|) 43))) -(((-1263 |#1| |#2|) (-10 -7 (-15 -4251 ((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|))) (-15 -4252 ((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4253 ((-1 (-1157 |#1|) (-643 (-1157 |#1|))) (-1 |#2| (-643 |#2|)))) (-15 -4254 (|#2| |#2| |#2|)) (-15 -4255 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4256 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4257 (|#2| (-1 |#2| (-643 |#2|)) (-643 |#1|))) (-15 -4258 ((-643 |#2|) (-643 |#1|) (-643 (-1 |#2| (-643 |#2|)))))) (-38 (-410 (-549))) (-1262 |#1|)) (T -1263)) -((-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 (-1 *6 (-643 *6)))) (-4 *5 (-38 (-410 (-549)))) (-4 *6 (-1262 *5)) (-5 *2 (-643 *6)) (-5 *1 (-1263 *5 *6)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-643 *2))) (-5 *4 (-643 *5)) (-4 *5 (-38 (-410 (-549)))) (-4 *2 (-1262 *5)) (-5 *1 (-1263 *5 *2)))) (-4256 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) (-4 *4 (-38 (-410 (-549)))))) (-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) (-4 *4 (-38 (-410 (-549)))))) (-4254 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1263 *3 *2)) (-4 *2 (-1262 *3)))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-643 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-1 (-1157 *4) (-643 (-1157 *4)))) (-5 *1 (-1263 *4 *5)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-1 (-1157 *4) (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5))))) -(-10 -7 (-15 -4251 ((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|))) (-15 -4252 ((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4253 ((-1 (-1157 |#1|) (-643 (-1157 |#1|))) (-1 |#2| (-643 |#2|)))) (-15 -4254 (|#2| |#2| |#2|)) (-15 -4255 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4256 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4257 (|#2| (-1 |#2| (-643 |#2|)) (-643 |#1|))) (-15 -4258 ((-643 |#2|) (-643 |#1|) (-643 (-1 |#2| (-643 |#2|)))))) -((-4260 ((|#2| |#4| (-773)) 34)) (-4259 ((|#4| |#2|) 29)) (-4262 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-560)))) (-4261 (((-1 |#4| (-643 |#4|)) |#3|) 46))) -(((-1264 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4259 (|#4| |#2|)) (-15 -4260 (|#2| |#4| (-773))) (-15 -4261 ((-1 |#4| (-643 |#4|)) |#3|)) (IF (|has| |#1| (-560)) (-15 -4262 (|#4| (-410 |#2|))) |%noBranch|)) (-1052) (-1245 |#1|) (-660 |#2|) (-1262 |#1|)) (T -1264)) -((-4262 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-560)) (-4 *4 (-1052)) (-4 *2 (-1262 *4)) (-5 *1 (-1264 *4 *5 *6 *2)) (-4 *6 (-660 *5)))) (-4261 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-643 *6))) (-5 *1 (-1264 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-1262 *4)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-4 *2 (-1245 *5)) (-5 *1 (-1264 *5 *2 *6 *3)) (-4 *6 (-660 *2)) (-4 *3 (-1262 *5)))) (-4259 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *3 (-1245 *4)) (-4 *2 (-1262 *4)) (-5 *1 (-1264 *4 *3 *5 *2)) (-4 *5 (-660 *3))))) -(-10 -7 (-15 -4259 (|#4| |#2|)) (-15 -4260 (|#2| |#4| (-773))) (-15 -4261 ((-1 |#4| (-643 |#4|)) |#3|)) (IF (|has| |#1| (-560)) (-15 -4262 (|#4| (-410 |#2|))) |%noBranch|)) -NIL -(((-1265) (-140)) (T -1265)) -NIL -(-13 (-10 -7 (-6 -2433))) -((-2968 (((-112) $ $) NIL)) (-4263 (((-1180)) 12)) (-3663 (((-1162) $) 18)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11) (((-1180) $) 8)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 15))) -(((-1266 |#1|) (-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -4378 ((-1180) $)) (-15 -4263 ((-1180))))) (-1180)) (T -1266)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2))) (-4263 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2)))) -(-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -4378 ((-1180) $)) (-15 -4263 ((-1180))))) -((-4270 (($ (-773)) 19)) (-4267 (((-691 |#2|) $ $) 41)) (-4264 ((|#2| $) 51)) (-4265 ((|#2| $) 50)) (-4268 ((|#2| $ $) 36)) (-4266 (($ $ $) 47)) (-4269 (($ $) 23) (($ $ $) 29)) (-4271 (($ $ $) 15)) (* (($ (-549) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1267 |#1| |#2|) (-10 -8 (-15 -4264 (|#2| |#1|)) (-15 -4265 (|#2| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4267 ((-691 |#2|) |#1| |#1|)) (-15 -4268 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4270 (|#1| (-773))) (-15 -4271 (|#1| |#1| |#1|))) (-1268 |#2|) (-1219)) (T -1267)) -NIL -(-10 -8 (-15 -4264 (|#2| |#1|)) (-15 -4265 (|#2| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4267 ((-691 |#2|) |#1| |#1|)) (-15 -4268 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4270 (|#1| (-773))) (-15 -4271 (|#1| |#1| |#1|))) -((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-4270 (($ (-773)) 113 (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) 106 (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4264 ((|#1| $) 103 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-4148 (((-112) $ (-773)) 10)) (-4265 ((|#1| $) 104 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-4268 ((|#1| $ $) 107 (|has| |#1| (-1052)))) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-4266 (($ $ $) 105 (|has| |#1| (-1052)))) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4269 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4271 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-549) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-728))) (($ $ |#1|) 108 (|has| |#1| (-728)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) -(((-1268 |#1|) (-140) (-1219)) (T -1268)) -((-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-25)))) (-4270 (*1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1268 *3)) (-4 *3 (-23)) (-4 *3 (-1219)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-1052)) (-5 *2 (-691 *3)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4271 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4270 ($ (-773))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4269 ($ $)) (-15 -4269 ($ $ $)) (-15 * ($ (-549) $))) |%noBranch|) (IF (|has| |t#1| (-728)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-15 -4268 (|t#1| $ $)) (-15 -4267 ((-691 |t#1|) $ $)) (-15 -4266 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1005)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -4265 (|t#1| $)) (-15 -4264 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-19 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T)) -((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773)) NIL (|has| |#1| (-23)))) (-4272 (($ (-643 |#1|)) 11)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 16 (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) NIL (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) 12 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4264 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-4148 (((-112) $ (-773)) NIL)) (-4265 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4268 ((|#1| $ $) NIL (|has| |#1| (-1052)))) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4266 (($ $ $) NIL (|has| |#1| (-1052)))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 20 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 10)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4271 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-728))) (($ $ |#1|) NIL (|has| |#1| (-728)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1269 |#1|) (-13 (-1268 |#1|) (-10 -8 (-15 -4272 ($ (-643 |#1|))))) (-1219)) (T -1269)) -((-4272 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3))))) -(-13 (-1268 |#1|) (-10 -8 (-15 -4272 ($ (-643 |#1|))))) -((-4273 (((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 13)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 15)) (-4390 (((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)) 30) (((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|)) 18))) -(((-1270 |#1| |#2|) (-10 -7 (-15 -4273 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4390 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -4390 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) (-1219) (-1219)) (T -1270)) -((-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1270 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-1269 *5)) (-5 *1 (-1270 *6 *5))))) -(-10 -7 (-15 -4273 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4390 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -4390 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) -((-4275 (((-471) (-643 (-643 (-946 (-225)))) (-643 (-262))) 22) (((-471) (-643 (-643 (-946 (-225))))) 21) (((-471) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262))) 20)) (-4276 (((-1272) (-643 (-643 (-946 (-225)))) (-643 (-262))) 33) (((-1272) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262))) 32)) (-4378 (((-1272) (-471)) 48))) -(((-1271) (-10 -7 (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4378 ((-1272) (-471))))) (T -1271)) -((-4378 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1272)) (-5 *1 (-1271)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-1271)))) (-4276 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *6 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-1271)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) (-5 *2 (-471)) (-5 *1 (-1271)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-471)) (-5 *1 (-1271)))) (-4275 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *6 (-643 (-262))) (-5 *2 (-471)) (-5 *1 (-1271))))) -(-10 -7 (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4378 ((-1272) (-471)))) -((-2968 (((-112) $ $) NIL)) (-4294 (((-1162) $ (-1162)) 107) (((-1162) $ (-1162) (-1162)) 105) (((-1162) $ (-1162) (-643 (-1162))) 104)) (-4290 (($) 69)) (-4277 (((-1275) $ (-471) (-922)) 54)) (-4283 (((-1275) $ (-922) (-1162)) 89) (((-1275) $ (-922) (-876)) 90)) (-4305 (((-1275) $ (-922) (-380) (-380)) 57)) (-4315 (((-1275) $ (-1162)) 84)) (-4278 (((-1275) $ (-922) (-1162)) 94)) (-4279 (((-1275) $ (-922) (-380) (-380)) 58)) (-4316 (((-1275) $ (-922) (-922)) 55)) (-4296 (((-1275) $) 85)) (-4281 (((-1275) $ (-922) (-1162)) 93)) (-4285 (((-1275) $ (-471) (-922)) 41)) (-4282 (((-1275) $ (-922) (-1162)) 92)) (-4318 (((-643 (-262)) $) 29) (($ $ (-643 (-262))) 30)) (-4317 (((-1275) $ (-773) (-773)) 52)) (-4289 (($ $) 70) (($ (-471) (-643 (-262))) 71)) (-3663 (((-1162) $) NIL)) (-4292 (((-549) $) 48)) (-3664 (((-1123) $) NIL)) (-4286 (((-1269 (-3 (-471) "undefined")) $) 47)) (-4287 (((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549)))) $) 46)) (-4288 (((-1275) $ (-922) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-876) (-549) (-876) (-549)) 83)) (-4291 (((-643 (-946 (-225))) $) NIL)) (-4284 (((-471) $ (-922)) 43)) (-4314 (((-1275) $ (-773) (-773) (-922) (-922)) 50)) (-4312 (((-1275) $ (-1162)) 95)) (-4280 (((-1275) $ (-922) (-1162)) 91)) (-4378 (((-865) $) 102)) (-4293 (((-1275) $) 96)) (-3662 (((-112) $ $) NIL)) (-4311 (((-1275) $ (-922) (-1162)) 87) (((-1275) $ (-922) (-876)) 88)) (-3455 (((-112) $ $) NIL))) -(((-1272) (-13 (-1104) (-10 -8 (-15 -4291 ((-643 (-946 (-225))) $)) (-15 -4290 ($)) (-15 -4289 ($ $)) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4289 ($ (-471) (-643 (-262)))) (-15 -4288 ((-1275) $ (-922) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-876) (-549) (-876) (-549))) (-15 -4287 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549)))) $)) (-15 -4286 ((-1269 (-3 (-471) "undefined")) $)) (-15 -4315 ((-1275) $ (-1162))) (-15 -4285 ((-1275) $ (-471) (-922))) (-15 -4284 ((-471) $ (-922))) (-15 -4311 ((-1275) $ (-922) (-1162))) (-15 -4311 ((-1275) $ (-922) (-876))) (-15 -4283 ((-1275) $ (-922) (-1162))) (-15 -4283 ((-1275) $ (-922) (-876))) (-15 -4282 ((-1275) $ (-922) (-1162))) (-15 -4281 ((-1275) $ (-922) (-1162))) (-15 -4280 ((-1275) $ (-922) (-1162))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4293 ((-1275) $)) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4279 ((-1275) $ (-922) (-380) (-380))) (-15 -4305 ((-1275) $ (-922) (-380) (-380))) (-15 -4278 ((-1275) $ (-922) (-1162))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4277 ((-1275) $ (-471) (-922))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4296 ((-1275) $)) (-15 -4292 ((-549) $)) (-15 -4378 ((-865) $))))) (T -1272)) -((-4378 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1272)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-643 (-946 (-225)))) (-5 *1 (-1272)))) (-4290 (*1 *1) (-5 *1 (-1272))) (-4289 (*1 *1 *1) (-5 *1 (-1272))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) (-4289 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-643 (-262))) (-5 *1 (-1272)))) (-4288 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-549)) (-5 *6 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549))))) (-5 *1 (-1272)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1272)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1272)))) (-4311 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4311 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4280 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4314 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4279 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4305 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4278 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4317 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) (-4294 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) (-4294 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1272)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1272))))) -(-13 (-1104) (-10 -8 (-15 -4291 ((-643 (-946 (-225))) $)) (-15 -4290 ($)) (-15 -4289 ($ $)) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4289 ($ (-471) (-643 (-262)))) (-15 -4288 ((-1275) $ (-922) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-876) (-549) (-876) (-549))) (-15 -4287 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549)))) $)) (-15 -4286 ((-1269 (-3 (-471) "undefined")) $)) (-15 -4315 ((-1275) $ (-1162))) (-15 -4285 ((-1275) $ (-471) (-922))) (-15 -4284 ((-471) $ (-922))) (-15 -4311 ((-1275) $ (-922) (-1162))) (-15 -4311 ((-1275) $ (-922) (-876))) (-15 -4283 ((-1275) $ (-922) (-1162))) (-15 -4283 ((-1275) $ (-922) (-876))) (-15 -4282 ((-1275) $ (-922) (-1162))) (-15 -4281 ((-1275) $ (-922) (-1162))) (-15 -4280 ((-1275) $ (-922) (-1162))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4293 ((-1275) $)) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4279 ((-1275) $ (-922) (-380) (-380))) (-15 -4305 ((-1275) $ (-922) (-380) (-380))) (-15 -4278 ((-1275) $ (-922) (-1162))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4277 ((-1275) $ (-471) (-922))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4296 ((-1275) $)) (-15 -4292 ((-549) $)) (-15 -4378 ((-865) $)))) -((-2968 (((-112) $ $) NIL)) (-4306 (((-1275) $ (-380)) 169) (((-1275) $ (-380) (-380) (-380)) 170)) (-4294 (((-1162) $ (-1162)) 179) (((-1162) $ (-1162) (-1162)) 177) (((-1162) $ (-1162) (-643 (-1162))) 176)) (-4322 (($) 67)) (-4313 (((-1275) $ (-380) (-380) (-380) (-380) (-380)) 141) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 139) (((-1275) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 140) (((-1275) $ (-549) (-549) (-380) (-380) (-380)) 144) (((-1275) $ (-380) (-380)) 145) (((-1275) $ (-380) (-380) (-380)) 152)) (-4325 (((-380)) 122) (((-380) (-380)) 123)) (-4327 (((-380)) 117) (((-380) (-380)) 119)) (-4326 (((-380)) 120) (((-380) (-380)) 121)) (-4323 (((-380)) 126) (((-380) (-380)) 127)) (-4324 (((-380)) 124) (((-380) (-380)) 125)) (-4305 (((-1275) $ (-380) (-380)) 171)) (-4315 (((-1275) $ (-1162)) 153)) (-4320 (((-1136 (-225)) $) 68) (($ $ (-1136 (-225))) 69)) (-4301 (((-1275) $ (-1162)) 187)) (-4300 (((-1275) $ (-1162)) 188)) (-4307 (((-1275) $ (-380) (-380)) 151) (((-1275) $ (-549) (-549)) 168)) (-4316 (((-1275) $ (-922) (-922)) 160)) (-4296 (((-1275) $) 137)) (-4304 (((-1275) $ (-1162)) 186)) (-4309 (((-1275) $ (-1162)) 134)) (-4318 (((-643 (-262)) $) 70) (($ $ (-643 (-262))) 71)) (-4317 (((-1275) $ (-773) (-773)) 159)) (-4319 (((-1275) $ (-773) (-946 (-225))) 193)) (-4321 (($ $) 73) (($ (-1136 (-225)) (-1162)) 74) (($ (-1136 (-225)) (-643 (-262))) 75)) (-4298 (((-1275) $ (-380) (-380) (-380)) 131)) (-3663 (((-1162) $) NIL)) (-4292 (((-549) $) 128)) (-4297 (((-1275) $ (-380)) 174)) (-4302 (((-1275) $ (-380)) 191)) (-3664 (((-1123) $) NIL)) (-4303 (((-1275) $ (-380)) 190)) (-4308 (((-1275) $ (-1162)) 136)) (-4314 (((-1275) $ (-773) (-773) (-922) (-922)) 158)) (-4310 (((-1275) $ (-1162)) 133)) (-4312 (((-1275) $ (-1162)) 135)) (-4295 (((-1275) $ (-157) (-157)) 157)) (-4378 (((-865) $) 166)) (-4293 (((-1275) $) 138)) (-4299 (((-1275) $ (-1162)) 189)) (-3662 (((-112) $ $) NIL)) (-4311 (((-1275) $ (-1162)) 132)) (-3455 (((-112) $ $) NIL))) -(((-1273) (-13 (-1104) (-10 -8 (-15 -4327 ((-380))) (-15 -4327 ((-380) (-380))) (-15 -4326 ((-380))) (-15 -4326 ((-380) (-380))) (-15 -4325 ((-380))) (-15 -4325 ((-380) (-380))) (-15 -4324 ((-380))) (-15 -4324 ((-380) (-380))) (-15 -4323 ((-380))) (-15 -4323 ((-380) (-380))) (-15 -4322 ($)) (-15 -4321 ($ $)) (-15 -4321 ($ (-1136 (-225)) (-1162))) (-15 -4321 ($ (-1136 (-225)) (-643 (-262)))) (-15 -4320 ((-1136 (-225)) $)) (-15 -4320 ($ $ (-1136 (-225)))) (-15 -4319 ((-1275) $ (-773) (-946 (-225)))) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4315 ((-1275) $ (-1162))) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4313 ((-1275) $ (-380) (-380) (-380) (-380) (-380))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4313 ((-1275) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4313 ((-1275) $ (-549) (-549) (-380) (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380) (-380))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4311 ((-1275) $ (-1162))) (-15 -4310 ((-1275) $ (-1162))) (-15 -4309 ((-1275) $ (-1162))) (-15 -4308 ((-1275) $ (-1162))) (-15 -4307 ((-1275) $ (-380) (-380))) (-15 -4307 ((-1275) $ (-549) (-549))) (-15 -4306 ((-1275) $ (-380))) (-15 -4306 ((-1275) $ (-380) (-380) (-380))) (-15 -4305 ((-1275) $ (-380) (-380))) (-15 -4304 ((-1275) $ (-1162))) (-15 -4303 ((-1275) $ (-380))) (-15 -4302 ((-1275) $ (-380))) (-15 -4301 ((-1275) $ (-1162))) (-15 -4300 ((-1275) $ (-1162))) (-15 -4299 ((-1275) $ (-1162))) (-15 -4298 ((-1275) $ (-380) (-380) (-380))) (-15 -4297 ((-1275) $ (-380))) (-15 -4296 ((-1275) $)) (-15 -4295 ((-1275) $ (-157) (-157))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4293 ((-1275) $)) (-15 -4292 ((-549) $))))) (T -1273)) -((-4327 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4326 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4325 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4324 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4323 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4322 (*1 *1) (-5 *1 (-1273))) (-4321 (*1 *1 *1) (-5 *1 (-1273))) (-4321 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1162)) (-5 *1 (-1273)))) (-4321 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-643 (-262))) (-5 *1 (-1273)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273)))) (-4319 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273)))) (-4317 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4314 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-549)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4306 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4305 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4303 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4298 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4297 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4295 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1273)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1273))))) -(-13 (-1104) (-10 -8 (-15 -4327 ((-380))) (-15 -4327 ((-380) (-380))) (-15 -4326 ((-380))) (-15 -4326 ((-380) (-380))) (-15 -4325 ((-380))) (-15 -4325 ((-380) (-380))) (-15 -4324 ((-380))) (-15 -4324 ((-380) (-380))) (-15 -4323 ((-380))) (-15 -4323 ((-380) (-380))) (-15 -4322 ($)) (-15 -4321 ($ $)) (-15 -4321 ($ (-1136 (-225)) (-1162))) (-15 -4321 ($ (-1136 (-225)) (-643 (-262)))) (-15 -4320 ((-1136 (-225)) $)) (-15 -4320 ($ $ (-1136 (-225)))) (-15 -4319 ((-1275) $ (-773) (-946 (-225)))) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4315 ((-1275) $ (-1162))) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4313 ((-1275) $ (-380) (-380) (-380) (-380) (-380))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4313 ((-1275) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4313 ((-1275) $ (-549) (-549) (-380) (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380) (-380))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4311 ((-1275) $ (-1162))) (-15 -4310 ((-1275) $ (-1162))) (-15 -4309 ((-1275) $ (-1162))) (-15 -4308 ((-1275) $ (-1162))) (-15 -4307 ((-1275) $ (-380) (-380))) (-15 -4307 ((-1275) $ (-549) (-549))) (-15 -4306 ((-1275) $ (-380))) (-15 -4306 ((-1275) $ (-380) (-380) (-380))) (-15 -4305 ((-1275) $ (-380) (-380))) (-15 -4304 ((-1275) $ (-1162))) (-15 -4303 ((-1275) $ (-380))) (-15 -4302 ((-1275) $ (-380))) (-15 -4301 ((-1275) $ (-1162))) (-15 -4300 ((-1275) $ (-1162))) (-15 -4299 ((-1275) $ (-1162))) (-15 -4298 ((-1275) $ (-380) (-380) (-380))) (-15 -4297 ((-1275) $ (-380))) (-15 -4296 ((-1275) $)) (-15 -4295 ((-1275) $ (-157) (-157))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4293 ((-1275) $)) (-15 -4292 ((-549) $)))) -((-4336 (((-643 (-1162)) (-643 (-1162))) 104) (((-643 (-1162))) 96)) (-4337 (((-643 (-1162))) 94)) (-4334 (((-643 (-922)) (-643 (-922))) 69) (((-643 (-922))) 64)) (-4333 (((-643 (-773)) (-643 (-773))) 61) (((-643 (-773))) 55)) (-4335 (((-1275)) 71)) (-4339 (((-922) (-922)) 87) (((-922)) 86)) (-4338 (((-922) (-922)) 85) (((-922)) 84)) (-4331 (((-876) (-876)) 81) (((-876)) 80)) (-4341 (((-225)) 91) (((-225) (-380)) 93)) (-4340 (((-922)) 88) (((-922) (-922)) 89)) (-4332 (((-922) (-922)) 83) (((-922)) 82)) (-4328 (((-876) (-876)) 75) (((-876)) 73)) (-4329 (((-876) (-876)) 77) (((-876)) 76)) (-4330 (((-876) (-876)) 79) (((-876)) 78))) -(((-1274) (-10 -7 (-15 -4328 ((-876))) (-15 -4328 ((-876) (-876))) (-15 -4329 ((-876))) (-15 -4329 ((-876) (-876))) (-15 -4330 ((-876))) (-15 -4330 ((-876) (-876))) (-15 -4331 ((-876))) (-15 -4331 ((-876) (-876))) (-15 -4332 ((-922))) (-15 -4332 ((-922) (-922))) (-15 -4333 ((-643 (-773)))) (-15 -4333 ((-643 (-773)) (-643 (-773)))) (-15 -4334 ((-643 (-922)))) (-15 -4334 ((-643 (-922)) (-643 (-922)))) (-15 -4335 ((-1275))) (-15 -4336 ((-643 (-1162)))) (-15 -4336 ((-643 (-1162)) (-643 (-1162)))) (-15 -4337 ((-643 (-1162)))) (-15 -4338 ((-922))) (-15 -4339 ((-922))) (-15 -4338 ((-922) (-922))) (-15 -4339 ((-922) (-922))) (-15 -4340 ((-922) (-922))) (-15 -4340 ((-922))) (-15 -4341 ((-225) (-380))) (-15 -4341 ((-225))))) (T -1274)) -((-4341 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1274)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-1274)))) (-4340 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4339 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4338 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4337 (*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) (-4336 (*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) (-4335 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1274)))) (-4334 (*1 *2 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274)))) (-4334 (*1 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274)))) (-4333 (*1 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4332 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4331 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4331 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4330 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4329 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4328 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) -(-10 -7 (-15 -4328 ((-876))) (-15 -4328 ((-876) (-876))) (-15 -4329 ((-876))) (-15 -4329 ((-876) (-876))) (-15 -4330 ((-876))) (-15 -4330 ((-876) (-876))) (-15 -4331 ((-876))) (-15 -4331 ((-876) (-876))) (-15 -4332 ((-922))) (-15 -4332 ((-922) (-922))) (-15 -4333 ((-643 (-773)))) (-15 -4333 ((-643 (-773)) (-643 (-773)))) (-15 -4334 ((-643 (-922)))) (-15 -4334 ((-643 (-922)) (-643 (-922)))) (-15 -4335 ((-1275))) (-15 -4336 ((-643 (-1162)))) (-15 -4336 ((-643 (-1162)) (-643 (-1162)))) (-15 -4337 ((-643 (-1162)))) (-15 -4338 ((-922))) (-15 -4339 ((-922))) (-15 -4338 ((-922) (-922))) (-15 -4339 ((-922) (-922))) (-15 -4340 ((-922) (-922))) (-15 -4340 ((-922))) (-15 -4341 ((-225) (-380))) (-15 -4341 ((-225)))) -((-4342 (($) 6)) (-4378 (((-865) $) 9))) -(((-1275) (-13 (-615 (-865)) (-10 -8 (-15 -4342 ($))))) (T -1275)) -((-4342 (*1 *1) (-5 *1 (-1275)))) -(-13 (-615 (-865)) (-10 -8 (-15 -4342 ($)))) -((-4381 (($ $ |#2|) 10))) -(((-1276 |#1| |#2|) (-10 -8 (-15 -4381 (|#1| |#1| |#2|))) (-1277 |#2|) (-365)) (T -1276)) -NIL -(-10 -8 (-15 -4381 (|#1| |#1| |#2|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4343 (((-134)) 33)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 34)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1277 |#1|) (-140) (-365)) (T -1277)) -((-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-365)))) (-4343 (*1 *2) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(-13 (-719 |t#1|) (-10 -8 (-15 -4381 ($ $ |t#1|)) (-15 -4343 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) -((-4348 (((-643 (-1212 |#1|)) (-1180) (-1212 |#1|)) 83)) (-4346 (((-1157 (-1157 (-949 |#1|))) (-1180) (-1157 (-949 |#1|))) 63)) (-4349 (((-1 (-1157 (-1212 |#1|)) (-1157 (-1212 |#1|))) (-773) (-1212 |#1|) (-1157 (-1212 |#1|))) 74)) (-4344 (((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773)) 65)) (-4347 (((-1 (-1174 (-949 |#1|)) (-949 |#1|)) (-1180)) 32)) (-4345 (((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773)) 64))) -(((-1278 |#1|) (-10 -7 (-15 -4344 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4345 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4346 ((-1157 (-1157 (-949 |#1|))) (-1180) (-1157 (-949 |#1|)))) (-15 -4347 ((-1 (-1174 (-949 |#1|)) (-949 |#1|)) (-1180))) (-15 -4348 ((-643 (-1212 |#1|)) (-1180) (-1212 |#1|))) (-15 -4349 ((-1 (-1157 (-1212 |#1|)) (-1157 (-1212 |#1|))) (-773) (-1212 |#1|) (-1157 (-1212 |#1|))))) (-365)) (T -1278)) -((-4349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-773)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1278 *6)) (-5 *5 (-1157 *4)))) (-4348 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-643 (-1212 *5))) (-5 *1 (-1278 *5)) (-5 *4 (-1212 *5)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1 (-1174 (-949 *4)) (-949 *4))) (-5 *1 (-1278 *4)) (-4 *4 (-365)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-1157 (-1157 (-949 *5)))) (-5 *1 (-1278 *5)) (-5 *4 (-1157 (-949 *5))))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) (-5 *1 (-1278 *4)) (-4 *4 (-365)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) (-5 *1 (-1278 *4)) (-4 *4 (-365))))) -(-10 -7 (-15 -4344 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4345 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4346 ((-1157 (-1157 (-949 |#1|))) (-1180) (-1157 (-949 |#1|)))) (-15 -4347 ((-1 (-1174 (-949 |#1|)) (-949 |#1|)) (-1180))) (-15 -4348 ((-643 (-1212 |#1|)) (-1180) (-1212 |#1|))) (-15 -4349 ((-1 (-1157 (-1212 |#1|)) (-1157 (-1212 |#1|))) (-773) (-1212 |#1|) (-1157 (-1212 |#1|))))) -((-4351 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|) 82)) (-4350 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) 81))) -(((-1279 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|))) (-352) (-1245 |#1|) (-1245 |#2|) (-413 |#2| |#3|)) (T -1279)) -((-4351 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-1279 *4 *3 *5 *6)) (-4 *6 (-413 *3 *5)))) (-4350 (*1 *2) (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) (-5 *1 (-1279 *3 *4 *5 *6)) (-4 *6 (-413 *4 *5))))) -(-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|))) -((-2968 (((-112) $ $) NIL)) (-4352 (((-1138) $) 11)) (-4353 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1280) (-13 (-1086) (-10 -8 (-15 -4353 ((-1138) $)) (-15 -4352 ((-1138) $))))) (T -1280)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280))))) -(-13 (-1086) (-10 -8 (-15 -4353 ((-1138) $)) (-15 -4352 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4354 (((-1138) $) 9)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) -(((-1281) (-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $))))) (T -1281)) -((-4354 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1281))))) -(-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $)))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 58)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 81) (($ (-549)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-3530 (((-773)) NIL T CONST)) (-4355 (((-1275) (-773)) 16)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 37 T CONST)) (-3067 (($) 84 T CONST)) (-3455 (((-112) $ $) 87)) (-4381 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) 89) (($ $ $) NIL)) (-4271 (($ $ $) 63)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1282 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1052) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) (-1052) (-852) (-795) (-953 |#1| |#3| |#2|) (-643 |#2|) (-643 (-773)) (-773)) (T -1282)) -((-4381 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-795)) (-14 *6 (-643 *3)) (-5 *1 (-1282 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-953 *2 *4 *3)) (-14 *7 (-643 (-773))) (-14 *8 (-773)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) (-14 *8 (-643 *5)) (-5 *2 (-1275)) (-5 *1 (-1282 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-953 *4 *6 *5)) (-14 *9 (-643 *3)) (-14 *10 *3)))) -(-13 (-1052) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) -((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) 96)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) NIL (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3301 (((-643 |#4|) (-643 |#4|) $) 28 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 78)) (-4117 ((|#4| |#4| $) 83)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-2124 (((-643 |#4|) $) NIL (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 84)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 32 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-4358 (((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-643 |#4|)) 38)) (-2128 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) NIL)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-4229 (((-3 |#4| #1#) $) NIL)) (-4129 (((-643 |#4|) $) 54)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) 82)) (-4131 (((-112) $ $) 93)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 77)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) NIL)) (-4200 (($ $ |#4|) NIL)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 75)) (-3996 (($) 46)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) NIL)) (-3311 (($ $ |#3|) NIL)) (-3313 (($ $ |#3|) NIL)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) NIL) (((-643 |#4|) $) 63)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-4357 (((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-643 |#4|)) 45)) (-4356 (((-643 $) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-643 $) (-643 |#4|)) 74)) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-4365 (((-112) |#3| $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) -(((-1283 |#1| |#2| |#3| |#4|) (-13 (-1214 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4358 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4358 ((-3 $ "failed") (-643 |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|))) (-15 -4356 ((-643 $) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4356 ((-643 $) (-643 |#4|))))) (-560) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -1283)) -((-4358 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8)))) (-4358 (*1 *1 *2) (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) (-4357 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8)))) (-4357 (*1 *1 *2) (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) (-4356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *2 (-643 (-1283 *6 *7 *8 *9))) (-5 *1 (-1283 *6 *7 *8 *9)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 (-1283 *4 *5 *6 *7))) (-5 *1 (-1283 *4 *5 *6 *7))))) -(-13 (-1214 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4358 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4358 ((-3 $ "failed") (-643 |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|))) (-15 -4356 ((-643 $) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4356 ((-643 $) (-643 |#4|))))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 45)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1284 |#1|) (-140) (-1052)) (T -1284)) -NIL -(-13 (-1052) (-111 |t#1| |t#1|) (-618 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) -((-2968 (((-112) $ $) 67)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 52)) (-4379 (($ $ (-773)) 46)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ (-773)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ $) 70) (($ $ (-821 |#1|)) 56) (($ $ |#1|) 60)) (-3577 (((-3 (-821 |#1|) "failed") $) NIL)) (-3576 (((-821 |#1|) $) NIL)) (-4391 (($ $) 39)) (-3890 (((-3 $ "failed") $) NIL)) (-4383 (((-112) $) NIL)) (-4382 (($ $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 |#1|) |#2|) 38)) (-4368 (($ $) 40)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) 12)) (-4387 (((-821 |#1|) $) NIL)) (-4388 (((-821 |#1|) $) 41)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (($ $ $) 69) (($ $ (-821 |#1|)) 58) (($ $ |#1|) 62)) (-1917 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3295 (((-821 |#1|) $) 35)) (-3594 ((|#2| $) 37)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4380 (((-773) $) 43)) (-4385 (((-112) $) 47)) (-4384 ((|#2| $) NIL)) (-4378 (((-865) $) NIL) (($ (-821 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-549)) NIL)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-821 |#1|)) NIL)) (-4386 ((|#2| $ $) 76) ((|#2| $ (-821 |#1|)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 13 T CONST)) (-3067 (($) 19 T CONST)) (-3066 (((-643 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3455 (((-112) $ $) 44)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 28)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-821 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1285 |#1| |#2|) (-13 (-386 |#2| (-821 |#1|)) (-1292 |#1| |#2|)) (-852) (-1052)) (T -1285)) -NIL -(-13 (-386 |#2| (-821 |#1|)) (-1292 |#1| |#2|)) -((-4374 ((|#3| |#3| (-773)) 30)) (-4375 ((|#3| |#3| (-773)) 36)) (-4359 ((|#3| |#3| |#3| (-773)) 37))) -(((-1286 |#1| |#2| |#3|) (-10 -7 (-15 -4375 (|#3| |#3| (-773))) (-15 -4374 (|#3| |#3| (-773))) (-15 -4359 (|#3| |#3| |#3| (-773)))) (-13 (-1052) (-719 (-410 (-549)))) (-852) (-1292 |#2| |#1|)) (T -1286)) -((-4359 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) (-4374 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) (-4375 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4))))) -(-10 -7 (-15 -4375 (|#3| |#3| (-773))) (-15 -4374 (|#3| |#3| (-773))) (-15 -4359 (|#3| |#3| |#3| (-773)))) -((-4364 (((-112) $) 15)) (-4365 (((-112) $) 14)) (-4360 (($ $) 19) (($ $ (-773)) 21))) -(((-1287 |#1| |#2|) (-10 -8 (-15 -4360 (|#1| |#1| (-773))) (-15 -4360 (|#1| |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|))) (-1288 |#2|) (-365)) (T -1287)) -NIL -(-10 -8 (-15 -4360 (|#1| |#1| (-773))) (-15 -4360 (|#1| |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4364 (((-112) $) 104)) (-4361 (((-773)) 100)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| "failed") $) 111)) (-3576 ((|#1| $) 112)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-1941 (($ $ (-773)) 97 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) 79)) (-4203 (((-834 (-922)) $) 94 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-4363 (((-112) $) 103)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-4362 (((-834 (-922))) 101)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-3 (-773) "failed") $ $) 95 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) 109)) (-4380 (((-834 (-922)) $) 102)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ |#1|) 110)) (-3105 (((-3 $ "failed") $) 93 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-4365 (((-112) $) 105)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-4360 (($ $) 99 (|has| |#1| (-370))) (($ $ (-773)) 98 (|has| |#1| (-370)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73) (($ $ |#1|) 108)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1288 |#1|) (-140) (-365)) (T -1288)) -((-4365 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-4362 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-4361 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-773)))) (-4360 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-4360 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) -(-13 (-365) (-1041 |t#1|) (-1277 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -4365 ((-112) $)) (-15 -4364 ((-112) $)) (-15 -4363 ((-112) $)) (-15 -4380 ((-834 (-922)) $)) (-15 -4362 ((-834 (-922)))) (-15 -4361 ((-773))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -4360 ($ $)) (-15 -4360 ($ $ (-773)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 |#1|) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T) ((-1277 |#1|) . T)) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4366 (((-643 |#1|) $) 47)) (-1407 (((-3 $ "failed") $ $) 20)) (-4367 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-773)) 49 (|has| |#2| (-172)))) (-4156 (($) 18 T CONST)) (-4371 (($ $ |#1|) 61) (($ $ (-821 |#1|)) 60) (($ $ $) 59)) (-3577 (((-3 (-821 |#1|) "failed") $) 71)) (-3576 (((-821 |#1|) $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4383 (((-112) $) 52)) (-4382 (($ $) 51)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 57)) (-4370 (($ (-821 |#1|) |#2|) 58)) (-4368 (($ $) 56)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) 67)) (-4387 (((-821 |#1|) $) 68)) (-4390 (($ (-1 |#2| |#2|) $) 48)) (-4372 (($ $ |#1|) 64) (($ $ (-821 |#1|)) 63) (($ $ $) 62)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4385 (((-112) $) 54)) (-4384 ((|#2| $) 53)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#2|) 75) (($ (-821 |#1|)) 70) (($ |#1|) 55)) (-4386 ((|#2| $ (-821 |#1|)) 66) ((|#2| $ $) 65)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1289 |#1| |#2|) (-140) (-852) (-1052)) (T -1289)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) (-4373 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| |k| (-821 *3)) (|:| |c| *4))))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-821 *4)) (-4 *1 (-1289 *4 *2)) (-4 *4 (-852)) (-4 *2 (-1052)))) (-4386 (*1 *2 *1 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) (-4372 (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4372 (*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4371 (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4371 (*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4370 (*1 *1 *2 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-852)) (-4 *1 (-1289 *4 *3)) (-4 *3 (-1052)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) (-4368 (*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4378 (*1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) (-4382 (*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4367 (*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)) (-4 *3 (-172)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-4 *4 (-172)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-643 *3))))) -(-13 (-1052) (-1284 |t#2|) (-1041 (-821 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4387 ((-821 |t#1|) $)) (-15 -4373 ((-2 (|:| |k| (-821 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4386 (|t#2| $ (-821 |t#1|))) (-15 -4386 (|t#2| $ $)) (-15 -4372 ($ $ |t#1|)) (-15 -4372 ($ $ (-821 |t#1|))) (-15 -4372 ($ $ $)) (-15 -4371 ($ $ |t#1|)) (-15 -4371 ($ $ (-821 |t#1|))) (-15 -4371 ($ $ $)) (-15 -4370 ($ (-821 |t#1|) |t#2|)) (-15 -4369 ((-112) $)) (-15 -4368 ($ $)) (-15 -4378 ($ |t#1|)) (-15 -4385 ((-112) $)) (-15 -4384 (|t#2| $)) (-15 -4383 ((-112) $)) (-15 -4382 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -4367 ($ $ $)) (-15 -4367 ($ $ (-773)))) |%noBranch|) (-15 -4390 ($ (-1 |t#2| |t#2|) $)) (-15 -4366 ((-643 |t#1|) $)) (IF (|has| |t#2| (-6 -4418)) (-6 -4418) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 #1=(-821 |#1|)) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-650 |#2|) . T) ((-650 $) . T) ((-642 |#2|) |has| |#2| (-172)) ((-719 |#2|) |has| |#2| (-172)) ((-728) . T) ((-1041 #1#) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1284 |#2|) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 98)) (-4379 (($ $ (-773)) 102)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-773)) NIL (|has| |#2| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ |#1|) NIL) (($ $ (-821 |#1|)) NIL) (($ $ $) NIL)) (-3577 (((-3 (-821 |#1|) #1="failed") $) NIL) (((-3 (-896 |#1|) #1#) $) NIL)) (-3576 (((-821 |#1|) $) NIL) (((-896 |#1|) $) NIL)) (-4391 (($ $) 101)) (-3890 (((-3 $ "failed") $) NIL)) (-4383 (((-112) $) 90)) (-4382 (($ $) 93)) (-4376 (($ $ $ (-773)) 103)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 |#1|) |#2|) NIL) (($ (-896 |#1|) |#2|) 29)) (-4368 (($ $) 120)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4387 (((-821 |#1|) $) NIL)) (-4388 (((-821 |#1|) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (($ $ |#1|) NIL) (($ $ (-821 |#1|)) NIL) (($ $ $) NIL)) (-4374 (($ $ (-773)) 113 (|has| |#2| (-719 (-410 (-549)))))) (-1917 (((-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3295 (((-896 |#1|) $) 83)) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4375 (($ $ (-773)) 110 (|has| |#2| (-719 (-410 (-549)))))) (-4380 (((-773) $) 99)) (-4385 (((-112) $) 84)) (-4384 ((|#2| $) 88)) (-4378 (((-865) $) 69) (($ (-549)) NIL) (($ |#2|) 60) (($ (-821 |#1|)) NIL) (($ |#1|) 71) (($ (-896 |#1|)) NIL) (($ (-666 |#1| |#2|)) 48) (((-1285 |#1| |#2|) $) 76) (((-1294 |#1| |#2|) $) 81)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-896 |#1|)) NIL)) (-4386 ((|#2| $ (-821 |#1|)) NIL) ((|#2| $ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 21 T CONST)) (-3067 (($) 28 T CONST)) (-3066 (((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4377 (((-3 (-666 |#1| |#2|) "failed") $) 119)) (-3455 (((-112) $ $) 77)) (-4269 (($ $) 112) (($ $ $) 111)) (-4271 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-896 |#1|)) NIL))) -(((-1290 |#1| |#2|) (-13 (-1292 |#1| |#2|) (-386 |#2| (-896 |#1|)) (-10 -8 (-15 -4378 ($ (-666 |#1| |#2|))) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1294 |#1| |#2|) $)) (-15 -4377 ((-3 (-666 |#1| |#2|) "failed") $)) (-15 -4376 ($ $ $ (-773))) (IF (|has| |#2| (-719 (-410 (-549)))) (PROGN (-15 -4375 ($ $ (-773))) (-15 -4374 ($ $ (-773)))) |%noBranch|))) (-852) (-172)) (T -1290)) -((-4378 (*1 *1 *2) (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *1 (-1290 *3 *4)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4377 (*1 *2 *1) (|partial| -12 (-5 *2 (-666 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4376 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4375 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) (-4 *3 (-852)) (-4 *4 (-172)))) (-4374 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) (-4 *3 (-852)) (-4 *4 (-172))))) -(-13 (-1292 |#1| |#2|) (-386 |#2| (-896 |#1|)) (-10 -8 (-15 -4378 ($ (-666 |#1| |#2|))) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1294 |#1| |#2|) $)) (-15 -4377 ((-3 (-666 |#1| |#2|) "failed") $)) (-15 -4376 ($ $ $ (-773))) (IF (|has| |#2| (-719 (-410 (-549)))) (PROGN (-15 -4375 ($ $ (-773))) (-15 -4374 ($ $ (-773)))) |%noBranch|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4366 (((-643 (-1180)) $) NIL)) (-4394 (($ (-1285 (-1180) |#1|)) NIL)) (-4379 (($ $ (-773)) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-773)) NIL (|has| |#1| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ (-1180)) NIL) (($ $ (-821 (-1180))) NIL) (($ $ $) NIL)) (-3577 (((-3 (-821 (-1180)) "failed") $) NIL)) (-3576 (((-821 (-1180)) $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4383 (((-112) $) NIL)) (-4382 (($ $) NIL)) (-2573 (((-112) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 (-1180)) |#1|) NIL)) (-4368 (($ $) NIL)) (-4373 (((-2 (|:| |k| (-821 (-1180))) (|:| |c| |#1|)) $) NIL)) (-4387 (((-821 (-1180)) $) NIL)) (-4388 (((-821 (-1180)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $ (-1180)) NIL) (($ $ (-821 (-1180))) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4395 (((-1285 (-1180) |#1|) $) NIL)) (-4380 (((-773) $) NIL)) (-4385 (((-112) $) NIL)) (-4384 ((|#1| $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-821 (-1180))) NIL) (($ (-1180)) NIL)) (-4386 ((|#1| $ (-821 (-1180))) NIL) ((|#1| $ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-4393 (((-643 (-2 (|:| |k| (-1180)) (|:| |c| $))) $) NIL)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1180) $) NIL))) -(((-1291 |#1|) (-13 (-1292 (-1180) |#1|) (-10 -8 (-15 -4395 ((-1285 (-1180) |#1|) $)) (-15 -4394 ($ (-1285 (-1180) |#1|))) (-15 -4393 ((-643 (-2 (|:| |k| (-1180)) (|:| |c| $))) $)))) (-1052)) (T -1291)) -((-4395 (*1 *2 *1) (-12 (-5 *2 (-1285 (-1180) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1052)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-1285 (-1180) *3)) (-4 *3 (-1052)) (-5 *1 (-1291 *3)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| (-1180)) (|:| |c| (-1291 *3))))) (-5 *1 (-1291 *3)) (-4 *3 (-1052))))) -(-13 (-1292 #1=(-1180) |#1|) (-10 -8 (-15 -4395 ((-1285 #1# |#1|) $)) (-15 -4394 ($ (-1285 #1# |#1|))) (-15 -4393 ((-643 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) -((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4366 (((-643 |#1|) $) 47)) (-4379 (($ $ (-773)) 80)) (-1407 (((-3 $ "failed") $ $) 20)) (-4367 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-773)) 49 (|has| |#2| (-172)))) (-4156 (($) 18 T CONST)) (-4371 (($ $ |#1|) 61) (($ $ (-821 |#1|)) 60) (($ $ $) 59)) (-3577 (((-3 (-821 |#1|) "failed") $) 71)) (-3576 (((-821 |#1|) $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4383 (((-112) $) 52)) (-4382 (($ $) 51)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 57)) (-4370 (($ (-821 |#1|) |#2|) 58)) (-4368 (($ $) 56)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) 67)) (-4387 (((-821 |#1|) $) 68)) (-4388 (((-821 |#1|) $) 82)) (-4390 (($ (-1 |#2| |#2|) $) 48)) (-4372 (($ $ |#1|) 64) (($ $ (-821 |#1|)) 63) (($ $ $) 62)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 (((-773) $) 81)) (-4385 (((-112) $) 54)) (-4384 ((|#2| $) 53)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#2|) 75) (($ (-821 |#1|)) 70) (($ |#1|) 55)) (-4386 ((|#2| $ (-821 |#1|)) 66) ((|#2| $ $) 65)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1292 |#1| |#2|) (-140) (-852) (-1052)) (T -1292)) -((-4388 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-773)))) (-4379 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) -(-13 (-1289 |t#1| |t#2|) (-10 -8 (-15 -4388 ((-821 |t#1|) $)) (-15 -4380 ((-773) $)) (-15 -4379 ($ $ (-773))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 #1=(-821 |#1|)) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-650 |#2|) . T) ((-650 $) . T) ((-642 |#2|) |has| |#2| (-172)) ((-719 |#2|) |has| |#2| (-172)) ((-728) . T) ((-1041 #1#) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1284 |#2|) . T) ((-1289 |#1| |#2|) . T)) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| "failed") $) NIL)) (-3576 ((|#2| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) 42)) (-4383 (((-112) $) 35)) (-4382 (($ $) 37)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ |#2| |#1|) NIL)) (-4387 ((|#2| $) 24)) (-4388 ((|#2| $) 22)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1917 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3295 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4385 (((-112) $) 32)) (-4384 ((|#1| $) 33)) (-4378 (((-865) $) 65) (($ (-549)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ |#2|) NIL)) (-4386 ((|#1| $ |#2|) 28)) (-3530 (((-773)) 14 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 29 T CONST)) (-3067 (($) 11 T CONST)) (-3066 (((-643 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3455 (((-112) $ $) 30)) (-4381 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 50)) (** (($ $ (-922)) NIL) (($ $ (-773)) 52)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4389 (((-773) $) 16))) -(((-1293 |#1| |#2|) (-13 (-1052) (-1284 |#1|) (-386 |#1| |#2|) (-618 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4389 ((-773) $)) (-15 -4388 (|#2| $)) (-15 -4387 (|#2| $)) (-15 -4391 ($ $)) (-15 -4386 (|#1| $ |#2|)) (-15 -4385 ((-112) $)) (-15 -4384 (|#1| $)) (-15 -4383 ((-112) $)) (-15 -4382 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -4381 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1052) (-848)) (T -1293)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848)))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-848)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848)))) (-4388 (*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052)))) (-4387 (*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052)))) (-4386 (*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848)))) (-4384 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848)))) (-4382 (*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848)))) (-4381 (*1 *1 *1 *2) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-848))))) -(-13 (-1052) (-1284 |#1|) (-386 |#1| |#2|) (-618 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4389 ((-773) $)) (-15 -4388 (|#2| $)) (-15 -4387 (|#2| $)) (-15 -4391 ($ $)) (-15 -4386 (|#1| $ |#2|)) (-15 -4385 ((-112) $)) (-15 -4384 (|#1| $)) (-15 -4383 ((-112) $)) (-15 -4382 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -4381 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) -((-2968 (((-112) $ $) 27)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 132)) (-4394 (($ (-1285 |#1| |#2|)) 50)) (-4379 (($ $ (-773)) 38)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-773)) 52 (|has| |#2| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ |#1|) 114) (($ $ (-821 |#1|)) 115) (($ $ $) 26)) (-3577 (((-3 (-821 |#1|) "failed") $) NIL)) (-3576 (((-821 |#1|) $) NIL)) (-3890 (((-3 $ "failed") $) 122)) (-4383 (((-112) $) 117)) (-4382 (($ $) 118)) (-2573 (((-112) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 |#1|) |#2|) 20)) (-4368 (($ $) NIL)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4387 (((-821 |#1|) $) 123)) (-4388 (((-821 |#1|) $) 126)) (-4390 (($ (-1 |#2| |#2|) $) 131)) (-4372 (($ $ |#1|) 112) (($ $ (-821 |#1|)) 113) (($ $ $) 62)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4395 (((-1285 |#1| |#2|) $) 94)) (-4380 (((-773) $) 129)) (-4385 (((-112) $) 81)) (-4384 ((|#2| $) 32)) (-4378 (((-865) $) 73) (($ (-549)) 87) (($ |#2|) 85) (($ (-821 |#1|)) 18) (($ |#1|) 84)) (-4386 ((|#2| $ (-821 |#1|)) 116) ((|#2| $ $) 28)) (-3530 (((-773)) 120 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 15 T CONST)) (-4393 (((-643 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-3067 (($) 33 T CONST)) (-3455 (((-112) $ $) 14)) (-4269 (($ $) 98) (($ $ $) 101)) (-4271 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-773)) 55)) (* (($ (-922) $) NIL) (($ (-773) $) 53) (($ (-549) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1294 |#1| |#2|) (-13 (-1292 |#1| |#2|) (-10 -8 (-15 -4395 ((-1285 |#1| |#2|) $)) (-15 -4394 ($ (-1285 |#1| |#2|))) (-15 -4393 ((-643 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-852) (-1052)) (T -1294)) -((-4395 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *1 (-1294 *3 *4)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| *3) (|:| |c| (-1294 *3 *4))))) (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) -(-13 (-1292 |#1| |#2|) (-10 -8 (-15 -4395 ((-1285 |#1| |#2|) $)) (-15 -4394 ($ (-1285 |#1| |#2|))) (-15 -4393 ((-643 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4396 (((-643 (-1157 |#1|)) (-1 (-643 (-1157 |#1|)) (-643 (-1157 |#1|))) (-549)) 20) (((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|))) 13))) -(((-1295 |#1|) (-10 -7 (-15 -4396 ((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|)))) (-15 -4396 ((-643 (-1157 |#1|)) (-1 (-643 (-1157 |#1|)) (-643 (-1157 |#1|))) (-549)))) (-1219)) (T -1295)) -((-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-643 (-1157 *5)) (-643 (-1157 *5)))) (-5 *4 (-549)) (-5 *2 (-643 (-1157 *5))) (-5 *1 (-1295 *5)) (-4 *5 (-1219)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-1 (-1157 *4) (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1295 *4)) (-4 *4 (-1219))))) -(-10 -7 (-15 -4396 ((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|)))) (-15 -4396 ((-643 (-1157 |#1|)) (-1 (-643 (-1157 |#1|)) (-643 (-1157 |#1|))) (-549)))) -((-4398 (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|))) 174) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112)) 173) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)) 172) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112) (-112)) 171) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-1049 |#1| |#2|)) 156)) (-4397 (((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|))) 85) (((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112)) 84) (((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112) (-112)) 83)) (-4401 (((-643 (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) (-1049 |#1| |#2|)) 73)) (-4399 (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|))) 140) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112)) 139) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112)) 138) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112) (-112)) 137) (((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|)) 132)) (-4400 (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|))) 145) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112)) 144) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112)) 143) (((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|)) 142)) (-4402 (((-643 (-782 |#1| (-866 |#3|))) (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) 111) (((-1174 (-1027 (-410 |#1|))) (-1174 |#1|)) 102) (((-949 (-1027 (-410 |#1|))) (-782 |#1| (-866 |#3|))) 109) (((-949 (-1027 (-410 |#1|))) (-949 |#1|)) 107) (((-782 |#1| (-866 |#3|)) (-782 |#1| (-866 |#2|))) 33))) -(((-1296 |#1| |#2| |#3|) (-10 -7 (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-1049 |#1| |#2|))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4401 ((-643 (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) (-1049 |#1| |#2|))) (-15 -4402 ((-782 |#1| (-866 |#3|)) (-782 |#1| (-866 |#2|)))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-949 |#1|))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-782 |#1| (-866 |#3|)))) (-15 -4402 ((-1174 (-1027 (-410 |#1|))) (-1174 |#1|))) (-15 -4402 ((-643 (-782 |#1| (-866 |#3|))) (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))))) (-13 (-850) (-308) (-147) (-1023)) (-643 (-1180)) (-643 (-1180))) (T -1296)) -((-4402 (*1 *2 *3) (-12 (-5 *3 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6)))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-782 *4 (-866 *6)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-1174 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-782 *4 (-866 *6))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *6 (-643 (-1180))) (-5 *2 (-949 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-949 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-782 *4 (-866 *5))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-782 *4 (-866 *6))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4400 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4399 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4398 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) (-5 *1 (-1296 *4 *5 *6)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4398 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4398 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4398 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *4 *5))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180)))))) -(-10 -7 (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-1049 |#1| |#2|))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4401 ((-643 (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) (-1049 |#1| |#2|))) (-15 -4402 ((-782 |#1| (-866 |#3|)) (-782 |#1| (-866 |#2|)))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-949 |#1|))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-782 |#1| (-866 |#3|)))) (-15 -4402 ((-1174 (-1027 (-410 |#1|))) (-1174 |#1|))) (-15 -4402 ((-643 (-782 |#1| (-866 |#3|))) (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))))) -((-4405 (((-3 (-1269 (-410 (-549))) "failed") (-1269 |#1|) |#1|) 21)) (-4403 (((-112) (-1269 |#1|)) 12)) (-4404 (((-3 (-1269 (-549)) "failed") (-1269 |#1|)) 16))) -(((-1297 |#1|) (-10 -7 (-15 -4403 ((-112) (-1269 |#1|))) (-15 -4404 ((-3 (-1269 (-549)) "failed") (-1269 |#1|))) (-15 -4405 ((-3 (-1269 (-410 (-549))) "failed") (-1269 |#1|) |#1|))) (-641 (-549))) (T -1297)) -((-4405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-1269 (-410 (-549)))) (-5 *1 (-1297 *4)))) (-4404 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-1269 (-549))) (-5 *1 (-1297 *4)))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-112)) (-5 *1 (-1297 *4))))) -(-10 -7 (-15 -4403 ((-112) (-1269 |#1|))) (-15 -4404 ((-3 (-1269 (-549)) "failed") (-1269 |#1|))) (-15 -4405 ((-3 (-1269 (-410 (-549))) "failed") (-1269 |#1|) |#1|))) -((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 11)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773)) 8)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) 58)) (-3395 (($) 49)) (-2573 (((-112) $) 57)) (-3868 (((-3 $ "failed") $) 40)) (-2188 (((-922) $) 15)) (-3663 (((-1162) $) NIL)) (-3869 (($) 32 T CONST)) (-2563 (($ (-922)) 50)) (-3664 (((-1123) $) NIL)) (-4402 (((-549) $) 13)) (-4378 (((-865) $) 27) (($ (-549)) 24)) (-3530 (((-773)) 9 T CONST)) (-3662 (((-112) $ $) 60)) (-3510 (($) 29 T CONST)) (-3067 (($) 31 T CONST)) (-3455 (((-112) $ $) 38)) (-4269 (($ $) 52) (($ $ $) 47)) (-4271 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-773)) 54)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 44) (($ $ $) 43))) -(((-1298 |#1|) (-13 (-172) (-370) (-616 (-549)) (-1154)) (-922)) (T -1298)) -NIL -(-13 (-172) (-370) (-616 (-549)) (-1154)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3213794 3213799 3213804 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3213779 3213784 3213789 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3213764 3213769 3213774 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3213749 3213754 3213759 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1298 3212892 3213624 3213701 "ZMOD" 3213706 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1297 3212002 3212166 3212375 "ZLINDEP" 3212724 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1296 3201302 3203070 3205042 "ZDSOLVE" 3210132 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1295 3200548 3200689 3200878 "YSTREAM" 3201148 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1294 3198322 3199849 3200053 "XRPOLY" 3200391 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1293 3194875 3196193 3196768 "XPR" 3197794 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1292 3192528 3193896 3193951 "XPOLYC" 3194239 NIL XPOLYC (NIL T T) -9 NIL 3194352 NIL) (-1291 3190258 3191868 3192072 "XPOLY" 3192368 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1290 3186636 3188775 3189163 "XPBWPOLY" 3189916 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1289 3181832 3183121 3183176 "XFALG" 3185348 NIL XFALG (NIL T T) -9 NIL 3186137 NIL) (-1288 3177529 3179822 3179864 "XF" 3180485 NIL XF (NIL T) -9 NIL 3180885 NIL) (-1287 3177150 3177238 3177407 "XF-" 3177412 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1286 3176283 3176387 3176592 "XEXPPKG" 3177042 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1285 3174392 3176133 3176229 "XDPOLY" 3176234 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1284 3173199 3173799 3173842 "XALG" 3173847 NIL XALG (NIL T) -9 NIL 3173958 NIL) (-1283 3166668 3171176 3171670 "WUTSET" 3172791 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1282 3164924 3165720 3166043 "WP" 3166479 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1281 3164526 3164746 3164816 "WHILEAST" 3164876 T WHILEAST (NIL) -8 NIL NIL NIL) (-1280 3163998 3164243 3164337 "WHEREAST" 3164454 T WHEREAST (NIL) -8 NIL NIL NIL) (-1279 3162884 3163082 3163377 "WFFINTBS" 3163795 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1278 3160788 3161215 3161677 "WEIER" 3162456 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1277 3159834 3160284 3160326 "VSPACE" 3160462 NIL VSPACE (NIL T) -9 NIL 3160536 NIL) (-1276 3159672 3159699 3159790 "VSPACE-" 3159795 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1275 3159481 3159523 3159591 "VOID" 3159626 T VOID (NIL) -8 NIL NIL NIL) (-1274 3155905 3156544 3157281 "VIEWDEF" 3158766 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1273 3145209 3147453 3149626 "VIEW3D" 3153754 T VIEW3D (NIL) -8 NIL NIL NIL) (-1272 3137460 3139120 3140699 "VIEW2D" 3143652 T VIEW2D (NIL) -8 NIL NIL NIL) (-1271 3135596 3135955 3136361 "VIEW" 3137076 T VIEW (NIL) -7 NIL NIL NIL) (-1270 3134173 3134432 3134750 "VECTOR2" 3135326 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1269 3129526 3133943 3134035 "VECTOR" 3134116 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1268 3123000 3127307 3127350 "VECTCAT" 3128345 NIL VECTCAT (NIL T) -9 NIL 3128932 NIL) (-1267 3122014 3122268 3122658 "VECTCAT-" 3122663 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1266 3121468 3121665 3121785 "VARIABLE" 3121929 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1265 3121401 3121406 3121436 "UTYPE" 3121441 T UTYPE (NIL) -9 NIL NIL NIL) (-1264 3120231 3120385 3120647 "UTSODETL" 3121227 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1263 3117671 3118131 3118655 "UTSODE" 3119772 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1262 3108545 3113912 3113955 "UTSCAT" 3115067 NIL UTSCAT (NIL T) -9 NIL 3115825 NIL) (-1261 3105892 3106615 3107604 "UTSCAT-" 3107609 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1260 3105519 3105562 3105695 "UTS2" 3105843 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1259 3097356 3103145 3103634 "UTS" 3105088 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1258 3091583 3094194 3094237 "URAGG" 3096307 NIL URAGG (NIL T) -9 NIL 3097030 NIL) (-1257 3088525 3089387 3090509 "URAGG-" 3090514 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1256 3084241 3087160 3087625 "UPXSSING" 3088189 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1255 3077316 3084145 3084217 "UPXSCONS" 3084222 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1254 3067063 3073854 3073916 "UPXSCCA" 3074490 NIL UPXSCCA (NIL T T) -9 NIL 3074723 NIL) (-1253 3066701 3066786 3066960 "UPXSCCA-" 3066965 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1252 3056300 3062864 3062907 "UPXSCAT" 3063555 NIL UPXSCAT (NIL T) -9 NIL 3064164 NIL) (-1251 3055730 3055809 3055988 "UPXS2" 3056215 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1250 3047800 3054977 3055250 "UPXS" 3055515 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1249 3046457 3046709 3047059 "UPSQFREE" 3047544 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1248 3039878 3042935 3042990 "UPSCAT" 3044151 NIL UPSCAT (NIL T T) -9 NIL 3044925 NIL) (-1247 3039082 3039289 3039616 "UPSCAT-" 3039621 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1246 3038709 3038752 3038885 "UPOLYC2" 3039033 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1245 3024397 3032132 3032175 "UPOLYC" 3034276 NIL UPOLYC (NIL T) -9 NIL 3035497 NIL) (-1244 3015761 3018175 3021310 "UPOLYC-" 3021315 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1243 3015100 3015207 3015371 "UPMP" 3015650 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1242 3014653 3014734 3014873 "UPDIVP" 3015013 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1241 3013221 3013470 3013786 "UPDECOMP" 3014402 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1240 3012456 3012568 3012753 "UPCDEN" 3013105 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1239 3011975 3012044 3012193 "UP2" 3012381 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1238 3003826 3011658 3011787 "UP" 3011894 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1237 3003041 3003168 3003373 "UNISEG2" 3003669 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1236 3001508 3002245 3002522 "UNISEG" 3002799 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1235 3000568 3000748 3000974 "UNIFACT" 3001324 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1234 2988582 3000472 3000544 "ULSCONS" 3000549 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1233 2970617 2982586 2982648 "ULSCCAT" 2983286 NIL ULSCCAT (NIL T T) -9 NIL 2983574 NIL) (-1232 2969703 2969936 2970312 "ULSCCAT-" 2970317 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1231 2959079 2965557 2965600 "ULSCAT" 2966463 NIL ULSCAT (NIL T) -9 NIL 2967194 NIL) (-1230 2958509 2958588 2958767 "ULS2" 2958994 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1229 2942457 2957686 2957937 "ULS" 2958316 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1228 2941584 2942094 2942201 "UINT8" 2942312 T UINT8 (NIL) -8 NIL NIL 2942397) (-1227 2940710 2941220 2941327 "UINT64" 2941438 T UINT64 (NIL) -8 NIL NIL 2941523) (-1226 2939836 2940346 2940453 "UINT32" 2940564 T UINT32 (NIL) -8 NIL NIL 2940649) (-1225 2938962 2939472 2939579 "UINT16" 2939690 T UINT16 (NIL) -8 NIL NIL 2939775) (-1224 2937265 2938222 2938252 "UFD" 2938464 T UFD (NIL) -9 NIL 2938578 NIL) (-1223 2937059 2937105 2937200 "UFD-" 2937205 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1222 2936141 2936324 2936540 "UDVO" 2936865 T UDVO (NIL) -7 NIL NIL NIL) (-1221 2933957 2934366 2934837 "UDPO" 2935705 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1220 2933717 2933912 2933943 "TYPEAST" 2933948 T TYPEAST (NIL) -8 NIL NIL NIL) (-1219 2933650 2933655 2933685 "TYPE" 2933690 T TYPE (NIL) -9 NIL NIL NIL) (-1218 2932621 2932823 2933063 "TWOFACT" 2933444 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1217 2931644 2932030 2932265 "TUPLE" 2932421 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1216 2929335 2929854 2930393 "TUBETOOL" 2931127 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1215 2928184 2928389 2928630 "TUBE" 2929128 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1214 2916824 2920943 2921040 "TSETCAT" 2926309 NIL TSETCAT (NIL T T T T) -9 NIL 2927840 NIL) (-1213 2911556 2913156 2915047 "TSETCAT-" 2915052 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1212 2906285 2910528 2910811 "TS" 2911308 NIL TS (NIL T) -8 NIL NIL NIL) (-1211 2900924 2901771 2902700 "TRMANIP" 2905421 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1210 2900365 2900428 2900591 "TRIMAT" 2900856 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1209 2898231 2898468 2898825 "TRIGMNIP" 2900114 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1208 2897751 2897864 2897894 "TRIGCAT" 2898107 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1207 2897420 2897499 2897640 "TRIGCAT-" 2897645 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1206 2894266 2896278 2896559 "TREE" 2897174 NIL TREE (NIL T) -8 NIL NIL NIL) (-1205 2893540 2894068 2894098 "TRANFUN" 2894133 T TRANFUN (NIL) -9 NIL 2894199 NIL) (-1204 2892819 2893010 2893290 "TRANFUN-" 2893295 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1203 2892623 2892655 2892716 "TOPSP" 2892780 T TOPSP (NIL) -7 NIL NIL NIL) (-1202 2891971 2892086 2892240 "TOOLSIGN" 2892504 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1201 2890605 2891148 2891387 "TEXTFILE" 2891754 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1200 2890386 2890417 2890489 "TEX1" 2890568 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1199 2888298 2888839 2889268 "TEX" 2889979 T TEX (NIL) -8 NIL NIL NIL) (-1198 2887946 2888009 2888099 "TEMUTL" 2888230 T TEMUTL (NIL) -7 NIL NIL NIL) (-1197 2886100 2886380 2886705 "TBCMPPK" 2887669 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1196 2877879 2884260 2884316 "TBAGG" 2884716 NIL TBAGG (NIL T T) -9 NIL 2884927 NIL) (-1195 2872949 2874437 2876191 "TBAGG-" 2876196 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1194 2872333 2872440 2872585 "TANEXP" 2872838 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1193 2871745 2871844 2871982 "TABLEAU" 2872230 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1192 2865137 2871602 2871695 "TABLE" 2871700 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1191 2859745 2860965 2862213 "TABLBUMP" 2863923 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1190 2858967 2859114 2859295 "SYSTEM" 2859586 T SYSTEM (NIL) -8 NIL NIL NIL) (-1189 2855426 2856125 2856908 "SYSSOLP" 2858218 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1188 2855224 2855381 2855412 "SYSPTR" 2855417 T SYSPTR (NIL) -8 NIL NIL NIL) (-1187 2854268 2854773 2854892 "SYSNNI" 2855078 NIL SYSNNI (NIL NIL) -8 NIL NIL 2855163) (-1186 2853575 2854034 2854113 "SYSINT" 2854173 NIL SYSINT (NIL NIL) -8 NIL NIL 2854218) (-1185 2849919 2850853 2851563 "SYNTAX" 2852887 T SYNTAX (NIL) -8 NIL NIL NIL) (-1184 2847077 2847679 2848311 "SYMTAB" 2849309 T SYMTAB (NIL) -8 NIL NIL NIL) (-1183 2842350 2843246 2844223 "SYMS" 2846122 T SYMS (NIL) -8 NIL NIL NIL) (-1182 2839595 2841811 2842041 "SYMPOLY" 2842158 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1181 2839112 2839187 2839310 "SYMFUNC" 2839507 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1180 2835132 2836424 2837237 "SYMBOL" 2838321 T SYMBOL (NIL) -8 NIL NIL NIL) (-1179 2828671 2830360 2832080 "SWITCH" 2833434 T SWITCH (NIL) -8 NIL NIL NIL) (-1178 2821905 2827492 2827795 "SUTS" 2828426 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1177 2813975 2821152 2821425 "SUPXS" 2821690 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1176 2813134 2813261 2813478 "SUPFRACF" 2813843 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1175 2812755 2812814 2812927 "SUP2" 2813069 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1174 2804554 2812373 2812499 "SUP" 2812664 NIL SUP (NIL T) -8 NIL NIL NIL) (-1173 2803002 2803276 2803632 "SUMRF" 2804253 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1172 2802337 2802403 2802595 "SUMFS" 2802923 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1171 2786320 2801514 2801765 "SULS" 2802144 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1170 2785922 2786142 2786212 "SUCHTAST" 2786272 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1169 2785217 2785447 2785587 "SUCH" 2785830 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1168 2779083 2780123 2781082 "SUBSPACE" 2784305 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1167 2778513 2778603 2778767 "SUBRESP" 2778971 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1166 2772686 2773806 2774953 "STTFNC" 2777413 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1165 2766052 2767351 2768662 "STTF" 2771422 NIL STTF (NIL T) -7 NIL NIL NIL) (-1164 2757363 2759234 2761028 "STTAYLOR" 2764293 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1163 2750495 2757227 2757310 "STRTBL" 2757315 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1162 2745859 2750450 2750481 "STRING" 2750486 T STRING (NIL) -8 NIL NIL NIL) (-1161 2740720 2745232 2745262 "STRICAT" 2745321 T STRICAT (NIL) -9 NIL 2745383 NIL) (-1160 2740230 2740307 2740451 "STREAM3" 2740637 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1159 2739212 2739395 2739630 "STREAM2" 2740043 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1158 2738900 2738952 2739045 "STREAM1" 2739154 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1157 2731655 2736519 2737130 "STREAM" 2738324 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1156 2730671 2730852 2731083 "STINPROD" 2731471 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1155 2729858 2730160 2730308 "STEPAST" 2730545 T STEPAST (NIL) -8 NIL NIL NIL) (-1154 2729410 2729620 2729650 "STEP" 2729730 T STEP (NIL) -9 NIL 2729808 NIL) (-1153 2722844 2729309 2729386 "STBL" 2729391 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1152 2717972 2722065 2722108 "STAGG" 2722261 NIL STAGG (NIL T) -9 NIL 2722350 NIL) (-1151 2715680 2716280 2717150 "STAGG-" 2717155 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1150 2713827 2715450 2715542 "STACK" 2715623 NIL STACK (NIL T) -8 NIL NIL NIL) (-1149 2706549 2711968 2712424 "SREGSET" 2713457 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1148 2698974 2700343 2701856 "SRDCMPK" 2705155 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1147 2691891 2696414 2696444 "SRAGG" 2697747 T SRAGG (NIL) -9 NIL 2698355 NIL) (-1146 2690908 2691163 2691542 "SRAGG-" 2691547 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1145 2685372 2689855 2690276 "SQMATRIX" 2690534 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1144 2679058 2682090 2682817 "SPLTREE" 2684717 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1143 2675021 2675714 2676360 "SPLNODE" 2678484 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1142 2674068 2674301 2674331 "SPFCAT" 2674775 T SPFCAT (NIL) -9 NIL NIL NIL) (-1141 2672805 2673015 2673279 "SPECOUT" 2673826 T SPECOUT (NIL) -7 NIL NIL NIL) (-1140 2663915 2665787 2665817 "SPADXPT" 2670493 T SPADXPT (NIL) -9 NIL 2672657 NIL) (-1139 2663676 2663716 2663785 "SPADPRSR" 2663868 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1138 2661725 2663631 2663662 "SPADAST" 2663667 T SPADAST (NIL) -8 NIL NIL NIL) (-1137 2653670 2655443 2655486 "SPACEC" 2659859 NIL SPACEC (NIL T) -9 NIL 2661675 NIL) (-1136 2651800 2653602 2653651 "SPACE3" 2653656 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1135 2650552 2650723 2651014 "SORTPAK" 2651605 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1134 2648644 2648947 2649359 "SOLVETRA" 2650216 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1133 2647694 2647916 2648177 "SOLVESER" 2648417 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1132 2642998 2643886 2644881 "SOLVERAD" 2646746 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1131 2638813 2639422 2640151 "SOLVEFOR" 2642365 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1130 2633110 2638162 2638259 "SNTSCAT" 2638264 NIL SNTSCAT (NIL T T T T) -9 NIL 2638334 NIL) (-1129 2627216 2631433 2631824 "SMTS" 2632800 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1128 2621927 2627104 2627181 "SMP" 2627186 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1127 2620086 2620387 2620785 "SMITH" 2621624 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1126 2612797 2616989 2617092 "SMATCAT" 2618446 NIL SMATCAT (NIL NIL T T T) -9 NIL 2618996 NIL) (-1125 2609758 2610574 2611745 "SMATCAT-" 2611750 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1124 2607424 2608994 2609037 "SKAGG" 2609298 NIL SKAGG (NIL T) -9 NIL 2609433 NIL) (-1123 2603737 2606840 2607035 "SINT" 2607222 T SINT (NIL) -8 NIL NIL 2607395) (-1122 2603509 2603547 2603613 "SIMPAN" 2603693 T SIMPAN (NIL) -7 NIL NIL NIL) (-1121 2602368 2602582 2602850 "SIGNRF" 2603275 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1120 2601222 2601366 2601643 "SIGNEF" 2602204 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1119 2600528 2600805 2600929 "SIGAST" 2601120 T SIGAST (NIL) -8 NIL NIL NIL) (-1118 2599807 2600063 2600203 "SIG" 2600410 T SIG (NIL) -8 NIL NIL NIL) (-1117 2597497 2597951 2598457 "SHP" 2599348 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1116 2591356 2597398 2597474 "SHDP" 2597479 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1115 2590929 2591121 2591151 "SGROUP" 2591244 T SGROUP (NIL) -9 NIL 2591306 NIL) (-1114 2590787 2590813 2590886 "SGROUP-" 2590891 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1113 2587622 2588320 2589043 "SGCF" 2590086 T SGCF (NIL) -7 NIL NIL NIL) (-1112 2582017 2587069 2587166 "SFRTCAT" 2587171 NIL SFRTCAT (NIL T T T T) -9 NIL 2587210 NIL) (-1111 2575438 2576456 2577592 "SFRGCD" 2581000 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1110 2568564 2569637 2570823 "SFQCMPK" 2574371 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1109 2568184 2568273 2568384 "SFORT" 2568505 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1108 2567302 2568024 2568145 "SEXOF" 2568150 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1107 2562815 2563530 2563625 "SEXCAT" 2566562 NIL SEXCAT (NIL T T T T T) -9 NIL 2567140 NIL) (-1106 2561922 2562696 2562764 "SEX" 2562769 T SEX (NIL) -8 NIL NIL NIL) (-1105 2560152 2560639 2560942 "SETMN" 2561665 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1104 2559648 2559800 2559830 "SETCAT" 2560006 T SETCAT (NIL) -9 NIL 2560116 NIL) (-1103 2559340 2559418 2559548 "SETCAT-" 2559553 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1102 2555701 2557801 2557844 "SETAGG" 2558714 NIL SETAGG (NIL T) -9 NIL 2559054 NIL) (-1101 2555159 2555275 2555512 "SETAGG-" 2555517 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1100 2552312 2555093 2555141 "SET" 2555146 NIL SET (NIL T) -8 NIL NIL NIL) (-1099 2551755 2552008 2552109 "SEQAST" 2552233 T SEQAST (NIL) -8 NIL NIL NIL) (-1098 2550954 2551248 2551309 "SEGXCAT" 2551595 NIL SEGXCAT (NIL T T) -9 NIL 2551715 NIL) (-1097 2549933 2550147 2550190 "SEGCAT" 2550712 NIL SEGCAT (NIL T) -9 NIL 2550933 NIL) (-1096 2549554 2549613 2549726 "SEGBIND2" 2549868 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1095 2548486 2548917 2549125 "SEGBIND" 2549381 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1094 2548059 2548287 2548364 "SEGAST" 2548431 T SEGAST (NIL) -8 NIL NIL NIL) (-1093 2547278 2547404 2547608 "SEG2" 2547903 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1092 2546284 2546944 2547126 "SEG" 2547131 NIL SEG (NIL T) -8 NIL NIL NIL) (-1091 2545694 2546219 2546266 "SDVAR" 2546271 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1090 2538262 2545464 2545594 "SDPOL" 2545599 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1089 2536855 2537121 2537440 "SCPKG" 2537977 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1088 2536019 2536191 2536383 "SCOPE" 2536685 T SCOPE (NIL) -8 NIL NIL NIL) (-1087 2535239 2535373 2535552 "SCACHE" 2535874 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1086 2534885 2535071 2535101 "SASTCAT" 2535106 T SASTCAT (NIL) -9 NIL 2535119 NIL) (-1085 2534372 2534720 2534796 "SAOS" 2534831 T SAOS (NIL) -8 NIL NIL NIL) (-1084 2533937 2533972 2534145 "SAERFFC" 2534331 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1083 2533530 2533565 2533724 "SAEFACT" 2533896 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1082 2527478 2533427 2533507 "SAE" 2533512 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1081 2525799 2526113 2526514 "RURPK" 2527144 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1080 2524436 2524742 2525047 "RULESET" 2525633 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1079 2524048 2524230 2524313 "RULECOLD" 2524388 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1078 2521271 2521801 2522259 "RULE" 2523729 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1077 2521061 2521089 2521160 "RTVALUE" 2521222 T RTVALUE (NIL) -8 NIL NIL NIL) (-1076 2520532 2520778 2520872 "RSTRCAST" 2520989 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1075 2515380 2516175 2517095 "RSETGCD" 2519731 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1074 2504637 2509689 2509786 "RSETCAT" 2513905 NIL RSETCAT (NIL T T T T) -9 NIL 2515002 NIL) (-1073 2502564 2503103 2503927 "RSETCAT-" 2503932 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1072 2494950 2496326 2497846 "RSDCMPK" 2501163 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1071 2492929 2493396 2493470 "RRCC" 2494556 NIL RRCC (NIL T T) -9 NIL 2494900 NIL) (-1070 2492280 2492454 2492733 "RRCC-" 2492738 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1069 2491723 2491976 2492077 "RPTAST" 2492201 T RPTAST (NIL) -8 NIL NIL NIL) (-1068 2465605 2474931 2474998 "RPOLCAT" 2485662 NIL RPOLCAT (NIL T T T) -9 NIL 2488821 NIL) (-1067 2457139 2459467 2462577 "RPOLCAT-" 2462582 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1066 2448072 2455350 2455832 "ROUTINE" 2456679 T ROUTINE (NIL) -8 NIL NIL NIL) (-1065 2444872 2447698 2447838 "ROMAN" 2447954 T ROMAN (NIL) -8 NIL NIL NIL) (-1064 2443118 2443732 2443992 "ROIRC" 2444677 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1063 2439354 2441634 2441664 "RNS" 2441968 T RNS (NIL) -9 NIL 2442242 NIL) (-1062 2437863 2438246 2438780 "RNS-" 2438855 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1061 2436866 2437228 2437430 "RNGBIND" 2437714 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1060 2436269 2436677 2436707 "RNG" 2436712 T RNG (NIL) -9 NIL 2436733 NIL) (-1059 2435668 2436056 2436099 "RMODULE" 2436104 NIL RMODULE (NIL T) -9 NIL 2436131 NIL) (-1058 2434504 2434598 2434934 "RMCAT2" 2435569 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1057 2431354 2433850 2434147 "RMATRIX" 2434266 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1056 2424181 2426441 2426556 "RMATCAT" 2429915 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2430897 NIL) (-1055 2423556 2423703 2424010 "RMATCAT-" 2424015 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1054 2422957 2423178 2423221 "RLINSET" 2423415 NIL RLINSET (NIL T) -9 NIL 2423506 NIL) (-1053 2422524 2422599 2422727 "RINTERP" 2422876 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1052 2421582 2422136 2422166 "RING" 2422222 T RING (NIL) -9 NIL 2422314 NIL) (-1051 2421374 2421418 2421515 "RING-" 2421520 NIL RING- (NIL T) -8 NIL NIL NIL) (-1050 2420215 2420452 2420710 "RIDIST" 2421138 T RIDIST (NIL) -7 NIL NIL NIL) (-1049 2411531 2419683 2419889 "RGCHAIN" 2420063 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1048 2410881 2411287 2411328 "RGBCSPC" 2411386 NIL RGBCSPC (NIL T) -9 NIL 2411438 NIL) (-1047 2410039 2410420 2410461 "RGBCMDL" 2410693 NIL RGBCMDL (NIL T) -9 NIL 2410807 NIL) (-1046 2409685 2409748 2409851 "RFFACTOR" 2409970 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1045 2409410 2409445 2409542 "RFFACT" 2409644 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1044 2407527 2407891 2408273 "RFDIST" 2409050 T RFDIST (NIL) -7 NIL NIL NIL) (-1043 2404521 2405135 2405805 "RF" 2406891 NIL RF (NIL T) -7 NIL NIL NIL) (-1042 2403974 2404066 2404229 "RETSOL" 2404423 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1041 2403610 2403690 2403733 "RETRACT" 2403866 NIL RETRACT (NIL T) -9 NIL 2403953 NIL) (-1040 2403459 2403484 2403571 "RETRACT-" 2403576 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1039 2403061 2403281 2403351 "RETAST" 2403411 T RETAST (NIL) -8 NIL NIL NIL) (-1038 2395801 2402714 2402841 "RESULT" 2402956 T RESULT (NIL) -8 NIL NIL NIL) (-1037 2394392 2395070 2395269 "RESRING" 2395704 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1036 2394028 2394077 2394175 "RESLATC" 2394329 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1035 2393733 2393768 2393875 "REPSQ" 2393987 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1034 2393430 2393465 2393576 "REPDB" 2393692 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1033 2387330 2388719 2389942 "REP2" 2392242 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1032 2383707 2384388 2385196 "REP1" 2386557 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1031 2381129 2381709 2382311 "REP" 2383127 T REP (NIL) -7 NIL NIL NIL) (-1030 2373852 2379270 2379726 "REGSET" 2380759 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1029 2372617 2373000 2373250 "REF" 2373637 NIL REF (NIL T) -8 NIL NIL NIL) (-1028 2371994 2372097 2372264 "REDORDER" 2372501 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1027 2367993 2371207 2371434 "RECLOS" 2371822 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1026 2367045 2367226 2367441 "REALSOLV" 2367800 T REALSOLV (NIL) -7 NIL NIL NIL) (-1025 2363528 2364330 2365214 "REAL0Q" 2366210 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1024 2359129 2360117 2361178 "REAL0" 2362509 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1023 2358975 2359016 2359046 "REAL" 2359051 T REAL (NIL) -9 NIL 2359086 NIL) (-1022 2358446 2358692 2358786 "RDUCEAST" 2358903 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1021 2357851 2357923 2358130 "RDIV" 2358368 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1020 2356919 2357093 2357306 "RDIST" 2357673 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1019 2355516 2355803 2356175 "RDETRS" 2356627 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1018 2353328 2353782 2354320 "RDETR" 2355058 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1017 2351953 2352231 2352628 "RDEEFS" 2353044 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1016 2350462 2350768 2351193 "RDEEF" 2351641 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1015 2344532 2347443 2347473 "RCFIELD" 2348768 T RCFIELD (NIL) -9 NIL 2349499 NIL) (-1014 2342596 2343100 2343796 "RCFIELD-" 2343871 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1013 2338865 2340697 2340740 "RCAGG" 2341824 NIL RCAGG (NIL T) -9 NIL 2342289 NIL) (-1012 2338493 2338587 2338750 "RCAGG-" 2338755 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1011 2337828 2337940 2338105 "RATRET" 2338377 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1010 2337381 2337448 2337569 "RATFACT" 2337756 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1009 2336689 2336809 2336961 "RANDSRC" 2337251 T RANDSRC (NIL) -7 NIL NIL NIL) (-1008 2336423 2336467 2336540 "RADUTIL" 2336638 T RADUTIL (NIL) -7 NIL NIL NIL) (-1007 2329560 2335256 2335566 "RADIX" 2336147 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1006 2321190 2329402 2329532 "RADFF" 2329537 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1005 2320837 2320912 2320942 "RADCAT" 2321102 T RADCAT (NIL) -9 NIL NIL NIL) (-1004 2320619 2320667 2320767 "RADCAT-" 2320772 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1003 2318719 2320391 2320482 "QUEUE" 2320563 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1002 2318350 2318393 2318524 "QUATCT2" 2318670 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1001 2311806 2315144 2315186 "QUATCAT" 2315977 NIL QUATCAT (NIL T) -9 NIL 2316743 NIL) (-1000 2307966 2308996 2310379 "QUATCAT-" 2310475 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-999 2304512 2307901 2307947 "QUAT" 2307952 NIL QUAT (NIL T) -8 NIL NIL NIL) (-998 2301985 2303596 2303637 "QUAGG" 2304012 NIL QUAGG (NIL T) -9 NIL 2304187 NIL) (-997 2301590 2301810 2301878 "QQUTAST" 2301937 T QQUTAST (NIL) -8 NIL NIL NIL) (-996 2300488 2300988 2301160 "QFORM" 2301462 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-995 2300126 2300169 2300296 "QFCAT2" 2300439 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2291147 2296370 2296410 "QFCAT" 2297068 NIL QFCAT (NIL T) -9 NIL 2298069 NIL) (-993 2286755 2287944 2289523 "QFCAT-" 2289617 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-992 2286215 2286325 2286455 "QEQUAT" 2286645 T QEQUAT (NIL) -8 NIL NIL NIL) (-991 2279361 2280434 2281618 "QCMPACK" 2285148 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-990 2278606 2278780 2279012 "QALGSET2" 2279181 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-989 2276161 2276607 2277033 "QALGSET" 2278263 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-988 2274851 2275075 2275392 "PWFFINTB" 2275934 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-987 2273050 2273218 2273572 "PUSHVAR" 2274665 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-986 2268968 2270022 2270063 "PTRANFN" 2271947 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-985 2267370 2267661 2267983 "PTPACK" 2268679 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-984 2267002 2267059 2267168 "PTFUNC2" 2267307 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-983 2261479 2265874 2265915 "PTCAT" 2266211 NIL PTCAT (NIL T) -9 NIL 2266364 NIL) (-982 2261137 2261172 2261296 "PSQFR" 2261438 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-981 2259732 2260030 2260364 "PSEUDLIN" 2260835 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-980 2246495 2248866 2251190 "PSETPK" 2257492 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-979 2239513 2242253 2242349 "PSETCAT" 2245370 NIL PSETCAT (NIL T T T T) -9 NIL 2246184 NIL) (-978 2237349 2237983 2238804 "PSETCAT-" 2238809 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-977 2236698 2236863 2236891 "PSCURVE" 2237159 T PSCURVE (NIL) -9 NIL 2237326 NIL) (-976 2232696 2234212 2234277 "PSCAT" 2235121 NIL PSCAT (NIL T T T) -9 NIL 2235361 NIL) (-975 2231759 2231975 2232375 "PSCAT-" 2232380 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-974 2230464 2231124 2231329 "PRTITION" 2231574 T PRTITION (NIL) -8 NIL NIL NIL) (-973 2229939 2230185 2230277 "PRTDAST" 2230392 T PRTDAST (NIL) -8 NIL NIL NIL) (-972 2219029 2221243 2223431 "PRS" 2227801 NIL PRS (NIL T T) -7 NIL NIL NIL) (-971 2216840 2218379 2218419 "PRQAGG" 2218602 NIL PRQAGG (NIL T) -9 NIL 2218704 NIL) (-970 2216044 2216349 2216377 "PROPLOG" 2216624 T PROPLOG (NIL) -9 NIL 2216790 NIL) (-969 2214225 2214791 2215088 "PROPFRML" 2215780 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-968 2213694 2213801 2213929 "PROPERTY" 2214117 T PROPERTY (NIL) -8 NIL NIL NIL) (-967 2207752 2211860 2212680 "PRODUCT" 2212920 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-966 2207548 2207580 2207639 "PRINT" 2207713 T PRINT (NIL) -7 NIL NIL NIL) (-965 2206888 2207005 2207157 "PRIMES" 2207428 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-964 2204953 2205354 2205820 "PRIMELT" 2206467 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-963 2204682 2204731 2204759 "PRIMCAT" 2204883 T PRIMCAT (NIL) -9 NIL NIL NIL) (-962 2203689 2203867 2204095 "PRIMARR2" 2204500 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-961 2199804 2203627 2203672 "PRIMARR" 2203677 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-960 2199447 2199503 2199614 "PREASSOC" 2199742 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-959 2196732 2198905 2199139 "PR" 2199258 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2196207 2196340 2196368 "PPCURVE" 2196573 T PPCURVE (NIL) -9 NIL 2196709 NIL) (-957 2195802 2196002 2196085 "PORTNUM" 2196144 T PORTNUM (NIL) -8 NIL NIL NIL) (-956 2193161 2193560 2194152 "POLYROOT" 2195383 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-955 2192544 2192602 2192836 "POLYLIFT" 2193097 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-954 2188819 2189268 2189897 "POLYCATQ" 2192089 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-953 2175545 2180659 2180724 "POLYCAT" 2184238 NIL POLYCAT (NIL T T T) -9 NIL 2186116 NIL) (-952 2169051 2170894 2173259 "POLYCAT-" 2173264 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-951 2168638 2168706 2168826 "POLY2UP" 2168977 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-950 2168270 2168327 2168436 "POLY2" 2168575 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-949 2162483 2167874 2168034 "POLY" 2168143 NIL POLY (NIL T) -8 NIL NIL NIL) (-948 2161168 2161407 2161683 "POLUTIL" 2162257 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-947 2159523 2159800 2160131 "POLTOPOL" 2160890 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-946 2154988 2159459 2159505 "POINT" 2159510 NIL POINT (NIL T) -8 NIL NIL NIL) (-945 2153175 2153532 2153907 "PNTHEORY" 2154633 T PNTHEORY (NIL) -7 NIL NIL NIL) (-944 2151633 2151930 2152329 "PMTOOLS" 2152873 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-943 2151226 2151304 2151421 "PMSYM" 2151549 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-942 2150736 2150805 2150979 "PMQFCAT" 2151151 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-941 2150129 2150215 2150377 "PMPREDFS" 2150637 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-940 2149484 2149594 2149750 "PMPRED" 2150006 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-939 2148148 2148356 2148734 "PMPLCAT" 2149246 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-938 2147680 2147759 2147911 "PMLSAGG" 2148063 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-937 2147153 2147229 2147411 "PMKERNEL" 2147598 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-936 2146770 2146845 2146958 "PMINS" 2147072 NIL PMINS (NIL T) -7 NIL NIL NIL) (-935 2146212 2146281 2146490 "PMFS" 2146695 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-934 2145440 2145558 2145763 "PMDOWN" 2146089 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-933 2144713 2144823 2144986 "PMASSFS" 2145327 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-932 2143880 2144038 2144219 "PMASS" 2144552 T PMASS (NIL) -7 NIL NIL NIL) (-931 2143535 2143603 2143697 "PLOTTOOL" 2143806 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-930 2139339 2140383 2141304 "PLOT3D" 2142634 T PLOT3D (NIL) -8 NIL NIL NIL) (-929 2138251 2138428 2138663 "PLOT1" 2139143 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-928 2132858 2134062 2135210 "PLOT" 2137123 T PLOT (NIL) -8 NIL NIL NIL) (-927 2108247 2112924 2117775 "PLEQN" 2128124 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-926 2107940 2107987 2108090 "PINTERPA" 2108194 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-925 2107258 2107380 2107560 "PINTERP" 2107805 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-924 2105555 2106530 2106558 "PID" 2106740 T PID (NIL) -9 NIL 2106874 NIL) (-923 2105306 2105343 2105418 "PICOERCE" 2105512 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-922 2104527 2105075 2105162 "PI" 2105202 T PI (NIL) -8 NIL NIL 2105269) (-921 2103847 2103986 2104162 "PGROEB" 2104383 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-920 2099434 2100248 2101153 "PGE" 2102962 T PGE (NIL) -7 NIL NIL NIL) (-919 2097557 2097804 2098170 "PGCD" 2099151 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-918 2096895 2096998 2097159 "PFRPAC" 2097441 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-917 2093537 2095443 2095796 "PFR" 2096574 NIL PFR (NIL T) -8 NIL NIL NIL) (-916 2091926 2092170 2092495 "PFOTOOLS" 2093284 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-915 2090459 2090698 2091049 "PFOQ" 2091683 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-914 2088960 2089172 2089528 "PFO" 2090243 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-913 2086294 2087565 2087593 "PFECAT" 2088178 T PFECAT (NIL) -9 NIL 2088562 NIL) (-912 2085739 2085893 2086107 "PFECAT-" 2086112 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-911 2084342 2084594 2084895 "PFBRU" 2085488 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-910 2082208 2082560 2082992 "PFBR" 2083993 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-909 2078763 2082097 2082166 "PF" 2082171 NIL PF (NIL NIL) -8 NIL NIL NIL) (-908 2073997 2074970 2075840 "PERMGRP" 2077926 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-907 2072103 2073060 2073101 "PERMCAT" 2073547 NIL PERMCAT (NIL T) -9 NIL 2073852 NIL) (-906 2071756 2071797 2071921 "PERMAN" 2072056 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-905 2067638 2069132 2069808 "PERM" 2071113 NIL PERM (NIL T) -8 NIL NIL NIL) (-904 2065128 2067303 2067425 "PENDTREE" 2067549 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-903 2063152 2063920 2063961 "PDRING" 2064618 NIL PDRING (NIL T) -9 NIL 2064904 NIL) (-902 2062255 2062473 2062835 "PDRING-" 2062840 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-901 2059470 2060248 2060916 "PDEPROB" 2061607 T PDEPROB (NIL) -8 NIL NIL NIL) (-900 2057015 2057519 2058074 "PDEPACK" 2058935 T PDEPACK (NIL) -7 NIL NIL NIL) (-899 2055927 2056117 2056368 "PDECOMP" 2056814 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-898 2053506 2054349 2054377 "PDECAT" 2055164 T PDECAT (NIL) -9 NIL 2055877 NIL) (-897 2053257 2053290 2053380 "PCOMP" 2053467 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-896 2051435 2052058 2052355 "PBWLB" 2052986 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-895 2051067 2051124 2051233 "PATTERN2" 2051372 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-894 2048824 2049212 2049669 "PATTERN1" 2050656 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-893 2041299 2042897 2044235 "PATTERN" 2047507 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-892 2040863 2040930 2041062 "PATRES2" 2041226 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-891 2038231 2038812 2039293 "PATRES" 2040428 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-890 2036114 2036519 2036926 "PATMATCH" 2037898 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-889 2035624 2035833 2035874 "PATMAB" 2035981 NIL PATMAB (NIL T) -9 NIL 2036064 NIL) (-888 2034142 2034478 2034736 "PATLRES" 2035429 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-887 2033688 2033811 2033852 "PATAB" 2033857 NIL PATAB (NIL T) -9 NIL 2034029 NIL) (-886 2031169 2031701 2032274 "PARTPERM" 2033135 T PARTPERM (NIL) -7 NIL NIL NIL) (-885 2030790 2030853 2030955 "PARSURF" 2031100 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-884 2030422 2030479 2030588 "PARSU2" 2030727 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-883 2030186 2030226 2030293 "PARSER" 2030375 T PARSER (NIL) -7 NIL NIL NIL) (-882 2029807 2029870 2029972 "PARSCURV" 2030117 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-881 2029439 2029496 2029605 "PARSC2" 2029744 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-880 2029078 2029136 2029233 "PARPCURV" 2029375 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-879 2028710 2028767 2028876 "PARPC2" 2029015 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-878 2027771 2028083 2028265 "PARAMAST" 2028548 T PARAMAST (NIL) -8 NIL NIL NIL) (-877 2027291 2027377 2027496 "PAN2EXPR" 2027672 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-876 2026068 2026412 2026640 "PALETTE" 2027083 T PALETTE (NIL) -8 NIL NIL NIL) (-875 2024461 2025073 2025433 "PAIR" 2025754 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-874 2018352 2023720 2023914 "PADICRC" 2024316 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-873 2011602 2017698 2017882 "PADICRAT" 2018200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-872 2008714 2010276 2010316 "PADICCT" 2010897 NIL PADICCT (NIL NIL) -9 NIL 2011179 NIL) (-871 2007031 2008651 2008696 "PADIC" 2008701 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2005988 2006188 2006456 "PADEPAC" 2006818 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-869 2005200 2005333 2005539 "PADE" 2005850 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-868 2003587 2004408 2004688 "OWP" 2005004 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-867 2003080 2003293 2003390 "OVERSET" 2003510 T OVERSET (NIL) -8 NIL NIL NIL) (-866 2002126 2002685 2002857 "OVAR" 2002948 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-865 1990998 1993235 1995435 "OUTFORM" 1999946 T OUTFORM (NIL) -8 NIL NIL NIL) (-864 1990334 1990595 1990722 "OUTBFILE" 1990891 T OUTBFILE (NIL) -8 NIL NIL NIL) (-863 1989641 1989806 1989834 "OUTBCON" 1990152 T OUTBCON (NIL) -9 NIL 1990318 NIL) (-862 1989242 1989354 1989511 "OUTBCON-" 1989516 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-861 1988506 1988627 1988788 "OUT" 1989101 T OUT (NIL) -7 NIL NIL NIL) (-860 1987886 1988235 1988324 "OSI" 1988437 T OSI (NIL) -8 NIL NIL NIL) (-859 1987416 1987754 1987782 "OSGROUP" 1987787 T OSGROUP (NIL) -9 NIL 1987809 NIL) (-858 1986161 1986388 1986673 "ORTHPOL" 1987163 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-857 1983726 1985996 1986117 "OREUP" 1986122 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-856 1981143 1983417 1983544 "ORESUP" 1983668 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-855 1978671 1979171 1979732 "OREPCTO" 1980632 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-854 1972364 1974558 1974599 "OREPCAT" 1976947 NIL OREPCAT (NIL T) -9 NIL 1978051 NIL) (-853 1969532 1970307 1971358 "OREPCAT-" 1971363 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-852 1968683 1968981 1969009 "ORDSET" 1969318 T ORDSET (NIL) -9 NIL 1969482 NIL) (-851 1968114 1968262 1968486 "ORDSET-" 1968491 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-850 1966679 1967470 1967498 "ORDRING" 1967700 T ORDRING (NIL) -9 NIL 1967825 NIL) (-849 1966324 1966418 1966562 "ORDRING-" 1966567 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-848 1965704 1966167 1966195 "ORDMON" 1966200 T ORDMON (NIL) -9 NIL 1966221 NIL) (-847 1964866 1965013 1965208 "ORDFUNS" 1965553 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-846 1964204 1964623 1964651 "ORDFIN" 1964716 T ORDFIN (NIL) -9 NIL 1964790 NIL) (-845 1963470 1963597 1963783 "ORDCOMP2" 1964064 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-844 1960036 1962056 1962465 "ORDCOMP" 1963094 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1956617 1957527 1958341 "OPTPROB" 1959242 T OPTPROB (NIL) -8 NIL NIL NIL) (-842 1953419 1954058 1954762 "OPTPACK" 1955933 T OPTPACK (NIL) -7 NIL NIL NIL) (-841 1951106 1951872 1951900 "OPTCAT" 1952719 T OPTCAT (NIL) -9 NIL 1953369 NIL) (-840 1950490 1950783 1950888 "OPSIG" 1951021 T OPSIG (NIL) -8 NIL NIL NIL) (-839 1950258 1950297 1950363 "OPQUERY" 1950444 T OPQUERY (NIL) -7 NIL NIL NIL) (-838 1949632 1949858 1949899 "OPERCAT" 1950111 NIL OPERCAT (NIL T) -9 NIL 1950208 NIL) (-837 1949387 1949443 1949560 "OPERCAT-" 1949565 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-836 1946520 1947698 1948202 "OP" 1948916 NIL OP (NIL T) -8 NIL NIL NIL) (-835 1945825 1945940 1946114 "ONECOMP2" 1946392 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-834 1942645 1944622 1944991 "ONECOMP" 1945489 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1942064 1942170 1942300 "OMSERVER" 1942535 T OMSERVER (NIL) -7 NIL NIL NIL) (-832 1938926 1941504 1941544 "OMSAGG" 1941605 NIL OMSAGG (NIL T) -9 NIL 1941669 NIL) (-831 1937549 1937812 1938094 "OMPKG" 1938664 T OMPKG (NIL) -7 NIL NIL NIL) (-830 1936096 1937098 1937267 "OMLO" 1937430 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-829 1935056 1935203 1935423 "OMEXPR" 1935922 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-828 1934207 1934477 1934637 "OMERRK" 1934916 T OMERRK (NIL) -8 NIL NIL NIL) (-827 1933498 1933753 1933889 "OMERR" 1934091 T OMERR (NIL) -8 NIL NIL NIL) (-826 1932949 1933175 1933283 "OMENC" 1933410 T OMENC (NIL) -8 NIL NIL NIL) (-825 1926844 1928029 1929200 "OMDEV" 1931798 T OMDEV (NIL) -8 NIL NIL NIL) (-824 1925913 1926084 1926278 "OMCONN" 1926670 T OMCONN (NIL) -8 NIL NIL NIL) (-823 1925343 1925446 1925474 "OM" 1925773 T OM (NIL) -9 NIL NIL NIL) (-822 1923864 1924840 1924868 "OINTDOM" 1924873 T OINTDOM (NIL) -9 NIL 1924894 NIL) (-821 1921209 1922552 1922889 "OFMONOID" 1923559 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-820 1920620 1921146 1921191 "ODVAR" 1921196 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-819 1918045 1920365 1920520 "ODR" 1920525 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-818 1910667 1917821 1917947 "ODPOL" 1917952 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-817 1904496 1910539 1910644 "ODP" 1910649 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-816 1903262 1903477 1903752 "ODETOOLS" 1904270 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-815 1900229 1900887 1901603 "ODESYS" 1902595 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-814 1895111 1896019 1897044 "ODERTRIC" 1899304 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-813 1894537 1894619 1894813 "ODERED" 1895023 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-812 1891433 1891979 1892654 "ODERAT" 1893962 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-811 1888390 1888857 1889454 "ODEPRRIC" 1890962 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-810 1886333 1886929 1887415 "ODEPROB" 1887924 T ODEPROB (NIL) -8 NIL NIL NIL) (-809 1882853 1883338 1883985 "ODEPRIM" 1885812 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-808 1882102 1882204 1882464 "ODEPAL" 1882745 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-807 1878264 1879055 1879919 "ODEPACK" 1881258 T ODEPACK (NIL) -7 NIL NIL NIL) (-806 1877325 1877432 1877654 "ODEINT" 1878153 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-805 1871426 1872851 1874298 "ODEIFTBL" 1875898 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-804 1866838 1867620 1868568 "ODEEF" 1870589 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-803 1866187 1866276 1866499 "ODECONST" 1866743 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-802 1864312 1864973 1865001 "ODECAT" 1865606 T ODECAT (NIL) -9 NIL 1866137 NIL) (-801 1863950 1863993 1864120 "OCTCT2" 1864263 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-800 1860834 1863662 1863781 "OCT" 1863863 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1860186 1860654 1860682 "OCAMON" 1860687 T OCAMON (NIL) -9 NIL 1860708 NIL) (-798 1854842 1857270 1857310 "OC" 1858407 NIL OC (NIL T) -9 NIL 1859265 NIL) (-797 1852090 1852831 1853814 "OC-" 1853908 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1851621 1851962 1851990 "OASGP" 1851995 T OASGP (NIL) -9 NIL 1852015 NIL) (-795 1850882 1851371 1851399 "OAMONS" 1851439 T OAMONS (NIL) -9 NIL 1851482 NIL) (-794 1850296 1850729 1850757 "OAMON" 1850762 T OAMON (NIL) -9 NIL 1850782 NIL) (-793 1849554 1850072 1850100 "OAGROUP" 1850105 T OAGROUP (NIL) -9 NIL 1850125 NIL) (-792 1849244 1849294 1849382 "NUMTUBE" 1849498 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-791 1842817 1844335 1845871 "NUMQUAD" 1847728 T NUMQUAD (NIL) -7 NIL NIL NIL) (-790 1838573 1839561 1840586 "NUMODE" 1841812 T NUMODE (NIL) -7 NIL NIL NIL) (-789 1835928 1836808 1836836 "NUMINT" 1837759 T NUMINT (NIL) -9 NIL 1838523 NIL) (-788 1834876 1835073 1835291 "NUMFMT" 1835730 T NUMFMT (NIL) -7 NIL NIL NIL) (-787 1821235 1824180 1826712 "NUMERIC" 1832383 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-786 1815632 1820684 1820779 "NTSCAT" 1820784 NIL NTSCAT (NIL T T T T) -9 NIL 1820823 NIL) (-785 1814826 1814991 1815184 "NTPOLFN" 1815471 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-784 1814458 1814515 1814624 "NSUP2" 1814763 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-783 1802580 1811283 1812095 "NSUP" 1813679 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1792856 1802354 1802487 "NSMP" 1802492 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-781 1791288 1791589 1791946 "NREP" 1792544 NIL NREP (NIL T) -7 NIL NIL NIL) (-780 1789879 1790131 1790489 "NPCOEF" 1791031 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-779 1788945 1789060 1789276 "NORMRETR" 1789760 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-778 1786986 1787276 1787685 "NORMPK" 1788653 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-777 1786671 1786699 1786823 "NORMMA" 1786952 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-776 1786460 1786489 1786558 "NONE1" 1786635 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-775 1786260 1786417 1786446 "NONE" 1786451 T NONE (NIL) -8 NIL NIL NIL) (-774 1785757 1785819 1785998 "NODE1" 1786192 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-773 1784042 1784893 1785148 "NNI" 1785495 T NNI (NIL) -8 NIL NIL 1785730) (-772 1782462 1782775 1783139 "NLINSOL" 1783710 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-771 1778703 1779698 1780597 "NIPROB" 1781583 T NIPROB (NIL) -8 NIL NIL NIL) (-770 1777460 1777694 1777996 "NFINTBAS" 1778465 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-769 1776634 1777110 1777151 "NETCLT" 1777323 NIL NETCLT (NIL T) -9 NIL 1777405 NIL) (-768 1775342 1775573 1775854 "NCODIV" 1776402 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-767 1775104 1775141 1775216 "NCNTFRAC" 1775299 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-766 1773284 1773648 1774068 "NCEP" 1774729 NIL NCEP (NIL T) -7 NIL NIL NIL) (-765 1772142 1772908 1772936 "NASRING" 1773046 T NASRING (NIL) -9 NIL 1773126 NIL) (-764 1771937 1771981 1772075 "NASRING-" 1772080 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-763 1771044 1771569 1771597 "NARNG" 1771714 T NARNG (NIL) -9 NIL 1771805 NIL) (-762 1770736 1770803 1770937 "NARNG-" 1770942 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-761 1769615 1769822 1770057 "NAGSP" 1770521 T NAGSP (NIL) -7 NIL NIL NIL) (-760 1760887 1762571 1764244 "NAGS" 1767962 T NAGS (NIL) -7 NIL NIL NIL) (-759 1759435 1759743 1760074 "NAGF07" 1760576 T NAGF07 (NIL) -7 NIL NIL NIL) (-758 1753973 1755264 1756571 "NAGF04" 1758148 T NAGF04 (NIL) -7 NIL NIL NIL) (-757 1746941 1748555 1750188 "NAGF02" 1752360 T NAGF02 (NIL) -7 NIL NIL NIL) (-756 1742165 1743265 1744382 "NAGF01" 1745844 T NAGF01 (NIL) -7 NIL NIL NIL) (-755 1735793 1737359 1738944 "NAGE04" 1740600 T NAGE04 (NIL) -7 NIL NIL NIL) (-754 1726962 1729083 1731213 "NAGE02" 1733683 T NAGE02 (NIL) -7 NIL NIL NIL) (-753 1722915 1723862 1724826 "NAGE01" 1726018 T NAGE01 (NIL) -7 NIL NIL NIL) (-752 1720710 1721244 1721802 "NAGD03" 1722377 T NAGD03 (NIL) -7 NIL NIL NIL) (-751 1712460 1714388 1716342 "NAGD02" 1718776 T NAGD02 (NIL) -7 NIL NIL NIL) (-750 1706271 1707696 1709136 "NAGD01" 1711040 T NAGD01 (NIL) -7 NIL NIL NIL) (-749 1702480 1703302 1704139 "NAGC06" 1705454 T NAGC06 (NIL) -7 NIL NIL NIL) (-748 1700945 1701277 1701633 "NAGC05" 1702144 T NAGC05 (NIL) -7 NIL NIL NIL) (-747 1700321 1700440 1700584 "NAGC02" 1700821 T NAGC02 (NIL) -7 NIL NIL NIL) (-746 1699280 1699863 1699903 "NAALG" 1699982 NIL NAALG (NIL T) -9 NIL 1700043 NIL) (-745 1699115 1699144 1699234 "NAALG-" 1699239 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-744 1693065 1694173 1695360 "MULTSQFR" 1698011 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-743 1692384 1692459 1692643 "MULTFACT" 1692977 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-742 1685108 1689021 1689074 "MTSCAT" 1690144 NIL MTSCAT (NIL T T) -9 NIL 1690659 NIL) (-741 1684820 1684874 1684966 "MTHING" 1685048 NIL MTHING (NIL T) -7 NIL NIL NIL) (-740 1684612 1684645 1684705 "MSYSCMD" 1684780 T MSYSCMD (NIL) -7 NIL NIL NIL) (-739 1681681 1684173 1684214 "MSETAGG" 1684219 NIL MSETAGG (NIL T) -9 NIL 1684253 NIL) (-738 1677763 1680436 1680756 "MSET" 1681394 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1673606 1675142 1675887 "MRING" 1677063 NIL MRING (NIL T T) -8 NIL NIL NIL) (-736 1673172 1673239 1673370 "MRF2" 1673533 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-735 1672790 1672825 1672969 "MRATFAC" 1673131 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-734 1670402 1670697 1671128 "MPRFF" 1672495 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-733 1664725 1670256 1670353 "MPOLY" 1670358 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-732 1664215 1664250 1664458 "MPCPF" 1664684 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-731 1663729 1663772 1663956 "MPC3" 1664166 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-730 1662924 1663005 1663226 "MPC2" 1663644 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1661225 1661562 1661952 "MONOTOOL" 1662584 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-728 1660450 1660767 1660795 "MONOID" 1661014 T MONOID (NIL) -9 NIL 1661161 NIL) (-727 1659996 1660115 1660296 "MONOID-" 1660301 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-726 1650480 1656422 1656481 "MONOGEN" 1657155 NIL MONOGEN (NIL T T) -9 NIL 1657611 NIL) (-725 1647719 1648447 1649440 "MONOGEN-" 1649559 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-724 1646552 1646998 1647026 "MONADWU" 1647418 T MONADWU (NIL) -9 NIL 1647656 NIL) (-723 1645924 1646083 1646331 "MONADWU-" 1646336 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-722 1645283 1645527 1645555 "MONAD" 1645762 T MONAD (NIL) -9 NIL 1645874 NIL) (-721 1644968 1645046 1645178 "MONAD-" 1645183 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-720 1643257 1643881 1644160 "MOEBIUS" 1644721 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-719 1642535 1642939 1642979 "MODULE" 1642984 NIL MODULE (NIL T) -9 NIL 1643023 NIL) (-718 1642103 1642199 1642389 "MODULE-" 1642394 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-717 1639827 1640511 1640838 "MODRING" 1641927 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-716 1636773 1637932 1638453 "MODOP" 1639356 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-715 1635361 1635840 1636117 "MODMONOM" 1636636 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-714 1625443 1633652 1634066 "MODMON" 1634998 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-713 1622625 1624311 1624587 "MODFIELD" 1625318 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-712 1621602 1621906 1622096 "MMLFORM" 1622455 T MMLFORM (NIL) -8 NIL NIL NIL) (-711 1621128 1621171 1621350 "MMAP" 1621553 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-710 1619207 1619974 1620015 "MLO" 1620438 NIL MLO (NIL T) -9 NIL 1620680 NIL) (-709 1616573 1617089 1617691 "MLIFT" 1618688 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-708 1615964 1616048 1616202 "MKUCFUNC" 1616484 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-707 1615563 1615633 1615756 "MKRECORD" 1615887 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-706 1614610 1614772 1615000 "MKFUNC" 1615374 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-705 1613998 1614102 1614258 "MKFLCFN" 1614493 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-704 1613275 1613377 1613562 "MKBCFUNC" 1613891 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-703 1609984 1612829 1612965 "MINT" 1613159 T MINT (NIL) -8 NIL NIL NIL) (-702 1608796 1609039 1609316 "MHROWRED" 1609739 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-701 1604185 1607331 1607736 "MFLOAT" 1608411 T MFLOAT (NIL) -8 NIL NIL NIL) (-700 1603542 1603618 1603789 "MFINFACT" 1604097 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-699 1599877 1600720 1601599 "MESH" 1602683 T MESH (NIL) -7 NIL NIL NIL) (-698 1598267 1598579 1598932 "MDDFACT" 1599564 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-697 1595062 1597426 1597467 "MDAGG" 1597722 NIL MDAGG (NIL T) -9 NIL 1597865 NIL) (-696 1584820 1594355 1594562 "MCMPLX" 1594875 T MCMPLX (NIL) -8 NIL NIL NIL) (-695 1583961 1584107 1584307 "MCDEN" 1584669 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-694 1581851 1582121 1582501 "MCALCFN" 1583691 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-693 1580776 1581016 1581249 "MAYBE" 1581657 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-692 1578388 1578911 1579473 "MATSTOR" 1580247 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-691 1574344 1577760 1578008 "MATRIX" 1578173 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-690 1570108 1570817 1571553 "MATLIN" 1573701 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-689 1568702 1568855 1569188 "MATCAT2" 1569943 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-688 1558802 1561991 1562068 "MATCAT" 1566951 NIL MATCAT (NIL T T T) -9 NIL 1568368 NIL) (-687 1555158 1556179 1557535 "MATCAT-" 1557540 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1553270 1553594 1553978 "MAPPKG3" 1554833 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-685 1552251 1552424 1552646 "MAPPKG2" 1553094 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-684 1550750 1551034 1551361 "MAPPKG1" 1551957 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-683 1549829 1550156 1550333 "MAPPAST" 1550593 T MAPPAST (NIL) -8 NIL NIL NIL) (-682 1549440 1549498 1549621 "MAPHACK3" 1549765 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-681 1549032 1549093 1549207 "MAPHACK2" 1549372 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-680 1548469 1548573 1548715 "MAPHACK1" 1548923 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-679 1546548 1547169 1547473 "MAGMA" 1548197 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-678 1546027 1546272 1546363 "MACROAST" 1546477 T MACROAST (NIL) -8 NIL NIL NIL) (-677 1542445 1544266 1544727 "M3D" 1545599 NIL M3D (NIL T) -8 NIL NIL NIL) (-676 1536553 1540814 1540855 "LZSTAGG" 1541637 NIL LZSTAGG (NIL T) -9 NIL 1541932 NIL) (-675 1532510 1533684 1535141 "LZSTAGG-" 1535146 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-674 1529597 1530401 1530888 "LWORD" 1532055 NIL LWORD (NIL T) -8 NIL NIL NIL) (-673 1529173 1529401 1529476 "LSTAST" 1529542 T LSTAST (NIL) -8 NIL NIL NIL) (-672 1522370 1528944 1529078 "LSQM" 1529083 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-671 1521594 1521733 1521961 "LSPP" 1522225 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-670 1518436 1519093 1519806 "LSMP1" 1520913 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-669 1516271 1516565 1517014 "LSMP" 1518132 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1510150 1515438 1515479 "LSAGG" 1515541 NIL LSAGG (NIL T) -9 NIL 1515619 NIL) (-667 1506845 1507769 1508982 "LSAGG-" 1508987 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-666 1504444 1505989 1506238 "LPOLY" 1506640 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-665 1504026 1504111 1504234 "LPEFRAC" 1504353 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-664 1503678 1503790 1503818 "LOGIC" 1503929 T LOGIC (NIL) -9 NIL 1504010 NIL) (-663 1503540 1503563 1503634 "LOGIC-" 1503639 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-662 1502733 1502873 1503066 "LODOOPS" 1503396 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-661 1501271 1501506 1501859 "LODOF" 1502480 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-660 1497503 1499920 1499961 "LODOCAT" 1500399 NIL LODOCAT (NIL T) -9 NIL 1500610 NIL) (-659 1497236 1497294 1497421 "LODOCAT-" 1497426 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-658 1494570 1497077 1497195 "LODO2" 1497200 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-657 1492019 1494507 1494552 "LODO1" 1494557 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-656 1489456 1491935 1492001 "LODO" 1492006 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-655 1488337 1488502 1488807 "LODEEF" 1489279 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-654 1486658 1487431 1487684 "LO" 1488169 NIL LO (NIL T T T) -8 NIL NIL NIL) (-653 1481897 1484788 1484829 "LNAGG" 1485776 NIL LNAGG (NIL T) -9 NIL 1486220 NIL) (-652 1481044 1481258 1481600 "LNAGG-" 1481605 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-651 1477180 1477969 1478608 "LMOPS" 1480459 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-650 1476583 1476971 1477012 "LMODULE" 1477017 NIL LMODULE (NIL T) -9 NIL 1477043 NIL) (-649 1473781 1476228 1476351 "LMDICT" 1476493 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-648 1473187 1473408 1473449 "LLINSET" 1473640 NIL LLINSET (NIL T) -9 NIL 1473731 NIL) (-647 1472886 1473095 1473155 "LITERAL" 1473160 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-646 1472411 1472485 1472624 "LIST3" 1472806 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-645 1470545 1470857 1471256 "LIST2MAP" 1472058 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-644 1469552 1469730 1469958 "LIST2" 1470363 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-643 1462717 1468486 1468790 "LIST" 1469281 NIL LIST (NIL T) -8 NIL NIL NIL) (-642 1462313 1462550 1462591 "LINSET" 1462596 NIL LINSET (NIL T) -9 NIL 1462630 NIL) (-641 1460974 1461644 1461685 "LINEXP" 1461940 NIL LINEXP (NIL T) -9 NIL 1462089 NIL) (-640 1459621 1459881 1460178 "LINDEP" 1460726 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-639 1456459 1457159 1457917 "LIMITRF" 1458895 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-638 1454785 1455074 1455476 "LIMITPS" 1456161 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-637 1453733 1454202 1454242 "LIECAT" 1454382 NIL LIECAT (NIL T) -9 NIL 1454533 NIL) (-636 1453574 1453601 1453689 "LIECAT-" 1453694 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-635 1448034 1453085 1453313 "LIE" 1453395 NIL LIE (NIL T T) -8 NIL NIL NIL) (-634 1440532 1447483 1447648 "LIB" 1447889 T LIB (NIL) -8 NIL NIL NIL) (-633 1436167 1437050 1437985 "LGROBP" 1439649 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-632 1435007 1435699 1435727 "LFCAT" 1435934 T LFCAT (NIL) -9 NIL 1436073 NIL) (-631 1433005 1433279 1433629 "LF" 1434728 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1429907 1430537 1431225 "LEXTRIPK" 1432369 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-629 1426651 1427477 1427980 "LEXP" 1429487 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-628 1426127 1426372 1426464 "LETAST" 1426579 T LETAST (NIL) -8 NIL NIL NIL) (-627 1424525 1424838 1425239 "LEADCDET" 1425809 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-626 1423715 1423789 1424018 "LAZM3PK" 1424446 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-625 1418646 1421792 1422330 "LAUPOL" 1423227 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-624 1418225 1418269 1418430 "LAPLACE" 1418596 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-623 1417219 1417803 1417844 "LALG" 1417906 NIL LALG (NIL T) -9 NIL 1417965 NIL) (-622 1416933 1416992 1417128 "LALG-" 1417133 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-621 1414872 1416034 1416285 "LA" 1416766 NIL LA (NIL T T T) -8 NIL NIL NIL) (-620 1414707 1414731 1414772 "KVTFROM" 1414834 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-619 1413630 1414074 1414259 "KTVLOGIC" 1414542 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-618 1413465 1413489 1413530 "KRCFROM" 1413592 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-617 1412369 1412556 1412855 "KOVACIC" 1413265 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-616 1412204 1412228 1412269 "KONVERT" 1412331 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-615 1412039 1412063 1412104 "KOERCE" 1412166 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-614 1411535 1411616 1411748 "KERNEL2" 1411953 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-613 1409365 1410128 1410505 "KERNEL" 1411191 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1403135 1407904 1407958 "KDAGG" 1408335 NIL KDAGG (NIL T T) -9 NIL 1408541 NIL) (-611 1402664 1402788 1402993 "KDAGG-" 1402998 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-610 1395814 1402325 1402480 "KAFILE" 1402542 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-609 1390274 1395325 1395553 "JORDAN" 1395635 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-608 1389653 1389923 1390044 "JOINAST" 1390173 T JOINAST (NIL) -8 NIL NIL NIL) (-607 1389499 1389558 1389613 "JAVACODE" 1389618 T JAVACODE (NIL) -8 NIL NIL NIL) (-606 1385751 1387704 1387758 "IXAGG" 1388687 NIL IXAGG (NIL T T) -9 NIL 1389146 NIL) (-605 1384670 1384976 1385395 "IXAGG-" 1385400 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-604 1380200 1384592 1384651 "IVECTOR" 1384656 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-603 1378966 1379203 1379469 "ITUPLE" 1379967 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-602 1377468 1377645 1377940 "ITRIGMNP" 1378788 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-601 1376213 1376417 1376700 "ITFUN3" 1377244 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-600 1375845 1375902 1376011 "ITFUN2" 1376150 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-599 1373806 1374865 1375143 "ITAYLOR" 1375600 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-598 1362751 1367943 1369106 "ISUPS" 1372676 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-597 1361855 1361995 1362231 "ISUMP" 1362598 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-596 1357230 1361800 1361841 "ISTRING" 1361846 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-595 1356706 1356951 1357043 "ISAST" 1357158 T ISAST (NIL) -8 NIL NIL NIL) (-594 1355915 1355997 1356213 "IRURPK" 1356620 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-593 1354851 1355052 1355292 "IRSN" 1355695 T IRSN (NIL) -7 NIL NIL NIL) (-592 1352922 1353277 1353706 "IRRF2F" 1354489 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-591 1352669 1352707 1352783 "IRREDFFX" 1352878 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-590 1351284 1351543 1351842 "IROOT" 1352402 NIL IROOT (NIL T) -7 NIL NIL NIL) (-589 1351203 1351229 1351264 "IRFORM" 1351269 T IRFORM (NIL) -8 NIL NIL NIL) (-588 1350303 1350416 1350630 "IR2F" 1351086 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-587 1347916 1348411 1348977 "IR2" 1349781 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1344520 1345600 1346292 "IR" 1347256 NIL IR (NIL T) -8 NIL NIL NIL) (-585 1344311 1344345 1344405 "IPRNTPK" 1344480 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1340894 1344200 1344269 "IPF" 1344274 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1339223 1340819 1340876 "IPADIC" 1340881 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1338535 1338783 1338913 "IP4ADDR" 1339113 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1338008 1338239 1338349 "IOMODE" 1338445 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1337081 1337605 1337732 "IOBFILE" 1337901 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1336569 1336985 1337013 "IOBCON" 1337018 T IOBCON (NIL) -9 NIL 1337039 NIL) (-578 1336080 1336138 1336321 "INVLAPLA" 1336505 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1325776 1328118 1330492 "INTTR" 1333756 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1322111 1322853 1323718 "INTTOOLS" 1324961 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1321697 1321788 1321905 "INTSLPE" 1322014 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1319650 1321620 1321679 "INTRVL" 1321684 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1317252 1317764 1318339 "INTRF" 1319135 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1316663 1316760 1316902 "INTRET" 1317150 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1314660 1315049 1315519 "INTRAT" 1316271 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1311923 1312506 1313125 "INTPM" 1314145 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1308691 1309283 1310014 "INTPAF" 1311316 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1303870 1304832 1305883 "INTPACK" 1307660 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1303122 1303274 1303482 "INTHERTR" 1303712 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-566 1302561 1302641 1302829 "INTHERAL" 1303036 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-565 1300407 1300850 1301307 "INTHEORY" 1302124 T INTHEORY (NIL) -7 NIL NIL NIL) (-564 1291871 1293474 1295228 "INTG0" 1298777 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-563 1278144 1281509 1284894 "INTFTBL" 1288506 T INTFTBL (NIL) -8 NIL NIL NIL) (-562 1277393 1277531 1277704 "INTFACT" 1278003 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-561 1274826 1275270 1275825 "INTEF" 1276949 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-560 1273193 1273932 1273960 "INTDOM" 1274261 T INTDOM (NIL) -9 NIL 1274468 NIL) (-559 1272562 1272736 1272978 "INTDOM-" 1272983 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-558 1268950 1270878 1270932 "INTCAT" 1271731 NIL INTCAT (NIL T) -9 NIL 1272052 NIL) (-557 1268422 1268525 1268653 "INTBIT" 1268842 T INTBIT (NIL) -7 NIL NIL NIL) (-556 1267121 1267275 1267582 "INTALG" 1268267 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-555 1266604 1266694 1266851 "INTAF" 1267025 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-554 1259949 1266414 1266554 "INTABL" 1266559 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-553 1259290 1259756 1259821 "INT8" 1259855 T INT8 (NIL) -8 NIL NIL 1259900) (-552 1258630 1259096 1259161 "INT64" 1259195 T INT64 (NIL) -8 NIL NIL 1259240) (-551 1257970 1258436 1258501 "INT32" 1258535 T INT32 (NIL) -8 NIL NIL 1258580) (-550 1257310 1257776 1257841 "INT16" 1257875 T INT16 (NIL) -8 NIL NIL 1257920) (-549 1254260 1257107 1257216 "INT" 1257221 T INT (NIL) -8 NIL NIL NIL) (-548 1249172 1251883 1251911 "INS" 1252845 T INS (NIL) -9 NIL 1253510 NIL) (-547 1246412 1247183 1248157 "INS-" 1248230 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1245260 1245465 1245741 "INPSIGN" 1246187 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1244378 1244495 1244692 "INPRODPF" 1245140 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1243272 1243389 1243626 "INPRODFF" 1244258 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1242272 1242424 1242684 "INNMFACT" 1243108 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1241469 1241566 1241754 "INMODGCD" 1242171 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1239977 1240222 1240546 "INFSP" 1241214 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1239161 1239278 1239461 "INFPROD0" 1239857 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238771 1238831 1238929 "INFORM1" 1239096 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-538 1235626 1236836 1237351 "INFORM" 1238264 T INFORM (NIL) -8 NIL NIL NIL) (-537 1235149 1235238 1235352 "INFINITY" 1235532 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1234325 1234869 1234970 "INETCLTS" 1235068 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1232941 1233191 1233512 "INEP" 1234073 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1232190 1232838 1232903 "INDE" 1232908 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1231754 1231822 1231939 "INCRMAPS" 1232117 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1230572 1231023 1231229 "INBFILE" 1231568 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1225872 1226808 1227752 "INBFF" 1229660 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1224780 1225049 1225077 "INBCON" 1225590 T INBCON (NIL) -9 NIL 1225856 NIL) (-529 1224032 1224255 1224531 "INBCON-" 1224536 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1223511 1223756 1223847 "INAST" 1223961 T INAST (NIL) -8 NIL NIL NIL) (-527 1222938 1223190 1223296 "IMPTAST" 1223425 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1219383 1222782 1222886 "IMATRIX" 1222891 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1218095 1218218 1218533 "IMATQF" 1219239 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1216315 1216542 1216879 "IMATLIN" 1217851 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1210895 1216239 1216297 "ILIST" 1216302 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1208800 1210755 1210868 "IIARRAY2" 1210873 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1204200 1208711 1208775 "IFF" 1208780 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1203547 1203817 1203933 "IFAST" 1204104 T IFAST (NIL) -8 NIL NIL NIL) (-519 1198542 1202839 1203027 "IFARRAY" 1203404 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1197722 1198446 1198519 "IFAMON" 1198524 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1197306 1197371 1197425 "IEVALAB" 1197632 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1196981 1197049 1197209 "IEVALAB-" 1197214 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1196231 1196870 1196945 "IDPOAMS" 1196950 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-514 1195538 1196120 1196195 "IDPOAM" 1196200 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-513 1195169 1195452 1195515 "IDPO" 1195520 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-512 1194228 1194504 1194557 "IDPC" 1194970 NIL IDPC (NIL T T) -9 NIL 1195119 NIL) (-511 1193697 1194120 1194193 "IDPAM" 1194198 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1193073 1193589 1193662 "IDPAG" 1193667 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1192718 1192909 1192984 "IDENT" 1193018 T IDENT (NIL) -8 NIL NIL NIL) (-508 1188973 1189821 1190716 "IDECOMP" 1191875 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1181811 1182896 1183943 "IDEAL" 1188009 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1180975 1181087 1181286 "ICDEN" 1181695 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1180046 1180455 1180602 "ICARD" 1180848 T ICARD (NIL) -8 NIL NIL NIL) (-504 1178106 1178419 1178824 "IBPTOOLS" 1179723 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1173713 1177726 1177839 "IBITS" 1178025 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1170436 1171012 1171707 "IBATOOL" 1173130 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1168215 1168677 1169210 "IBACHIN" 1169971 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1166044 1168061 1168164 "IARRAY2" 1168169 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1162150 1165970 1166027 "IARRAY1" 1166032 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1156268 1160562 1161043 "IAN" 1161689 T IAN (NIL) -8 NIL NIL NIL) (-497 1155779 1155836 1156009 "IALGFACT" 1156205 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1155307 1155420 1155448 "HYPCAT" 1155655 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1154845 1154962 1155148 "HYPCAT-" 1155153 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1154440 1154640 1154723 "HOSTNAME" 1154782 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1154285 1154322 1154363 "HOMOTOP" 1154368 NIL HOMOTOP (NIL T) -9 NIL 1154401 NIL) (-492 1150917 1152295 1152336 "HOAGG" 1153317 NIL HOAGG (NIL T) -9 NIL 1153996 NIL) (-491 1149511 1149910 1150436 "HOAGG-" 1150441 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1143536 1149106 1149255 "HEXADEC" 1149382 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1142284 1142506 1142769 "HEUGCD" 1143313 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1141360 1142121 1142251 "HELLFDIV" 1142256 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1139539 1141137 1141225 "HEAP" 1141304 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1138802 1139091 1139225 "HEADAST" 1139425 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1132675 1138717 1138779 "HDP" 1138784 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1126694 1132310 1132462 "HDMP" 1132576 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1126018 1126158 1126322 "HB" 1126550 T HB (NIL) -7 NIL NIL NIL) (-482 1119406 1125864 1125968 "HASHTBL" 1125973 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1118882 1119127 1119219 "HASAST" 1119334 T HASAST (NIL) -8 NIL NIL NIL) (-480 1116664 1118504 1118686 "HACKPI" 1118720 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1112359 1116517 1116630 "GTSET" 1116635 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1105776 1112237 1112335 "GSTBL" 1112340 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1098056 1104807 1105072 "GSERIES" 1105567 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1097197 1097614 1097642 "GROUP" 1097845 T GROUP (NIL) -9 NIL 1097979 NIL) (-475 1096563 1096722 1096973 "GROUP-" 1096978 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1094930 1095251 1095638 "GROEBSOL" 1096240 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1093844 1094132 1094183 "GRMOD" 1094712 NIL GRMOD (NIL T T) -9 NIL 1094880 NIL) (-472 1093612 1093648 1093776 "GRMOD-" 1093781 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1088902 1089966 1090966 "GRIMAGE" 1092632 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1087368 1087629 1087953 "GRDEF" 1088598 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1086812 1086928 1087069 "GRAY" 1087247 T GRAY (NIL) -7 NIL NIL NIL) (-468 1085999 1086405 1086456 "GRALG" 1086609 NIL GRALG (NIL T T) -9 NIL 1086702 NIL) (-467 1085660 1085733 1085896 "GRALG-" 1085901 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1082437 1085245 1085423 "GPOLSET" 1085567 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1081791 1081848 1082106 "GOSPER" 1082374 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1077523 1078229 1078755 "GMODPOL" 1081490 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1076528 1076712 1076950 "GHENSEL" 1077335 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1070684 1071527 1072547 "GENUPS" 1075612 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1070381 1070432 1070521 "GENUFACT" 1070627 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1069793 1069870 1070035 "GENPGCD" 1070299 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1069267 1069302 1069515 "GENMFACT" 1069752 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1067833 1068090 1068397 "GENEEZ" 1069010 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1062010 1067444 1067606 "GDMP" 1067756 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1051374 1055781 1056887 "GCNAALG" 1060993 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1049701 1050563 1050591 "GCDDOM" 1050846 T GCDDOM (NIL) -9 NIL 1051003 NIL) (-454 1049171 1049298 1049513 "GCDDOM-" 1049518 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1037787 1040117 1042509 "GBINTERN" 1046862 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-452 1035624 1035916 1036337 "GBF" 1037462 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-451 1034405 1034570 1034837 "GBEUCLID" 1035440 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-450 1033077 1033262 1033566 "GB" 1034184 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1032426 1032551 1032700 "GAUSSFAC" 1032948 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1030793 1031095 1031409 "GALUTIL" 1032145 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1029101 1029375 1029699 "GALPOLYU" 1030520 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1026466 1026756 1027163 "GALFACTU" 1028798 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1018271 1019771 1021379 "GALFACT" 1024898 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1015659 1016317 1016345 "FVFUN" 1017501 T FVFUN (NIL) -9 NIL 1018221 NIL) (-443 1014925 1015107 1015135 "FVC" 1015426 T FVC (NIL) -9 NIL 1015609 NIL) (-442 1014568 1014750 1014818 "FUNDESC" 1014877 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1014183 1014365 1014446 "FUNCTION" 1014520 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1012974 1013484 1013687 "FTEM" 1014000 T FTEM (NIL) -8 NIL NIL NIL) (-439 1010730 1011305 1011768 "FT" 1012531 T FT (NIL) -8 NIL NIL NIL) (-438 1009021 1009310 1009707 "FSUPFACT" 1010421 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1007418 1007707 1008039 "FST" 1008709 T FST (NIL) -8 NIL NIL NIL) (-436 1006617 1006723 1006911 "FSRED" 1007300 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1005316 1005572 1005919 "FSPRMELT" 1006332 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1002622 1003060 1003546 "FSPECF" 1004879 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 1002150 1002204 1002374 "FSINT" 1002563 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-432 1000442 1001143 1001446 "FSERIES" 1001929 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-431 999484 999600 999824 "FSCINT" 1000322 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-430 998526 998669 998896 "FSAGG2" 999337 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-429 994734 997470 997511 "FSAGG" 997881 NIL FSAGG (NIL T) -9 NIL 998140 NIL) (-428 992496 993097 993893 "FSAGG-" 993988 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-427 990178 990458 991005 "FS2UPS" 992214 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-426 989056 989227 989529 "FS2EXPXP" 990003 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-425 988690 988733 988862 "FS2" 989007 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-424 970357 978659 978700 "FS" 982584 NIL FS (NIL T) -9 NIL 984873 NIL) (-423 959081 962047 966077 "FS-" 966377 NIL FS- (NIL T T) -8 NIL NIL NIL) (-422 958507 958622 958774 "FRUTIL" 958961 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 953508 956150 956190 "FRNAALG" 957586 NIL FRNAALG (NIL T) -9 NIL 958193 NIL) (-420 949232 950291 951549 "FRNAALG-" 952299 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-419 948870 948913 949040 "FRNAAF2" 949183 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-418 947250 947724 948019 "FRMOD" 948682 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-417 946445 946532 946821 "FRIDEAL2" 947157 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-416 944196 944828 945145 "FRIDEAL" 946236 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 943336 943743 943784 "FRETRCT" 943789 NIL FRETRCT (NIL T) -9 NIL 943965 NIL) (-414 942469 942693 943037 "FRETRCT-" 943042 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-413 939557 940767 940826 "FRAMALG" 941708 NIL FRAMALG (NIL T T) -9 NIL 942000 NIL) (-412 937691 938146 938776 "FRAMALG-" 938999 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-411 937327 937384 937491 "FRAC2" 937628 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-410 931269 936802 937078 "FRAC" 937083 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 930905 930962 931069 "FR2" 931206 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-408 922433 926481 927812 "FR" 929606 NIL FR (NIL T) -8 NIL NIL NIL) (-407 916950 919839 919867 "FPS" 920986 T FPS (NIL) -9 NIL 921543 NIL) (-406 916399 916508 916672 "FPS-" 916818 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 913703 915370 915398 "FPC" 915623 T FPC (NIL) -9 NIL 915765 NIL) (-404 913496 913536 913633 "FPC-" 913638 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 912286 912984 913025 "FPATMAB" 913030 NIL FPATMAB (NIL T) -9 NIL 913182 NIL) (-402 909959 910462 910888 "FPARFRAC" 911923 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 905392 905890 906572 "FORTRAN" 909391 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 903068 903630 903658 "FORTFN" 904718 T FORTFN (NIL) -9 NIL 905342 NIL) (-399 902832 902882 902910 "FORTCAT" 902969 T FORTCAT (NIL) -9 NIL 903031 NIL) (-398 900548 901048 901587 "FORT" 902313 T FORT (NIL) -7 NIL NIL NIL) (-397 900336 900366 900435 "FORMULA1" 900512 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-396 898442 898952 899342 "FORMULA" 899966 T FORMULA (NIL) -8 NIL NIL NIL) (-395 897965 898017 898190 "FORDER" 898384 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 897061 897225 897418 "FOP" 897792 T FOP (NIL) -7 NIL NIL NIL) (-393 895642 896341 896515 "FNLA" 896943 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 894371 894786 894814 "FNCAT" 895274 T FNCAT (NIL) -9 NIL 895534 NIL) (-391 893910 894330 894358 "FNAME" 894363 T FNAME (NIL) -8 NIL NIL NIL) (-390 892473 893436 893464 "FMTC" 893469 T FMTC (NIL) -9 NIL 893505 NIL) (-389 891226 892409 892455 "FMONOID" 892460 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 888054 889222 889263 "FMONCAT" 890480 NIL FMONCAT (NIL T) -9 NIL 891085 NIL) (-387 885478 886124 886152 "FMFUN" 887296 T FMFUN (NIL) -9 NIL 888004 NIL) (-386 882557 883417 883471 "FMCAT" 884666 NIL FMCAT (NIL T T) -9 NIL 885161 NIL) (-385 881826 882007 882035 "FMC" 882325 T FMC (NIL) -9 NIL 882507 NIL) (-384 880692 881592 881692 "FM1" 881771 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-383 879884 880434 880583 "FM" 880588 NIL FM (NIL T T) -8 NIL NIL NIL) (-382 877658 878074 878568 "FLOATRP" 879435 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 875096 875596 876174 "FLOATCP" 877125 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-380 868674 872825 873446 "FLOAT" 874495 T FLOAT (NIL) -8 NIL NIL NIL) (-379 867414 868252 868293 "FLINEXP" 868298 NIL FLINEXP (NIL T) -9 NIL 868391 NIL) (-378 866568 866803 867131 "FLINEXP-" 867136 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 865644 865788 866012 "FLASORT" 866420 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 862760 863628 863680 "FLALG" 864907 NIL FLALG (NIL T T) -9 NIL 865374 NIL) (-375 861802 861945 862172 "FLAGG2" 862613 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-374 855538 859288 859329 "FLAGG" 860591 NIL FLAGG (NIL T) -9 NIL 861243 NIL) (-373 854264 854603 855093 "FLAGG-" 855098 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-372 851115 852123 852182 "FINRALG" 853310 NIL FINRALG (NIL T T) -9 NIL 853818 NIL) (-371 850275 850504 850843 "FINRALG-" 850848 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 849655 849894 849922 "FINITE" 850118 T FINITE (NIL) -9 NIL 850225 NIL) (-369 842012 844199 844239 "FINAALG" 847906 NIL FINAALG (NIL T) -9 NIL 849359 NIL) (-368 837344 838394 839538 "FINAALG-" 840917 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 836002 836340 836394 "FILECAT" 837078 NIL FILECAT (NIL T T) -9 NIL 837294 NIL) (-366 835370 835757 835860 "FILE" 835932 NIL FILE (NIL T) -8 NIL NIL NIL) (-365 833088 834614 834642 "FIELD" 834682 T FIELD (NIL) -9 NIL 834762 NIL) (-364 831708 832093 832604 "FIELD-" 832609 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 829558 830343 830690 "FGROUP" 831394 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 828648 828812 829032 "FGLMICPK" 829390 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 824482 828573 828630 "FFX" 828635 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 824083 824144 824279 "FFSLPE" 824415 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 823587 823623 823832 "FFPOLY2" 824041 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-358 819577 820359 821155 "FFPOLY" 822823 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-357 815423 819496 819559 "FFP" 819564 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 810551 814766 814956 "FFNBX" 815277 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-355 805481 809686 809944 "FFNBP" 810405 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-354 800116 804765 804976 "FFNB" 805314 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-353 798948 799146 799461 "FFINTBAS" 799913 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-352 795019 797237 797265 "FFIELDC" 797885 T FFIELDC (NIL) -9 NIL 798261 NIL) (-351 793681 794052 794549 "FFIELDC-" 794554 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-350 793250 793296 793420 "FFHOM" 793623 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-349 790945 791432 791949 "FFF" 792765 NIL FFF (NIL T) -7 NIL NIL NIL) (-348 786565 790687 790788 "FFCGX" 790888 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-347 782189 786297 786404 "FFCGP" 786508 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-346 777374 781916 782024 "FFCG" 782125 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-345 776785 776828 777063 "FFCAT2" 777325 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 758190 767262 767348 "FFCAT" 772513 NIL FFCAT (NIL T T T) -9 NIL 773964 NIL) (-343 753387 754435 755749 "FFCAT-" 756979 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 748787 753298 753362 "FF" 753367 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-341 738112 741759 742979 "FEXPR" 747639 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 737112 737547 737588 "FEVALAB" 737672 NIL FEVALAB (NIL T) -9 NIL 737933 NIL) (-339 736271 736481 736819 "FEVALAB-" 736824 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 733291 734032 734147 "FDIVCAT" 735715 NIL FDIVCAT (NIL T T T T) -9 NIL 736152 NIL) (-337 733053 733080 733250 "FDIVCAT-" 733255 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-336 732273 732360 732637 "FDIV2" 732960 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-335 730839 731656 731859 "FDIV" 732172 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 729813 730134 730336 "FCTRDATA" 730657 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 728499 728758 729047 "FCPAK1" 729544 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 727598 727999 728140 "FCOMP" 728390 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 711303 714748 718286 "FC" 724080 T FC (NIL) -8 NIL NIL NIL) (-330 703668 707694 707734 "FAXF" 709536 NIL FAXF (NIL T) -9 NIL 710228 NIL) (-329 700944 701602 702427 "FAXF-" 702892 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 695996 700320 700496 "FARRAY" 700801 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 690897 692957 693010 "FAMR" 694033 NIL FAMR (NIL T T) -9 NIL 694493 NIL) (-326 689787 690089 690524 "FAMR-" 690529 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 688956 689709 689762 "FAMONOID" 689767 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 686742 687452 687505 "FAMONC" 688446 NIL FAMONC (NIL T T) -9 NIL 688832 NIL) (-323 685406 686496 686633 "FAGROUP" 686638 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 683201 683520 683923 "FACUTIL" 685087 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 682300 682485 682707 "FACTFUNC" 683011 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 674724 681603 681802 "EXPUPXS" 682156 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 672207 672747 673333 "EXPRTUBE" 674158 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 668478 669070 669800 "EXPRODE" 671546 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 663032 663619 664425 "EXPR2UPS" 667776 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-316 662664 662721 662830 "EXPR2" 662969 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-315 648210 661313 661742 "EXPR" 662268 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 639626 647363 647653 "EXPEXPAN" 648047 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 639106 639350 639441 "EXITAST" 639555 T EXITAST (NIL) -8 NIL NIL NIL) (-312 638906 639063 639092 "EXIT" 639097 T EXIT (NIL) -8 NIL NIL NIL) (-311 638533 638595 638708 "EVALCYC" 638838 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 638074 638192 638233 "EVALAB" 638403 NIL EVALAB (NIL T) -9 NIL 638507 NIL) (-309 637555 637677 637898 "EVALAB-" 637903 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 634923 636225 636253 "EUCDOM" 636808 T EUCDOM (NIL) -9 NIL 637158 NIL) (-307 633328 633770 634360 "EUCDOM-" 634365 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 632960 633017 633126 "ESTOOLS2" 633265 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-305 632711 632753 632833 "ESTOOLS1" 632912 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-304 620249 623009 625759 "ESTOOLS" 629981 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 619994 620026 620108 "ESCONT1" 620211 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-302 616368 617129 617909 "ESCONT" 619234 T ESCONT (NIL) -7 NIL NIL NIL) (-301 616043 616093 616193 "ES2" 616312 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-300 615673 615731 615840 "ES1" 615979 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-299 609710 611318 611346 "ES" 614114 T ES (NIL) -9 NIL 615524 NIL) (-298 604657 605944 607761 "ES-" 607925 NIL ES- (NIL T) -8 NIL NIL NIL) (-297 603873 604002 604178 "ERROR" 604501 T ERROR (NIL) -7 NIL NIL NIL) (-296 597267 603732 603823 "EQTBL" 603828 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 596899 596956 597065 "EQ2" 597204 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-294 589402 592213 593662 "EQ" 595483 NIL -3959 (NIL T) -8 NIL NIL NIL) (-293 584692 585740 586833 "EP" 588341 NIL EP (NIL T) -7 NIL NIL NIL) (-292 583292 583583 583889 "ENV" 584406 T ENV (NIL) -8 NIL NIL NIL) (-291 582386 582940 582968 "ENTIRER" 582973 T ENTIRER (NIL) -9 NIL 583019 NIL) (-290 578909 580395 580765 "EMR" 582185 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 578053 578238 578292 "ELTAGG" 578672 NIL ELTAGG (NIL T T) -9 NIL 578883 NIL) (-288 577772 577834 577975 "ELTAGG-" 577980 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 577561 577590 577644 "ELTAB" 577728 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 576687 576833 577032 "ELFUTS" 577412 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 576429 576485 576513 "ELEMFUN" 576618 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 576299 576320 576388 "ELEMFUN-" 576393 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 571143 574399 574440 "ELAGG" 575380 NIL ELAGG (NIL T) -9 NIL 575843 NIL) (-282 569428 569862 570525 "ELAGG-" 570530 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 568089 568368 568662 "ELABEXPR" 569154 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 561080 562756 563583 "EFUPXS" 567365 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 554657 556331 557141 "EFULS" 560356 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 552142 552500 552972 "EFSTRUC" 554289 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 541933 543499 545047 "EF" 550657 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 541007 541418 541567 "EAB" 541804 T EAB (NIL) -8 NIL NIL NIL) (-275 540189 540966 540994 "E04UCFA" 540999 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 539371 540148 540176 "E04NAFA" 540181 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 538553 539330 539358 "E04MBFA" 539363 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 537735 538512 538540 "E04JAFA" 538545 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 536919 537694 537722 "E04GCFA" 537727 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 536103 536878 536906 "E04FDFA" 536911 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 535285 536062 536090 "E04DGFA" 536095 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 529458 530810 532174 "E04AGNT" 533941 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 528138 528644 528684 "DVARCAT" 529159 NIL DVARCAT (NIL T) -9 NIL 529358 NIL) (-266 527342 527554 527868 "DVARCAT-" 527873 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 520520 527141 527270 "DSMP" 527275 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 520185 520244 520342 "DROPT1" 520455 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-263 515300 516426 517563 "DROPT0" 519068 T DROPT0 (NIL) -7 NIL NIL NIL) (-262 510081 511245 512313 "DROPT" 514252 T DROPT (NIL) -8 NIL NIL NIL) (-261 508426 508751 509137 "DRAWPT" 509715 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 508059 508112 508230 "DRAWHACK" 508367 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-259 506790 507059 507350 "DRAWCX" 507788 T DRAWCX (NIL) -7 NIL NIL NIL) (-258 506305 506374 506525 "DRAWCURV" 506716 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-257 496773 498735 500850 "DRAWCFUN" 504210 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-256 491360 492283 493362 "DRAW" 495747 NIL DRAW (NIL T) -7 NIL NIL NIL) (-255 488126 490055 490096 "DQAGG" 490725 NIL DQAGG (NIL T) -9 NIL 490998 NIL) (-254 476286 482719 482802 "DPOLCAT" 484654 NIL DPOLCAT (NIL T T T T) -9 NIL 485199 NIL) (-253 471173 472505 474446 "DPOLCAT-" 474451 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 464302 471034 471132 "DPMO" 471137 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 457334 464082 464249 "DPMM" 464254 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 456812 457026 457124 "DOMTMPLT" 457256 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 456245 456614 456694 "DOMCTOR" 456752 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 455457 455725 455876 "DOMAIN" 456114 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 449476 455092 455244 "DMP" 455358 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 449076 449132 449276 "DLP" 449414 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 442900 448403 448593 "DLIST" 448918 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 439698 441753 441794 "DLAGG" 442344 NIL DLAGG (NIL T) -9 NIL 442574 NIL) (-243 438374 439038 439066 "DIVRING" 439158 T DIVRING (NIL) -9 NIL 439241 NIL) (-242 437611 437801 438101 "DIVRING-" 438106 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 435713 436070 436476 "DISPLAY" 437225 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 434561 434764 435029 "DIRPROD2" 435506 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 428456 434475 434538 "DIRPROD" 434543 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 417238 423237 423290 "DIRPCAT" 423700 NIL DIRPCAT (NIL NIL T) -9 NIL 424540 NIL) (-237 414564 415206 416087 "DIRPCAT-" 416424 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 413851 414011 414197 "DIOSP" 414398 T DIOSP (NIL) -7 NIL NIL NIL) (-235 410506 412763 412804 "DIOPS" 413238 NIL DIOPS (NIL T) -9 NIL 413467 NIL) (-234 410055 410169 410360 "DIOPS-" 410365 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 408878 409506 409534 "DIFRING" 409721 T DIFRING (NIL) -9 NIL 409831 NIL) (-232 408524 408601 408753 "DIFRING-" 408758 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 406260 407532 407573 "DIFEXT" 407936 NIL DIFEXT (NIL T) -9 NIL 408230 NIL) (-230 404545 404973 405639 "DIFEXT-" 405644 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 401820 404077 404118 "DIAGG" 404123 NIL DIAGG (NIL T) -9 NIL 404143 NIL) (-228 401204 401361 401613 "DIAGG-" 401618 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 396620 400163 400440 "DHMATRIX" 400973 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 392232 393141 394151 "DFSFUN" 395630 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 387315 391163 391475 "DFLOAT" 391940 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 385578 385859 386248 "DFINTTLS" 387023 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 382607 383599 383999 "DERHAM" 385244 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 380408 382382 382471 "DEQUEUE" 382551 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 379662 379795 379978 "DEGRED" 380270 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 376272 376972 377773 "DEFINTRF" 378935 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 373939 374380 374944 "DEFINTEF" 375819 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373289 373559 373674 "DEFAST" 373844 T DEFAST (NIL) -8 NIL NIL NIL) (-217 367314 372884 373033 "DECIMAL" 373160 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 364826 365284 365790 "DDFACT" 366858 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 364422 364465 364616 "DBLRESP" 364777 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362294 362655 363015 "DBASE" 364189 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 361536 361774 361920 "DATAARY" 362193 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 360642 361495 361523 "D03FAFA" 361528 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 359749 360601 360629 "D03EEFA" 360634 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 357699 358165 358654 "D03AGNT" 359280 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 356988 357658 357686 "D02EJFA" 357691 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356277 356947 356975 "D02CJFA" 356980 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 355566 356236 356264 "D02BHFA" 356269 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 354855 355525 355553 "D02BBFA" 355558 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348052 349641 351247 "D02AGNT" 353269 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 345820 346343 346889 "D01WGTS" 347526 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 344887 345779 345807 "D01TRNS" 345812 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 343955 344846 344874 "D01GBFA" 344879 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343023 343914 343942 "D01FCFA" 343947 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342091 342982 343010 "D01ASFA" 343015 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341159 342050 342078 "D01AQFA" 342083 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340227 341118 341146 "D01APFA" 341151 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339295 340186 340214 "D01ANFA" 340219 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 338363 339254 339282 "D01AMFA" 339287 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 337431 338322 338350 "D01ALFA" 338355 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 336499 337390 337418 "D01AKFA" 337423 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 335567 336458 336486 "D01AJFA" 336491 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 328862 330415 331976 "D01AGNT" 334026 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328199 328327 328479 "CYCLOTOM" 328730 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 324934 325647 326374 "CYCLES" 327492 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324246 324380 324551 "CVMP" 324795 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322087 322345 322714 "CTRIGMNP" 323974 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 321596 321818 321919 "CTORKIND" 322006 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 320887 321203 321231 "CTORCAT" 321413 T CTORCAT (NIL) -9 NIL 321526 NIL) (-185 320485 320596 320755 "CTORCAT-" 320760 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 319947 320159 320267 "CTORCALL" 320409 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-183 319383 319741 319814 "CTOR" 319894 T CTOR (NIL) -8 NIL NIL NIL) (-182 318757 318856 319009 "CSTTOOLS" 319280 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 314556 315213 315971 "CRFP" 318069 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314031 314277 314369 "CRCEAST" 314484 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313078 313263 313491 "CRAPACK" 313835 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 312462 312563 312767 "CPMATCH" 312954 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312187 312215 312321 "CPIMA" 312428 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 308535 309207 309926 "COORDSYS" 311522 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307947 308068 308210 "CONTOUR" 308413 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 303840 305950 306442 "CONTFRAC" 307487 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 303720 303741 303769 "CONDUIT" 303806 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 302808 303362 303390 "COMRING" 303395 T COMRING (NIL) -9 NIL 303447 NIL) (-171 301862 302166 302350 "COMPPROP" 302644 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 301523 301558 301686 "COMPLPAT" 301821 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 301159 301216 301323 "COMPLEX2" 301460 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 291468 300968 301077 "COMPLEX" 301082 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 291186 291221 291319 "COMPFACT" 291427 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275275 285260 285300 "COMPCAT" 286304 NIL COMPCAT (NIL T) -9 NIL 287652 NIL) (-165 264808 267728 271348 "COMPCAT-" 271704 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264537 264565 264668 "COMMUPC" 264774 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264331 264365 264424 "COMMONOP" 264498 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263907 264135 264210 "COMMAAST" 264276 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263463 263658 263745 "COMM" 263840 T COMM (NIL) -8 NIL NIL NIL) (-160 262712 262906 262934 "COMBOPC" 263272 T COMBOPC (NIL) -9 NIL 263447 NIL) (-159 261608 261818 262060 "COMBINAT" 262502 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258065 258639 259266 "COMBF" 261030 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256823 257181 257416 "COLOR" 257850 T COLOR (NIL) -8 NIL NIL NIL) (-156 256299 256544 256636 "COLONAST" 256751 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255939 255986 256111 "CMPLXRT" 256246 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 255387 255639 255738 "CLLCTAST" 255860 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250886 251917 252997 "CLIP" 254327 T CLIP (NIL) -7 NIL NIL NIL) (-152 249232 249992 250231 "CLIF" 250713 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 245407 247378 247419 "CLAGG" 248348 NIL CLAGG (NIL T) -9 NIL 248884 NIL) (-150 243829 244286 244869 "CLAGG-" 244874 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 243373 243458 243598 "CINTSLPE" 243738 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240874 241345 241893 "CHVAR" 242901 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240048 240602 240630 "CHARZ" 240635 T CHARZ (NIL) -9 NIL 240650 NIL) (-146 239802 239842 239920 "CHARPOL" 240002 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238860 239447 239475 "CHARNZ" 239522 T CHARNZ (NIL) -9 NIL 239578 NIL) (-144 236766 237514 237867 "CHAR" 238527 T CHAR (NIL) -8 NIL NIL NIL) (-143 236492 236553 236581 "CFCAT" 236692 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235737 235848 236030 "CDEN" 236376 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231702 234890 235170 "CCLASS" 235477 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230953 231110 231287 "CATEGORY" 231545 T -10 (NIL) -8 NIL NIL NIL) (-139 230526 230872 230920 "CATCTOR" 230925 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229977 230229 230327 "CATAST" 230448 T CATAST (NIL) -8 NIL NIL NIL) (-137 229453 229698 229790 "CASEAST" 229905 T CASEAST (NIL) -8 NIL NIL NIL) (-136 228561 228709 228930 "CARTEN2" 229300 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223570 224590 225343 "CARTEN" 227864 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 221886 222720 222977 "CARD" 223333 T CARD (NIL) -8 NIL NIL NIL) (-133 221462 221690 221765 "CAPSLAST" 221831 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220966 221174 221202 "CACHSET" 221334 T CACHSET (NIL) -9 NIL 221412 NIL) (-131 220436 220758 220786 "CABMON" 220836 T CABMON (NIL) -9 NIL 220892 NIL) (-130 219909 220140 220250 "BYTEORD" 220346 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 215259 219414 219586 "BYTEBUF" 219757 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214241 214793 214935 "BYTE" 215098 T BYTE (NIL) -8 NIL NIL 215220) (-127 211752 213933 214040 "BTREE" 214167 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209203 211400 211522 "BTOURN" 211662 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206575 208673 208714 "BTCAT" 208782 NIL BTCAT (NIL T) -9 NIL 208859 NIL) (-124 206242 206322 206471 "BTCAT-" 206476 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201507 205385 205413 "BTAGG" 205635 T BTAGG (NIL) -9 NIL 205796 NIL) (-122 200997 201122 201328 "BTAGG-" 201333 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197994 200275 200490 "BSTREE" 200814 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197132 197258 197442 "BRILL" 197850 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193785 195858 195899 "BRAGG" 196548 NIL BRAGG (NIL T) -9 NIL 196806 NIL) (-118 192317 192722 193276 "BRAGG-" 193281 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185567 191663 191847 "BPADICRT" 192165 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183884 185504 185549 "BPADIC" 185554 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183582 183612 183726 "BOUNDZRO" 183848 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 181363 181767 182242 "BOP1" 183140 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 176591 177789 178701 "BOP" 180471 T BOP (NIL) -8 NIL NIL NIL) (-112 175416 176165 176314 "BOOLEAN" 176462 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174695 175099 175153 "BMODULE" 175158 NIL BMODULE (NIL T T) -9 NIL 175223 NIL) (-110 170496 174493 174566 "BITS" 174642 T BITS (NIL) -8 NIL NIL NIL) (-109 169917 170036 170176 "BINDING" 170376 T BINDING (NIL) -8 NIL NIL NIL) (-108 163945 169514 169662 "BINARY" 169789 T BINARY (NIL) -8 NIL NIL NIL) (-107 161725 163200 163241 "BGAGG" 163501 NIL BGAGG (NIL T) -9 NIL 163638 NIL) (-106 161556 161588 161679 "BGAGG-" 161684 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160627 160940 161145 "BFUNCT" 161371 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159311 159492 159780 "BEZOUT" 160451 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155782 158163 158493 "BBTREE" 159014 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155516 155569 155597 "BASTYPE" 155716 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155368 155397 155470 "BASTYPE-" 155475 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154802 154878 155030 "BALFACT" 155279 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153658 154217 154403 "AUTOMOR" 154647 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153384 153389 153415 "ATTREG" 153420 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151636 152081 152433 "ATTRBUT" 153050 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151244 151464 151530 "ATTRAST" 151588 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150780 150893 150919 "ATRIG" 151120 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150589 150630 150717 "ATRIG-" 150722 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150234 150420 150446 "ASTCAT" 150451 T ASTCAT (NIL) -9 NIL 150481 NIL) (-92 149961 150020 150139 "ASTCAT-" 150144 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148110 149737 149825 "ASTACK" 149904 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146615 146912 147277 "ASSOCEQ" 147792 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145669 146274 146398 "ASP9" 146522 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 144559 145274 145416 "ASP80" 145558 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 144322 144507 144546 "ASP8" 144551 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 143298 143999 144117 "ASP78" 144235 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 142289 142978 143095 "ASP77" 143212 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 141223 141927 142058 "ASP74" 142189 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 140145 140858 140990 "ASP73" 141122 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 139065 139780 139912 "ASP7" 140044 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 138191 138891 138991 "ASP6" 138996 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137158 137868 137986 "ASP55" 138104 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136129 136832 136951 "ASP50" 137070 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135239 135830 135940 "ASP49" 136050 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 134045 134778 134946 "ASP42" 135128 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132843 133578 133748 "ASP41" 133932 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131953 132544 132654 "ASP4" 132764 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130925 131630 131748 "ASP35" 131866 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130690 130873 130912 "ASP34" 130917 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130427 130494 130570 "ASP33" 130645 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129342 130062 130194 "ASP31" 130326 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129107 129290 129329 "ASP30" 129334 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128842 128911 128987 "ASP29" 129062 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128607 128790 128829 "ASP28" 128834 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128372 128555 128594 "ASP27" 128599 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127478 128070 128181 "ASP24" 128292 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126576 127280 127392 "ASP20" 127397 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125540 126250 126369 "ASP19" 126488 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 125277 125344 125420 "ASP12" 125495 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 124151 124876 125020 "ASP10" 125164 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 123261 123852 123962 "ASP1" 124072 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 121112 123105 123196 "ARRAY2" 123201 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 120144 120317 120538 "ARRAY12" 120935 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115909 119792 119906 "ARRAY1" 120061 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 110221 112139 112214 "ARR2CAT" 114844 NIL ARR2CAT (NIL T T T) -9 NIL 115602 NIL) (-56 107655 108399 109353 "ARR2CAT-" 109358 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106972 107282 107407 "ARITY" 107548 T ARITY (NIL) -8 NIL NIL NIL) (-54 105748 105900 106199 "APPRULE" 106808 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105399 105447 105566 "APPLYORE" 105694 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104677 104800 104957 "ANY1" 105273 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 104031 104270 104390 "ANY" 104575 T ANY (NIL) -8 NIL NIL NIL) (-50 101561 102468 102795 "ANTISYM" 103755 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101053 101268 101364 "ANON" 101483 T ANON (NIL) -8 NIL NIL NIL) (-48 95311 99592 100046 "AN" 100617 T AN (NIL) -8 NIL NIL NIL) (-47 91209 92597 92648 "AMR" 93396 NIL AMR (NIL T T) -9 NIL 93996 NIL) (-46 90321 90542 90905 "AMR-" 90910 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74766 90238 90299 "ALIST" 90304 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71601 74360 74529 "ALGSC" 74684 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68156 68711 69318 "ALGPKG" 71041 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67433 67534 67718 "ALGMFACT" 68042 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63468 64047 64641 "ALGMANIP" 67017 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54849 63094 63244 "ALGFF" 63401 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54045 54176 54355 "ALGFACT" 54707 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52986 53586 53624 "ALGEBRA" 53629 NIL ALGEBRA (NIL T) -9 NIL 53670 NIL) (-37 52704 52763 52895 "ALGEBRA-" 52900 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34803 50706 50758 "ALAGG" 50894 NIL ALAGG (NIL T T) -9 NIL 51055 NIL) (-35 34339 34452 34478 "AHYP" 34679 T AHYP (NIL) -9 NIL NIL NIL) (-34 33270 33518 33544 "AGG" 34043 T AGG (NIL) -9 NIL 34322 NIL) (-33 32704 32866 33080 "AGG-" 33085 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30510 30933 31338 "AF" 32346 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29990 30235 30325 "ADDAST" 30438 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29258 29517 29673 "ACPLOT" 29852 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18637 26385 26423 "ACFS" 27030 NIL ACFS (NIL T) -9 NIL 27269 NIL) (-28 16664 17154 17916 "ACFS-" 17921 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14711 14737 "ACF" 15616 T ACF (NIL) -9 NIL 16029 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3535 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-309)) (|has| |#1| (-366))))) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 10)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-2243 (($ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-2241 (((-112) $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-4204 (($ $ (-550)) NIL) (($ $ (-550) (-550)) NIL)) (-4207 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) NIL)) (-4165 (((-1260 |#1| |#2| |#3|) $) NIL)) (-4162 (((-3 (-1260 |#1| |#2| |#3|) "failed") $) NIL)) (-4163 (((-1260 |#1| |#2| |#3|) $) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4057 (((-550) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-4252 (($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) NIL)) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-1260 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1181) #2#) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-1181))) (|has| |#1| (-366)))) (((-3 (-411 (-550)) #2#) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366)))) (((-3 (-550) #2#) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366))))) (-3578 (((-1260 |#1| |#2| |#3|) $) NIL) (((-1181) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-1181))) (|has| |#1| (-366)))) (((-411 (-550)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366)))) (((-550) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366))))) (-4164 (($ $) NIL) (($ (-550) $) NIL)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-1260 |#1| |#2| |#3|)) (-692 $)) NIL (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 (-1260 |#1| |#2| |#3|))) (|:| |vec| (-1270 (-1260 |#1| |#2| |#3|)))) (-692 $) (-1270 $)) NIL (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-642 (-550))) (|has| |#1| (-366)))) (((-692 (-550)) (-692 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-642 (-550))) (|has| |#1| (-366))))) (-3892 (((-3 $ "failed") $) NIL)) (-4161 (((-411 (-950 |#1|)) $ (-550)) NIL (|has| |#1| (-561))) (((-411 (-950 |#1|)) $ (-550) (-550)) NIL (|has| |#1| (-561)))) (-3397 (($) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-549)) (|has| |#1| (-366))))) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3608 (((-112) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-890 (-381))) (|has| |#1| (-366)))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-890 (-550))) (|has| |#1| (-366))))) (-4205 (((-550) $) NIL) (((-550) $ (-550)) NIL)) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL (|has| |#1| (-366)))) (-3401 (((-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-366)))) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3870 (((-3 $ "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1155)) (|has| |#1| (-366))))) (-3609 (((-112) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-4210 (($ $ (-923)) NIL)) (-4249 (($ (-1 |#1| (-550)) $) NIL)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-550)) 18) (($ $ (-1086) (-550)) NIL) (($ $ (-644 (-1086)) (-644 (-550))) NIL)) (-2936 (($ $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-3262 (($ $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-366)))) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4212 (($ (-550) (-1260 |#1| |#2| |#3|)) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-4246 (($ $) 27 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 28 (|has| |#1| (-38 (-411 (-550)))))) (-3871 (($) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1155)) (|has| |#1| (-366))) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3534 (($ $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-309)) (|has| |#1| (-366))))) (-3536 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-549)) (|has| |#1| (-366))))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-550)) NIL)) (-3891 (((-3 $ "failed") $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1181) (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-518 (-1181) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-644 (-1181)) (-644 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-518 (-1181) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-644 (-295 (-1260 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-311 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-295 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-311 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-311 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366)))) (($ $ (-644 (-1260 |#1| |#2| |#3|)) (-644 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-311 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-550)) NIL) (($ $ $) NIL (|has| (-550) (-1116))) (($ $ (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-288 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-366))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) NIL (|has| |#1| (-366))) (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) (-774)) NIL (|has| |#1| (-366))) (($ $ (-1267 |#2|)) 26) (($ $ (-774)) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 25 (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181) (-774)) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-644 (-1181))) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-3398 (($ $) NIL (|has| |#1| (-366)))) (-3400 (((-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-366)))) (-4382 (((-550) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4404 (((-539) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-617 (-539))) (|has| |#1| (-366)))) (((-381) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-366)))) (((-226) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-366)))) (((-894 (-381)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-617 (-894 (-381)))) (|has| |#1| (-366)))) (((-894 (-550)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-617 (-894 (-550)))) (|has| |#1| (-366))))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1260 |#1| |#2| |#3|)) NIL) (($ (-1267 |#2|)) 24) (($ (-1181)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-1181))) (|has| |#1| (-366)))) (($ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (|has| |#1| (-561)))) (($ (-411 (-550))) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-1042 (-550))) (|has| |#1| (-366))) (|has| |#1| (-38 (-411 (-550))))))) (-4111 ((|#1| $ (-550)) NIL)) (-3107 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| $ (-145)) (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-145)) (|has| |#1| (-366))) (|has| |#1| (-145))))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 11)) (-3537 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-549)) (|has| |#1| (-366))))) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-914)) (|has| |#1| (-366))) (|has| |#1| (-561))))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-550)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3809 (($ $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))))) (-3512 (($) 20 T CONST)) (-3069 (($) 15 T CONST)) (-3074 (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) NIL (|has| |#1| (-366))) (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) (-774)) NIL (|has| |#1| (-366))) (($ $ (-774)) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181) (-774)) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-644 (-1181))) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-2968 (((-112) $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-2969 (((-112) $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-3457 (((-112) $ $) NIL)) (-3089 (((-112) $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-3090 (((-112) $ $) NIL (-3962 (-12 (|has| (-1260 |#1| |#2| |#3|) (-823)) (|has| |#1| (-366))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-853)) (|has| |#1| (-366)))))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366))) (($ (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 22)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1260 |#1| |#2| |#3|)) NIL (|has| |#1| (-366))) (($ (-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-366))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1230 |#1| |#2| |#3|) (-13 (-1234 |#1| (-1260 |#1| |#2| |#3|)) (-10 -8 (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -1230)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1234 |#1| (-1260 |#1| |#2| |#3|)) (-10 -8 (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-4392 (((-1230 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1230 |#1| |#3| |#5|)) 23))) +(((-1231 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4392 ((-1230 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1230 |#1| |#3| |#5|)))) (-1053) (-1053) (-1181) (-1181) |#1| |#2|) (T -1231)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1230 *5 *7 *9)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-14 *7 (-1181)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1230 *6 *8 *10)) (-5 *1 (-1231 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1181))))) +(-10 -7 (-15 -4392 ((-1230 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1230 |#1| |#3| |#5|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 (-1086)) $) 86)) (-4265 (((-1181) $) 115)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-4204 (($ $ (-550)) 110) (($ $ (-550) (-550)) 109)) (-4207 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 117)) (-3917 (($ $) 147 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 174 (|has| |#1| (-366)))) (-4403 (((-409 $) $) 175 (|has| |#1| (-366)))) (-3440 (($ $) 129 (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) 165 (|has| |#1| (-366)))) (-3915 (($ $) 146 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 131 (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 185)) (-3919 (($ $) 145 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) 18 T CONST)) (-2966 (($ $ $) 169 (|has| |#1| (-366)))) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-4161 (((-411 (-950 |#1|)) $ (-550)) 183 (|has| |#1| (-561))) (((-411 (-950 |#1|)) $ (-550) (-550)) 182 (|has| |#1| (-561)))) (-2965 (($ $ $) 168 (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 163 (|has| |#1| (-366)))) (-4157 (((-112) $) 176 (|has| |#1| (-366)))) (-3295 (((-112) $) 85)) (-4061 (($) 157 (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-550) $) 112) (((-550) $ (-550)) 111)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 128 (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) 113)) (-4249 (($ (-1 |#1| (-550)) $) 184)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 172 (|has| |#1| (-366)))) (-4371 (((-112) $) 74)) (-3296 (($ |#1| (-550)) 73) (($ $ (-1086) (-550)) 88) (($ $ (-644 (-1086)) (-644 (-550))) 87)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-4376 (($ $) 154 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-2071 (($ (-644 $)) 161 (|has| |#1| (-366))) (($ $ $) 160 (|has| |#1| (-366)))) (-3665 (((-1163) $) 10)) (-2808 (($ $) 177 (|has| |#1| (-366)))) (-4246 (($ $) 181 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 180 (-3962 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206)) (|has| |#1| (-38 (-411 (-550))))) (-12 (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-38 (-411 (-550)))))))) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-366)))) (-3566 (($ (-644 $)) 159 (|has| |#1| (-366))) (($ $ $) 158 (|has| |#1| (-366)))) (-4166 (((-409 $) $) 173 (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 170 (|has| |#1| (-366)))) (-4202 (($ $ (-550)) 107)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-366)))) (-4377 (($ $) 155 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-550)))))) (-1754 (((-774) $) 166 (|has| |#1| (-366)))) (-4233 ((|#1| $ (-550)) 116) (($ $ $) 93 (|has| (-550) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 167 (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) 101 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181) (-774)) 100 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181))) 99 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181)) 98 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-774)) 96 (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-4382 (((-550) $) 76)) (-3920 (($ $) 144 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 133 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 143 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 142 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 135 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561)))) (-4111 ((|#1| $ (-550)) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-4206 ((|#1| $) 114)) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 153 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 141 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3921 (($ $) 152 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 151 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 139 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-550)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 150 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 138 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 149 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 137 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 148 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) 105 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181) (-774)) 104 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181))) 103 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-1181)) 102 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-774)) 97 (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366))) (($ $ $) 179 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 178 (|has| |#1| (-366))) (($ $ $) 156 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 127 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-1232 |#1|) (-140) (-1053)) (T -1232)) +((-4252 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1053)) (-4 *1 (-1232 *3)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1232 *3)) (-4 *3 (-1053)))) (-4161 (*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1232 *4)) (-4 *4 (-1053)) (-4 *4 (-561)) (-5 *2 (-411 (-950 *4))))) (-4161 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-4 *1 (-1232 *4)) (-4 *4 (-1053)) (-4 *4 (-561)) (-5 *2 (-411 (-950 *4))))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550)))))) (-4246 (*1 *1 *1 *2) (-3962 (-12 (-5 *2 (-1181)) (-4 *1 (-1232 *3)) (-4 *3 (-1053)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-964)) (-4 *3 (-1206)) (-4 *3 (-38 (-411 (-550)))))) (-12 (-5 *2 (-1181)) (-4 *1 (-1232 *3)) (-4 *3 (-1053)) (-12 (|has| *3 (-15 -3487 ((-644 *2) *3))) (|has| *3 (-15 -4246 (*3 *3 *2))) (-4 *3 (-38 (-411 (-550))))))))) +(-13 (-1249 |t#1| (-550)) (-10 -8 (-15 -4252 ($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |t#1|))))) (-15 -4249 ($ (-1 |t#1| (-550)) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -4161 ((-411 (-950 |t#1|)) $ (-550))) (-15 -4161 ((-411 (-950 |t#1|)) $ (-550) (-550)))) |%noBranch|) (IF (|has| |t#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $)) (IF (|has| |t#1| (-15 -4246 (|t#1| |t#1| (-1181)))) (IF (|has| |t#1| (-15 -3487 ((-644 (-1181)) |t#1|))) (-15 -4246 ($ $ (-1181))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1206)) (IF (|has| |t#1| (-964)) (IF (|has| |t#1| (-29 (-550))) (-15 -4246 ($ $ (-1181))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1006)) (-6 (-1206))) |%noBranch|) (IF (|has| |t#1| (-366)) (-6 (-366)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-550)) . T) ((-25) . T) ((-38 #2=(-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-35) |has| |#1| (-38 (-411 (-550)))) ((-95) |has| |#1| (-38 (-411 (-550)))) ((-102) . T) ((-111 #2# #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-550) |#1|))) ((-244) |has| |#1| (-366)) ((-286) |has| |#1| (-38 (-411 (-550)))) ((-288 $ $) |has| (-550) (-1116)) ((-292) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-309) |has| |#1| (-366)) ((-366) |has| |#1| (-366)) ((-456) |has| |#1| (-366)) ((-497) |has| |#1| (-38 (-411 (-550)))) ((-561) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-649 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-720 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-729) . T) ((-904 (-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) ((-977 |#1| #1# (-1086)) . T) ((-925) |has| |#1| (-366)) ((-1006) |has| |#1| (-38 (-411 (-550)))) ((-1055 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1060 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1206) |has| |#1| (-38 (-411 (-550)))) ((-1209) |has| |#1| (-38 (-411 (-550)))) ((-1225) |has| |#1| (-366)) ((-1249 |#1| #1#) . T)) +((-3610 (((-112) $) 12)) (-3579 (((-3 |#3| #1="failed") $) 17) (((-3 (-1181) #1#) $) NIL) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 (-550) #1#) $) NIL)) (-3578 ((|#3| $) 14) (((-1181) $) NIL) (((-411 (-550)) $) NIL) (((-550) $) NIL))) +(((-1233 |#1| |#2| |#3|) (-10 -8 (-15 -3579 ((-3 (-550) #1="failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-1181) #1#) |#1|)) (-15 -3578 ((-1181) |#1|)) (-15 -3579 ((-3 |#3| #1#) |#1|)) (-15 -3578 (|#3| |#1|)) (-15 -3610 ((-112) |#1|))) (-1234 |#2| |#3|) (-1053) (-1263 |#2|)) (T -1233)) +NIL +(-10 -8 (-15 -3579 ((-3 (-550) #1="failed") |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3579 ((-3 (-1181) #1#) |#1|)) (-15 -3578 ((-1181) |#1|)) (-15 -3579 ((-3 |#3| #1#) |#1|)) (-15 -3578 (|#3| |#1|)) (-15 -3610 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3535 ((|#2| $) 242 (-3258 (|has| |#2| (-309)) (|has| |#1| (-366))))) (-3487 (((-644 (-1086)) $) 86)) (-4265 (((-1181) $) 115)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-4204 (($ $ (-550)) 110) (($ $ (-550) (-550)) 109)) (-4207 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 117)) (-4165 ((|#2| $) 278)) (-4162 (((-3 |#2| "failed") $) 274)) (-4163 ((|#2| $) 275)) (-3917 (($ $) 147 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) 20)) (-3112 (((-409 (-1175 $)) (-1175 $)) 251 (-3258 (|has| |#2| (-914)) (|has| |#1| (-366))))) (-4208 (($ $) 174 (|has| |#1| (-366)))) (-4403 (((-409 $) $) 175 (|has| |#1| (-366)))) (-3440 (($ $) 129 (|has| |#1| (-38 (-411 (-550)))))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 248 (-3258 (|has| |#2| (-914)) (|has| |#1| (-366))))) (-1755 (((-112) $ $) 165 (|has| |#1| (-366)))) (-3915 (($ $) 146 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 131 (|has| |#1| (-38 (-411 (-550)))))) (-4057 (((-550) $) 260 (-3258 (|has| |#2| (-823)) (|has| |#1| (-366))))) (-4252 (($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 185)) (-3919 (($ $) 145 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#2| #2="failed") $) 281) (((-3 (-550) #2#) $) 271 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#1| (-366)))) (((-3 (-411 (-550)) #2#) $) 269 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#1| (-366)))) (((-3 (-1181) #2#) $) 253 (-3258 (|has| |#2| (-1042 (-1181))) (|has| |#1| (-366))))) (-3578 ((|#2| $) 282) (((-550) $) 270 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#1| (-366)))) (((-411 (-550)) $) 268 (-3258 (|has| |#2| (-1042 (-550))) (|has| |#1| (-366)))) (((-1181) $) 252 (-3258 (|has| |#2| (-1042 (-1181))) (|has| |#1| (-366))))) (-4164 (($ $) 277) (($ (-550) $) 276)) (-2966 (($ $ $) 169 (|has| |#1| (-366)))) (-4393 (($ $) 72)) (-2429 (((-692 |#2|) (-692 $)) 232 (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) 231 (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 230 (-3258 (|has| |#2| (-642 (-550))) (|has| |#1| (-366)))) (((-692 (-550)) (-692 $)) 229 (-3258 (|has| |#2| (-642 (-550))) (|has| |#1| (-366))))) (-3892 (((-3 $ "failed") $) 37)) (-4161 (((-411 (-950 |#1|)) $ (-550)) 183 (|has| |#1| (-561))) (((-411 (-950 |#1|)) $ (-550) (-550)) 182 (|has| |#1| (-561)))) (-3397 (($) 244 (-3258 (|has| |#2| (-549)) (|has| |#1| (-366))))) (-2965 (($ $ $) 168 (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 163 (|has| |#1| (-366)))) (-4157 (((-112) $) 176 (|has| |#1| (-366)))) (-3608 (((-112) $) 258 (-3258 (|has| |#2| (-823)) (|has| |#1| (-366))))) (-3295 (((-112) $) 85)) (-4061 (($) 157 (|has| |#1| (-38 (-411 (-550)))))) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 236 (-3258 (|has| |#2| (-890 (-381))) (|has| |#1| (-366)))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 235 (-3258 (|has| |#2| (-890 (-550))) (|has| |#1| (-366))))) (-4205 (((-550) $) 112) (((-550) $ (-550)) 111)) (-2575 (((-112) $) 35)) (-3399 (($ $) 240 (|has| |#1| (-366)))) (-3401 ((|#2| $) 238 (|has| |#1| (-366)))) (-3414 (($ $ (-550)) 128 (|has| |#1| (-38 (-411 (-550)))))) (-3870 (((-3 $ "failed") $) 272 (-3258 (|has| |#2| (-1155)) (|has| |#1| (-366))))) (-3609 (((-112) $) 259 (-3258 (|has| |#2| (-823)) (|has| |#1| (-366))))) (-4210 (($ $ (-923)) 113)) (-4249 (($ (-1 |#1| (-550)) $) 184)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) 172 (|has| |#1| (-366)))) (-4371 (((-112) $) 74)) (-3296 (($ |#1| (-550)) 73) (($ $ (-1086) (-550)) 88) (($ $ (-644 (-1086)) (-644 (-550))) 87)) (-2936 (($ $ $) 262 (-3258 (|has| |#2| (-853)) (|has| |#1| (-366))))) (-3262 (($ $ $) 263 (-3258 (|has| |#2| (-853)) (|has| |#1| (-366))))) (-4392 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-366)))) (-4376 (($ $) 154 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-2071 (($ (-644 $)) 161 (|has| |#1| (-366))) (($ $ $) 160 (|has| |#1| (-366)))) (-4212 (($ (-550) |#2|) 279)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 177 (|has| |#1| (-366)))) (-4246 (($ $) 181 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 180 (-3962 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206)) (|has| |#1| (-38 (-411 (-550))))) (-12 (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-38 (-411 (-550)))))))) (-3871 (($) 273 (-3258 (|has| |#2| (-1155)) (|has| |#1| (-366))) CONST)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-366)))) (-3566 (($ (-644 $)) 159 (|has| |#1| (-366))) (($ $ $) 158 (|has| |#1| (-366)))) (-3534 (($ $) 243 (-3258 (|has| |#2| (-309)) (|has| |#1| (-366))))) (-3536 ((|#2| $) 246 (-3258 (|has| |#2| (-549)) (|has| |#1| (-366))))) (-3110 (((-409 (-1175 $)) (-1175 $)) 249 (-3258 (|has| |#2| (-914)) (|has| |#1| (-366))))) (-3111 (((-409 (-1175 $)) (-1175 $)) 250 (-3258 (|has| |#2| (-914)) (|has| |#1| (-366))))) (-4166 (((-409 $) $) 173 (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 171 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 170 (|has| |#1| (-366)))) (-4202 (($ $ (-550)) 107)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-366)))) (-4377 (($ $) 155 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1181) |#2|) 223 (-3258 (|has| |#2| (-518 (-1181) |#2|)) (|has| |#1| (-366)))) (($ $ (-644 (-1181)) (-644 |#2|)) 222 (-3258 (|has| |#2| (-518 (-1181) |#2|)) (|has| |#1| (-366)))) (($ $ (-644 (-295 |#2|))) 221 (-3258 (|has| |#2| (-311 |#2|)) (|has| |#1| (-366)))) (($ $ (-295 |#2|)) 220 (-3258 (|has| |#2| (-311 |#2|)) (|has| |#1| (-366)))) (($ $ |#2| |#2|) 219 (-3258 (|has| |#2| (-311 |#2|)) (|has| |#1| (-366)))) (($ $ (-644 |#2|) (-644 |#2|)) 218 (-3258 (|has| |#2| (-311 |#2|)) (|has| |#1| (-366))))) (-1754 (((-774) $) 166 (|has| |#1| (-366)))) (-4233 ((|#1| $ (-550)) 116) (($ $ $) 93 (|has| (-550) (-1116))) (($ $ |#2|) 217 (-3258 (|has| |#2| (-288 |#2| |#2|)) (|has| |#1| (-366))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 167 (|has| |#1| (-366)))) (-4244 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-366))) (($ $ (-1 |#2| |#2|) (-774)) 227 (|has| |#1| (-366))) (($ $ (-774)) 96 (-3962 (-3258 (|has| |#2| (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 94 (-3962 (-3258 (|has| |#2| (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) 101 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181) (-774)) 100 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-644 (-1181))) 99 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181)) 98 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-3398 (($ $) 241 (|has| |#1| (-366)))) (-3400 ((|#2| $) 239 (|has| |#1| (-366)))) (-4382 (((-550) $) 76)) (-3920 (($ $) 144 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 133 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 143 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 142 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 135 (|has| |#1| (-38 (-411 (-550)))))) (-4404 (((-226) $) 257 (-3258 (|has| |#2| (-1024)) (|has| |#1| (-366)))) (((-381) $) 256 (-3258 (|has| |#2| (-1024)) (|has| |#1| (-366)))) (((-539) $) 255 (-3258 (|has| |#2| (-617 (-539))) (|has| |#1| (-366)))) (((-894 (-381)) $) 234 (-3258 (|has| |#2| (-617 (-894 (-381)))) (|has| |#1| (-366)))) (((-894 (-550)) $) 233 (-3258 (|has| |#2| (-617 (-894 (-550)))) (|has| |#1| (-366))))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 247 (-3258 (-3258 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#1| (-366))))) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 280) (($ (-1181)) 254 (-3258 (|has| |#2| (-1042 (-1181))) (|has| |#1| (-366)))) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561)))) (-4111 ((|#1| $ (-550)) 71)) (-3107 (((-3 $ "failed") $) 60 (-3962 (-3258 (-3962 (|has| |#2| (-145)) (-3258 (|has| $ (-145)) (|has| |#2| (-914)))) (|has| |#1| (-366))) (|has| |#1| (-145))))) (-3532 (((-774)) 32 T CONST)) (-4206 ((|#1| $) 114)) (-3537 ((|#2| $) 245 (-3258 (|has| |#2| (-549)) (|has| |#1| (-366))))) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 153 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 141 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3921 (($ $) 152 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 151 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 139 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-550)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 150 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 138 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 149 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 137 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 148 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3809 (($ $) 261 (-3258 (|has| |#2| (-823)) (|has| |#1| (-366))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-366))) (($ $ (-1 |#2| |#2|) (-774)) 225 (|has| |#1| (-366))) (($ $ (-774)) 97 (-3962 (-3258 (|has| |#2| (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 95 (-3962 (-3258 (|has| |#2| (-234)) (|has| |#1| (-366))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) 105 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181) (-774)) 104 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-644 (-1181))) 103 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))))) (($ $ (-1181)) 102 (-3962 (-3258 (|has| |#2| (-904 (-1181))) (|has| |#1| (-366))) (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))))) (-2968 (((-112) $ $) 265 (-3258 (|has| |#2| (-853)) (|has| |#1| (-366))))) (-2969 (((-112) $ $) 266 (-3258 (|has| |#2| (-853)) (|has| |#1| (-366))))) (-3457 (((-112) $ $) 6)) (-3089 (((-112) $ $) 264 (-3258 (|has| |#2| (-853)) (|has| |#1| (-366))))) (-3090 (((-112) $ $) 267 (-3258 (|has| |#2| (-853)) (|has| |#1| (-366))))) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366))) (($ $ $) 179 (|has| |#1| (-366))) (($ |#2| |#2|) 237 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 178 (|has| |#1| (-366))) (($ $ $) 156 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 127 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-366))) (($ |#2| $) 215 (|has| |#1| (-366))) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-1234 |#1| |#2|) (-140) (-1053) (-1263 |t#1|)) (T -1234)) +((-4382 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1263 *3)) (-5 *2 (-550)))) (-4212 (*1 *1 *2 *3) (-12 (-5 *2 (-550)) (-4 *4 (-1053)) (-4 *1 (-1234 *4 *3)) (-4 *3 (-1263 *4)))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1263 *3)))) (-4164 (*1 *1 *1) (-12 (-4 *1 (-1234 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-1263 *2)))) (-4164 (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-1234 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1263 *3)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1263 *3)))) (-4162 (*1 *2 *1) (|partial| -12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1263 *3))))) +(-13 (-1232 |t#1|) (-1042 |t#2|) (-619 |t#2|) (-10 -8 (-15 -4212 ($ (-550) |t#2|)) (-15 -4382 ((-550) $)) (-15 -4165 (|t#2| $)) (-15 -4164 ($ $)) (-15 -4164 ($ (-550) $)) (-15 -4163 (|t#2| $)) (-15 -4162 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-366)) (-6 (-995 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-550)) . T) ((-25) . T) ((-38 #2=(-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 |#2|) |has| |#1| (-366)) ((-38 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-35) |has| |#1| (-38 (-411 (-550)))) ((-95) |has| |#1| (-38 (-411 (-550)))) ((-102) . T) ((-111 #2# #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-366)) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-131) . T) ((-145) -3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-619 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 #3=(-1181)) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181)))) ((-619 |#1|) |has| |#1| (-173)) ((-619 |#2|) . T) ((-619 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-617 (-226)) -12 (|has| |#1| (-366)) (|has| |#2| (-1024))) ((-617 (-381)) -12 (|has| |#1| (-366)) (|has| |#2| (-1024))) ((-617 (-539)) -12 (|has| |#1| (-366)) (|has| |#2| (-617 (-539)))) ((-617 (-894 (-381))) -12 (|has| |#1| (-366)) (|has| |#2| (-617 (-894 (-381))))) ((-617 (-894 (-550))) -12 (|has| |#1| (-366)) (|has| |#2| (-617 (-894 (-550))))) ((-232 |#2|) |has| |#1| (-366)) ((-234) -3962 (|has| |#1| (-15 * (|#1| (-550) |#1|))) (-12 (|has| |#1| (-366)) (|has| |#2| (-234)))) ((-244) |has| |#1| (-366)) ((-286) |has| |#1| (-38 (-411 (-550)))) ((-288 |#2| $) -12 (|has| |#1| (-366)) (|has| |#2| (-288 |#2| |#2|))) ((-288 $ $) |has| (-550) (-1116)) ((-292) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-309) |has| |#1| (-366)) ((-311 |#2|) -12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|))) ((-366) |has| |#1| (-366)) ((-341 |#2|) |has| |#1| (-366)) ((-380 |#2|) |has| |#1| (-366)) ((-404 |#2|) |has| |#1| (-366)) ((-456) |has| |#1| (-366)) ((-497) |has| |#1| (-38 (-411 (-550)))) ((-518 (-1181) |#2|) -12 (|has| |#1| (-366)) (|has| |#2| (-518 (-1181) |#2|))) ((-518 |#2| |#2|) -12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|))) ((-561) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-649 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-366)) ((-649 $) . T) ((-651 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-651 |#1|) . T) ((-651 |#2|) |has| |#1| (-366)) ((-651 $) . T) ((-643 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-643 |#1|) |has| |#1| (-173)) ((-643 |#2|) |has| |#1| (-366)) ((-643 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-642 (-550)) -12 (|has| |#1| (-366)) (|has| |#2| (-642 (-550)))) ((-642 |#2|) |has| |#1| (-366)) ((-720 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-720 |#1|) |has| |#1| (-173)) ((-720 |#2|) |has| |#1| (-366)) ((-720 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-729) . T) ((-794) -12 (|has| |#1| (-366)) (|has| |#2| (-823))) ((-795) -12 (|has| |#1| (-366)) (|has| |#2| (-823))) ((-797) -12 (|has| |#1| (-366)) (|has| |#2| (-823))) ((-800) -12 (|has| |#1| (-366)) (|has| |#2| (-823))) ((-823) -12 (|has| |#1| (-366)) (|has| |#2| (-823))) ((-851) -12 (|has| |#1| (-366)) (|has| |#2| (-823))) ((-853) -3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-853))) (-12 (|has| |#1| (-366)) (|has| |#2| (-823)))) ((-904 (-1181)) -3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181))))) ((-890 (-381)) -12 (|has| |#1| (-366)) (|has| |#2| (-890 (-381)))) ((-890 (-550)) -12 (|has| |#1| (-366)) (|has| |#2| (-890 (-550)))) ((-888 |#2|) |has| |#1| (-366)) ((-914) -12 (|has| |#1| (-366)) (|has| |#2| (-914))) ((-977 |#1| #1# (-1086)) . T) ((-925) |has| |#1| (-366)) ((-995 |#2|) |has| |#1| (-366)) ((-1006) |has| |#1| (-38 (-411 (-550)))) ((-1024) -12 (|has| |#1| (-366)) (|has| |#2| (-1024))) ((-1042 (-411 (-550))) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550)))) ((-1042 (-550)) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550)))) ((-1042 #3#) -12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181)))) ((-1042 |#2|) . T) ((-1055 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1055 |#1|) . T) ((-1055 |#2|) |has| |#1| (-366)) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1060 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1060 |#1|) . T) ((-1060 |#2|) |has| |#1| (-366)) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) -12 (|has| |#1| (-366)) (|has| |#2| (-1155))) ((-1206) |has| |#1| (-38 (-411 (-550)))) ((-1209) |has| |#1| (-38 (-411 (-550)))) ((-1220) |has| |#1| (-366)) ((-1225) |has| |#1| (-366)) ((-1232 |#1|) . T) ((-1249 |#1| #1#) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 81)) (-3535 ((|#2| $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-309))))) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 100)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-550)) 109) (($ $ (-550) (-550)) 111)) (-4207 (((-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|))) $) 51)) (-4165 ((|#2| $) 11)) (-4162 (((-3 |#2| "failed") $) 35)) (-4163 ((|#2| $) 36)) (-3917 (($ $) 206 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 182 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-914))))) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-914))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) 202 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 178 (|has| |#1| (-38 (-411 (-550)))))) (-4057 (((-550) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-823))))) (-4252 (($ (-1158 (-2 (|:| |k| (-550)) (|:| |c| |#1|)))) 59)) (-3919 (($ $) 210 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 186 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) 157) (((-3 (-550) #2#) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550))))) (((-3 (-411 (-550)) #2#) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550))))) (((-3 (-1181) #2#) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181)))))) (-3578 ((|#2| $) 156) (((-550) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550))))) (((-411 (-550)) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-550))))) (((-1181) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181)))))) (-4164 (($ $) 65) (($ (-550) $) 28)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-2429 (((-692 |#2|) (-692 $)) NIL (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL (|has| |#1| (-366))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-642 (-550))))) (((-692 (-550)) (-692 $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-642 (-550)))))) (-3892 (((-3 $ "failed") $) 88)) (-4161 (((-411 (-950 |#1|)) $ (-550)) 124 (|has| |#1| (-561))) (((-411 (-950 |#1|)) $ (-550) (-550)) 126 (|has| |#1| (-561)))) (-3397 (($) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-549))))) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3608 (((-112) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-823))))) (-3295 (((-112) $) 74)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-890 (-550)))))) (-4205 (((-550) $) 105) (((-550) $ (-550)) 107)) (-2575 (((-112) $) NIL)) (-3399 (($ $) NIL (|has| |#1| (-366)))) (-3401 ((|#2| $) 165 (|has| |#1| (-366)))) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3870 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1155))))) (-3609 (((-112) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-823))))) (-4210 (($ $ (-923)) 148)) (-4249 (($ (-1 |#1| (-550)) $) 144)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-550)) 20) (($ $ (-1086) (-550)) NIL) (($ $ (-644 (-1086)) (-644 (-550))) NIL)) (-2936 (($ $ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-853))))) (-3262 (($ $ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-853))))) (-4392 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-366)))) (-4376 (($ $) 176 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4212 (($ (-550) |#2|) 10)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 159 (|has| |#1| (-366)))) (-4246 (($ $) 228 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 233 (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))))))) (-3871 (($) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1155))) CONST)) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-3534 (($ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-309))))) (-3536 ((|#2| $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-549))))) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-914))))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-914))))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-550)) 138)) (-3891 (((-3 $ "failed") $ $) 128 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) 174 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-550))))) (($ $ (-1181) |#2|) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-518 (-1181) |#2|)))) (($ $ (-644 (-1181)) (-644 |#2|)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-518 (-1181) |#2|)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-311 |#2|))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-550)) 103) (($ $ $) 90 (|has| (-550) (-1116))) (($ $ |#2|) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-288 |#2| |#2|))))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-366))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#1| (-366))) (($ $ (-774)) NIL (-3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) 149 (-3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))))) (($ $ (-1181) (-774)) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))))) (($ $ (-644 (-1181))) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))))) (($ $ (-1181)) 153 (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181))))))) (-3398 (($ $) NIL (|has| |#1| (-366)))) (-3400 ((|#2| $) 166 (|has| |#1| (-366)))) (-4382 (((-550) $) 12)) (-3920 (($ $) 212 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 188 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 208 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 184 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 204 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 180 (|has| |#1| (-38 (-411 (-550)))))) (-4404 (((-226) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1024)))) (((-381) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1024)))) (((-539) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-617 (-539))))) (((-894 (-381)) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-617 (-894 (-550))))))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-366)) (|has| |#2| (-914))))) (-3294 (($ $) 136)) (-4380 (((-866) $) 267) (($ (-550)) 24) (($ |#1|) 22 (|has| |#1| (-173))) (($ |#2|) 21) (($ (-1181)) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-1042 (-1181))))) (($ (-411 (-550))) 169 (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561)))) (-4111 ((|#1| $ (-550)) 85)) (-3107 (((-3 $ "failed") $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#1| (-366)) (|has| |#2| (-914))) (|has| |#1| (-145)) (-12 (|has| |#1| (-366)) (|has| |#2| (-145)))))) (-3532 (((-774)) 155 T CONST)) (-4206 ((|#1| $) 102)) (-3537 ((|#2| $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-549))))) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) 218 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 194 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) 214 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 190 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 222 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 198 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-550)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-550)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 224 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 200 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 220 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 196 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 216 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 192 (|has| |#1| (-38 (-411 (-550)))))) (-3809 (($ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-823))))) (-3512 (($) 13 T CONST)) (-3069 (($) 18 T CONST)) (-3074 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-366))) (($ $ (-1 |#2| |#2|) (-774)) NIL (|has| |#1| (-366))) (($ $ (-774)) NIL (-3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $) NIL (-3962 (-12 (|has| |#1| (-366)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-550) |#1|))))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))))) (($ $ (-1181) (-774)) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))))) (($ $ (-644 (-1181))) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181)))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-550) |#1|)))) (-12 (|has| |#1| (-366)) (|has| |#2| (-904 (-1181))))))) (-2968 (((-112) $ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-853))))) (-2969 (((-112) $ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-853))))) (-3457 (((-112) $ $) 72)) (-3089 (((-112) $ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-853))))) (-3090 (((-112) $ $) NIL (-12 (|has| |#1| (-366)) (|has| |#2| (-853))))) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) 163 (|has| |#1| (-366))) (($ |#2| |#2|) 164 (|has| |#1| (-366)))) (-4271 (($ $) 227) (($ $ $) 78)) (-4273 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-774)) 84) (($ $ (-550)) 160 (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 172 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-366))) (($ |#2| $) 161 (|has| |#1| (-366))) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1235 |#1| |#2|) (-1234 |#1| |#2|) (-1053) (-1263 |#1|)) (T -1235)) +NIL +(-1234 |#1| |#2|) +((-4168 (((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112)) 13)) (-4167 (((-409 |#1|) |#1|) 26)) (-4166 (((-409 |#1|) |#1|) 24))) +(((-1236 |#1|) (-10 -7 (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4167 ((-409 |#1|) |#1|)) (-15 -4168 ((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112)))) (-1246 (-550))) (T -1236)) +((-4168 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) (-5 *1 (-1236 *3)) (-4 *3 (-1246 (-550))))) (-4167 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1236 *3)) (-4 *3 (-1246 (-550))))) (-4166 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1236 *3)) (-4 *3 (-1246 (-550)))))) +(-10 -7 (-15 -4166 ((-409 |#1|) |#1|)) (-15 -4167 ((-409 |#1|) |#1|)) (-15 -4168 ((-2 (|:| |contp| (-550)) (|:| -1956 (-644 (-2 (|:| |irr| |#1|) (|:| -2560 (-550)))))) |#1| (-112)))) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4170 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4392 (((-1158 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-851)))) (-3651 ((|#1| $) 15)) (-3653 ((|#1| $) 12)) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-3649 (((-550) $) 19)) (-3650 ((|#1| $) 18)) (-3652 ((|#1| $) 13)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4169 (((-112) $) 17)) (-4397 (((-1158 |#1|) $) 41 (|has| |#1| (-851))) (((-1158 |#1|) (-644 $)) 40 (|has| |#1| (-851)))) (-4404 (($ |#1|) 26)) (-4380 (($ (-1093 |#1|)) 25) (((-866) $) 37 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4171 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3654 (($ $ (-550)) 14)) (-3457 (((-112) $ $) 30 (|has| |#1| (-1105))))) +(((-1237 |#1|) (-13 (-1098 |#1|) (-10 -8 (-15 -4171 ($ |#1|)) (-15 -4170 ($ |#1|)) (-15 -4380 ($ (-1093 |#1|))) (-15 -4169 ((-112) $)) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-1099 |#1| (-1158 |#1|))) |%noBranch|))) (-1220)) (T -1237)) +((-4171 (*1 *1 *2) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-1220)))) (-4170 (*1 *1 *2) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-1220)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1220)) (-5 *1 (-1237 *3)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1220))))) +(-13 (-1098 |#1|) (-10 -8 (-15 -4171 ($ |#1|)) (-15 -4170 ($ |#1|)) (-15 -4380 ($ (-1093 |#1|))) (-15 -4169 ((-112) $)) (IF (|has| |#1| (-1105)) (-6 (-1105)) |%noBranch|) (IF (|has| |#1| (-851)) (-6 (-1099 |#1| (-1158 |#1|))) |%noBranch|))) +((-4392 (((-1158 |#2|) (-1 |#2| |#1|) (-1237 |#1|)) 23 (|has| |#1| (-851))) (((-1237 |#2|) (-1 |#2| |#1|) (-1237 |#1|)) 17))) +(((-1238 |#1| |#2|) (-10 -7 (-15 -4392 ((-1237 |#2|) (-1 |#2| |#1|) (-1237 |#1|))) (IF (|has| |#1| (-851)) (-15 -4392 ((-1158 |#2|) (-1 |#2| |#1|) (-1237 |#1|))) |%noBranch|)) (-1220) (-1220)) (T -1238)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-851)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1158 *6)) (-5 *1 (-1238 *5 *6)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1237 *6)) (-5 *1 (-1238 *5 *6))))) +(-10 -7 (-15 -4392 ((-1237 |#2|) (-1 |#2| |#1|) (-1237 |#1|))) (IF (|has| |#1| (-851)) (-15 -4392 ((-1158 |#2|) (-1 |#2| |#1|) (-1237 |#1|))) |%noBranch|)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4200 (((-1270 |#2|) $ (-774)) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4198 (($ (-1175 |#2|)) NIL)) (-3489 (((-1175 $) $ (-1086)) NIL) (((-1175 |#2|) $) NIL)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-2243 (($ $) NIL (|has| |#2| (-561)))) (-2241 (((-112) $) NIL (|has| |#2| (-561)))) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1086))) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4189 (($ $ $) NIL (|has| |#2| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4208 (($ $) NIL (|has| |#2| (-456)))) (-4403 (((-409 $) $) NIL (|has| |#2| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-1755 (((-112) $ $) NIL (|has| |#2| (-366)))) (-4194 (($ $ (-774)) NIL)) (-4193 (($ $ (-774)) NIL)) (-4185 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-456)))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| #2="failed") $) NIL) (((-3 (-411 (-550)) #2#) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) NIL (|has| |#2| (-1042 (-550)))) (((-3 (-1086) #2#) $) NIL)) (-3578 ((|#2| $) NIL) (((-411 (-550)) $) NIL (|has| |#2| (-1042 (-411 (-550))))) (((-550) $) NIL (|has| |#2| (-1042 (-550)))) (((-1086) $) NIL)) (-4190 (($ $ $ (-1086)) NIL (|has| |#2| (-173))) ((|#2| $ $) NIL (|has| |#2| (-173)))) (-2966 (($ $ $) NIL (|has| |#2| (-366)))) (-4393 (($ $) NIL)) (-2429 (((-692 (-550)) (-692 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) NIL (|has| |#2| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#2|)) (|:| |vec| (-1270 |#2|))) (-692 $) (-1270 $)) NIL) (((-692 |#2|) (-692 $)) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-2965 (($ $ $) NIL (|has| |#2| (-366)))) (-4192 (($ $ $) NIL)) (-4187 (($ $ $) NIL (|has| |#2| (-561)))) (-4186 (((-2 (|:| -4388 |#2|) (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#2| (-366)))) (-3928 (($ $) NIL (|has| |#2| (-456))) (($ $ (-1086)) NIL (|has| |#2| (-456)))) (-3223 (((-644 $) $) NIL)) (-4157 (((-112) $) NIL (|has| |#2| (-914)))) (-1771 (($ $ |#2| (-774) $) NIL)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) NIL (-12 (|has| (-1086) (-890 (-381))) (|has| |#2| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) NIL (-12 (|has| (-1086) (-890 (-550))) (|has| |#2| (-890 (-550)))))) (-4205 (((-774) $ $) NIL (|has| |#2| (-561)))) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3870 (((-3 $ "failed") $) NIL (|has| |#2| (-1155)))) (-3490 (($ (-1175 |#2|) (-1086)) NIL) (($ (-1175 $) (-1086)) NIL)) (-4210 (($ $ (-774)) NIL)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) NIL (|has| |#2| (-366)))) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-3296 (($ |#2| (-774)) 18) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1086)) NIL) (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL)) (-3225 (((-774) $) NIL) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-1772 (($ (-1 (-774) (-774)) $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-4199 (((-1175 |#2|) $) NIL)) (-3488 (((-3 (-1086) #4="failed") $) NIL)) (-3297 (($ $) NIL)) (-3596 ((|#2| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-3665 (((-1163) $) NIL)) (-4195 (((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774)) NIL)) (-3228 (((-3 (-644 $) #4#) $) NIL)) (-3227 (((-3 (-644 $) #4#) $) NIL)) (-3229 (((-3 (-2 (|:| |var| (-1086)) (|:| -2566 (-774))) #4#) $) NIL)) (-4246 (($ $) NIL (|has| |#2| (-38 (-411 (-550)))))) (-3871 (($) NIL (|has| |#2| (-1155)) CONST)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 ((|#2| $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-456)))) (-3566 (($ (-644 $)) NIL (|has| |#2| (-456))) (($ $ $) NIL (|has| |#2| (-456)))) (-4172 (($ $ (-774) |#2| $) NIL)) (-3110 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-914)))) (-4166 (((-409 $) $) NIL (|has| |#2| (-914)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#2| (-366)))) (-3891 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-366)))) (-4201 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1086) |#2|) NIL) (($ $ (-644 (-1086)) (-644 |#2|)) NIL) (($ $ (-1086) $) NIL) (($ $ (-644 (-1086)) (-644 $)) NIL)) (-1754 (((-774) $) NIL (|has| |#2| (-366)))) (-4233 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-411 $) (-411 $) (-411 $)) NIL (|has| |#2| (-561))) ((|#2| (-411 $) |#2|) NIL (|has| |#2| (-366))) (((-411 $) $ (-411 $)) NIL (|has| |#2| (-561)))) (-4197 (((-3 $ #5="failed") $ (-774)) NIL)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#2| (-366)))) (-4191 (($ $ (-1086)) NIL (|has| |#2| (-173))) ((|#2| $) NIL (|has| |#2| (-173)))) (-4244 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4382 (((-774) $) NIL) (((-774) $ (-1086)) NIL) (((-644 (-774)) $ (-644 (-1086))) NIL)) (-4404 (((-894 (-381)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-381)))) (|has| |#2| (-617 (-894 (-381)))))) (((-894 (-550)) $) NIL (-12 (|has| (-1086) (-617 (-894 (-550)))) (|has| |#2| (-617 (-894 (-550)))))) (((-539) $) NIL (-12 (|has| (-1086) (-617 (-539))) (|has| |#2| (-617 (-539)))))) (-3222 ((|#2| $) NIL (|has| |#2| (-456))) (($ $ (-1086)) NIL (|has| |#2| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-914))))) (-4188 (((-3 $ #5#) $ $) NIL (|has| |#2| (-561))) (((-3 (-411 $) #5#) (-411 $) $) NIL (|has| |#2| (-561)))) (-4380 (((-866) $) 13) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-1086)) NIL) (($ (-1267 |#1|)) 20) (($ (-411 (-550))) NIL (-3962 (|has| |#2| (-38 (-411 (-550)))) (|has| |#2| (-1042 (-411 (-550)))))) (($ $) NIL (|has| |#2| (-561)))) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-774)) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-3107 (((-3 $ #1#) $) NIL (-3962 (-12 (|has| $ (-145)) (|has| |#2| (-914))) (|has| |#2| (-145))))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| |#2| (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL (|has| |#2| (-561)))) (-3512 (($) NIL T CONST)) (-3069 (($) 14 T CONST)) (-3074 (($ $ (-1086)) NIL) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) NIL) (($ $ (-1181)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1181) (-774)) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) NIL (|has| |#2| (-904 (-1181)))) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#2|) NIL (|has| |#2| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-411 (-550))) NIL (|has| |#2| (-38 (-411 (-550))))) (($ (-411 (-550)) $) NIL (|has| |#2| (-38 (-411 (-550))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1239 |#1| |#2|) (-13 (-1246 |#2|) (-619 (-1267 |#1|)) (-10 -8 (-15 -4172 ($ $ (-774) |#2| $)))) (-1181) (-1053)) (T -1239)) +((-4172 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1239 *4 *3)) (-14 *4 (-1181)) (-4 *3 (-1053))))) +(-13 (-1246 |#2|) (-619 (-1267 |#1|)) (-10 -8 (-15 -4172 ($ $ (-774) |#2| $)))) +((-4392 (((-1239 |#3| |#4|) (-1 |#4| |#2|) (-1239 |#1| |#2|)) 15))) +(((-1240 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 ((-1239 |#3| |#4|) (-1 |#4| |#2|) (-1239 |#1| |#2|)))) (-1181) (-1053) (-1181) (-1053)) (T -1240)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1239 *5 *6)) (-14 *5 (-1181)) (-4 *6 (-1053)) (-4 *8 (-1053)) (-5 *2 (-1239 *7 *8)) (-5 *1 (-1240 *5 *6 *7 *8)) (-14 *7 (-1181))))) +(-10 -7 (-15 -4392 ((-1239 |#3| |#4|) (-1 |#4| |#2|) (-1239 |#1| |#2|)))) +((-4175 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4173 ((|#1| |#3|) 13)) (-4174 ((|#3| |#3|) 19))) +(((-1241 |#1| |#2| |#3|) (-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4175 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-995 |#1|) (-1246 |#2|)) (T -1241)) +((-4175 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1241 *4 *5 *3)) (-4 *3 (-1246 *5)))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-995 *3)) (-5 *1 (-1241 *3 *4 *2)) (-4 *2 (-1246 *4)))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-1241 *2 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -4173 (|#1| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4175 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4177 (((-3 |#2| "failed") |#2| (-774) |#1|) 37)) (-4176 (((-3 |#2| "failed") |#2| (-774)) 38)) (-4179 (((-3 (-2 (|:| -3544 |#2|) (|:| -3543 |#2|)) "failed") |#2|) 52)) (-4180 (((-644 |#2|) |#2|) 54)) (-4178 (((-3 |#2| "failed") |#2| |#2|) 48))) +(((-1242 |#1| |#2|) (-10 -7 (-15 -4176 ((-3 |#2| "failed") |#2| (-774))) (-15 -4177 ((-3 |#2| "failed") |#2| (-774) |#1|)) (-15 -4178 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4179 ((-3 (-2 (|:| -3544 |#2|) (|:| -3543 |#2|)) "failed") |#2|)) (-15 -4180 ((-644 |#2|) |#2|))) (-13 (-561) (-147)) (-1246 |#1|)) (T -1242)) +((-4180 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-644 *3)) (-5 *1 (-1242 *4 *3)) (-4 *3 (-1246 *4)))) (-4179 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| -3544 *3) (|:| -3543 *3))) (-5 *1 (-1242 *4 *3)) (-4 *3 (-1246 *4)))) (-4178 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1242 *3 *2)) (-4 *2 (-1246 *3)))) (-4177 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-774)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1242 *4 *2)) (-4 *2 (-1246 *4)))) (-4176 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-774)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1242 *4 *2)) (-4 *2 (-1246 *4))))) +(-10 -7 (-15 -4176 ((-3 |#2| "failed") |#2| (-774))) (-15 -4177 ((-3 |#2| "failed") |#2| (-774) |#1|)) (-15 -4178 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4179 ((-3 (-2 (|:| -3544 |#2|) (|:| -3543 |#2|)) "failed") |#2|)) (-15 -4180 ((-644 |#2|) |#2|))) +((-4181 (((-3 (-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) "failed") |#2| |#2|) 30))) +(((-1243 |#1| |#2|) (-10 -7 (-15 -4181 ((-3 (-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) "failed") |#2| |#2|))) (-561) (-1246 |#1|)) (T -1243)) +((-4181 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-1243 *4 *3)) (-4 *3 (-1246 *4))))) +(-10 -7 (-15 -4181 ((-3 (-2 (|:| -2154 |#2|) (|:| -3305 |#2|)) "failed") |#2| |#2|))) +((-4182 ((|#2| |#2| |#2|) 22)) (-4183 ((|#2| |#2| |#2|) 36)) (-4184 ((|#2| |#2| |#2| (-774) (-774)) 44))) +(((-1244 |#1| |#2|) (-10 -7 (-15 -4182 (|#2| |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -4184 (|#2| |#2| |#2| (-774) (-774)))) (-1053) (-1246 |#1|)) (T -1244)) +((-4184 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *1 (-1244 *4 *2)) (-4 *2 (-1246 *4)))) (-4183 (*1 *2 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-1244 *3 *2)) (-4 *2 (-1246 *3)))) (-4182 (*1 *2 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-1244 *3 *2)) (-4 *2 (-1246 *3))))) +(-10 -7 (-15 -4182 (|#2| |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -4184 (|#2| |#2| |#2| (-774) (-774)))) +((-4200 (((-1270 |#2|) $ (-774)) 129)) (-3487 (((-644 (-1086)) $) 16)) (-4198 (($ (-1175 |#2|)) 80)) (-3224 (((-774) $) NIL) (((-774) $ (-644 (-1086))) 21)) (-3112 (((-409 (-1175 $)) (-1175 $)) 204)) (-4208 (($ $) 194)) (-4403 (((-409 $) $) 192)) (-3109 (((-3 (-644 (-1175 $)) "failed") (-644 (-1175 $)) (-1175 $)) 95)) (-4194 (($ $ (-774)) 84)) (-4193 (($ $ (-774)) 86)) (-4185 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3579 (((-3 |#2| #1="failed") $) 132) (((-3 (-411 (-550)) #1#) $) NIL) (((-3 (-550) #1#) $) NIL) (((-3 (-1086) #1#) $) NIL)) (-3578 ((|#2| $) 130) (((-411 (-550)) $) NIL) (((-550) $) NIL) (((-1086) $) NIL)) (-4187 (($ $ $) 170)) (-4186 (((-2 (|:| -4388 |#2|) (|:| -2154 $) (|:| -3305 $)) $ $) 172)) (-4205 (((-774) $ $) 189)) (-3870 (((-3 $ "failed") $) 138)) (-3296 (($ |#2| (-774)) NIL) (($ $ (-1086) (-774)) 59) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-3225 (((-774) $) NIL) (((-774) $ (-1086)) 54) (((-644 (-774)) $ (-644 (-1086))) 55)) (-4199 (((-1175 |#2|) $) 72)) (-3488 (((-3 (-1086) "failed") $) 52)) (-4195 (((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774)) 83)) (-4246 (($ $) 219)) (-3871 (($) 134)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 201)) (-3110 (((-409 (-1175 $)) (-1175 $)) 101)) (-3111 (((-409 (-1175 $)) (-1175 $)) 99)) (-4166 (((-409 $) $) 120)) (-4201 (($ $ (-644 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1086) |#2|) 39) (($ $ (-644 (-1086)) (-644 |#2|)) 36) (($ $ (-1086) $) 32) (($ $ (-644 (-1086)) (-644 $)) 30)) (-1754 (((-774) $) 207)) (-4233 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-411 $) (-411 $) (-411 $)) 164) ((|#2| (-411 $) |#2|) 206) (((-411 $) $ (-411 $)) 188)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 212)) (-4244 (($ $ (-1086)) 157) (($ $ (-644 (-1086))) NIL) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL) (($ $ (-774)) NIL) (($ $) 155) (($ $ (-1181)) NIL) (($ $ (-644 (-1181))) NIL) (($ $ (-1181) (-774)) NIL) (($ $ (-644 (-1181)) (-644 (-774))) NIL) (($ $ (-1 |#2| |#2|) (-774)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4382 (((-774) $) NIL) (((-774) $ (-1086)) 17) (((-644 (-774)) $ (-644 (-1086))) 23)) (-3222 ((|#2| $) NIL) (($ $ (-1086)) 140)) (-4188 (((-3 $ "failed") $ $) 180) (((-3 (-411 $) "failed") (-411 $) $) 176)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#2|) NIL) (($ (-1086)) 64) (($ (-411 (-550))) NIL) (($ $) NIL))) +(((-1245 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| |#1|)) (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -4233 ((-411 |#1|) |#1| (-411 |#1|))) (-15 -1754 ((-774) |#1|)) (-15 -3284 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -4233 (|#2| (-411 |#1|) |#2|)) (-15 -4185 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4186 ((-2 (|:| -4388 |#2|) (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -4187 (|#1| |#1| |#1|)) (-15 -4188 ((-3 (-411 |#1|) "failed") (-411 |#1|) |#1|)) (-15 -4188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4205 ((-774) |#1| |#1|)) (-15 -4233 ((-411 |#1|) (-411 |#1|) (-411 |#1|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4193 (|#1| |#1| (-774))) (-15 -4194 (|#1| |#1| (-774))) (-15 -4195 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| (-774))) (-15 -4198 (|#1| (-1175 |#2|))) (-15 -4199 ((-1175 |#2|) |#1|)) (-15 -4200 ((-1270 |#2|) |#1| (-774))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#2| |#1| |#2|)) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3112 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3111 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3110 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3109 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3222 (|#1| |#1| (-1086))) (-15 -3487 ((-644 (-1086)) |#1|)) (-15 -3224 ((-774) |#1| (-644 (-1086)))) (-15 -3224 ((-774) |#1|)) (-15 -3296 (|#1| |#1| (-644 (-1086)) (-644 (-774)))) (-15 -3296 (|#1| |#1| (-1086) (-774))) (-15 -3225 ((-644 (-774)) |#1| (-644 (-1086)))) (-15 -3225 ((-774) |#1| (-1086))) (-15 -3488 ((-3 (-1086) "failed") |#1|)) (-15 -4382 ((-644 (-774)) |#1| (-644 (-1086)))) (-15 -4382 ((-774) |#1| (-1086))) (-15 -4380 (|#1| (-1086))) (-15 -3579 ((-3 (-1086) #1="failed") |#1|)) (-15 -3578 ((-1086) |#1|)) (-15 -4201 (|#1| |#1| (-644 (-1086)) (-644 |#1|))) (-15 -4201 (|#1| |#1| (-1086) |#1|)) (-15 -4201 (|#1| |#1| (-644 (-1086)) (-644 |#2|))) (-15 -4201 (|#1| |#1| (-1086) |#2|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4382 ((-774) |#1|)) (-15 -3296 (|#1| |#2| (-774))) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3225 ((-774) |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -4244 (|#1| |#1| (-644 (-1086)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1086) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1086)))) (-15 -4244 (|#1| |#1| (-1086))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) (-1246 |#2|) (-1053)) (T -1245)) +NIL +(-10 -8 (-15 -4380 (|#1| |#1|)) (-15 -3113 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4403 ((-409 |#1|) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -3871 (|#1|)) (-15 -3870 ((-3 |#1| "failed") |#1|)) (-15 -4233 ((-411 |#1|) |#1| (-411 |#1|))) (-15 -1754 ((-774) |#1|)) (-15 -3284 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -4246 (|#1| |#1|)) (-15 -4233 (|#2| (-411 |#1|) |#2|)) (-15 -4185 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4186 ((-2 (|:| -4388 |#2|) (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| |#1|)) (-15 -4187 (|#1| |#1| |#1|)) (-15 -4188 ((-3 (-411 |#1|) "failed") (-411 |#1|) |#1|)) (-15 -4188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4205 ((-774) |#1| |#1|)) (-15 -4233 ((-411 |#1|) (-411 |#1|) (-411 |#1|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4193 (|#1| |#1| (-774))) (-15 -4194 (|#1| |#1| (-774))) (-15 -4195 ((-2 (|:| -2154 |#1|) (|:| -3305 |#1|)) |#1| (-774))) (-15 -4198 (|#1| (-1175 |#2|))) (-15 -4199 ((-1175 |#2|) |#1|)) (-15 -4200 ((-1270 |#2|) |#1| (-774))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4244 (|#1| |#1| (-1 |#2| |#2|) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1181) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1181)))) (-15 -4244 (|#1| |#1| (-1181))) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| (-774))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#2| |#1| |#2|)) (-15 -4166 ((-409 |#1|) |#1|)) (-15 -3112 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3111 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3110 ((-409 (-1175 |#1|)) (-1175 |#1|))) (-15 -3109 ((-3 (-644 (-1175 |#1|)) "failed") (-644 (-1175 |#1|)) (-1175 |#1|))) (-15 -3222 (|#1| |#1| (-1086))) (-15 -3487 ((-644 (-1086)) |#1|)) (-15 -3224 ((-774) |#1| (-644 (-1086)))) (-15 -3224 ((-774) |#1|)) (-15 -3296 (|#1| |#1| (-644 (-1086)) (-644 (-774)))) (-15 -3296 (|#1| |#1| (-1086) (-774))) (-15 -3225 ((-644 (-774)) |#1| (-644 (-1086)))) (-15 -3225 ((-774) |#1| (-1086))) (-15 -3488 ((-3 (-1086) "failed") |#1|)) (-15 -4382 ((-644 (-774)) |#1| (-644 (-1086)))) (-15 -4382 ((-774) |#1| (-1086))) (-15 -4380 (|#1| (-1086))) (-15 -3579 ((-3 (-1086) #1="failed") |#1|)) (-15 -3578 ((-1086) |#1|)) (-15 -4201 (|#1| |#1| (-644 (-1086)) (-644 |#1|))) (-15 -4201 (|#1| |#1| (-1086) |#1|)) (-15 -4201 (|#1| |#1| (-644 (-1086)) (-644 |#2|))) (-15 -4201 (|#1| |#1| (-1086) |#2|)) (-15 -4201 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -4201 (|#1| |#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| (-295 |#1|))) (-15 -4201 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4382 ((-774) |#1|)) (-15 -3296 (|#1| |#2| (-774))) (-15 -3579 ((-3 (-550) #1#) |#1|)) (-15 -3578 ((-550) |#1|)) (-15 -3579 ((-3 (-411 (-550)) #1#) |#1|)) (-15 -3578 ((-411 (-550)) |#1|)) (-15 -3578 (|#2| |#1|)) (-15 -3579 ((-3 |#2| #1#) |#1|)) (-15 -4380 (|#1| |#2|)) (-15 -3225 ((-774) |#1|)) (-15 -3222 (|#2| |#1|)) (-15 -4244 (|#1| |#1| (-644 (-1086)) (-644 (-774)))) (-15 -4244 (|#1| |#1| (-1086) (-774))) (-15 -4244 (|#1| |#1| (-644 (-1086)))) (-15 -4244 (|#1| |#1| (-1086))) (-15 -4380 (|#1| (-550))) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4200 (((-1270 |#1|) $ (-774)) 240)) (-3487 (((-644 (-1086)) $) 112)) (-4198 (($ (-1175 |#1|)) 238)) (-3489 (((-1175 $) $ (-1086)) 127) (((-1175 |#1|) $) 126)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-2243 (($ $) 90 (|has| |#1| (-561)))) (-2241 (((-112) $) 92 (|has| |#1| (-561)))) (-3224 (((-774) $) 114) (((-774) $ (-644 (-1086))) 113)) (-1408 (((-3 $ "failed") $ $) 20)) (-4189 (($ $ $) 225 (|has| |#1| (-561)))) (-3112 (((-409 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-914)))) (-4208 (($ $) 100 (|has| |#1| (-456)))) (-4403 (((-409 $) $) 99 (|has| |#1| (-456)))) (-3109 (((-3 (-644 (-1175 $)) #1="failed") (-644 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-914)))) (-1755 (((-112) $ $) 210 (|has| |#1| (-366)))) (-4194 (($ $ (-774)) 233)) (-4193 (($ $ (-774)) 232)) (-4185 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-456)))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| #2="failed") $) 166) (((-3 (-411 (-550)) #2#) $) 163 (|has| |#1| (-1042 (-411 (-550))))) (((-3 (-550) #2#) $) 161 (|has| |#1| (-1042 (-550)))) (((-3 (-1086) #2#) $) 138)) (-3578 ((|#1| $) 165) (((-411 (-550)) $) 164 (|has| |#1| (-1042 (-411 (-550))))) (((-550) $) 162 (|has| |#1| (-1042 (-550)))) (((-1086) $) 139)) (-4190 (($ $ $ (-1086)) 110 (|has| |#1| (-173))) ((|#1| $ $) 228 (|has| |#1| (-173)))) (-2966 (($ $ $) 214 (|has| |#1| (-366)))) (-4393 (($ $) 156)) (-2429 (((-692 (-550)) (-692 $)) 136 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 (-550))) (|:| |vec| (-1270 (-550)))) (-692 $) (-1270 $)) 135 (|has| |#1| (-642 (-550)))) (((-2 (|:| -1750 (-692 |#1|)) (|:| |vec| (-1270 |#1|))) (-692 $) (-1270 $)) 134) (((-692 |#1|) (-692 $)) 133)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 213 (|has| |#1| (-366)))) (-4192 (($ $ $) 231)) (-4187 (($ $ $) 222 (|has| |#1| (-561)))) (-4186 (((-2 (|:| -4388 |#1|) (|:| -2154 $) (|:| -3305 $)) $ $) 221 (|has| |#1| (-561)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 208 (|has| |#1| (-366)))) (-3928 (($ $) 178 (|has| |#1| (-456))) (($ $ (-1086)) 107 (|has| |#1| (-456)))) (-3223 (((-644 $) $) 111)) (-4157 (((-112) $) 98 (|has| |#1| (-914)))) (-1771 (($ $ |#1| (-774) $) 174)) (-3201 (((-892 (-381) $) $ (-894 (-381)) (-892 (-381) $)) 86 (-12 (|has| (-1086) (-890 (-381))) (|has| |#1| (-890 (-381))))) (((-892 (-550) $) $ (-894 (-550)) (-892 (-550) $)) 85 (-12 (|has| (-1086) (-890 (-550))) (|has| |#1| (-890 (-550)))))) (-4205 (((-774) $ $) 226 (|has| |#1| (-561)))) (-2575 (((-112) $) 35)) (-2583 (((-774) $) 171)) (-3870 (((-3 $ "failed") $) 206 (|has| |#1| (-1155)))) (-3490 (($ (-1175 |#1|) (-1086)) 119) (($ (-1175 $) (-1086)) 118)) (-4210 (($ $ (-774)) 237)) (-1752 (((-3 (-644 $) #3="failed") (-644 $) $) 217 (|has| |#1| (-366)))) (-3226 (((-644 $) $) 128)) (-4371 (((-112) $) 154)) (-3296 (($ |#1| (-774)) 155) (($ $ (-1086) (-774)) 121) (($ $ (-644 (-1086)) (-644 (-774))) 120)) (-4196 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $ (-1086)) 122) (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 235)) (-3225 (((-774) $) 172) (((-774) $ (-1086)) 124) (((-644 (-774)) $ (-644 (-1086))) 123)) (-1772 (($ (-1 (-774) (-774)) $) 173)) (-4392 (($ (-1 |#1| |#1|) $) 153)) (-4199 (((-1175 |#1|) $) 239)) (-3488 (((-3 (-1086) #4="failed") $) 125)) (-3297 (($ $) 151)) (-3596 ((|#1| $) 150)) (-2071 (($ (-644 $)) 96 (|has| |#1| (-456))) (($ $ $) 95 (|has| |#1| (-456)))) (-3665 (((-1163) $) 10)) (-4195 (((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774)) 234)) (-3228 (((-3 (-644 $) #4#) $) 116)) (-3227 (((-3 (-644 $) #4#) $) 117)) (-3229 (((-3 (-2 (|:| |var| (-1086)) (|:| -2566 (-774))) #4#) $) 115)) (-4246 (($ $) 218 (|has| |#1| (-38 (-411 (-550)))))) (-3871 (($) 205 (|has| |#1| (-1155)) CONST)) (-3666 (((-1124) $) 11)) (-1974 (((-112) $) 168)) (-1973 ((|#1| $) 169)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-456)))) (-3566 (($ (-644 $)) 94 (|has| |#1| (-456))) (($ $ $) 93 (|has| |#1| (-456)))) (-3110 (((-409 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-914)))) (-3111 (((-409 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-914)))) (-4166 (((-409 $) $) 101 (|has| |#1| (-914)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 216 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 215 (|has| |#1| (-366)))) (-3891 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 209 (|has| |#1| (-366)))) (-4201 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ (-1086) |#1|) 143) (($ $ (-644 (-1086)) (-644 |#1|)) 142) (($ $ (-1086) $) 141) (($ $ (-644 (-1086)) (-644 $)) 140)) (-1754 (((-774) $) 211 (|has| |#1| (-366)))) (-4233 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-411 $) (-411 $) (-411 $)) 227 (|has| |#1| (-561))) ((|#1| (-411 $) |#1|) 219 (|has| |#1| (-366))) (((-411 $) $ (-411 $)) 207 (|has| |#1| (-561)))) (-4197 (((-3 $ "failed") $ (-774)) 236)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 212 (|has| |#1| (-366)))) (-4191 (($ $ (-1086)) 109 (|has| |#1| (-173))) ((|#1| $) 229 (|has| |#1| (-173)))) (-4244 (($ $ (-1086)) 46) (($ $ (-644 (-1086))) 45) (($ $ (-1086) (-774)) 44) (($ $ (-644 (-1086)) (-644 (-774))) 43) (($ $ (-774)) 255) (($ $) 253) (($ $ (-1181)) 252 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 251 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 250 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 249 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-4382 (((-774) $) 152) (((-774) $ (-1086)) 132) (((-644 (-774)) $ (-644 (-1086))) 131)) (-4404 (((-894 (-381)) $) 84 (-12 (|has| (-1086) (-617 (-894 (-381)))) (|has| |#1| (-617 (-894 (-381)))))) (((-894 (-550)) $) 83 (-12 (|has| (-1086) (-617 (-894 (-550)))) (|has| |#1| (-617 (-894 (-550)))))) (((-539) $) 82 (-12 (|has| (-1086) (-617 (-539))) (|has| |#1| (-617 (-539)))))) (-3222 ((|#1| $) 177 (|has| |#1| (-456))) (($ $ (-1086)) 108 (|has| |#1| (-456)))) (-3108 (((-3 (-1270 $) #1#) (-692 $)) 106 (-3258 (|has| $ (-145)) (|has| |#1| (-914))))) (-4188 (((-3 $ "failed") $ $) 224 (|has| |#1| (-561))) (((-3 (-411 $) "failed") (-411 $) $) 223 (|has| |#1| (-561)))) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 167) (($ (-1086)) 137) (($ (-411 (-550))) 80 (-3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550)))))) (($ $) 87 (|has| |#1| (-561)))) (-4251 (((-644 |#1|) $) 170)) (-4111 ((|#1| $ (-774)) 157) (($ $ (-1086) (-774)) 130) (($ $ (-644 (-1086)) (-644 (-774))) 129)) (-3107 (((-3 $ #1#) $) 81 (-3962 (-3258 (|has| $ (-145)) (|has| |#1| (-914))) (|has| |#1| (-145))))) (-3532 (((-774)) 32 T CONST)) (-1770 (($ $ $ (-774)) 175 (|has| |#1| (-173)))) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 91 (|has| |#1| (-561)))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-1086)) 42) (($ $ (-644 (-1086))) 41) (($ $ (-1086) (-774)) 40) (($ $ (-644 (-1086)) (-644 (-774))) 39) (($ $ (-774)) 256) (($ $) 254) (($ $ (-1181)) 248 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181))) 247 (|has| |#1| (-904 (-1181)))) (($ $ (-1181) (-774)) 246 (|has| |#1| (-904 (-1181)))) (($ $ (-644 (-1181)) (-644 (-774))) 245 (|has| |#1| (-904 (-1181)))) (($ $ (-1 |#1| |#1|) (-774)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 158 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 160 (|has| |#1| (-38 (-411 (-550))))) (($ (-411 (-550)) $) 159 (|has| |#1| (-38 (-411 (-550))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1246 |#1|) (-140) (-1053)) (T -1246)) +((-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-1246 *4)) (-4 *4 (-1053)) (-5 *2 (-1270 *4)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-5 *2 (-1175 *3)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1053)) (-4 *1 (-1246 *3)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) (-4197 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) (-4196 (*1 *2 *1 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1246 *3)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1246 *4)))) (-4194 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) (-4193 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)))) (-4244 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-173)))) (-4190 (*1 *2 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-173)))) (-4233 (*1 *2 *2 *2) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-4 *3 (-561)))) (-4205 (*1 *2 *1 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-4 *3 (-561)) (-5 *2 (-774)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-561)))) (-4188 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-561)))) (-4188 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-411 *1)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-4 *3 (-561)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-561)))) (-4186 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| -4388 *3) (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1246 *3)))) (-4185 (*1 *2 *1 *1) (-12 (-4 *3 (-456)) (-4 *3 (-1053)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1246 *3)))) (-4233 (*1 *2 *3 *2) (-12 (-5 *3 (-411 *1)) (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550))))))) +(-13 (-954 |t#1| (-774) (-1086)) (-288 |t#1| |t#1|) (-288 $ $) (-234) (-232 |t#1|) (-10 -8 (-15 -4200 ((-1270 |t#1|) $ (-774))) (-15 -4199 ((-1175 |t#1|) $)) (-15 -4198 ($ (-1175 |t#1|))) (-15 -4210 ($ $ (-774))) (-15 -4197 ((-3 $ "failed") $ (-774))) (-15 -4196 ((-2 (|:| -2154 $) (|:| -3305 $)) $ $)) (-15 -4195 ((-2 (|:| -2154 $) (|:| -3305 $)) $ (-774))) (-15 -4194 ($ $ (-774))) (-15 -4193 ($ $ (-774))) (-15 -4192 ($ $ $)) (-15 -4244 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1155)) (-6 (-1155)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4191 (|t#1| $)) (-15 -4190 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-288 (-411 $) (-411 $))) (-15 -4233 ((-411 $) (-411 $) (-411 $))) (-15 -4205 ((-774) $ $)) (-15 -4189 ($ $ $)) (-15 -4188 ((-3 $ "failed") $ $)) (-15 -4188 ((-3 (-411 $) "failed") (-411 $) $)) (-15 -4187 ($ $ $)) (-15 -4186 ((-2 (|:| -4388 |t#1|) (|:| -2154 $) (|:| -3305 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-456)) (-15 -4185 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-366)) (PROGN (-6 (-309)) (-6 -4423) (-15 -4233 (|t#1| (-411 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-411 (-550)))) (-15 -4246 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-774)) . T) ((-25) . T) ((-38 #2=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #2#) -3962 (|has| |#1| (-1042 (-411 (-550)))) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 #3=(-1086)) . T) ((-619 |#1|) . T) ((-619 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-617 (-539)) -12 (|has| |#1| (-617 (-539))) (|has| (-1086) (-617 (-539)))) ((-617 (-894 (-381))) -12 (|has| |#1| (-617 (-894 (-381)))) (|has| (-1086) (-617 (-894 (-381))))) ((-617 (-894 (-550))) -12 (|has| |#1| (-617 (-894 (-550)))) (|has| (-1086) (-617 (-894 (-550))))) ((-232 |#1|) . T) ((-234) . T) ((-288 (-411 $) (-411 $)) |has| |#1| (-561)) ((-288 |#1| |#1|) . T) ((-288 $ $) . T) ((-292) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-309) |has| |#1| (-366)) ((-311 $) . T) ((-328 |#1| #1#) . T) ((-380 |#1|) . T) ((-416 |#1|) . T) ((-456) -3962 (|has| |#1| (-914)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-518 #3# |#1|) . T) ((-518 #3# $) . T) ((-518 $ $) . T) ((-561) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-649 #2#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #2#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #2#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-642 (-550)) |has| |#1| (-642 (-550))) ((-642 |#1|) . T) ((-720 #2#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366))) ((-729) . T) ((-904 #3#) . T) ((-904 (-1181)) |has| |#1| (-904 (-1181))) ((-890 (-381)) -12 (|has| |#1| (-890 (-381))) (|has| (-1086) (-890 (-381)))) ((-890 (-550)) -12 (|has| |#1| (-890 (-550))) (|has| (-1086) (-890 (-550)))) ((-954 |#1| #1# #3#) . T) ((-914) |has| |#1| (-914)) ((-925) |has| |#1| (-366)) ((-1042 (-411 (-550))) |has| |#1| (-1042 (-411 (-550)))) ((-1042 (-550)) |has| |#1| (-1042 (-550))) ((-1042 #3#) . T) ((-1042 |#1|) . T) ((-1055 #2#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1060 #2#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-914)) (|has| |#1| (-561)) (|has| |#1| (-456)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1155) |has| |#1| (-1155)) ((-1225) |has| |#1| (-914))) +((-4392 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|))) (-1053) (-1246 |#1|) (-1053) (-1246 |#3|)) (T -1247)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *2 (-1246 *6)) (-5 *1 (-1247 *5 *4 *6 *2)) (-4 *4 (-1246 *5))))) +(-10 -7 (-15 -4392 (|#4| (-1 |#3| |#1|) |#2|))) +((-3487 (((-644 (-1086)) $) 34)) (-4393 (($ $) 31)) (-3296 (($ |#2| |#3|) NIL) (($ $ (-1086) |#3|) 28) (($ $ (-644 (-1086)) (-644 |#3|)) 27)) (-3297 (($ $) 14)) (-3596 ((|#2| $) 12)) (-4382 ((|#3| $) 10))) +(((-1248 |#1| |#2| |#3|) (-10 -8 (-15 -3487 ((-644 (-1086)) |#1|)) (-15 -3296 (|#1| |#1| (-644 (-1086)) (-644 |#3|))) (-15 -3296 (|#1| |#1| (-1086) |#3|)) (-15 -4393 (|#1| |#1|)) (-15 -3296 (|#1| |#2| |#3|)) (-15 -4382 (|#3| |#1|)) (-15 -3297 (|#1| |#1|)) (-15 -3596 (|#2| |#1|))) (-1249 |#2| |#3|) (-1053) (-795)) (T -1248)) +NIL +(-10 -8 (-15 -3487 ((-644 (-1086)) |#1|)) (-15 -3296 (|#1| |#1| (-644 (-1086)) (-644 |#3|))) (-15 -3296 (|#1| |#1| (-1086) |#3|)) (-15 -4393 (|#1| |#1|)) (-15 -3296 (|#1| |#2| |#3|)) (-15 -4382 (|#3| |#1|)) (-15 -3297 (|#1| |#1|)) (-15 -3596 (|#2| |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 (-1086)) $) 86)) (-4265 (((-1181) $) 115)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-4204 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4207 (((-1158 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-3295 (((-112) $) 85)) (-4205 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2575 (((-112) $) 35)) (-4210 (($ $ (-923)) 113)) (-4371 (((-112) $) 74)) (-3296 (($ |#1| |#2|) 73) (($ $ (-1086) |#2|) 88) (($ $ (-644 (-1086)) (-644 |#2|)) 87)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4202 (($ $ |#2|) 107)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4201 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4233 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1116)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) 101 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1181) (-774)) 100 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1181))) 99 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1181)) 98 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-774)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4382 ((|#2| $) 76)) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4111 ((|#1| $ |#2|) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-4206 ((|#1| $) 114)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4203 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) 105 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1181) (-774)) 104 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1181))) 103 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1181)) 102 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-774)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-1249 |#1| |#2|) (-140) (-1053) (-795)) (T -1249)) +((-4207 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-1158 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4233 (*1 *2 *1 *3) (-12 (-4 *1 (-1249 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-1181)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-4205 (*1 *2 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-4204 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-1249 *2 *3)) (-4 *3 (-795)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4380 (*2 (-1181)))) (-4 *2 (-1053)))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1158 *3))))) +(-13 (-977 |t#1| |t#2| (-1086)) (-10 -8 (-15 -4207 ((-1158 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4233 (|t#1| $ |t#2|)) (-15 -4265 ((-1181) $)) (-15 -4206 (|t#1| $)) (-15 -4210 ($ $ (-923))) (-15 -4205 (|t#2| $)) (-15 -4205 (|t#2| $ |t#2|)) (-15 -4204 ($ $ |t#2|)) (-15 -4204 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4380 (|t#1| (-1181)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4203 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4202 ($ $ |t#2|)) (IF (|has| |t#2| (-1116)) (-6 (-288 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-234)) (IF (|has| |t#1| (-904 (-1181))) (-6 (-904 (-1181))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4201 ((-1158 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #1#) |has| |#1| (-38 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-288 $ $) |has| |#2| (-1116)) ((-292) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-649 #1#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-720 #1#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) . T) ((-904 (-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-977 |#1| |#2| (-1086)) . T) ((-1055 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1060 #1#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-4208 ((|#2| |#2|) 12)) (-4403 (((-409 |#2|) |#2|) 14)) (-4209 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))) 30))) +(((-1250 |#1| |#2|) (-10 -7 (-15 -4403 ((-409 |#2|) |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -4209 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))))) (-561) (-13 (-1246 |#1|) (-561) (-10 -8 (-15 -3566 ($ $ $))))) (T -1250)) +((-4209 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-550)))) (-4 *4 (-13 (-1246 *3) (-561) (-10 -8 (-15 -3566 ($ $ $))))) (-4 *3 (-561)) (-5 *1 (-1250 *3 *4)))) (-4208 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-1250 *3 *2)) (-4 *2 (-13 (-1246 *3) (-561) (-10 -8 (-15 -3566 ($ $ $))))))) (-4403 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-409 *3)) (-5 *1 (-1250 *4 *3)) (-4 *3 (-13 (-1246 *4) (-561) (-10 -8 (-15 -3566 ($ $ $)))))))) +(-10 -7 (-15 -4403 ((-409 |#2|) |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -4209 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-550))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-550)))))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 11)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) NIL) (($ $ (-411 (-550)) (-411 (-550))) NIL)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) NIL)) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-1230 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1260 |#1| |#2| |#3|) #1#) $) 22)) (-3578 (((-1230 |#1| |#2| |#3|) $) NIL) (((-1260 |#1| |#2| |#3|) $) NIL)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4214 (((-411 (-550)) $) 69)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-4215 (($ (-411 (-550)) (-1230 |#1| |#2| |#3|)) NIL)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) NIL) (((-411 (-550)) $ (-411 (-550))) NIL)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) NIL) (($ $ (-411 (-550))) NIL)) (-1752 (((-3 (-644 $) #2="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-411 (-550))) 30) (($ $ (-1086) (-411 (-550))) NIL) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4213 (((-1230 |#1| |#2| |#3|) $) 72)) (-4211 (((-3 (-1230 |#1| |#2| |#3|) "failed") $) NIL)) (-4212 (((-1230 |#1| |#2| |#3|) $) NIL)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) NIL (|has| |#1| (-366)))) (-4246 (($ $) 39 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) NIL (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 40 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) NIL)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) NIL) (($ $ $) NIL (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $ (-1267 |#2|)) 38)) (-4382 (((-411 (-550)) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) NIL)) (-4380 (((-866) $) 109) (($ (-550)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1230 |#1| |#2| |#3|)) 16) (($ (-1260 |#1| |#2| |#3|)) 17) (($ (-1267 |#2|)) 36) (($ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 12)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 32 T CONST)) (-3069 (($) 26 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 34)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ (-550)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1251 |#1| |#2| |#3|) (-13 (-1255 |#1| (-1230 |#1| |#2| |#3|)) (-1042 (-1260 |#1| |#2| |#3|)) (-619 (-1267 |#2|)) (-10 -8 (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -1251)) +((-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1255 |#1| (-1230 |#1| |#2| |#3|)) (-1042 (-1260 |#1| |#2| |#3|)) (-619 (-1267 |#2|)) (-10 -8 (-15 -4244 ($ $ (-1267 |#2|))) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-4392 (((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)) 24))) +(((-1252 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4392 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) (-1053) (-1053) (-1181) (-1181) |#1| |#2|) (T -1252)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-14 *7 (-1181)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1252 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1181))))) +(-10 -7 (-15 -4392 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 (-1086)) $) 86)) (-4265 (((-1181) $) 115)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) 110) (($ $ (-411 (-550)) (-411 (-550))) 109)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) 117)) (-3917 (($ $) 147 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 174 (|has| |#1| (-366)))) (-4403 (((-409 $) $) 175 (|has| |#1| (-366)))) (-3440 (($ $) 129 (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) 165 (|has| |#1| (-366)))) (-3915 (($ $) 146 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 131 (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) 183)) (-3919 (($ $) 145 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) 18 T CONST)) (-2966 (($ $ $) 169 (|has| |#1| (-366)))) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 168 (|has| |#1| (-366)))) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 163 (|has| |#1| (-366)))) (-4157 (((-112) $) 176 (|has| |#1| (-366)))) (-3295 (((-112) $) 85)) (-4061 (($) 157 (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) 112) (((-411 (-550)) $ (-411 (-550))) 111)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 128 (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) 113) (($ $ (-411 (-550))) 182)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 172 (|has| |#1| (-366)))) (-4371 (((-112) $) 74)) (-3296 (($ |#1| (-411 (-550))) 73) (($ $ (-1086) (-411 (-550))) 88) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) 87)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-4376 (($ $) 154 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-2071 (($ (-644 $)) 161 (|has| |#1| (-366))) (($ $ $) 160 (|has| |#1| (-366)))) (-3665 (((-1163) $) 10)) (-2808 (($ $) 177 (|has| |#1| (-366)))) (-4246 (($ $) 181 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 180 (-3962 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206)) (|has| |#1| (-38 (-411 (-550))))) (-12 (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-38 (-411 (-550)))))))) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-366)))) (-3566 (($ (-644 $)) 159 (|has| |#1| (-366))) (($ $ $) 158 (|has| |#1| (-366)))) (-4166 (((-409 $) $) 173 (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 170 (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) 107)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-366)))) (-4377 (($ $) 155 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) 166 (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) 116) (($ $ $) 93 (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 167 (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) 101 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) 100 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) 99 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) 98 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) 96 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-4382 (((-411 (-550)) $) 76)) (-3920 (($ $) 144 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 133 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 143 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 142 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 135 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-4206 ((|#1| $) 114)) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 153 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 141 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3921 (($ $) 152 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 151 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 139 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 150 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 138 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 149 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 137 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 148 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) 105 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) 104 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) 103 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) 102 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) 97 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366))) (($ $ $) 179 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 178 (|has| |#1| (-366))) (($ $ $) 156 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 127 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-1253 |#1|) (-140) (-1053)) (T -1253)) +((-4252 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| *4)))) (-4 *4 (-1053)) (-4 *1 (-1253 *4)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-4 *1 (-1253 *3)) (-4 *3 (-1053)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550)))))) (-4246 (*1 *1 *1 *2) (-3962 (-12 (-5 *2 (-1181)) (-4 *1 (-1253 *3)) (-4 *3 (-1053)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-964)) (-4 *3 (-1206)) (-4 *3 (-38 (-411 (-550)))))) (-12 (-5 *2 (-1181)) (-4 *1 (-1253 *3)) (-4 *3 (-1053)) (-12 (|has| *3 (-15 -3487 ((-644 *2) *3))) (|has| *3 (-15 -4246 (*3 *3 *2))) (-4 *3 (-38 (-411 (-550))))))))) +(-13 (-1249 |t#1| (-411 (-550))) (-10 -8 (-15 -4252 ($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |t#1|))))) (-15 -4210 ($ $ (-411 (-550)))) (IF (|has| |t#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $)) (IF (|has| |t#1| (-15 -4246 (|t#1| |t#1| (-1181)))) (IF (|has| |t#1| (-15 -3487 ((-644 (-1181)) |t#1|))) (-15 -4246 ($ $ (-1181))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1206)) (IF (|has| |t#1| (-964)) (IF (|has| |t#1| (-29 (-550))) (-15 -4246 ($ $ (-1181))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1006)) (-6 (-1206))) |%noBranch|) (IF (|has| |t#1| (-366)) (-6 (-366)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-411 (-550))) . T) ((-25) . T) ((-38 #2=(-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-35) |has| |#1| (-38 (-411 (-550)))) ((-95) |has| |#1| (-38 (-411 (-550)))) ((-102) . T) ((-111 #2# #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) ((-244) |has| |#1| (-366)) ((-286) |has| |#1| (-38 (-411 (-550)))) ((-288 $ $) |has| (-411 (-550)) (-1116)) ((-292) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-309) |has| |#1| (-366)) ((-366) |has| |#1| (-366)) ((-456) |has| |#1| (-366)) ((-497) |has| |#1| (-38 (-411 (-550)))) ((-561) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-649 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-720 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-729) . T) ((-904 (-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) ((-977 |#1| #1# (-1086)) . T) ((-925) |has| |#1| (-366)) ((-1006) |has| |#1| (-38 (-411 (-550)))) ((-1055 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1060 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1206) |has| |#1| (-38 (-411 (-550)))) ((-1209) |has| |#1| (-38 (-411 (-550)))) ((-1225) |has| |#1| (-366)) ((-1249 |#1| #1#) . T)) +((-3610 (((-112) $) 12)) (-3579 (((-3 |#3| "failed") $) 17)) (-3578 ((|#3| $) 14))) +(((-1254 |#1| |#2| |#3|) (-10 -8 (-15 -3579 ((-3 |#3| "failed") |#1|)) (-15 -3578 (|#3| |#1|)) (-15 -3610 ((-112) |#1|))) (-1255 |#2| |#3|) (-1053) (-1232 |#2|)) (T -1254)) +NIL +(-10 -8 (-15 -3579 ((-3 |#3| "failed") |#1|)) (-15 -3578 (|#3| |#1|)) (-15 -3610 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 (-1086)) $) 86)) (-4265 (((-1181) $) 115)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) 110) (($ $ (-411 (-550)) (-411 (-550))) 109)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) 117)) (-3917 (($ $) 147 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 174 (|has| |#1| (-366)))) (-4403 (((-409 $) $) 175 (|has| |#1| (-366)))) (-3440 (($ $) 129 (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) 165 (|has| |#1| (-366)))) (-3915 (($ $) 146 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 131 (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) 183)) (-3919 (($ $) 145 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#2| "failed") $) 194)) (-3578 ((|#2| $) 195)) (-2966 (($ $ $) 169 (|has| |#1| (-366)))) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-4214 (((-411 (-550)) $) 191)) (-2965 (($ $ $) 168 (|has| |#1| (-366)))) (-4215 (($ (-411 (-550)) |#2|) 192)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 163 (|has| |#1| (-366)))) (-4157 (((-112) $) 176 (|has| |#1| (-366)))) (-3295 (((-112) $) 85)) (-4061 (($) 157 (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) 112) (((-411 (-550)) $ (-411 (-550))) 111)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 128 (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) 113) (($ $ (-411 (-550))) 182)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 172 (|has| |#1| (-366)))) (-4371 (((-112) $) 74)) (-3296 (($ |#1| (-411 (-550))) 73) (($ $ (-1086) (-411 (-550))) 88) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) 87)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-4376 (($ $) 154 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-2071 (($ (-644 $)) 161 (|has| |#1| (-366))) (($ $ $) 160 (|has| |#1| (-366)))) (-4213 ((|#2| $) 190)) (-4211 (((-3 |#2| "failed") $) 188)) (-4212 ((|#2| $) 189)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 177 (|has| |#1| (-366)))) (-4246 (($ $) 181 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 180 (-3962 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206)) (|has| |#1| (-38 (-411 (-550))))) (-12 (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-38 (-411 (-550)))))))) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-366)))) (-3566 (($ (-644 $)) 159 (|has| |#1| (-366))) (($ $ $) 158 (|has| |#1| (-366)))) (-4166 (((-409 $) $) 173 (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 170 (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) 107)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-366)))) (-4377 (($ $) 155 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) 166 (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) 116) (($ $ $) 93 (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 167 (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) 101 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) 100 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) 99 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) 98 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) 96 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-4382 (((-411 (-550)) $) 76)) (-3920 (($ $) 144 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 133 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 143 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 142 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 135 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 193) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-4206 ((|#1| $) 114)) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 153 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 141 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3921 (($ $) 152 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 151 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 139 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 150 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 138 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 149 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 137 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 148 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) 105 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) 104 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) 103 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) 102 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) 97 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366))) (($ $ $) 179 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 178 (|has| |#1| (-366))) (($ $ $) 156 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 127 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-1255 |#1| |#2|) (-140) (-1053) (-1232 |t#1|)) (T -1255)) +((-4382 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1232 *3)) (-5 *2 (-411 (-550))))) (-4215 (*1 *1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-4 *4 (-1053)) (-4 *1 (-1255 *4 *3)) (-4 *3 (-1232 *4)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1232 *3)) (-5 *2 (-411 (-550))))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1232 *3)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1232 *3)))) (-4211 (*1 *2 *1) (|partial| -12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1232 *3))))) +(-13 (-1253 |t#1|) (-1042 |t#2|) (-619 |t#2|) (-10 -8 (-15 -4215 ($ (-411 (-550)) |t#2|)) (-15 -4214 ((-411 (-550)) $)) (-15 -4213 (|t#2| $)) (-15 -4382 ((-411 (-550)) $)) (-15 -4212 (|t#2| $)) (-15 -4211 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-411 (-550))) . T) ((-25) . T) ((-38 #2=(-411 (-550))) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-35) |has| |#1| (-38 (-411 (-550)))) ((-95) |has| |#1| (-38 (-411 (-550)))) ((-102) . T) ((-111 #2# #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 |#2|) . T) ((-619 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))) ((-244) |has| |#1| (-366)) ((-286) |has| |#1| (-38 (-411 (-550)))) ((-288 $ $) |has| (-411 (-550)) (-1116)) ((-292) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-309) |has| |#1| (-366)) ((-366) |has| |#1| (-366)) ((-456) |has| |#1| (-366)) ((-497) |has| |#1| (-38 (-411 (-550)))) ((-561) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-649 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-720 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366))) ((-729) . T) ((-904 (-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) ((-977 |#1| #1# (-1086)) . T) ((-925) |has| |#1| (-366)) ((-1006) |has| |#1| (-38 (-411 (-550)))) ((-1042 |#2|) . T) ((-1055 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1060 #2#) -3962 (|has| |#1| (-366)) (|has| |#1| (-38 (-411 (-550))))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-366)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1206) |has| |#1| (-38 (-411 (-550)))) ((-1209) |has| |#1| (-38 (-411 (-550)))) ((-1225) |has| |#1| (-366)) ((-1249 |#1| #1#) . T) ((-1253 |#1|) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 104)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) NIL (|has| |#1| (-561)))) (-4204 (($ $ (-411 (-550))) 116) (($ $ (-411 (-550)) (-411 (-550))) 118)) (-4207 (((-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|))) $) 54)) (-3917 (($ $) 192 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 168 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-4208 (($ $) NIL (|has| |#1| (-366)))) (-4403 (((-409 $) $) NIL (|has| |#1| (-366)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1755 (((-112) $ $) NIL (|has| |#1| (-366)))) (-3915 (($ $) 188 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 164 (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-774) (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#1|)))) 65)) (-3919 (($ $) 196 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 172 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| "failed") $) NIL)) (-3578 ((|#2| $) NIL)) (-2966 (($ $ $) NIL (|has| |#1| (-366)))) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) 85)) (-4214 (((-411 (-550)) $) 13)) (-2965 (($ $ $) NIL (|has| |#1| (-366)))) (-4215 (($ (-411 (-550)) |#2|) 11)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) NIL (|has| |#1| (-366)))) (-4157 (((-112) $) NIL (|has| |#1| (-366)))) (-3295 (((-112) $) 74)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-411 (-550)) $) 113) (((-411 (-550)) $ (-411 (-550))) 114)) (-2575 (((-112) $) NIL)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) 130) (($ $ (-411 (-550))) 128)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-411 (-550))) 33) (($ $ (-1086) (-411 (-550))) NIL) (($ $ (-644 (-1086)) (-644 (-411 (-550)))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) 125)) (-4376 (($ $) 162 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-2071 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4213 ((|#2| $) 12)) (-4211 (((-3 |#2| "failed") $) 44)) (-4212 ((|#2| $) 45)) (-3665 (((-1163) $) NIL)) (-2808 (($ $) 101 (|has| |#1| (-366)))) (-4246 (($ $) 146 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 151 (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))))))) (-3666 (((-1124) $) NIL)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-366)))) (-3566 (($ (-644 $)) NIL (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-366)))) (-4166 (((-409 $) $) NIL (|has| |#1| (-366)))) (-1753 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-366))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) NIL (|has| |#1| (-366)))) (-4202 (($ $ (-411 (-550))) 122)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-3145 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-366)))) (-4377 (($ $) 160 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))))) (-1754 (((-774) $) NIL (|has| |#1| (-366)))) (-4233 ((|#1| $ (-411 (-550))) 108) (($ $ $) 94 (|has| (-411 (-550)) (-1116)))) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) NIL (|has| |#1| (-366)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) 138 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-4382 (((-411 (-550)) $) 16)) (-3920 (($ $) 198 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 174 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 194 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 170 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 190 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 166 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 120)) (-4380 (((-866) $) NIL) (($ (-550)) 37) (($ |#1|) 27 (|has| |#1| (-173))) (($ |#2|) 34) (($ (-411 (-550))) 139 (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561)))) (-4111 ((|#1| $ (-411 (-550))) 107)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) 127 T CONST)) (-4206 ((|#1| $) 106)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) 204 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 180 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) 200 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 176 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 208 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 184 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-411 (-550))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-411 (-550))))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 210 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 186 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 206 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 182 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 202 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 178 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 21 T CONST)) (-3069 (($) 17 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-411 (-550)) |#1|))))) (-3457 (((-112) $ $) 72)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366))) (($ $ $) 100 (|has| |#1| (-366)))) (-4271 (($ $) 142) (($ $ $) 78)) (-4273 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-774)) 82) (($ $ (-550)) 157 (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 158 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1256 |#1| |#2|) (-1255 |#1| |#2|) (-1053) (-1232 |#1|)) (T -1256)) +NIL +(-1255 |#1| |#2|) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 37)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL)) (-2243 (($ $) NIL)) (-2241 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 (-550) #1="failed") $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1042 (-550)))) (((-3 (-411 (-550)) #1#) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1042 (-411 (-550))))) (((-3 (-1251 |#2| |#3| |#4|) #1#) $) 22)) (-3578 (((-550) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1042 (-550)))) (((-411 (-550)) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1042 (-411 (-550))))) (((-1251 |#2| |#3| |#4|) $) NIL)) (-4393 (($ $) 41)) (-3892 (((-3 $ "failed") $) 27)) (-3928 (($ $) NIL (|has| (-1251 |#2| |#3| |#4|) (-456)))) (-1771 (($ $ (-1251 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|) $) NIL)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) 11)) (-4371 (((-112) $) NIL)) (-3296 (($ (-1251 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|)) 25)) (-3225 (((-321 |#2| |#3| |#4|) $) NIL)) (-1772 (($ (-1 (-321 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|)) $) NIL)) (-4392 (($ (-1 (-1251 |#2| |#3| |#4|) (-1251 |#2| |#3| |#4|)) $) NIL)) (-4217 (((-3 (-845 |#2|) "failed") $) 90)) (-3297 (($ $) NIL)) (-3596 (((-1251 |#2| |#3| |#4|) $) 20)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-1974 (((-112) $) NIL)) (-1973 (((-1251 |#2| |#3| |#4|) $) NIL)) (-3891 (((-3 $ "failed") $ (-1251 |#2| |#3| |#4|)) NIL (|has| (-1251 |#2| |#3| |#4|) (-561))) (((-3 $ "failed") $ $) NIL)) (-4216 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 |#2| |#3| |#4|)) (|:| |%expon| (-321 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1163))) "failed") $) 74)) (-4382 (((-321 |#2| |#3| |#4|) $) 17)) (-3222 (((-1251 |#2| |#3| |#4|) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-456)))) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ (-1251 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-411 (-550))) NIL (-3962 (|has| (-1251 |#2| |#3| |#4|) (-1042 (-411 (-550)))) (|has| (-1251 |#2| |#3| |#4|) (-38 (-411 (-550))))))) (-4251 (((-644 (-1251 |#2| |#3| |#4|)) $) NIL)) (-4111 (((-1251 |#2| |#3| |#4|) $ (-321 |#2| |#3| |#4|)) NIL)) (-3107 (((-3 $ "failed") $) NIL (|has| (-1251 |#2| |#3| |#4|) (-145)))) (-3532 (((-774)) NIL T CONST)) (-1770 (($ $ $ (-774)) NIL (|has| (-1251 |#2| |#3| |#4|) (-173)))) (-3664 (((-112) $ $) NIL)) (-2242 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ (-1251 |#2| |#3| |#4|)) NIL (|has| (-1251 |#2| |#3| |#4|) (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ (-1251 |#2| |#3| |#4|)) NIL) (($ (-1251 |#2| |#3| |#4|) $) NIL) (($ (-411 (-550)) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| (-1251 |#2| |#3| |#4|) (-38 (-411 (-550))))))) +(((-1257 |#1| |#2| |#3| |#4|) (-13 (-328 (-1251 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -4217 ((-3 (-845 |#2|) "failed") $)) (-15 -4216 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 |#2| |#3| |#4|)) (|:| |%expon| (-321 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1163))) "failed") $)))) (-13 (-1042 (-550)) (-642 (-550)) (-456)) (-13 (-27) (-1206) (-425 |#1|)) (-1181) |#2|) (T -1257)) +((-4217 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) (-5 *2 (-845 *4)) (-5 *1 (-1257 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1206) (-425 *3))) (-14 *5 (-1181)) (-14 *6 *4))) (-4216 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 *4 *5 *6)) (|:| |%expon| (-321 *4 *5 *6)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-411 (-550))) (|:| |c| *4)))))) (|:| |%type| (-1163)))) (-5 *1 (-1257 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1206) (-425 *3))) (-14 *5 (-1181)) (-14 *6 *4)))) +(-13 (-328 (-1251 |#2| |#3| |#4|) (-321 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -4217 ((-3 (-845 |#2|) "failed") $)) (-15 -4216 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 |#2| |#3| |#4|)) (|:| |%expon| (-321 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-411 (-550))) (|:| |c| |#2|)))))) (|:| |%type| (-1163))) "failed") $)))) +((-3828 ((|#2| $) 34)) (-4228 ((|#2| $) 18)) (-4230 (($ $) 52)) (-4218 (($ $ (-550)) 85)) (-1310 (((-112) $ (-774)) 46)) (-3428 ((|#2| $ |#2|) 82)) (-4219 ((|#2| $ |#2|) 78)) (-4221 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3429 (($ $ (-644 $)) 81)) (-4229 ((|#2| $) 17)) (-4232 (($ $) NIL) (($ $ (-774)) 59)) (-3434 (((-644 $) $) 31)) (-3430 (((-112) $ $) 69)) (-4153 (((-112) $ (-774)) 45)) (-4150 (((-112) $ (-774)) 43)) (-3952 (((-112) $) 33)) (-4231 ((|#2| $) 25) (($ $ (-774)) 64)) (-4233 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4067 (((-112) $) 23)) (-4225 (($ $) 55)) (-4223 (($ $) 86)) (-4226 (((-774) $) 58)) (-4227 (($ $) 57)) (-4235 (($ $ $) 77) (($ |#2| $) NIL)) (-3947 (((-644 $) $) 32)) (-3457 (((-112) $ $) 67)) (-4391 (((-774) $) 51))) +(((-1258 |#1| |#2|) (-10 -8 (-15 -4218 (|#1| |#1| (-550))) (-15 -4221 (|#2| |#1| "last" |#2|)) (-15 -4219 (|#2| |#1| |#2|)) (-15 -4221 (|#1| |#1| "rest" |#1|)) (-15 -4221 (|#2| |#1| "first" |#2|)) (-15 -4223 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 ((-774) |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4228 (|#2| |#1|)) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| "last")) (-15 -4231 (|#2| |#1|)) (-15 -4232 (|#1| |#1| (-774))) (-15 -4233 (|#1| |#1| "rest")) (-15 -4232 (|#1| |#1|)) (-15 -4233 (|#2| |#1| "first")) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#1|)) (-15 -3428 (|#2| |#1| |#2|)) (-15 -4221 (|#2| |#1| #1="value" |#2|)) (-15 -3429 (|#1| |#1| (-644 |#1|))) (-15 -3430 ((-112) |#1| |#1|)) (-15 -4067 ((-112) |#1|)) (-15 -4233 (|#2| |#1| #1#)) (-15 -3828 (|#2| |#1|)) (-15 -3952 ((-112) |#1|)) (-15 -3434 ((-644 |#1|) |#1|)) (-15 -3947 ((-644 |#1|) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774)))) (-1259 |#2|) (-1220)) (T -1258)) +NIL +(-10 -8 (-15 -4218 (|#1| |#1| (-550))) (-15 -4221 (|#2| |#1| "last" |#2|)) (-15 -4219 (|#2| |#1| |#2|)) (-15 -4221 (|#1| |#1| "rest" |#1|)) (-15 -4221 (|#2| |#1| "first" |#2|)) (-15 -4223 (|#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 ((-774) |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4228 (|#2| |#1|)) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-774))) (-15 -4233 (|#2| |#1| "last")) (-15 -4231 (|#2| |#1|)) (-15 -4232 (|#1| |#1| (-774))) (-15 -4233 (|#1| |#1| "rest")) (-15 -4232 (|#1| |#1|)) (-15 -4233 (|#2| |#1| "first")) (-15 -4235 (|#1| |#2| |#1|)) (-15 -4235 (|#1| |#1| |#1|)) (-15 -3428 (|#2| |#1| |#2|)) (-15 -4221 (|#2| |#1| #1="value" |#2|)) (-15 -3429 (|#1| |#1| (-644 |#1|))) (-15 -3430 ((-112) |#1| |#1|)) (-15 -4067 ((-112) |#1|)) (-15 -4233 (|#2| |#1| #1#)) (-15 -3828 (|#2| |#1|)) (-15 -3952 ((-112) |#1|)) (-15 -3434 ((-644 |#1|) |#1|)) (-15 -3947 ((-644 |#1|) |#1|)) (-15 -3457 ((-112) |#1| |#1|)) (-15 -4391 ((-774) |#1|)) (-15 -1310 ((-112) |#1| (-774))) (-15 -4153 ((-112) |#1| (-774))) (-15 -4150 ((-112) |#1| (-774)))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-3828 ((|#1| $) 49)) (-4228 ((|#1| $) 66)) (-4230 (($ $) 68)) (-4218 (($ $ (-550)) 53 (|has| $ (-6 -4428)))) (-1310 (((-112) $ (-774)) 8)) (-3428 ((|#1| $ |#1|) 40 (|has| $ (-6 -4428)))) (-4220 (($ $ $) 57 (|has| $ (-6 -4428)))) (-4219 ((|#1| $ |#1|) 55 (|has| $ (-6 -4428)))) (-4222 ((|#1| $ |#1|) 59 (|has| $ (-6 -4428)))) (-4221 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4428))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4428))) (($ $ "rest" $) 56 (|has| $ (-6 -4428))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4428)))) (-3429 (($ $ (-644 $)) 42 (|has| $ (-6 -4428)))) (-4229 ((|#1| $) 67)) (-4158 (($) 7 T CONST)) (-4232 (($ $) 74) (($ $ (-774)) 72)) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-3434 (((-644 $) $) 51)) (-3430 (((-112) $ $) 43 (|has| |#1| (-1105)))) (-4153 (((-112) $ (-774)) 9)) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36)) (-4150 (((-112) $ (-774)) 10)) (-3433 (((-644 |#1|) $) 46)) (-3952 (((-112) $) 50)) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-4231 ((|#1| $) 71) (($ $ (-774)) 69)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 77) (($ $ (-774)) 75)) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ #1#) 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3432 (((-550) $ $) 45)) (-4067 (((-112) $) 47)) (-4225 (($ $) 63)) (-4223 (($ $) 60 (|has| $ (-6 -4428)))) (-4226 (((-774) $) 64)) (-4227 (($ $) 65)) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3826 (($ $) 13)) (-4224 (($ $ $) 62 (|has| $ (-6 -4428))) (($ $ |#1|) 61 (|has| $ (-6 -4428)))) (-4235 (($ $ $) 79) (($ |#1| $) 78)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3947 (((-644 $) $) 52)) (-3431 (((-112) $ $) 44 (|has| |#1| (-1105)))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1259 |#1|) (-140) (-1220)) (T -1259)) +((-4235 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4235 (*1 *1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) (-4232 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1220)) (-5 *2 (-774)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4224 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4224 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4223 (*1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4222 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4221 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4221 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4428)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) (-4219 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4221 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-550)) (|has| *1 (-6 -4428)) (-4 *1 (-1259 *3)) (-4 *3 (-1220))))) +(-13 (-1014 |t#1|) (-10 -8 (-15 -4235 ($ $ $)) (-15 -4235 ($ |t#1| $)) (-15 -4234 (|t#1| $)) (-15 -4233 (|t#1| $ "first")) (-15 -4234 ($ $ (-774))) (-15 -4232 ($ $)) (-15 -4233 ($ $ "rest")) (-15 -4232 ($ $ (-774))) (-15 -4231 (|t#1| $)) (-15 -4233 (|t#1| $ "last")) (-15 -4231 ($ $ (-774))) (-15 -4230 ($ $)) (-15 -4229 (|t#1| $)) (-15 -4228 (|t#1| $)) (-15 -4227 ($ $)) (-15 -4226 ((-774) $)) (-15 -4225 ($ $)) (IF (|has| $ (-6 -4428)) (PROGN (-15 -4224 ($ $ $)) (-15 -4224 ($ $ |t#1|)) (-15 -4223 ($ $)) (-15 -4222 (|t#1| $ |t#1|)) (-15 -4221 (|t#1| $ "first" |t#1|)) (-15 -4220 ($ $ $)) (-15 -4221 ($ $ "rest" $)) (-15 -4219 (|t#1| $ |t#1|)) (-15 -4221 (|t#1| $ "last" |t#1|)) (-15 -4218 ($ $ (-550)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1105)) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-616 (-866)))) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-493 |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-1014 |#1|) . T) ((-1105) |has| |#1| (-1105)) ((-1220) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-3487 (((-644 (-1086)) $) NIL)) (-4265 (((-1181) $) 92)) (-4245 (((-1239 |#2| |#1|) $ (-774)) 73)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-2243 (($ $) NIL (|has| |#1| (-561)))) (-2241 (((-112) $) 144 (|has| |#1| (-561)))) (-4204 (($ $ (-774)) 129) (($ $ (-774) (-774)) 132)) (-4207 (((-1158 (-2 (|:| |k| (-774)) (|:| |c| |#1|))) $) 43)) (-3917 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) NIL)) (-3440 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3915 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-1158 (-2 (|:| |k| (-774)) (|:| |c| |#1|)))) 52) (($ (-1158 |#1|)) NIL)) (-3919 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) NIL T CONST)) (-4238 (($ $) 136)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4250 (($ $) 142)) (-4248 (((-950 |#1|) $ (-774)) 63) (((-950 |#1|) $ (-774) (-774)) 65)) (-3295 (((-112) $) NIL)) (-4061 (($) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-774) $) NIL) (((-774) $ (-774)) NIL)) (-2575 (((-112) $) NIL)) (-4241 (($ $) 119)) (-3414 (($ $ (-550)) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4237 (($ (-550) (-550) $) 138)) (-4210 (($ $ (-923)) 141)) (-4249 (($ (-1 |#1| (-550)) $) 113)) (-4371 (((-112) $) NIL)) (-3296 (($ |#1| (-774)) 16) (($ $ (-1086) (-774)) NIL) (($ $ (-644 (-1086)) (-644 (-774))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) 100)) (-4376 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-4242 (($ $) 117)) (-4243 (($ $) 115)) (-4236 (($ (-550) (-550) $) 140)) (-4246 (($ $) 152 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 158 (-3962 (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206))) (-12 (|has| |#1| (-38 (-411 (-550)))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|)))))) (($ $ (-1267 |#2|)) 153 (|has| |#1| (-38 (-411 (-550)))))) (-3666 (((-1124) $) NIL)) (-4239 (($ $ (-550) (-550)) 123)) (-4202 (($ $ (-774)) 125)) (-3891 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4377 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4240 (($ $) 121)) (-4201 (((-1158 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-774)))))) (-4233 ((|#1| $ (-774)) 97) (($ $ $) 134 (|has| (-774) (-1116)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181)) 110 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $ (-1267 |#2|)) 105)) (-4382 (((-774) $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 127)) (-4380 (((-866) $) NIL) (($ (-550)) 26) (($ (-411 (-550))) 150 (|has| |#1| (-38 (-411 (-550))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 25 (|has| |#1| (-173))) (($ (-1239 |#2| |#1|)) 83) (($ (-1267 |#2|)) 22)) (-4251 (((-1158 |#1|) $) NIL)) (-4111 ((|#1| $ (-774)) 96)) (-3107 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3532 (((-774)) NIL T CONST)) (-4206 ((|#1| $) 93)) (-3664 (((-112) $ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-774)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-774)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 18 T CONST)) (-3069 (($) 13 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181) (-774)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-644 (-1181))) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181)) NIL (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-774)) NIL (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (-3457 (((-112) $ $) NIL)) (-4383 (($ $ |#1|) NIL (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) 109)) (-4273 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ |#1|) 147 (|has| |#1| (-366))) (($ $ $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-411 (-550)) $) NIL (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) NIL (|has| |#1| (-38 (-411 (-550))))))) +(((-1260 |#1| |#2| |#3|) (-13 (-1263 |#1|) (-10 -8 (-15 -4380 ($ (-1239 |#2| |#1|))) (-15 -4245 ((-1239 |#2| |#1|) $ (-774))) (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (-15 -4243 ($ $)) (-15 -4242 ($ $)) (-15 -4241 ($ $)) (-15 -4240 ($ $)) (-15 -4239 ($ $ (-550) (-550))) (-15 -4238 ($ $)) (-15 -4237 ($ (-550) (-550) $)) (-15 -4236 ($ (-550) (-550) $)) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) (-1053) (-1181) |#1|) (T -1260)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3) (-5 *1 (-1260 *3 *4 *5)))) (-4245 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1260 *4 *5 *6)) (-4 *4 (-1053)) (-14 *5 (-1181)) (-14 *6 *4))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *5 *3))) (-4243 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2))) (-4242 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2))) (-4239 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2))) (-4237 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3))) (-4236 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3)))) +(-13 (-1263 |#1|) (-10 -8 (-15 -4380 ($ (-1239 |#2| |#1|))) (-15 -4245 ((-1239 |#2| |#1|) $ (-774))) (-15 -4380 ($ (-1267 |#2|))) (-15 -4244 ($ $ (-1267 |#2|))) (-15 -4243 ($ $)) (-15 -4242 ($ $)) (-15 -4241 ($ $)) (-15 -4240 ($ $)) (-15 -4239 ($ $ (-550) (-550))) (-15 -4238 ($ $)) (-15 -4237 ($ (-550) (-550) $)) (-15 -4236 ($ (-550) (-550) $)) (IF (|has| |#1| (-38 (-411 (-550)))) (-15 -4246 ($ $ (-1267 |#2|))) |%noBranch|))) +((-4392 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1261 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#4| (-1 |#2| |#1|) |#3|))) (-1053) (-1053) (-1263 |#1|) (-1263 |#2|)) (T -1261)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *6 *4 *2)) (-4 *4 (-1263 *5))))) +(-10 -7 (-15 -4392 (|#4| (-1 |#2| |#1|) |#3|))) +((-3610 (((-112) $) 17)) (-3917 (($ $) 106)) (-4073 (($ $) 82)) (-3915 (($ $) 102)) (-4072 (($ $) 78)) (-3919 (($ $) 110)) (-4071 (($ $) 86)) (-4376 (($ $) 76)) (-4377 (($ $) 74)) (-3920 (($ $) 112)) (-4070 (($ $) 88)) (-3918 (($ $) 108)) (-4069 (($ $) 84)) (-3916 (($ $) 104)) (-4068 (($ $) 80)) (-4380 (((-866) $) 62) (($ (-550)) NIL) (($ (-411 (-550))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3923 (($ $) 118)) (-3911 (($ $) 94)) (-3921 (($ $) 114)) (-3909 (($ $) 90)) (-3925 (($ $) 122)) (-3913 (($ $) 98)) (-3926 (($ $) 124)) (-3914 (($ $) 100)) (-3924 (($ $) 120)) (-3912 (($ $) 96)) (-3922 (($ $) 116)) (-3910 (($ $) 92)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-411 (-550))) 72))) +(((-1262 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-411 (-550)))) (-15 -4073 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -4377 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| (-550))) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923))) (-15 -3610 ((-112) |#1|)) (-15 -4380 ((-866) |#1|))) (-1263 |#2|) (-1053)) (T -1262)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-411 (-550)))) (-15 -4073 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -4376 (|#1| |#1|)) (-15 -4377 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4380 (|#1| |#2|)) (-15 -4380 (|#1| |#1|)) (-15 -4380 (|#1| (-411 (-550)))) (-15 -4380 (|#1| (-550))) (-15 ** (|#1| |#1| (-774))) (-15 ** (|#1| |#1| (-923))) (-15 -3610 ((-112) |#1|)) (-15 -4380 ((-866) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-3487 (((-644 (-1086)) $) 86)) (-4265 (((-1181) $) 115)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-2243 (($ $) 64 (|has| |#1| (-561)))) (-2241 (((-112) $) 66 (|has| |#1| (-561)))) (-4204 (($ $ (-774)) 110) (($ $ (-774) (-774)) 109)) (-4207 (((-1158 (-2 (|:| |k| (-774)) (|:| |c| |#1|))) $) 117)) (-3917 (($ $) 147 (|has| |#1| (-38 (-411 (-550)))))) (-4073 (($ $) 130 (|has| |#1| (-38 (-411 (-550)))))) (-1408 (((-3 $ "failed") $ $) 20)) (-3440 (($ $) 129 (|has| |#1| (-38 (-411 (-550)))))) (-3915 (($ $) 146 (|has| |#1| (-38 (-411 (-550)))))) (-4072 (($ $) 131 (|has| |#1| (-38 (-411 (-550)))))) (-4252 (($ (-1158 (-2 (|:| |k| (-774)) (|:| |c| |#1|)))) 167) (($ (-1158 |#1|)) 165)) (-3919 (($ $) 145 (|has| |#1| (-38 (-411 (-550)))))) (-4071 (($ $) 132 (|has| |#1| (-38 (-411 (-550)))))) (-4158 (($) 18 T CONST)) (-4393 (($ $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-4250 (($ $) 164)) (-4248 (((-950 |#1|) $ (-774)) 162) (((-950 |#1|) $ (-774) (-774)) 161)) (-3295 (((-112) $) 85)) (-4061 (($) 157 (|has| |#1| (-38 (-411 (-550)))))) (-4205 (((-774) $) 112) (((-774) $ (-774)) 111)) (-2575 (((-112) $) 35)) (-3414 (($ $ (-550)) 128 (|has| |#1| (-38 (-411 (-550)))))) (-4210 (($ $ (-923)) 113)) (-4249 (($ (-1 |#1| (-550)) $) 163)) (-4371 (((-112) $) 74)) (-3296 (($ |#1| (-774)) 73) (($ $ (-1086) (-774)) 88) (($ $ (-644 (-1086)) (-644 (-774))) 87)) (-4392 (($ (-1 |#1| |#1|) $) 75)) (-4376 (($ $) 154 (|has| |#1| (-38 (-411 (-550)))))) (-3297 (($ $) 77)) (-3596 ((|#1| $) 78)) (-3665 (((-1163) $) 10)) (-4246 (($ $) 159 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-1181)) 158 (-3962 (-12 (|has| |#1| (-29 (-550))) (|has| |#1| (-964)) (|has| |#1| (-1206)) (|has| |#1| (-38 (-411 (-550))))) (-12 (|has| |#1| (-15 -3487 ((-644 (-1181)) |#1|))) (|has| |#1| (-15 -4246 (|#1| |#1| (-1181)))) (|has| |#1| (-38 (-411 (-550)))))))) (-3666 (((-1124) $) 11)) (-4202 (($ $ (-774)) 107)) (-3891 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4377 (($ $) 155 (|has| |#1| (-38 (-411 (-550)))))) (-4201 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-774)))))) (-4233 ((|#1| $ (-774)) 116) (($ $ $) 93 (|has| (-774) (-1116)))) (-4244 (($ $ (-644 (-1181)) (-644 (-774))) 101 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181) (-774)) 100 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-644 (-1181))) 99 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181)) 98 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-774)) 96 (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (-4382 (((-774) $) 76)) (-3920 (($ $) 144 (|has| |#1| (-38 (-411 (-550)))))) (-4070 (($ $) 133 (|has| |#1| (-38 (-411 (-550)))))) (-3918 (($ $) 143 (|has| |#1| (-38 (-411 (-550)))))) (-4069 (($ $) 134 (|has| |#1| (-38 (-411 (-550)))))) (-3916 (($ $) 142 (|has| |#1| (-38 (-411 (-550)))))) (-4068 (($ $) 135 (|has| |#1| (-38 (-411 (-550)))))) (-3294 (($ $) 84)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ (-411 (-550))) 69 (|has| |#1| (-38 (-411 (-550))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4251 (((-1158 |#1|) $) 166)) (-4111 ((|#1| $ (-774)) 71)) (-3107 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3532 (((-774)) 32 T CONST)) (-4206 ((|#1| $) 114)) (-3664 (((-112) $ $) 9)) (-3923 (($ $) 153 (|has| |#1| (-38 (-411 (-550)))))) (-3911 (($ $) 141 (|has| |#1| (-38 (-411 (-550)))))) (-2242 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3921 (($ $) 152 (|has| |#1| (-38 (-411 (-550)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-411 (-550)))))) (-3925 (($ $) 151 (|has| |#1| (-38 (-411 (-550)))))) (-3913 (($ $) 139 (|has| |#1| (-38 (-411 (-550)))))) (-4203 ((|#1| $ (-774)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-774)))) (|has| |#1| (-15 -4380 (|#1| (-1181))))))) (-3926 (($ $) 150 (|has| |#1| (-38 (-411 (-550)))))) (-3914 (($ $) 138 (|has| |#1| (-38 (-411 (-550)))))) (-3924 (($ $) 149 (|has| |#1| (-38 (-411 (-550)))))) (-3912 (($ $) 137 (|has| |#1| (-38 (-411 (-550)))))) (-3922 (($ $) 148 (|has| |#1| (-38 (-411 (-550)))))) (-3910 (($ $) 136 (|has| |#1| (-38 (-411 (-550)))))) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3074 (($ $ (-644 (-1181)) (-644 (-774))) 105 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181) (-774)) 104 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-644 (-1181))) 103 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-1181)) 102 (-12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (($ $ (-774)) 97 (|has| |#1| (-15 * (|#1| (-774) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-774) |#1|))))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 70 (|has| |#1| (-366)))) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ |#1|) 160 (|has| |#1| (-366))) (($ $ $) 156 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 127 (|has| |#1| (-38 (-411 (-550)))))) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-411 (-550)) $) 68 (|has| |#1| (-38 (-411 (-550))))) (($ $ (-411 (-550))) 67 (|has| |#1| (-38 (-411 (-550))))))) +(((-1263 |#1|) (-140) (-1053)) (T -1263)) +((-4252 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-774)) (|:| |c| *3)))) (-4 *3 (-1053)) (-4 *1 (-1263 *3)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1053)) (-5 *2 (-1158 *3)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-4 *1 (-1263 *3)))) (-4250 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1053)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1263 *3)) (-4 *3 (-1053)))) (-4248 (*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-1263 *4)) (-4 *4 (-1053)) (-5 *2 (-950 *4)))) (-4248 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-4 *1 (-1263 *4)) (-4 *4 (-1053)) (-5 *2 (-950 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550)))))) (-4246 (*1 *1 *1 *2) (-3962 (-12 (-5 *2 (-1181)) (-4 *1 (-1263 *3)) (-4 *3 (-1053)) (-12 (-4 *3 (-29 (-550))) (-4 *3 (-964)) (-4 *3 (-1206)) (-4 *3 (-38 (-411 (-550)))))) (-12 (-5 *2 (-1181)) (-4 *1 (-1263 *3)) (-4 *3 (-1053)) (-12 (|has| *3 (-15 -3487 ((-644 *2) *3))) (|has| *3 (-15 -4246 (*3 *3 *2))) (-4 *3 (-38 (-411 (-550))))))))) +(-13 (-1249 |t#1| (-774)) (-10 -8 (-15 -4252 ($ (-1158 (-2 (|:| |k| (-774)) (|:| |c| |t#1|))))) (-15 -4251 ((-1158 |t#1|) $)) (-15 -4252 ($ (-1158 |t#1|))) (-15 -4250 ($ $)) (-15 -4249 ($ (-1 |t#1| (-550)) $)) (-15 -4248 ((-950 |t#1|) $ (-774))) (-15 -4248 ((-950 |t#1|) $ (-774) (-774))) (IF (|has| |t#1| (-366)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-411 (-550)))) (PROGN (-15 -4246 ($ $)) (IF (|has| |t#1| (-15 -4246 (|t#1| |t#1| (-1181)))) (IF (|has| |t#1| (-15 -3487 ((-644 (-1181)) |t#1|))) (-15 -4246 ($ $ (-1181))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1206)) (IF (|has| |t#1| (-964)) (IF (|has| |t#1| (-29 (-550))) (-15 -4246 ($ $ (-1181))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1006)) (-6 (-1206))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-774)) . T) ((-25) . T) ((-38 #2=(-411 (-550))) |has| |#1| (-38 (-411 (-550)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-411 (-550)))) ((-95) |has| |#1| (-38 (-411 (-550)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-411 (-550)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-619 #2#) |has| |#1| (-38 (-411 (-550)))) ((-619 (-550)) . T) ((-619 |#1|) |has| |#1| (-173)) ((-619 $) |has| |#1| (-561)) ((-616 (-866)) . T) ((-173) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-774) |#1|))) ((-286) |has| |#1| (-38 (-411 (-550)))) ((-288 $ $) |has| (-774) (-1116)) ((-292) |has| |#1| (-561)) ((-497) |has| |#1| (-38 (-411 (-550)))) ((-561) |has| |#1| (-561)) ((-649 #2#) |has| |#1| (-38 (-411 (-550)))) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #2#) |has| |#1| (-38 (-411 (-550)))) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #2#) |has| |#1| (-38 (-411 (-550)))) ((-643 |#1|) |has| |#1| (-173)) ((-643 $) |has| |#1| (-561)) ((-720 #2#) |has| |#1| (-38 (-411 (-550)))) ((-720 |#1|) |has| |#1| (-173)) ((-720 $) |has| |#1| (-561)) ((-729) . T) ((-904 (-1181)) -12 (|has| |#1| (-904 (-1181))) (|has| |#1| (-15 * (|#1| (-774) |#1|)))) ((-977 |#1| #1# (-1086)) . T) ((-1006) |has| |#1| (-38 (-411 (-550)))) ((-1055 #2#) |has| |#1| (-38 (-411 (-550)))) ((-1055 |#1|) . T) ((-1055 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1060 #2#) |has| |#1| (-38 (-411 (-550)))) ((-1060 |#1|) . T) ((-1060 $) -3962 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1206) |has| |#1| (-38 (-411 (-550)))) ((-1209) |has| |#1| (-38 (-411 (-550)))) ((-1249 |#1| #1#) . T)) +((-4255 (((-1 (-1158 |#1|) (-644 (-1158 |#1|))) (-1 |#2| (-644 |#2|))) 24)) (-4254 (((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4253 (((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|)) 13)) (-4258 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4257 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4259 ((|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|)) 60)) (-4260 (((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))) 66)) (-4256 ((|#2| |#2| |#2|) 43))) +(((-1264 |#1| |#2|) (-10 -7 (-15 -4253 ((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|))) (-15 -4254 ((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4255 ((-1 (-1158 |#1|) (-644 (-1158 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -4256 (|#2| |#2| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4258 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4259 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -4260 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) (-38 (-411 (-550))) (-1263 |#1|)) (T -1264)) +((-4260 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) (-4 *5 (-38 (-411 (-550)))) (-4 *6 (-1263 *5)) (-5 *2 (-644 *6)) (-5 *1 (-1264 *5 *6)))) (-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) (-4 *5 (-38 (-411 (-550)))) (-4 *2 (-1263 *5)) (-5 *1 (-1264 *5 *2)))) (-4258 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1264 *4 *2)) (-4 *4 (-38 (-411 (-550)))))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1264 *4 *2)) (-4 *4 (-38 (-411 (-550)))))) (-4256 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1263 *3)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-38 (-411 (-550)))) (-5 *2 (-1 (-1158 *4) (-644 (-1158 *4)))) (-5 *1 (-1264 *4 *5)))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-38 (-411 (-550)))) (-5 *2 (-1 (-1158 *4) (-1158 *4) (-1158 *4))) (-5 *1 (-1264 *4 *5)))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-38 (-411 (-550)))) (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1264 *4 *5))))) +(-10 -7 (-15 -4253 ((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|))) (-15 -4254 ((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4255 ((-1 (-1158 |#1|) (-644 (-1158 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -4256 (|#2| |#2| |#2|)) (-15 -4257 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4258 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4259 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -4260 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) +((-4262 ((|#2| |#4| (-774)) 34)) (-4261 ((|#4| |#2|) 29)) (-4264 ((|#4| (-411 |#2|)) 53 (|has| |#1| (-561)))) (-4263 (((-1 |#4| (-644 |#4|)) |#3|) 46))) +(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4261 (|#4| |#2|)) (-15 -4262 (|#2| |#4| (-774))) (-15 -4263 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -4264 (|#4| (-411 |#2|))) |%noBranch|)) (-1053) (-1246 |#1|) (-661 |#2|) (-1263 |#1|)) (T -1265)) +((-4264 (*1 *2 *3) (-12 (-5 *3 (-411 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-561)) (-4 *4 (-1053)) (-4 *2 (-1263 *4)) (-5 *1 (-1265 *4 *5 *6 *2)) (-4 *6 (-661 *5)))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *5 (-1246 *4)) (-5 *2 (-1 *6 (-644 *6))) (-5 *1 (-1265 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1263 *4)))) (-4262 (*1 *2 *3 *4) (-12 (-5 *4 (-774)) (-4 *5 (-1053)) (-4 *2 (-1246 *5)) (-5 *1 (-1265 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1263 *5)))) (-4261 (*1 *2 *3) (-12 (-4 *4 (-1053)) (-4 *3 (-1246 *4)) (-4 *2 (-1263 *4)) (-5 *1 (-1265 *4 *3 *5 *2)) (-4 *5 (-661 *3))))) +(-10 -7 (-15 -4261 (|#4| |#2|)) (-15 -4262 (|#2| |#4| (-774))) (-15 -4263 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -4264 (|#4| (-411 |#2|))) |%noBranch|)) +NIL +(((-1266) (-140)) (T -1266)) +NIL +(-13 (-10 -7 (-6 -2435))) +((-2970 (((-112) $ $) NIL)) (-4265 (((-1181)) 12)) (-3665 (((-1163) $) 18)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 11) (((-1181) $) 8)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) 15))) +(((-1267 |#1|) (-13 (-1105) (-616 (-1181)) (-10 -8 (-15 -4380 ((-1181) $)) (-15 -4265 ((-1181))))) (-1181)) (T -1267)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1267 *3)) (-14 *3 *2))) (-4265 (*1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1267 *3)) (-14 *3 *2)))) +(-13 (-1105) (-616 (-1181)) (-10 -8 (-15 -4380 ((-1181) $)) (-15 -4265 ((-1181))))) +((-4272 (($ (-774)) 19)) (-4269 (((-692 |#2|) $ $) 41)) (-4266 ((|#2| $) 51)) (-4267 ((|#2| $) 50)) (-4270 ((|#2| $ $) 36)) (-4268 (($ $ $) 47)) (-4271 (($ $) 23) (($ $ $) 29)) (-4273 (($ $ $) 15)) (* (($ (-550) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1268 |#1| |#2|) (-10 -8 (-15 -4266 (|#2| |#1|)) (-15 -4267 (|#2| |#1|)) (-15 -4268 (|#1| |#1| |#1|)) (-15 -4269 ((-692 |#2|) |#1| |#1|)) (-15 -4270 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 -4272 (|#1| (-774))) (-15 -4273 (|#1| |#1| |#1|))) (-1269 |#2|) (-1220)) (T -1268)) +NIL +(-10 -8 (-15 -4266 (|#2| |#1|)) (-15 -4267 (|#2| |#1|)) (-15 -4268 (|#1| |#1| |#1|)) (-15 -4269 ((-692 |#2|) |#1| |#1|)) (-15 -4270 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-550) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1|)) (-15 -4272 (|#1| (-774))) (-15 -4273 (|#1| |#1| |#1|))) +((-2970 (((-112) $ $) 19 (|has| |#1| (-1105)))) (-4272 (($ (-774)) 113 (|has| |#1| (-23)))) (-2374 (((-1276) $ (-550) (-550)) 41 (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4428))) (($ $) 89 (-12 (|has| |#1| (-853)) (|has| $ (-6 -4428))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) 8)) (-4221 ((|#1| $ (-550) |#1|) 53 (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) 59 (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4427)))) (-4158 (($) 7 T CONST)) (-2444 (($ $) 91 (|has| $ (-6 -4428)))) (-2445 (($ $) 101)) (-1441 (($ $) 79 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-3832 (($ |#1| $) 78 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) 54 (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) 52)) (-3845 (((-550) (-1 (-112) |#1|) $) 98) (((-550) |#1| $) 97 (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) 96 (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) 31 (|has| $ (-6 -4427)))) (-4269 (((-692 |#1|) $ $) 106 (|has| |#1| (-1053)))) (-4048 (($ (-774) |#1|) 70)) (-4153 (((-112) $ (-774)) 9)) (-2376 (((-550) $) 44 (|has| (-550) (-853)))) (-2936 (($ $ $) 88 (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) 30 (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-2377 (((-550) $) 45 (|has| (-550) (-853)))) (-3262 (($ $ $) 87 (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4266 ((|#1| $) 103 (-12 (|has| |#1| (-1053)) (|has| |#1| (-1006))))) (-4150 (((-112) $ (-774)) 10)) (-4267 ((|#1| $) 104 (-12 (|has| |#1| (-1053)) (|has| |#1| (-1006))))) (-3665 (((-1163) $) 22 (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) 61) (($ $ $ (-550)) 60)) (-2379 (((-644 (-550)) $) 47)) (-2380 (((-112) (-550) $) 48)) (-3666 (((-1124) $) 21 (|has| |#1| (-1105)))) (-4234 ((|#1| $) 43 (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2375 (($ $ |#1|) 42 (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) 14)) (-2378 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) 49)) (-3829 (((-112) $) 11)) (-3998 (($) 12)) (-4233 ((|#1| $ (-550) |#1|) 51) ((|#1| $ (-550)) 50) (($ $ (-1237 (-550))) 64)) (-4270 ((|#1| $ $) 107 (|has| |#1| (-1053)))) (-2452 (($ $ (-550)) 63) (($ $ (-1237 (-550))) 62)) (-4268 (($ $ $) 105 (|has| |#1| (-1053)))) (-2127 (((-774) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4427))) (((-774) |#1| $) 29 (-12 (|has| |#1| (-1105)) (|has| $ (-6 -4427))))) (-1901 (($ $ $ (-550)) 92 (|has| $ (-6 -4428)))) (-3826 (($ $) 13)) (-4404 (((-539) $) 80 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 71)) (-4235 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-4380 (((-866) $) 18 (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) 23 (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-853)))) (-2969 (((-112) $ $) 84 (|has| |#1| (-853)))) (-3457 (((-112) $ $) 20 (|has| |#1| (-1105)))) (-3089 (((-112) $ $) 86 (|has| |#1| (-853)))) (-3090 (((-112) $ $) 83 (|has| |#1| (-853)))) (-4271 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4273 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-550) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-729))) (($ $ |#1|) 108 (|has| |#1| (-729)))) (-4391 (((-774) $) 6 (|has| $ (-6 -4427))))) +(((-1269 |#1|) (-140) (-1220)) (T -1269)) +((-4273 (*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-25)))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1269 *3)) (-4 *3 (-23)) (-4 *3 (-1220)))) (-4271 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-21)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-4 *1 (-1269 *3)) (-4 *3 (-1220)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) (-4270 (*1 *2 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1053)))) (-4269 (*1 *2 *1 *1) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-1220)) (-4 *3 (-1053)) (-5 *2 (-692 *3)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1053)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1006)) (-4 *2 (-1053)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1006)) (-4 *2 (-1053))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4273 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4272 ($ (-774))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4271 ($ $)) (-15 -4271 ($ $ $)) (-15 * ($ (-550) $))) |%noBranch|) (IF (|has| |t#1| (-729)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1053)) (PROGN (-15 -4270 (|t#1| $ $)) (-15 -4269 ((-692 |t#1|) $ $)) (-15 -4268 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1006)) (IF (|has| |t#1| (-1053)) (PROGN (-15 -4267 (|t#1| $)) (-15 -4266 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-616 (-866)) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853)) (|has| |#1| (-616 (-866)))) ((-151 |#1|) . T) ((-617 (-539)) |has| |#1| (-617 (-539))) ((-288 #1=(-550) |#1|) . T) ((-290 #1# |#1|) . T) ((-311 |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-375 |#1|) . T) ((-493 |#1|) . T) ((-607 #1# |#1|) . T) ((-518 |#1| |#1|) -12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))) ((-654 |#1|) . T) ((-19 |#1|) . T) ((-853) |has| |#1| (-853)) ((-1105) -3962 (|has| |#1| (-1105)) (|has| |#1| (-853))) ((-1220) . T)) +((-2970 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-4272 (($ (-774)) NIL (|has| |#1| (-23)))) (-4274 (($ (-644 |#1|)) 11)) (-2374 (((-1276) $ (-550) (-550)) NIL (|has| $ (-6 -4428)))) (-1902 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-853)))) (-1900 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4428))) (($ $) NIL (-12 (|has| $ (-6 -4428)) (|has| |#1| (-853))))) (-3312 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-853)))) (-1310 (((-112) $ (-774)) NIL)) (-4221 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428))) ((|#1| $ (-1237 (-550)) |#1|) NIL (|has| $ (-6 -4428)))) (-4144 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4158 (($) NIL T CONST)) (-2444 (($ $) NIL (|has| $ (-6 -4428)))) (-2445 (($ $) NIL)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-3832 (($ |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4276 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4427))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4427)))) (-1686 ((|#1| $ (-550) |#1|) NIL (|has| $ (-6 -4428)))) (-3519 ((|#1| $ (-550)) NIL)) (-3845 (((-550) (-1 (-112) |#1|) $) NIL) (((-550) |#1| $) NIL (|has| |#1| (-1105))) (((-550) |#1| $ (-550)) NIL (|has| |#1| (-1105)))) (-2126 (((-644 |#1|) $) 16 (|has| $ (-6 -4427)))) (-4269 (((-692 |#1|) $ $) NIL (|has| |#1| (-1053)))) (-4048 (($ (-774) |#1|) NIL)) (-4153 (((-112) $ (-774)) NIL)) (-2376 (((-550) $) NIL (|has| (-550) (-853)))) (-2936 (($ $ $) NIL (|has| |#1| (-853)))) (-3943 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-853)))) (-3010 (((-644 |#1|) $) NIL (|has| $ (-6 -4427)))) (-3668 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2377 (((-550) $) 12 (|has| (-550) (-853)))) (-3262 (($ $ $) NIL (|has| |#1| (-853)))) (-2130 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4266 ((|#1| $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1053))))) (-4150 (((-112) $ (-774)) NIL)) (-4267 ((|#1| $) NIL (-12 (|has| |#1| (-1006)) (|has| |#1| (-1053))))) (-3665 (((-1163) $) NIL (|has| |#1| (-1105)))) (-2451 (($ |#1| $ (-550)) NIL) (($ $ $ (-550)) NIL)) (-2379 (((-644 (-550)) $) NIL)) (-2380 (((-112) (-550) $) NIL)) (-3666 (((-1124) $) NIL (|has| |#1| (-1105)))) (-4234 ((|#1| $) NIL (|has| (-550) (-853)))) (-1442 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2375 (($ $ |#1|) NIL (|has| $ (-6 -4428)))) (-2128 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-311 |#1|)) (|has| |#1| (-1105))))) (-1311 (((-112) $ $) NIL)) (-2378 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-2381 (((-644 |#1|) $) NIL)) (-3829 (((-112) $) NIL)) (-3998 (($) NIL)) (-4233 ((|#1| $ (-550) |#1|) NIL) ((|#1| $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-4270 ((|#1| $ $) NIL (|has| |#1| (-1053)))) (-2452 (($ $ (-550)) NIL) (($ $ (-1237 (-550))) NIL)) (-4268 (($ $ $) NIL (|has| |#1| (-1053)))) (-2127 (((-774) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427))) (((-774) |#1| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#1| (-1105))))) (-1901 (($ $ $ (-550)) NIL (|has| $ (-6 -4428)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) 20 (|has| |#1| (-617 (-539))))) (-3955 (($ (-644 |#1|)) 10)) (-4235 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-4380 (((-866) $) NIL (|has| |#1| (-616 (-866))))) (-3664 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-2129 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4427)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3457 (((-112) $ $) NIL (|has| |#1| (-1105)))) (-3089 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3090 (((-112) $ $) NIL (|has| |#1| (-853)))) (-4271 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4273 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-550) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-729))) (($ $ |#1|) NIL (|has| |#1| (-729)))) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1270 |#1|) (-13 (-1269 |#1|) (-10 -8 (-15 -4274 ($ (-644 |#1|))))) (-1220)) (T -1270)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-1270 *3))))) +(-13 (-1269 |#1|) (-10 -8 (-15 -4274 ($ (-644 |#1|))))) +((-4275 (((-1270 |#2|) (-1 |#2| |#1| |#2|) (-1270 |#1|) |#2|) 13)) (-4276 ((|#2| (-1 |#2| |#1| |#2|) (-1270 |#1|) |#2|) 15)) (-4392 (((-3 (-1270 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1270 |#1|)) 30) (((-1270 |#2|) (-1 |#2| |#1|) (-1270 |#1|)) 18))) +(((-1271 |#1| |#2|) (-10 -7 (-15 -4275 ((-1270 |#2|) (-1 |#2| |#1| |#2|) (-1270 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-1270 |#1|) |#2|)) (-15 -4392 ((-1270 |#2|) (-1 |#2| |#1|) (-1270 |#1|))) (-15 -4392 ((-3 (-1270 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1270 |#1|)))) (-1220) (-1220)) (T -1271)) +((-4392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1270 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1270 *6)) (-5 *1 (-1271 *5 *6)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1270 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1270 *6)) (-5 *1 (-1271 *5 *6)))) (-4276 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1270 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-1271 *5 *2)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1270 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-5 *2 (-1270 *5)) (-5 *1 (-1271 *6 *5))))) +(-10 -7 (-15 -4275 ((-1270 |#2|) (-1 |#2| |#1| |#2|) (-1270 |#1|) |#2|)) (-15 -4276 (|#2| (-1 |#2| |#1| |#2|) (-1270 |#1|) |#2|)) (-15 -4392 ((-1270 |#2|) (-1 |#2| |#1|) (-1270 |#1|))) (-15 -4392 ((-3 (-1270 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1270 |#1|)))) +((-4277 (((-472) (-644 (-644 (-947 (-226)))) (-644 (-263))) 22) (((-472) (-644 (-644 (-947 (-226))))) 21) (((-472) (-644 (-644 (-947 (-226)))) (-877) (-877) (-923) (-644 (-263))) 20)) (-4278 (((-1273) (-644 (-644 (-947 (-226)))) (-644 (-263))) 33) (((-1273) (-644 (-644 (-947 (-226)))) (-877) (-877) (-923) (-644 (-263))) 32)) (-4380 (((-1273) (-472)) 48))) +(((-1272) (-10 -7 (-15 -4277 ((-472) (-644 (-644 (-947 (-226)))) (-877) (-877) (-923) (-644 (-263)))) (-15 -4277 ((-472) (-644 (-644 (-947 (-226)))))) (-15 -4277 ((-472) (-644 (-644 (-947 (-226)))) (-644 (-263)))) (-15 -4278 ((-1273) (-644 (-644 (-947 (-226)))) (-877) (-877) (-923) (-644 (-263)))) (-15 -4278 ((-1273) (-644 (-644 (-947 (-226)))) (-644 (-263)))) (-15 -4380 ((-1273) (-472))))) (T -1272)) +((-4380 (*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *2 (-1273)) (-5 *1 (-1272)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-1272)))) (-4278 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-877)) (-5 *5 (-923)) (-5 *6 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-1272)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-644 (-263))) (-5 *2 (-472)) (-5 *1 (-1272)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *2 (-472)) (-5 *1 (-1272)))) (-4277 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-877)) (-5 *5 (-923)) (-5 *6 (-644 (-263))) (-5 *2 (-472)) (-5 *1 (-1272))))) +(-10 -7 (-15 -4277 ((-472) (-644 (-644 (-947 (-226)))) (-877) (-877) (-923) (-644 (-263)))) (-15 -4277 ((-472) (-644 (-644 (-947 (-226)))))) (-15 -4277 ((-472) (-644 (-644 (-947 (-226)))) (-644 (-263)))) (-15 -4278 ((-1273) (-644 (-644 (-947 (-226)))) (-877) (-877) (-923) (-644 (-263)))) (-15 -4278 ((-1273) (-644 (-644 (-947 (-226)))) (-644 (-263)))) (-15 -4380 ((-1273) (-472)))) +((-2970 (((-112) $ $) NIL)) (-4296 (((-1163) $ (-1163)) 107) (((-1163) $ (-1163) (-1163)) 105) (((-1163) $ (-1163) (-644 (-1163))) 104)) (-4292 (($) 69)) (-4279 (((-1276) $ (-472) (-923)) 54)) (-4285 (((-1276) $ (-923) (-1163)) 89) (((-1276) $ (-923) (-877)) 90)) (-4307 (((-1276) $ (-923) (-381) (-381)) 57)) (-4317 (((-1276) $ (-1163)) 84)) (-4280 (((-1276) $ (-923) (-1163)) 94)) (-4281 (((-1276) $ (-923) (-381) (-381)) 58)) (-4318 (((-1276) $ (-923) (-923)) 55)) (-4298 (((-1276) $) 85)) (-4283 (((-1276) $ (-923) (-1163)) 93)) (-4287 (((-1276) $ (-472) (-923)) 41)) (-4284 (((-1276) $ (-923) (-1163)) 92)) (-4320 (((-644 (-263)) $) 29) (($ $ (-644 (-263))) 30)) (-4319 (((-1276) $ (-774) (-774)) 52)) (-4291 (($ $) 70) (($ (-472) (-644 (-263))) 71)) (-3665 (((-1163) $) NIL)) (-4294 (((-550) $) 48)) (-3666 (((-1124) $) NIL)) (-4288 (((-1270 (-3 (-472) "undefined")) $) 47)) (-4289 (((-1270 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4284 (-550)) (|:| -4282 (-550)) (|:| |spline| (-550)) (|:| -4313 (-550)) (|:| |axesColor| (-877)) (|:| -4285 (-550)) (|:| |unitsColor| (-877)) (|:| |showing| (-550)))) $) 46)) (-4290 (((-1276) $ (-923) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-877) (-550) (-877) (-550)) 83)) (-4293 (((-644 (-947 (-226))) $) NIL)) (-4286 (((-472) $ (-923)) 43)) (-4316 (((-1276) $ (-774) (-774) (-923) (-923)) 50)) (-4314 (((-1276) $ (-1163)) 95)) (-4282 (((-1276) $ (-923) (-1163)) 91)) (-4380 (((-866) $) 102)) (-4295 (((-1276) $) 96)) (-3664 (((-112) $ $) NIL)) (-4313 (((-1276) $ (-923) (-1163)) 87) (((-1276) $ (-923) (-877)) 88)) (-3457 (((-112) $ $) NIL))) +(((-1273) (-13 (-1105) (-10 -8 (-15 -4293 ((-644 (-947 (-226))) $)) (-15 -4292 ($)) (-15 -4291 ($ $)) (-15 -4320 ((-644 (-263)) $)) (-15 -4320 ($ $ (-644 (-263)))) (-15 -4291 ($ (-472) (-644 (-263)))) (-15 -4290 ((-1276) $ (-923) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-877) (-550) (-877) (-550))) (-15 -4289 ((-1270 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4284 (-550)) (|:| -4282 (-550)) (|:| |spline| (-550)) (|:| -4313 (-550)) (|:| |axesColor| (-877)) (|:| -4285 (-550)) (|:| |unitsColor| (-877)) (|:| |showing| (-550)))) $)) (-15 -4288 ((-1270 (-3 (-472) "undefined")) $)) (-15 -4317 ((-1276) $ (-1163))) (-15 -4287 ((-1276) $ (-472) (-923))) (-15 -4286 ((-472) $ (-923))) (-15 -4313 ((-1276) $ (-923) (-1163))) (-15 -4313 ((-1276) $ (-923) (-877))) (-15 -4285 ((-1276) $ (-923) (-1163))) (-15 -4285 ((-1276) $ (-923) (-877))) (-15 -4284 ((-1276) $ (-923) (-1163))) (-15 -4283 ((-1276) $ (-923) (-1163))) (-15 -4282 ((-1276) $ (-923) (-1163))) (-15 -4314 ((-1276) $ (-1163))) (-15 -4295 ((-1276) $)) (-15 -4316 ((-1276) $ (-774) (-774) (-923) (-923))) (-15 -4281 ((-1276) $ (-923) (-381) (-381))) (-15 -4307 ((-1276) $ (-923) (-381) (-381))) (-15 -4280 ((-1276) $ (-923) (-1163))) (-15 -4319 ((-1276) $ (-774) (-774))) (-15 -4279 ((-1276) $ (-472) (-923))) (-15 -4318 ((-1276) $ (-923) (-923))) (-15 -4296 ((-1163) $ (-1163))) (-15 -4296 ((-1163) $ (-1163) (-1163))) (-15 -4296 ((-1163) $ (-1163) (-644 (-1163)))) (-15 -4298 ((-1276) $)) (-15 -4294 ((-550) $)) (-15 -4380 ((-866) $))))) (T -1273)) +((-4380 (*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-1273)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-644 (-947 (-226)))) (-5 *1 (-1273)))) (-4292 (*1 *1) (-5 *1 (-1273))) (-4291 (*1 *1 *1) (-5 *1 (-1273))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1273)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1273)))) (-4291 (*1 *1 *2 *3) (-12 (-5 *2 (-472)) (-5 *3 (-644 (-263))) (-5 *1 (-1273)))) (-4290 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-923)) (-5 *4 (-226)) (-5 *5 (-550)) (-5 *6 (-877)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-1270 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4284 (-550)) (|:| -4282 (-550)) (|:| |spline| (-550)) (|:| -4313 (-550)) (|:| |axesColor| (-877)) (|:| -4285 (-550)) (|:| |unitsColor| (-877)) (|:| |showing| (-550))))) (-5 *1 (-1273)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-1270 (-3 (-472) "undefined"))) (-5 *1 (-1273)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4287 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-472)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4286 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-472)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-877)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-877)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4284 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4314 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4316 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-774)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4281 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4307 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4280 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4319 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4279 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-472)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4318 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4296 (*1 *2 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1273)))) (-4296 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1273)))) (-4296 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1163)) (-5 *1 (-1273)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1273))))) +(-13 (-1105) (-10 -8 (-15 -4293 ((-644 (-947 (-226))) $)) (-15 -4292 ($)) (-15 -4291 ($ $)) (-15 -4320 ((-644 (-263)) $)) (-15 -4320 ($ $ (-644 (-263)))) (-15 -4291 ($ (-472) (-644 (-263)))) (-15 -4290 ((-1276) $ (-923) (-226) (-226) (-226) (-226) (-550) (-550) (-550) (-550) (-877) (-550) (-877) (-550))) (-15 -4289 ((-1270 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4284 (-550)) (|:| -4282 (-550)) (|:| |spline| (-550)) (|:| -4313 (-550)) (|:| |axesColor| (-877)) (|:| -4285 (-550)) (|:| |unitsColor| (-877)) (|:| |showing| (-550)))) $)) (-15 -4288 ((-1270 (-3 (-472) "undefined")) $)) (-15 -4317 ((-1276) $ (-1163))) (-15 -4287 ((-1276) $ (-472) (-923))) (-15 -4286 ((-472) $ (-923))) (-15 -4313 ((-1276) $ (-923) (-1163))) (-15 -4313 ((-1276) $ (-923) (-877))) (-15 -4285 ((-1276) $ (-923) (-1163))) (-15 -4285 ((-1276) $ (-923) (-877))) (-15 -4284 ((-1276) $ (-923) (-1163))) (-15 -4283 ((-1276) $ (-923) (-1163))) (-15 -4282 ((-1276) $ (-923) (-1163))) (-15 -4314 ((-1276) $ (-1163))) (-15 -4295 ((-1276) $)) (-15 -4316 ((-1276) $ (-774) (-774) (-923) (-923))) (-15 -4281 ((-1276) $ (-923) (-381) (-381))) (-15 -4307 ((-1276) $ (-923) (-381) (-381))) (-15 -4280 ((-1276) $ (-923) (-1163))) (-15 -4319 ((-1276) $ (-774) (-774))) (-15 -4279 ((-1276) $ (-472) (-923))) (-15 -4318 ((-1276) $ (-923) (-923))) (-15 -4296 ((-1163) $ (-1163))) (-15 -4296 ((-1163) $ (-1163) (-1163))) (-15 -4296 ((-1163) $ (-1163) (-644 (-1163)))) (-15 -4298 ((-1276) $)) (-15 -4294 ((-550) $)) (-15 -4380 ((-866) $)))) +((-2970 (((-112) $ $) NIL)) (-4308 (((-1276) $ (-381)) 169) (((-1276) $ (-381) (-381) (-381)) 170)) (-4296 (((-1163) $ (-1163)) 179) (((-1163) $ (-1163) (-1163)) 177) (((-1163) $ (-1163) (-644 (-1163))) 176)) (-4324 (($) 67)) (-4315 (((-1276) $ (-381) (-381) (-381) (-381) (-381)) 141) (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $) 139) (((-1276) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 140) (((-1276) $ (-550) (-550) (-381) (-381) (-381)) 144) (((-1276) $ (-381) (-381)) 145) (((-1276) $ (-381) (-381) (-381)) 152)) (-4327 (((-381)) 122) (((-381) (-381)) 123)) (-4329 (((-381)) 117) (((-381) (-381)) 119)) (-4328 (((-381)) 120) (((-381) (-381)) 121)) (-4325 (((-381)) 126) (((-381) (-381)) 127)) (-4326 (((-381)) 124) (((-381) (-381)) 125)) (-4307 (((-1276) $ (-381) (-381)) 171)) (-4317 (((-1276) $ (-1163)) 153)) (-4322 (((-1137 (-226)) $) 68) (($ $ (-1137 (-226))) 69)) (-4303 (((-1276) $ (-1163)) 187)) (-4302 (((-1276) $ (-1163)) 188)) (-4309 (((-1276) $ (-381) (-381)) 151) (((-1276) $ (-550) (-550)) 168)) (-4318 (((-1276) $ (-923) (-923)) 160)) (-4298 (((-1276) $) 137)) (-4306 (((-1276) $ (-1163)) 186)) (-4311 (((-1276) $ (-1163)) 134)) (-4320 (((-644 (-263)) $) 70) (($ $ (-644 (-263))) 71)) (-4319 (((-1276) $ (-774) (-774)) 159)) (-4321 (((-1276) $ (-774) (-947 (-226))) 193)) (-4323 (($ $) 73) (($ (-1137 (-226)) (-1163)) 74) (($ (-1137 (-226)) (-644 (-263))) 75)) (-4300 (((-1276) $ (-381) (-381) (-381)) 131)) (-3665 (((-1163) $) NIL)) (-4294 (((-550) $) 128)) (-4299 (((-1276) $ (-381)) 174)) (-4304 (((-1276) $ (-381)) 191)) (-3666 (((-1124) $) NIL)) (-4305 (((-1276) $ (-381)) 190)) (-4310 (((-1276) $ (-1163)) 136)) (-4316 (((-1276) $ (-774) (-774) (-923) (-923)) 158)) (-4312 (((-1276) $ (-1163)) 133)) (-4314 (((-1276) $ (-1163)) 135)) (-4297 (((-1276) $ (-157) (-157)) 157)) (-4380 (((-866) $) 166)) (-4295 (((-1276) $) 138)) (-4301 (((-1276) $ (-1163)) 189)) (-3664 (((-112) $ $) NIL)) (-4313 (((-1276) $ (-1163)) 132)) (-3457 (((-112) $ $) NIL))) +(((-1274) (-13 (-1105) (-10 -8 (-15 -4329 ((-381))) (-15 -4329 ((-381) (-381))) (-15 -4328 ((-381))) (-15 -4328 ((-381) (-381))) (-15 -4327 ((-381))) (-15 -4327 ((-381) (-381))) (-15 -4326 ((-381))) (-15 -4326 ((-381) (-381))) (-15 -4325 ((-381))) (-15 -4325 ((-381) (-381))) (-15 -4324 ($)) (-15 -4323 ($ $)) (-15 -4323 ($ (-1137 (-226)) (-1163))) (-15 -4323 ($ (-1137 (-226)) (-644 (-263)))) (-15 -4322 ((-1137 (-226)) $)) (-15 -4322 ($ $ (-1137 (-226)))) (-15 -4321 ((-1276) $ (-774) (-947 (-226)))) (-15 -4320 ((-644 (-263)) $)) (-15 -4320 ($ $ (-644 (-263)))) (-15 -4319 ((-1276) $ (-774) (-774))) (-15 -4318 ((-1276) $ (-923) (-923))) (-15 -4317 ((-1276) $ (-1163))) (-15 -4316 ((-1276) $ (-774) (-774) (-923) (-923))) (-15 -4315 ((-1276) $ (-381) (-381) (-381) (-381) (-381))) (-15 -4315 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -4315 ((-1276) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4315 ((-1276) $ (-550) (-550) (-381) (-381) (-381))) (-15 -4315 ((-1276) $ (-381) (-381))) (-15 -4315 ((-1276) $ (-381) (-381) (-381))) (-15 -4314 ((-1276) $ (-1163))) (-15 -4313 ((-1276) $ (-1163))) (-15 -4312 ((-1276) $ (-1163))) (-15 -4311 ((-1276) $ (-1163))) (-15 -4310 ((-1276) $ (-1163))) (-15 -4309 ((-1276) $ (-381) (-381))) (-15 -4309 ((-1276) $ (-550) (-550))) (-15 -4308 ((-1276) $ (-381))) (-15 -4308 ((-1276) $ (-381) (-381) (-381))) (-15 -4307 ((-1276) $ (-381) (-381))) (-15 -4306 ((-1276) $ (-1163))) (-15 -4305 ((-1276) $ (-381))) (-15 -4304 ((-1276) $ (-381))) (-15 -4303 ((-1276) $ (-1163))) (-15 -4302 ((-1276) $ (-1163))) (-15 -4301 ((-1276) $ (-1163))) (-15 -4300 ((-1276) $ (-381) (-381) (-381))) (-15 -4299 ((-1276) $ (-381))) (-15 -4298 ((-1276) $)) (-15 -4297 ((-1276) $ (-157) (-157))) (-15 -4296 ((-1163) $ (-1163))) (-15 -4296 ((-1163) $ (-1163) (-1163))) (-15 -4296 ((-1163) $ (-1163) (-644 (-1163)))) (-15 -4295 ((-1276) $)) (-15 -4294 ((-550) $))))) (T -1274)) +((-4329 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4328 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4327 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4326 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4325 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) (-4324 (*1 *1) (-5 *1 (-1274))) (-4323 (*1 *1 *1) (-5 *1 (-1274))) (-4323 (*1 *1 *2 *3) (-12 (-5 *2 (-1137 (-226))) (-5 *3 (-1163)) (-5 *1 (-1274)))) (-4323 (*1 *1 *2 *3) (-12 (-5 *2 (-1137 (-226))) (-5 *3 (-644 (-263))) (-5 *1 (-1274)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-1274)))) (-4322 (*1 *1 *1 *2) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-1274)))) (-4321 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-947 (-226))) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1274)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1274)))) (-4319 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4318 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4316 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-774)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4315 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-1274)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4315 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-550)) (-5 *4 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4315 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4315 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4314 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4308 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4303 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4300 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4297 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4296 (*1 *2 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1274)))) (-4296 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1274)))) (-4296 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1163)) (-5 *1 (-1274)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1274)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1274))))) +(-13 (-1105) (-10 -8 (-15 -4329 ((-381))) (-15 -4329 ((-381) (-381))) (-15 -4328 ((-381))) (-15 -4328 ((-381) (-381))) (-15 -4327 ((-381))) (-15 -4327 ((-381) (-381))) (-15 -4326 ((-381))) (-15 -4326 ((-381) (-381))) (-15 -4325 ((-381))) (-15 -4325 ((-381) (-381))) (-15 -4324 ($)) (-15 -4323 ($ $)) (-15 -4323 ($ (-1137 (-226)) (-1163))) (-15 -4323 ($ (-1137 (-226)) (-644 (-263)))) (-15 -4322 ((-1137 (-226)) $)) (-15 -4322 ($ $ (-1137 (-226)))) (-15 -4321 ((-1276) $ (-774) (-947 (-226)))) (-15 -4320 ((-644 (-263)) $)) (-15 -4320 ($ $ (-644 (-263)))) (-15 -4319 ((-1276) $ (-774) (-774))) (-15 -4318 ((-1276) $ (-923) (-923))) (-15 -4317 ((-1276) $ (-1163))) (-15 -4316 ((-1276) $ (-774) (-774) (-923) (-923))) (-15 -4315 ((-1276) $ (-381) (-381) (-381) (-381) (-381))) (-15 -4315 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -4315 ((-1276) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -4315 ((-1276) $ (-550) (-550) (-381) (-381) (-381))) (-15 -4315 ((-1276) $ (-381) (-381))) (-15 -4315 ((-1276) $ (-381) (-381) (-381))) (-15 -4314 ((-1276) $ (-1163))) (-15 -4313 ((-1276) $ (-1163))) (-15 -4312 ((-1276) $ (-1163))) (-15 -4311 ((-1276) $ (-1163))) (-15 -4310 ((-1276) $ (-1163))) (-15 -4309 ((-1276) $ (-381) (-381))) (-15 -4309 ((-1276) $ (-550) (-550))) (-15 -4308 ((-1276) $ (-381))) (-15 -4308 ((-1276) $ (-381) (-381) (-381))) (-15 -4307 ((-1276) $ (-381) (-381))) (-15 -4306 ((-1276) $ (-1163))) (-15 -4305 ((-1276) $ (-381))) (-15 -4304 ((-1276) $ (-381))) (-15 -4303 ((-1276) $ (-1163))) (-15 -4302 ((-1276) $ (-1163))) (-15 -4301 ((-1276) $ (-1163))) (-15 -4300 ((-1276) $ (-381) (-381) (-381))) (-15 -4299 ((-1276) $ (-381))) (-15 -4298 ((-1276) $)) (-15 -4297 ((-1276) $ (-157) (-157))) (-15 -4296 ((-1163) $ (-1163))) (-15 -4296 ((-1163) $ (-1163) (-1163))) (-15 -4296 ((-1163) $ (-1163) (-644 (-1163)))) (-15 -4295 ((-1276) $)) (-15 -4294 ((-550) $)))) +((-4338 (((-644 (-1163)) (-644 (-1163))) 104) (((-644 (-1163))) 96)) (-4339 (((-644 (-1163))) 94)) (-4336 (((-644 (-923)) (-644 (-923))) 69) (((-644 (-923))) 64)) (-4335 (((-644 (-774)) (-644 (-774))) 61) (((-644 (-774))) 55)) (-4337 (((-1276)) 71)) (-4341 (((-923) (-923)) 87) (((-923)) 86)) (-4340 (((-923) (-923)) 85) (((-923)) 84)) (-4333 (((-877) (-877)) 81) (((-877)) 80)) (-4343 (((-226)) 91) (((-226) (-381)) 93)) (-4342 (((-923)) 88) (((-923) (-923)) 89)) (-4334 (((-923) (-923)) 83) (((-923)) 82)) (-4330 (((-877) (-877)) 75) (((-877)) 73)) (-4331 (((-877) (-877)) 77) (((-877)) 76)) (-4332 (((-877) (-877)) 79) (((-877)) 78))) +(((-1275) (-10 -7 (-15 -4330 ((-877))) (-15 -4330 ((-877) (-877))) (-15 -4331 ((-877))) (-15 -4331 ((-877) (-877))) (-15 -4332 ((-877))) (-15 -4332 ((-877) (-877))) (-15 -4333 ((-877))) (-15 -4333 ((-877) (-877))) (-15 -4334 ((-923))) (-15 -4334 ((-923) (-923))) (-15 -4335 ((-644 (-774)))) (-15 -4335 ((-644 (-774)) (-644 (-774)))) (-15 -4336 ((-644 (-923)))) (-15 -4336 ((-644 (-923)) (-644 (-923)))) (-15 -4337 ((-1276))) (-15 -4338 ((-644 (-1163)))) (-15 -4338 ((-644 (-1163)) (-644 (-1163)))) (-15 -4339 ((-644 (-1163)))) (-15 -4340 ((-923))) (-15 -4341 ((-923))) (-15 -4340 ((-923) (-923))) (-15 -4341 ((-923) (-923))) (-15 -4342 ((-923) (-923))) (-15 -4342 ((-923))) (-15 -4343 ((-226) (-381))) (-15 -4343 ((-226))))) (T -1275)) +((-4343 (*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1275)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-226)) (-5 *1 (-1275)))) (-4342 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4341 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4341 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4340 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4339 (*1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1275)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1275)))) (-4338 (*1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1275)))) (-4337 (*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1275)))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1275)))) (-4336 (*1 *2) (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1275)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-644 (-774))) (-5 *1 (-1275)))) (-4335 (*1 *2) (-12 (-5 *2 (-644 (-774))) (-5 *1 (-1275)))) (-4334 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4334 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4333 (*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4332 (*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4331 (*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4331 (*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) (-4330 (*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275))))) +(-10 -7 (-15 -4330 ((-877))) (-15 -4330 ((-877) (-877))) (-15 -4331 ((-877))) (-15 -4331 ((-877) (-877))) (-15 -4332 ((-877))) (-15 -4332 ((-877) (-877))) (-15 -4333 ((-877))) (-15 -4333 ((-877) (-877))) (-15 -4334 ((-923))) (-15 -4334 ((-923) (-923))) (-15 -4335 ((-644 (-774)))) (-15 -4335 ((-644 (-774)) (-644 (-774)))) (-15 -4336 ((-644 (-923)))) (-15 -4336 ((-644 (-923)) (-644 (-923)))) (-15 -4337 ((-1276))) (-15 -4338 ((-644 (-1163)))) (-15 -4338 ((-644 (-1163)) (-644 (-1163)))) (-15 -4339 ((-644 (-1163)))) (-15 -4340 ((-923))) (-15 -4341 ((-923))) (-15 -4340 ((-923) (-923))) (-15 -4341 ((-923) (-923))) (-15 -4342 ((-923) (-923))) (-15 -4342 ((-923))) (-15 -4343 ((-226) (-381))) (-15 -4343 ((-226)))) +((-4344 (($) 6)) (-4380 (((-866) $) 9))) +(((-1276) (-13 (-616 (-866)) (-10 -8 (-15 -4344 ($))))) (T -1276)) +((-4344 (*1 *1) (-5 *1 (-1276)))) +(-13 (-616 (-866)) (-10 -8 (-15 -4344 ($)))) +((-4383 (($ $ |#2|) 10))) +(((-1277 |#1| |#2|) (-10 -8 (-15 -4383 (|#1| |#1| |#2|))) (-1278 |#2|) (-366)) (T -1277)) +NIL +(-10 -8 (-15 -4383 (|#1| |#1| |#2|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4345 (((-134)) 33)) (-4380 (((-866) $) 12)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3457 (((-112) $ $) 6)) (-4383 (($ $ |#1|) 34)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1278 |#1|) (-140) (-366)) (T -1278)) +((-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-366)))) (-4345 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-366)) (-5 *2 (-134))))) +(-13 (-720 |t#1|) (-10 -8 (-15 -4383 ($ $ |t#1|)) (-15 -4345 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-651 |#1|) . T) ((-643 |#1|) . T) ((-720 |#1|) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1105) . T)) +((-4350 (((-644 (-1213 |#1|)) (-1181) (-1213 |#1|)) 83)) (-4348 (((-1158 (-1158 (-950 |#1|))) (-1181) (-1158 (-950 |#1|))) 63)) (-4351 (((-1 (-1158 (-1213 |#1|)) (-1158 (-1213 |#1|))) (-774) (-1213 |#1|) (-1158 (-1213 |#1|))) 74)) (-4346 (((-1 (-1158 (-950 |#1|)) (-1158 (-950 |#1|))) (-774)) 65)) (-4349 (((-1 (-1175 (-950 |#1|)) (-950 |#1|)) (-1181)) 32)) (-4347 (((-1 (-1158 (-950 |#1|)) (-1158 (-950 |#1|))) (-774)) 64))) +(((-1279 |#1|) (-10 -7 (-15 -4346 ((-1 (-1158 (-950 |#1|)) (-1158 (-950 |#1|))) (-774))) (-15 -4347 ((-1 (-1158 (-950 |#1|)) (-1158 (-950 |#1|))) (-774))) (-15 -4348 ((-1158 (-1158 (-950 |#1|))) (-1181) (-1158 (-950 |#1|)))) (-15 -4349 ((-1 (-1175 (-950 |#1|)) (-950 |#1|)) (-1181))) (-15 -4350 ((-644 (-1213 |#1|)) (-1181) (-1213 |#1|))) (-15 -4351 ((-1 (-1158 (-1213 |#1|)) (-1158 (-1213 |#1|))) (-774) (-1213 |#1|) (-1158 (-1213 |#1|))))) (-366)) (T -1279)) +((-4351 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-774)) (-4 *6 (-366)) (-5 *4 (-1213 *6)) (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1279 *6)) (-5 *5 (-1158 *4)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-4 *5 (-366)) (-5 *2 (-644 (-1213 *5))) (-5 *1 (-1279 *5)) (-5 *4 (-1213 *5)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1 (-1175 (-950 *4)) (-950 *4))) (-5 *1 (-1279 *4)) (-4 *4 (-366)))) (-4348 (*1 *2 *3 *4) (-12 (-5 *3 (-1181)) (-4 *5 (-366)) (-5 *2 (-1158 (-1158 (-950 *5)))) (-5 *1 (-1279 *5)) (-5 *4 (-1158 (-950 *5))))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-1158 (-950 *4)) (-1158 (-950 *4)))) (-5 *1 (-1279 *4)) (-4 *4 (-366)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-1158 (-950 *4)) (-1158 (-950 *4)))) (-5 *1 (-1279 *4)) (-4 *4 (-366))))) +(-10 -7 (-15 -4346 ((-1 (-1158 (-950 |#1|)) (-1158 (-950 |#1|))) (-774))) (-15 -4347 ((-1 (-1158 (-950 |#1|)) (-1158 (-950 |#1|))) (-774))) (-15 -4348 ((-1158 (-1158 (-950 |#1|))) (-1181) (-1158 (-950 |#1|)))) (-15 -4349 ((-1 (-1175 (-950 |#1|)) (-950 |#1|)) (-1181))) (-15 -4350 ((-644 (-1213 |#1|)) (-1181) (-1213 |#1|))) (-15 -4351 ((-1 (-1158 (-1213 |#1|)) (-1158 (-1213 |#1|))) (-774) (-1213 |#1|) (-1158 (-1213 |#1|))))) +((-4353 (((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) |#2|) 82)) (-4352 (((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|)))) 81))) +(((-1280 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4352 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))))) (-15 -4353 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) |#2|))) (-353) (-1246 |#1|) (-1246 |#2|) (-414 |#2| |#3|)) (T -1280)) +((-4353 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 *3)) (-5 *2 (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) (-5 *1 (-1280 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))) (-4352 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-2 (|:| -2192 (-692 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-692 *4)))) (-5 *1 (-1280 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5))))) +(-10 -7 (-15 -4352 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))))) (-15 -4353 ((-2 (|:| -2192 (-692 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-692 |#2|))) |#2|))) +((-2970 (((-112) $ $) NIL)) (-4354 (((-1139) $) 11)) (-4355 (((-1139) $) 9)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 17) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1281) (-13 (-1087) (-10 -8 (-15 -4355 ((-1139) $)) (-15 -4354 ((-1139) $))))) (T -1281)) +((-4355 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1281)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1281))))) +(-13 (-1087) (-10 -8 (-15 -4355 ((-1139) $)) (-15 -4354 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4356 (((-1139) $) 9)) (-4380 (((-866) $) 15) (($ (-1186)) NIL) (((-1186) $) NIL)) (-3664 (((-112) $ $) NIL)) (-3457 (((-112) $ $) NIL))) +(((-1282) (-13 (-1087) (-10 -8 (-15 -4356 ((-1139) $))))) (T -1282)) +((-4356 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1282))))) +(-13 (-1087) (-10 -8 (-15 -4356 ((-1139) $)))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 58)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) NIL)) (-2575 (((-112) $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4380 (((-866) $) 81) (($ (-550)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-173)))) (-3532 (((-774)) NIL T CONST)) (-4357 (((-1276) (-774)) 16)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 37 T CONST)) (-3069 (($) 84 T CONST)) (-3457 (((-112) $ $) 87)) (-4383 (((-3 $ "failed") $ $) NIL (|has| |#1| (-366)))) (-4271 (($ $) 89) (($ $ $) NIL)) (-4273 (($ $ $) 63)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) +(((-1283 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1053) (-494 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4383 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4357 ((-1276) (-774))))) (-1053) (-853) (-796) (-954 |#1| |#3| |#2|) (-644 |#2|) (-644 (-774)) (-774)) (T -1283)) +((-4383 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-366)) (-4 *2 (-1053)) (-4 *3 (-853)) (-4 *4 (-796)) (-14 *6 (-644 *3)) (-5 *1 (-1283 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-954 *2 *4 *3)) (-14 *7 (-644 (-774))) (-14 *8 (-774)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-1053)) (-4 *5 (-853)) (-4 *6 (-796)) (-14 *8 (-644 *5)) (-5 *2 (-1276)) (-5 *1 (-1283 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-954 *4 *6 *5)) (-14 *9 (-644 *3)) (-14 *10 *3)))) +(-13 (-1053) (-494 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-366)) (-15 -4383 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4357 ((-1276) (-774))))) +((-2970 (((-112) $ $) NIL)) (-4115 (((-644 (-2 (|:| -4295 $) (|:| -1872 (-644 |#4|)))) (-644 |#4|)) NIL)) (-4116 (((-644 $) (-644 |#4|)) 96)) (-3487 (((-644 |#3|) $) NIL)) (-3311 (((-112) $) NIL)) (-3302 (((-112) $) NIL (|has| |#1| (-561)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4122 ((|#4| |#4| $) NIL)) (-3312 (((-2 (|:| |under| $) (|:| -3536 $) (|:| |upper| $)) $ |#3|) NIL)) (-1310 (((-112) $ (-774)) NIL)) (-4144 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4158 (($) NIL T CONST)) (-3307 (((-112) $) NIL (|has| |#1| (-561)))) (-3309 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3308 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3310 (((-112) $) NIL (|has| |#1| (-561)))) (-4123 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3303 (((-644 |#4|) (-644 |#4|) $) 28 (|has| |#1| (-561)))) (-3304 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-561)))) (-3579 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3578 (($ (-644 |#4|)) NIL)) (-4232 (((-3 $ #1#) $) 78)) (-4119 ((|#4| |#4| $) 83)) (-1441 (($ $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-3832 (($ |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3305 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4128 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4117 ((|#4| |#4| $) NIL)) (-4276 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4427))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4427))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4130 (((-2 (|:| -4295 (-644 |#4|)) (|:| -1872 (-644 |#4|))) $) NIL)) (-2126 (((-644 |#4|) $) NIL (|has| $ (-6 -4427)))) (-4129 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3602 ((|#3| $) 84)) (-4153 (((-112) $ (-774)) NIL)) (-3010 (((-644 |#4|) $) 32 (|has| $ (-6 -4427)))) (-3668 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105))))) (-4360 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-644 |#4|)) 38)) (-2130 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4428)))) (-4392 (($ (-1 |#4| |#4|) $) NIL)) (-3317 (((-644 |#3|) $) NIL)) (-3316 (((-112) |#3| $) NIL)) (-4150 (((-112) $ (-774)) NIL)) (-3665 (((-1163) $) NIL)) (-4231 (((-3 |#4| #1#) $) NIL)) (-4131 (((-644 |#4|) $) 54)) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) 82)) (-4133 (((-112) $ $) 93)) (-3306 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4126 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4121 ((|#4| |#4| $) NIL)) (-3666 (((-1124) $) NIL)) (-4234 (((-3 |#4| #1#) $) 77)) (-1442 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4113 (((-3 $ #1#) $ |#4|) NIL)) (-4202 (($ $ |#4|) NIL)) (-2128 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4201 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-311 |#4|)) (|has| |#4| (-1105))))) (-1311 (((-112) $ $) NIL)) (-3829 (((-112) $) 75)) (-3998 (($) 46)) (-4382 (((-774) $) NIL)) (-2127 (((-774) |#4| $) NIL (-12 (|has| $ (-6 -4427)) (|has| |#4| (-1105)))) (((-774) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-3826 (($ $) NIL)) (-4404 (((-539) $) NIL (|has| |#4| (-617 (-539))))) (-3955 (($ (-644 |#4|)) NIL)) (-3313 (($ $ |#3|) NIL)) (-3315 (($ $ |#3|) NIL)) (-4118 (($ $) NIL)) (-3314 (($ $ |#3|) NIL)) (-4380 (((-866) $) NIL) (((-644 |#4|) $) 63)) (-4112 (((-774) $) NIL (|has| |#3| (-371)))) (-4359 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-644 |#4|)) 45)) (-4358 (((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-644 $) (-644 |#4|)) 74)) (-3664 (((-112) $ $) NIL)) (-4132 (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3750 (-644 |#4|))) #1#) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4124 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-2129 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4427)))) (-4114 (((-644 |#3|) $) NIL)) (-4367 (((-112) |#3| $) NIL)) (-3457 (((-112) $ $) NIL)) (-4391 (((-774) $) NIL (|has| $ (-6 -4427))))) +(((-1284 |#1| |#2| |#3| |#4|) (-13 (-1215 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4360 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4360 ((-3 $ "failed") (-644 |#4|))) (-15 -4359 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4359 ((-3 $ "failed") (-644 |#4|))) (-15 -4358 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4358 ((-644 $) (-644 |#4|))))) (-561) (-796) (-853) (-1069 |#1| |#2| |#3|)) (T -1284)) +((-4360 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1284 *5 *6 *7 *8)))) (-4360 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1284 *3 *4 *5 *6)))) (-4359 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1284 *5 *6 *7 *8)))) (-4359 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1284 *3 *4 *5 *6)))) (-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1069 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-796)) (-4 *8 (-853)) (-5 *2 (-644 (-1284 *6 *7 *8 *9))) (-5 *1 (-1284 *6 *7 *8 *9)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 (-1284 *4 *5 *6 *7))) (-5 *1 (-1284 *4 *5 *6 *7))))) +(-13 (-1215 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4360 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4360 ((-3 $ "failed") (-644 |#4|))) (-15 -4359 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4359 ((-3 $ "failed") (-644 |#4|))) (-15 -4358 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4358 ((-644 $) (-644 |#4|))))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-1408 (((-3 $ "failed") $ $) 20)) (-4158 (($) 18 T CONST)) (-3892 (((-3 $ "failed") $) 37)) (-2575 (((-112) $) 35)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#1|) 45)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1285 |#1|) (-140) (-1053)) (T -1285)) +NIL +(-13 (-1053) (-111 |t#1| |t#1|) (-619 |t#1|) (-10 -7 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 |#1|) |has| |#1| (-173)) ((-720 |#1|) |has| |#1| (-173)) ((-729) . T) ((-1055 |#1|) . T) ((-1060 |#1|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T)) +((-2970 (((-112) $ $) 67)) (-3610 (((-112) $) NIL)) (-4368 (((-644 |#1|) $) 52)) (-4381 (($ $ (-774)) 46)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4369 (($ $ (-774)) 24 (|has| |#2| (-173))) (($ $ $) 25 (|has| |#2| (-173)))) (-4158 (($) NIL T CONST)) (-4373 (($ $ $) 70) (($ $ (-822 |#1|)) 56) (($ $ |#1|) 60)) (-3579 (((-3 (-822 |#1|) "failed") $) NIL)) (-3578 (((-822 |#1|) $) NIL)) (-4393 (($ $) 39)) (-3892 (((-3 $ "failed") $) NIL)) (-4385 (((-112) $) NIL)) (-4384 (($ $) NIL)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-4372 (($ (-822 |#1|) |#2|) 38)) (-4370 (($ $) 40)) (-4375 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) 12)) (-4389 (((-822 |#1|) $) NIL)) (-4390 (((-822 |#1|) $) 41)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-4374 (($ $ $) 69) (($ $ (-822 |#1|)) 58) (($ $ |#1|) 62)) (-1919 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3297 (((-822 |#1|) $) 35)) (-3596 ((|#2| $) 37)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4382 (((-774) $) 43)) (-4387 (((-112) $) 47)) (-4386 ((|#2| $) NIL)) (-4380 (((-866) $) NIL) (($ (-822 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-550)) NIL)) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-822 |#1|)) NIL)) (-4388 ((|#2| $ $) 76) ((|#2| $ (-822 |#1|)) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 13 T CONST)) (-3069 (($) 19 T CONST)) (-3068 (((-644 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3457 (((-112) $ $) 44)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 28)) (** (($ $ (-774)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-822 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1286 |#1| |#2|) (-13 (-387 |#2| (-822 |#1|)) (-1293 |#1| |#2|)) (-853) (-1053)) (T -1286)) +NIL +(-13 (-387 |#2| (-822 |#1|)) (-1293 |#1| |#2|)) +((-4376 ((|#3| |#3| (-774)) 30)) (-4377 ((|#3| |#3| (-774)) 36)) (-4361 ((|#3| |#3| |#3| (-774)) 37))) +(((-1287 |#1| |#2| |#3|) (-10 -7 (-15 -4377 (|#3| |#3| (-774))) (-15 -4376 (|#3| |#3| (-774))) (-15 -4361 (|#3| |#3| |#3| (-774)))) (-13 (-1053) (-720 (-411 (-550)))) (-853) (-1293 |#2| |#1|)) (T -1287)) +((-4361 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-13 (-1053) (-720 (-411 (-550))))) (-4 *5 (-853)) (-5 *1 (-1287 *4 *5 *2)) (-4 *2 (-1293 *5 *4)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-13 (-1053) (-720 (-411 (-550))))) (-4 *5 (-853)) (-5 *1 (-1287 *4 *5 *2)) (-4 *2 (-1293 *5 *4)))) (-4377 (*1 *2 *2 *3) (-12 (-5 *3 (-774)) (-4 *4 (-13 (-1053) (-720 (-411 (-550))))) (-4 *5 (-853)) (-5 *1 (-1287 *4 *5 *2)) (-4 *2 (-1293 *5 *4))))) +(-10 -7 (-15 -4377 (|#3| |#3| (-774))) (-15 -4376 (|#3| |#3| (-774))) (-15 -4361 (|#3| |#3| |#3| (-774)))) +((-4366 (((-112) $) 15)) (-4367 (((-112) $) 14)) (-4362 (($ $) 19) (($ $ (-774)) 21))) +(((-1288 |#1| |#2|) (-10 -8 (-15 -4362 (|#1| |#1| (-774))) (-15 -4362 (|#1| |#1|)) (-15 -4366 ((-112) |#1|)) (-15 -4367 ((-112) |#1|))) (-1289 |#2|) (-366)) (T -1288)) +NIL +(-10 -8 (-15 -4362 (|#1| |#1| (-774))) (-15 -4362 (|#1| |#1|)) (-15 -4366 ((-112) |#1|)) (-15 -4367 ((-112) |#1|))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-2244 (((-2 (|:| -1949 $) (|:| -4414 $) (|:| |associate| $)) $) 47)) (-2243 (($ $) 46)) (-2241 (((-112) $) 44)) (-4366 (((-112) $) 104)) (-4363 (((-774)) 100)) (-1408 (((-3 $ "failed") $ $) 20)) (-4208 (($ $) 81)) (-4403 (((-409 $) $) 80)) (-1755 (((-112) $ $) 65)) (-4158 (($) 18 T CONST)) (-3579 (((-3 |#1| "failed") $) 111)) (-3578 ((|#1| $) 112)) (-2966 (($ $ $) 61)) (-3892 (((-3 $ "failed") $) 37)) (-2965 (($ $ $) 62)) (-3146 (((-2 (|:| -4388 (-644 $)) (|:| -2574 $)) (-644 $)) 57)) (-1943 (($ $ (-774)) 97 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371)))) (($ $) 96 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4157 (((-112) $) 79)) (-4205 (((-835 (-923)) $) 94 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-2575 (((-112) $) 35)) (-1752 (((-3 (-644 $) #1="failed") (-644 $) $) 58)) (-2071 (($ $ $) 52) (($ (-644 $)) 51)) (-3665 (((-1163) $) 10)) (-2808 (($ $) 78)) (-4365 (((-112) $) 103)) (-3666 (((-1124) $) 11)) (-3113 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-3566 (($ $ $) 54) (($ (-644 $)) 53)) (-4166 (((-409 $) $) 82)) (-4364 (((-835 (-923))) 101)) (-1753 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2574 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3891 (((-3 $ "failed") $ $) 48)) (-3145 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (((-774) $) 64)) (-3284 (((-2 (|:| -2154 $) (|:| -3305 $)) $ $) 63)) (-1944 (((-3 (-774) "failed") $ $) 95 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-4345 (((-134)) 109)) (-4382 (((-835 (-923)) $) 102)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ $) 49) (($ (-411 (-550))) 74) (($ |#1|) 110)) (-3107 (((-3 $ "failed") $) 93 (-3962 (|has| |#1| (-145)) (|has| |#1| (-371))))) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-2242 (((-112) $ $) 45)) (-4367 (((-112) $) 105)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-4362 (($ $) 99 (|has| |#1| (-371))) (($ $ (-774)) 98 (|has| |#1| (-371)))) (-3457 (((-112) $ $) 6)) (-4383 (($ $ $) 73) (($ $ |#1|) 108)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36) (($ $ (-550)) 77)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ $ (-411 (-550))) 76) (($ (-411 (-550)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1289 |#1|) (-140) (-366)) (T -1289)) +((-4367 (*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-112)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-112)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-112)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-835 (-923))))) (-4364 (*1 *2) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-835 (-923))))) (-4363 (*1 *2) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-774)))) (-4362 (*1 *1 *1) (-12 (-4 *1 (-1289 *2)) (-4 *2 (-366)) (-4 *2 (-371)))) (-4362 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-4 *3 (-371))))) +(-13 (-366) (-1042 |t#1|) (-1278 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-406)) |%noBranch|) (-15 -4367 ((-112) $)) (-15 -4366 ((-112) $)) (-15 -4365 ((-112) $)) (-15 -4382 ((-835 (-923)) $)) (-15 -4364 ((-835 (-923)))) (-15 -4363 ((-774))) (IF (|has| |t#1| (-371)) (PROGN (-6 (-406)) (-15 -4362 ($ $)) (-15 -4362 ($ $ (-774)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-411 (-550))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3962 (|has| |#1| (-371)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-619 #1#) . T) ((-619 (-550)) . T) ((-619 |#1|) . T) ((-619 $) . T) ((-616 (-866)) . T) ((-173) . T) ((-244) . T) ((-292) . T) ((-309) . T) ((-366) . T) ((-406) -3962 (|has| |#1| (-371)) (|has| |#1| (-145))) ((-456) . T) ((-561) . T) ((-649 #1#) . T) ((-649 (-550)) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-651 #1#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-643 #1#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-720 #1#) . T) ((-720 |#1|) . T) ((-720 $) . T) ((-729) . T) ((-925) . T) ((-1042 |#1|) . T) ((-1055 #1#) . T) ((-1055 |#1|) . T) ((-1055 $) . T) ((-1060 #1#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1225) . T) ((-1278 |#1|) . T)) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4368 (((-644 |#1|) $) 47)) (-1408 (((-3 $ "failed") $ $) 20)) (-4369 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-774)) 49 (|has| |#2| (-173)))) (-4158 (($) 18 T CONST)) (-4373 (($ $ |#1|) 61) (($ $ (-822 |#1|)) 60) (($ $ $) 59)) (-3579 (((-3 (-822 |#1|) "failed") $) 71)) (-3578 (((-822 |#1|) $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-4385 (((-112) $) 52)) (-4384 (($ $) 51)) (-2575 (((-112) $) 35)) (-4371 (((-112) $) 57)) (-4372 (($ (-822 |#1|) |#2|) 58)) (-4370 (($ $) 56)) (-4375 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) 67)) (-4389 (((-822 |#1|) $) 68)) (-4392 (($ (-1 |#2| |#2|) $) 48)) (-4374 (($ $ |#1|) 64) (($ $ (-822 |#1|)) 63) (($ $ $) 62)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4387 (((-112) $) 54)) (-4386 ((|#2| $) 53)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#2|) 75) (($ (-822 |#1|)) 70) (($ |#1|) 55)) (-4388 ((|#2| $ (-822 |#1|)) 66) ((|#2| $ $) 65)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1290 |#1| |#2|) (-140) (-853) (-1053)) (T -1290)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1053)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-822 *3)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-2 (|:| |k| (-822 *3)) (|:| |c| *4))))) (-4388 (*1 *2 *1 *3) (-12 (-5 *3 (-822 *4)) (-4 *1 (-1290 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1053)))) (-4388 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1053)))) (-4374 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4374 (*1 *1 *1 *2) (-12 (-5 *2 (-822 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)))) (-4374 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4373 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4373 (*1 *1 *1 *2) (-12 (-5 *2 (-822 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)))) (-4373 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4372 (*1 *1 *2 *3) (-12 (-5 *2 (-822 *4)) (-4 *4 (-853)) (-4 *1 (-1290 *4 *3)) (-4 *3 (-1053)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-112)))) (-4370 (*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4380 (*1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-112)))) (-4386 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1053)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-112)))) (-4384 (*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) (-4369 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)) (-4 *3 (-173)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-4 *4 (-173)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-644 *3))))) +(-13 (-1053) (-1285 |t#2|) (-1042 (-822 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4389 ((-822 |t#1|) $)) (-15 -4375 ((-2 (|:| |k| (-822 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4388 (|t#2| $ (-822 |t#1|))) (-15 -4388 (|t#2| $ $)) (-15 -4374 ($ $ |t#1|)) (-15 -4374 ($ $ (-822 |t#1|))) (-15 -4374 ($ $ $)) (-15 -4373 ($ $ |t#1|)) (-15 -4373 ($ $ (-822 |t#1|))) (-15 -4373 ($ $ $)) (-15 -4372 ($ (-822 |t#1|) |t#2|)) (-15 -4371 ((-112) $)) (-15 -4370 ($ $)) (-15 -4380 ($ |t#1|)) (-15 -4387 ((-112) $)) (-15 -4386 (|t#2| $)) (-15 -4385 ((-112) $)) (-15 -4384 ($ $)) (IF (|has| |t#2| (-173)) (PROGN (-15 -4369 ($ $ $)) (-15 -4369 ($ $ (-774)))) |%noBranch|) (-15 -4392 ($ (-1 |t#2| |t#2|) $)) (-15 -4368 ((-644 |t#1|) $)) (IF (|has| |t#2| (-6 -4420)) (-6 -4420) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 #1=(-822 |#1|)) . T) ((-619 |#2|) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-643 |#2|) |has| |#2| (-173)) ((-720 |#2|) |has| |#2| (-173)) ((-729) . T) ((-1042 #1#) . T) ((-1055 |#2|) . T) ((-1060 |#2|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1285 |#2|) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4368 (((-644 |#1|) $) 98)) (-4381 (($ $ (-774)) 102)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4369 (($ $ $) NIL (|has| |#2| (-173))) (($ $ (-774)) NIL (|has| |#2| (-173)))) (-4158 (($) NIL T CONST)) (-4373 (($ $ |#1|) NIL) (($ $ (-822 |#1|)) NIL) (($ $ $) NIL)) (-3579 (((-3 (-822 |#1|) #1="failed") $) NIL) (((-3 (-897 |#1|) #1#) $) NIL)) (-3578 (((-822 |#1|) $) NIL) (((-897 |#1|) $) NIL)) (-4393 (($ $) 101)) (-3892 (((-3 $ "failed") $) NIL)) (-4385 (((-112) $) 90)) (-4384 (($ $) 93)) (-4378 (($ $ $ (-774)) 103)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-4372 (($ (-822 |#1|) |#2|) NIL) (($ (-897 |#1|) |#2|) 29)) (-4370 (($ $) 120)) (-4375 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4389 (((-822 |#1|) $) NIL)) (-4390 (((-822 |#1|) $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL)) (-4374 (($ $ |#1|) NIL) (($ $ (-822 |#1|)) NIL) (($ $ $) NIL)) (-4376 (($ $ (-774)) 113 (|has| |#2| (-720 (-411 (-550)))))) (-1919 (((-2 (|:| |k| (-897 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3297 (((-897 |#1|) $) 83)) (-3596 ((|#2| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4377 (($ $ (-774)) 110 (|has| |#2| (-720 (-411 (-550)))))) (-4382 (((-774) $) 99)) (-4387 (((-112) $) 84)) (-4386 ((|#2| $) 88)) (-4380 (((-866) $) 69) (($ (-550)) NIL) (($ |#2|) 60) (($ (-822 |#1|)) NIL) (($ |#1|) 71) (($ (-897 |#1|)) NIL) (($ (-667 |#1| |#2|)) 48) (((-1286 |#1| |#2|) $) 76) (((-1295 |#1| |#2|) $) 81)) (-4251 (((-644 |#2|) $) NIL)) (-4111 ((|#2| $ (-897 |#1|)) NIL)) (-4388 ((|#2| $ (-822 |#1|)) NIL) ((|#2| $ $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 21 T CONST)) (-3069 (($) 28 T CONST)) (-3068 (((-644 (-2 (|:| |k| (-897 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4379 (((-3 (-667 |#1| |#2|) "failed") $) 119)) (-3457 (((-112) $ $) 77)) (-4271 (($ $) 112) (($ $ $) 111)) (-4273 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-897 |#1|)) NIL))) +(((-1291 |#1| |#2|) (-13 (-1293 |#1| |#2|) (-387 |#2| (-897 |#1|)) (-10 -8 (-15 -4380 ($ (-667 |#1| |#2|))) (-15 -4380 ((-1286 |#1| |#2|) $)) (-15 -4380 ((-1295 |#1| |#2|) $)) (-15 -4379 ((-3 (-667 |#1| |#2|) "failed") $)) (-15 -4378 ($ $ $ (-774))) (IF (|has| |#2| (-720 (-411 (-550)))) (PROGN (-15 -4377 ($ $ (-774))) (-15 -4376 ($ $ (-774)))) |%noBranch|))) (-853) (-173)) (T -1291)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-667 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *1 (-1291 *3 *4)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-4379 (*1 *2 *1) (|partial| -12 (-5 *2 (-667 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-4378 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) (-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-720 (-411 (-550)))) (-4 *3 (-853)) (-4 *4 (-173)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-720 (-411 (-550)))) (-4 *3 (-853)) (-4 *4 (-173))))) +(-13 (-1293 |#1| |#2|) (-387 |#2| (-897 |#1|)) (-10 -8 (-15 -4380 ($ (-667 |#1| |#2|))) (-15 -4380 ((-1286 |#1| |#2|) $)) (-15 -4380 ((-1295 |#1| |#2|) $)) (-15 -4379 ((-3 (-667 |#1| |#2|) "failed") $)) (-15 -4378 ($ $ $ (-774))) (IF (|has| |#2| (-720 (-411 (-550)))) (PROGN (-15 -4377 ($ $ (-774))) (-15 -4376 ($ $ (-774)))) |%noBranch|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-4368 (((-644 (-1181)) $) NIL)) (-4396 (($ (-1286 (-1181) |#1|)) NIL)) (-4381 (($ $ (-774)) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4369 (($ $ $) NIL (|has| |#1| (-173))) (($ $ (-774)) NIL (|has| |#1| (-173)))) (-4158 (($) NIL T CONST)) (-4373 (($ $ (-1181)) NIL) (($ $ (-822 (-1181))) NIL) (($ $ $) NIL)) (-3579 (((-3 (-822 (-1181)) "failed") $) NIL)) (-3578 (((-822 (-1181)) $) NIL)) (-3892 (((-3 $ "failed") $) NIL)) (-4385 (((-112) $) NIL)) (-4384 (($ $) NIL)) (-2575 (((-112) $) NIL)) (-4371 (((-112) $) NIL)) (-4372 (($ (-822 (-1181)) |#1|) NIL)) (-4370 (($ $) NIL)) (-4375 (((-2 (|:| |k| (-822 (-1181))) (|:| |c| |#1|)) $) NIL)) (-4389 (((-822 (-1181)) $) NIL)) (-4390 (((-822 (-1181)) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $ (-1181)) NIL) (($ $ (-822 (-1181))) NIL) (($ $ $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4397 (((-1286 (-1181) |#1|) $) NIL)) (-4382 (((-774) $) NIL)) (-4387 (((-112) $) NIL)) (-4386 ((|#1| $) NIL)) (-4380 (((-866) $) NIL) (($ (-550)) NIL) (($ |#1|) NIL) (($ (-822 (-1181))) NIL) (($ (-1181)) NIL)) (-4388 ((|#1| $ (-822 (-1181))) NIL) ((|#1| $ $) NIL)) (-3532 (((-774)) NIL T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) NIL T CONST)) (-4395 (((-644 (-2 (|:| |k| (-1181)) (|:| |c| $))) $) NIL)) (-3069 (($) NIL T CONST)) (-3457 (((-112) $ $) NIL)) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-774)) NIL)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1181) $) NIL))) +(((-1292 |#1|) (-13 (-1293 (-1181) |#1|) (-10 -8 (-15 -4397 ((-1286 (-1181) |#1|) $)) (-15 -4396 ($ (-1286 (-1181) |#1|))) (-15 -4395 ((-644 (-2 (|:| |k| (-1181)) (|:| |c| $))) $)))) (-1053)) (T -1292)) +((-4397 (*1 *2 *1) (-12 (-5 *2 (-1286 (-1181) *3)) (-5 *1 (-1292 *3)) (-4 *3 (-1053)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1286 (-1181) *3)) (-4 *3 (-1053)) (-5 *1 (-1292 *3)))) (-4395 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-1181)) (|:| |c| (-1292 *3))))) (-5 *1 (-1292 *3)) (-4 *3 (-1053))))) +(-13 (-1293 #1=(-1181) |#1|) (-10 -8 (-15 -4397 ((-1286 #1# |#1|) $)) (-15 -4396 ($ (-1286 #1# |#1|))) (-15 -4395 ((-644 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) +((-2970 (((-112) $ $) 7)) (-3610 (((-112) $) 17)) (-4368 (((-644 |#1|) $) 47)) (-4381 (($ $ (-774)) 80)) (-1408 (((-3 $ "failed") $ $) 20)) (-4369 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-774)) 49 (|has| |#2| (-173)))) (-4158 (($) 18 T CONST)) (-4373 (($ $ |#1|) 61) (($ $ (-822 |#1|)) 60) (($ $ $) 59)) (-3579 (((-3 (-822 |#1|) "failed") $) 71)) (-3578 (((-822 |#1|) $) 72)) (-3892 (((-3 $ "failed") $) 37)) (-4385 (((-112) $) 52)) (-4384 (($ $) 51)) (-2575 (((-112) $) 35)) (-4371 (((-112) $) 57)) (-4372 (($ (-822 |#1|) |#2|) 58)) (-4370 (($ $) 56)) (-4375 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) 67)) (-4389 (((-822 |#1|) $) 68)) (-4390 (((-822 |#1|) $) 82)) (-4392 (($ (-1 |#2| |#2|) $) 48)) (-4374 (($ $ |#1|) 64) (($ $ (-822 |#1|)) 63) (($ $ $) 62)) (-3665 (((-1163) $) 10)) (-3666 (((-1124) $) 11)) (-4382 (((-774) $) 81)) (-4387 (((-112) $) 54)) (-4386 ((|#2| $) 53)) (-4380 (((-866) $) 12) (($ (-550)) 33) (($ |#2|) 75) (($ (-822 |#1|)) 70) (($ |#1|) 55)) (-4388 ((|#2| $ (-822 |#1|)) 66) ((|#2| $ $) 65)) (-3532 (((-774)) 32 T CONST)) (-3664 (((-112) $ $) 9)) (-3512 (($) 19 T CONST)) (-3069 (($) 34 T CONST)) (-3457 (((-112) $ $) 6)) (-4271 (($ $) 23) (($ $ $) 22)) (-4273 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-774)) 36)) (* (($ (-923) $) 14) (($ (-774) $) 16) (($ (-550) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1293 |#1| |#2|) (-140) (-853) (-1053)) (T -1293)) +((-4390 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-822 *3)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-774)))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053))))) +(-13 (-1290 |t#1| |t#2|) (-10 -8 (-15 -4390 ((-822 |t#1|) $)) (-15 -4382 ((-774) $)) (-15 -4381 ($ $ (-774))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-619 (-550)) . T) ((-619 #1=(-822 |#1|)) . T) ((-619 |#2|) . T) ((-616 (-866)) . T) ((-649 (-550)) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-643 |#2|) |has| |#2| (-173)) ((-720 |#2|) |has| |#2| (-173)) ((-729) . T) ((-1042 #1#) . T) ((-1055 |#2|) . T) ((-1060 |#2|) . T) ((-1053) . T) ((-1061) . T) ((-1116) . T) ((-1105) . T) ((-1285 |#2|) . T) ((-1290 |#1| |#2|) . T)) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) NIL)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4158 (($) NIL T CONST)) (-3579 (((-3 |#2| "failed") $) NIL)) (-3578 ((|#2| $) NIL)) (-4393 (($ $) NIL)) (-3892 (((-3 $ "failed") $) 42)) (-4385 (((-112) $) 35)) (-4384 (($ $) 37)) (-2575 (((-112) $) NIL)) (-2583 (((-774) $) NIL)) (-3226 (((-644 $) $) NIL)) (-4371 (((-112) $) NIL)) (-4372 (($ |#2| |#1|) NIL)) (-4389 ((|#2| $) 24)) (-4390 ((|#2| $) 22)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-1919 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3297 ((|#2| $) NIL)) (-3596 ((|#1| $) NIL)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4387 (((-112) $) 32)) (-4386 ((|#1| $) 33)) (-4380 (((-866) $) 65) (($ (-550)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4251 (((-644 |#1|) $) NIL)) (-4111 ((|#1| $ |#2|) NIL)) (-4388 ((|#1| $ |#2|) 28)) (-3532 (((-774)) 14 T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 29 T CONST)) (-3069 (($) 11 T CONST)) (-3068 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3457 (((-112) $ $) 30)) (-4383 (($ $ |#1|) 67 (|has| |#1| (-366)))) (-4271 (($ $) NIL) (($ $ $) NIL)) (-4273 (($ $ $) 50)) (** (($ $ (-923)) NIL) (($ $ (-774)) 52)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4391 (((-774) $) 16))) +(((-1294 |#1| |#2|) (-13 (-1053) (-1285 |#1|) (-387 |#1| |#2|) (-619 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4391 ((-774) $)) (-15 -4390 (|#2| $)) (-15 -4389 (|#2| $)) (-15 -4393 ($ $)) (-15 -4388 (|#1| $ |#2|)) (-15 -4387 ((-112) $)) (-15 -4386 (|#1| $)) (-15 -4385 ((-112) $)) (-15 -4384 ($ $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-366)) (-15 -4383 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |#1| (-6 -4424)) (-6 -4424) |%noBranch|) (IF (|has| |#1| (-6 -4425)) (-6 -4425) |%noBranch|))) (-1053) (-849)) (T -1294)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-849)))) (-4393 (*1 *1 *1) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-849)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-1294 *3 *4)) (-4 *4 (-849)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-849)))) (-4390 (*1 *2 *1) (-12 (-4 *2 (-849)) (-5 *1 (-1294 *3 *2)) (-4 *3 (-1053)))) (-4389 (*1 *2 *1) (-12 (-4 *2 (-849)) (-5 *1 (-1294 *3 *2)) (-4 *3 (-1053)))) (-4388 (*1 *2 *1 *3) (-12 (-4 *2 (-1053)) (-5 *1 (-1294 *2 *3)) (-4 *3 (-849)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-849)))) (-4386 (*1 *2 *1) (-12 (-4 *2 (-1053)) (-5 *1 (-1294 *2 *3)) (-4 *3 (-849)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-849)))) (-4384 (*1 *1 *1) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-849)))) (-4383 (*1 *1 *1 *2) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-366)) (-4 *2 (-1053)) (-4 *3 (-849))))) +(-13 (-1053) (-1285 |#1|) (-387 |#1| |#2|) (-619 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4391 ((-774) $)) (-15 -4390 (|#2| $)) (-15 -4389 (|#2| $)) (-15 -4393 ($ $)) (-15 -4388 (|#1| $ |#2|)) (-15 -4387 ((-112) $)) (-15 -4386 (|#1| $)) (-15 -4385 ((-112) $)) (-15 -4384 ($ $)) (-15 -4392 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-366)) (-15 -4383 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |#1| (-6 -4424)) (-6 -4424) |%noBranch|) (IF (|has| |#1| (-6 -4425)) (-6 -4425) |%noBranch|))) +((-2970 (((-112) $ $) 27)) (-3610 (((-112) $) NIL)) (-4368 (((-644 |#1|) $) 132)) (-4396 (($ (-1286 |#1| |#2|)) 50)) (-4381 (($ $ (-774)) 38)) (-1408 (((-3 $ "failed") $ $) NIL)) (-4369 (($ $ $) 54 (|has| |#2| (-173))) (($ $ (-774)) 52 (|has| |#2| (-173)))) (-4158 (($) NIL T CONST)) (-4373 (($ $ |#1|) 114) (($ $ (-822 |#1|)) 115) (($ $ $) 26)) (-3579 (((-3 (-822 |#1|) "failed") $) NIL)) (-3578 (((-822 |#1|) $) NIL)) (-3892 (((-3 $ "failed") $) 122)) (-4385 (((-112) $) 117)) (-4384 (($ $) 118)) (-2575 (((-112) $) NIL)) (-4371 (((-112) $) NIL)) (-4372 (($ (-822 |#1|) |#2|) 20)) (-4370 (($ $) NIL)) (-4375 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4389 (((-822 |#1|) $) 123)) (-4390 (((-822 |#1|) $) 126)) (-4392 (($ (-1 |#2| |#2|) $) 131)) (-4374 (($ $ |#1|) 112) (($ $ (-822 |#1|)) 113) (($ $ $) 62)) (-3665 (((-1163) $) NIL)) (-3666 (((-1124) $) NIL)) (-4397 (((-1286 |#1| |#2|) $) 94)) (-4382 (((-774) $) 129)) (-4387 (((-112) $) 81)) (-4386 ((|#2| $) 32)) (-4380 (((-866) $) 73) (($ (-550)) 87) (($ |#2|) 85) (($ (-822 |#1|)) 18) (($ |#1|) 84)) (-4388 ((|#2| $ (-822 |#1|)) 116) ((|#2| $ $) 28)) (-3532 (((-774)) 120 T CONST)) (-3664 (((-112) $ $) NIL)) (-3512 (($) 15 T CONST)) (-4395 (((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-3069 (($) 33 T CONST)) (-3457 (((-112) $ $) 14)) (-4271 (($ $) 98) (($ $ $) 101)) (-4273 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-774)) 55)) (* (($ (-923) $) NIL) (($ (-774) $) 53) (($ (-550) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1295 |#1| |#2|) (-13 (-1293 |#1| |#2|) (-10 -8 (-15 -4397 ((-1286 |#1| |#2|) $)) (-15 -4396 ($ (-1286 |#1| |#2|))) (-15 -4395 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-853) (-1053)) (T -1295)) +((-4397 (*1 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1286 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *1 (-1295 *3 *4)))) (-4395 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1295 *3 *4))))) (-5 *1 (-1295 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053))))) +(-13 (-1293 |#1| |#2|) (-10 -8 (-15 -4397 ((-1286 |#1| |#2|) $)) (-15 -4396 ($ (-1286 |#1| |#2|))) (-15 -4395 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4398 (((-644 (-1158 |#1|)) (-1 (-644 (-1158 |#1|)) (-644 (-1158 |#1|))) (-550)) 20) (((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|))) 13))) +(((-1296 |#1|) (-10 -7 (-15 -4398 ((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|)))) (-15 -4398 ((-644 (-1158 |#1|)) (-1 (-644 (-1158 |#1|)) (-644 (-1158 |#1|))) (-550)))) (-1220)) (T -1296)) +((-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 (-1158 *5)) (-644 (-1158 *5)))) (-5 *4 (-550)) (-5 *2 (-644 (-1158 *5))) (-5 *1 (-1296 *5)) (-4 *5 (-1220)))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-1 (-1158 *4) (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1296 *4)) (-4 *4 (-1220))))) +(-10 -7 (-15 -4398 ((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|)))) (-15 -4398 ((-644 (-1158 |#1|)) (-1 (-644 (-1158 |#1|)) (-644 (-1158 |#1|))) (-550)))) +((-4400 (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|))) 174) (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112)) 173) (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112)) 172) (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112) (-112)) 171) (((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-1050 |#1| |#2|)) 156)) (-4399 (((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|))) 85) (((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)) (-112)) 84) (((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)) (-112) (-112)) 83)) (-4403 (((-644 (-1150 |#1| (-535 (-867 |#3|)) (-867 |#3|) (-783 |#1| (-867 |#3|)))) (-1050 |#1| |#2|)) 73)) (-4401 (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|))) 140) (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112)) 139) (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112)) 138) (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112) (-112)) 137) (((-644 (-644 (-1028 (-411 |#1|)))) (-1050 |#1| |#2|)) 132)) (-4402 (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|))) 145) (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112)) 144) (((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112)) 143) (((-644 (-644 (-1028 (-411 |#1|)))) (-1050 |#1| |#2|)) 142)) (-4404 (((-644 (-783 |#1| (-867 |#3|))) (-1150 |#1| (-535 (-867 |#3|)) (-867 |#3|) (-783 |#1| (-867 |#3|)))) 111) (((-1175 (-1028 (-411 |#1|))) (-1175 |#1|)) 102) (((-950 (-1028 (-411 |#1|))) (-783 |#1| (-867 |#3|))) 109) (((-950 (-1028 (-411 |#1|))) (-950 |#1|)) 107) (((-783 |#1| (-867 |#3|)) (-783 |#1| (-867 |#2|))) 33))) +(((-1297 |#1| |#2| |#3|) (-10 -7 (-15 -4399 ((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4399 ((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)) (-112))) (-15 -4399 ((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-1050 |#1| |#2|))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112) (-112))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-1050 |#1| |#2|))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112) (-112))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-1050 |#1| |#2|))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)))) (-15 -4403 ((-644 (-1150 |#1| (-535 (-867 |#3|)) (-867 |#3|) (-783 |#1| (-867 |#3|)))) (-1050 |#1| |#2|))) (-15 -4404 ((-783 |#1| (-867 |#3|)) (-783 |#1| (-867 |#2|)))) (-15 -4404 ((-950 (-1028 (-411 |#1|))) (-950 |#1|))) (-15 -4404 ((-950 (-1028 (-411 |#1|))) (-783 |#1| (-867 |#3|)))) (-15 -4404 ((-1175 (-1028 (-411 |#1|))) (-1175 |#1|))) (-15 -4404 ((-644 (-783 |#1| (-867 |#3|))) (-1150 |#1| (-535 (-867 |#3|)) (-867 |#3|) (-783 |#1| (-867 |#3|)))))) (-13 (-851) (-309) (-147) (-1024)) (-644 (-1181)) (-644 (-1181))) (T -1297)) +((-4404 (*1 *2 *3) (-12 (-5 *3 (-1150 *4 (-535 (-867 *6)) (-867 *6) (-783 *4 (-867 *6)))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-783 *4 (-867 *6)))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-1175 (-1028 (-411 *4)))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-783 *4 (-867 *6))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *6 (-644 (-1181))) (-5 *2 (-950 (-1028 (-411 *4)))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-950 (-1028 (-411 *4)))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-783 *4 (-867 *5))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *5 (-644 (-1181))) (-5 *2 (-783 *4 (-867 *6))) (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *5 (-644 (-1181))) (-5 *2 (-644 (-1150 *4 (-535 (-867 *6)) (-867 *6) (-783 *4 (-867 *6))))) (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *4))))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) (-4402 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4402 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *5 (-644 (-1181))) (-5 *2 (-644 (-644 (-1028 (-411 *4))))) (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *4))))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) (-4401 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4401 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4401 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *5 (-644 (-1181))) (-5 *2 (-644 (-644 (-1028 (-411 *4))))) (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) (-4400 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *4)) (|:| -3646 (-644 (-950 *4)))))) (-5 *1 (-1297 *4 *5 *6)) (-5 *3 (-644 (-950 *4))) (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) (-4400 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) (-5 *1 (-1297 *5 *6 *7)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4400 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) (-5 *1 (-1297 *5 *6 *7)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4400 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) (-5 *1 (-1297 *5 *6 *7)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *5 (-644 (-1181))) (-5 *2 (-644 (-2 (|:| -1917 (-1175 *4)) (|:| -3646 (-644 (-950 *4)))))) (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-1050 *4 *5))) (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) (-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) (-4399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181)))))) +(-10 -7 (-15 -4399 ((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4399 ((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)) (-112))) (-15 -4399 ((-644 (-1050 |#1| |#2|)) (-644 (-950 |#1|)))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-1050 |#1| |#2|))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112) (-112))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)) (-112))) (-15 -4400 ((-644 (-2 (|:| -1917 (-1175 |#1|)) (|:| -3646 (-644 (-950 |#1|))))) (-644 (-950 |#1|)))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-1050 |#1| |#2|))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112) (-112))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112))) (-15 -4401 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-1050 |#1| |#2|))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112) (-112))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)) (-112))) (-15 -4402 ((-644 (-644 (-1028 (-411 |#1|)))) (-644 (-950 |#1|)))) (-15 -4403 ((-644 (-1150 |#1| (-535 (-867 |#3|)) (-867 |#3|) (-783 |#1| (-867 |#3|)))) (-1050 |#1| |#2|))) (-15 -4404 ((-783 |#1| (-867 |#3|)) (-783 |#1| (-867 |#2|)))) (-15 -4404 ((-950 (-1028 (-411 |#1|))) (-950 |#1|))) (-15 -4404 ((-950 (-1028 (-411 |#1|))) (-783 |#1| (-867 |#3|)))) (-15 -4404 ((-1175 (-1028 (-411 |#1|))) (-1175 |#1|))) (-15 -4404 ((-644 (-783 |#1| (-867 |#3|))) (-1150 |#1| (-535 (-867 |#3|)) (-867 |#3|) (-783 |#1| (-867 |#3|)))))) +((-4407 (((-3 (-1270 (-411 (-550))) "failed") (-1270 |#1|) |#1|) 21)) (-4405 (((-112) (-1270 |#1|)) 12)) (-4406 (((-3 (-1270 (-550)) "failed") (-1270 |#1|)) 16))) +(((-1298 |#1|) (-10 -7 (-15 -4405 ((-112) (-1270 |#1|))) (-15 -4406 ((-3 (-1270 (-550)) "failed") (-1270 |#1|))) (-15 -4407 ((-3 (-1270 (-411 (-550))) "failed") (-1270 |#1|) |#1|))) (-642 (-550))) (T -1298)) +((-4407 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 (-550))) (-5 *2 (-1270 (-411 (-550)))) (-5 *1 (-1298 *4)))) (-4406 (*1 *2 *3) (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 (-550))) (-5 *2 (-1270 (-550))) (-5 *1 (-1298 *4)))) (-4405 (*1 *2 *3) (-12 (-5 *3 (-1270 *4)) (-4 *4 (-642 (-550))) (-5 *2 (-112)) (-5 *1 (-1298 *4))))) +(-10 -7 (-15 -4405 ((-112) (-1270 |#1|))) (-15 -4406 ((-3 (-1270 (-550)) "failed") (-1270 |#1|))) (-15 -4407 ((-3 (-1270 (-411 (-550))) "failed") (-1270 |#1|) |#1|))) +((-2970 (((-112) $ $) NIL)) (-3610 (((-112) $) 11)) (-1408 (((-3 $ "failed") $ $) NIL)) (-3542 (((-774)) 8)) (-4158 (($) NIL T CONST)) (-3892 (((-3 $ "failed") $) 58)) (-3397 (($) 49)) (-2575 (((-112) $) 57)) (-3870 (((-3 $ "failed") $) 40)) (-2190 (((-923) $) 15)) (-3665 (((-1163) $) NIL)) (-3871 (($) 32 T CONST)) (-2565 (($ (-923)) 50)) (-3666 (((-1124) $) NIL)) (-4404 (((-550) $) 13)) (-4380 (((-866) $) 27) (($ (-550)) 24)) (-3532 (((-774)) 9 T CONST)) (-3664 (((-112) $ $) 60)) (-3512 (($) 29 T CONST)) (-3069 (($) 31 T CONST)) (-3457 (((-112) $ $) 38)) (-4271 (($ $) 52) (($ $ $) 47)) (-4273 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-774)) 54)) (* (($ (-923) $) NIL) (($ (-774) $) NIL) (($ (-550) $) 44) (($ $ $) 43))) +(((-1299 |#1|) (-13 (-173) (-371) (-617 (-550)) (-1155)) (-923)) (T -1299)) +NIL +(-13 (-173) (-371) (-617 (-550)) (-1155)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3214072 3214077 3214082 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3214057 3214062 3214067 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3214042 3214047 3214052 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3214027 3214032 3214037 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1299 3213170 3213902 3213979 "ZMOD" 3213984 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1298 3212280 3212444 3212653 "ZLINDEP" 3213002 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1297 3201580 3203348 3205320 "ZDSOLVE" 3210410 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1296 3200826 3200967 3201156 "YSTREAM" 3201426 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1295 3198600 3200127 3200331 "XRPOLY" 3200669 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1294 3195153 3196471 3197046 "XPR" 3198072 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1293 3192806 3194174 3194229 "XPOLYC" 3194517 NIL XPOLYC (NIL T T) -9 NIL 3194630 NIL) (-1292 3190536 3192146 3192350 "XPOLY" 3192646 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1291 3186914 3189053 3189441 "XPBWPOLY" 3190194 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1290 3182110 3183399 3183454 "XFALG" 3185626 NIL XFALG (NIL T T) -9 NIL 3186415 NIL) (-1289 3177807 3180100 3180142 "XF" 3180763 NIL XF (NIL T) -9 NIL 3181163 NIL) (-1288 3177428 3177516 3177685 "XF-" 3177690 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1287 3176561 3176665 3176870 "XEXPPKG" 3177320 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1286 3174670 3176411 3176507 "XDPOLY" 3176512 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1285 3173477 3174077 3174120 "XALG" 3174125 NIL XALG (NIL T) -9 NIL 3174236 NIL) (-1284 3166946 3171454 3171948 "WUTSET" 3173069 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1283 3165202 3165998 3166321 "WP" 3166757 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1282 3164804 3165024 3165094 "WHILEAST" 3165154 T WHILEAST (NIL) -8 NIL NIL NIL) (-1281 3164276 3164521 3164615 "WHEREAST" 3164732 T WHEREAST (NIL) -8 NIL NIL NIL) (-1280 3163162 3163360 3163655 "WFFINTBS" 3164073 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1279 3161066 3161493 3161955 "WEIER" 3162734 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1278 3160112 3160562 3160604 "VSPACE" 3160740 NIL VSPACE (NIL T) -9 NIL 3160814 NIL) (-1277 3159950 3159977 3160068 "VSPACE-" 3160073 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1276 3159759 3159801 3159869 "VOID" 3159904 T VOID (NIL) -8 NIL NIL NIL) (-1275 3156183 3156822 3157559 "VIEWDEF" 3159044 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1274 3145487 3147731 3149904 "VIEW3D" 3154032 T VIEW3D (NIL) -8 NIL NIL NIL) (-1273 3137738 3139398 3140977 "VIEW2D" 3143930 T VIEW2D (NIL) -8 NIL NIL NIL) (-1272 3135874 3136233 3136639 "VIEW" 3137354 T VIEW (NIL) -7 NIL NIL NIL) (-1271 3134451 3134710 3135028 "VECTOR2" 3135604 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1270 3129804 3134221 3134313 "VECTOR" 3134394 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1269 3123278 3127585 3127628 "VECTCAT" 3128623 NIL VECTCAT (NIL T) -9 NIL 3129210 NIL) (-1268 3122292 3122546 3122936 "VECTCAT-" 3122941 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1267 3121746 3121943 3122063 "VARIABLE" 3122207 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1266 3121679 3121684 3121714 "UTYPE" 3121719 T UTYPE (NIL) -9 NIL NIL NIL) (-1265 3120509 3120663 3120925 "UTSODETL" 3121505 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1264 3117949 3118409 3118933 "UTSODE" 3120050 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1263 3108823 3114190 3114233 "UTSCAT" 3115345 NIL UTSCAT (NIL T) -9 NIL 3116103 NIL) (-1262 3106170 3106893 3107882 "UTSCAT-" 3107887 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1261 3105797 3105840 3105973 "UTS2" 3106121 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1260 3097634 3103423 3103912 "UTS" 3105366 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1259 3091861 3094472 3094515 "URAGG" 3096585 NIL URAGG (NIL T) -9 NIL 3097308 NIL) (-1258 3088803 3089665 3090787 "URAGG-" 3090792 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1257 3084519 3087438 3087903 "UPXSSING" 3088467 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1256 3077594 3084423 3084495 "UPXSCONS" 3084500 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1255 3067341 3074132 3074194 "UPXSCCA" 3074768 NIL UPXSCCA (NIL T T) -9 NIL 3075001 NIL) (-1254 3066979 3067064 3067238 "UPXSCCA-" 3067243 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1253 3056578 3063142 3063185 "UPXSCAT" 3063833 NIL UPXSCAT (NIL T) -9 NIL 3064442 NIL) (-1252 3056008 3056087 3056266 "UPXS2" 3056493 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1251 3048078 3055255 3055528 "UPXS" 3055793 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3046735 3046987 3047337 "UPSQFREE" 3047822 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1249 3040156 3043213 3043268 "UPSCAT" 3044429 NIL UPSCAT (NIL T T) -9 NIL 3045203 NIL) (-1248 3039360 3039567 3039894 "UPSCAT-" 3039899 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1247 3038987 3039030 3039163 "UPOLYC2" 3039311 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1246 3024675 3032410 3032453 "UPOLYC" 3034554 NIL UPOLYC (NIL T) -9 NIL 3035775 NIL) (-1245 3016039 3018453 3021588 "UPOLYC-" 3021593 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1244 3015378 3015485 3015649 "UPMP" 3015928 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1243 3014931 3015012 3015151 "UPDIVP" 3015291 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1242 3013499 3013748 3014064 "UPDECOMP" 3014680 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1241 3012734 3012846 3013031 "UPCDEN" 3013383 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1240 3012253 3012322 3012471 "UP2" 3012659 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1239 3004104 3011936 3012065 "UP" 3012172 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1238 3003319 3003446 3003651 "UNISEG2" 3003947 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1237 3001786 3002523 3002800 "UNISEG" 3003077 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1236 3000846 3001026 3001252 "UNIFACT" 3001602 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1235 2988860 3000750 3000822 "ULSCONS" 3000827 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1234 2970895 2982864 2982926 "ULSCCAT" 2983564 NIL ULSCCAT (NIL T T) -9 NIL 2983852 NIL) (-1233 2969981 2970214 2970590 "ULSCCAT-" 2970595 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1232 2959357 2965835 2965878 "ULSCAT" 2966741 NIL ULSCAT (NIL T) -9 NIL 2967472 NIL) (-1231 2958787 2958866 2959045 "ULS2" 2959272 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1230 2942735 2957964 2958215 "ULS" 2958594 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1229 2941862 2942372 2942479 "UINT8" 2942590 T UINT8 (NIL) -8 NIL NIL 2942675) (-1228 2940988 2941498 2941605 "UINT64" 2941716 T UINT64 (NIL) -8 NIL NIL 2941801) (-1227 2940114 2940624 2940731 "UINT32" 2940842 T UINT32 (NIL) -8 NIL NIL 2940927) (-1226 2939240 2939750 2939857 "UINT16" 2939968 T UINT16 (NIL) -8 NIL NIL 2940053) (-1225 2937543 2938500 2938530 "UFD" 2938742 T UFD (NIL) -9 NIL 2938856 NIL) (-1224 2937337 2937383 2937478 "UFD-" 2937483 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1223 2936419 2936602 2936818 "UDVO" 2937143 T UDVO (NIL) -7 NIL NIL NIL) (-1222 2934235 2934644 2935115 "UDPO" 2935983 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1221 2933995 2934190 2934221 "TYPEAST" 2934226 T TYPEAST (NIL) -8 NIL NIL NIL) (-1220 2933928 2933933 2933963 "TYPE" 2933968 T TYPE (NIL) -9 NIL NIL NIL) (-1219 2932899 2933101 2933341 "TWOFACT" 2933722 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1218 2931922 2932308 2932543 "TUPLE" 2932699 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1217 2929613 2930132 2930671 "TUBETOOL" 2931405 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1216 2928462 2928667 2928908 "TUBE" 2929406 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1215 2917102 2921221 2921318 "TSETCAT" 2926587 NIL TSETCAT (NIL T T T T) -9 NIL 2928118 NIL) (-1214 2911834 2913434 2915325 "TSETCAT-" 2915330 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1213 2906563 2910806 2911089 "TS" 2911586 NIL TS (NIL T) -8 NIL NIL NIL) (-1212 2901202 2902049 2902978 "TRMANIP" 2905699 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1211 2900643 2900706 2900869 "TRIMAT" 2901134 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1210 2898509 2898746 2899103 "TRIGMNIP" 2900392 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1209 2898029 2898142 2898172 "TRIGCAT" 2898385 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1208 2897698 2897777 2897918 "TRIGCAT-" 2897923 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1207 2894544 2896556 2896837 "TREE" 2897452 NIL TREE (NIL T) -8 NIL NIL NIL) (-1206 2893818 2894346 2894376 "TRANFUN" 2894411 T TRANFUN (NIL) -9 NIL 2894477 NIL) (-1205 2893097 2893288 2893568 "TRANFUN-" 2893573 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1204 2892901 2892933 2892994 "TOPSP" 2893058 T TOPSP (NIL) -7 NIL NIL NIL) (-1203 2892249 2892364 2892518 "TOOLSIGN" 2892782 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1202 2890883 2891426 2891665 "TEXTFILE" 2892032 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1201 2890664 2890695 2890767 "TEX1" 2890846 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1200 2888576 2889117 2889546 "TEX" 2890257 T TEX (NIL) -8 NIL NIL NIL) (-1199 2888224 2888287 2888377 "TEMUTL" 2888508 T TEMUTL (NIL) -7 NIL NIL NIL) (-1198 2886378 2886658 2886983 "TBCMPPK" 2887947 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1197 2878157 2884538 2884594 "TBAGG" 2884994 NIL TBAGG (NIL T T) -9 NIL 2885205 NIL) (-1196 2873227 2874715 2876469 "TBAGG-" 2876474 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1195 2872611 2872718 2872863 "TANEXP" 2873116 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1194 2872023 2872122 2872260 "TABLEAU" 2872508 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1193 2865415 2871880 2871973 "TABLE" 2871978 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1192 2860023 2861243 2862491 "TABLBUMP" 2864201 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1191 2859245 2859392 2859573 "SYSTEM" 2859864 T SYSTEM (NIL) -8 NIL NIL NIL) (-1190 2855704 2856403 2857186 "SYSSOLP" 2858496 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1189 2855502 2855659 2855690 "SYSPTR" 2855695 T SYSPTR (NIL) -8 NIL NIL NIL) (-1188 2854546 2855051 2855170 "SYSNNI" 2855356 NIL SYSNNI (NIL NIL) -8 NIL NIL 2855441) (-1187 2853853 2854312 2854391 "SYSINT" 2854451 NIL SYSINT (NIL NIL) -8 NIL NIL 2854496) (-1186 2850197 2851131 2851841 "SYNTAX" 2853165 T SYNTAX (NIL) -8 NIL NIL NIL) (-1185 2847355 2847957 2848589 "SYMTAB" 2849587 T SYMTAB (NIL) -8 NIL NIL NIL) (-1184 2842628 2843524 2844501 "SYMS" 2846400 T SYMS (NIL) -8 NIL NIL NIL) (-1183 2839873 2842089 2842319 "SYMPOLY" 2842436 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1182 2839390 2839465 2839588 "SYMFUNC" 2839785 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1181 2835410 2836702 2837515 "SYMBOL" 2838599 T SYMBOL (NIL) -8 NIL NIL NIL) (-1180 2828949 2830638 2832358 "SWITCH" 2833712 T SWITCH (NIL) -8 NIL NIL NIL) (-1179 2822183 2827770 2828073 "SUTS" 2828704 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1178 2814253 2821430 2821703 "SUPXS" 2821968 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1177 2813412 2813539 2813756 "SUPFRACF" 2814121 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1176 2813033 2813092 2813205 "SUP2" 2813347 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1175 2804832 2812651 2812777 "SUP" 2812942 NIL SUP (NIL T) -8 NIL NIL NIL) (-1174 2803280 2803554 2803910 "SUMRF" 2804531 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1173 2802615 2802681 2802873 "SUMFS" 2803201 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1172 2786598 2801792 2802043 "SULS" 2802422 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1171 2786200 2786420 2786490 "SUCHTAST" 2786550 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1170 2785495 2785725 2785865 "SUCH" 2786108 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1169 2779361 2780401 2781360 "SUBSPACE" 2784583 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1168 2778791 2778881 2779045 "SUBRESP" 2779249 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1167 2772964 2774084 2775231 "STTFNC" 2777691 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1166 2766330 2767629 2768940 "STTF" 2771700 NIL STTF (NIL T) -7 NIL NIL NIL) (-1165 2757641 2759512 2761306 "STTAYLOR" 2764571 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1164 2750773 2757505 2757588 "STRTBL" 2757593 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1163 2746137 2750728 2750759 "STRING" 2750764 T STRING (NIL) -8 NIL NIL NIL) (-1162 2740998 2745510 2745540 "STRICAT" 2745599 T STRICAT (NIL) -9 NIL 2745661 NIL) (-1161 2740508 2740585 2740729 "STREAM3" 2740915 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1160 2739490 2739673 2739908 "STREAM2" 2740321 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1159 2739178 2739230 2739323 "STREAM1" 2739432 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1158 2731933 2736797 2737408 "STREAM" 2738602 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1157 2730949 2731130 2731361 "STINPROD" 2731749 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1156 2730136 2730438 2730586 "STEPAST" 2730823 T STEPAST (NIL) -8 NIL NIL NIL) (-1155 2729688 2729898 2729928 "STEP" 2730008 T STEP (NIL) -9 NIL 2730086 NIL) (-1154 2723122 2729587 2729664 "STBL" 2729669 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1153 2718250 2722343 2722386 "STAGG" 2722539 NIL STAGG (NIL T) -9 NIL 2722628 NIL) (-1152 2715958 2716558 2717428 "STAGG-" 2717433 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1151 2714105 2715728 2715820 "STACK" 2715901 NIL STACK (NIL T) -8 NIL NIL NIL) (-1150 2706827 2712246 2712702 "SREGSET" 2713735 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1149 2699252 2700621 2702134 "SRDCMPK" 2705433 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1148 2692169 2696692 2696722 "SRAGG" 2698025 T SRAGG (NIL) -9 NIL 2698633 NIL) (-1147 2691186 2691441 2691820 "SRAGG-" 2691825 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1146 2685650 2690133 2690554 "SQMATRIX" 2690812 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1145 2679336 2682368 2683095 "SPLTREE" 2684995 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1144 2675299 2675992 2676638 "SPLNODE" 2678762 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1143 2674346 2674579 2674609 "SPFCAT" 2675053 T SPFCAT (NIL) -9 NIL NIL NIL) (-1142 2673083 2673293 2673557 "SPECOUT" 2674104 T SPECOUT (NIL) -7 NIL NIL NIL) (-1141 2664193 2666065 2666095 "SPADXPT" 2670771 T SPADXPT (NIL) -9 NIL 2672935 NIL) (-1140 2663954 2663994 2664063 "SPADPRSR" 2664146 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1139 2662003 2663909 2663940 "SPADAST" 2663945 T SPADAST (NIL) -8 NIL NIL NIL) (-1138 2653948 2655721 2655764 "SPACEC" 2660137 NIL SPACEC (NIL T) -9 NIL 2661953 NIL) (-1137 2652078 2653880 2653929 "SPACE3" 2653934 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1136 2650830 2651001 2651292 "SORTPAK" 2651883 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1135 2648922 2649225 2649637 "SOLVETRA" 2650494 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1134 2647972 2648194 2648455 "SOLVESER" 2648695 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1133 2643276 2644164 2645159 "SOLVERAD" 2647024 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1132 2639091 2639700 2640429 "SOLVEFOR" 2642643 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1131 2633388 2638440 2638537 "SNTSCAT" 2638542 NIL SNTSCAT (NIL T T T T) -9 NIL 2638612 NIL) (-1130 2627494 2631711 2632102 "SMTS" 2633078 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1129 2622205 2627382 2627459 "SMP" 2627464 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1128 2620364 2620665 2621063 "SMITH" 2621902 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1127 2613075 2617267 2617370 "SMATCAT" 2618724 NIL SMATCAT (NIL NIL T T T) -9 NIL 2619274 NIL) (-1126 2610036 2610852 2612023 "SMATCAT-" 2612028 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1125 2607702 2609272 2609315 "SKAGG" 2609576 NIL SKAGG (NIL T) -9 NIL 2609711 NIL) (-1124 2604015 2607118 2607313 "SINT" 2607500 T SINT (NIL) -8 NIL NIL 2607673) (-1123 2603787 2603825 2603891 "SIMPAN" 2603971 T SIMPAN (NIL) -7 NIL NIL NIL) (-1122 2602646 2602860 2603128 "SIGNRF" 2603553 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1121 2601500 2601644 2601921 "SIGNEF" 2602482 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1120 2600806 2601083 2601207 "SIGAST" 2601398 T SIGAST (NIL) -8 NIL NIL NIL) (-1119 2600085 2600341 2600481 "SIG" 2600688 T SIG (NIL) -8 NIL NIL NIL) (-1118 2597775 2598229 2598735 "SHP" 2599626 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1117 2591634 2597676 2597752 "SHDP" 2597757 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1116 2591207 2591399 2591429 "SGROUP" 2591522 T SGROUP (NIL) -9 NIL 2591584 NIL) (-1115 2591065 2591091 2591164 "SGROUP-" 2591169 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1114 2587900 2588598 2589321 "SGCF" 2590364 T SGCF (NIL) -7 NIL NIL NIL) (-1113 2582295 2587347 2587444 "SFRTCAT" 2587449 NIL SFRTCAT (NIL T T T T) -9 NIL 2587488 NIL) (-1112 2575716 2576734 2577870 "SFRGCD" 2581278 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1111 2568842 2569915 2571101 "SFQCMPK" 2574649 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1110 2568462 2568551 2568662 "SFORT" 2568783 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1109 2567580 2568302 2568423 "SEXOF" 2568428 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1108 2563093 2563808 2563903 "SEXCAT" 2566840 NIL SEXCAT (NIL T T T T T) -9 NIL 2567418 NIL) (-1107 2562200 2562974 2563042 "SEX" 2563047 T SEX (NIL) -8 NIL NIL NIL) (-1106 2560430 2560917 2561220 "SETMN" 2561943 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1105 2559926 2560078 2560108 "SETCAT" 2560284 T SETCAT (NIL) -9 NIL 2560394 NIL) (-1104 2559618 2559696 2559826 "SETCAT-" 2559831 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1103 2555979 2558079 2558122 "SETAGG" 2558992 NIL SETAGG (NIL T) -9 NIL 2559332 NIL) (-1102 2555437 2555553 2555790 "SETAGG-" 2555795 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1101 2552590 2555371 2555419 "SET" 2555424 NIL SET (NIL T) -8 NIL NIL NIL) (-1100 2552033 2552286 2552387 "SEQAST" 2552511 T SEQAST (NIL) -8 NIL NIL NIL) (-1099 2551232 2551526 2551587 "SEGXCAT" 2551873 NIL SEGXCAT (NIL T T) -9 NIL 2551993 NIL) (-1098 2550211 2550425 2550468 "SEGCAT" 2550990 NIL SEGCAT (NIL T) -9 NIL 2551211 NIL) (-1097 2549832 2549891 2550004 "SEGBIND2" 2550146 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1096 2548764 2549195 2549403 "SEGBIND" 2549659 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1095 2548337 2548565 2548642 "SEGAST" 2548709 T SEGAST (NIL) -8 NIL NIL NIL) (-1094 2547556 2547682 2547886 "SEG2" 2548181 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1093 2546562 2547222 2547404 "SEG" 2547409 NIL SEG (NIL T) -8 NIL NIL NIL) (-1092 2545972 2546497 2546544 "SDVAR" 2546549 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1091 2538540 2545742 2545872 "SDPOL" 2545877 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1090 2537133 2537399 2537718 "SCPKG" 2538255 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1089 2536297 2536469 2536661 "SCOPE" 2536963 T SCOPE (NIL) -8 NIL NIL NIL) (-1088 2535517 2535651 2535830 "SCACHE" 2536152 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1087 2535163 2535349 2535379 "SASTCAT" 2535384 T SASTCAT (NIL) -9 NIL 2535397 NIL) (-1086 2534650 2534998 2535074 "SAOS" 2535109 T SAOS (NIL) -8 NIL NIL NIL) (-1085 2534215 2534250 2534423 "SAERFFC" 2534609 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1084 2533808 2533843 2534002 "SAEFACT" 2534174 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1083 2527756 2533705 2533785 "SAE" 2533790 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1082 2526077 2526391 2526792 "RURPK" 2527422 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1081 2524714 2525020 2525325 "RULESET" 2525911 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1080 2524326 2524508 2524591 "RULECOLD" 2524666 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1079 2521549 2522079 2522537 "RULE" 2524007 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1078 2521339 2521367 2521438 "RTVALUE" 2521500 T RTVALUE (NIL) -8 NIL NIL NIL) (-1077 2520810 2521056 2521150 "RSTRCAST" 2521267 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1076 2515658 2516453 2517373 "RSETGCD" 2520009 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1075 2504915 2509967 2510064 "RSETCAT" 2514183 NIL RSETCAT (NIL T T T T) -9 NIL 2515280 NIL) (-1074 2502842 2503381 2504205 "RSETCAT-" 2504210 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1073 2495228 2496604 2498124 "RSDCMPK" 2501441 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1072 2493207 2493674 2493748 "RRCC" 2494834 NIL RRCC (NIL T T) -9 NIL 2495178 NIL) (-1071 2492558 2492732 2493011 "RRCC-" 2493016 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1070 2492001 2492254 2492355 "RPTAST" 2492479 T RPTAST (NIL) -8 NIL NIL NIL) (-1069 2465883 2475209 2475276 "RPOLCAT" 2485940 NIL RPOLCAT (NIL T T T) -9 NIL 2489099 NIL) (-1068 2457417 2459745 2462855 "RPOLCAT-" 2462860 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1067 2448350 2455628 2456110 "ROUTINE" 2456957 T ROUTINE (NIL) -8 NIL NIL NIL) (-1066 2445150 2447976 2448116 "ROMAN" 2448232 T ROMAN (NIL) -8 NIL NIL NIL) (-1065 2443396 2444010 2444270 "ROIRC" 2444955 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1064 2439632 2441912 2441942 "RNS" 2442246 T RNS (NIL) -9 NIL 2442520 NIL) (-1063 2438141 2438524 2439058 "RNS-" 2439133 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1062 2437144 2437506 2437708 "RNGBIND" 2437992 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1061 2436547 2436955 2436985 "RNG" 2436990 T RNG (NIL) -9 NIL 2437011 NIL) (-1060 2435946 2436334 2436377 "RMODULE" 2436382 NIL RMODULE (NIL T) -9 NIL 2436409 NIL) (-1059 2434782 2434876 2435212 "RMCAT2" 2435847 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1058 2431632 2434128 2434425 "RMATRIX" 2434544 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1057 2424459 2426719 2426834 "RMATCAT" 2430193 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2431175 NIL) (-1056 2423834 2423981 2424288 "RMATCAT-" 2424293 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1055 2423235 2423456 2423499 "RLINSET" 2423693 NIL RLINSET (NIL T) -9 NIL 2423784 NIL) (-1054 2422802 2422877 2423005 "RINTERP" 2423154 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1053 2421860 2422414 2422444 "RING" 2422500 T RING (NIL) -9 NIL 2422592 NIL) (-1052 2421652 2421696 2421793 "RING-" 2421798 NIL RING- (NIL T) -8 NIL NIL NIL) (-1051 2420493 2420730 2420988 "RIDIST" 2421416 T RIDIST (NIL) -7 NIL NIL NIL) (-1050 2411809 2419961 2420167 "RGCHAIN" 2420341 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1049 2411159 2411565 2411606 "RGBCSPC" 2411664 NIL RGBCSPC (NIL T) -9 NIL 2411716 NIL) (-1048 2410317 2410698 2410739 "RGBCMDL" 2410971 NIL RGBCMDL (NIL T) -9 NIL 2411085 NIL) (-1047 2409963 2410026 2410129 "RFFACTOR" 2410248 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1046 2409688 2409723 2409820 "RFFACT" 2409922 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1045 2407805 2408169 2408551 "RFDIST" 2409328 T RFDIST (NIL) -7 NIL NIL NIL) (-1044 2404799 2405413 2406083 "RF" 2407169 NIL RF (NIL T) -7 NIL NIL NIL) (-1043 2404252 2404344 2404507 "RETSOL" 2404701 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1042 2403888 2403968 2404011 "RETRACT" 2404144 NIL RETRACT (NIL T) -9 NIL 2404231 NIL) (-1041 2403737 2403762 2403849 "RETRACT-" 2403854 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1040 2403339 2403559 2403629 "RETAST" 2403689 T RETAST (NIL) -8 NIL NIL NIL) (-1039 2396079 2402992 2403119 "RESULT" 2403234 T RESULT (NIL) -8 NIL NIL NIL) (-1038 2394670 2395348 2395547 "RESRING" 2395982 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1037 2394306 2394355 2394453 "RESLATC" 2394607 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1036 2394011 2394046 2394153 "REPSQ" 2394265 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1035 2393708 2393743 2393854 "REPDB" 2393970 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1034 2387608 2388997 2390220 "REP2" 2392520 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1033 2383985 2384666 2385474 "REP1" 2386835 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1032 2381407 2381987 2382589 "REP" 2383405 T REP (NIL) -7 NIL NIL NIL) (-1031 2374130 2379548 2380004 "REGSET" 2381037 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1030 2372895 2373278 2373528 "REF" 2373915 NIL REF (NIL T) -8 NIL NIL NIL) (-1029 2372272 2372375 2372542 "REDORDER" 2372779 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1028 2368271 2371485 2371712 "RECLOS" 2372100 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1027 2367323 2367504 2367719 "REALSOLV" 2368078 T REALSOLV (NIL) -7 NIL NIL NIL) (-1026 2363806 2364608 2365492 "REAL0Q" 2366488 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1025 2359407 2360395 2361456 "REAL0" 2362787 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1024 2359253 2359294 2359324 "REAL" 2359329 T REAL (NIL) -9 NIL 2359364 NIL) (-1023 2358724 2358970 2359064 "RDUCEAST" 2359181 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1022 2358129 2358201 2358408 "RDIV" 2358646 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1021 2357197 2357371 2357584 "RDIST" 2357951 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1020 2355794 2356081 2356453 "RDETRS" 2356905 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1019 2353606 2354060 2354598 "RDETR" 2355336 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1018 2352231 2352509 2352906 "RDEEFS" 2353322 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1017 2350740 2351046 2351471 "RDEEF" 2351919 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1016 2344810 2347721 2347751 "RCFIELD" 2349046 T RCFIELD (NIL) -9 NIL 2349777 NIL) (-1015 2342874 2343378 2344074 "RCFIELD-" 2344149 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1014 2339143 2340975 2341018 "RCAGG" 2342102 NIL RCAGG (NIL T) -9 NIL 2342567 NIL) (-1013 2338771 2338865 2339028 "RCAGG-" 2339033 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1012 2338106 2338218 2338383 "RATRET" 2338655 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1011 2337659 2337726 2337847 "RATFACT" 2338034 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1010 2336967 2337087 2337239 "RANDSRC" 2337529 T RANDSRC (NIL) -7 NIL NIL NIL) (-1009 2336701 2336745 2336818 "RADUTIL" 2336916 T RADUTIL (NIL) -7 NIL NIL NIL) (-1008 2329838 2335534 2335844 "RADIX" 2336425 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1007 2321468 2329680 2329810 "RADFF" 2329815 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1006 2321115 2321190 2321220 "RADCAT" 2321380 T RADCAT (NIL) -9 NIL NIL NIL) (-1005 2320897 2320945 2321045 "RADCAT-" 2321050 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1004 2318997 2320669 2320760 "QUEUE" 2320841 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1003 2318628 2318671 2318802 "QUATCT2" 2318948 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1002 2312084 2315422 2315464 "QUATCAT" 2316255 NIL QUATCAT (NIL T) -9 NIL 2317021 NIL) (-1001 2308244 2309274 2310657 "QUATCAT-" 2310753 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1000 2304788 2308177 2308225 "QUAT" 2308230 NIL QUAT (NIL T) -8 NIL NIL NIL) (-999 2302261 2303872 2303913 "QUAGG" 2304288 NIL QUAGG (NIL T) -9 NIL 2304463 NIL) (-998 2301866 2302086 2302154 "QQUTAST" 2302213 T QQUTAST (NIL) -8 NIL NIL NIL) (-997 2300764 2301264 2301436 "QFORM" 2301738 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-996 2300402 2300445 2300572 "QFCAT2" 2300715 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-995 2291423 2296646 2296686 "QFCAT" 2297344 NIL QFCAT (NIL T) -9 NIL 2298345 NIL) (-994 2287031 2288220 2289799 "QFCAT-" 2289893 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-993 2286491 2286601 2286731 "QEQUAT" 2286921 T QEQUAT (NIL) -8 NIL NIL NIL) (-992 2279637 2280710 2281894 "QCMPACK" 2285424 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-991 2278882 2279056 2279288 "QALGSET2" 2279457 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-990 2276437 2276883 2277309 "QALGSET" 2278539 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-989 2275127 2275351 2275668 "PWFFINTB" 2276210 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-988 2273326 2273494 2273848 "PUSHVAR" 2274941 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-987 2269244 2270298 2270339 "PTRANFN" 2272223 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-986 2267646 2267937 2268259 "PTPACK" 2268955 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-985 2267278 2267335 2267444 "PTFUNC2" 2267583 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-984 2261755 2266150 2266191 "PTCAT" 2266487 NIL PTCAT (NIL T) -9 NIL 2266640 NIL) (-983 2261413 2261448 2261572 "PSQFR" 2261714 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-982 2260008 2260306 2260640 "PSEUDLIN" 2261111 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-981 2246771 2249142 2251466 "PSETPK" 2257768 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-980 2239789 2242529 2242625 "PSETCAT" 2245646 NIL PSETCAT (NIL T T T T) -9 NIL 2246460 NIL) (-979 2237625 2238259 2239080 "PSETCAT-" 2239085 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-978 2236974 2237139 2237167 "PSCURVE" 2237435 T PSCURVE (NIL) -9 NIL 2237602 NIL) (-977 2232972 2234488 2234553 "PSCAT" 2235397 NIL PSCAT (NIL T T T) -9 NIL 2235637 NIL) (-976 2232035 2232251 2232651 "PSCAT-" 2232656 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-975 2230740 2231400 2231605 "PRTITION" 2231850 T PRTITION (NIL) -8 NIL NIL NIL) (-974 2230215 2230461 2230553 "PRTDAST" 2230668 T PRTDAST (NIL) -8 NIL NIL NIL) (-973 2219305 2221519 2223707 "PRS" 2228077 NIL PRS (NIL T T) -7 NIL NIL NIL) (-972 2217116 2218655 2218695 "PRQAGG" 2218878 NIL PRQAGG (NIL T) -9 NIL 2218980 NIL) (-971 2216320 2216625 2216653 "PROPLOG" 2216900 T PROPLOG (NIL) -9 NIL 2217066 NIL) (-970 2214501 2215067 2215364 "PROPFRML" 2216056 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-969 2213970 2214077 2214205 "PROPERTY" 2214393 T PROPERTY (NIL) -8 NIL NIL NIL) (-968 2208028 2212136 2212956 "PRODUCT" 2213196 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-967 2207824 2207856 2207915 "PRINT" 2207989 T PRINT (NIL) -7 NIL NIL NIL) (-966 2207164 2207281 2207433 "PRIMES" 2207704 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-965 2205229 2205630 2206096 "PRIMELT" 2206743 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-964 2204958 2205007 2205035 "PRIMCAT" 2205159 T PRIMCAT (NIL) -9 NIL NIL NIL) (-963 2203965 2204143 2204371 "PRIMARR2" 2204776 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-962 2200080 2203903 2203948 "PRIMARR" 2203953 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-961 2199723 2199779 2199890 "PREASSOC" 2200018 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-960 2197008 2199181 2199415 "PR" 2199534 NIL PR (NIL T T) -8 NIL NIL NIL) (-959 2196483 2196616 2196644 "PPCURVE" 2196849 T PPCURVE (NIL) -9 NIL 2196985 NIL) (-958 2196078 2196278 2196361 "PORTNUM" 2196420 T PORTNUM (NIL) -8 NIL NIL NIL) (-957 2193437 2193836 2194428 "POLYROOT" 2195659 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-956 2192820 2192878 2193112 "POLYLIFT" 2193373 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-955 2189095 2189544 2190173 "POLYCATQ" 2192365 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-954 2175821 2180935 2181000 "POLYCAT" 2184514 NIL POLYCAT (NIL T T T) -9 NIL 2186392 NIL) (-953 2169327 2171170 2173535 "POLYCAT-" 2173540 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-952 2168914 2168982 2169102 "POLY2UP" 2169253 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-951 2168546 2168603 2168712 "POLY2" 2168851 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-950 2162759 2168150 2168310 "POLY" 2168419 NIL POLY (NIL T) -8 NIL NIL NIL) (-949 2161444 2161683 2161959 "POLUTIL" 2162533 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-948 2159799 2160076 2160407 "POLTOPOL" 2161166 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-947 2155264 2159735 2159781 "POINT" 2159786 NIL POINT (NIL T) -8 NIL NIL NIL) (-946 2153451 2153808 2154183 "PNTHEORY" 2154909 T PNTHEORY (NIL) -7 NIL NIL NIL) (-945 2151909 2152206 2152605 "PMTOOLS" 2153149 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-944 2151502 2151580 2151697 "PMSYM" 2151825 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-943 2151012 2151081 2151255 "PMQFCAT" 2151427 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-942 2150405 2150491 2150653 "PMPREDFS" 2150913 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-941 2149760 2149870 2150026 "PMPRED" 2150282 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-940 2148424 2148632 2149010 "PMPLCAT" 2149522 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-939 2147956 2148035 2148187 "PMLSAGG" 2148339 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-938 2147429 2147505 2147687 "PMKERNEL" 2147874 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-937 2147046 2147121 2147234 "PMINS" 2147348 NIL PMINS (NIL T) -7 NIL NIL NIL) (-936 2146488 2146557 2146766 "PMFS" 2146971 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-935 2145716 2145834 2146039 "PMDOWN" 2146365 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-934 2144989 2145099 2145262 "PMASSFS" 2145603 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-933 2144156 2144314 2144495 "PMASS" 2144828 T PMASS (NIL) -7 NIL NIL NIL) (-932 2143811 2143879 2143973 "PLOTTOOL" 2144082 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-931 2139615 2140659 2141580 "PLOT3D" 2142910 T PLOT3D (NIL) -8 NIL NIL NIL) (-930 2138527 2138704 2138939 "PLOT1" 2139419 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-929 2133134 2134338 2135486 "PLOT" 2137399 T PLOT (NIL) -8 NIL NIL NIL) (-928 2108523 2113200 2118051 "PLEQN" 2128400 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-927 2108216 2108263 2108366 "PINTERPA" 2108470 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-926 2107534 2107656 2107836 "PINTERP" 2108081 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-925 2105831 2106806 2106834 "PID" 2107016 T PID (NIL) -9 NIL 2107150 NIL) (-924 2105582 2105619 2105694 "PICOERCE" 2105788 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-923 2104803 2105351 2105438 "PI" 2105478 T PI (NIL) -8 NIL NIL 2105545) (-922 2104123 2104262 2104438 "PGROEB" 2104659 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-921 2099710 2100524 2101429 "PGE" 2103238 T PGE (NIL) -7 NIL NIL NIL) (-920 2097833 2098080 2098446 "PGCD" 2099427 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-919 2097171 2097274 2097435 "PFRPAC" 2097717 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-918 2093813 2095719 2096072 "PFR" 2096850 NIL PFR (NIL T) -8 NIL NIL NIL) (-917 2092202 2092446 2092771 "PFOTOOLS" 2093560 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-916 2090735 2090974 2091325 "PFOQ" 2091959 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-915 2089236 2089448 2089804 "PFO" 2090519 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-914 2086570 2087841 2087869 "PFECAT" 2088454 T PFECAT (NIL) -9 NIL 2088838 NIL) (-913 2086015 2086169 2086383 "PFECAT-" 2086388 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-912 2084618 2084870 2085171 "PFBRU" 2085764 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-911 2082484 2082836 2083268 "PFBR" 2084269 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-910 2079039 2082373 2082442 "PF" 2082447 NIL PF (NIL NIL) -8 NIL NIL NIL) (-909 2074273 2075246 2076116 "PERMGRP" 2078202 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-908 2072379 2073336 2073377 "PERMCAT" 2073823 NIL PERMCAT (NIL T) -9 NIL 2074128 NIL) (-907 2072032 2072073 2072197 "PERMAN" 2072332 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-906 2067914 2069408 2070084 "PERM" 2071389 NIL PERM (NIL T) -8 NIL NIL NIL) (-905 2065404 2067579 2067701 "PENDTREE" 2067825 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-904 2063428 2064196 2064237 "PDRING" 2064894 NIL PDRING (NIL T) -9 NIL 2065180 NIL) (-903 2062531 2062749 2063111 "PDRING-" 2063116 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-902 2059746 2060524 2061192 "PDEPROB" 2061883 T PDEPROB (NIL) -8 NIL NIL NIL) (-901 2057291 2057795 2058350 "PDEPACK" 2059211 T PDEPACK (NIL) -7 NIL NIL NIL) (-900 2056203 2056393 2056644 "PDECOMP" 2057090 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-899 2053782 2054625 2054653 "PDECAT" 2055440 T PDECAT (NIL) -9 NIL 2056153 NIL) (-898 2053533 2053566 2053656 "PCOMP" 2053743 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-897 2051711 2052334 2052631 "PBWLB" 2053262 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-896 2051343 2051400 2051509 "PATTERN2" 2051648 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-895 2049100 2049488 2049945 "PATTERN1" 2050932 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-894 2041575 2043173 2044511 "PATTERN" 2047783 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-893 2041139 2041206 2041338 "PATRES2" 2041502 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-892 2038507 2039088 2039569 "PATRES" 2040704 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-891 2036390 2036795 2037202 "PATMATCH" 2038174 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-890 2035900 2036109 2036150 "PATMAB" 2036257 NIL PATMAB (NIL T) -9 NIL 2036340 NIL) (-889 2034418 2034754 2035012 "PATLRES" 2035705 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-888 2033964 2034087 2034128 "PATAB" 2034133 NIL PATAB (NIL T) -9 NIL 2034305 NIL) (-887 2031445 2031977 2032550 "PARTPERM" 2033411 T PARTPERM (NIL) -7 NIL NIL NIL) (-886 2031066 2031129 2031231 "PARSURF" 2031376 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-885 2030698 2030755 2030864 "PARSU2" 2031003 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-884 2030462 2030502 2030569 "PARSER" 2030651 T PARSER (NIL) -7 NIL NIL NIL) (-883 2030083 2030146 2030248 "PARSCURV" 2030393 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-882 2029715 2029772 2029881 "PARSC2" 2030020 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-881 2029354 2029412 2029509 "PARPCURV" 2029651 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-880 2028986 2029043 2029152 "PARPC2" 2029291 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-879 2028047 2028359 2028541 "PARAMAST" 2028824 T PARAMAST (NIL) -8 NIL NIL NIL) (-878 2027567 2027653 2027772 "PAN2EXPR" 2027948 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-877 2026344 2026688 2026916 "PALETTE" 2027359 T PALETTE (NIL) -8 NIL NIL NIL) (-876 2024737 2025349 2025709 "PAIR" 2026030 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-875 2018628 2023996 2024190 "PADICRC" 2024592 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-874 2011878 2017974 2018158 "PADICRAT" 2018476 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-873 2008990 2010552 2010592 "PADICCT" 2011173 NIL PADICCT (NIL NIL) -9 NIL 2011455 NIL) (-872 2007307 2008927 2008972 "PADIC" 2008977 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-871 2006264 2006464 2006732 "PADEPAC" 2007094 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-870 2005476 2005609 2005815 "PADE" 2006126 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-869 2003863 2004684 2004964 "OWP" 2005280 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-868 2003356 2003569 2003666 "OVERSET" 2003786 T OVERSET (NIL) -8 NIL NIL NIL) (-867 2002402 2002961 2003133 "OVAR" 2003224 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-866 1991274 1993511 1995711 "OUTFORM" 2000222 T OUTFORM (NIL) -8 NIL NIL NIL) (-865 1990610 1990871 1990998 "OUTBFILE" 1991167 T OUTBFILE (NIL) -8 NIL NIL NIL) (-864 1989917 1990082 1990110 "OUTBCON" 1990428 T OUTBCON (NIL) -9 NIL 1990594 NIL) (-863 1989518 1989630 1989787 "OUTBCON-" 1989792 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-862 1988782 1988903 1989064 "OUT" 1989377 T OUT (NIL) -7 NIL NIL NIL) (-861 1988162 1988511 1988600 "OSI" 1988713 T OSI (NIL) -8 NIL NIL NIL) (-860 1987692 1988030 1988058 "OSGROUP" 1988063 T OSGROUP (NIL) -9 NIL 1988085 NIL) (-859 1986437 1986664 1986949 "ORTHPOL" 1987439 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-858 1984002 1986272 1986393 "OREUP" 1986398 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-857 1981419 1983693 1983820 "ORESUP" 1983944 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-856 1978947 1979447 1980008 "OREPCTO" 1980908 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-855 1972640 1974834 1974875 "OREPCAT" 1977223 NIL OREPCAT (NIL T) -9 NIL 1978327 NIL) (-854 1969808 1970583 1971634 "OREPCAT-" 1971639 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-853 1968959 1969257 1969285 "ORDSET" 1969594 T ORDSET (NIL) -9 NIL 1969758 NIL) (-852 1968390 1968538 1968762 "ORDSET-" 1968767 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-851 1966955 1967746 1967774 "ORDRING" 1967976 T ORDRING (NIL) -9 NIL 1968101 NIL) (-850 1966600 1966694 1966838 "ORDRING-" 1966843 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-849 1965980 1966443 1966471 "ORDMON" 1966476 T ORDMON (NIL) -9 NIL 1966497 NIL) (-848 1965142 1965289 1965484 "ORDFUNS" 1965829 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-847 1964480 1964899 1964927 "ORDFIN" 1964992 T ORDFIN (NIL) -9 NIL 1965066 NIL) (-846 1963746 1963873 1964059 "ORDCOMP2" 1964340 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-845 1960312 1962332 1962741 "ORDCOMP" 1963370 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-844 1956893 1957803 1958617 "OPTPROB" 1959518 T OPTPROB (NIL) -8 NIL NIL NIL) (-843 1953695 1954334 1955038 "OPTPACK" 1956209 T OPTPACK (NIL) -7 NIL NIL NIL) (-842 1951382 1952148 1952176 "OPTCAT" 1952995 T OPTCAT (NIL) -9 NIL 1953645 NIL) (-841 1950766 1951059 1951164 "OPSIG" 1951297 T OPSIG (NIL) -8 NIL NIL NIL) (-840 1950534 1950573 1950639 "OPQUERY" 1950720 T OPQUERY (NIL) -7 NIL NIL NIL) (-839 1949908 1950134 1950175 "OPERCAT" 1950387 NIL OPERCAT (NIL T) -9 NIL 1950484 NIL) (-838 1949663 1949719 1949836 "OPERCAT-" 1949841 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-837 1946796 1947974 1948478 "OP" 1949192 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1946101 1946216 1946390 "ONECOMP2" 1946668 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-835 1942921 1944898 1945267 "ONECOMP" 1945765 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-834 1942340 1942446 1942576 "OMSERVER" 1942811 T OMSERVER (NIL) -7 NIL NIL NIL) (-833 1939202 1941780 1941820 "OMSAGG" 1941881 NIL OMSAGG (NIL T) -9 NIL 1941945 NIL) (-832 1937825 1938088 1938370 "OMPKG" 1938940 T OMPKG (NIL) -7 NIL NIL NIL) (-831 1936372 1937374 1937543 "OMLO" 1937706 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-830 1935332 1935479 1935699 "OMEXPR" 1936198 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-829 1934483 1934753 1934913 "OMERRK" 1935192 T OMERRK (NIL) -8 NIL NIL NIL) (-828 1933774 1934029 1934165 "OMERR" 1934367 T OMERR (NIL) -8 NIL NIL NIL) (-827 1933225 1933451 1933559 "OMENC" 1933686 T OMENC (NIL) -8 NIL NIL NIL) (-826 1927120 1928305 1929476 "OMDEV" 1932074 T OMDEV (NIL) -8 NIL NIL NIL) (-825 1926189 1926360 1926554 "OMCONN" 1926946 T OMCONN (NIL) -8 NIL NIL NIL) (-824 1925619 1925722 1925750 "OM" 1926049 T OM (NIL) -9 NIL NIL NIL) (-823 1924140 1925116 1925144 "OINTDOM" 1925149 T OINTDOM (NIL) -9 NIL 1925170 NIL) (-822 1921485 1922828 1923165 "OFMONOID" 1923835 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-821 1920896 1921422 1921467 "ODVAR" 1921472 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-820 1918321 1920641 1920796 "ODR" 1920801 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-819 1910943 1918097 1918223 "ODPOL" 1918228 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-818 1904772 1910815 1910920 "ODP" 1910925 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-817 1903538 1903753 1904028 "ODETOOLS" 1904546 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-816 1900505 1901163 1901879 "ODESYS" 1902871 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-815 1895387 1896295 1897320 "ODERTRIC" 1899580 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-814 1894813 1894895 1895089 "ODERED" 1895299 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-813 1891709 1892255 1892930 "ODERAT" 1894238 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-812 1888666 1889133 1889730 "ODEPRRIC" 1891238 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-811 1886609 1887205 1887691 "ODEPROB" 1888200 T ODEPROB (NIL) -8 NIL NIL NIL) (-810 1883129 1883614 1884261 "ODEPRIM" 1886088 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-809 1882378 1882480 1882740 "ODEPAL" 1883021 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-808 1878540 1879331 1880195 "ODEPACK" 1881534 T ODEPACK (NIL) -7 NIL NIL NIL) (-807 1877601 1877708 1877930 "ODEINT" 1878429 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-806 1871702 1873127 1874574 "ODEIFTBL" 1876174 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-805 1867114 1867896 1868844 "ODEEF" 1870865 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-804 1866463 1866552 1866775 "ODECONST" 1867019 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-803 1864588 1865249 1865277 "ODECAT" 1865882 T ODECAT (NIL) -9 NIL 1866413 NIL) (-802 1864226 1864269 1864396 "OCTCT2" 1864539 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-801 1861093 1863931 1864053 "OCT" 1864136 NIL OCT (NIL T) -8 NIL NIL NIL) (-800 1860445 1860913 1860941 "OCAMON" 1860946 T OCAMON (NIL) -9 NIL 1860967 NIL) (-799 1855101 1857529 1857569 "OC" 1858666 NIL OC (NIL T) -9 NIL 1859524 NIL) (-798 1852349 1853090 1854073 "OC-" 1854167 NIL OC- (NIL T T) -8 NIL NIL NIL) (-797 1851880 1852221 1852249 "OASGP" 1852254 T OASGP (NIL) -9 NIL 1852274 NIL) (-796 1851141 1851630 1851658 "OAMONS" 1851698 T OAMONS (NIL) -9 NIL 1851741 NIL) (-795 1850555 1850988 1851016 "OAMON" 1851021 T OAMON (NIL) -9 NIL 1851041 NIL) (-794 1849813 1850331 1850359 "OAGROUP" 1850364 T OAGROUP (NIL) -9 NIL 1850384 NIL) (-793 1849503 1849553 1849641 "NUMTUBE" 1849757 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-792 1843076 1844594 1846130 "NUMQUAD" 1847987 T NUMQUAD (NIL) -7 NIL NIL NIL) (-791 1838832 1839820 1840845 "NUMODE" 1842071 T NUMODE (NIL) -7 NIL NIL NIL) (-790 1836187 1837067 1837095 "NUMINT" 1838018 T NUMINT (NIL) -9 NIL 1838782 NIL) (-789 1835135 1835332 1835550 "NUMFMT" 1835989 T NUMFMT (NIL) -7 NIL NIL NIL) (-788 1821494 1824439 1826971 "NUMERIC" 1832642 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-787 1815891 1820943 1821038 "NTSCAT" 1821043 NIL NTSCAT (NIL T T T T) -9 NIL 1821082 NIL) (-786 1815085 1815250 1815443 "NTPOLFN" 1815730 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-785 1814717 1814774 1814883 "NSUP2" 1815022 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-784 1802839 1811542 1812354 "NSUP" 1813938 NIL NSUP (NIL T) -8 NIL NIL NIL) (-783 1793115 1802613 1802746 "NSMP" 1802751 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-782 1791547 1791848 1792205 "NREP" 1792803 NIL NREP (NIL T) -7 NIL NIL NIL) (-781 1790138 1790390 1790748 "NPCOEF" 1791290 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-780 1789204 1789319 1789535 "NORMRETR" 1790019 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-779 1787245 1787535 1787944 "NORMPK" 1788912 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-778 1786930 1786958 1787082 "NORMMA" 1787211 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-777 1786719 1786748 1786817 "NONE1" 1786894 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-776 1786519 1786676 1786705 "NONE" 1786710 T NONE (NIL) -8 NIL NIL NIL) (-775 1786016 1786078 1786257 "NODE1" 1786451 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-774 1784301 1785152 1785407 "NNI" 1785754 T NNI (NIL) -8 NIL NIL 1785989) (-773 1782721 1783034 1783398 "NLINSOL" 1783969 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-772 1778962 1779957 1780856 "NIPROB" 1781842 T NIPROB (NIL) -8 NIL NIL NIL) (-771 1777719 1777953 1778255 "NFINTBAS" 1778724 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-770 1776893 1777369 1777410 "NETCLT" 1777582 NIL NETCLT (NIL T) -9 NIL 1777664 NIL) (-769 1775601 1775832 1776113 "NCODIV" 1776661 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-768 1775363 1775400 1775475 "NCNTFRAC" 1775558 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-767 1773543 1773907 1774327 "NCEP" 1774988 NIL NCEP (NIL T) -7 NIL NIL NIL) (-766 1772401 1773167 1773195 "NASRING" 1773305 T NASRING (NIL) -9 NIL 1773385 NIL) (-765 1772196 1772240 1772334 "NASRING-" 1772339 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-764 1771303 1771828 1771856 "NARNG" 1771973 T NARNG (NIL) -9 NIL 1772064 NIL) (-763 1770995 1771062 1771196 "NARNG-" 1771201 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-762 1769874 1770081 1770316 "NAGSP" 1770780 T NAGSP (NIL) -7 NIL NIL NIL) (-761 1761146 1762830 1764503 "NAGS" 1768221 T NAGS (NIL) -7 NIL NIL NIL) (-760 1759694 1760002 1760333 "NAGF07" 1760835 T NAGF07 (NIL) -7 NIL NIL NIL) (-759 1754232 1755523 1756830 "NAGF04" 1758407 T NAGF04 (NIL) -7 NIL NIL NIL) (-758 1747200 1748814 1750447 "NAGF02" 1752619 T NAGF02 (NIL) -7 NIL NIL NIL) (-757 1742424 1743524 1744641 "NAGF01" 1746103 T NAGF01 (NIL) -7 NIL NIL NIL) (-756 1736052 1737618 1739203 "NAGE04" 1740859 T NAGE04 (NIL) -7 NIL NIL NIL) (-755 1727221 1729342 1731472 "NAGE02" 1733942 T NAGE02 (NIL) -7 NIL NIL NIL) (-754 1723174 1724121 1725085 "NAGE01" 1726277 T NAGE01 (NIL) -7 NIL NIL NIL) (-753 1720969 1721503 1722061 "NAGD03" 1722636 T NAGD03 (NIL) -7 NIL NIL NIL) (-752 1712719 1714647 1716601 "NAGD02" 1719035 T NAGD02 (NIL) -7 NIL NIL NIL) (-751 1706530 1707955 1709395 "NAGD01" 1711299 T NAGD01 (NIL) -7 NIL NIL NIL) (-750 1702739 1703561 1704398 "NAGC06" 1705713 T NAGC06 (NIL) -7 NIL NIL NIL) (-749 1701204 1701536 1701892 "NAGC05" 1702403 T NAGC05 (NIL) -7 NIL NIL NIL) (-748 1700580 1700699 1700843 "NAGC02" 1701080 T NAGC02 (NIL) -7 NIL NIL NIL) (-747 1699539 1700122 1700162 "NAALG" 1700241 NIL NAALG (NIL T) -9 NIL 1700302 NIL) (-746 1699374 1699403 1699493 "NAALG-" 1699498 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-745 1693324 1694432 1695619 "MULTSQFR" 1698270 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-744 1692643 1692718 1692902 "MULTFACT" 1693236 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-743 1685367 1689280 1689333 "MTSCAT" 1690403 NIL MTSCAT (NIL T T) -9 NIL 1690918 NIL) (-742 1685079 1685133 1685225 "MTHING" 1685307 NIL MTHING (NIL T) -7 NIL NIL NIL) (-741 1684871 1684904 1684964 "MSYSCMD" 1685039 T MSYSCMD (NIL) -7 NIL NIL NIL) (-740 1681940 1684432 1684473 "MSETAGG" 1684478 NIL MSETAGG (NIL T) -9 NIL 1684512 NIL) (-739 1678022 1680695 1681015 "MSET" 1681653 NIL MSET (NIL T) -8 NIL NIL NIL) (-738 1673865 1675401 1676146 "MRING" 1677322 NIL MRING (NIL T T) -8 NIL NIL NIL) (-737 1673431 1673498 1673629 "MRF2" 1673792 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-736 1673049 1673084 1673228 "MRATFAC" 1673390 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-735 1670661 1670956 1671387 "MPRFF" 1672754 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-734 1664984 1670515 1670612 "MPOLY" 1670617 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-733 1664474 1664509 1664717 "MPCPF" 1664943 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-732 1663988 1664031 1664215 "MPC3" 1664425 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-731 1663183 1663264 1663485 "MPC2" 1663903 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-730 1661484 1661821 1662211 "MONOTOOL" 1662843 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-729 1660709 1661026 1661054 "MONOID" 1661273 T MONOID (NIL) -9 NIL 1661420 NIL) (-728 1660255 1660374 1660555 "MONOID-" 1660560 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-727 1650739 1656681 1656740 "MONOGEN" 1657414 NIL MONOGEN (NIL T T) -9 NIL 1657870 NIL) (-726 1647978 1648706 1649699 "MONOGEN-" 1649818 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-725 1646811 1647257 1647285 "MONADWU" 1647677 T MONADWU (NIL) -9 NIL 1647915 NIL) (-724 1646183 1646342 1646590 "MONADWU-" 1646595 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-723 1645542 1645786 1645814 "MONAD" 1646021 T MONAD (NIL) -9 NIL 1646133 NIL) (-722 1645227 1645305 1645437 "MONAD-" 1645442 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-721 1643516 1644140 1644419 "MOEBIUS" 1644980 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-720 1642794 1643198 1643238 "MODULE" 1643243 NIL MODULE (NIL T) -9 NIL 1643282 NIL) (-719 1642362 1642458 1642648 "MODULE-" 1642653 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-718 1640086 1640770 1641097 "MODRING" 1642186 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-717 1637032 1638191 1638712 "MODOP" 1639615 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-716 1635620 1636099 1636376 "MODMONOM" 1636895 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-715 1625702 1633911 1634325 "MODMON" 1635257 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-714 1622884 1624570 1624846 "MODFIELD" 1625577 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-713 1621861 1622165 1622355 "MMLFORM" 1622714 T MMLFORM (NIL) -8 NIL NIL NIL) (-712 1621387 1621430 1621609 "MMAP" 1621812 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-711 1619466 1620233 1620274 "MLO" 1620697 NIL MLO (NIL T) -9 NIL 1620939 NIL) (-710 1616832 1617348 1617950 "MLIFT" 1618947 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-709 1616223 1616307 1616461 "MKUCFUNC" 1616743 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-708 1615822 1615892 1616015 "MKRECORD" 1616146 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-707 1614869 1615031 1615259 "MKFUNC" 1615633 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-706 1614257 1614361 1614517 "MKFLCFN" 1614752 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-705 1613534 1613636 1613821 "MKBCFUNC" 1614150 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-704 1610243 1613088 1613224 "MINT" 1613418 T MINT (NIL) -8 NIL NIL NIL) (-703 1609055 1609298 1609575 "MHROWRED" 1609998 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-702 1604444 1607590 1607995 "MFLOAT" 1608670 T MFLOAT (NIL) -8 NIL NIL NIL) (-701 1603801 1603877 1604048 "MFINFACT" 1604356 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-700 1600136 1600979 1601858 "MESH" 1602942 T MESH (NIL) -7 NIL NIL NIL) (-699 1598526 1598838 1599191 "MDDFACT" 1599823 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-698 1595321 1597685 1597726 "MDAGG" 1597981 NIL MDAGG (NIL T) -9 NIL 1598124 NIL) (-697 1585079 1594614 1594821 "MCMPLX" 1595134 T MCMPLX (NIL) -8 NIL NIL NIL) (-696 1584220 1584366 1584566 "MCDEN" 1584928 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-695 1582110 1582380 1582760 "MCALCFN" 1583950 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-694 1581035 1581275 1581508 "MAYBE" 1581916 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-693 1578647 1579170 1579732 "MATSTOR" 1580506 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-692 1574603 1578019 1578267 "MATRIX" 1578432 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-691 1570367 1571076 1571812 "MATLIN" 1573960 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-690 1568961 1569114 1569447 "MATCAT2" 1570202 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-689 1559061 1562250 1562327 "MATCAT" 1567210 NIL MATCAT (NIL T T T) -9 NIL 1568627 NIL) (-688 1555417 1556438 1557794 "MATCAT-" 1557799 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-687 1553529 1553853 1554237 "MAPPKG3" 1555092 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-686 1552510 1552683 1552905 "MAPPKG2" 1553353 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-685 1551009 1551293 1551620 "MAPPKG1" 1552216 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-684 1550088 1550415 1550592 "MAPPAST" 1550852 T MAPPAST (NIL) -8 NIL NIL NIL) (-683 1549699 1549757 1549880 "MAPHACK3" 1550024 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-682 1549291 1549352 1549466 "MAPHACK2" 1549631 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-681 1548728 1548832 1548974 "MAPHACK1" 1549182 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-680 1546807 1547428 1547732 "MAGMA" 1548456 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-679 1546286 1546531 1546622 "MACROAST" 1546736 T MACROAST (NIL) -8 NIL NIL NIL) (-678 1542704 1544525 1544986 "M3D" 1545858 NIL M3D (NIL T) -8 NIL NIL NIL) (-677 1536812 1541073 1541114 "LZSTAGG" 1541896 NIL LZSTAGG (NIL T) -9 NIL 1542191 NIL) (-676 1532769 1533943 1535400 "LZSTAGG-" 1535405 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-675 1529856 1530660 1531147 "LWORD" 1532314 NIL LWORD (NIL T) -8 NIL NIL NIL) (-674 1529432 1529660 1529735 "LSTAST" 1529801 T LSTAST (NIL) -8 NIL NIL NIL) (-673 1522629 1529203 1529337 "LSQM" 1529342 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-672 1521853 1521992 1522220 "LSPP" 1522484 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-671 1518695 1519352 1520065 "LSMP1" 1521172 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-670 1516530 1516824 1517273 "LSMP" 1518391 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-669 1510409 1515697 1515738 "LSAGG" 1515800 NIL LSAGG (NIL T) -9 NIL 1515878 NIL) (-668 1507104 1508028 1509241 "LSAGG-" 1509246 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-667 1504703 1506248 1506497 "LPOLY" 1506899 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-666 1504285 1504370 1504493 "LPEFRAC" 1504612 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-665 1503937 1504049 1504077 "LOGIC" 1504188 T LOGIC (NIL) -9 NIL 1504269 NIL) (-664 1503799 1503822 1503893 "LOGIC-" 1503898 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-663 1502992 1503132 1503325 "LODOOPS" 1503655 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-662 1501530 1501765 1502118 "LODOF" 1502739 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-661 1497762 1500179 1500220 "LODOCAT" 1500658 NIL LODOCAT (NIL T) -9 NIL 1500869 NIL) (-660 1497495 1497553 1497680 "LODOCAT-" 1497685 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-659 1494829 1497336 1497454 "LODO2" 1497459 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-658 1492278 1494766 1494811 "LODO1" 1494816 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-657 1489715 1492194 1492260 "LODO" 1492265 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-656 1488596 1488761 1489066 "LODEEF" 1489538 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-655 1486917 1487690 1487943 "LO" 1488428 NIL LO (NIL T T T) -8 NIL NIL NIL) (-654 1482156 1485047 1485088 "LNAGG" 1486035 NIL LNAGG (NIL T) -9 NIL 1486479 NIL) (-653 1481303 1481517 1481859 "LNAGG-" 1481864 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-652 1477439 1478228 1478867 "LMOPS" 1480718 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-651 1476842 1477230 1477271 "LMODULE" 1477276 NIL LMODULE (NIL T) -9 NIL 1477302 NIL) (-650 1474040 1476487 1476610 "LMDICT" 1476752 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-649 1473446 1473667 1473708 "LLINSET" 1473899 NIL LLINSET (NIL T) -9 NIL 1473990 NIL) (-648 1473145 1473354 1473414 "LITERAL" 1473419 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-647 1472670 1472744 1472883 "LIST3" 1473065 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-646 1470804 1471116 1471515 "LIST2MAP" 1472317 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-645 1469811 1469989 1470217 "LIST2" 1470622 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-644 1462976 1468745 1469049 "LIST" 1469540 NIL LIST (NIL T) -8 NIL NIL NIL) (-643 1462572 1462809 1462850 "LINSET" 1462855 NIL LINSET (NIL T) -9 NIL 1462889 NIL) (-642 1461233 1461903 1461944 "LINEXP" 1462199 NIL LINEXP (NIL T) -9 NIL 1462348 NIL) (-641 1459880 1460140 1460437 "LINDEP" 1460985 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-640 1456718 1457418 1458176 "LIMITRF" 1459154 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-639 1455044 1455333 1455735 "LIMITPS" 1456420 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-638 1453992 1454461 1454501 "LIECAT" 1454641 NIL LIECAT (NIL T) -9 NIL 1454792 NIL) (-637 1453833 1453860 1453948 "LIECAT-" 1453953 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-636 1448293 1453344 1453572 "LIE" 1453654 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1440791 1447742 1447907 "LIB" 1448148 T LIB (NIL) -8 NIL NIL NIL) (-634 1436426 1437309 1438244 "LGROBP" 1439908 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-633 1435266 1435958 1435986 "LFCAT" 1436193 T LFCAT (NIL) -9 NIL 1436332 NIL) (-632 1433264 1433538 1433888 "LF" 1434987 NIL LF (NIL T T) -7 NIL NIL NIL) (-631 1430166 1430796 1431484 "LEXTRIPK" 1432628 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-630 1426910 1427736 1428239 "LEXP" 1429746 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-629 1426386 1426631 1426723 "LETAST" 1426838 T LETAST (NIL) -8 NIL NIL NIL) (-628 1424784 1425097 1425498 "LEADCDET" 1426068 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-627 1423974 1424048 1424277 "LAZM3PK" 1424705 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-626 1418905 1422051 1422589 "LAUPOL" 1423486 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-625 1418484 1418528 1418689 "LAPLACE" 1418855 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-624 1417478 1418062 1418103 "LALG" 1418165 NIL LALG (NIL T) -9 NIL 1418224 NIL) (-623 1417192 1417251 1417387 "LALG-" 1417392 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-622 1415131 1416293 1416544 "LA" 1417025 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1414966 1414990 1415031 "KVTFROM" 1415093 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-620 1413889 1414333 1414518 "KTVLOGIC" 1414801 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-619 1413724 1413748 1413789 "KRCFROM" 1413851 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-618 1412628 1412815 1413114 "KOVACIC" 1413524 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-617 1412463 1412487 1412528 "KONVERT" 1412590 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-616 1412298 1412322 1412363 "KOERCE" 1412425 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-615 1411794 1411875 1412007 "KERNEL2" 1412212 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-614 1409624 1410387 1410764 "KERNEL" 1411450 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-613 1403394 1408163 1408217 "KDAGG" 1408594 NIL KDAGG (NIL T T) -9 NIL 1408800 NIL) (-612 1402923 1403047 1403252 "KDAGG-" 1403257 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-611 1396073 1402584 1402739 "KAFILE" 1402801 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-610 1390533 1395584 1395812 "JORDAN" 1395894 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-609 1389912 1390182 1390303 "JOINAST" 1390432 T JOINAST (NIL) -8 NIL NIL NIL) (-608 1389758 1389817 1389872 "JAVACODE" 1389877 T JAVACODE (NIL) -8 NIL NIL NIL) (-607 1386010 1387963 1388017 "IXAGG" 1388946 NIL IXAGG (NIL T T) -9 NIL 1389405 NIL) (-606 1384929 1385235 1385654 "IXAGG-" 1385659 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-605 1380459 1384851 1384910 "IVECTOR" 1384915 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-604 1379225 1379462 1379728 "ITUPLE" 1380226 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-603 1377727 1377904 1378199 "ITRIGMNP" 1379047 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-602 1376472 1376676 1376959 "ITFUN3" 1377503 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-601 1376104 1376161 1376270 "ITFUN2" 1376409 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-600 1374065 1375124 1375402 "ITAYLOR" 1375859 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-599 1363010 1368202 1369365 "ISUPS" 1372935 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-598 1362114 1362254 1362490 "ISUMP" 1362857 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-597 1357489 1362059 1362100 "ISTRING" 1362105 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-596 1356965 1357210 1357302 "ISAST" 1357417 T ISAST (NIL) -8 NIL NIL NIL) (-595 1356174 1356256 1356472 "IRURPK" 1356879 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-594 1355110 1355311 1355551 "IRSN" 1355954 T IRSN (NIL) -7 NIL NIL NIL) (-593 1353181 1353536 1353965 "IRRF2F" 1354748 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-592 1352928 1352966 1353042 "IRREDFFX" 1353137 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-591 1351543 1351802 1352101 "IROOT" 1352661 NIL IROOT (NIL T) -7 NIL NIL NIL) (-590 1351462 1351488 1351523 "IRFORM" 1351528 T IRFORM (NIL) -8 NIL NIL NIL) (-589 1350562 1350675 1350889 "IR2F" 1351345 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-588 1348175 1348670 1349236 "IR2" 1350040 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-587 1344779 1345859 1346551 "IR" 1347515 NIL IR (NIL T) -8 NIL NIL NIL) (-586 1344570 1344604 1344664 "IPRNTPK" 1344739 T IPRNTPK (NIL) -7 NIL NIL NIL) (-585 1341153 1344459 1344528 "IPF" 1344533 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-584 1339482 1341078 1341135 "IPADIC" 1341140 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-583 1338794 1339042 1339172 "IP4ADDR" 1339372 T IP4ADDR (NIL) -8 NIL NIL NIL) (-582 1338267 1338498 1338608 "IOMODE" 1338704 T IOMODE (NIL) -8 NIL NIL NIL) (-581 1337340 1337864 1337991 "IOBFILE" 1338160 T IOBFILE (NIL) -8 NIL NIL NIL) (-580 1336828 1337244 1337272 "IOBCON" 1337277 T IOBCON (NIL) -9 NIL 1337298 NIL) (-579 1336339 1336397 1336580 "INVLAPLA" 1336764 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-578 1326035 1328377 1330751 "INTTR" 1334015 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-577 1322370 1323112 1323977 "INTTOOLS" 1325220 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-576 1321956 1322047 1322164 "INTSLPE" 1322273 T INTSLPE (NIL) -7 NIL NIL NIL) (-575 1319909 1321879 1321938 "INTRVL" 1321943 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-574 1317511 1318023 1318598 "INTRF" 1319394 NIL INTRF (NIL T) -7 NIL NIL NIL) (-573 1316922 1317019 1317161 "INTRET" 1317409 NIL INTRET (NIL T) -7 NIL NIL NIL) (-572 1314919 1315308 1315778 "INTRAT" 1316530 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-571 1312182 1312765 1313384 "INTPM" 1314404 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-570 1308950 1309542 1310273 "INTPAF" 1311575 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-569 1304129 1305091 1306142 "INTPACK" 1307919 T INTPACK (NIL) -7 NIL NIL NIL) (-568 1303381 1303533 1303741 "INTHERTR" 1303971 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-567 1302820 1302900 1303088 "INTHERAL" 1303295 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-566 1300666 1301109 1301566 "INTHEORY" 1302383 T INTHEORY (NIL) -7 NIL NIL NIL) (-565 1292130 1293733 1295487 "INTG0" 1299036 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-564 1278403 1281768 1285153 "INTFTBL" 1288765 T INTFTBL (NIL) -8 NIL NIL NIL) (-563 1277652 1277790 1277963 "INTFACT" 1278262 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-562 1275085 1275529 1276084 "INTEF" 1277208 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-561 1273452 1274191 1274219 "INTDOM" 1274520 T INTDOM (NIL) -9 NIL 1274727 NIL) (-560 1272821 1272995 1273237 "INTDOM-" 1273242 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-559 1269209 1271137 1271191 "INTCAT" 1271990 NIL INTCAT (NIL T) -9 NIL 1272311 NIL) (-558 1268681 1268784 1268912 "INTBIT" 1269101 T INTBIT (NIL) -7 NIL NIL NIL) (-557 1267380 1267534 1267841 "INTALG" 1268526 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-556 1266863 1266953 1267110 "INTAF" 1267284 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-555 1260208 1266673 1266813 "INTABL" 1266818 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-554 1259549 1260015 1260080 "INT8" 1260114 T INT8 (NIL) -8 NIL NIL 1260159) (-553 1258889 1259355 1259420 "INT64" 1259454 T INT64 (NIL) -8 NIL NIL 1259499) (-552 1258229 1258695 1258760 "INT32" 1258794 T INT32 (NIL) -8 NIL NIL 1258839) (-551 1257569 1258035 1258100 "INT16" 1258134 T INT16 (NIL) -8 NIL NIL 1258179) (-550 1254519 1257366 1257475 "INT" 1257480 T INT (NIL) -8 NIL NIL NIL) (-549 1249431 1252142 1252170 "INS" 1253104 T INS (NIL) -9 NIL 1253769 NIL) (-548 1246671 1247442 1248416 "INS-" 1248489 NIL INS- (NIL T) -8 NIL NIL NIL) (-547 1245519 1245724 1246000 "INPSIGN" 1246446 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-546 1244637 1244754 1244951 "INPRODPF" 1245399 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-545 1243531 1243648 1243885 "INPRODFF" 1244517 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-544 1242531 1242683 1242943 "INNMFACT" 1243367 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-543 1241728 1241825 1242013 "INMODGCD" 1242430 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-542 1240236 1240481 1240805 "INFSP" 1241473 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-541 1239420 1239537 1239720 "INFPROD0" 1240116 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-540 1239030 1239090 1239188 "INFORM1" 1239355 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-539 1235885 1237095 1237610 "INFORM" 1238523 T INFORM (NIL) -8 NIL NIL NIL) (-538 1235408 1235497 1235611 "INFINITY" 1235791 T INFINITY (NIL) -7 NIL NIL NIL) (-537 1234584 1235128 1235229 "INETCLTS" 1235327 T INETCLTS (NIL) -8 NIL NIL NIL) (-536 1233200 1233450 1233771 "INEP" 1234332 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-535 1232449 1233097 1233162 "INDE" 1233167 NIL INDE (NIL T) -8 NIL NIL NIL) (-534 1232013 1232081 1232198 "INCRMAPS" 1232376 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-533 1230831 1231282 1231488 "INBFILE" 1231827 T INBFILE (NIL) -8 NIL NIL NIL) (-532 1226131 1227067 1228011 "INBFF" 1229919 NIL INBFF (NIL T) -7 NIL NIL NIL) (-531 1225039 1225308 1225336 "INBCON" 1225849 T INBCON (NIL) -9 NIL 1226115 NIL) (-530 1224291 1224514 1224790 "INBCON-" 1224795 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-529 1223770 1224015 1224106 "INAST" 1224220 T INAST (NIL) -8 NIL NIL NIL) (-528 1223197 1223449 1223555 "IMPTAST" 1223684 T IMPTAST (NIL) -8 NIL NIL NIL) (-527 1219642 1223041 1223145 "IMATRIX" 1223150 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-526 1218354 1218477 1218792 "IMATQF" 1219498 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-525 1216574 1216801 1217138 "IMATLIN" 1218110 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-524 1211154 1216498 1216556 "ILIST" 1216561 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-523 1209059 1211014 1211127 "IIARRAY2" 1211132 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-522 1204459 1208970 1209034 "IFF" 1209039 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-521 1203806 1204076 1204192 "IFAST" 1204363 T IFAST (NIL) -8 NIL NIL NIL) (-520 1198801 1203098 1203286 "IFARRAY" 1203663 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-519 1197981 1198705 1198778 "IFAMON" 1198783 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-518 1197565 1197630 1197684 "IEVALAB" 1197891 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-517 1197240 1197308 1197468 "IEVALAB-" 1197473 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-516 1196490 1197129 1197204 "IDPOAMS" 1197209 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-515 1195797 1196379 1196454 "IDPOAM" 1196459 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-514 1195428 1195711 1195774 "IDPO" 1195779 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-513 1194487 1194763 1194816 "IDPC" 1195229 NIL IDPC (NIL T T) -9 NIL 1195378 NIL) (-512 1193956 1194379 1194452 "IDPAM" 1194457 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-511 1193332 1193848 1193921 "IDPAG" 1193926 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-510 1192977 1193168 1193243 "IDENT" 1193277 T IDENT (NIL) -8 NIL NIL NIL) (-509 1189232 1190080 1190975 "IDECOMP" 1192134 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-508 1182070 1183155 1184202 "IDEAL" 1188268 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-507 1181234 1181346 1181545 "ICDEN" 1181954 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-506 1180305 1180714 1180861 "ICARD" 1181107 T ICARD (NIL) -8 NIL NIL NIL) (-505 1178365 1178678 1179083 "IBPTOOLS" 1179982 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-504 1173972 1177985 1178098 "IBITS" 1178284 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-503 1170695 1171271 1171966 "IBATOOL" 1173389 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-502 1168474 1168936 1169469 "IBACHIN" 1170230 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-501 1166303 1168320 1168423 "IARRAY2" 1168428 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-500 1162409 1166229 1166286 "IARRAY1" 1166291 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-499 1156527 1160821 1161302 "IAN" 1161948 T IAN (NIL) -8 NIL NIL NIL) (-498 1156038 1156095 1156268 "IALGFACT" 1156464 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-497 1155566 1155679 1155707 "HYPCAT" 1155914 T HYPCAT (NIL) -9 NIL NIL NIL) (-496 1155104 1155221 1155407 "HYPCAT-" 1155412 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-495 1154699 1154899 1154982 "HOSTNAME" 1155041 T HOSTNAME (NIL) -8 NIL NIL NIL) (-494 1154544 1154581 1154622 "HOMOTOP" 1154627 NIL HOMOTOP (NIL T) -9 NIL 1154660 NIL) (-493 1151176 1152554 1152595 "HOAGG" 1153576 NIL HOAGG (NIL T) -9 NIL 1154255 NIL) (-492 1149770 1150169 1150695 "HOAGG-" 1150700 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-491 1143795 1149365 1149514 "HEXADEC" 1149641 T HEXADEC (NIL) -8 NIL NIL NIL) (-490 1142543 1142765 1143028 "HEUGCD" 1143572 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-489 1141619 1142380 1142510 "HELLFDIV" 1142515 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-488 1139798 1141396 1141484 "HEAP" 1141563 NIL HEAP (NIL T) -8 NIL NIL NIL) (-487 1139061 1139350 1139484 "HEADAST" 1139684 T HEADAST (NIL) -8 NIL NIL NIL) (-486 1132934 1138976 1139038 "HDP" 1139043 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-485 1126953 1132569 1132721 "HDMP" 1132835 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-484 1126277 1126417 1126581 "HB" 1126809 T HB (NIL) -7 NIL NIL NIL) (-483 1119665 1126123 1126227 "HASHTBL" 1126232 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-482 1119141 1119386 1119478 "HASAST" 1119593 T HASAST (NIL) -8 NIL NIL NIL) (-481 1116923 1118763 1118945 "HACKPI" 1118979 T HACKPI (NIL) -8 NIL NIL NIL) (-480 1112618 1116776 1116889 "GTSET" 1116894 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-479 1106035 1112496 1112594 "GSTBL" 1112599 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-478 1098315 1105066 1105331 "GSERIES" 1105826 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-477 1097456 1097873 1097901 "GROUP" 1098104 T GROUP (NIL) -9 NIL 1098238 NIL) (-476 1096822 1096981 1097232 "GROUP-" 1097237 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-475 1095189 1095510 1095897 "GROEBSOL" 1096499 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-474 1094103 1094391 1094442 "GRMOD" 1094971 NIL GRMOD (NIL T T) -9 NIL 1095139 NIL) (-473 1093871 1093907 1094035 "GRMOD-" 1094040 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-472 1089161 1090225 1091225 "GRIMAGE" 1092891 T GRIMAGE (NIL) -8 NIL NIL NIL) (-471 1087627 1087888 1088212 "GRDEF" 1088857 T GRDEF (NIL) -7 NIL NIL NIL) (-470 1087071 1087187 1087328 "GRAY" 1087506 T GRAY (NIL) -7 NIL NIL NIL) (-469 1086258 1086664 1086715 "GRALG" 1086868 NIL GRALG (NIL T T) -9 NIL 1086961 NIL) (-468 1085919 1085992 1086155 "GRALG-" 1086160 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-467 1082696 1085504 1085682 "GPOLSET" 1085826 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-466 1082050 1082107 1082365 "GOSPER" 1082633 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-465 1077782 1078488 1079014 "GMODPOL" 1081749 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-464 1076787 1076971 1077209 "GHENSEL" 1077594 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-463 1070943 1071786 1072806 "GENUPS" 1075871 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-462 1070640 1070691 1070780 "GENUFACT" 1070886 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-461 1070052 1070129 1070294 "GENPGCD" 1070558 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-460 1069526 1069561 1069774 "GENMFACT" 1070011 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-459 1068092 1068349 1068656 "GENEEZ" 1069269 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-458 1062269 1067703 1067865 "GDMP" 1068015 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-457 1051633 1056040 1057146 "GCNAALG" 1061252 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-456 1049960 1050822 1050850 "GCDDOM" 1051105 T GCDDOM (NIL) -9 NIL 1051262 NIL) (-455 1049430 1049557 1049772 "GCDDOM-" 1049777 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-454 1038046 1040376 1042768 "GBINTERN" 1047121 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-453 1035883 1036175 1036596 "GBF" 1037721 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-452 1034664 1034829 1035096 "GBEUCLID" 1035699 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-451 1033336 1033521 1033825 "GB" 1034443 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-450 1032685 1032810 1032959 "GAUSSFAC" 1033207 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-449 1031052 1031354 1031668 "GALUTIL" 1032404 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-448 1029360 1029634 1029958 "GALPOLYU" 1030779 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-447 1026725 1027015 1027422 "GALFACTU" 1029057 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-446 1018530 1020030 1021638 "GALFACT" 1025157 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-445 1015918 1016576 1016604 "FVFUN" 1017760 T FVFUN (NIL) -9 NIL 1018480 NIL) (-444 1015184 1015366 1015394 "FVC" 1015685 T FVC (NIL) -9 NIL 1015868 NIL) (-443 1014827 1015009 1015077 "FUNDESC" 1015136 T FUNDESC (NIL) -8 NIL NIL NIL) (-442 1014442 1014624 1014705 "FUNCTION" 1014779 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-441 1013233 1013743 1013946 "FTEM" 1014259 T FTEM (NIL) -8 NIL NIL NIL) (-440 1010989 1011564 1012027 "FT" 1012790 T FT (NIL) -8 NIL NIL NIL) (-439 1009280 1009569 1009966 "FSUPFACT" 1010680 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-438 1007677 1007966 1008298 "FST" 1008968 T FST (NIL) -8 NIL NIL NIL) (-437 1006876 1006982 1007170 "FSRED" 1007559 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-436 1005575 1005831 1006178 "FSPRMELT" 1006591 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-435 1002881 1003319 1003805 "FSPECF" 1005138 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-434 1002409 1002463 1002633 "FSINT" 1002822 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-433 1000701 1001402 1001705 "FSERIES" 1002188 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-432 999743 999859 1000083 "FSCINT" 1000581 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-431 998785 998928 999155 "FSAGG2" 999596 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-430 994993 997729 997770 "FSAGG" 998140 NIL FSAGG (NIL T) -9 NIL 998399 NIL) (-429 992755 993356 994152 "FSAGG-" 994247 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-428 990437 990717 991264 "FS2UPS" 992473 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-427 989315 989486 989788 "FS2EXPXP" 990262 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-426 988949 988992 989121 "FS2" 989266 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-425 970616 978918 978959 "FS" 982843 NIL FS (NIL T) -9 NIL 985132 NIL) (-424 959340 962306 966336 "FS-" 966636 NIL FS- (NIL T T) -8 NIL NIL NIL) (-423 958766 958881 959033 "FRUTIL" 959220 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-422 953767 956409 956449 "FRNAALG" 957845 NIL FRNAALG (NIL T) -9 NIL 958452 NIL) (-421 949491 950550 951808 "FRNAALG-" 952558 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-420 949129 949172 949299 "FRNAAF2" 949442 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-419 947509 947983 948278 "FRMOD" 948941 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-418 946704 946791 947080 "FRIDEAL2" 947416 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-417 944455 945087 945404 "FRIDEAL" 946495 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-416 943595 944002 944043 "FRETRCT" 944048 NIL FRETRCT (NIL T) -9 NIL 944224 NIL) (-415 942728 942952 943296 "FRETRCT-" 943301 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-414 939816 941026 941085 "FRAMALG" 941967 NIL FRAMALG (NIL T T) -9 NIL 942259 NIL) (-413 937950 938405 939035 "FRAMALG-" 939258 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-412 937586 937643 937750 "FRAC2" 937887 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-411 931528 937061 937337 "FRAC" 937342 NIL FRAC (NIL T) -8 NIL NIL NIL) (-410 931164 931221 931328 "FR2" 931465 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-409 922692 926740 928071 "FR" 929865 NIL FR (NIL T) -8 NIL NIL NIL) (-408 917209 920098 920126 "FPS" 921245 T FPS (NIL) -9 NIL 921802 NIL) (-407 916658 916767 916931 "FPS-" 917077 NIL FPS- (NIL T) -8 NIL NIL NIL) (-406 913962 915629 915657 "FPC" 915882 T FPC (NIL) -9 NIL 916024 NIL) (-405 913755 913795 913892 "FPC-" 913897 NIL FPC- (NIL T) -8 NIL NIL NIL) (-404 912545 913243 913284 "FPATMAB" 913289 NIL FPATMAB (NIL T) -9 NIL 913441 NIL) (-403 910218 910721 911147 "FPARFRAC" 912182 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-402 905651 906149 906831 "FORTRAN" 909650 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-401 903327 903889 903917 "FORTFN" 904977 T FORTFN (NIL) -9 NIL 905601 NIL) (-400 903091 903141 903169 "FORTCAT" 903228 T FORTCAT (NIL) -9 NIL 903290 NIL) (-399 900807 901307 901846 "FORT" 902572 T FORT (NIL) -7 NIL NIL NIL) (-398 900595 900625 900694 "FORMULA1" 900771 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-397 898701 899211 899601 "FORMULA" 900225 T FORMULA (NIL) -8 NIL NIL NIL) (-396 898224 898276 898449 "FORDER" 898643 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-395 897320 897484 897677 "FOP" 898051 T FOP (NIL) -7 NIL NIL NIL) (-394 895901 896600 896774 "FNLA" 897202 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-393 894630 895045 895073 "FNCAT" 895533 T FNCAT (NIL) -9 NIL 895793 NIL) (-392 894169 894589 894617 "FNAME" 894622 T FNAME (NIL) -8 NIL NIL NIL) (-391 892732 893695 893723 "FMTC" 893728 T FMTC (NIL) -9 NIL 893764 NIL) (-390 891485 892668 892714 "FMONOID" 892719 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-389 888313 889481 889522 "FMONCAT" 890739 NIL FMONCAT (NIL T) -9 NIL 891344 NIL) (-388 885737 886383 886411 "FMFUN" 887555 T FMFUN (NIL) -9 NIL 888263 NIL) (-387 882816 883676 883730 "FMCAT" 884925 NIL FMCAT (NIL T T) -9 NIL 885420 NIL) (-386 882085 882266 882294 "FMC" 882584 T FMC (NIL) -9 NIL 882766 NIL) (-385 880951 881851 881951 "FM1" 882030 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-384 880143 880693 880842 "FM" 880847 NIL FM (NIL T T) -8 NIL NIL NIL) (-383 877917 878333 878827 "FLOATRP" 879694 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-382 875355 875855 876433 "FLOATCP" 877384 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-381 868933 873084 873705 "FLOAT" 874754 T FLOAT (NIL) -8 NIL NIL NIL) (-380 867673 868511 868552 "FLINEXP" 868557 NIL FLINEXP (NIL T) -9 NIL 868650 NIL) (-379 866827 867062 867390 "FLINEXP-" 867395 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-378 865903 866047 866271 "FLASORT" 866679 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-377 863019 863887 863939 "FLALG" 865166 NIL FLALG (NIL T T) -9 NIL 865633 NIL) (-376 862061 862204 862431 "FLAGG2" 862872 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-375 855797 859547 859588 "FLAGG" 860850 NIL FLAGG (NIL T) -9 NIL 861502 NIL) (-374 854523 854862 855352 "FLAGG-" 855357 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 851374 852382 852441 "FINRALG" 853569 NIL FINRALG (NIL T T) -9 NIL 854077 NIL) (-372 850534 850763 851102 "FINRALG-" 851107 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-371 849914 850153 850181 "FINITE" 850377 T FINITE (NIL) -9 NIL 850484 NIL) (-370 842271 844458 844498 "FINAALG" 848165 NIL FINAALG (NIL T) -9 NIL 849618 NIL) (-369 837603 838653 839797 "FINAALG-" 841176 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-368 836261 836599 836653 "FILECAT" 837337 NIL FILECAT (NIL T T) -9 NIL 837553 NIL) (-367 835629 836016 836119 "FILE" 836191 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 833347 834873 834901 "FIELD" 834941 T FIELD (NIL) -9 NIL 835021 NIL) (-365 831967 832352 832863 "FIELD-" 832868 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-364 829817 830602 830949 "FGROUP" 831653 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-363 828907 829071 829291 "FGLMICPK" 829649 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-362 824741 828832 828889 "FFX" 828894 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-361 824342 824403 824538 "FFSLPE" 824674 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-360 823846 823882 824091 "FFPOLY2" 824300 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-359 819836 820618 821414 "FFPOLY" 823082 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 815682 819755 819818 "FFP" 819823 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-357 810810 815025 815215 "FFNBX" 815536 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-356 805740 809945 810203 "FFNBP" 810664 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-355 800375 805024 805235 "FFNB" 805573 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-354 799207 799405 799720 "FFINTBAS" 800172 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-353 795278 797496 797524 "FFIELDC" 798144 T FFIELDC (NIL) -9 NIL 798520 NIL) (-352 793940 794311 794808 "FFIELDC-" 794813 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-351 793509 793555 793679 "FFHOM" 793882 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-350 791204 791691 792208 "FFF" 793024 NIL FFF (NIL T) -7 NIL NIL NIL) (-349 786824 790946 791047 "FFCGX" 791147 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-348 782448 786556 786663 "FFCGP" 786767 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-347 777633 782175 782283 "FFCG" 782384 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-346 777044 777087 777322 "FFCAT2" 777584 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-345 758449 767521 767607 "FFCAT" 772772 NIL FFCAT (NIL T T T) -9 NIL 774223 NIL) (-344 753646 754694 756008 "FFCAT-" 757238 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-343 749046 753557 753621 "FF" 753626 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-342 738371 742018 743238 "FEXPR" 747898 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-341 737371 737806 737847 "FEVALAB" 737931 NIL FEVALAB (NIL T) -9 NIL 738192 NIL) (-340 736530 736740 737078 "FEVALAB-" 737083 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-339 733550 734291 734406 "FDIVCAT" 735974 NIL FDIVCAT (NIL T T T T) -9 NIL 736411 NIL) (-338 733312 733339 733509 "FDIVCAT-" 733514 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-337 732532 732619 732896 "FDIV2" 733219 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-336 731098 731915 732118 "FDIV" 732431 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 730072 730393 730595 "FCTRDATA" 730916 T FCTRDATA (NIL) -8 NIL NIL NIL) (-334 728758 729017 729306 "FCPAK1" 729803 T FCPAK1 (NIL) -7 NIL NIL NIL) (-333 727857 728258 728399 "FCOMP" 728649 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-332 711562 715007 718545 "FC" 724339 T FC (NIL) -8 NIL NIL NIL) (-331 703927 707953 707993 "FAXF" 709795 NIL FAXF (NIL T) -9 NIL 710487 NIL) (-330 701203 701861 702686 "FAXF-" 703151 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-329 696255 700579 700755 "FARRAY" 701060 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-328 691156 693216 693269 "FAMR" 694292 NIL FAMR (NIL T T) -9 NIL 694752 NIL) (-327 690046 690348 690783 "FAMR-" 690788 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-326 689215 689968 690021 "FAMONOID" 690026 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-325 687001 687711 687764 "FAMONC" 688705 NIL FAMONC (NIL T T) -9 NIL 689091 NIL) (-324 685665 686755 686892 "FAGROUP" 686897 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-323 683460 683779 684182 "FACUTIL" 685346 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-322 682559 682744 682966 "FACTFUNC" 683270 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-321 674983 681862 682061 "EXPUPXS" 682415 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-320 672466 673006 673592 "EXPRTUBE" 674417 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-319 668737 669329 670059 "EXPRODE" 671805 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-318 663291 663878 664684 "EXPR2UPS" 668035 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-317 662923 662980 663089 "EXPR2" 663228 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-316 648469 661572 662001 "EXPR" 662527 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 639885 647622 647912 "EXPEXPAN" 648306 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-314 639365 639609 639700 "EXITAST" 639814 T EXITAST (NIL) -8 NIL NIL NIL) (-313 639165 639322 639351 "EXIT" 639356 T EXIT (NIL) -8 NIL NIL NIL) (-312 638792 638854 638967 "EVALCYC" 639097 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-311 638333 638451 638492 "EVALAB" 638662 NIL EVALAB (NIL T) -9 NIL 638766 NIL) (-310 637814 637936 638157 "EVALAB-" 638162 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-309 635182 636484 636512 "EUCDOM" 637067 T EUCDOM (NIL) -9 NIL 637417 NIL) (-308 633587 634029 634619 "EUCDOM-" 634624 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-307 633219 633276 633385 "ESTOOLS2" 633524 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-306 632970 633012 633092 "ESTOOLS1" 633171 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-305 620508 623268 626018 "ESTOOLS" 630240 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 620253 620285 620367 "ESCONT1" 620470 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-303 616627 617388 618168 "ESCONT" 619493 T ESCONT (NIL) -7 NIL NIL NIL) (-302 616302 616352 616452 "ES2" 616571 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-301 615932 615990 616099 "ES1" 616238 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-300 609969 611577 611605 "ES" 614373 T ES (NIL) -9 NIL 615783 NIL) (-299 604916 606203 608020 "ES-" 608184 NIL ES- (NIL T) -8 NIL NIL NIL) (-298 604132 604261 604437 "ERROR" 604760 T ERROR (NIL) -7 NIL NIL NIL) (-297 597526 603991 604082 "EQTBL" 604087 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-296 597158 597215 597324 "EQ2" 597463 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-295 589661 592472 593921 "EQ" 595742 NIL -3961 (NIL T) -8 NIL NIL NIL) (-294 584951 585999 587092 "EP" 588600 NIL EP (NIL T) -7 NIL NIL NIL) (-293 583551 583842 584148 "ENV" 584665 T ENV (NIL) -8 NIL NIL NIL) (-292 582645 583199 583227 "ENTIRER" 583232 T ENTIRER (NIL) -9 NIL 583278 NIL) (-291 579168 580654 581024 "EMR" 582444 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-290 578312 578497 578551 "ELTAGG" 578931 NIL ELTAGG (NIL T T) -9 NIL 579142 NIL) (-289 578031 578093 578234 "ELTAGG-" 578239 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-288 577820 577849 577903 "ELTAB" 577987 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-287 576946 577092 577291 "ELFUTS" 577671 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-286 576688 576744 576772 "ELEMFUN" 576877 T ELEMFUN (NIL) -9 NIL NIL NIL) (-285 576558 576579 576647 "ELEMFUN-" 576652 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-284 571402 574658 574699 "ELAGG" 575639 NIL ELAGG (NIL T) -9 NIL 576102 NIL) (-283 569687 570121 570784 "ELAGG-" 570789 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-282 568348 568627 568921 "ELABEXPR" 569413 T ELABEXPR (NIL) -8 NIL NIL NIL) (-281 561339 563015 563842 "EFUPXS" 567624 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-280 554916 556590 557400 "EFULS" 560615 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-279 552401 552759 553231 "EFSTRUC" 554548 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-278 542192 543758 545306 "EF" 550916 NIL EF (NIL T T) -7 NIL NIL NIL) (-277 541266 541677 541826 "EAB" 542063 T EAB (NIL) -8 NIL NIL NIL) (-276 540448 541225 541253 "E04UCFA" 541258 T E04UCFA (NIL) -8 NIL NIL NIL) (-275 539630 540407 540435 "E04NAFA" 540440 T E04NAFA (NIL) -8 NIL NIL NIL) (-274 538812 539589 539617 "E04MBFA" 539622 T E04MBFA (NIL) -8 NIL NIL NIL) (-273 537994 538771 538799 "E04JAFA" 538804 T E04JAFA (NIL) -8 NIL NIL NIL) (-272 537178 537953 537981 "E04GCFA" 537986 T E04GCFA (NIL) -8 NIL NIL NIL) (-271 536362 537137 537165 "E04FDFA" 537170 T E04FDFA (NIL) -8 NIL NIL NIL) (-270 535544 536321 536349 "E04DGFA" 536354 T E04DGFA (NIL) -8 NIL NIL NIL) (-269 529717 531069 532433 "E04AGNT" 534200 T E04AGNT (NIL) -7 NIL NIL NIL) (-268 528397 528903 528943 "DVARCAT" 529418 NIL DVARCAT (NIL T) -9 NIL 529617 NIL) (-267 527601 527813 528127 "DVARCAT-" 528132 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-266 520779 527400 527529 "DSMP" 527534 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-265 520444 520503 520601 "DROPT1" 520714 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-264 515559 516685 517822 "DROPT0" 519327 T DROPT0 (NIL) -7 NIL NIL NIL) (-263 510340 511504 512572 "DROPT" 514511 T DROPT (NIL) -8 NIL NIL NIL) (-262 508685 509010 509396 "DRAWPT" 509974 T DRAWPT (NIL) -7 NIL NIL NIL) (-261 508318 508371 508489 "DRAWHACK" 508626 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-260 507049 507318 507609 "DRAWCX" 508047 T DRAWCX (NIL) -7 NIL NIL NIL) (-259 506564 506633 506784 "DRAWCURV" 506975 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-258 497032 498994 501109 "DRAWCFUN" 504469 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-257 491619 492542 493621 "DRAW" 496006 NIL DRAW (NIL T) -7 NIL NIL NIL) (-256 488385 490314 490355 "DQAGG" 490984 NIL DQAGG (NIL T) -9 NIL 491257 NIL) (-255 476545 482978 483061 "DPOLCAT" 484913 NIL DPOLCAT (NIL T T T T) -9 NIL 485458 NIL) (-254 471432 472764 474705 "DPOLCAT-" 474710 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-253 464561 471293 471391 "DPMO" 471396 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-252 457593 464341 464508 "DPMM" 464513 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-251 457071 457285 457383 "DOMTMPLT" 457515 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-250 456504 456873 456953 "DOMCTOR" 457011 T DOMCTOR (NIL) -8 NIL NIL NIL) (-249 455716 455984 456135 "DOMAIN" 456373 T DOMAIN (NIL) -8 NIL NIL NIL) (-248 449735 455351 455503 "DMP" 455617 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-247 449335 449391 449535 "DLP" 449673 NIL DLP (NIL T) -7 NIL NIL NIL) (-246 443159 448662 448852 "DLIST" 449177 NIL DLIST (NIL T) -8 NIL NIL NIL) (-245 439957 442012 442053 "DLAGG" 442603 NIL DLAGG (NIL T) -9 NIL 442833 NIL) (-244 438633 439297 439325 "DIVRING" 439417 T DIVRING (NIL) -9 NIL 439500 NIL) (-243 437870 438060 438360 "DIVRING-" 438365 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-242 435972 436329 436735 "DISPLAY" 437484 T DISPLAY (NIL) -7 NIL NIL NIL) (-241 434820 435023 435288 "DIRPROD2" 435765 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-240 428715 434734 434797 "DIRPROD" 434802 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 417497 423496 423549 "DIRPCAT" 423959 NIL DIRPCAT (NIL NIL T) -9 NIL 424799 NIL) (-238 414823 415465 416346 "DIRPCAT-" 416683 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-237 414110 414270 414456 "DIOSP" 414657 T DIOSP (NIL) -7 NIL NIL NIL) (-236 410765 413022 413063 "DIOPS" 413497 NIL DIOPS (NIL T) -9 NIL 413726 NIL) (-235 410314 410428 410619 "DIOPS-" 410624 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-234 409137 409765 409793 "DIFRING" 409980 T DIFRING (NIL) -9 NIL 410090 NIL) (-233 408783 408860 409012 "DIFRING-" 409017 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-232 406519 407791 407832 "DIFEXT" 408195 NIL DIFEXT (NIL T) -9 NIL 408489 NIL) (-231 404804 405232 405898 "DIFEXT-" 405903 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-230 402079 404336 404377 "DIAGG" 404382 NIL DIAGG (NIL T) -9 NIL 404402 NIL) (-229 401463 401620 401872 "DIAGG-" 401877 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-228 396879 400422 400699 "DHMATRIX" 401232 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-227 392491 393400 394410 "DFSFUN" 395889 T DFSFUN (NIL) -7 NIL NIL NIL) (-226 387574 391422 391734 "DFLOAT" 392199 T DFLOAT (NIL) -8 NIL NIL NIL) (-225 385837 386118 386507 "DFINTTLS" 387282 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-224 382866 383858 384258 "DERHAM" 385503 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-223 380667 382641 382730 "DEQUEUE" 382810 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-222 379921 380054 380237 "DEGRED" 380529 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-221 376531 377231 378032 "DEFINTRF" 379194 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-220 374198 374639 375203 "DEFINTEF" 376078 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-219 373548 373818 373933 "DEFAST" 374103 T DEFAST (NIL) -8 NIL NIL NIL) (-218 367573 373143 373292 "DECIMAL" 373419 T DECIMAL (NIL) -8 NIL NIL NIL) (-217 365085 365543 366049 "DDFACT" 367117 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-216 364681 364724 364875 "DBLRESP" 365036 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-215 362553 362914 363274 "DBASE" 364448 NIL DBASE (NIL T) -8 NIL NIL NIL) (-214 361795 362033 362179 "DATAARY" 362452 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-213 360901 361754 361782 "D03FAFA" 361787 T D03FAFA (NIL) -8 NIL NIL NIL) (-212 360008 360860 360888 "D03EEFA" 360893 T D03EEFA (NIL) -8 NIL NIL NIL) (-211 357958 358424 358913 "D03AGNT" 359539 T D03AGNT (NIL) -7 NIL NIL NIL) (-210 357247 357917 357945 "D02EJFA" 357950 T D02EJFA (NIL) -8 NIL NIL NIL) (-209 356536 357206 357234 "D02CJFA" 357239 T D02CJFA (NIL) -8 NIL NIL NIL) (-208 355825 356495 356523 "D02BHFA" 356528 T D02BHFA (NIL) -8 NIL NIL NIL) (-207 355114 355784 355812 "D02BBFA" 355817 T D02BBFA (NIL) -8 NIL NIL NIL) (-206 348311 349900 351506 "D02AGNT" 353528 T D02AGNT (NIL) -7 NIL NIL NIL) (-205 346079 346602 347148 "D01WGTS" 347785 T D01WGTS (NIL) -7 NIL NIL NIL) (-204 345146 346038 346066 "D01TRNS" 346071 T D01TRNS (NIL) -8 NIL NIL NIL) (-203 344214 345105 345133 "D01GBFA" 345138 T D01GBFA (NIL) -8 NIL NIL NIL) (-202 343282 344173 344201 "D01FCFA" 344206 T D01FCFA (NIL) -8 NIL NIL NIL) (-201 342350 343241 343269 "D01ASFA" 343274 T D01ASFA (NIL) -8 NIL NIL NIL) (-200 341418 342309 342337 "D01AQFA" 342342 T D01AQFA (NIL) -8 NIL NIL NIL) (-199 340486 341377 341405 "D01APFA" 341410 T D01APFA (NIL) -8 NIL NIL NIL) (-198 339554 340445 340473 "D01ANFA" 340478 T D01ANFA (NIL) -8 NIL NIL NIL) (-197 338622 339513 339541 "D01AMFA" 339546 T D01AMFA (NIL) -8 NIL NIL NIL) (-196 337690 338581 338609 "D01ALFA" 338614 T D01ALFA (NIL) -8 NIL NIL NIL) (-195 336758 337649 337677 "D01AKFA" 337682 T D01AKFA (NIL) -8 NIL NIL NIL) (-194 335826 336717 336745 "D01AJFA" 336750 T D01AJFA (NIL) -8 NIL NIL NIL) (-193 329121 330674 332235 "D01AGNT" 334285 T D01AGNT (NIL) -7 NIL NIL NIL) (-192 328458 328586 328738 "CYCLOTOM" 328989 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-191 325193 325906 326633 "CYCLES" 327751 T CYCLES (NIL) -7 NIL NIL NIL) (-190 324505 324639 324810 "CVMP" 325054 NIL CVMP (NIL T) -7 NIL NIL NIL) (-189 322346 322604 322973 "CTRIGMNP" 324233 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-188 321855 322077 322178 "CTORKIND" 322265 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 321146 321462 321490 "CTORCAT" 321672 T CTORCAT (NIL) -9 NIL 321785 NIL) (-186 320744 320855 321014 "CTORCAT-" 321019 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 320206 320418 320526 "CTORCALL" 320668 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 319642 320000 320073 "CTOR" 320153 T CTOR (NIL) -8 NIL NIL NIL) (-183 319016 319115 319268 "CSTTOOLS" 319539 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-182 314815 315472 316230 "CRFP" 318328 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-181 314290 314536 314628 "CRCEAST" 314743 T CRCEAST (NIL) -8 NIL NIL NIL) (-180 313337 313522 313750 "CRAPACK" 314094 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-179 312721 312822 313026 "CPMATCH" 313213 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-178 312446 312474 312580 "CPIMA" 312687 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-177 308794 309466 310185 "COORDSYS" 311781 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-176 308206 308327 308469 "CONTOUR" 308672 T CONTOUR (NIL) -8 NIL NIL NIL) (-175 304099 306209 306701 "CONTFRAC" 307746 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-174 303979 304000 304028 "CONDUIT" 304065 T CONDUIT (NIL) -9 NIL NIL NIL) (-173 303067 303621 303649 "COMRING" 303654 T COMRING (NIL) -9 NIL 303706 NIL) (-172 302121 302425 302609 "COMPPROP" 302903 T COMPPROP (NIL) -8 NIL NIL NIL) (-171 301782 301817 301945 "COMPLPAT" 302080 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-170 301418 301475 301582 "COMPLEX2" 301719 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 291727 301227 301336 "COMPLEX" 301341 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 291468 291508 291589 "COMPILER" 291666 T COMPILER (NIL) -8 NIL NIL NIL) (-167 291186 291221 291319 "COMPFACT" 291427 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275275 285260 285300 "COMPCAT" 286304 NIL COMPCAT (NIL T) -9 NIL 287652 NIL) (-165 264808 267728 271348 "COMPCAT-" 271704 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264537 264565 264668 "COMMUPC" 264774 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264331 264365 264424 "COMMONOP" 264498 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263907 264135 264210 "COMMAAST" 264276 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263463 263658 263745 "COMM" 263840 T COMM (NIL) -8 NIL NIL NIL) (-160 262712 262906 262934 "COMBOPC" 263272 T COMBOPC (NIL) -9 NIL 263447 NIL) (-159 261608 261818 262060 "COMBINAT" 262502 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258065 258639 259266 "COMBF" 261030 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256823 257181 257416 "COLOR" 257850 T COLOR (NIL) -8 NIL NIL NIL) (-156 256299 256544 256636 "COLONAST" 256751 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255939 255986 256111 "CMPLXRT" 256246 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 255387 255639 255738 "CLLCTAST" 255860 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250886 251917 252997 "CLIP" 254327 T CLIP (NIL) -7 NIL NIL NIL) (-152 249232 249992 250231 "CLIF" 250713 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 245407 247378 247419 "CLAGG" 248348 NIL CLAGG (NIL T) -9 NIL 248884 NIL) (-150 243829 244286 244869 "CLAGG-" 244874 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 243373 243458 243598 "CINTSLPE" 243738 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240874 241345 241893 "CHVAR" 242901 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240048 240602 240630 "CHARZ" 240635 T CHARZ (NIL) -9 NIL 240650 NIL) (-146 239802 239842 239920 "CHARPOL" 240002 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238860 239447 239475 "CHARNZ" 239522 T CHARNZ (NIL) -9 NIL 239578 NIL) (-144 236766 237514 237867 "CHAR" 238527 T CHAR (NIL) -8 NIL NIL NIL) (-143 236492 236553 236581 "CFCAT" 236692 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235737 235848 236030 "CDEN" 236376 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231702 234890 235170 "CCLASS" 235477 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230953 231110 231287 "CATEGORY" 231545 T -10 (NIL) -8 NIL NIL NIL) (-139 230526 230872 230920 "CATCTOR" 230925 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229977 230229 230327 "CATAST" 230448 T CATAST (NIL) -8 NIL NIL NIL) (-137 229453 229698 229790 "CASEAST" 229905 T CASEAST (NIL) -8 NIL NIL NIL) (-136 228561 228709 228930 "CARTEN2" 229300 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223570 224590 225343 "CARTEN" 227864 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 221886 222720 222977 "CARD" 223333 T CARD (NIL) -8 NIL NIL NIL) (-133 221462 221690 221765 "CAPSLAST" 221831 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220966 221174 221202 "CACHSET" 221334 T CACHSET (NIL) -9 NIL 221412 NIL) (-131 220436 220758 220786 "CABMON" 220836 T CABMON (NIL) -9 NIL 220892 NIL) (-130 219909 220140 220250 "BYTEORD" 220346 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 215259 219414 219586 "BYTEBUF" 219757 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214241 214793 214935 "BYTE" 215098 T BYTE (NIL) -8 NIL NIL 215220) (-127 211752 213933 214040 "BTREE" 214167 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209203 211400 211522 "BTOURN" 211662 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206575 208673 208714 "BTCAT" 208782 NIL BTCAT (NIL T) -9 NIL 208859 NIL) (-124 206242 206322 206471 "BTCAT-" 206476 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201507 205385 205413 "BTAGG" 205635 T BTAGG (NIL) -9 NIL 205796 NIL) (-122 200997 201122 201328 "BTAGG-" 201333 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197994 200275 200490 "BSTREE" 200814 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197132 197258 197442 "BRILL" 197850 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193785 195858 195899 "BRAGG" 196548 NIL BRAGG (NIL T) -9 NIL 196806 NIL) (-118 192317 192722 193276 "BRAGG-" 193281 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185567 191663 191847 "BPADICRT" 192165 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183884 185504 185549 "BPADIC" 185554 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183582 183612 183726 "BOUNDZRO" 183848 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 181363 181767 182242 "BOP1" 183140 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 176591 177789 178701 "BOP" 180471 T BOP (NIL) -8 NIL NIL NIL) (-112 175416 176165 176314 "BOOLEAN" 176462 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174695 175099 175153 "BMODULE" 175158 NIL BMODULE (NIL T T) -9 NIL 175223 NIL) (-110 170496 174493 174566 "BITS" 174642 T BITS (NIL) -8 NIL NIL NIL) (-109 169917 170036 170176 "BINDING" 170376 T BINDING (NIL) -8 NIL NIL NIL) (-108 163945 169514 169662 "BINARY" 169789 T BINARY (NIL) -8 NIL NIL NIL) (-107 161725 163200 163241 "BGAGG" 163501 NIL BGAGG (NIL T) -9 NIL 163638 NIL) (-106 161556 161588 161679 "BGAGG-" 161684 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160627 160940 161145 "BFUNCT" 161371 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159311 159492 159780 "BEZOUT" 160451 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155782 158163 158493 "BBTREE" 159014 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155516 155569 155597 "BASTYPE" 155716 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155368 155397 155470 "BASTYPE-" 155475 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154802 154878 155030 "BALFACT" 155279 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153658 154217 154403 "AUTOMOR" 154647 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153384 153389 153415 "ATTREG" 153420 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151636 152081 152433 "ATTRBUT" 153050 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151244 151464 151530 "ATTRAST" 151588 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150780 150893 150919 "ATRIG" 151120 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150589 150630 150717 "ATRIG-" 150722 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150234 150420 150446 "ASTCAT" 150451 T ASTCAT (NIL) -9 NIL 150481 NIL) (-92 149961 150020 150139 "ASTCAT-" 150144 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148110 149737 149825 "ASTACK" 149904 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146615 146912 147277 "ASSOCEQ" 147792 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145669 146274 146398 "ASP9" 146522 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 144559 145274 145416 "ASP80" 145558 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 144322 144507 144546 "ASP8" 144551 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 143298 143999 144117 "ASP78" 144235 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 142289 142978 143095 "ASP77" 143212 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 141223 141927 142058 "ASP74" 142189 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 140145 140858 140990 "ASP73" 141122 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 139065 139780 139912 "ASP7" 140044 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 138191 138891 138991 "ASP6" 138996 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137158 137868 137986 "ASP55" 138104 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136129 136832 136951 "ASP50" 137070 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135239 135830 135940 "ASP49" 136050 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 134045 134778 134946 "ASP42" 135128 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132843 133578 133748 "ASP41" 133932 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131953 132544 132654 "ASP4" 132764 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130925 131630 131748 "ASP35" 131866 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130690 130873 130912 "ASP34" 130917 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130427 130494 130570 "ASP33" 130645 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129342 130062 130194 "ASP31" 130326 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129107 129290 129329 "ASP30" 129334 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128842 128911 128987 "ASP29" 129062 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128607 128790 128829 "ASP28" 128834 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128372 128555 128594 "ASP27" 128599 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127478 128070 128181 "ASP24" 128292 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126576 127280 127392 "ASP20" 127397 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125540 126250 126369 "ASP19" 126488 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 125277 125344 125420 "ASP12" 125495 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 124151 124876 125020 "ASP10" 125164 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 123261 123852 123962 "ASP1" 124072 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 121112 123105 123196 "ARRAY2" 123201 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 120144 120317 120538 "ARRAY12" 120935 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115909 119792 119906 "ARRAY1" 120061 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 110221 112139 112214 "ARR2CAT" 114844 NIL ARR2CAT (NIL T T T) -9 NIL 115602 NIL) (-56 107655 108399 109353 "ARR2CAT-" 109358 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106972 107282 107407 "ARITY" 107548 T ARITY (NIL) -8 NIL NIL NIL) (-54 105748 105900 106199 "APPRULE" 106808 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105399 105447 105566 "APPLYORE" 105694 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104677 104800 104957 "ANY1" 105273 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 104031 104270 104390 "ANY" 104575 T ANY (NIL) -8 NIL NIL NIL) (-50 101561 102468 102795 "ANTISYM" 103755 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101053 101268 101364 "ANON" 101483 T ANON (NIL) -8 NIL NIL NIL) (-48 95311 99592 100046 "AN" 100617 T AN (NIL) -8 NIL NIL NIL) (-47 91209 92597 92648 "AMR" 93396 NIL AMR (NIL T T) -9 NIL 93996 NIL) (-46 90321 90542 90905 "AMR-" 90910 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74766 90238 90299 "ALIST" 90304 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71601 74360 74529 "ALGSC" 74684 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68156 68711 69318 "ALGPKG" 71041 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67433 67534 67718 "ALGMFACT" 68042 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63468 64047 64641 "ALGMANIP" 67017 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54849 63094 63244 "ALGFF" 63401 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54045 54176 54355 "ALGFACT" 54707 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52986 53586 53624 "ALGEBRA" 53629 NIL ALGEBRA (NIL T) -9 NIL 53670 NIL) (-37 52704 52763 52895 "ALGEBRA-" 52900 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34803 50706 50758 "ALAGG" 50894 NIL ALAGG (NIL T T) -9 NIL 51055 NIL) (-35 34339 34452 34478 "AHYP" 34679 T AHYP (NIL) -9 NIL NIL NIL) (-34 33270 33518 33544 "AGG" 34043 T AGG (NIL) -9 NIL 34322 NIL) (-33 32704 32866 33080 "AGG-" 33085 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30510 30933 31338 "AF" 32346 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29990 30235 30325 "ADDAST" 30438 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29258 29517 29673 "ACPLOT" 29852 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18637 26385 26423 "ACFS" 27030 NIL ACFS (NIL T) -9 NIL 27269 NIL) (-28 16664 17154 17916 "ACFS-" 17921 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14711 14737 "ACF" 15616 T ACF (NIL) -9 NIL 16029 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index f85ec3b6..f836d3f8 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3804 +1,3804 @@ -(723977 . 3477417268) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) - (-5 *2 (-1269 (-410 (-549)))) (-5 *1 (-1297 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) - (-5 *2 (-1269 (-549))) (-5 *1 (-1297 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-112)) - (-5 *1 (-1297 *4))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-616 *2) (-172))) (-5 *2 (-893 *4)) (-5 *1 (-170 *4 *5 *3)) - (-4 *4 (-1104)) (-4 *3 (-166 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-1092 (-844 (-380))))) - (-5 *2 (-643 (-1092 (-844 (-225))))) (-5 *1 (-304)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-396)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-1269 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-408 *1)) (-4 *1 (-424 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) - ((*1 *1 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-466 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-538)))) - ((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) - (-4 *5 (-616 (-1180))) (-4 *4 (-795)) (-4 *5 (-852)))) - ((*1 *1 *2) - (-3960 - (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) - (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852))))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) - (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) - (-5 *1 (-1072 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) - (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1112 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) - (-5 *1 (-1148 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) - ((*1 *2 *3) - (-12 (-5 *3 (-782 *4 (-866 *5))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-14 *5 (-643 (-1180))) (-5 *2 (-782 *4 (-866 *6))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *6 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-949 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-782 *4 (-866 *6))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-14 *6 (-643 (-1180))) (-5 *2 (-949 (-1027 (-410 *4)))) - (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-1174 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6)))) - (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *6 (-643 (-1180))) - (-5 *2 (-643 (-782 *4 (-866 *6)))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *5 (-643 (-1180)))))) -(((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) - ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-4 *7 (-953 *6 *4 *5)) - (-5 *2 (-408 (-1174 *7))) (-5 *1 (-744 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-408 *1)) (-4 *1 (-953 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-455)) (-5 *2 (-408 *3)) - (-5 *1 (-982 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) - (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) - (-5 *3 (-1174 (-410 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224)))) - ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-1249 *4 *3)) - (-4 *3 (-13 (-1245 *4) (-560) (-10 -8 (-15 -3564 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-14 *5 (-643 (-1180))) - (-5 *2 (-643 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6))))) - (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) - (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) +(724049 . 3477420788) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 (-550))) + (-5 *2 (-1270 (-411 (-550)))) (-5 *1 (-1298 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 (-550))) + (-5 *2 (-1270 (-550))) (-5 *1 (-1298 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 *4)) (-4 *4 (-642 (-550))) (-5 *2 (-112)) + (-5 *1 (-1298 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-617 *2) (-173))) (-5 *2 (-894 *4)) (-5 *1 (-171 *4 *5 *3)) + (-4 *4 (-1105)) (-4 *3 (-166 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1093 (-845 (-381))))) + (-5 *2 (-644 (-1093 (-845 (-226))))) (-5 *1 (-305)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-866)) (-5 *3 (-550)) (-5 *1 (-397)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) + (-4 *4 (-1246 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) + (-5 *2 (-1270 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1270 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-409 *1)) (-4 *1 (-425 *3)) (-4 *3 (-561)) (-4 *3 (-1105)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-467 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-727 *3 *2)) (-4 *2 (-1246 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) + (-4 *5 (-617 (-1181))) (-4 *4 (-796)) (-4 *5 (-853)))) + ((*1 *1 *2) + (-3962 + (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) + (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853))))) + ((*1 *1 *2) + (-12 (-5 *2 (-950 (-411 (-550)))) (-4 *1 (-1069 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181))) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) + (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1163)) + (-5 *1 (-1073 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) + (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1113 *4 *5 *6 *7)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1163)) + (-5 *1 (-1149 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1186)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-866)) (-5 *3 (-550)) (-5 *1 (-1200)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-866)) (-5 *3 (-550)) (-5 *1 (-1200)))) + ((*1 *2 *3) + (-12 (-5 *3 (-783 *4 (-867 *5))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-14 *5 (-644 (-1181))) (-5 *2 (-783 *4 (-867 *6))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *6 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-950 (-1028 (-411 *4)))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-783 *4 (-867 *6))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-14 *6 (-644 (-1181))) (-5 *2 (-950 (-1028 (-411 *4)))) + (-5 *1 (-1297 *4 *5 *6)) (-14 *5 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175 *4)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-1175 (-1028 (-411 *4)))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 *4 (-535 (-867 *6)) (-867 *6) (-783 *4 (-867 *6)))) + (-4 *4 (-13 (-851) (-309) (-147) (-1024))) (-14 *6 (-644 (-1181))) + (-5 *2 (-644 (-783 *4 (-867 *6)))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *5 (-644 (-1181)))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-563 *3)) (-4 *3 (-549)))) + ((*1 *2 *3) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-409 *3)) + (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-954 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-4 *7 (-954 *6 *4 *5)) + (-5 *2 (-409 (-1175 *7))) (-5 *1 (-745 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-456)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-409 *1)) (-4 *1 (-954 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-456)) (-5 *2 (-409 *3)) + (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-954 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-456)) (-4 *7 (-954 *6 *4 *5)) + (-5 *2 (-409 (-1175 (-411 *7)))) (-5 *1 (-1177 *4 *5 *6 *7)) + (-5 *3 (-1175 (-411 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1225)))) + ((*1 *2 *3) + (-12 (-4 *4 (-561)) (-5 *2 (-409 *3)) (-5 *1 (-1250 *4 *3)) + (-4 *3 (-13 (-1246 *4) (-561) (-10 -8 (-15 -3566 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-14 *5 (-644 (-1181))) + (-5 *2 (-644 (-1150 *4 (-535 (-867 *6)) (-867 *6) (-783 *4 (-867 *6))))) + (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-14 *5 (-644 (-1181))) (-5 *2 (-644 (-644 (-1028 (-411 *4))))) + (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) - (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) - (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180)))))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) + (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) + (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *4))))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-643 (-1180))) - (-5 *2 (-643 (-643 (-380)))) (-5 *1 (-1026)) (-5 *5 (-380)))) + (-12 (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-644 (-1181))) + (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1027)) (-5 *5 (-381)))) ((*1 *2 *3) - (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) - (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) + (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-14 *5 (-644 (-1181))) (-5 *2 (-644 (-644 (-1028 (-411 *4))))) + (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) - (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) + (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) - (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) - (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-14 *5 (-643 (-1180))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) - (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) + (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *5))))) (-5 *1 (-1297 *5 *6 *7)) + (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-644 (-1028 (-411 *4))))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-14 *5 (-644 (-1181))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *4)) (|:| -3646 (-644 (-950 *4)))))) + (-5 *1 (-1297 *4 *5 *6)) (-14 *6 (-644 (-1181))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) - (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) - (-14 *7 (-643 (-1180))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) + (-5 *1 (-1297 *5 *6 *7)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))) + (-14 *7 (-644 (-1181))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) - (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) - (-14 *7 (-643 (-1180))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) - (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) - (-14 *7 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) - (-5 *1 (-1296 *4 *5 *6)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))) - (-14 *6 (-643 (-1180)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) + (-5 *1 (-1297 *5 *6 *7)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))) + (-14 *7 (-644 (-1181))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) + (-5 *1 (-1297 *5 *6 *7)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))) + (-14 *7 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *4)) (|:| -3646 (-644 (-950 *4)))))) + (-5 *1 (-1297 *4 *5 *6)) (-5 *3 (-644 (-950 *4))) (-14 *5 (-644 (-1181))) + (-14 *6 (-644 (-1181)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) - (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-1050 *5 *6))) + (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) - (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-851) (-309) (-147) (-1024))) (-5 *2 (-644 (-1050 *5 *6))) + (-5 *1 (-1297 *5 *6 *7)) (-14 *6 (-644 (-1181))) (-14 *7 (-644 (-1181))))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) - (-5 *2 (-643 (-1049 *4 *5))) (-5 *1 (-1296 *4 *5 *6)) - (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180)))))) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-851) (-309) (-147) (-1024))) + (-5 *2 (-644 (-1050 *4 *5))) (-5 *1 (-1297 *4 *5 *6)) + (-14 *5 (-644 (-1181))) (-14 *6 (-644 (-1181)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1157 *4) (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1295 *4)) - (-4 *4 (-1219)))) + (-12 (-5 *3 (-1 (-1158 *4) (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1296 *4)) + (-4 *4 (-1220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-643 (-1157 *5)) (-643 (-1157 *5)))) (-5 *4 (-549)) - (-5 *2 (-643 (-1157 *5))) (-5 *1 (-1295 *5)) (-4 *5 (-1219))))) + (-12 (-5 *3 (-1 (-644 (-1158 *5)) (-644 (-1158 *5)))) (-5 *4 (-550)) + (-5 *2 (-644 (-1158 *5))) (-5 *1 (-1296 *5)) (-4 *5 (-1220))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *6 (-560)) (-5 *2 (-643 (-315 *6))) - (-5 *1 (-221 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1052)))) - ((*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) + (-12 (-5 *4 (-923)) (-4 *6 (-561)) (-5 *2 (-644 (-316 *6))) + (-5 *1 (-222 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1053)))) + ((*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-561)))) ((*1 *2 *3) - (-12 (-5 *3 (-586 *5)) (-4 *5 (-13 (-29 *4) (-1205))) - (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 *5)) - (-5 *1 (-588 *4 *5)))) + (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1206))) + (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-644 *5)) + (-5 *1 (-589 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-586 (-410 (-949 *4)))) - (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 (-315 *4))) - (-5 *1 (-592 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1152 *3)))) + (-12 (-5 *3 (-587 (-411 (-950 *4)))) + (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-644 (-316 *4))) + (-5 *1 (-593 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1153 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 *1)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) - (-4 *2 (-1152 *4)))) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1099 *4 *2)) (-4 *4 (-851)) + (-4 *2 (-1153 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206))))) ((*1 *2 *1) - (-12 (-5 *2 (-1285 (-1180) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-1286 (-1181) *3)) (-5 *1 (-1292 *3)) (-4 *3 (-1053)))) ((*1 *2 *1) - (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-1052))))) + (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-1053))))) (((*1 *1 *2) - (-12 (-5 *2 (-1285 (-1180) *3)) (-4 *3 (-1052)) (-5 *1 (-1291 *3)))) + (-12 (-5 *2 (-1286 (-1181) *3)) (-4 *3 (-1053)) (-5 *1 (-1292 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) - (-5 *1 (-1294 *3 *4))))) + (-12 (-5 *2 (-1286 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) + (-5 *1 (-1295 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |k| (-1180)) (|:| |c| (-1291 *3))))) - (-5 *1 (-1291 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-1181)) (|:| |c| (-1292 *3))))) + (-5 *1 (-1292 *3)) (-4 *3 (-1053)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |k| *3) (|:| |c| (-1294 *3 *4))))) - (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-773)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922)))) + (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1295 *3 *4))))) + (-5 *1 (-1295 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-774)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205))) (-5 *1 (-227 *3)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-384 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206))) (-5 *1 (-228 *3)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1116)) (-4 *2 (-1220)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1116)) (-4 *2 (-1220)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-853)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-1105)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) + (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *6 (-239 (-4391 *3) (-774))) (-14 *7 - (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) - (-2 (|:| -2563 *5) (|:| -2564 *6)))) - (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-852)) - (-4 *2 (-953 *4 *6 (-866 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *6)) + (-2 (|:| -2565 *5) (|:| -2566 *6)))) + (-5 *1 (-465 *3 *4 *5 *6 *7 *2)) (-4 *5 (-853)) + (-4 *2 (-954 *4 *6 (-867 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-538))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-4 *7 (-1104)) (-5 *2 (-1 *7 *5)) (-5 *1 (-686 *5 *6 *7)))) + (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-353)) (-5 *1 (-532 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-539))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1061)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-4 *7 (-1105)) (-5 *2 (-1 *7 *5)) (-5 *1 (-687 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1052)) (-4 *2 (-374 *3)) - (-4 *4 (-374 *3)))) + (-12 (-4 *1 (-689 *3 *2 *4)) (-4 *3 (-1053)) (-4 *2 (-375 *3)) + (-4 *4 (-375 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *2 (-374 *3)))) + (-12 (-4 *1 (-689 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *2 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-722))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-723))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) - (-5 *1 (-972 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060)))) - ((*1 *1 *1 *1) (-4 *1 (-1115))) + (-12 (-5 *2 (-1270 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-561)) + (-5 *1 (-973 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1061)))) + ((*1 *1 *1 *1) (-4 *1 (-1116))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *2 (-238 *3 *4)) - (-4 *5 (-238 *3 *4)))) + (-12 (-4 *1 (-1127 *3 *4 *2 *5)) (-4 *4 (-1053)) (-4 *2 (-239 *3 *4)) + (-4 *5 (-239 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4)))) + (-12 (-4 *1 (-1127 *3 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) + (-4 *2 (-239 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) - (-4 *2 (-953 *3 (-534 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-946 (-225))) (-5 *3 (-225)) (-5 *1 (-1216)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) + (-12 (-4 *3 (-1053)) (-4 *4 (-853)) (-5 *1 (-1130 *3 *4 *2)) + (-4 *2 (-954 *3 (-535 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-947 (-226))) (-5 *3 (-226)) (-5 *1 (-1217)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-729)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-549)) (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) + (-12 (-5 *2 (-550)) (-4 *1 (-1269 *3)) (-4 *3 (-1220)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-849))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1053)) (-14 *3 (-644 (-1181))))) ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) - (-14 *3 (-643 (-1180))))) - ((*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104)))) + (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1053) (-853))) + (-14 *3 (-644 (-1181))))) + ((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-1105)))) ((*1 *1 *1) - (-12 (-14 *2 (-643 (-1180))) (-4 *3 (-172)) (-4 *5 (-238 (-4389 *2) (-773))) + (-12 (-14 *2 (-644 (-1181))) (-4 *3 (-173)) (-4 *5 (-239 (-4391 *2) (-774))) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) - (-2 (|:| -2563 *4) (|:| -2564 *5)))) - (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-852)) - (-4 *7 (-953 *3 *5 (-866 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852)))) - ((*1 *1 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) + (-1 (-112) (-2 (|:| -2565 *4) (|:| -2566 *5)) + (-2 (|:| -2565 *4) (|:| -2566 *5)))) + (-5 *1 (-465 *2 *3 *4 *5 *6 *7)) (-4 *4 (-853)) + (-4 *7 (-954 *3 *5 (-867 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-853)))) + ((*1 *1 *1) (-12 (-4 *2 (-561)) (-5 *1 (-626 *2 *3)) (-4 *3 (-1246 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1053)))) ((*1 *1 *1) - (-12 (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1052)) (-4 *3 (-728)))) - ((*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + (-12 (-5 *1 (-738 *2 *3)) (-4 *3 (-853)) (-4 *2 (-1053)) (-4 *3 (-729)))) + ((*1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848))))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-849))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-644 (-1181))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) - (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) + (-14 *6 (-774)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-5 *2 (-168 *6)) (-5 *1 (-169 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-173)) (-4 *6 (-173)) + (-5 *2 (-169 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1052) (-852))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1053) (-853))) + (-5 *1 (-224 *3 *4)) (-14 *4 (-644 (-1181))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) (-4 *6 (-1219)) - (-4 *7 (-1219)) (-5 *2 (-239 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-294 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-774)) (-4 *6 (-1220)) + (-4 *7 (-1220)) (-5 *2 (-240 *5 *7)) (-5 *1 (-241 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-295 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-294 *6)) (-5 *1 (-295 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-299)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-295 *6)) (-5 *1 (-296 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-614 *1)) (-4 *1 (-300)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1162)) (-5 *5 (-613 *6)) (-4 *6 (-299)) - (-4 *2 (-1219)) (-5 *1 (-300 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1163)) (-5 *5 (-614 *6)) (-4 *6 (-300)) + (-4 *2 (-1220)) (-5 *1 (-301 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-299)) (-4 *2 (-299)) - (-5 *1 (-301 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-614 *5)) (-4 *5 (-300)) (-4 *2 (-300)) + (-5 *1 (-302 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-691 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-691 *6)) (-5 *1 (-306 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-692 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) + (-5 *2 (-692 *6)) (-5 *1 (-307 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-315 *6)) (-5 *1 (-316 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-316 *6)) (-5 *1 (-317 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-365)) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10))) - (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-336 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-344 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-366)) + (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) + (-4 *9 (-366)) (-4 *10 (-1246 *9)) (-4 *11 (-1246 (-411 *10))) + (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-345 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-341 *3)) (-4 *3 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1224)) (-4 *8 (-1224)) (-4 *6 (-1245 *5)) - (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) (-4 *2 (-344 *8 *9 *10)) - (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) - (-4 *10 (-1245 (-410 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1225)) (-4 *8 (-1225)) (-4 *6 (-1246 *5)) + (-4 *7 (-1246 (-411 *6))) (-4 *9 (-1246 *8)) (-4 *2 (-345 *8 *9 *10)) + (-5 *1 (-346 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-345 *5 *6 *7)) + (-4 *10 (-1246 (-411 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *2 (-374 *6)) - (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-374 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) (-4 *2 (-375 *6)) + (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) - (-4 *4 (-1104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-560)) (-5 *1 (-408 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) + (-4 *4 (-1105)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-409 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-408 *5)) (-4 *5 (-560)) (-4 *6 (-560)) - (-5 *2 (-408 *6)) (-5 *1 (-409 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-561)) (-4 *6 (-561)) + (-5 *2 (-409 *6)) (-5 *1 (-410 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-560)) (-4 *6 (-560)) - (-5 *2 (-410 *6)) (-5 *1 (-411 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-561)) (-4 *6 (-561)) + (-5 *2 (-411 *6)) (-5 *1 (-412 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) - (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) (-4 *8 (-13 (-413 *6 *7) (-1041 *6))) - (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) - (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-413 *10 *11) (-1041 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-417 *5 *6 *7 *8)) (-4 *5 (-309)) + (-4 *6 (-995 *5)) (-4 *7 (-1246 *6)) (-4 *8 (-13 (-414 *6 *7) (-1042 *6))) + (-4 *9 (-309)) (-4 *10 (-995 *9)) (-4 *11 (-1246 *10)) + (-5 *2 (-417 *9 *10 *11 *12)) (-5 *1 (-418 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-414 *10 *11) (-1042 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-421 *6)) - (-5 *1 (-419 *4 *5 *2 *6)) (-4 *4 (-421 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-422 *6)) + (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-424 *6)) - (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *2 (-425 *6)) + (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-429 *6)) - (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-429 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-430 *6)) + (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-430 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-493 *3)) (-4 *3 (-1220)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-852)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-513 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-853)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-586 *5)) (-4 *5 (-365)) (-4 *6 (-365)) - (-5 *2 (-586 *6)) (-5 *1 (-587 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-366)) (-4 *6 (-366)) + (-5 *2 (-587 *6)) (-5 *1 (-588 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2318 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) - (-4 *6 (-365)) (-5 *2 (-2 (|:| -2318 *6) (|:| |coeff| *6))) - (-5 *1 (-587 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2320 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-366)) + (-4 *6 (-366)) (-5 *2 (-2 (|:| -2320 *6) (|:| |coeff| *6))) + (-5 *1 (-588 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) - (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-366)) + (-4 *2 (-366)) (-5 *1 (-588 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-365)) (-4 *6 (-365)) + (-4 *5 (-366)) (-4 *6 (-366)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-587 *5 *6)))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-588 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-603 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-603 *6)) (-5 *1 (-600 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-604 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-604 *6)) (-5 *1 (-601 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-603 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-603 *8)) - (-5 *1 (-601 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-604 *6)) (-5 *5 (-604 *7)) + (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-604 *8)) + (-5 *1 (-602 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-603 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) - (-5 *1 (-601 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-604 *7)) + (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-1158 *8)) + (-5 *1 (-602 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-1157 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) - (-5 *1 (-601 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-604 *6)) (-5 *5 (-1158 *7)) + (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-1158 *8)) + (-5 *1 (-602 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-643 *6)) (-5 *1 (-644 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-644 *6)) (-5 *1 (-645 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-643 *6)) (-5 *5 (-643 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-643 *8)) - (-5 *1 (-646 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) + (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-644 *8)) + (-5 *1 (-647 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-374 *5)) - (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) - (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) - (-4 *9 (-374 *8)) (-4 *10 (-374 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1053)) (-4 *8 (-1053)) (-4 *6 (-375 *5)) + (-4 *7 (-375 *5)) (-4 *2 (-689 *8 *9 *10)) + (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-689 *5 *6 *7)) + (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1052)) - (-4 *8 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) - (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) - (-4 *9 (-374 *8)) (-4 *10 (-374 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1053)) + (-4 *8 (-1053)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-689 *8 *9 *10)) + (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-689 *5 *6 *7)) + (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-560)) (-4 *7 (-560)) (-4 *6 (-1245 *5)) - (-4 *2 (-1245 (-410 *8))) (-5 *1 (-711 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1245 (-410 *6))) (-4 *8 (-1245 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) (-4 *6 (-1246 *5)) + (-4 *2 (-1246 (-411 *8))) (-5 *1 (-712 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1246 (-411 *6))) (-4 *8 (-1246 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1052)) (-4 *9 (-1052)) (-4 *5 (-852)) - (-4 *6 (-795)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1053)) (-4 *9 (-1053)) (-4 *5 (-853)) + (-4 *6 (-796)) (-4 *2 (-954 *9 *7 *5)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-796)) (-4 *4 (-954 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-852)) (-4 *6 (-852)) (-4 *7 (-795)) - (-4 *9 (-1052)) (-4 *2 (-953 *9 *8 *6)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-795)) (-4 *4 (-953 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-853)) (-4 *6 (-853)) (-4 *7 (-796)) + (-4 *9 (-1053)) (-4 *2 (-954 *9 *8 *6)) (-5 *1 (-732 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-796)) (-4 *4 (-954 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5 *7)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-4 *7 (-728)) (-5 *2 (-737 *6 *7)) (-5 *1 (-736 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-738 *5 *7)) (-4 *5 (-1053)) (-4 *6 (-1053)) + (-4 *7 (-729)) (-5 *2 (-738 *6 *7)) (-5 *1 (-737 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-737 *3 *4)) (-4 *4 (-728)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-738 *3 *4)) (-4 *4 (-729)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-783 *6)) (-5 *1 (-784 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-784 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) + (-5 *2 (-784 *6)) (-5 *1 (-785 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) - (-5 *1 (-801 *4 *5 *2 *6)) (-4 *4 (-798 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-799 *6)) + (-5 *1 (-802 *4 *5 *2 *6)) (-4 *4 (-799 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-834 *6)) (-5 *1 (-835 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-835 *6)) (-5 *1 (-836 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) - (-4 *6 (-1104)) (-5 *1 (-835 *5 *6)))) + (-12 (-5 *2 (-835 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1105)) + (-4 *6 (-1105)) (-5 *1 (-836 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-844 *6)) (-5 *1 (-845 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-845 *6)) (-5 *1 (-846 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) - (-4 *6 (-1104)) (-5 *1 (-845 *5 *6)))) + (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1105)) + (-4 *6 (-1105)) (-5 *1 (-846 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-4 *7 (-1104)) (-5 *2 (-891 *5 *7)) (-5 *1 (-892 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-892 *5 *6)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-4 *7 (-1105)) (-5 *2 (-892 *5 *7)) (-5 *1 (-893 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-893 *6)) (-5 *1 (-895 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-894 *6)) (-5 *1 (-896 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-949 *6)) (-5 *1 (-950 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) + (-5 *2 (-950 *6)) (-5 *1 (-951 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-852)) (-4 *8 (-1052)) - (-4 *6 (-795)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-853)) (-4 *8 (-1053)) + (-4 *6 (-796)) (-4 *2 - (-13 (-1104) - (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773)))))) - (-5 *1 (-955 *6 *7 *8 *5 *2)) (-4 *5 (-953 *8 *6 *7)))) + (-13 (-1105) + (-10 -8 (-15 -4273 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-774)))))) + (-5 *1 (-956 *6 *7 *8 *5 *2)) (-4 *5 (-954 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-961 *6)) (-5 *1 (-962 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-962 *6)) (-5 *1 (-963 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-946 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-946 *6)) (-5 *1 (-984 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-947 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) + (-5 *2 (-947 *6)) (-5 *1 (-985 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1052)) (-4 *2 (-953 (-949 *4) *5 *6)) - (-4 *5 (-795)) + (-12 (-5 *3 (-1 *2 (-950 *4))) (-4 *4 (-1053)) (-4 *2 (-954 (-950 *4) *5 *6)) + (-4 *5 (-796)) (-4 *6 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) - (-5 *1 (-987 *4 *5 *6 *2)))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181)))))) + (-5 *1 (-988 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-4 *2 (-994 *6)) - (-5 *1 (-995 *5 *6 *4 *2)) (-4 *4 (-994 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-4 *2 (-995 *6)) + (-5 *1 (-996 *5 *6 *4 *2)) (-4 *4 (-995 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-1001 *6)) - (-5 *1 (-1002 *4 *5 *2 *6)) (-4 *4 (-1001 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1002 *6)) + (-5 *1 (-1003 *4 *5 *2 *6)) (-4 *4 (-1002 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) + (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) + (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1052)) (-4 *10 (-1052)) (-14 *5 (-773)) - (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) - (-4 *2 (-1056 *5 *6 *10 *11 *12)) - (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) - (-4 *12 (-238 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1053)) (-4 *10 (-1053)) (-14 *5 (-774)) + (-14 *6 (-774)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) + (-4 *2 (-1057 *5 *6 *10 *11 *12)) + (-5 *1 (-1059 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1057 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) + (-4 *12 (-239 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-1092 *6)) (-5 *1 (-1093 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-1093 *6)) (-5 *1 (-1094 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-643 *6)) (-5 *1 (-1093 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-851)) (-4 *5 (-1220)) + (-4 *6 (-1220)) (-5 *2 (-644 *6)) (-5 *1 (-1094 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-1095 *6)) (-5 *1 (-1096 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-1096 *6)) (-5 *1 (-1097 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) - (-4 *2 (-1152 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1099 *4 *2)) (-4 *4 (-851)) + (-4 *2 (-1153 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-1157 *6)) (-5 *1 (-1159 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-1158 *6)) (-5 *1 (-1160 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-1157 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) - (-5 *1 (-1160 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-1158 *7)) + (-4 *6 (-1220)) (-4 *7 (-1220)) (-4 *8 (-1220)) (-5 *2 (-1158 *8)) + (-5 *1 (-1161 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) - (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) + (-5 *2 (-1175 *6)) (-5 *1 (-1176 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1104)) - (-4 *4 (-1104)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1105)) + (-4 *4 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5 *7 *9)) (-4 *5 (-1052)) - (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1229 *6 *8 *10)) (-5 *1 (-1230 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1180)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1230 *5 *7 *9)) (-4 *5 (-1053)) + (-4 *6 (-1053)) (-14 *7 (-1181)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1230 *6 *8 *10)) (-5 *1 (-1231 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1181)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-1236 *6)) (-5 *1 (-1237 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-1237 *6)) (-5 *1 (-1238 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-1157 *6)) (-5 *1 (-1237 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-851)) (-4 *5 (-1220)) + (-4 *6 (-1220)) (-5 *2 (-1158 *6)) (-5 *1 (-1238 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1238 *5 *6)) (-14 *5 (-1180)) - (-4 *6 (-1052)) (-4 *8 (-1052)) (-5 *2 (-1238 *7 *8)) - (-5 *1 (-1239 *5 *6 *7 *8)) (-14 *7 (-1180)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1239 *5 *6)) (-14 *5 (-1181)) + (-4 *6 (-1053)) (-4 *8 (-1053)) (-5 *2 (-1239 *7 *8)) + (-5 *1 (-1240 *5 *6 *7 *8)) (-14 *7 (-1181)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1245 *6)) - (-5 *1 (-1246 *5 *4 *6 *2)) (-4 *4 (-1245 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *2 (-1246 *6)) + (-5 *1 (-1247 *5 *4 *6 *2)) (-4 *4 (-1246 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1052)) - (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1180)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1053)) + (-4 *6 (-1053)) (-14 *7 (-1181)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1252 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1181)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1262 *6)) - (-5 *1 (-1260 *5 *6 *4 *2)) (-4 *4 (-1262 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1053)) (-4 *6 (-1053)) (-4 *2 (-1263 *6)) + (-5 *1 (-1261 *5 *6 *4 *2)) (-4 *4 (-1263 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1270 *5)) (-4 *5 (-1220)) (-4 *6 (-1220)) + (-5 *2 (-1270 *6)) (-5 *1 (-1271 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5)) - (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1270 *5)) + (-4 *5 (-1220)) (-4 *6 (-1220)) (-5 *2 (-1270 *6)) (-5 *1 (-1271 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-1052)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-1053)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-1293 *3 *4)) - (-4 *4 (-848))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-34)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-250)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-1294 *3 *4)) + (-4 *4 (-849))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-34)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-251)))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-549)))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-849))))) (((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052))))) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-822 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-849)) (-5 *1 (-1294 *3 *2)) (-4 *3 (-1053))))) (((*1 *2 *1) - (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052))))) + (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-822 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-849)) (-5 *1 (-1294 *3 *2)) (-4 *3 (-1053))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1294 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-852)) - (-4 *2 (-172)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) + (-12 (-5 *3 (-1295 *4 *2)) (-4 *1 (-377 *4 *2)) (-4 *4 (-853)) + (-4 *2 (-173)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1053)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-821 *4)) (-4 *1 (-1289 *4 *2)) (-4 *4 (-852)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (-12 (-5 *3 (-822 *4)) (-4 *1 (-1290 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1053)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1053)) (-5 *1 (-1294 *2 *3)) (-4 *3 (-849))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-849))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) (-5 *1 (-685 *4 *5)) - (-4 *4 (-1104)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) - ((*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) - ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1105)) (-5 *2 (-1 *5 *4)) (-5 *1 (-686 *4 *5)) + (-4 *4 (-1105)))) + ((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) + ((*1 *2 *2) (-12 (-4 *3 (-1105)) (-5 *1 (-934 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1053)))) + ((*1 *2 *1) (-12 (-4 *2 (-1053)) (-5 *1 (-1294 *2 *3)) (-4 *3 (-849))))) (((*1 *2 *1) - (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848))))) -(((*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) - ((*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-849))))) +(((*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) + ((*1 *1 *1) (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-849))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-225)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *2 (-366)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-226)))) ((*1 *1 *1 *1) - (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) - ((*1 *1 *1 *1) (-4 *1 (-365))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) + (-3962 (-12 (-5 *1 (-295 *2)) (-4 *2 (-366)) (-4 *2 (-1220))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-477)) (-4 *2 (-1220))))) + ((*1 *1 *1 *1) (-4 *1 (-366))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-381)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-560)) (-4 *3 (-1104)) - (-4 *1 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-476))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-538))) + (-12 (-5 *2 (-1129 *3 (-614 *1))) (-4 *3 (-561)) (-4 *3 (-1105)) + (-4 *1 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-477))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-353)) (-5 *1 (-532 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-539))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-728) *4)))) + (-12 (-4 *4 (-173)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-729) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-728) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)) (-4 *2 (-365)))) + (-12 (-4 *4 (-173)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-729) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-173)) (-4 *2 (-366)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-654 *2 *4 *3)) (-4 *2 (-719 *4)) - (-4 *3 (|SubsetCategory| (-728) *4)))) + (-12 (-4 *4 (-173)) (-5 *1 (-655 *2 *4 *3)) (-4 *2 (-720 *4)) + (-4 *3 (|SubsetCategory| (-729) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4)) - (-4 *2 (|SubsetCategory| (-728) *4)))) + (-12 (-4 *4 (-173)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-720 *4)) + (-4 *2 (|SubsetCategory| (-729) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-366)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-868 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1052)) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-773))) (-14 *5 (-773)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) + (|partial| -12 (-5 *1 (-869 *2 *3 *4 *5)) (-4 *2 (-366)) (-4 *2 (-1053)) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-774))) (-14 *5 (-774)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) (-4 *5 (-238 *4 *2)) - (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-365)))) + (-12 (-4 *1 (-1057 *3 *4 *2 *5 *6)) (-4 *2 (-1053)) (-4 *5 (-239 *4 *2)) + (-4 *6 (-239 *3 *2)) (-4 *2 (-366)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-366)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-795)) - (-14 *6 (-643 *3)) (-5 *1 (-1282 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-953 *2 *4 *3)) (-14 *7 (-643 (-773))) (-14 *8 (-773)))) + (|partial| -12 (-4 *2 (-366)) (-4 *2 (-1053)) (-4 *3 (-853)) (-4 *4 (-796)) + (-14 *6 (-644 *3)) (-5 *1 (-1283 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-954 *2 *4 *3)) (-14 *7 (-644 (-774))) (-14 *8 (-774)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-848))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) + (-12 (-5 *1 (-1294 *2 *3)) (-4 *2 (-366)) (-4 *2 (-1053)) (-4 *3 (-849))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) ((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) - (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-774)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) + (-14 *4 (-644 (-1181))))) ((*1 *2 *1) - (-12 (-5 *2 (-549)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) - (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-550)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) + (-14 *4 (-644 (-1181))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) - (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-276)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *8)) (-5 *4 (-643 *6)) (-4 *6 (-852)) - (-4 *8 (-953 *7 *5 *6)) (-4 *5 (-795)) (-4 *7 (-1052)) (-5 *2 (-643 (-773))) - (-5 *1 (-322 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) + (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) + (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-277)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175 *8)) (-5 *4 (-644 *6)) (-4 *6 (-853)) + (-4 *8 (-954 *7 *5 *6)) (-4 *5 (-796)) (-4 *7 (-1053)) (-5 *2 (-644 (-774))) + (-5 *1 (-323 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-923)))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-474 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-561)) (-5 *2 (-550)) (-5 *1 (-626 *3 *4)) (-4 *4 (-1246 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-711 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 (-773))))) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 (-774))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) - (-5 *2 (-773)))) + (-12 (-4 *1 (-954 *4 *5 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) + (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *2 *4)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *2 (-794)))) + (-12 (-4 *1 (-977 *3 *2 *4)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *2 (-795)))) ((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-773)))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1262 *3)) - (-5 *2 (-549)))) + (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1263 *3)) + (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) - (-5 *2 (-410 (-549))))) - ((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) + (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1232 *3)) + (-5 *2 (-411 (-550))))) + ((*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-835 (-923))))) ((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-773))))) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-774))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) + (-12 (-5 *2 (-774)) (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) + (-12 (-5 *2 (-774)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053))))) (((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-691 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))))) - ((*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1270 *3)) (-4 *3 (-366)) (-14 *6 (-1270 (-692 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))))) + ((*1 *1 *2) (-12 (-5 *2 (-1129 (-550) (-614 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1220)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3953 'X) (-3953) (-701))) (-5 *1 (-61 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-342 (-3955 'X) (-3955) (-702))) (-5 *1 (-61 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'JINT 'X 'ELAM) (-3953) (-701)))) - (-5 *1 (-62 *3)) (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'JINT 'X 'ELAM) (-3955) (-702)))) + (-5 *1 (-62 *3)) (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'XC) (-701)))) (-5 *1 (-64 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 'XC) (-702)))) (-5 *1 (-64 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3953) (-3953 'XC) (-701))) (-5 *1 (-66 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-342 (-3955) (-3955 'XC) (-702))) (-5 *1 (-66 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'X) (-3953 '-4396) (-701)))) (-5 *1 (-71 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'X) (-3955 '-4398) (-702)))) (-5 *1 (-71 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'X) (-701)))) (-5 *1 (-74 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 'X) (-702)))) (-5 *1 (-74 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3953) (-3953 'X) (-701))) (-5 *1 (-75 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-342 (-3955) (-3955 'X) (-702))) (-5 *1 (-75 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'X 'EPS) (-3953 '-4396) (-701)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'X 'EPS) (-3955 '-4398) (-702)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1181)) (-14 *4 (-1181)) (-14 *5 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'EPS) (-3953 'YA 'YB) (-701)))) - (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'EPS) (-3955 'YA 'YB) (-702)))) + (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1181)) (-14 *4 (-1181)) (-14 *5 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3953) (-3953 'X) (-701))) (-5 *1 (-78 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-342 (-3955) (-3955 'X) (-702))) (-5 *1 (-78 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'XC) (-701)))) (-5 *1 (-79 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 'XC) (-702)))) (-5 *1 (-79 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'X) (-701)))) (-5 *1 (-80 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955) (-3955 'X) (-702)))) (-5 *1 (-80 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'X) (-3953 '-4396) (-701)))) (-5 *1 (-82 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'X) (-3955 '-4398) (-702)))) (-5 *1 (-82 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'X '-4396) (-3953) (-701)))) (-5 *1 (-83 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'X '-4398) (-3955) (-702)))) (-5 *1 (-83 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-691 (-341 (-3953 'X '-4396) (-3953) (-701)))) (-5 *1 (-84 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-692 (-342 (-3955 'X '-4398) (-3955) (-702)))) (-5 *1 (-84 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-691 (-341 (-3953 'X) (-3953) (-701)))) (-5 *1 (-85 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-692 (-342 (-3955 'X) (-3955) (-702)))) (-5 *1 (-85 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-3953 'X) (-3953) (-701)))) (-5 *1 (-86 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-1270 (-342 (-3955 'X) (-3955) (-702)))) (-5 *1 (-86 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-691 (-341 (-3953 'XL 'XR 'ELAM) (-3953) (-701)))) - (-5 *1 (-88 *3)) (-14 *3 (-1180)))) + (-12 (-5 *2 (-692 (-342 (-3955 'XL 'XR 'ELAM) (-3955) (-702)))) + (-5 *1 (-88 *3)) (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3953 'X) (-3953 '-4396) (-701))) (-5 *1 (-89 *3)) - (-14 *3 (-1180)))) + (-12 (-5 *2 (-342 (-3955 'X) (-3955 '-4398) (-702))) (-5 *1 (-89 *3)) + (-14 *3 (-1181)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) - (-14 *4 (-773)) (-4 *5 (-172)))) + (-12 (-5 *2 (-644 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-774)) (-4 *5 (-173)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) - (-14 *4 (-773)))) + (-12 (-5 *2 (-644 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-774)))) ((*1 *1 *2) - (-12 (-5 *2 (-1145 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) + (-12 (-5 *2 (-1146 *4 *5)) (-14 *4 (-774)) (-4 *5 (-173)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) ((*1 *1 *2) - (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) + (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-774)) (-4 *5 (-173)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) - (-5 *2 (-1269 (-691 (-410 (-949 *4))))) (-5 *1 (-189 *4)))) + (-12 (-5 *3 (-1270 (-692 *4))) (-4 *4 (-173)) + (-5 *2 (-1270 (-692 (-411 (-950 *4))))) (-5 *1 (-190 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1095 (-315 *4))) (-4 *4 (-13 (-852) (-560) (-616 (-380)))) - (-5 *2 (-1095 (-380))) (-5 *1 (-260 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276)))) + (-12 (-5 *3 (-1096 (-316 *4))) (-4 *4 (-13 (-853) (-561) (-617 (-381)))) + (-5 *2 (-1096 (-381))) (-5 *1 (-261 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-277)))) ((*1 *2 *1) - (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) + (-12 (-4 *2 (-1246 *3)) (-5 *1 (-291 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1250 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) - (-14 *5 (-1180)) (-14 *6 *4) - (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) - (-5 *1 (-314 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1251 *4 *5 *6)) (-4 *4 (-13 (-27) (-1206) (-425 *3))) + (-14 *5 (-1181)) (-14 *6 *4) + (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) + (-5 *1 (-315 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-315 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) - (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + (-12 (-5 *2 (-316 *5)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) + (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) ((*1 *2 *3) - (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *3 *4 *2)) - (-4 *3 (-330 *4)))) + (-12 (-4 *4 (-353)) (-4 *2 (-331 *4)) (-5 *1 (-351 *3 *4 *2)) + (-4 *3 (-331 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *2 *4 *3)) - (-4 *3 (-330 *4)))) + (-12 (-4 *4 (-353)) (-4 *2 (-331 *4)) (-5 *1 (-351 *2 *4 *3)) + (-4 *3 (-331 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) - (-5 *2 (-1294 *3 *4)))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) + (-5 *2 (-1295 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) - (-5 *2 (-1285 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) + (-5 *2 (-1286 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-853)) (-4 *3 (-173)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) - (-4 *1 (-385)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-385)))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-701))) (-4 *1 (-385)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) + (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-386)))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-702))) (-4 *1 (-386)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) - (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-387)))) - ((*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-397 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) + (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-388)))) + ((*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-398 *3)) (-4 *3 (-1105)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) - (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-400)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) + (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-315 (-168 (-380))))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) - (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) + (-12 (-5 *2 (-295 (-316 (-169 (-381))))) (-5 *1 (-402 *3 *4 *5 *6)) + (-14 *3 (-1181)) (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1="void"))) + (-14 *5 (-644 (-1181))) (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-315 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-295 (-316 (-381)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-315 (-549)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-295 (-316 (-550)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-316 (-169 (-381)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-380))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-316 (-381))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-549))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-316 (-550))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-315 (-696)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-295 (-316 (-697)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-315 (-701)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-295 (-316 (-702)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-294 (-315 (-703)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-295 (-316 (-704)))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-696))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-316 (-697))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-701))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-316 (-702))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-315 (-703))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-316 (-704))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) - (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) + (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-644 (-332))) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) - (-14 *6 (-1184)))) + (-12 (-5 *2 (-332)) (-5 *1 (-402 *3 *4 *5 *6)) (-14 *3 (-1181)) + (-14 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-14 *5 (-644 (-1181))) + (-14 *6 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 (-949 (-410 *3)))) (-4 *3 (-560)) (-4 *3 (-1104)) - (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-411 (-950 (-411 *3)))) (-4 *3 (-561)) (-4 *3 (-1105)) + (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-949 (-410 *3))) (-4 *3 (-560)) (-4 *3 (-1104)) - (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-950 (-411 *3))) (-4 *3 (-561)) (-4 *3 (-1105)) + (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 *3)) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-411 *3)) (-4 *3 (-561)) (-4 *3 (-1105)) (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-1052)) (-4 *3 (-1104)) - (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-1129 *3 (-614 *1))) (-4 *3 (-1053)) (-4 *3 (-1105)) + (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-852) (-21))) (-5 *1 (-432 *3 *4)) - (-4 *3 (-13 (-172) (-38 (-410 (-549))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-549))))) - (-4 *3 (-13 (-852) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-439)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) - (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-701))) (-4 *1 (-443)))) + (-12 (-5 *2 (-333 *4)) (-4 *4 (-13 (-853) (-21))) (-5 *1 (-433 *3 *4)) + (-4 *3 (-13 (-173) (-38 (-411 (-550))))))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-12 (-5 *1 (-433 *2 *3)) (-4 *2 (-13 (-173) (-38 (-411 (-550))))) + (-4 *3 (-13 (-853) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-438)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-438)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-438)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-438)))) + ((*1 *1 *2) (-12 (-5 *2 (-438)) (-5 *1 (-440)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-444)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-410 (-949 *3)))) (-4 *3 (-172)) - (-14 *6 (-1269 (-691 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-922)) - (-14 *5 (-643 (-1180))))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-471)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) - (-5 *1 (-477 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) - ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-505)))) - ((*1 *1 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608)))) - ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-609 *3 *2)) (-4 *2 (-746 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) - ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-746 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-679 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) - (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-5 *1 (-677 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2) - (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-683)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-374 *3)) - (-4 *2 (-374 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-703))) (-5 *1 (-696)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-701))) (-5 *1 (-696)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-549))) (-5 *1 (-696)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696)))) - ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-701)))) - ((*1 *2 *1) (-12 (-5 *2 (-380)) (-5 *1 (-701)))) - ((*1 *2 *3) (-12 (-5 *3 (-315 (-549))) (-5 *2 (-315 (-703))) (-5 *1 (-703)))) - ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-702))) (-4 *1 (-444)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1185)) (|:| -1780 (-644 (-332))))) + (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-4 *1 (-445)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1270 (-411 (-950 *3)))) (-4 *3 (-173)) + (-14 *6 (-1270 (-692 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-14 *4 (-923)) + (-14 *5 (-644 (-1181))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-472)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3) + (-5 *1 (-478 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-478 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1129 (-550) (-614 (-499)))) (-5 *1 (-499)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-506)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-366)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-528)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-609)))) + ((*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-610 *3 *2)) (-4 *2 (-747 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1053)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) + ((*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-636 *3 *2)) (-4 *2 (-747 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-680 *3)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) + (-12 (-5 *2 (-962 (-962 (-962 *3)))) (-5 *1 (-678 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2) + (-12 (-5 *2 (-962 (-962 (-962 *3)))) (-4 *3 (-1105)) (-5 *1 (-678 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-684)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *2)) (-4 *4 (-375 *3)) + (-4 *2 (-375 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-697)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-704))) (-5 *1 (-697)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-697)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-550))) (-5 *1 (-697)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-697)))) + ((*1 *1 *2) (-12 (-5 *2 (-704)) (-5 *1 (-702)))) + ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-702)))) + ((*1 *2 *3) (-12 (-5 *3 (-316 (-550))) (-5 *2 (-316 (-704))) (-5 *1 (-704)))) + ((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713)))) + ((*1 *2 *1) + (-12 (-4 *2 (-173)) (-5 *1 (-714 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-173)) (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-4 *3 (-1052)) - (-4 *4 (-728)) (-5 *1 (-737 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-765)))) + (-12 (-5 *2 (-644 (-2 (|:| -4388 *3) (|:| -4372 *4)))) (-4 *3 (-1053)) + (-4 *4 (-729)) (-5 *1 (-738 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-766)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (|:| |mdnia| - (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-771)))) + (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) + (-5 *1 (-772)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-771)))) + (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *1 (-772)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *1 (-771)))) - ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-776 *3)) (-4 *3 (-1219)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *1 (-772)))) + ((*1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-777 *3)) (-4 *3 (-1220)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-810)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-828)))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *1 (-811)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-829)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| - (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) - (-5 *1 (-843)))) + (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) + (-5 *1 (-844)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) - (-5 *1 (-843)))) + (-12 (-5 *2 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) + (-5 *1 (-844)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) - (-5 *1 (-843)))) - ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-315 (-549))) (-5 *1 (-877)))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) + (-5 *1 (-844)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 (-48))) (-5 *2 (-316 (-550))) (-5 *1 (-878)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 (-48)))) (-5 *2 (-315 (-549))) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) + (-12 (-5 *3 (-411 (-950 (-48)))) (-5 *2 (-316 (-550))) (-5 *1 (-878)))) + ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-643 (-315 (-225)))) + (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| - (-643 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) - (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) - (|:| |dFinish| (-691 (-225)))))) - (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) - (|:| |tol| (-225)))) - (-5 *1 (-901)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-408 *3))) (-4 *3 (-308)) (-5 *1 (-917 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-480)) (-5 *2 (-315 *4)) (-5 *1 (-923 *4)) (-4 *4 (-560)))) - ((*1 *2 *3) (-12 (-5 *2 (-1275)) (-5 *1 (-1036 *3)) (-4 *3 (-1219)))) - ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1036 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-560)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) - (-4 *2 (-953 *3 (-534 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1052)) (-4 *2 (-852)) (-5 *1 (-1129 *3 *2 *4)) - (-4 *4 (-953 *3 (-534 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1147)))) - ((*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) - (-5 *1 (-1178 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192 (-1180) (-439))) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1193 *3)) (-4 *3 (-1104)))) - ((*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1200 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-5 *1 (-1212 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) - (-5 *1 (-1259 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1272)) (-5 *1 (-1271)))) - ((*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1272)))) - ((*1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-172)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) - (-5 *1 (-1290 *3 *4))))) + (-644 + (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) + (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) + (|:| |dFinish| (-692 (-226)))))) + (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) + (|:| |tol| (-226)))) + (-5 *1 (-902)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-906 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-906 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-906 *3))) (-4 *3 (-1105)) (-5 *1 (-909 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2) (-12 (-5 *2 (-411 (-409 *3))) (-4 *3 (-309)) (-5 *1 (-918 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-918 *3)) (-4 *3 (-309)))) + ((*1 *2 *3) + (-12 (-5 *3 (-481)) (-5 *2 (-316 *4)) (-5 *1 (-924 *4)) (-4 *4 (-561)))) + ((*1 *2 *3) (-12 (-5 *2 (-1276)) (-5 *1 (-1037 *3)) (-4 *3 (-1220)))) + ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1037 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *1 (-1038 *3 *4 *5 *2 *6)) (-4 *2 (-954 *3 *4 *5)) (-14 *6 (-644 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-1044 *3)) (-4 *3 (-561)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1053)) (-4 *4 (-853)) (-5 *1 (-1130 *3 *4 *2)) + (-4 *2 (-954 *3 (-535 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1053)) (-4 *2 (-853)) (-5 *1 (-1130 *3 *2 *4)) + (-4 *4 (-954 *3 (-535 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-866)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1148)))) + ((*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1053)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1179 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3) + (-5 *1 (-1179 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1193 (-1181) (-440))) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-1194 *3)) (-4 *3 (-1105)))) + ((*1 *2 *3) (-12 (-5 *2 (-1200)) (-5 *1 (-1201 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1053)) (-5 *1 (-1213 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1213 *3)) (-4 *3 (-1053)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1230 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1220)) (-5 *1 (-1237 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1260 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3) + (-5 *1 (-1260 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1267 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *2 (-1273)) (-5 *1 (-1272)))) + ((*1 *2 *1) (-12 (-5 *2 (-866)) (-5 *1 (-1273)))) + ((*1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-173)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-667 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) + (-5 *1 (-1291 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) - (-5 *1 (-666 *3 *4)))) + (|partial| -12 (-5 *2 (-1286 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) + (-5 *1 (-667 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-666 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-172))))) + (|partial| -12 (-5 *2 (-667 *3 *4)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-173))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-425 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) + (-12 (-5 *3 (-1096 *2)) (-4 *2 (-425 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1181)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) - (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-644 (-550))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) + (-14 *4 (-644 (-1181))))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *1) (-4 *1 (-285))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *1 *2) - (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-5 *1 (-629 *3 *4 *5)) - (-14 *5 (-922)))) + (-12 (-5 *2 (-667 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-5 *1 (-630 *3 *4 *5)) + (-14 *5 (-923)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) - (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) + (-12 (-5 *3 (-774)) (-4 *4 (-13 (-1053) (-720 (-411 (-550))))) (-4 *5 (-853)) + (-5 *1 (-1287 *4 *5 *2)) (-4 *2 (-1293 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) - (-4 *3 (-852)) (-4 *4 (-172))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-720 (-411 (-550)))) + (-4 *3 (-853)) (-4 *4 (-173))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *1) (-4 *1 (-285))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *1) (-4 *1 (-286))) ((*1 *2 *3) - (-12 (-5 *3 (-408 *4)) (-4 *4 (-560)) - (-5 *2 (-643 (-2 (|:| -4386 (-773)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) + (-12 (-5 *3 (-409 *4)) (-4 *4 (-561)) + (-5 *2 (-644 (-2 (|:| -4388 (-774)) (|:| |logand| *4)))) (-5 *1 (-322 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *2 *1) - (-12 (-5 *2 (-666 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) + (-12 (-5 *2 (-667 *3 *4)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) - (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) + (-12 (-5 *3 (-774)) (-4 *4 (-13 (-1053) (-720 (-411 (-550))))) (-4 *5 (-853)) + (-5 *1 (-1287 *4 *5 *2)) (-4 *2 (-1293 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) - (-4 *3 (-852)) (-4 *4 (-172))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-720 (-411 (-550)))) + (-4 *3 (-853)) (-4 *4 (-173))))) (((*1 *2 *1) - (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) - (-5 *2 (-2 (|:| |k| (-821 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) + (-5 *2 (-2 (|:| |k| (-822 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-1295 *3 *4)) (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-173)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-822 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-1295 *3 *4)) (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) + (-4 *4 (-173)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-389 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-822 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-549)) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) + (-12 (-5 *4 (-550)) (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1053)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-821 *4)) (-4 *4 (-852)) (-4 *1 (-1289 *4 *3)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-822 *4)) (-4 *4 (-853)) (-4 *1 (-1290 *4 *3)) (-4 *3 (-1053))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1053)))) ((*1 *2 *1) - (-12 (-4 *3 (-560)) (-5 *2 (-112)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) + (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-626 *3 *4)) (-4 *4 (-1246 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) + (-12 (-5 *2 (-112)) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) ((*1 *2 *1) - (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) + (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-853)) (-4 *3 (-173)))) ((*1 *1 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-852)) - (-4 *3 (-13 (-172) (-719 (-410 (-549))))) (-14 *4 (-922)))) - ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052))))) + (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-853)) + (-4 *3 (-13 (-173) (-720 (-411 (-550))))) (-14 *4 (-923)))) + ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) - (-4 *4 (-172)))) + (-12 (-5 *2 (-774)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) + (-4 *4 (-173)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)) (-4 *3 (-172))))) + (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-853)) (-4 *3 (-1053)) (-4 *3 (-173))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-5 *2 (-643 (-1180))) (-5 *1 (-210)) (-5 *3 (-1180)))) + (-12 (-5 *4 (-774)) (-5 *2 (-644 (-1181))) (-5 *1 (-211)) (-5 *3 (-1181)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-225))) (-5 *4 (-773)) (-5 *2 (-643 (-1180))) - (-5 *1 (-268)))) + (-12 (-5 *3 (-316 (-226))) (-5 *4 (-774)) (-5 *2 (-644 (-1181))) + (-5 *1 (-269)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-643 *3)))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-853)) (-4 *4 (-173)) (-5 *2 (-644 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 *3)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-822 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) ((*1 *2 *1) - (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-643 *3))))) + (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-853)) (-4 *4 (-1053)) (-5 *2 (-644 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1214 *4 *5 *3 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *3 (-852)) - (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1215 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *3 (-853)) + (-4 *6 (-1069 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) + (-12 (-4 *4 (-366)) (-5 *2 (-923)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) - ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922)))))) + (-12 (-4 *4 (-366)) (-5 *2 (-835 (-923))) (-5 *1 (-330 *3 *4)) + (-4 *3 (-331 *4)))) + ((*1 *2) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-923)))) + ((*1 *2) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-835 (-923)))))) (((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-773))))) + (-12 (-4 *4 (-366)) (-5 *2 (-774)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) + ((*1 *2) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-5 *2 (-774))))) (((*1 *2 *2) - (-12 (-4 *3 (-352)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) - (-5 *1 (-779 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-922)))) + (-12 (-4 *3 (-353)) (-4 *4 (-331 *3)) (-4 *5 (-1246 *4)) + (-5 *1 (-780 *3 *4 *5 *2 *6)) (-4 *2 (-1246 *5)) (-14 *6 (-923)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) + (-12 (-5 *2 (-774)) (-4 *1 (-1289 *3)) (-4 *3 (-366)) (-4 *3 (-371)))) + ((*1 *1 *1) (-12 (-4 *1 (-1289 *2)) (-4 *2 (-366)) (-4 *2 (-371))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) - (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4))))) + (-12 (-5 *3 (-774)) (-4 *4 (-13 (-1053) (-720 (-411 (-550))))) (-4 *5 (-853)) + (-5 *1 (-1287 *4 *5 *2)) (-4 *2 (-1293 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1284 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) - (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) + (-4 *7 (-853)) (-5 *1 (-1284 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1284 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) - (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) + (-4 *7 (-853)) (-5 *1 (-1284 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 (-1283 *4 *5 *6 *7))) - (-5 *1 (-1283 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 (-1284 *4 *5 *6 *7))) + (-5 *1 (-1284 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) - (-5 *2 (-643 (-1283 *6 *7 *8 *9))) (-5 *1 (-1283 *6 *7 *8 *9))))) + (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1069 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-796)) (-4 *8 (-853)) + (-5 *2 (-644 (-1284 *6 *7 *8 *9))) (-5 *1 (-1284 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-868 *4 *5 *6 *7)) - (-4 *4 (-1052)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-869 *4 *5 *6 *7)) + (-4 *4 (-1053)) (-14 *5 (-644 (-1181))) (-14 *6 (-644 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) - (-14 *8 (-643 *5)) (-5 *2 (-1275)) (-5 *1 (-1282 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-953 *4 *6 *5)) (-14 *9 (-643 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520)))) + (-12 (-5 *3 (-774)) (-4 *4 (-1053)) (-4 *5 (-853)) (-4 *6 (-796)) + (-14 *8 (-644 *5)) (-5 *2 (-1276)) (-5 *1 (-1283 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-954 *4 *6 *5)) (-14 *9 (-644 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-521)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *2)) - (-4 *3 (-13 (-1104) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1281))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280))))) + (-12 (-4 *2 (-13 (-1105) (-34))) (-5 *1 (-1144 *3 *2)) + (-4 *3 (-13 (-1105) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1282))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1281))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1281))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-4 *4 (-1245 *3)) + (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-4 *4 (-1246 *3)) (-5 *2 - (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) - (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) + (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) + (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-1245 *3)) + (-12 (-5 *3 (-550)) (-4 *4 (-1246 *3)) (-5 *2 - (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) - (-5 *1 (-770 *4 *5)) (-4 *5 (-413 *3 *4)))) + (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) + (-5 *1 (-771 *4 *5)) (-4 *5 (-414 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) + (-12 (-4 *4 (-353)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 *3)) (-5 *2 - (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) - (-5 *1 (-988 *4 *3 *5 *6)) (-4 *6 (-726 *3 *5)))) + (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) + (-5 *1 (-989 *4 *3 *5 *6)) (-4 *6 (-727 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) + (-12 (-4 *4 (-353)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 *3)) (-5 *2 - (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) - (-5 *1 (-1279 *4 *3 *5 *6)) (-4 *6 (-413 *3 *5))))) + (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) + (-5 *1 (-1280 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) + (-12 (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) + (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-4 *4 (-1245 *3)) + (-12 (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-4 *4 (-1246 *3)) (-5 *2 - (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) - (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) + (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) + (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1245 (-549))) + (-12 (-4 *3 (-1246 (-550))) (-5 *2 - (-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) - (|:| |basisInv| (-691 (-549))))) - (-5 *1 (-770 *3 *4)) (-4 *4 (-413 (-549) *3)))) + (-2 (|:| -2192 (-692 (-550))) (|:| |basisDen| (-550)) + (|:| |basisInv| (-692 (-550))))) + (-5 *1 (-771 *3 *4)) (-4 *4 (-414 (-550) *3)))) ((*1 *2) - (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) + (-12 (-4 *3 (-353)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 *4)) (-5 *2 - (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) - (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-726 *4 *5)))) + (-2 (|:| -2192 (-692 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-692 *4)))) + (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-727 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) + (-12 (-4 *3 (-353)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 *4)) (-5 *2 - (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) - (-5 *1 (-1279 *3 *4 *5 *6)) (-4 *6 (-413 *4 *5))))) + (-2 (|:| -2192 (-692 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-692 *4)))) + (-5 *1 (-1280 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-773)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) - (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1278 *6)) (-5 *5 (-1157 *4))))) + (-12 (-5 *3 (-774)) (-4 *6 (-366)) (-5 *4 (-1213 *6)) + (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1279 *6)) (-5 *5 (-1158 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-643 (-1212 *5))) - (-5 *1 (-1278 *5)) (-5 *4 (-1212 *5))))) + (-12 (-5 *3 (-1181)) (-4 *5 (-366)) (-5 *2 (-644 (-1213 *5))) + (-5 *1 (-1279 *5)) (-5 *4 (-1213 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1 (-1174 (-949 *4)) (-949 *4))) - (-5 *1 (-1278 *4)) (-4 *4 (-365))))) + (-12 (-5 *3 (-1181)) (-5 *2 (-1 (-1175 (-950 *4)) (-950 *4))) + (-5 *1 (-1279 *4)) (-4 *4 (-366))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-1157 (-1157 (-949 *5)))) - (-5 *1 (-1278 *5)) (-5 *4 (-1157 (-949 *5)))))) + (-12 (-5 *3 (-1181)) (-4 *5 (-366)) (-5 *2 (-1158 (-1158 (-950 *5)))) + (-5 *1 (-1279 *5)) (-5 *4 (-1158 (-950 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) - (-5 *1 (-1278 *4)) (-4 *4 (-365))))) + (-12 (-5 *3 (-774)) (-5 *2 (-1 (-1158 (-950 *4)) (-1158 (-950 *4)))) + (-5 *1 (-1279 *4)) (-4 *4 (-366))))) (((*1 *2 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) - (-5 *1 (-1278 *4)) (-4 *4 (-365))))) + (-12 (-5 *3 (-774)) (-5 *2 (-1 (-1158 (-950 *4)) (-1158 (-950 *4)))) + (-5 *1 (-1279 *4)) (-4 *4 (-366))))) (((*1 *2) - (-12 (-14 *4 (-773)) (-4 *5 (-1219)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) - (-4 *3 (-238 *4 *5)))) + (-12 (-14 *4 (-774)) (-4 *5 (-1220)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) + (-4 *3 (-239 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) + (-12 (-4 *4 (-366)) (-5 *2 (-134)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) ((*1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) + (-12 (-5 *2 (-774)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-173)))) ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-550)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) - (-5 *2 (-549)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1052)) (-5 *2 (-922)))) - ((*1 *2) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(((*1 *1) (-5 *1 (-1275)))) -(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-1274)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1274))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) - ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) -(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) - ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) - ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) - ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) - ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) - ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) - ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) -(((*1 *1) (-5 *1 (-1273)))) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) + (-5 *2 (-550)) (-5 *1 (-508 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1053)) (-5 *2 (-923)))) + ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-366)) (-5 *2 (-134))))) +(((*1 *1) (-5 *1 (-1276)))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-226)) (-5 *1 (-1275)))) + ((*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1275))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) + ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-644 (-774))) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-774))) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275))))) +(((*1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275)))) + ((*1 *2 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1275))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1274))))) +(((*1 *1) (-5 *1 (-1274)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-643 (-262))) (-5 *1 (-1273)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1162)) (-5 *1 (-1273)))) - ((*1 *1 *1) (-5 *1 (-1273)))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-1168 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273))))) + (-12 (-5 *2 (-1137 (-226))) (-5 *3 (-644 (-263))) (-5 *1 (-1274)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1137 (-226))) (-5 *3 (-1163)) (-5 *1 (-1274)))) + ((*1 *1 *1) (-5 *1 (-1274)))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-1169 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-1274)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-1274))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-773)) (-5 *3 (-946 *4)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) + (-12 (-5 *2 (-774)) (-5 *3 (-947 *4)) (-4 *1 (-1138 *4)) (-4 *4 (-1053)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-773)) (-5 *4 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) + (-12 (-5 *3 (-774)) (-5 *4 (-947 (-226))) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1273)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1273)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1274)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-263))) (-5 *1 (-1274))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + (-12 (-5 *3 (-774)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273))))) + (-12 (-5 *3 (-774)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1274))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-262)))) + (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) + (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) + (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) + (-5 *1 (-263)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-643 (-262))) (-5 *1 (-263)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) + (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) + (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) + (-5 *3 (-644 (-263))) (-5 *1 (-264)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-549)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + (-12 (-5 *3 (-550)) (-5 *4 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1275)) (-5 *1 (-1273)))) + (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) + (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) + (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) + (-5 *2 (-1276)) (-5 *1 (-1274)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1273)))) + (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4281 (-226)) + (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) + (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) + (-5 *1 (-1274)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) + (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + (-12 (-5 *3 (-923)) (-5 *4 (-877)) (-5 *2 (-1276)) (-5 *1 (-1273)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1273)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) + (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1274)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1275)) (-5 *1 (-1273))))) + (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1276)) (-5 *1 (-1274))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1272)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) + (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1163)) (-5 *1 (-1273)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1273)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1273)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1273)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1272)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1273))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-946 (-225)))) (-5 *1 (-1272))))) -(((*1 *1) (-5 *1 (-1272)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-643 (-262))) (-5 *1 (-1272)))) - ((*1 *1 *1) (-5 *1 (-1272)))) + (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1163)) (-5 *1 (-1274)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1274)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1274))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1273)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1274))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1273)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1274))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-947 (-226)))) (-5 *1 (-1273))))) +(((*1 *1) (-5 *1 (-1273)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-472)) (-5 *3 (-644 (-263))) (-5 *1 (-1273)))) + ((*1 *1 *1) (-5 *1 (-1273)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-549)) (-5 *6 (-876)) - (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-923)) (-5 *4 (-226)) (-5 *5 (-550)) (-5 *6 (-877)) + (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *1) (-12 (-5 *2 - (-1269 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) - (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) - (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) - (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549))))) - (-5 *1 (-1272))))) -(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1272))))) + (-1270 + (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) + (|:| |deltaY| (-226)) (|:| -4284 (-550)) (|:| -4282 (-550)) + (|:| |spline| (-550)) (|:| -4313 (-550)) (|:| |axesColor| (-877)) + (|:| -4285 (-550)) (|:| |unitsColor| (-877)) (|:| |showing| (-550))))) + (-5 *1 (-1273))))) +(((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-1270 (-3 (-472) "undefined"))) (-5 *1 (-1273))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-472)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-472)) (-5 *1 (-1273))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-643 (-380))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) + (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-472)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + (-12 (-5 *3 (-923)) (-5 *4 (-877)) (-5 *2 (-1276)) (-5 *1 (-1273)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) + ((*1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-923)) (-5 *4 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272))))) + (-12 (-5 *3 (-472)) (-5 *4 (-923)) (-5 *2 (-1276)) (-5 *1 (-1273))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) - (-5 *6 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-1271)))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-877)) (-5 *5 (-923)) + (-5 *6 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-1272)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) - (-5 *2 (-1272)) (-5 *1 (-1271))))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-644 (-263))) + (-5 *2 (-1273)) (-5 *1 (-1272))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) - (-5 *6 (-643 (-262))) (-5 *2 (-471)) (-5 *1 (-1271)))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-877)) (-5 *5 (-923)) + (-5 *6 (-644 (-263))) (-5 *2 (-472)) (-5 *1 (-1272)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-471)) (-5 *1 (-1271)))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *2 (-472)) (-5 *1 (-1272)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) (-5 *2 (-471)) - (-5 *1 (-1271))))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-644 (-263))) (-5 *2 (-472)) + (-5 *1 (-1272))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (|has| *1 (-6 -4425)) - (-4 *1 (-151 *2)) (-4 *2 (-1219)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1105)) (|has| *1 (-6 -4427)) + (-4 *1 (-151 *2)) (-4 *2 (-1220)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) - (-4 *2 (-1219)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) + (-4 *2 (-1220)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) - (-4 *2 (-1219)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) + (-4 *2 (-1220)))) ((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-2 (|:| -2182 (-1174 *4)) (|:| |deg| (-922)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-560)))) + (-12 (-4 *4 (-1053)) (-5 *2 (-2 (|:| -2184 (-1175 *4)) (|:| |deg| (-923)))) + (-5 *1 (-222 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-561)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) - (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-240 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-774)) + (-4 *6 (-1220)) (-4 *2 (-1220)) (-5 *1 (-241 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1245 *4)) + (-12 (-4 *4 (-173)) (-5 *1 (-291 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1246 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-560)) (-4 *2 (-1104)))) + ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-561)) (-4 *2 (-1105)))) ((*1 *1 *1) - (-12 (-4 *1 (-338 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) - (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) + (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-366)) (-4 *3 (-1246 *2)) + (-4 *4 (-1246 (-411 *3))) (-4 *5 (-345 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) - (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-374 *5)) (-4 *6 (-374 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1220)) (-4 *2 (-1220)) + (-5 *1 (-376 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) - (-5 *1 (-430 *5 *4 *2 *6)) (-4 *4 (-429 *5)) (-4 *6 (-429 *2)))) - ((*1 *1 *1) (-5 *1 (-498))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1105)) (-4 *2 (-1105)) + (-5 *1 (-431 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) + ((*1 *1 *1) (-5 *1 (-499))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) - (-5 *1 (-644 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) + (-5 *1 (-645 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-374 *5)) - (-4 *7 (-374 *5)) (-4 *8 (-374 *2)) (-4 *9 (-374 *2)) - (-5 *1 (-689 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) - (-4 *10 (-688 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1053)) (-4 *2 (-1053)) (-4 *6 (-375 *5)) + (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) + (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-689 *5 *6 *7)) + (-4 *10 (-689 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-12 (-5 *1 (-714 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-715 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) - (-4 *3 (-172)) (-4 *1 (-726 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) + (|partial| -12 (-5 *2 (-411 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-366)) + (-4 *3 (-173)) (-4 *1 (-727 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-727 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) - (-5 *1 (-962 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-962 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) + (-5 *1 (-963 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *1 (-1038 *3 *4 *5 *2 *6)) (-4 *2 (-954 *3 *4 *5)) (-14 *6 (-644 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1052)) (-4 *2 (-1052)) (-14 *5 (-773)) - (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) - (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *12 (-1056 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1053)) (-4 *2 (-1053)) (-14 *5 (-774)) + (-14 *6 (-774)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) + (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) + (-5 *1 (-1059 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1057 *5 *6 *7 *8 *9)) (-4 *12 (-1057 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) - (-5 *1 (-1159 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) + (-5 *1 (-1160 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1214 *5 *6 *7 *2)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *2 (-1068 *5 *6 *7)))) + (-4 *1 (-1215 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *2 (-1069 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) - (-5 *1 (-1270 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1270 *5)) (-4 *5 (-1220)) (-4 *2 (-1220)) + (-5 *1 (-1271 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-773)) - (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-239 *6 *5)) - (-5 *1 (-240 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-774)) + (-4 *7 (-1220)) (-4 *5 (-1220)) (-5 *2 (-240 *6 *5)) + (-5 *1 (-241 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-4 *2 (-374 *5)) - (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-374 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1220)) (-4 *5 (-1220)) (-4 *2 (-375 *5)) + (-5 *1 (-376 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-429 *5)) - (-5 *1 (-430 *6 *4 *5 *2)) (-4 *4 (-429 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1105)) (-4 *5 (-1105)) (-4 *2 (-430 *5)) + (-5 *1 (-431 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-643 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) - (-5 *2 (-643 *5)) (-5 *1 (-644 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) + (-5 *2 (-644 *5)) (-5 *1 (-645 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-961 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) - (-5 *2 (-961 *5)) (-5 *1 (-962 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-962 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) + (-5 *2 (-962 *5)) (-5 *1 (-963 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1157 *6)) (-4 *6 (-1219)) (-4 *3 (-1219)) - (-5 *2 (-1157 *3)) (-5 *1 (-1159 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1158 *6)) (-4 *6 (-1220)) (-4 *3 (-1220)) + (-5 *2 (-1158 *3)) (-5 *1 (-1160 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) - (-5 *2 (-1269 *5)) (-5 *1 (-1270 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1270 *6)) (-4 *6 (-1220)) (-4 *5 (-1220)) + (-5 *2 (-1270 *5)) (-5 *1 (-1271 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-1270 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) + (-12 (-5 *1 (-215 *2)) (-4 *2 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) - (-15 -2143 ((-1275) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) + (-15 -2145 ((-1276) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1220)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1220)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-131)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *2)) (-4 *2 (-1246 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-538))) + (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-539))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-25))))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-774)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-1268 *3)) (-4 *3 (-23)) (-4 *3 (-1219))))) + (-12 (-5 *2 (-774)) (-4 *1 (-1269 *3)) (-4 *3 (-23)) (-4 *3 (-1220))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) + (-12 (-5 *1 (-215 *2)) (-4 *2 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) - (-15 -2143 ((-1275) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) + (-15 -2145 ((-1276) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) - ((*1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-225)) (-5 *1 (-1216)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052))))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1220)) (-4 *2 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-866)))) + ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-947 (-226))) (-5 *2 (-226)) (-5 *1 (-1217)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1053))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-1052)) (-5 *2 (-691 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-1052)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052))))) + (-12 (-4 *1 (-1269 *3)) (-4 *3 (-1220)) (-4 *3 (-1053)) (-5 *2 (-692 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1053)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1053))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) - ((*1 *1 *1) (-4 *1 (-548))) - ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1217 *3)) (-4 *3 (-1219)))) + (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) + (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) + ((*1 *1 *1) (-4 *1 (-549))) + ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-822 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1220)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1218 *3)) (-4 *3 (-1220)))) ((*1 *2 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052))))) + (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1006)) (-4 *2 (-1053))))) (((*1 *2 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) + (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1220)) (-4 *2 (-1006)) (-4 *2 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-853)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-866 *3)) (-14 *3 (-643 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-992)))) + (|partial| -12 (-5 *2 (-1181)) (-5 *1 (-867 *3)) (-14 *3 (-644 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-993)))) ((*1 *2 *1) - (-12 (-4 *4 (-1219)) (-5 *2 (-1180)) (-5 *1 (-1061 *3 *4)) - (-4 *3 (-1097 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1095 *3)) (-4 *3 (-1219)))) + (-12 (-4 *4 (-1220)) (-5 *2 (-1181)) (-5 *1 (-1062 *3 *4)) + (-4 *3 (-1098 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1096 *3)) (-4 *3 (-1220)))) ((*1 *2 *1) - (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-1180)))) - ((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1267 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-560)) (-4 *4 (-1052)) - (-4 *2 (-1262 *4)) (-5 *1 (-1264 *4 *5 *6 *2)) (-4 *6 (-660 *5))))) + (-12 (-5 *3 (-411 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-561)) (-4 *4 (-1053)) + (-4 *2 (-1263 *4)) (-5 *1 (-1265 *4 *5 *6 *2)) (-4 *6 (-661 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-643 *6))) - (-5 *1 (-1264 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-1262 *4))))) + (-12 (-4 *4 (-1053)) (-4 *5 (-1246 *4)) (-5 *2 (-1 *6 (-644 *6))) + (-5 *1 (-1265 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1263 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-4 *2 (-1245 *5)) - (-5 *1 (-1264 *5 *2 *6 *3)) (-4 *6 (-660 *2)) (-4 *3 (-1262 *5))))) + (-12 (-5 *4 (-774)) (-4 *5 (-1053)) (-4 *2 (-1246 *5)) + (-5 *1 (-1265 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1263 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *3 (-1245 *4)) (-4 *2 (-1262 *4)) - (-5 *1 (-1264 *4 *3 *5 *2)) (-4 *5 (-660 *3))))) + (-12 (-4 *4 (-1053)) (-4 *3 (-1246 *4)) (-4 *2 (-1263 *4)) + (-5 *1 (-1265 *4 *3 *5 *2)) (-4 *5 (-661 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 (-1 *6 (-643 *6)))) - (-4 *5 (-38 (-410 (-549)))) (-4 *6 (-1262 *5)) (-5 *2 (-643 *6)) - (-5 *1 (-1263 *5 *6))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) + (-4 *5 (-38 (-411 (-550)))) (-4 *6 (-1263 *5)) (-5 *2 (-644 *6)) + (-5 *1 (-1264 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-643 *2))) (-5 *4 (-643 *5)) (-4 *5 (-38 (-410 (-549)))) - (-4 *2 (-1262 *5)) (-5 *1 (-1263 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) (-4 *5 (-38 (-411 (-550)))) + (-4 *2 (-1263 *5)) (-5 *1 (-1264 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) - (-4 *4 (-38 (-410 (-549))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1264 *4 *2)) + (-4 *4 (-38 (-411 (-550))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) - (-4 *4 (-38 (-410 (-549))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1264 *4 *2)) + (-4 *4 (-38 (-411 (-550))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1263 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-643 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) - (-5 *2 (-1 (-1157 *4) (-643 (-1157 *4)))) (-5 *1 (-1263 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-38 (-411 (-550)))) + (-5 *2 (-1 (-1158 *4) (-644 (-1158 *4)))) (-5 *1 (-1264 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) - (-5 *2 (-1 (-1157 *4) (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-38 (-411 (-550)))) + (-5 *2 (-1 (-1158 *4) (-1158 *4) (-1158 *4))) (-5 *1 (-1264 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) - (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-38 (-411 (-550)))) + (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1264 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + (-12 (-5 *4 (-411 (-550))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *5 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) - (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *5 *6)))) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-411 (-550))) + (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *6 *3)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) - (-4 *7 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-295 *7)) (-5 *5 (-1237 (-550))) + (-4 *7 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) - (-4 *3 (-13 (-27) (-1205) (-424 *7))) - (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *7 *3)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-550))) + (-4 *3 (-13 (-27) (-1206) (-425 *7))) + (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) - (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) - (-4 *8 (-13 (-27) (-1205) (-424 *7))) - (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-411 (-550)))) (-5 *4 (-295 *8)) + (-5 *5 (-1237 (-411 (-550)))) (-5 *6 (-411 (-550))) + (-4 *8 (-13 (-27) (-1206) (-425 *7))) + (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) - (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) - (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *8 *3)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-411 (-550)))) + (-5 *7 (-411 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *8))) + (-4 *8 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) - (-5 *1 (-598 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-599 *3)))) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1053)) + (-5 *1 (-599 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-600 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) - (-4 *1 (-1231 *3)))) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-4 *3 (-1053)) + (-4 *1 (-1232 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-773)) (-5 *3 (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))) - (-4 *4 (-1052)) (-4 *1 (-1252 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-4 *1 (-1262 *3)))) + (-12 (-5 *2 (-774)) (-5 *3 (-1158 (-2 (|:| |k| (-411 (-550))) (|:| |c| *4)))) + (-4 *4 (-1053)) (-4 *1 (-1253 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-4 *1 (-1263 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-773)) (|:| |c| *3)))) (-4 *3 (-1052)) - (-4 *1 (-1262 *3))))) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-774)) (|:| |c| *3)))) (-4 *3 (-1053)) + (-4 *1 (-1263 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-643 *3)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-644 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-644 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 *3)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) - ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-643 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-5 *2 (-1157 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-598 *3)))) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729)))) + ((*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-4 *3 (-1053)) (-5 *2 (-644 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1053)) (-5 *2 (-1158 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1053))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-550))) (-4 *3 (-1053)) (-5 *1 (-599 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1231 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1232 *3)) (-4 *3 (-1053)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1262 *3)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-1 *3 (-550))) (-4 *1 (-1263 *3)) (-4 *3 (-1053))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) - (-5 *2 (-949 *4)))) + (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-853)) + (-5 *2 (-950 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) - (-5 *2 (-949 *4)))) + (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *5)) (-4 *4 (-1053)) (-4 *5 (-853)) + (-5 *2 (-950 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4)))) + (-12 (-5 *3 (-774)) (-4 *1 (-1263 *4)) (-4 *4 (-1053)) (-5 *2 (-950 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4))))) + (-12 (-5 *3 (-774)) (-4 *1 (-1263 *4)) (-4 *4 (-1053)) (-5 *2 (-950 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-549))) (-4 *4 (-1041 (-549))) (-4 *4 (-560)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) + (-12 (-5 *3 (-411 (-550))) (-4 *4 (-1042 (-550))) (-4 *4 (-561)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) ((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-549)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-226))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-550)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1262 *4)) - (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1233 *4 *5)))) + (-12 (-5 *3 (-411 (-550))) (-4 *4 (-366)) (-4 *4 (-38 *3)) (-4 *5 (-1263 *4)) + (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1234 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1231 *4)) - (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1254 *4 *5)) (-4 *6 (-986 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-285))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *1) (-5 *1 (-380))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + (-12 (-5 *3 (-411 (-550))) (-4 *4 (-366)) (-4 *4 (-38 *3)) (-4 *5 (-1232 *4)) + (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1255 *4 *5)) (-4 *6 (-987 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-286))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-364 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *1) (-5 *1 (-381))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-389 *2)) (-4 *2 (-1105)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-1115)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-549)))) + (-12 (-5 *2 (-774)) (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-4 *3 (-1116)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-477)) (-5 *2 (-550)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + (-12 (-5 *2 (-774)) (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-538)))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-550)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-539)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-539)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *4 (-1104)) (-5 *1 (-684 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-774)) (-4 *4 (-1105)) (-5 *1 (-685 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-4 *3 (-365)))) + (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-366)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-774)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4)))) + (-12 (-5 *2 (-692 *4)) (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *1 (-693 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)) (-4 *4 (-650 *3)))) + (-12 (-5 *2 (-550)) (-4 *3 (-1053)) (-5 *1 (-717 *3 *4)) (-4 *4 (-651 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *5)) - (-4 *5 (-650 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-773)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-836 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-113)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-717 *4 *5)) + (-4 *5 (-651 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-923)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-774)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-774)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-837 *3)) (-4 *3 (-1053)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-5 *1 (-836 *4)) (-4 *4 (-1052)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-410 (-549))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-922)))) + (-12 (-5 *2 (-113)) (-5 *3 (-550)) (-5 *1 (-837 *4)) (-4 *4 (-1053)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1006)) (-5 *2 (-411 (-550))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1116)) (-5 *2 (-923)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *4 (-1052)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) + (-12 (-5 *2 (-550)) (-4 *1 (-1127 *3 *4 *5 *6)) (-4 *4 (-1053)) + (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-366)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1095 (-844 *3))) (-4 *3 (-13 (-1205) (-963) (-29 *5))) - (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-1096 (-845 *3))) (-4 *3 (-13 (-1206) (-964) (-29 *5))) + (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) + (-3 (|:| |f1| (-845 *3)) (|:| |f2| (-644 (-845 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-219 *5 *3)))) + (-5 *1 (-220 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1095 (-844 *3))) (-5 *5 (-1162)) - (-4 *3 (-13 (-1205) (-963) (-29 *6))) - (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-1096 (-845 *3))) (-5 *5 (-1163)) + (-4 *3 (-13 (-1206) (-964) (-29 *6))) + (-4 *6 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-845 *3)) (|:| |f2| (-644 (-845 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) - (-5 *1 (-219 *6 *3)))) + (-5 *1 (-220 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1095 (-844 (-315 *5)))) - (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1096 (-845 (-316 *5)))) + (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) + (-3 (|:| |f1| (-845 (-316 *5))) (|:| |f2| (-644 (-845 (-316 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-220 *5)))) + (-5 *1 (-221 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1095 (-844 (-315 *6)))) - (-5 *5 (-1162)) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *3 (-411 (-950 *6))) (-5 *4 (-1096 (-845 (-316 *6)))) + (-5 *5 (-1163)) (-4 *6 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) + (-3 (|:| |f1| (-845 (-316 *6))) (|:| |f2| (-644 (-845 (-316 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-220 *6)))) + (-5 *1 (-221 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1095 (-844 (-410 (-949 *5))))) (-5 *3 (-410 (-949 *5))) - (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-1096 (-845 (-411 (-950 *5))))) (-5 *3 (-411 (-950 *5))) + (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) + (-3 (|:| |f1| (-845 (-316 *5))) (|:| |f2| (-644 (-845 (-316 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-220 *5)))) + (-5 *1 (-221 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1095 (-844 (-410 (-949 *6))))) (-5 *5 (-1162)) - (-5 *3 (-410 (-949 *6))) - (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-1096 (-845 (-411 (-950 *6))))) (-5 *5 (-1163)) + (-5 *3 (-411 (-950 *6))) + (-4 *6 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) + (-3 (|:| |f1| (-845 (-316 *6))) (|:| |f2| (-644 (-845 (-316 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-220 *6)))) + (-5 *1 (-221 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-3 *3 (-643 *3))) (-5 *1 (-433 *5 *3)) - (-4 *3 (-13 (-1205) (-963) (-29 *5))))) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-434 *5 *3)) + (-4 *3 (-13 (-1206) (-964) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-478 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) - (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568)))) - ((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *5 (-381)) + (-5 *6 (-1067)) (-5 *2 (-1039)) (-5 *1 (-569)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) - (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *5 (-381)) + (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) - (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *5 (-381)) + (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *2 (-1038)) - (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-1093 (-845 (-381)))) (-5 *2 (-1039)) + (-5 *1 (-569)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) - (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) + (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) - (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) - (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) - (-5 *5 (-380)) (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-1093 (-845 (-381))))) + (-5 *5 (-381)) (-5 *6 (-1067)) (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) - (-5 *5 (-1162)) (-5 *2 (-1038)) (-5 *1 (-568)))) + (|partial| -12 (-5 *3 (-316 (-381))) (-5 *4 (-1096 (-845 (-381)))) + (-5 *5 (-1163)) (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) - (-5 *5 (-1180)) (-5 *2 (-1038)) (-5 *1 (-568)))) + (|partial| -12 (-5 *3 (-316 (-381))) (-5 *4 (-1096 (-845 (-381)))) + (-5 *5 (-1181)) (-5 *2 (-1039)) (-5 *1 (-569)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) - (-5 *2 (-586 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) + (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) + (-5 *2 (-587 (-411 *5))) (-5 *1 (-572 *4 *5)) (-5 *3 (-411 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-3 (-315 *5) (-643 (-315 *5)))) (-5 *1 (-592 *5)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-147)) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-3 (-316 *5) (-644 (-316 *5)))) (-5 *1 (-593 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852)) - (-4 *3 (-38 (-410 (-549)))))) + (-12 (-4 *1 (-743 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-853)) + (-4 *3 (-38 (-411 (-550)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-410 (-549)))) - (-4 *3 (-1052)))) + (-12 (-5 *2 (-1181)) (-5 *1 (-950 *3)) (-4 *3 (-38 (-411 (-550)))) + (-4 *3 (-1053)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-4 *2 (-852)) - (-5 *1 (-1129 *3 *2 *4)) (-4 *4 (-953 *3 (-534 *2) *2)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-4 *2 (-853)) + (-5 *1 (-1130 *3 *2 *4)) (-4 *4 (-954 *3 (-535 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) - (-5 *1 (-1164 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) + (-5 *1 (-1165 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1178 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1179 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-549)))) - (-4 *3 (-1052)))) + (-12 (-5 *2 (-1181)) (-5 *1 (-1213 *3)) (-4 *3 (-38 (-411 (-550)))) + (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1230 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3960 - (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) - (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) - (-4 *3 (-38 (-410 (-549)))))) - (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) - (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) - (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549)))))))) + (-3962 + (-12 (-5 *2 (-1181)) (-4 *1 (-1232 *3)) (-4 *3 (-1053)) + (-12 (-4 *3 (-29 (-550))) (-4 *3 (-964)) (-4 *3 (-1206)) + (-4 *3 (-38 (-411 (-550)))))) + (-12 (-5 *2 (-1181)) (-4 *1 (-1232 *3)) (-4 *3 (-1053)) + (-12 (|has| *3 (-15 -3487 ((-644 *2) *3))) + (|has| *3 (-15 -4246 (*3 *3 *2))) (-4 *3 (-38 (-411 (-550)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) + (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3960 - (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) - (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) - (-4 *3 (-38 (-410 (-549)))))) - (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) - (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) - (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549)))))))) + (-3962 + (-12 (-5 *2 (-1181)) (-4 *1 (-1253 *3)) (-4 *3 (-1053)) + (-12 (-4 *3 (-29 (-550))) (-4 *3 (-964)) (-4 *3 (-1206)) + (-4 *3 (-38 (-411 (-550)))))) + (-12 (-5 *2 (-1181)) (-4 *1 (-1253 *3)) (-4 *3 (-1053)) + (-12 (|has| *3 (-15 -3487 ((-644 *2) *3))) + (|has| *3 (-15 -4246 (*3 *3 *2))) (-4 *3 (-38 (-411 (-550)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) + (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1260 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3960 - (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) - (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) - (-4 *3 (-38 (-410 (-549)))))) - (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) - (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) - (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549)))))))) + (-3962 + (-12 (-5 *2 (-1181)) (-4 *1 (-1263 *3)) (-4 *3 (-1053)) + (-12 (-4 *3 (-29 (-550))) (-4 *3 (-964)) (-4 *3 (-1206)) + (-4 *3 (-38 (-411 (-550)))))) + (-12 (-5 *2 (-1181)) (-4 *1 (-1263 *3)) (-4 *3 (-1053)) + (-12 (|has| *3 (-15 -3487 ((-644 *2) *3))) + (|has| *3 (-15 -4246 (*3 *3 *2))) (-4 *3 (-38 (-411 (-550)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549))))))) + (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1053)) (-4 *2 (-38 (-411 (-550))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1178 *4 *5 *6)) - (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4))) + (-12 (-5 *3 (-774)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1179 *4 *5 *6)) + (-4 *4 (-1053)) (-14 *5 (-1181)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1259 *4 *5 *6)) - (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4)))) + (-12 (-5 *3 (-774)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1260 *4 *5 *6)) + (-4 *4 (-1053)) (-14 *5 (-1181)) (-14 *6 *4)))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-267 *3)) (-4 *3 (-852)))) - ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-774)) (-4 *1 (-232 *4)) (-4 *4 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1053)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-774)))) + ((*1 *1 *1) (-4 *1 (-234))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-268 *3)) (-4 *3 (-853)))) + ((*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-853)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) + (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) - (-4 *4 (-1245 *3)))) + (-12 (-5 *2 (-774)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)) + (-4 *4 (-1246 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) + (-12 (-4 *2 (-13 (-366) (-147))) (-5 *1 (-403 *2 *3)) (-4 *3 (-1246 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-478 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-903 *3)) (-5 *1 (-586 *2)) (-5 *3 (-1180)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-586 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) + (-12 (-4 *2 (-366)) (-4 *2 (-904 *3)) (-5 *1 (-587 *2)) (-5 *3 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-366)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-866)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) - (-4 *4 (-1104)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-774))) (-4 *1 (-904 *4)) + (-4 *4 (-1105)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-904 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-904 *3)) (-4 *3 (-1105)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1105)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1178 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1179 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1230 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-1052)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + (-12 (-5 *2 (-1267 *4)) (-14 *4 (-1181)) (-5 *1 (-1260 *3 *4 *5)) + (-4 *3 (-1053)) (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) + (-12 (-5 *2 (-550)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) + (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1053)) (-14 *3 (-1181)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) + (-12 (-5 *2 (-550)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-1053)) (-5 *1 (-1165 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) + (-12 (-5 *2 (-550)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-1181)) (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-304)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-1038))) (-5 *2 (-1038)) (-5 *1 (-304)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-5 *1 (-1066))) - ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1158 *4)) - (-4 *4 (-1219)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) (-4 *3 (-852)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) - ((*1 *2 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) - ((*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-674 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-305)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-1039))) (-5 *2 (-1039)) (-5 *1 (-305)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *1) (-5 *1 (-1067))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1159 *4)) + (-4 *4 (-1220)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) + (-12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1105)) (-4 *3 (-853)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) + ((*1 *2 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) + ((*1 *2 *1) (-12 (-4 *2 (-1220)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-675 *3)) (-5 *1 (-897 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) - (-4 *5 (-374 *2)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1220)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) - (-4 *5 (-374 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1220)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-643 (-549))) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 (-549)) (-14 *5 (-773)))) + (-12 (-5 *3 (-644 (-550))) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-550)) (-14 *5 (-774)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-773)))) + (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-774)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-773)))) + (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-774)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-773)))) + (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-774)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-773)))) + (-12 (-5 *3 (-550)) (-4 *2 (-173)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-774)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549)) (-14 *4 (-773)))) + (-12 (-4 *2 (-173)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-550)) (-14 *4 (-774)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-245 (-1162))) (-5 *1 (-214 *4)) + (-12 (-5 *3 (-1181)) (-5 *2 (-246 (-1163))) (-5 *1 (-215 *4)) (-4 *4 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ *3)) (-15 -4049 ((-1275) $)) - (-15 -2143 ((-1275) $))))))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ *3)) (-15 -4051 ((-1276) $)) + (-15 -2145 ((-1276) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-992)) (-5 *1 (-214 *3)) + (-12 (-5 *2 (-993)) (-5 *1 (-215 *3)) (-4 *3 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) - (-15 -2143 ((-1275) $))))))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 ((-1276) $)) + (-15 -2145 ((-1276) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-773)) (-5 *1 (-245 *4)) (-4 *4 (-852)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-852)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-852)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-250)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) + (-12 (-5 *3 "count") (-5 *2 (-774)) (-5 *1 (-246 *4)) (-4 *4 (-853)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-853)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-853)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-251)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1245 *3)) + (-12 (-4 *3 (-173)) (-5 *1 (-291 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1246 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-644 *1)) (-4 *1 (-300)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) - (-4 *4 (-1245 (-410 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-421 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1162)) (-5 *1 (-505)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-51)) (-5 *1 (-634)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104)))) + (-12 (-4 *1 (-345 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-1246 *2)) + (-4 *4 (-1246 (-411 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1163)) (-5 *1 (-506)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-51)) (-5 *1 (-635)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1237 (-550))) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-774)) (-5 *1 (-678 *2)) (-4 *2 (-1105)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + (-12 (-5 *2 (-644 (-550))) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-643 (-893 *4))) (-5 *1 (-893 *4)) - (-4 *4 (-1104)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-113)) (-5 *3 (-644 (-894 *4))) (-5 *1 (-894 *4)) + (-4 *4 (-1105)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1105)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) + (-12 (-5 *3 (-774)) (-5 *2 (-906 *4)) (-5 *1 (-909 *4)) (-4 *4 (-1105)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) - (-5 *1 (-996 *4 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-366)) + (-5 *1 (-997 *4 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1014 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *2 (-1052)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) + (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *2 *6 *7)) (-4 *2 (-1053)) + (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) - (-4 *7 (-238 *4 *2)) (-4 *2 (-1052)))) + (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) + (-4 *7 (-239 *4 *2)) (-4 *2 (-1053)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-1104)) - (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) + (-12 (-5 *3 (-923)) (-4 *4 (-1105)) + (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-1104)) - (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1080 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) + (-12 (-5 *3 (-923)) (-4 *4 (-1105)) + (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1081 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-549))) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) - (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) + (-12 (-5 *2 (-644 (-550))) (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) + (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) - (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) - ((*1 *1 *1 *1) (-4 *1 (-1147))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) + (-12 (-5 *2 (-550)) (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) + (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)))) + ((*1 *1 *1 *1) (-4 *1 (-1148))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) + (-12 (-5 *3 (-411 *1)) (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) + (-12 (-5 *2 (-411 *1)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-4 *3 (-561)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1249 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-853)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) - (-4 *4 (-852)) (-4 *5 (-1068 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1099)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) + (|partial| -12 (-4 *1 (-1215 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-796)) + (-4 *4 (-853)) (-4 *5 (-1069 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1100)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1259 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) ((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) - ((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1258 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) -(((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) + ((*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *2 (-1220)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1220)) (-5 *2 (-774))))) +(((*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-245 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) - (-4 *5 (-374 *2)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1220)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) - (-4 *3 (-1219)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4428)) (-4 *1 (-119 *3)) + (-4 *3 (-1220)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4428)) (-4 *1 (-119 *3)) (-4 *3 (-1220)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) - (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1180)) (-5 *1 (-634)))) + (-12 (|has| *1 (-6 -4428)) (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) + (-4 *2 (-1220)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1181)) (-5 *1 (-635)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1236 (-549))) (|has| *1 (-6 -4426)) (-4 *1 (-653 *2)) - (-4 *2 (-1219)))) + (-12 (-5 *3 (-1237 (-550))) (|has| *1 (-6 -4428)) (-4 *1 (-654 *2)) + (-4 *2 (-1220)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-644 (-550))) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) - (-4 *2 (-1219)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4428)) (-4 *1 (-1014 *2)) + (-4 *2 (-1220)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) - (-4 *2 (-1219)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) + (-4 *2 (-1220)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) - (-4 *3 (-1219)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4428)) (-4 *1 (-1259 *3)) + (-4 *3 (-1220)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) - (-4 *2 (-1219))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1157 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) + (-4 *2 (-1220))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1158 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1259 *2)) (-4 *2 (-1220))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) - (-4 *3 (-1219))))) + (-12 (-5 *2 (-550)) (|has| *1 (-6 -4428)) (-4 *1 (-1259 *3)) + (-4 *3 (-1220))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) - (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) + (-5 *2 (-845 *4)) (-5 *1 (-315 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1206) (-425 *3))) (-14 *5 (-1181)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) - (-5 *2 (-844 *4)) (-5 *1 (-1256 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) + (-5 *2 (-845 *4)) (-5 *1 (-1257 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1206) (-425 *3))) (-14 *5 (-1181)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) + (|partial| -12 (-4 *3 (-13 (-1042 (-550)) (-642 (-550)) (-456))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1250 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) - (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))))) - (|:| |%type| (-1162)))) - (-5 *1 (-1256 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) - (-14 *5 (-1180)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1251 *4 *5 *6)) (|:| |%expon| (-321 *4 *5 *6)) + (|:| |%expTerms| (-644 (-2 (|:| |k| (-411 (-550))) (|:| |c| *4)))))) + (|:| |%type| (-1163)))) + (-5 *1 (-1257 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1206) (-425 *3))) + (-14 *5 (-1181)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + (-12 (-5 *4 (-411 (-550))) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *5 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) - (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *6 *3)))) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-411 (-550))) + (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) - (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) - (-4 *8 (-13 (-27) (-1205) (-424 *7))) - (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-411 (-550)))) (-5 *4 (-295 *8)) + (-5 *5 (-1237 (-411 (-550)))) (-5 *6 (-411 (-550))) + (-4 *8 (-13 (-27) (-1206) (-425 *7))) + (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) - (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) - (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *8 *3)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-411 (-550)))) + (-5 *7 (-411 (-550))) (-4 *3 (-13 (-27) (-1206) (-425 *8))) + (-4 *8 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-410 (-549))) (-4 *4 (-1052)) (-4 *1 (-1254 *4 *3)) - (-4 *3 (-1231 *4))))) + (-12 (-5 *2 (-411 (-550))) (-4 *4 (-1053)) (-4 *1 (-1255 *4 *3)) + (-4 *3 (-1232 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) - (-5 *2 (-410 (-549)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) + (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1232 *3)) + (-5 *2 (-411 (-550)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1232 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-549)) (-4 *5 (-13 (-455) (-1041 *4) (-641 *4))) (-5 *2 (-51)) - (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + (-12 (-5 *4 (-550)) (-4 *5 (-13 (-456) (-1042 *4) (-642 *4))) (-5 *2 (-51)) + (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *5 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-455) (-1041 *5) (-641 *5))) (-5 *5 (-549)) (-5 *2 (-51)) - (-5 *1 (-317 *6 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-456) (-1042 *5) (-642 *5))) (-5 *5 (-550)) (-5 *2 (-51)) + (-5 *1 (-318 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) - (-4 *7 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-295 *7)) (-5 *5 (-1237 (-550))) + (-4 *7 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) - (-4 *3 (-13 (-27) (-1205) (-424 *7))) - (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *7 *3)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-550))) + (-4 *3 (-13 (-27) (-1206) (-425 *7))) + (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-549)) (-4 *4 (-1052)) (-4 *1 (-1233 *4 *3)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) + (-12 (-5 *2 (-550)) (-4 *4 (-1053)) (-4 *1 (-1234 *4 *3)) + (-4 *3 (-1263 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1232 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) + (|partial| -12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1232 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1252 *3)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-923)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-4 *1 (-1253 *3)) (-4 *3 (-1053))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-549)))) - (-4 *4 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $))))) (-4 *3 (-560)) - (-5 *1 (-1249 *3 *4))))) + (|:| |xpnt| (-550)))) + (-4 *4 (-13 (-1246 *3) (-561) (-10 -8 (-15 -3566 ($ $ $))))) (-4 *3 (-561)) + (-5 *1 (-1250 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455)))) + (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) - (-4 *1 (-1074 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1224))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *1)))) + (-4 *1 (-1075 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1225))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-1249 *3 *2)) - (-4 *2 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $)))))))) + (-12 (-4 *3 (-561)) (-5 *1 (-1250 *3 *2)) + (-4 *2 (-13 (-1246 *3) (-561) (-10 -8 (-15 -3566 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) - (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)) + (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-5 *1 (-737 *3 *4)) - (-4 *3 (-1052)) (-4 *4 (-728)))) + (-12 (-5 *2 (-644 (-2 (|:| -4388 *3) (|:| -4372 *4)))) (-5 *1 (-738 *3 *4)) + (-4 *3 (-1053)) (-4 *4 (-729)))) ((*1 *2 *1) - (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) - (-5 *2 (-1157 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241)))) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) + (-5 *2 (-1158 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-550)) (-5 *1 (-242)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-643 (-1162))) (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) - ((*1 *2 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052))))) + (-12 (-5 *2 (-644 (-1163))) (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *1 (-242)))) + ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) + ((*1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053))))) (((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) - (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) + (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) + (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-774)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) - (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-922)))) - ((*1 *2 *3) - (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) - (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) - (-5 *2 (-773)) (-5 *1 (-395 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) + (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) + (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-853)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-923)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-371) (-366))) + (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-4 *7 (-345 *4 *5 *6)) + (-5 *2 (-774)) (-5 *1 (-396 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-835 (-923))))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-550)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) + ((*1 *2 *1) + (-12 (-4 *3 (-561)) (-5 *2 (-550)) (-5 *1 (-626 *3 *4)) (-4 *4 (-1246 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)))) + (-12 (-5 *2 (-774)) (-4 *1 (-743 *4 *3)) (-4 *4 (-1053)) (-4 *3 (-853)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-773)) - (-5 *1 (-914 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) - (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) - (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-773)) (-5 *1 (-915 *4 *5 *6)))) + (-12 (-4 *1 (-743 *4 *3)) (-4 *4 (-1053)) (-4 *3 (-853)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-873 *3)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-425 *4)) + (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) + (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-774)) + (-5 *1 (-915 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-411 (-550)) *4 *5 *6)) + (-4 *4 (-1246 (-411 (-550)))) (-4 *5 (-1246 (-411 *4))) + (-4 *6 (-345 (-411 (-550)) *4 *5)) (-5 *2 (-774)) (-5 *1 (-916 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) - (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) - (-4 *9 (-13 (-370) (-365))) (-5 *2 (-773)) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-366)) + (-4 *7 (-1246 *6)) (-4 *4 (-1246 (-411 *7))) (-4 *8 (-345 *6 *7 *4)) + (-4 *9 (-13 (-371) (-366))) (-5 *2 (-774)) (-5 *1 (-1022 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)) (-5 *2 (-773)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) - ((*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794))))) -(((*1 *1 *1) (-4 *1 (-1063))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794))))) + (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-4 *3 (-561)) (-5 *2 (-774)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) + ((*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795))))) +(((*1 *1 *1) (-4 *1 (-1064))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-549)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-550)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-873 *4)) (-14 *4 *3) (-5 *3 (-549)))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-874 *4)) (-14 *4 *3) (-5 *3 (-550)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-410 (-549))) (-5 *1 (-874 *4 *5)) (-5 *3 (-549)) - (-4 *5 (-872 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-410 (-549))))) + (-12 (-14 *4 *3) (-5 *2 (-411 (-550))) (-5 *1 (-875 *4 *5)) (-5 *3 (-550)) + (-4 *5 (-873 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-411 (-550))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2)))) + (-12 (-4 *1 (-1072 *2 *3)) (-4 *2 (-13 (-851) (-366))) (-4 *3 (-1246 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4378 (*2 (-1180)))) (-4 *2 (-1052))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) + (-12 (-4 *1 (-1249 *2 *3)) (-4 *3 (-795)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4380 (*2 (-1181)))) (-4 *2 (-1053))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-175 *3)) (-4 *3 (-309)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-677 *3)) (-4 *3 (-1220)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-742 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-852)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-983 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-774)) (-4 *1 (-743 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-853)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-984 *3)) (-4 *3 (-1053)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1075 *4 *5 *6 *7)) + (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-410 *5)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) + (-12 (-5 *3 (-411 *5)) (-4 *4 (-1225)) (-4 *5 (-1246 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1246 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190)))) + (-12 (-5 *3 (-1183 (-411 (-550)))) (-5 *2 (-411 (-550))) (-5 *1 (-191)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-691 (-315 (-225)))) (-5 *3 (-643 (-1180))) - (-5 *4 (-1269 (-315 (-225)))) (-5 *1 (-205)))) + (-12 (-5 *2 (-692 (-316 (-226)))) (-5 *3 (-644 (-1181))) + (-5 *4 (-1270 (-316 (-226)))) (-5 *1 (-206)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-294 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1104)) - (-4 *3 (-1219)) (-5 *1 (-294 *3)))) + (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-311 *3)) (-4 *3 (-1105)) + (-4 *3 (-1220)) (-5 *1 (-295 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-310 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)) (-5 *1 (-294 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) + (-12 (-4 *2 (-311 *2)) (-4 *2 (-1105)) (-4 *2 (-1220)) (-5 *1 (-295 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-300)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-300)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) + (-12 (-5 *2 (-644 (-113))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-300)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) + (-12 (-5 *2 (-644 (-113))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-300)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1 *1 *1)) (-4 *1 (-300)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-300)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) + (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-300)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) + (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-300)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-294 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1104)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-311 *3)) (-4 *3 (-1105)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-311 *3)) (-4 *3 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1182 (-410 (-549)))) (-5 *1 (-311 *2)) - (-4 *2 (-38 (-410 (-549)))))) + (-12 (-5 *3 (-1 *2 (-550))) (-5 *4 (-1183 (-411 (-550)))) (-5 *1 (-312 *2)) + (-4 *2 (-38 (-411 (-550)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-852)) - (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-853)) + (-4 *5 (-173)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-853)) (-4 *3 (-173)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) - (-4 *5 (-1104)) (-4 *5 (-1052)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-774)) (-5 *4 (-1 *1 *1)) (-4 *1 (-425 *5)) + (-4 *5 (-1105)) (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 (-643 *1))) - (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-774)) (-5 *4 (-1 *1 (-644 *1))) + (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) - (-5 *4 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) - (-4 *5 (-1052)))) + (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-774))) + (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-1105)) + (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) (-5 *4 (-643 (-1 *1 *1))) - (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) + (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-644 (-774))) (-5 *4 (-644 (-1 *1 *1))) + (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 *1)) (-5 *4 (-1180)) - (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-616 (-538))))) + (-12 (-5 *2 (-644 (-113))) (-5 *3 (-644 *1)) (-5 *4 (-1181)) + (-4 *1 (-425 *5)) (-4 *5 (-1105)) (-4 *5 (-617 (-539))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1180)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) - (-4 *4 (-616 (-538))))) - ((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-616 (-538))))) + (-12 (-5 *2 (-113)) (-5 *3 (-1181)) (-4 *1 (-425 *4)) (-4 *4 (-1105)) + (-4 *4 (-617 (-539))))) + ((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)) (-4 *2 (-617 (-539))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-1180))) (-4 *1 (-424 *3)) (-4 *3 (-1104)) - (-4 *3 (-616 (-538))))) + (-12 (-5 *2 (-644 (-1181))) (-4 *1 (-425 *3)) (-4 *3 (-1105)) + (-4 *3 (-617 (-539))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) - (-4 *3 (-616 (-538))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)) + (-4 *3 (-617 (-539))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1220)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1104)) - (-4 *5 (-1219)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-720 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-518 *4 *5)) (-4 *4 (-1105)) + (-4 *5 (-1220)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *3 (-366)) (-5 *1 (-721 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1105)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) (-4 *4 (-560)) - (-5 *1 (-1043 *4)))) + (-12 (-5 *2 (-411 (-950 *4))) (-5 *3 (-1181)) (-4 *4 (-561)) + (-5 *1 (-1044 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-643 (-1180))) (-5 *4 (-643 (-410 (-949 *5)))) - (-5 *2 (-410 (-949 *5))) (-4 *5 (-560)) (-5 *1 (-1043 *5)))) + (-12 (-5 *3 (-644 (-1181))) (-5 *4 (-644 (-411 (-950 *5)))) + (-5 *2 (-411 (-950 *5))) (-4 *5 (-561)) (-5 *1 (-1044 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-5 *2 (-410 (-949 *4))) (-4 *4 (-560)) - (-5 *1 (-1043 *4)))) + (-12 (-5 *3 (-295 (-411 (-950 *4)))) (-5 *2 (-411 (-950 *4))) (-4 *4 (-561)) + (-5 *1 (-1044 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-5 *2 (-410 (-949 *4))) - (-4 *4 (-560)) (-5 *1 (-1043 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + (-12 (-5 *3 (-644 (-295 (-411 (-950 *4))))) (-5 *2 (-411 (-950 *4))) + (-4 *4 (-561)) (-5 *1 (-1044 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1157 *3))))) + (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1158 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-1245 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-5 *2 (-1174 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1052)) (-4 *1 (-1245 *3))))) + (-12 (-5 *3 (-774)) (-4 *1 (-1246 *4)) (-4 *4 (-1053)) (-5 *2 (-1270 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1053)) (-5 *2 (-1175 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1053)) (-4 *1 (-1246 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052))))) + (|partial| -12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-953 *4 *5 *3)))) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-954 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) - (-4 *1 (-1245 *3))))) + (-12 (-4 *3 (-1053)) (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) + (-4 *1 (-1246 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-1052)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052))))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) - (-4 *2 (-172)))) + (-12 (-5 *3 (-774)) (-4 *4 (-1053)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1246 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1246 *3)) (-4 *3 (-1053))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053))))) +(((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *2 *4)) (-4 *4 (-1246 *2)) + (-4 *2 (-173)))) ((*1 *2) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-412 *3 *2 *4)) - (-4 *3 (-413 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-413 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) + (-12 (-4 *4 (-1246 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) + (-4 *3 (-414 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1246 *2)) (-4 *2 (-173)))) ((*1 *2) - (-12 (-4 *3 (-1245 *2)) (-5 *2 (-549)) (-5 *1 (-770 *3 *4)) - (-4 *4 (-413 *2 *3)))) + (-12 (-4 *3 (-1246 *2)) (-5 *2 (-550)) (-5 *1 (-771 *3 *4)) + (-4 *4 (-414 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *3 (-172)))) - ((*1 *2 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172))))) + (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *3 (-173)))) + ((*1 *2 *3) (-12 (-4 *2 (-561)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-173))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *3 (-172)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) + (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *3 (-173)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-173))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-561))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) - (-4 *3 (-560)))) + (|partial| -12 (-5 *2 (-411 *1)) (-4 *1 (-1246 *3)) (-4 *3 (-1053)) + (-4 *3 (-561)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560))))) + (|partial| -12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-561))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1053)) (-4 *2 (-561))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -4386 *4) (|:| -2152 *3) (|:| -3303 *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4388 *4) (|:| -2154 *3) (|:| -3305 *3))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-1069 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| -4386 *3) (|:| -2152 *1) (|:| -3303 *1))) - (-4 *1 (-1245 *3))))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| -4388 *3) (|:| -2154 *1) (|:| -3305 *1))) + (-4 *1 (-1246 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-560)) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| -1939 (-625 *4 *5)) (|:| -1938 (-410 *5)))) - (-5 *1 (-625 *4 *5)) (-5 *3 (-410 *5)))) + (-12 (-4 *4 (-366)) (-4 *4 (-561)) (-4 *5 (-1246 *4)) + (-5 *2 (-2 (|:| -1941 (-626 *4 *5)) (|:| -1940 (-411 *5)))) + (-5 *1 (-626 *4 *5)) (-5 *3 (-411 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1052)))) + (-12 (-5 *2 (-644 (-1169 *3 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1053)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-455)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1245 *3))))) + (-12 (-4 *3 (-456)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1246 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-1243 *4 *2)) - (-4 *2 (-1245 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3))))) + (-12 (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *1 (-1244 *4 *2)) + (-4 *2 (-1246 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-1244 *3 *2)) (-4 *2 (-1246 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-1244 *3 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) - (-5 *1 (-1242 *4 *3)) (-4 *3 (-1245 *4))))) + (|partial| -12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) + (-5 *1 (-1243 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-643 *3)) (-5 *1 (-1241 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-644 *3)) (-5 *1 (-1242 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-560) (-147))) - (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-1241 *4 *3)) - (-4 *3 (-1245 *4))))) + (|partial| -12 (-4 *4 (-13 (-561) (-147))) + (-5 *2 (-2 (|:| -3544 *3) (|:| -3543 *3))) (-5 *1 (-1242 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1241 *3 *2)) - (-4 *2 (-1245 *3))))) + (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1242 *3 *2)) + (-4 *2 (-1246 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) - (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4))))) + (|partial| -12 (-5 *3 (-774)) (-4 *4 (-13 (-561) (-147))) + (-5 *1 (-1242 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) - (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4))))) + (|partial| -12 (-5 *3 (-774)) (-4 *4 (-13 (-561) (-147))) + (-5 *1 (-1242 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) + (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-374 *5)))) + (-4 *3 (-375 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) - (-4 *6 (-374 *4)) (-4 *3 (-374 *5)))) + (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-507 *4 *5 *6 *3)) + (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) - (-5 *2 (-2 (|:| |num| (-691 *4)) (|:| |den| *4))) (-5 *1 (-695 *4 *5)))) + (-12 (-5 *3 (-692 *5)) (-4 *5 (-995 *4)) (-4 *4 (-561)) + (-5 *2 (-2 (|:| |num| (-692 *4)) (|:| |den| *4))) (-5 *1 (-696 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) - (-5 *2 (-2 (|:| -3687 *7) (|:| |rh| (-643 (-410 *6))))) - (-5 *1 (-809 *5 *6 *7 *3)) (-5 *4 (-643 (-410 *6))) (-4 *7 (-660 *6)) - (-4 *3 (-660 (-410 *6))))) + (-12 (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) + (-5 *2 (-2 (|:| -3689 *7) (|:| |rh| (-644 (-411 *6))))) + (-5 *1 (-810 *5 *6 *7 *3)) (-5 *4 (-644 (-411 *6))) (-4 *7 (-661 *6)) + (-4 *3 (-661 (-411 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1240 *4 *5 *3)) - (-4 *3 (-1245 *5))))) + (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1241 *4 *5 *3)) + (-4 *3 (-1246 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-374 *4)))) + (-12 (-4 *3 (-561)) (-4 *4 (-995 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-375 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-4 *2 (-374 *4)) - (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-374 *5)))) + (-12 (-4 *4 (-561)) (-4 *5 (-995 *4)) (-4 *2 (-375 *4)) + (-5 *1 (-507 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) (-5 *2 (-691 *4)) - (-5 *1 (-695 *4 *5)))) + (-12 (-5 *3 (-692 *5)) (-4 *5 (-995 *4)) (-4 *4 (-561)) (-5 *2 (-692 *4)) + (-5 *1 (-696 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-1240 *3 *4 *2)) - (-4 *2 (-1245 *4))))) + (-12 (-4 *3 (-561)) (-4 *4 (-995 *3)) (-5 *1 (-1241 *3 *4 *2)) + (-4 *2 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-374 *4)))) + (-12 (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-375 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-506 *2 *4 *5 *3)) - (-4 *5 (-374 *2)) (-4 *3 (-374 *4)))) + (-12 (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-507 *2 *4 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-691 *4)) (-4 *4 (-994 *2)) (-4 *2 (-560)) - (-5 *1 (-695 *2 *4)))) + (-12 (-5 *3 (-692 *4)) (-4 *4 (-995 *2)) (-4 *2 (-561)) + (-5 *1 (-696 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-1240 *2 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) + (-12 (-4 *4 (-995 *2)) (-4 *2 (-561)) (-5 *1 (-1241 *2 *4 *3)) + (-4 *3 (-1246 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-774)) (-5 *1 (-784 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-560)) (-4 *3 (-1052)) - (-4 *2 (-794)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1174 *3)) (-4 *3 (-1052)))) + (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) (-4 *3 (-1053)) + (-4 *2 (-795)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1175 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-974)) (-4 *2 (-131)) (-5 *1 (-1182 *3)) (-4 *3 (-560)) - (-4 *3 (-1052)))) + (-12 (-5 *2 (-975)) (-4 *2 (-131)) (-5 *1 (-1183 *3)) (-4 *3 (-561)) + (-4 *3 (-1053)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1238 *4 *3)) (-14 *4 (-1180)) (-4 *3 (-1052))))) -(((*1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *2 (-1097 *3)) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1239 *4 *3)) (-14 *4 (-1181)) (-4 *3 (-1053))))) +(((*1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *2 (-1098 *3)) (-5 *1 (-1062 *2 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-1220)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1220))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |contp| (-549)) - (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) + (-2 (|:| |contp| (-550)) + (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) + (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |contp| (-549)) - (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) - (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) + (-2 (|:| |contp| (-550)) + (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) + (-5 *1 (-1236 *3)) (-4 *3 (-1246 (-550)))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1245 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) + (-12 (-4 *4 (-353)) (-5 *2 (-409 *3)) (-5 *1 (-217 *4 *3)) + (-4 *3 (-1246 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-644 (-774))) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-644 (-774))) (-5 *5 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3) - (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549)))))) - ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-1011 *3)) (-4 *3 (-1246 (-411 (-550)))))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1236 *3)) (-4 *3 (-1246 (-550)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-48))) (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1245 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) + (-12 (-5 *4 (-644 (-48))) (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1246 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-953 (-48) *6 *5)))) + (-12 (-5 *4 (-644 (-48))) (-4 *5 (-853)) (-4 *6 (-796)) (-5 *2 (-409 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-954 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) - (-4 *7 (-953 (-48) *6 *5)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1174 *7)))) + (-12 (-5 *4 (-644 (-48))) (-4 *5 (-853)) (-4 *6 (-796)) + (-4 *7 (-954 (-48) *6 *5)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1175 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1245 (-168 *4))))) + (-12 (-4 *4 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1246 (-169 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) - (-4 *3 (-1245 (-168 *4))))) + (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-1246 (-169 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) - (-4 *3 (-1245 (-168 *4))))) + (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-1246 (-169 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1245 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) + (-12 (-4 *4 (-353)) (-5 *2 (-409 *3)) (-5 *1 (-217 *4 *3)) + (-4 *3 (-1246 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-644 (-774))) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-644 (-774))) (-5 *5 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549))))) + (-12 (-5 *4 (-774)) (-5 *2 (-409 *3)) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550))))) ((*1 *2 *3) - (-12 (-5 *2 (-408 (-168 (-549)))) (-5 *1 (-449)) (-5 *3 (-168 (-549))))) + (-12 (-5 *2 (-409 (-169 (-550)))) (-5 *1 (-450)) (-5 *3 (-169 (-550))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) - (-4 *5 (-795)) (-4 *7 (-560)) (-5 *2 (-408 *3)) - (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-560)) (-4 *3 (-953 *7 *5 *4)))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181)))))) + (-4 *5 (-796)) (-4 *7 (-561)) (-5 *2 (-409 *3)) + (-5 *1 (-460 *4 *5 *6 *7 *3)) (-4 *6 (-561)) (-4 *3 (-954 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-408 (-1174 *4))) (-5 *1 (-461 *4)) - (-5 *3 (-1174 *4)))) + (-12 (-4 *4 (-309)) (-5 *2 (-409 (-1175 *4))) (-5 *1 (-462 *4)) + (-5 *3 (-1175 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-4 *7 (-13 (-365) (-147) (-726 *5 *6))) (-5 *2 (-408 *3)) - (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7)))) + (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) + (-4 *7 (-13 (-366) (-147) (-727 *5 *6))) (-5 *2 (-409 *3)) + (-5 *1 (-498 *5 *6 *7 *3)) (-4 *3 (-1246 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) - (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) (-5 *1 (-543 *5 *6 *7 *3)) - (-4 *3 (-953 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-409 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-309) (-147))) + (-4 *5 (-853)) (-4 *6 (-796)) (-5 *2 (-409 *3)) (-5 *1 (-544 *5 *6 *7 *3)) + (-4 *3 (-954 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) - (-4 *5 (-852)) (-4 *6 (-795)) (-4 *8 (-953 *7 *6 *5)) - (-5 *2 (-408 (-1174 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) + (-12 (-5 *4 (-1 (-409 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-309) (-147))) + (-4 *5 (-853)) (-4 *6 (-796)) (-4 *8 (-954 *7 *6 *5)) + (-5 *2 (-409 (-1175 *8))) (-5 *1 (-544 *5 *6 *7 *8)) (-5 *3 (-1175 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-563 *3)) (-4 *3 (-549)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-643 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *6 (-1245 *5)) (-5 *2 (-643 (-657 (-410 *6)))) (-5 *1 (-661 *5 *6)) - (-5 *3 (-657 (-410 *6))))) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *6 (-1246 *5)) (-5 *2 (-644 (-658 (-411 *6)))) (-5 *1 (-662 *5 *6)) + (-5 *3 (-658 (-411 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) - (-5 *3 (-657 (-410 *5))))) + (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *5 (-1246 *4)) (-5 *2 (-644 (-658 (-411 *5)))) (-5 *1 (-662 *4 *5)) + (-5 *3 (-658 (-411 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-674 *4))) - (-5 *1 (-674 *4)))) + (-12 (-5 *3 (-822 *4)) (-4 *4 (-853)) (-5 *2 (-644 (-675 *4))) + (-5 *1 (-675 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-549)) (-5 *2 (-643 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1245 *4)))) + (-12 (-5 *4 (-550)) (-5 *2 (-644 *3)) (-5 *1 (-699 *3)) (-4 *3 (-1246 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-5 *2 (-408 *3)) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) + (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-353)) (-5 *2 (-409 *3)) + (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-954 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-4 *7 (-953 *6 *5 *4)) - (-5 *2 (-408 (-1174 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-353)) (-4 *7 (-954 *6 *5 *4)) + (-5 *2 (-409 (-1175 *7))) (-5 *1 (-701 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-795)) + (-12 (-4 *4 (-796)) (-4 *5 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) - (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-732 *4 *5 *6 *3)) - (-4 *3 (-953 (-949 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) - (-4 *6 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-734 *4 *5 *6 *3)) - (-4 *3 (-953 (-410 (-949 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-13 (-308) (-147))) - (-5 *2 (-408 *3)) (-5 *1 (-735 *4 *5 *6 *3)) - (-4 *3 (-953 (-410 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) - (-5 *2 (-408 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-743 *4 *5 *6 *7)) - (-5 *3 (-1174 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-408 *3)) (-5 *1 (-1045 *3)) - (-4 *3 (-1245 (-410 (-949 (-549))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 (-549)))) - (-4 *5 (-13 (-365) (-147) (-726 (-410 (-549)) *4))) (-5 *2 (-408 *3)) - (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 (-949 (-549))))) - (-4 *5 (-13 (-365) (-147) (-726 (-410 (-949 (-549))) *4))) (-5 *2 (-408 *3)) - (-5 *1 (-1084 *4 *5 *3)) (-4 *3 (-1245 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) - (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) - (-5 *3 (-1174 (-410 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224)))) - ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-873 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-14 *2 (-549)))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ "failed") (-1181)))))) + (-4 *6 (-309)) (-5 *2 (-409 *3)) (-5 *1 (-733 *4 *5 *6 *3)) + (-4 *3 (-954 (-950 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-796)) (-4 *5 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) + (-4 *6 (-561)) (-5 *2 (-409 *3)) (-5 *1 (-735 *4 *5 *6 *3)) + (-4 *3 (-954 (-411 (-950 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-13 (-309) (-147))) + (-5 *2 (-409 *3)) (-5 *1 (-736 *4 *5 *6 *3)) + (-4 *3 (-954 (-411 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-13 (-309) (-147))) + (-5 *2 (-409 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-954 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-853)) (-4 *5 (-796)) (-4 *6 (-13 (-309) (-147))) + (-4 *7 (-954 *6 *5 *4)) (-5 *2 (-409 (-1175 *7))) (-5 *1 (-744 *4 *5 *6 *7)) + (-5 *3 (-1175 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-1011 *3)) (-4 *3 (-1246 (-411 (-550)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-1046 *3)) + (-4 *3 (-1246 (-411 (-950 (-550))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1246 (-411 (-550)))) + (-4 *5 (-13 (-366) (-147) (-727 (-411 (-550)) *4))) (-5 *2 (-409 *3)) + (-5 *1 (-1084 *4 *5 *3)) (-4 *3 (-1246 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1246 (-411 (-950 (-550))))) + (-4 *5 (-13 (-366) (-147) (-727 (-411 (-950 (-550))) *4))) (-5 *2 (-409 *3)) + (-5 *1 (-1085 *4 *5 *3)) (-4 *3 (-1246 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-456)) (-4 *7 (-954 *6 *4 *5)) + (-5 *2 (-409 (-1175 (-411 *7)))) (-5 *1 (-1177 *4 *5 *6 *7)) + (-5 *3 (-1175 (-411 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1225)))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1236 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1263 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-550)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-874 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-14 *2 (-550)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-874 *3 *4)) (-4 *4 (-872 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-549)) (-5 *1 (-874 *2 *3)) (-4 *3 (-872 *2)))) + (-12 (-5 *2 (-550)) (-14 *3 *2) (-5 *1 (-875 *3 *4)) (-4 *4 (-873 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-550)) (-5 *1 (-875 *2 *3)) (-4 *3 (-873 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-549)) (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) - (-4 *4 (-1262 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1233 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1262 *2))))) + (-12 (-5 *2 (-550)) (-4 *1 (-1234 *3 *4)) (-4 *3 (-1053)) + (-4 *4 (-1263 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1234 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-1263 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + (-12 (-5 *4 (-774)) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-51)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *5 *3)))) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-773)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *5 *6)))) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-774)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-550))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *6 *3)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-773))) - (-4 *7 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-550))) (-5 *4 (-295 *7)) (-5 *5 (-1237 (-774))) + (-4 *7 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-773))) - (-4 *3 (-13 (-27) (-1205) (-424 *7))) - (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) - (-5 *1 (-462 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) + (-12 (-5 *4 (-1181)) (-5 *5 (-295 *3)) (-5 *6 (-1237 (-774))) + (-4 *3 (-13 (-27) (-1206) (-425 *7))) + (-4 *7 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-51)) + (-5 *1 (-463 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1263 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) + (|partial| -12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1263 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) - (-5 *2 (-410 (-949 *4))))) + (-12 (-5 *3 (-550)) (-4 *1 (-1232 *4)) (-4 *4 (-1053)) (-4 *4 (-561)) + (-5 *2 (-411 (-950 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) - (-5 *2 (-410 (-949 *4)))))) + (-12 (-5 *3 (-550)) (-4 *1 (-1232 *4)) (-4 *4 (-1053)) (-4 *4 (-561)) + (-5 *2 (-411 (-950 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-128))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) - ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226))) - ((*1 *1 *1 *1) (-5 *1 (-1227))) ((*1 *1 *1 *1) (-5 *1 (-1228)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1188 *2)) (-14 *2 (-923)))) + ((*1 *1 *1 *1) (-5 *1 (-1226))) ((*1 *1 *1 *1) (-5 *1 (-1227))) + ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))) (((*1 *1 *1 *1) (-5 *1 (-128))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) - ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226))) - ((*1 *1 *1 *1) (-5 *1 (-1227))) ((*1 *1 *1 *1) (-5 *1 (-1228)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1188 *2)) (-14 *2 (-923)))) + ((*1 *1 *1 *1) (-5 *1 (-1226))) ((*1 *1 *1 *1) (-5 *1 (-1227))) + ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128))) ((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) - ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-4 *1 (-728))) ((*1 *1) (-5 *1 (-1180))) - ((*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-922)))) - ((*1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) ((*1 *1) (-5 *1 (-1225))) - ((*1 *1) (-5 *1 (-1226))) ((*1 *1) (-5 *1 (-1227))) ((*1 *1) (-5 *1 (-1228)))) -(((*1 *2 *3) (-12 (-5 *3 (-168 (-549))) (-5 *2 (-112)) (-5 *1 (-449)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) + ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) ((*1 *1) (-5 *1 (-553))) + ((*1 *1) (-5 *1 (-554))) ((*1 *1) (-4 *1 (-729))) ((*1 *1) (-5 *1 (-1181))) + ((*1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-923)))) + ((*1 *1) (-12 (-5 *1 (-1188 *2)) (-14 *2 (-923)))) ((*1 *1) (-5 *1 (-1226))) + ((*1 *1) (-5 *1 (-1227))) ((*1 *1) (-5 *1 (-1228))) ((*1 *1) (-5 *1 (-1229)))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-550))) (-5 *2 (-112)) (-5 *1 (-450)))) ((*1 *2 *3) (-12 (-5 *3 - (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) - (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-965 *3)) (-4 *3 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-1224)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1222))))) + (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) + (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-112)) + (-5 *1 (-509 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-966 *3)) (-4 *3 (-549)))) + ((*1 *2 *1) (-12 (-4 *1 (-1225)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1223))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180))))) - (-5 *1 (-1222))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) + (-12 (-5 *2 (-2 (|:| -3650 (-644 (-1181))) (|:| -3651 (-644 (-1181))))) + (-5 *1 (-1223))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1276)) (-5 *1 (-1223)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1276)) (-5 *1 (-1223))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-774)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-852)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-853)) (-4 *3 (-1105))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1221 *2)) - (-4 *2 (-1104)))) + (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1222 *2)) + (-4 *2 (-1105)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-852)) (-5 *1 (-1221 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-853)) (-5 *1 (-1222 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-774)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1105)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1104)) (-5 *2 (-112)) - (-5 *1 (-1221 *3))))) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1105)) (-5 *2 (-112)) + (-5 *1 (-1222 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3649 (-643 *3)) (|:| -3648 (-643 *3)))) - (-5 *1 (-1221 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-2 (|:| -3651 (-644 *3)) (|:| -3650 (-644 *3)))) + (-5 *1 (-1222 *3)) (-4 *3 (-1105))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4)))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1105)) (-5 *2 (-1276)) (-5 *1 (-1222 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1105)) (-5 *2 (-1276)) (-5 *1 (-1222 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-549)) (-4 *5 (-352)) (-5 *2 (-408 (-1174 (-1174 *5)))) - (-5 *1 (-1218 *5)) (-5 *3 (-1174 (-1174 *5)))))) + (-12 (-5 *4 (-550)) (-4 *5 (-353)) (-5 *2 (-409 (-1175 (-1175 *5)))) + (-5 *1 (-1219 *5)) (-5 *3 (-1175 (-1175 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) - (-5 *3 (-1174 (-1174 *4)))))) + (-12 (-4 *4 (-353)) (-5 *2 (-409 (-1175 (-1175 *4)))) (-5 *1 (-1219 *4)) + (-5 *3 (-1175 (-1175 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) - (-5 *3 (-1174 (-1174 *4)))))) + (-12 (-4 *4 (-353)) (-5 *2 (-409 (-1175 (-1175 *4)))) (-5 *1 (-1219 *4)) + (-5 *3 (-1175 (-1175 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) - (-4 *3 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *3)) + (-4 *3 (-1220)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-677 *3)) (-4 *3 (-1220)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1214 *4 *5 *3 *2)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *3 (-852)) (-4 *2 (-1068 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-1217 *2)) (-4 *2 (-1219))))) + (|partial| -12 (-4 *1 (-1215 *4 *5 *3 *2)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *3 (-853)) (-4 *2 (-1069 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-1218 *2)) (-4 *2 (-1220))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-643 (-643 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 (-946 *4))) - (-5 *1 (-1216)) (-5 *3 (-946 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-1216))))) + (-12 (-5 *5 (-644 (-644 (-226)))) (-5 *4 (-226)) (-5 *2 (-644 (-947 *4))) + (-5 *1 (-1217)) (-5 *3 (-947 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-644 (-644 (-226)))) (-5 *1 (-1217))))) (((*1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1052)) (-4 *4 (-1219)))) + (-12 (-5 *2 (-923)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1053)) (-4 *4 (-1220)))) ((*1 *1 *2) - (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) + (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *5 (-239 (-4391 *3) (-774))) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) - (-2 (|:| -2563 *2) (|:| -2564 *5)))) - (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-852)) - (-4 *7 (-953 *4 *5 (-866 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216))))) + (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *5)) + (-2 (|:| -2565 *2) (|:| -2566 *5)))) + (-5 *1 (-465 *3 *4 *2 *5 *6 *7)) (-4 *2 (-853)) + (-4 *7 (-954 *4 *5 (-867 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-471)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-983 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-946 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + (-12 (-5 *3 (-947 (-226))) (-5 *4 (-877)) (-5 *2 (-1276)) (-5 *1 (-472)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1053)) (-4 *1 (-984 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-947 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)) (-5 *3 (-225))))) + (-12 (-5 *2 (-947 (-226))) (-5 *1 (-1217)) (-5 *3 (-226))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-549)) (-5 *2 (-1215 *3)) (-5 *1 (-792 *3)) - (-4 *3 (-977)))) + (-12 (-5 *4 (-226)) (-5 *5 (-550)) (-5 *2 (-1216 *3)) (-5 *1 (-793 *3)) + (-4 *3 (-978)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-112)) (-5 *1 (-1215 *2)) - (-4 *2 (-977))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) -(((*1 *2 *1) - (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) -(((*1 *2 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-977))))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *4 (-112)) (-5 *1 (-1216 *2)) + (-4 *2 (-978))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-978))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-978))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-978))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-1216 *3)) (-4 *3 (-978))))) +(((*1 *2 *1) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-978))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *9)))) (-5 *3 (-643 *9)) - (-4 *1 (-1214 *6 *7 *8 *9)))) + (-4 *9 (-1069 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-796)) (-4 *8 (-853)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3750 (-644 *9)))) (-5 *3 (-644 *9)) + (-4 *1 (-1215 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1068 *5 *6 *7)) - (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *8)))) (-5 *3 (-643 *8)) - (-4 *1 (-1214 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1069 *5 *6 *7)) + (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3750 (-644 *8)))) (-5 *3 (-644 *8)) + (-4 *1 (-1215 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *6))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-2 (|:| -4293 (-643 *6)) (|:| -1870 (-643 *6))))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-2 (|:| -4295 (-644 *6)) (|:| -1872 (-644 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1214 *5 *6 *7 *3)) (-4 *5 (-560)) - (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112))))) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1215 *5 *6 *7 *3)) (-4 *5 (-561)) + (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1069 *4 *5 *6)) (-4 *4 (-1053)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1215 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-643 *7))) (-4 *1 (-1214 *4 *5 *6 *7)) - (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1215 *4 *5 *6 *7)) + (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) - (-4 *1 (-1214 *5 *6 *7 *8)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-1068 *5 *6 *7))))) + (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) + (-4 *1 (-1215 *5 *6 *7 *8)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-1069 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *5 (-1068 *2 *3 *4))))) + (-12 (-4 *1 (-1215 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *5 (-1069 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *10)) - (-5 *1 (-626 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1074 *5 *6 *7 *8)) - (-4 *10 (-1112 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 *10)) + (-5 *1 (-627 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1075 *5 *6 *7 *8)) + (-4 *10 (-1113 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6)))) + (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) + (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-631 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-643 (-1180))) - (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) - (-5 *1 (-630 *5 *6)))) + (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) + (-14 *6 (-644 (-1181))) + (-5 *2 (-644 (-1150 *5 (-535 (-867 *6)) (-867 *6) (-783 *5 (-867 *6))))) + (-5 *1 (-631 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) - (-5 *1 (-1030 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *8))) + (-5 *1 (-1031 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) - (-5 *1 (-1030 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *8))) + (-5 *1 (-1031 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1049 *5 *6)))) + (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) + (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-1050 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *1)) - (-4 *1 (-1074 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 *1)) + (-4 *1 (-1075 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) - (-5 *1 (-1149 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *8))) + (-5 *1 (-1150 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) - (-5 *1 (-1149 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *8))) + (-5 *1 (-1150 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1214 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1215 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-643 (-2 (|:| -4293 *1) (|:| -1870 (-643 *7))))) (-5 *3 (-643 *7)) - (-4 *1 (-1214 *4 *5 *6 *7))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| -4295 *1) (|:| -1872 (-644 *7))))) (-5 *3 (-644 *7)) + (-4 *1 (-1215 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5))))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1215 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-4 *2 (-1069 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-773))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) + (-12 (-4 *1 (-1215 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-4 *5 (-371)) (-5 *2 (-774))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) + (-12 (-4 *2 (-1053)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1181))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-643 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-922)) (-14 *5 (-996 *4 *2)))) + (-12 (-5 *3 (-644 (-923))) (-4 *2 (-366)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-923)) (-14 *5 (-997 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) - (-14 *4 (-643 (-1180))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) + (-14 *4 (-644 (-1181))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1105)) (-4 *2 (-1053)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-728)))) + (-12 (-5 *3 (-550)) (-4 *2 (-561)) (-5 *1 (-626 *2 *4)) (-4 *4 (-1246 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-711 *2)) (-4 *2 (-1053)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1053)) (-5 *1 (-738 *2 *3)) (-4 *3 (-729)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) - (-4 *4 (-1052)) (-4 *5 (-852)))) + (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-774))) (-4 *1 (-743 *4 *5)) + (-4 *4 (-1053)) (-4 *5 (-853)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *2)) (-4 *4 (-1053)) (-4 *2 (-853)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-855 *2)) (-4 *2 (-1053)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) - (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-774))) (-4 *1 (-954 *4 *5 *6)) + (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) - (-4 *2 (-852)))) + (-12 (-5 *3 (-774)) (-4 *1 (-954 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-796)) + (-4 *2 (-853)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-4 *2 (-953 *4 (-534 *5) *5)) (-5 *1 (-1129 *4 *5 *2)) - (-4 *4 (-1052)) (-4 *5 (-852)))) + (-12 (-5 *3 (-774)) (-4 *2 (-954 *4 (-535 *5) *5)) (-5 *1 (-1130 *4 *5 *2)) + (-4 *4 (-1053)) (-4 *5 (-853)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-949 *4)) (-5 *1 (-1212 *4)) (-4 *4 (-1052))))) + (-12 (-5 *3 (-774)) (-5 *2 (-950 *4)) (-5 *1 (-1213 *4)) (-4 *4 (-1053))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1129 *4 *3 *5))) (-4 *4 (-38 (-410 (-549)))) - (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *1 (-1129 *4 *3 *5)) - (-4 *5 (-953 *4 (-534 *3) *3)))) + (-12 (-5 *2 (-1 (-1130 *4 *3 *5))) (-4 *4 (-38 (-411 (-550)))) + (-4 *4 (-1053)) (-4 *3 (-853)) (-5 *1 (-1130 *4 *3 *5)) + (-4 *5 (-954 *4 (-535 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1180)) (-5 *1 (-1212 *4)) - (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052))))) + (-12 (-5 *2 (-1 (-1213 *4))) (-5 *3 (-1181)) (-5 *1 (-1213 *4)) + (-4 *4 (-38 (-411 (-550)))) (-4 *4 (-1053))))) (((*1 *2 *2) - (-12 (-4 *3 (-616 (-893 *3))) (-4 *3 (-889 *3)) (-4 *3 (-455)) - (-5 *1 (-1211 *3 *2)) (-4 *2 (-616 (-893 *3))) (-4 *2 (-889 *3)) - (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-617 (-894 *3))) (-4 *3 (-890 *3)) (-4 *3 (-456)) + (-5 *1 (-1212 *3 *2)) (-4 *2 (-617 (-894 *3))) (-4 *2 (-890 *3)) + (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-852)) - (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-549))) (-5 *1 (-1122)))) + (-12 (-4 *2 (-147)) (-4 *2 (-309)) (-4 *2 (-456)) (-4 *3 (-853)) + (-4 *4 (-796)) (-5 *1 (-990 *2 *3 *4 *5)) (-4 *5 (-954 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-550))) (-5 *1 (-1123)))) ((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) + (-12 (-4 *3 (-456)) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-425 *3) (-1206)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) + (-12 (-4 *3 (-561)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1211 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) + (-12 (-4 *3 (-561)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1211 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-168 (-315 *4))) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-169 (-316 *4))) + (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-168 *3)) - (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4)))))) + (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-169 *3)) + (-5 *1 (-1210 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-112)) - (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-112)) + (-5 *1 (-1210 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-316 *4)) + (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-316 *4)) + (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 (-169 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) + (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 (-169 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) + (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 (-169 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *4 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-1210 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) + (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 (-169 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *1 (-189 *4 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1210 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-1210 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1) (-4 *1 (-1208)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1) (-4 *1 (-1209)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-333 *2)) (-4 *2 (-853)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1) (-4 *1 (-1208)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1) (-4 *1 (-1209)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1) (-4 *1 (-1208)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1) (-4 *1 (-1209)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1) (-4 *1 (-1208)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1) (-4 *1 (-1209)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1) (-4 *1 (-1208)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1) (-4 *1 (-1209)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-333 *2)) (-4 *2 (-853)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) - ((*1 *1 *1) (-4 *1 (-1208)))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1206 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3)))) + ((*1 *1 *1) (-4 *1 (-1209)))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-1207 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-643 (-1206 *2))) (-5 *1 (-1206 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104))))) + (-12 (-5 *3 (-644 (-1207 *2))) (-5 *1 (-1207 *2)) (-4 *2 (-1105))))) +(((*1 *1 *1) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-1105))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-644 (-1207 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-1105))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-644 (-1207 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1105))))) (((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) + (-12 (-4 *2 (-13 (-425 *3) (-1006))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) ((*1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1205)))) -(((*1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1203))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-1202 *4)) (-4 *4 (-1052))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-549)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1) (-5 *1 (-481))) ((*1 *1) (-4 *1 (-1206)))) +(((*1 *2) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-1204))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163)) (-5 *2 (-550)) (-5 *1 (-1203 *4)) (-4 *4 (-1053))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1203 *3)) (-4 *3 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-851)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) - (-5 *2 (-549)))) + (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) + (-5 *2 (-550)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-560) (-1041 *2) (-641 *2) (-455))) - (-5 *2 (-549)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + (|partial| -12 (-4 *4 (-13 (-561) (-1042 *2) (-642 *2) (-456))) + (-5 *2 (-550)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) - (-5 *1 (-1120 *6 *3)))) + (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-845 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-561) (-1042 *2) (-642 *2) (-456))) (-5 *2 (-550)) + (-5 *1 (-1121 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-1162)) - (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) - (-5 *1 (-1120 *6 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))))) + (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-1163)) + (-4 *6 (-13 (-561) (-1042 *2) (-642 *2) (-456))) (-5 *2 (-550)) + (-5 *1 (-1121 *6 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-549)) - (-5 *1 (-1121 *4)))) + (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-456)) (-5 *2 (-550)) + (-5 *1 (-1122 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 (-410 (-949 *6)))) - (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) + (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-845 (-411 (-950 *6)))) + (-5 *3 (-411 (-950 *6))) (-4 *6 (-456)) (-5 *2 (-550)) (-5 *1 (-1122 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1180)) (-5 *5 (-1162)) - (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1104)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-865))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) + (|partial| -12 (-5 *3 (-411 (-950 *6))) (-5 *4 (-1181)) (-5 *5 (-1163)) + (-4 *6 (-456)) (-5 *2 (-550)) (-5 *1 (-1122 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-550)) (-5 *1 (-1203 *3)) (-4 *3 (-1053))))) +(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1202)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1202))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-1202))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1105)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-866) (-866))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-866) (-644 (-866)))) (-5 *1 (-113)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-866) (-644 (-866)))) (-5 *1 (-113)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1276)) (-5 *1 (-215 *3)) (-4 *3 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) - (-15 -2143 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-396)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-396)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505)))) - ((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1199)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1199))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 (*2 $)) + (-15 -2145 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-397)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-397)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-506)))) + ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-713)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1200)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1200))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-773)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)))) - ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1104)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392)))) - ((*1 *1) (-5 *1 (-396))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-774)) (-4 *3 (-1220)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)))) + ((*1 *1) (-5 *1 (-172))) + ((*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1105)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-393)))) + ((*1 *1) (-5 *1 (-397))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) ((*1 *1) - (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) - (-4 *4 (-668 *3)))) - ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) - ((*1 *1 *2) (-12 (-5 *1 (-1145 *3 *2)) (-14 *3 (-773)) (-4 *2 (-1052)))) - ((*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) - ((*1 *1 *1) (-5 *1 (-1180))) ((*1 *1) (-5 *1 (-1180))) - ((*1 *1) (-5 *1 (-1199)))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) -(((*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1198))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-1198))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-852)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) + (-12 (-4 *3 (-1105)) (-5 *1 (-889 *2 *3 *4)) (-4 *2 (-1105)) + (-4 *4 (-669 *3)))) + ((*1 *1) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) + ((*1 *1 *2) (-12 (-5 *1 (-1146 *3 *2)) (-14 *3 (-774)) (-4 *2 (-1053)))) + ((*1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053)))) + ((*1 *1 *1) (-5 *1 (-1181))) ((*1 *1) (-5 *1 (-1181))) + ((*1 *1) (-5 *1 (-1200)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1200))))) +(((*1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-51)) (-5 *1 (-1199))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-853)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-853)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-284 *2)) (-4 *2 (-1220)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4292 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2254 + (|:| -4294 + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -3811,7978 +3811,7978 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1607 + (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-563)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-697 *2)) (-4 *2 (-1104)))) + (-5 *1 (-564)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-774)) (-4 *1 (-698 *2)) (-4 *2 (-1105)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4292 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -2254 - (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) - (|:| |expense| (-380)) (|:| |accuracy| (-380)) - (|:| |intermediateResults| (-380)))))) - (-5 *1 (-805)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1104)) (-5 *1 (-1197 *3 *2)) (-4 *3 (-1104))))) + (|:| -4294 + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (|:| -2256 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))))) + (-5 *1 (-806)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1105)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-1105))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *2) - (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *2) - (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *2 *3) - (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) - (-4 *5 (-1104))))) + (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1198 *4 *5)) (-4 *4 (-1105)) + (-4 *5 (-1105))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) - (-4 *5 (-1104))))) + (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1198 *4 *5)) (-4 *4 (-1105)) + (-4 *5 (-1105))))) (((*1 *2) - (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-1276)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-2 (|:| -4292 *3) (|:| -2254 *4)))) (-4 *3 (-1104)) - (-4 *4 (-1104)) (-4 *1 (-1196 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1194 *2)) (-4 *2 (-365))))) + (-12 (-5 *2 (-644 (-2 (|:| -4294 *3) (|:| -2256 *4)))) (-4 *3 (-1105)) + (-4 *4 (-1105)) (-4 *1 (-1197 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-1195 *2)) (-4 *2 (-366))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-1174 *3)) (-5 *1 (-1194 *3)) (-4 *3 (-365))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-1194 *2)) (-4 *2 (-365))))) + (-12 (-5 *4 (-923)) (-5 *2 (-1175 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-366))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1195 *2)) (-4 *2 (-366))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-643 (-643 *3))))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-643 (-643 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-643 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-1193 *3))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-644 (-644 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-1194 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-852)) + (-12 (-4 *4 (-853)) (-5 *2 - (-2 (|:| |f1| (-643 *4)) (|:| |f2| (-643 (-643 (-643 *4)))) - (|:| |f3| (-643 (-643 *4))) (|:| |f4| (-643 (-643 (-643 *4)))))) - (-5 *1 (-1191 *4)) (-5 *3 (-643 (-643 (-643 *4))))))) + (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) + (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) + (-5 *1 (-1192 *4)) (-5 *3 (-644 (-644 (-644 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-852)) (-5 *3 (-643 *6)) (-5 *5 (-643 *3)) + (-12 (-4 *6 (-853)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-643 *5)) (|:| |f3| *5) (|:| |f4| (-643 *5)))) - (-5 *1 (-1191 *6)) (-5 *4 (-643 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) (|:| |f4| (-644 *5)))) + (-5 *1 (-1192 *6)) (-5 *4 (-644 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-366)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-525 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) - (-4 *8 (-374 *7)) (-4 *9 (-374 *7)))) + (|partial| -12 (-4 *4 (-561)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-995 *4)) (-4 *2 (-689 *7 *8 *9)) + (-5 *1 (-526 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-689 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)) (-4 *2 (-365)))) + (|partial| -12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-366)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-691 *2)) (-4 *2 (-365)) (-4 *2 (-1052)))) + (|partial| -12 (-4 *3 (-366)) (-4 *3 (-173)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-692 *2)) (-4 *2 (-366)) (-4 *2 (-1053)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-1191 *3))))) + (|partial| -12 (-4 *1 (-1127 *2 *3 *4 *5)) (-4 *3 (-1053)) + (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-366)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-1192 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)) - (-5 *3 (-643 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-852)) (-5 *1 (-1191 *3))))) + (-12 (-4 *4 (-853)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1192 *4)) + (-5 *3 (-644 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-853)) (-5 *1 (-1192 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-852)) (-5 *2 (-1193 (-643 *4))) (-5 *1 (-1191 *4)) - (-5 *3 (-643 *4))))) + (-12 (-4 *4 (-853)) (-5 *2 (-1194 (-644 *4))) (-5 *1 (-1192 *4)) + (-5 *3 (-644 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 (-643 *4)))) (-5 *1 (-1191 *4)) - (-5 *3 (-643 (-643 *4)))))) + (-12 (-4 *4 (-853)) (-5 *2 (-644 (-644 (-644 *4)))) (-5 *1 (-1192 *4)) + (-5 *3 (-644 (-644 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1193 (-643 *4))) (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) - (-5 *1 (-1191 *4))))) + (-12 (-5 *3 (-1194 (-644 *4))) (-4 *4 (-853)) (-5 *2 (-644 (-644 *4))) + (-5 *1 (-1192 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) - (-5 *1 (-1191 *4)) (-4 *4 (-852))))) + (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) + (-5 *1 (-1192 *4)) (-4 *4 (-853))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) (-4 *4 (-852)) - (-5 *1 (-1191 *4))))) + (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-4 *4 (-853)) + (-5 *1 (-1192 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-643 *4)) (-4 *4 (-852)) - (-5 *1 (-1191 *4))))) + (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-853)) + (-5 *1 (-1192 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-643 *5)) (-4 *5 (-852)) (-5 *1 (-1191 *5))))) + (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-644 *5)) (-4 *5 (-853)) (-5 *1 (-1192 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-852)) (-5 *4 (-643 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-643 *4)))) - (-5 *1 (-1191 *6)) (-5 *5 (-643 *4))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1190))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1190))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) - (-5 *2 (-643 (-643 (-949 *5)))) (-5 *1 (-1189 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-410 (-949 (-549))))) - (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-850) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-294 (-410 (-949 (-549)))))) - (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-850) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 (-294 (-949 *4)))) - (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-410 (-949 (-549))))) (-5 *2 (-643 (-294 (-949 *4)))) - (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-853)) (-5 *4 (-644 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) + (-5 *1 (-1192 *6)) (-5 *5 (-644 *4))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1191))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1191))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1191))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1191))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) + (-5 *2 (-644 (-644 (-950 *5)))) (-5 *1 (-1190 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-411 (-950 (-550))))) + (-5 *2 (-644 (-644 (-295 (-950 *4))))) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-851) (-366))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-411 (-950 (-550)))))) + (-5 *2 (-644 (-644 (-295 (-950 *4))))) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-851) (-366))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-411 (-950 (-550)))) (-5 *2 (-644 (-295 (-950 *4)))) + (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-411 (-950 (-550))))) (-5 *2 (-644 (-295 (-950 *4)))) + (-5 *1 (-383 *4)) (-4 *4 (-13 (-851) (-366))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1180)) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-4 *4 (-13 (-29 *6) (-1205) (-963))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) - (-5 *1 (-655 *6 *4 *3)) (-4 *3 (-660 *4)))) + (|partial| -12 (-5 *5 (-1181)) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-4 *4 (-13 (-29 *6) (-1206) (-964))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2192 (-644 *4)))) + (-5 *1 (-656 *6 *4 *3)) (-4 *3 (-661 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *2)) - (-4 *2 (-13 (-29 *6) (-1205) (-963))) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *1 (-655 *6 *2 *3)) (-4 *3 (-660 *2)))) + (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-644 *2)) + (-4 *2 (-13 (-29 *6) (-1206) (-964))) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *1 (-656 *6 *2 *3)) (-4 *3 (-661 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) - (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) + (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4428)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2192 (-644 *4)))) + (-5 *1 (-670 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) - (-4 *7 (-13 (-374 *5) (-10 -7 (-6 -4426)))) - (-5 *2 (-643 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2190 (-643 *7))))) - (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-643 *7)) (-4 *3 (-688 *5 *6 *7)))) + (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) + (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4428)))) + (-5 *2 (-644 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2192 (-644 *7))))) + (-5 *1 (-670 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-689 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) + (-12 (-5 *3 (-692 *5)) (-4 *5 (-366)) (-5 *2 - (-2 (|:| |particular| (-3 (-1269 *5) #2="failed")) - (|:| -2190 (-643 (-1269 *5))))) - (-5 *1 (-670 *5)) (-5 *4 (-1269 *5)))) + (-2 (|:| |particular| (-3 (-1270 *5) #2="failed")) + (|:| -2192 (-644 (-1270 *5))))) + (-5 *1 (-671 *5)) (-5 *4 (-1270 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) + (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-366)) (-5 *2 - (-2 (|:| |particular| (-3 (-1269 *5) #2#)) (|:| -2190 (-643 (-1269 *5))))) - (-5 *1 (-670 *5)) (-5 *4 (-1269 *5)))) + (-2 (|:| |particular| (-3 (-1270 *5) #2#)) (|:| -2192 (-644 (-1270 *5))))) + (-5 *1 (-671 *5)) (-5 *4 (-1270 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) + (-12 (-5 *3 (-692 *5)) (-4 *5 (-366)) (-5 *2 - (-643 - (-2 (|:| |particular| (-3 (-1269 *5) #2#)) - (|:| -2190 (-643 (-1269 *5)))))) - (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) + (-644 + (-2 (|:| |particular| (-3 (-1270 *5) #2#)) + (|:| -2192 (-644 (-1270 *5)))))) + (-5 *1 (-671 *5)) (-5 *4 (-644 (-1270 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) + (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-366)) (-5 *2 - (-643 - (-2 (|:| |particular| (-3 (-1269 *5) #2#)) - (|:| -2190 (-643 (-1269 *5)))))) - (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) + (-644 + (-2 (|:| |particular| (-3 (-1270 *5) #2#)) + (|:| -2192 (-644 (-1270 *5)))))) + (-5 *1 (-671 *5)) (-5 *4 (-644 (-1270 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5)))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-773 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-773 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1180)) - (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *1 (-774 *5 *2)) (-4 *2 (-13 (-29 *5) (-1205) (-963))))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1181)) + (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *1 (-775 *5 *2)) (-4 *2 (-13 (-29 *5) (-1206) (-964))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-691 *7)) (-5 *5 (-1180)) - (-4 *7 (-13 (-29 *6) (-1205) (-963))) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) - (-5 *1 (-804 *6 *7)) (-5 *4 (-1269 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-691 *6)) (-5 *4 (-1180)) - (-4 *6 (-13 (-29 *5) (-1205) (-963))) - (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-643 (-1269 *6))) (-5 *1 (-804 *5 *6)))) + (|partial| -12 (-5 *3 (-692 *7)) (-5 *5 (-1181)) + (-4 *7 (-13 (-29 *6) (-1206) (-964))) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-2 (|:| |particular| (-1270 *7)) (|:| -2192 (-644 (-1270 *7))))) + (-5 *1 (-805 *6 *7)) (-5 *4 (-1270 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-692 *6)) (-5 *4 (-1181)) + (-4 *6 (-13 (-29 *5) (-1206) (-964))) + (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-644 (-1270 *6))) (-5 *1 (-805 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) - (-4 *7 (-13 (-29 *6) (-1205) (-963))) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) - (-5 *1 (-804 *6 *7)))) + (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-113))) (-5 *5 (-1181)) + (-4 *7 (-13 (-29 *6) (-1206) (-964))) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-2 (|:| |particular| (-1270 *7)) (|:| -2192 (-644 (-1270 *7))))) + (-5 *1 (-805 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) - (-4 *7 (-13 (-29 *6) (-1205) (-963))) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) - (-5 *1 (-804 *6 *7)))) + (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-113))) (-5 *5 (-1181)) + (-4 *7 (-13 (-29 *6) (-1206) (-964))) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-2 (|:| |particular| (-1270 *7)) (|:| -2192 (-644 (-1270 *7))))) + (-5 *1 (-805 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-1180)) - (-4 *7 (-13 (-29 *6) (-1205) (-963))) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2190 (-643 *7))) *7 #3="failed")) - (-5 *1 (-804 *6 *7)))) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-113)) (-5 *5 (-1181)) + (-4 *7 (-13 (-29 *6) (-1206) (-964))) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2192 (-644 *7))) *7 #3="failed")) + (-5 *1 (-805 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1180)) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2190 (-643 *3))) *3 #3#)) - (-5 *1 (-804 *6 *3)) (-4 *3 (-13 (-29 *6) (-1205) (-963))))) + (-12 (-5 *4 (-113)) (-5 *5 (-1181)) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2192 (-644 *3))) *3 #3#)) + (-5 *1 (-805 *6 *3)) (-4 *3 (-13 (-29 *6) (-1206) (-964))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-113)) (-5 *5 (-643 *2)) - (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-5 *1 (-804 *6 *2)) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))))) + (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-113)) (-5 *5 (-644 *2)) + (-4 *2 (-13 (-29 *6) (-1206) (-964))) (-5 *1 (-805 *6 *2)) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-294 *2)) (-5 *5 (-643 *2)) - (-4 *2 (-13 (-29 *6) (-1205) (-963))) - (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *1 (-804 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1038)) (-5 *1 (-807)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) + (-4 *2 (-13 (-29 *6) (-1206) (-964))) + (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *1 (-805 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-811)) (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-810)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-811)) (-5 *4 (-1067)) (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) - (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-1270 (-316 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) + (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) - (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-1270 (-316 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) + (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) - (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-1270 (-316 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-316 (-381))) + (-5 *4 (-381)) (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) - (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-1270 (-316 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) + (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) - (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-1270 (-316 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-316 (-381))) + (-5 *4 (-381)) (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) - (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) + (-12 (-5 *3 (-1270 (-316 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-316 (-381))) + (-5 *4 (-381)) (-5 *2 (-1039)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2190 (-643 *6))) "failed") *7 *6)) - (-4 *6 (-365)) (-4 *7 (-660 *6)) - (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -2190 (-691 *6)))) - (-5 *1 (-815 *6 *7)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-1038)) (-5 *1 (-900)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2192 (-644 *6))) "failed") *7 *6)) + (-4 *6 (-366)) (-4 *7 (-661 *6)) + (-5 *2 (-2 (|:| |particular| (-1270 *6)) (|:| -2192 (-692 *6)))) + (-5 *1 (-816 *6 *7)) (-5 *3 (-692 *6)) (-5 *4 (-1270 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1039)) (-5 *1 (-901)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-901)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-900)))) + (-12 (-5 *3 (-902)) (-5 *4 (-1067)) (-5 *2 (-1039)) (-5 *1 (-901)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) - (-5 *8 (-225)) (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) - (-5 *1 (-900)))) + (-12 (-5 *4 (-774)) (-5 *6 (-644 (-644 (-316 *3)))) (-5 *7 (-1163)) + (-5 *8 (-226)) (-5 *5 (-644 (-316 (-381)))) (-5 *3 (-381)) (-5 *2 (-1039)) + (-5 *1 (-901)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) - (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) (-5 *1 (-900)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) - (-5 *4 (-380)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) - (-5 *4 (-380)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-315 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) - (-5 *3 (-294 (-315 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) - (-5 *3 (-294 (-315 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-315 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-1180))) - (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1134 *5)) - (-5 *3 (-643 (-294 (-315 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-1180))) (-4 *5 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5)) - (-5 *3 (-643 (-294 (-410 (-949 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-1189 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) - (-5 *1 (-1189 *4)) (-5 *3 (-643 (-294 (-410 (-949 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) - (-5 *1 (-1189 *5)) (-5 *3 (-410 (-949 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) - (-5 *1 (-1189 *5)) (-5 *3 (-294 (-410 (-949 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) - (-5 *3 (-410 (-949 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) - (-5 *3 (-294 (-410 (-949 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865))))) - ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-878)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-549)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1162)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-509)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-595)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-481)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1170)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-628)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1099)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1094)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1076)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-973)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1039)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-313)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-673)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1281)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-520)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-683)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1119)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-608)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1280)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-678)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-1185))) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-549) (-225) (-509) (-1162) (-1185))) (-5 *1 (-1185))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-281))) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3258)) (-5 *2 (-112)) (-5 *1 (-619)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2389)) (-5 *2 (-112)) (-5 *1 (-619)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3257)) (-5 *2 (-112)) (-5 *1 (-619)))) + (-12 (-5 *4 (-774)) (-5 *6 (-644 (-644 (-316 *3)))) (-5 *7 (-1163)) + (-5 *5 (-644 (-316 (-381)))) (-5 *3 (-381)) (-5 *2 (-1039)) (-5 *1 (-901)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-950 (-411 (-550)))) (-5 *2 (-644 (-381))) (-5 *1 (-1027)) + (-5 *4 (-381)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-950 (-550))) (-5 *2 (-644 (-381))) (-5 *1 (-1027)) + (-5 *4 (-381)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-316 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1135 *4)) + (-5 *3 (-295 (-316 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1135 *5)) + (-5 *3 (-295 (-316 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1135 *5)) (-5 *3 (-316 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1181))) + (-4 *5 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-644 (-644 (-295 (-316 *5))))) (-5 *1 (-1135 *5)) + (-5 *3 (-644 (-295 (-316 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-1190 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1181))) (-4 *5 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-1190 *5)) + (-5 *3 (-644 (-295 (-411 (-950 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-411 (-950 *4)))) (-4 *4 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-1190 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-561)) (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) + (-5 *1 (-1190 *4)) (-5 *3 (-644 (-295 (-411 (-950 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *5))))) + (-5 *1 (-1190 *5)) (-5 *3 (-411 (-950 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *5))))) + (-5 *1 (-1190 *5)) (-5 *3 (-295 (-411 (-950 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *4))))) (-5 *1 (-1190 *4)) + (-5 *3 (-411 (-950 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-561)) (-5 *2 (-644 (-295 (-411 (-950 *4))))) (-5 *1 (-1190 *4)) + (-5 *3 (-295 (-411 (-950 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-616 (-866))))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-879)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-879)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1163)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-510)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-596)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-482)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1171)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-629)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1100)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1095)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1077)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-974)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-181)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1040)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-314)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-674)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1282)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1070)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-521)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-684)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1120)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-609)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1281)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-679)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-219)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-528)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1186)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-1186))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-1186)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-1186))) (-5 *1 (-1186))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-510)) (-5 *1 (-282)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-550) (-226) (-510) (-1163) (-1186))) (-5 *1 (-1186))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-282))) (-5 *1 (-282)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-1186))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3260)) (-5 *2 (-112)) (-5 *1 (-620)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2391)) (-5 *2 (-112)) (-5 *1 (-620)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3259)) (-5 *2 (-112)) (-5 *1 (-620)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2516)) (-5 *2 (-112)) (-5 *1 (-693 *4)) - (-4 *4 (-615 (-865))))) + (-12 (-5 *3 (|[\|\|]| -2518)) (-5 *2 (-112)) (-5 *1 (-694 *4)) + (-4 *4 (-616 (-866))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-615 (-865))) (-5 *2 (-112)) - (-5 *1 (-693 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-878)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-878)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-616 (-866))) (-5 *2 (-112)) + (-5 *1 (-694 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-879)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)) (-5 *1 (-879)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-595))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-596))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-482))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-628))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-629))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1100))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1076))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-973))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-974))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1039))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-313))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-673))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1281))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1282))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-521))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1119))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1120))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-609))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-678))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-1281))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1185))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) ((*1 *1) (-5 *1 (-865))) + (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1186)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-550))) (-5 *2 (-112)) (-5 *1 (-1186))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-293))) ((*1 *1) (-5 *1 (-866))) ((*1 *1) - (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1088))) + (-12 (-4 *2 (-456)) (-4 *3 (-853)) (-4 *4 (-796)) (-5 *1 (-990 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1089))) ((*1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34))))) - ((*1 *1) (-5 *1 (-1183))) ((*1 *1) (-5 *1 (-1184)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) + (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34))))) + ((*1 *1) (-5 *1 (-1184))) ((*1 *1) (-5 *1 (-1185)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1184)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1184)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *4 (-1180)) (-5 *1 (-1183)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1184)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *1 (-1184))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-439)) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184))))) + (-12 (-5 *2 (-440)) (-5 *3 (-644 (-1181))) (-5 *4 (-1181)) (-5 *1 (-1184)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1184)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1181)) (-5 *1 (-1185)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-644 (-1181))) (-5 *1 (-1185))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-440)) (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1185))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-437)) + (-12 (-5 *3 (-438)) (-5 *2 - (-643 - (-3 (|:| -3973 (-1180)) - (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) - (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184))))) + (-644 + (-3 (|:| -3975 (-1181)) + (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550))))))))) + (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1185))))) (((*1 *2 *1) (-12 (-5 *2 - (-643 - (-643 - (-3 (|:| -3973 (-1180)) - (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))))) - (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1184))))) + (-644 + (-644 + (-3 (|:| -3975 (-1181)) + (|:| -3647 (-644 (-3 (|:| S (-1181)) (|:| P (-950 (-550)))))))))) + (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1185))))) +(((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-1185))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))) - (-5 *1 (-1184))))) -(((*1 *1) (-5 *1 (-1183)))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1183)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) + (-12 (-5 *2 (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 (-440))))) + (-5 *1 (-1185))))) +(((*1 *1) (-5 *1 (-1184)))) +(((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1184))))) +(((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184))))) +(((*1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1184))))) +(((*1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1184))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1276)) (-5 *1 (-1184)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183))))) + (-12 (-5 *4 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-5 *2 (-1275)) - (-5 *1 (-1183)))) + (-12 (-5 *3 (-3 (|:| |fst| (-438)) (|:| -4344 #1="void"))) (-5 *2 (-1276)) + (-5 *1 (-1184)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) - (-5 *2 (-1275)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-1181)) (-5 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) + (-5 *2 (-1276)) (-5 *1 (-1184)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) - (-5 *2 (-1275)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-1181)) (-5 *4 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) + (-5 *2 (-1276)) (-5 *1 (-1184))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1184)))) + ((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-1184))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1180)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 "void"))) - (-5 *1 (-1183))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1183)) (-5 *3 (-1180))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1184)) (-5 *1 (-1183))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4)) - (-5 *1 (-1181 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-1269 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1052))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1180))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1104)))) - ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-441 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) - ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-867)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1079 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1119)))) ((*1 *1 *1) (-5 *1 (-1180)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + (-12 (-5 *3 (-1181)) (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 "void"))) + (-5 *1 (-1184))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1184)) (-5 *3 (-1181))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1181)) (-5 *2 (-1185)) (-5 *1 (-1184))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1053)) (-5 *2 (-1270 *4)) + (-5 *1 (-1182 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-923)) (-5 *2 (-1270 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1053))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1105)) (-4 *2 (-1105)))) + ((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-442 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-487)))) + ((*1 *2 *1) (-12 (-4 *1 (-839 *2)) (-4 *2 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-868)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-969)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1080 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1120)))) ((*1 *1 *1) (-5 *1 (-1181)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) - (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) - (|:| |args| (-643 (-865))))) - (-5 *1 (-1180))))) + (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) + (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) + (|:| |args| (-644 (-866))))) + (-5 *1 (-1181))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) - (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) - (|:| |args| (-643 (-865))))) - (-5 *1 (-1180)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-1180))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180))))) -(((*1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *1) - (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) - ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1180))))) -(((*1 *1 *2) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1180))))) + (-2 (|:| -2986 (-644 (-866))) (|:| -2807 (-644 (-866))) + (|:| |presup| (-644 (-866))) (|:| -2984 (-644 (-866))) + (|:| |args| (-644 (-866))))) + (-5 *1 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-866)))) (-5 *1 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-1181))))) +(((*1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *1) + (-12 (-4 *1 (-1108 *2 *3 *4 *5 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1181))))) +(((*1 *1 *2) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-1181))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) -(((*1 *1 *1) (-5 *1 (-1179))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) +(((*1 *1 *1) (-5 *1 (-1180))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) - (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) - (-5 *1 (-1179))))) + (-3 (|:| I (-316 (-550))) (|:| -3498 (-316 (-381))) + (|:| CF (-316 (-169 (-381)))) (|:| |switch| (-1180)))) + (-5 *1 (-1180))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-865) (-865) (-865))) (-5 *4 (-549)) (-5 *2 (-865)) - (-5 *1 (-651 *5 *6 *7)) (-4 *5 (-1104)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-866) (-866) (-866))) (-5 *4 (-550)) (-5 *2 (-866)) + (-5 *1 (-652 *5 *6 *7)) (-4 *5 (-1105)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-865)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-99 *3)) + (-12 (-5 *2 (-866)) (-5 *1 (-857 *3 *4 *5)) (-4 *3 (-1053)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-865)) (-5 *1 (-1174 *3)) (-4 *3 (-1052))))) + ((*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-866)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-866)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-866)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-866)) (-5 *1 (-1175 *3)) (-4 *3 (-1053))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1092 *3)) (-4 *3 (-953 *7 *6 *4)) (-4 *6 (-795)) (-4 *4 (-852)) - (-4 *7 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) - (-5 *1 (-597 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-560)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-597 *5 *4 *6 *3)) - (-4 *3 (-953 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1) (-5 *1 (-865))) + (-12 (-5 *5 (-1093 *3)) (-4 *3 (-954 *7 *6 *4)) (-4 *6 (-796)) (-4 *4 (-853)) + (-4 *7 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) + (-5 *1 (-598 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-561)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-550)))) (-5 *1 (-598 *5 *4 *6 *3)) + (-4 *3 (-954 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1) (-5 *1 (-866))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-1172 *4 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-425 *4) (-160) (-27) (-1206))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205))) - (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1172 *4 *2)))) + (-12 (-5 *3 (-1096 *2)) (-4 *2 (-13 (-425 *4) (-160) (-27) (-1206))) + (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-1173 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) - (-5 *2 (-410 (-949 *5))) (-5 *1 (-1173 *5)) (-5 *3 (-949 *5)))) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)))) + (-5 *2 (-411 (-950 *5))) (-5 *1 (-1174 *5)) (-5 *3 (-950 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) - (-5 *2 (-3 (-410 (-949 *5)) (-315 *5))) (-5 *1 (-1173 *5)) - (-5 *3 (-410 (-949 *5))))) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)))) + (-5 *2 (-3 (-411 (-950 *5)) (-316 *5))) (-5 *1 (-1174 *5)) + (-5 *3 (-411 (-950 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1095 (-949 *5))) (-5 *3 (-949 *5)) - (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 *3)) (-5 *1 (-1173 *5)))) + (-12 (-5 *4 (-1096 (-950 *5))) (-5 *3 (-950 *5)) + (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-411 *3)) (-5 *1 (-1174 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1095 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) - (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-3 *3 (-315 *5))) - (-5 *1 (-1173 *5))))) + (-12 (-5 *4 (-1096 (-411 (-950 *5)))) (-5 *3 (-411 (-950 *5))) + (-4 *5 (-13 (-561) (-1042 (-550)))) (-5 *2 (-3 *3 (-316 *5))) + (-5 *1 (-1174 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-894 *4 *5)) (-4 *5 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1170))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) + (-12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-895 *4 *5)) (-4 *5 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1171))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-4 *1 (-151 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) - (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) + (-12 (-5 *2 (-644 (-2 (|:| -2566 (-774)) (|:| -4206 *4) (|:| |num| *4)))) + (-4 *4 (-1246 *3)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) - (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-112)) (-5 *1 (-439)))) + (-12 (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 #1="void"))) + (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-112)) (-5 *1 (-440)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *3 (-643 (-1180))) - (-5 *4 (-112)) (-5 *1 (-439)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-603 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)))) + (-12 (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 #1#))) (-5 *3 (-644 (-1181))) + (-5 *4 (-112)) (-5 *1 (-440)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-604 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-173)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-5 *1 (-667 *3 *4)) (-4 *4 (-173)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-5 *1 (-667 *3 *4)) (-4 *4 (-173)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-5 *1 (-667 *3 *4)) (-4 *4 (-173)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-643 (-643 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) + (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1105)) (-5 *1 (-678 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-715 *2 *3 *4)) (-4 *2 (-852)) (-4 *3 (-1104)) + (-12 (-5 *1 (-716 *2 *3 *4)) (-4 *2 (-853)) (-4 *3 (-1105)) (-14 *4 - (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) - (-2 (|:| -2563 *2) (|:| -2564 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-840)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) + (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *3)) + (-2 (|:| -2565 *2) (|:| -2566 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-1119)) (-5 *1 (-841)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1220)) (-4 *3 (-1220)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) (-4 *4 (-1104)) - (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 *4)))) (-4 *4 (-1105)) + (-5 *1 (-892 *3 *4)) (-4 *3 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *5)) (-4 *5 (-13 (-1104) (-34))) - (-5 *2 (-643 (-1143 *3 *5))) (-5 *1 (-1143 *3 *5)) - (-4 *3 (-13 (-1104) (-34))))) + (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1105) (-34))) + (-5 *2 (-644 (-1144 *3 *5))) (-5 *1 (-1144 *3 *5)) + (-4 *3 (-13 (-1105) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| |val| *4) (|:| -1708 *5)))) - (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) - (-5 *2 (-643 (-1143 *4 *5))) (-5 *1 (-1143 *4 *5)))) + (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -1710 *5)))) + (-4 *4 (-13 (-1105) (-34))) (-4 *5 (-13 (-1105) (-34))) + (-5 *2 (-644 (-1144 *4 *5))) (-5 *1 (-1144 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1708 *4))) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1710 *4))) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1144 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34))))) + (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)) - (-4 *2 (-13 (-1104) (-34))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1105) (-34))) (-5 *1 (-1145 *2 *3)) + (-4 *2 (-13 (-1105) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-643 (-1143 *2 *3))) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)))) + (-12 (-5 *4 (-644 (-1144 *2 *3))) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34))) (-5 *1 (-1145 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-643 (-1144 *2 *3))) (-5 *1 (-1144 *2 *3)) - (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1169 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) - (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *2 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) - (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *3 *2)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) + (-12 (-5 *4 (-644 (-1145 *2 *3))) (-5 *1 (-1145 *2 *3)) + (-4 *2 (-13 (-1105) (-34))) (-4 *3 (-13 (-1105) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-596)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-629)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1105)) (-4 *2 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))) + (-5 *1 (-1079 *3 *4 *2)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-596)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-629)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1105)) (-4 *2 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))) + (-5 *1 (-1079 *3 *4 *2)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3)))) + (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *2 *1) (-12 (-4 *3 (-1220)) (-5 *2 (-644 *1)) (-4 *1 (-1014 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1052))))) + (-12 (-5 *2 (-644 (-1169 *3 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053))))) +(((*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1220)) (-4 *2 (-853)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) - ((*1 *1 *2) - (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1052)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-853)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-1169 *3 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1053)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *2 (-773)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922)))) + (-12 (-5 *3 (-947 *5)) (-4 *5 (-1053)) (-5 *2 (-774)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1052)))) + (-12 (-5 *2 (-644 (-774))) (-5 *3 (-774)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) - (-5 *1 (-1168 *4 *5)) (-14 *4 (-922))))) + (-12 (-5 *2 (-644 (-774))) (-5 *3 (-947 *5)) (-4 *5 (-1053)) + (-5 *1 (-1169 *4 *5)) (-14 *4 (-923))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-946 *4)) (-4 *4 (-1052)) (-5 *1 (-1168 *3 *4)) - (-14 *3 (-922))))) + (-12 (-5 *2 (-947 *4)) (-4 *4 (-1053)) (-5 *1 (-1169 *3 *4)) + (-14 *3 (-923))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-946 *5)) (-5 *3 (-773)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922))))) + (-12 (-5 *2 (-947 *5)) (-5 *3 (-774)) (-4 *5 (-1053)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-773)) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922)))) + (-12 (-5 *2 (-774)) (-5 *3 (-947 *5)) (-4 *5 (-1053)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1052)))) + (-12 (-5 *2 (-644 (-774))) (-5 *3 (-774)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) - (-5 *1 (-1168 *4 *5)) (-14 *4 (-922))))) + (-12 (-5 *2 (-644 (-774))) (-5 *3 (-947 *5)) (-4 *5 (-1053)) + (-5 *1 (-1169 *4 *5)) (-14 *4 (-923))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-773))) (-5 *3 (-112)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1052))))) + (-12 (-5 *2 (-644 (-774))) (-5 *3 (-112)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1053))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-773))) (-5 *3 (-171)) (-5 *1 (-1168 *4 *5)) - (-14 *4 (-922)) (-4 *5 (-1052))))) + (-12 (-5 *2 (-644 (-774))) (-5 *3 (-172)) (-5 *1 (-1169 *4 *5)) + (-14 *4 (-923)) (-4 *5 (-1053))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1052))))) + (-12 (-5 *2 (-644 (-774))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-946 *4)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1052))))) + (-12 (-5 *2 (-947 *4)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-313)))) + (-12 (-5 *2 (-172)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-314)))) ((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1053))))) +(((*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-946 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-1052))))) + (-12 (-5 *2 (-644 (-947 *4))) (-5 *1 (-1169 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-1053))))) (((*1 *1 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-455)))) + (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *2 (-456)))) ((*1 *1 *1) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) - (-4 *4 (-1245 (-410 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) + (-12 (-4 *1 (-345 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-1246 *2)) + (-4 *4 (-1246 (-411 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-456)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *3 (-455)))) + (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *3 (-456)))) ((*1 *1 *1) - (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455)))) + (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-560)) (-5 *1 (-1167 *3 *2)) (-4 *2 (-1245 *3))))) + (-12 (-4 *3 (-309)) (-4 *3 (-561)) (-5 *1 (-1168 *3 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-961 *3)) (-5 *1 (-1167 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-962 *3)) (-5 *1 (-1168 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *1) (-4 *1 (-496))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *1) (-4 *1 (-497))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *1) (-4 *1 (-496))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *1) (-4 *1 (-497))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) - ((*1 *1 *1) (-4 *1 (-496))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) + ((*1 *1 *1) (-4 *1 (-497))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1 *1) (-4 *1 (-496))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1 *1) (-4 *1 (-497))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1 *1) (-4 *1 (-496))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1 *1) (-4 *1 (-497))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1 *1) (-4 *1 (-496))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1 *1) (-4 *1 (-497))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-226))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1 *1 *1) (-5 *1 (-380))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1 *1 *1) (-5 *1 (-381))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) - (-4 *2 (-1233 *3 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1263 *3)) (-5 *1 (-280 *3 *4 *2)) + (-4 *2 (-1234 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *4 (-1232 *3)) + (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1255 *3 *4)) (-4 *5 (-987 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1166 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-411 (-550)))) (-5 *1 (-1167 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-410 (-549)))) - (-5 *2 (-2 (|:| -3913 (-1157 *4)) (|:| -3914 (-1157 *4)))) - (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4))))) + (-12 (-4 *4 (-38 (-411 (-550)))) + (-5 *2 (-2 (|:| -3915 (-1158 *4)) (|:| -3916 (-1158 *4)))) + (-5 *1 (-1166 *4)) (-5 *3 (-1158 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-410 (-549)))) - (-5 *2 (-2 (|:| -4070 (-1157 *4)) (|:| -4066 (-1157 *4)))) - (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4))))) + (-12 (-4 *4 (-38 (-411 (-550)))) + (-5 *2 (-2 (|:| -4072 (-1158 *4)) (|:| -4068 (-1158 *4)))) + (-5 *1 (-1166 *4)) (-5 *3 (-1158 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1157 *4))) (-4 *4 (-365)) - (-4 *4 (-1052)) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4))))) + (-12 (-5 *3 (-1 *4 (-550))) (-5 *5 (-1 (-1158 *4))) (-4 *4 (-366)) + (-4 *4 (-1053)) (-5 *2 (-1158 *4)) (-5 *1 (-1165 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-366)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1052)) - (-5 *3 (-410 (-549))) (-5 *1 (-1164 *4))))) + (-12 (-5 *2 (-1158 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1053)) + (-5 *3 (-411 (-550))) (-5 *1 (-1165 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) - (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052))))) + (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1165 *4)) + (-4 *4 (-38 (-411 (-550)))) (-4 *4 (-1053))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1157 *3))) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) - (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052))))) + (-12 (-5 *4 (-1 (-1158 *3))) (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) + (-4 *3 (-38 (-411 (-550)))) (-4 *3 (-1053))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) - (-4 *4 (-1052))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-897 *2 *3)) (-4 *2 (-1245 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) + (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1165 *4)) + (-4 *4 (-1053))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-898 *2 *3)) (-4 *2 (-1246 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1052)) - (-5 *1 (-1164 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1 *4 (-550))) (-4 *4 (-1053)) + (-5 *1 (-1165 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *1 (-807 *4 *2)) (-4 *2 (-13 (-29 *4) (-1206) (-964))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1053))))) (((*1 *2 *3) - (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) - (-5 *3 (-549))))) + (-12 (-5 *2 (-1158 (-550))) (-5 *1 (-1165 *4)) (-4 *4 (-1053)) + (-5 *3 (-550))))) (((*1 *2 *3) - (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) - (-5 *3 (-549))))) + (-12 (-5 *2 (-1158 (-550))) (-5 *1 (-1165 *4)) (-4 *4 (-1053)) + (-5 *3 (-550))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) - (-14 *4 (-996 *2 *3)))) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-366)) + (-14 *4 (-997 *2 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-173)) (-5 *1 (-291 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1246 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) - ((*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) - ((*1 *1 *1) (|partial| -4 *1 (-724))) ((*1 *1 *1) (|partial| -4 *1 (-728))) + ((*1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) + ((*1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) + ((*1 *1 *1) (|partial| -4 *1 (-725))) ((*1 *1 *1) (|partial| -4 *1 (-729))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-778 *5 *6 *7 *3 *4)) - (-4 *4 (-1074 *5 *6 *7 *3)))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-779 *5 *6 *7 *3 *4)) + (-4 *4 (-1075 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) - (-4 *2 (-1245 *3)))) + (|partial| -12 (-4 *1 (-1072 *3 *2)) (-4 *3 (-13 (-851) (-366))) + (-4 *2 (-1246 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) + (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) + (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) - (-4 *2 (-560)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-560))) + (|partial| -12 (-4 *1 (-328 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)) + (-4 *2 (-561)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-561))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)) (-4 *2 (-560)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-773))) + (|partial| -12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-561)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-774))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) + (|partial| -12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-561)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) - (-5 *1 (-972 *3 *4)))) + (-12 (-5 *2 (-1270 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-561)) + (-5 *1 (-973 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-560)))) + (|partial| -12 (-4 *1 (-1057 *3 *4 *2 *5 *6)) (-4 *2 (-1053)) + (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) + (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1053)) (-5 *1 (-1165 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112)) - (-5 *1 (-1157 *4))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1105)) (-4 *4 (-1220)) (-5 *2 (-112)) + (-5 *1 (-1158 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773)))) - (-5 *1 (-1157 *4)) (-4 *4 (-1219)) (-5 *3 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1157 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1219))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1157 *2)) (-4 *2 (-1219))))) -(((*1 *1) (-5 *1 (-581))) - ((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-861)))) - ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) + (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2997 (-774)) (|:| |period| (-774)))) + (-5 *1 (-1158 *4)) (-4 *4 (-1220)) (-5 *3 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1220))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1220))))) +(((*1 *1) (-5 *1 (-582))) + ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-862)))) + ((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-862)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1163)) (-5 *4 (-866)) (-5 *2 (-1276)) (-5 *1 (-862)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1157 *4)) (-4 *4 (-1104)) - (-4 *4 (-1219))))) + (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1158 *4)) (-4 *4 (-1105)) + (-4 *4 (-1220))))) (((*1 *2 *1) - (-12 (-5 *2 (-865)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219))))) + (-12 (-5 *2 (-866)) (-5 *1 (-1158 *3)) (-4 *3 (-1105)) (-4 *3 (-1220))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1105)) (-4 *3 (-1220))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1269 (-643 (-549)))) (-5 *1 (-483)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + (-12 (-5 *3 (-774)) (-5 *2 (-1270 (-644 (-550)))) (-5 *1 (-484)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-604 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1220)) (-5 *1 (-1158 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-540 *4 *2)) - (-4 *2 (-1262 *4)))) + (-12 (-5 *3 (-550)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-541 *4 *2)) + (-4 *2 (-1263 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) (-4 *5 (-1245 *4)) - (-4 *6 (-726 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1262 *6)))) + (-12 (-5 *3 (-550)) (-4 *4 (-13 (-366) (-371) (-617 *3))) (-4 *5 (-1246 *4)) + (-4 *6 (-727 *4 *5)) (-5 *1 (-545 *4 *5 *6 *2)) (-4 *2 (-1263 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) - (-5 *1 (-545 *4 *2)) (-4 *2 (-1262 *4)))) + (-12 (-5 *3 (-550)) (-4 *4 (-13 (-366) (-371) (-617 *3))) + (-5 *1 (-546 *4 *2)) (-4 *2 (-1263 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) - (-5 *1 (-1156 *4))))) + (-12 (-5 *2 (-1158 *4)) (-5 *3 (-550)) (-4 *4 (-13 (-561) (-147))) + (-5 *1 (-1157 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) - (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) + (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-4 *4 (-1246 *3)) + (-4 *5 (-727 *3 *4)) (-5 *1 (-545 *3 *4 *5 *2)) (-4 *2 (-1263 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-5 *1 (-546 *3 *2)) + (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1157 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) - (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) + (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-4 *4 (-1246 *3)) + (-4 *5 (-727 *3 *4)) (-5 *1 (-545 *3 *4 *5 *2)) (-4 *2 (-1263 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-5 *1 (-546 *3 *2)) + (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1157 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) - (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) + (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-4 *4 (-1246 *3)) + (-4 *5 (-727 *3 *4)) (-5 *1 (-545 *3 *4 *5 *2)) (-4 *2 (-1263 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-366) (-371) (-617 (-550)))) (-5 *1 (-546 *3 *2)) + (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1155))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155))))) -(((*1 *2 *1) (-12 (-5 *2 (-693 (-1138))) (-5 *1 (-1155))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155))))) + (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1157 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-1156))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1156))))) +(((*1 *2 *1) (-12 (-5 *2 (-694 (-1139))) (-5 *1 (-1156))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1156))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) - ((*1 *1) (-4 *1 (-1154)))) -(((*1 *1 *1) (|partial| -4 *1 (-1154)))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1150 *3))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)))) + ((*1 *1) (-4 *1 (-1155)))) +(((*1 *1 *1) (|partial| -4 *1 (-1155)))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1220)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1220)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-1151 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-643 (-1030 *5 *6 *7 *3))) (-5 *1 (-1030 *5 *6 *7 *3)) - (-4 *3 (-1068 *5 *6 *7)))) + (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-644 (-1031 *5 *6 *7 *3))) (-5 *1 (-1031 *5 *6 *7 *3)) + (-4 *3 (-1069 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-643 *6)) (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)))) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *2 (-1068 *3 *4 *5)))) + (-12 (-4 *1 (-1075 *3 *4 *5 *2)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *2 (-1069 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-643 (-1149 *5 *6 *7 *3))) (-5 *1 (-1149 *5 *6 *7 *3)) - (-4 *3 (-1068 *5 *6 *7))))) + (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-644 (-1150 *5 *6 *7 *3))) (-5 *1 (-1150 *5 *6 *7 *3)) + (-4 *3 (-1069 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) - (-5 *1 (-1030 *5 *6 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1031 *5 *6 *7 *8))) + (-5 *1 (-1031 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) - (-5 *1 (-1149 *5 *6 *7 *8))))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-644 (-1150 *5 *6 *7 *8))) + (-5 *1 (-1150 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-1068 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1030 *5 *6 *7 *8))))) - (-5 *1 (-1030 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-1069 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1031 *5 *6 *7 *8))))) + (-5 *1 (-1031 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-1068 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1149 *5 *6 *7 *8))))) - (-5 *1 (-1149 *5 *6 *7 *8)) (-5 *3 (-643 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) - (-5 *1 (-1072 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) - (-5 *1 (-1148 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-112)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-1069 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1150 *5 *6 *7 *8))))) + (-5 *1 (-1150 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *4 (-774)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-1276)) + (-5 *1 (-1073 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *4 (-774)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-1276)) + (-5 *1 (-1149 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-643 *11)) - (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) - (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) - (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) - (-4 *11 (-1074 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) - (-5 *1 (-1072 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-644 *11)) + (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1710 *11)))))) + (-5 *6 (-774)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1710 *11)))) + (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1069 *7 *8 *9)) + (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-456)) (-4 *8 (-796)) (-4 *9 (-853)) + (-5 *1 (-1073 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-643 *11)) - (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) - (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) - (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) - (-4 *11 (-1112 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) - (-5 *1 (-1148 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-644 *11)) + (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1710 *11)))))) + (-5 *6 (-774)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1710 *11)))) + (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1069 *7 *8 *9)) + (-4 *11 (-1113 *7 *8 *9 *10)) (-4 *7 (-456)) (-4 *8 (-796)) (-4 *9 (-853)) + (-5 *1 (-1149 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) + (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-5 *2 - (-2 (|:| -2487 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2489 (-417 *4 (-411 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3493 (-410 *6)) (|:| |special| (-410 *6)))) - (-5 *1 (-729 *5 *6)) (-5 *3 (-410 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3495 (-411 *6)) (|:| |special| (-411 *6)))) + (-5 *1 (-730 *5 *6)) (-5 *3 (-411 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-899 *3 *4)) - (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-366)) (-5 *2 (-644 *3)) (-5 *1 (-900 *3 *4)) + (-4 *3 (-1246 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-773)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-899 *3 *5)) - (-4 *3 (-1245 *5)))) + (|partial| -12 (-5 *4 (-774)) (-4 *5 (-366)) + (-5 *2 (-2 (|:| -3544 *3) (|:| -3543 *3))) (-5 *1 (-900 *3 *5)) + (-4 *3 (-1246 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1149 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-5 *1 (-1149 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) - (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) + (-12 (-5 *5 (-774)) (-5 *6 (-112)) (-4 *7 (-456)) (-4 *8 (-796)) + (-4 *9 (-853)) (-4 *3 (-1069 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1074 *7 *8 *9 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1073 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) + (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) - (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) + (-12 (-5 *5 (-774)) (-5 *6 (-112)) (-4 *7 (-456)) (-4 *8 (-796)) + (-4 *9 (-853)) (-4 *3 (-1069 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1148 *7 *8 *9 *3 *4)) (-4 *4 (-1112 *7 *8 *9 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1149 *7 *8 *9 *3 *4)) (-4 *4 (-1113 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) + (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1149 *6 *7 *8 *3 *4)) (-4 *4 (-1113 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3))))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1149 *5 *6 *7 *3 *4)) (-4 *4 (-1113 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) + (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1073 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) + (-12 (-5 *5 (-774)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1149 *6 *7 *8 *3 *4)) (-4 *4 (-1113 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3))))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1149 *5 *6 *7 *3 *4)) (-4 *4 (-1113 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) + (-12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1073 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-643 *4)) - (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) - (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3))))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))))) + (-5 *1 (-1149 *5 *6 *7 *3 *4)) (-4 *4 (-1113 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) - (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) + (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-774)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) - (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) + (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-774)) (-5 *1 (-1149 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) - (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) + (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-774)) (-5 *1 (-1073 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) - (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1069 *5 *6 *7)) + (-4 *9 (-1113 *5 *6 *7 *8)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-774)) (-5 *1 (-1149 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *1 *1) (-4 *1 (-1147)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *1 *1) (-4 *1 (-1148)))) (((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-549)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) (-4 *6 (-1219)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-112))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (-550)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1105)) (-4 *6 (-1220)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) - (-5 *1 (-645 *5 *2)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1105)) (-4 *2 (-1220)) + (-5 *1 (-646 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 *5)) (-4 *6 (-1104)) (-4 *5 (-1219)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-645 *6 *5)))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1105)) (-4 *5 (-1220)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) - (-5 *1 (-645 *5 *2)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1105)) (-4 *2 (-1220)) + (-5 *1 (-646 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) - (-4 *6 (-1219)) (-5 *1 (-645 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1105)) + (-4 *6 (-1220)) (-5 *1 (-646 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1104)) - (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-773))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-1236 (-549)))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-773)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1105)) + (-4 *2 (-1220)) (-5 *1 (-646 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (-144)) (-5 *2 (-774))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (-144)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1237 (-550)))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-774)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-550)) (-4 *1 (-375 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-549)))) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-550)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) - (-5 *2 (-549)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-532)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1220)) + (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-533)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-550)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-852)))) - ((*1 *2 *2) - (-12 (-5 *2 (-586 *4)) (-4 *4 (-13 (-29 *3) (-1205))) - (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-588 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-586 (-410 (-949 *3)))) - (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-592 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -3493 *3) (|:| |special| *3))) (-5 *1 (-729 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) - (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) - (-5 *3 (-643 (-691 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1052)) - (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) - (-5 *3 (-643 (-691 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-643 *1)) (-4 *1 (-1147)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-643 *1)) (-4 *1 (-1147))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144))))) + (-5 *1 (-121 *3)) (-4 *3 (-853)))) + ((*1 *2 *2) + (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1206))) + (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-589 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-587 (-411 (-950 *3)))) + (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-593 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-366)) + (-5 *2 (-2 (|:| -3495 *3) (|:| |special| *3))) (-5 *1 (-730 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1270 *5)) (-4 *5 (-366)) (-4 *5 (-1053)) + (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) + (-5 *3 (-644 (-692 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1270 (-1270 *5))) (-4 *5 (-366)) (-4 *5 (-1053)) + (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) + (-5 *3 (-644 (-692 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1148)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1148))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-144))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-144))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1148)) (-5 *2 (-144))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) - (-4 *5 (-172)))) + (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-774)) + (-4 *5 (-173)))) ((*1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173)))) ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-374 *3)) - (-4 *4 (-374 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1145 *2 *3)) (-14 *2 (-773)) (-4 *3 (-1052))))) + (-12 (-4 *3 (-1053)) (-4 *1 (-689 *3 *2 *4)) (-4 *2 (-375 *3)) + (-4 *4 (-375 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-774)) (-4 *3 (-1053))))) (((*1 *1 *2) - (-12 (-5 *2 (-691 *4)) (-4 *4 (-1052)) (-5 *1 (-1145 *3 *4)) - (-14 *3 (-773))))) + (-12 (-5 *2 (-692 *4)) (-4 *4 (-1053)) (-5 *1 (-1146 *3 *4)) + (-14 *3 (-774))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34)))))) + (|partial| -12 (-5 *1 (-1145 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34)))))) + (-12 (-5 *1 (-1145 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34)))))) + (-12 (-5 *2 (-644 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1144 *3 *4)) - (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34)))))) + (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) (-5 *1 (-1145 *3 *4)) + (-4 *3 (-13 (-1105) (-34))) (-4 *4 (-13 (-1105) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34))) - (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *4 *5))))) + (-12 (-5 *3 (-1144 *4 *5)) (-4 *4 (-13 (-1105) (-34))) + (-4 *5 (-13 (-1105) (-34))) (-5 *2 (-112)) (-5 *1 (-1145 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1143 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) - (-5 *1 (-1144 *5 *6))))) + (-12 (-5 *3 (-1144 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1105) (-34))) (-4 *6 (-13 (-1105) (-34))) (-5 *2 (-112)) + (-5 *1 (-1145 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) - (-4 *2 (-1104)))) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)) + (-4 *2 (-1105)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) - (-4 *3 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-151 *3)) + (-4 *3 (-1220)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-677 *3)) (-4 *3 (-1220)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) - (-5 *1 (-738 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1105)) + (-5 *1 (-739 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-739 *2)) (-4 *2 (-1105)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4))))) + (-12 (-5 *2 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) - (-4 *3 (-1104)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-235 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-236 *3)) + (-4 *3 (-1105)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4427)) (-4 *1 (-236 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)) (-4 *2 (-1105)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) + (|partial| -12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) - (-5 *1 (-738 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-550)) (-4 *4 (-1105)) + (-5 *1 (-739 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-739 *2)) (-4 *2 (-1105)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4))))) + (-12 (-5 *2 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-1143 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) - (-5 *1 (-1144 *4 *5)))) + (-12 (-5 *2 (-644 (-1144 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1105) (-34))) (-4 *5 (-13 (-1105) (-34))) + (-5 *1 (-1145 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-643 (-1143 *3 *4))) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4))))) + (-12 (-5 *2 (-644 (-1144 *3 *4))) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34))) (-5 *1 (-1145 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) - (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) + (-12 (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *2 (-112)) + (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-992)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-969)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-993)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1220)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *2 *3)) - (-4 *3 (-13 (-1104) (-34)))))) + (-12 (-4 *2 (-13 (-1105) (-34))) (-5 *1 (-1144 *2 *3)) + (-4 *3 (-13 (-1105) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) - (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *2 (-112)) + (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-548))) - ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1) (-5 *1 (-172))) ((*1 *1 *1) (-4 *1 (-549))) + ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053)))) ((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34)))))) + (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34)))))) + (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1143 *3 *2)) (-4 *3 (-13 (-1104) (-34))) - (-4 *2 (-13 (-1104) (-34)))))) + (-12 (-5 *1 (-1144 *3 *2)) (-4 *3 (-13 (-1105) (-34))) + (-4 *2 (-13 (-1105) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) - (-4 *4 (-13 (-1104) (-34)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1105) (-34))) + (-4 *4 (-13 (-1105) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) - (-4 *3 (-13 (-1104) (-34)))))) + (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1105) (-34))) + (-4 *3 (-13 (-1105) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) - (-5 *1 (-1143 *5 *6))))) + (-4 *5 (-13 (-1105) (-34))) (-4 *6 (-13 (-1105) (-34))) (-5 *2 (-112)) + (-5 *1 (-1144 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) - (-5 *1 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1142))) ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-773)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-168 (-225))) (-5 *3 (-773)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) - ((*1 *1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1105) (-34))) (-5 *2 (-112)) + (-5 *1 (-1144 *4 *5)) (-4 *4 (-13 (-1105) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *1 *1) (-5 *1 (-226))) ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1143))) ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-774)) (-5 *1 (-227)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-169 (-226))) (-5 *3 (-774)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *1 *1 *1) (-5 *1 (-226))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045)))) + ((*1 *1 *1 *1) (-4 *1 (-1143)))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1064)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) - ((*1 *1 *1) (-4 *1 (-850))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) - ((*1 *1 *1) (-4 *1 (-1063))) ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141))))) -(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-63 *3)) (-14 *3 (-1180)))) - ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-69 *3)) (-14 *3 (-1180)))) - ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-72 *3)) (-14 *3 (-1180)))) - ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-398)))) - ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1275)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) - ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-1139))))) -(((*1 *1 *2) (-12 (-5 *2 (-1168 3 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) - ((*1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052))))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)) (-4 *2 (-1064)))) + ((*1 *1 *1) (-4 *1 (-851))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)) (-4 *2 (-1064)))) + ((*1 *1 *1) (-4 *1 (-1064))) ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-866))) (-5 *2 (-1276)) (-5 *1 (-1142))))) +(((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-866))) (-5 *2 (-1276)) (-5 *1 (-1142))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-63 *3)) (-14 *3 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-69 *3)) (-14 *3 (-1181)))) + ((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-72 *3)) (-14 *3 (-1181)))) + ((*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1276)) (-5 *1 (-399)))) + ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1276)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1163)) (-5 *4 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) + ((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-1142)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-866))) (-5 *2 (-1276)) (-5 *1 (-1142))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-644 (-1186))) (-5 *1 (-1140))))) +(((*1 *1 *2) (-12 (-5 *2 (-1169 3 *3)) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) + ((*1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053))))) (((*1 *2) - (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) + (-5 *2 (-774)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-644 *1)) (-4 *1 (-1138 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1053)) (-5 *2 (-644 *1)) (-4 *1 (-1138 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 (-946 *4))) (-4 *1 (-1137 *4)) (-4 *4 (-1052)) - (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + (-12 (-5 *3 (-644 (-947 *4))) (-4 *1 (-1138 *4)) (-4 *4 (-1053)) + (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + (-12 (-5 *2 (-644 (-947 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + (-12 (-5 *2 (-644 (-947 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-947 *3))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) + (-12 (-5 *2 (-644 (-947 *3))) (-4 *1 (-1138 *3)) (-4 *3 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-946 *3)))))) + (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-947 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *4 (-1052)) - (-4 *1 (-1137 *4)))) + (-12 (-5 *2 (-644 (-644 (-947 *4)))) (-5 *3 (-112)) (-4 *4 (-1053)) + (-4 *1 (-1138 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-643 (-946 *3)))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + (-12 (-5 *2 (-644 (-644 (-947 *3)))) (-4 *3 (-1053)) (-4 *1 (-1138 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) - (-4 *4 (-1052)))) + (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) (-4 *1 (-1138 *4)) + (-4 *4 (-1053)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) - (-4 *4 (-1052)))) + (-12 (-5 *2 (-644 (-644 (-947 *4)))) (-5 *3 (-112)) (-4 *1 (-1138 *4)) + (-4 *4 (-1053)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) - (-4 *1 (-1137 *5)) (-4 *5 (-1052)))) + (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-172))) (-5 *4 (-172)) + (-4 *1 (-1138 *5)) (-4 *5 (-1053)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-643 (-643 (-946 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) - (-4 *1 (-1137 *5)) (-4 *5 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3)))))) + (-12 (-5 *2 (-644 (-644 (-947 *5)))) (-5 *3 (-644 (-172))) (-5 *4 (-172)) + (-4 *1 (-1138 *5)) (-4 *5 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-947 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-643 (-773)))))))) + (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-644 (-774)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) - (-5 *2 (-643 (-643 (-643 (-946 *3)))))))) + (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) + (-5 *2 (-644 (-644 (-644 (-947 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-171))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-171)))))) + (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-644 (-172))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 (-644 (-172)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) + (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1053)) (-5 *2 - (-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) - (|:| |constructs| (-773))))))) + (-2 (|:| -4284 (-774)) (|:| |curves| (-774)) (|:| |polygons| (-774)) + (|:| |constructs| (-774))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) - (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052))))) + (-12 (-5 *3 (-644 (-2 (|:| -4166 (-1175 *6)) (|:| -2566 (-550))))) + (-4 *6 (-309)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-745 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1053))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) - (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-1136 *4 *2)) + (-4 *2 (-13 (-607 (-550) *4) (-10 -7 (-6 -4427) (-6 -4428)))))) ((*1 *2 *2) - (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) - (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426))))))) + (-12 (-4 *3 (-853)) (-4 *3 (-1220)) (-5 *1 (-1136 *3 *2)) + (-4 *2 (-13 (-607 (-550) *3) (-10 -7 (-6 -4427) (-6 -4428))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) - (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-1136 *4 *2)) + (-4 *2 (-13 (-607 (-550) *4) (-10 -7 (-6 -4427) (-6 -4428)))))) ((*1 *2 *2) - (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) - (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426))))))) + (-12 (-4 *3 (-853)) (-4 *3 (-1220)) (-5 *1 (-1136 *3 *2)) + (-4 *2 (-13 (-607 (-550) *3) (-10 -7 (-6 -4427) (-6 -4428))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1052)) (-4 *2 (-1245 *4)) - (-5 *1 (-447 *4 *2)))) + (-12 (-5 *3 (-1270 *4)) (-4 *4 (-1053)) (-4 *2 (-1246 *4)) + (-5 *1 (-448 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-410 (-1174 (-315 *5)))) (-5 *3 (-1269 (-315 *5))) - (-5 *4 (-549)) (-4 *5 (-560)) (-5 *1 (-1133 *5))))) + (-12 (-5 *2 (-411 (-1175 (-316 *5)))) (-5 *3 (-1270 (-316 *5))) + (-5 *4 (-550)) (-4 *5 (-561)) (-5 *1 (-1134 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-410 (-1174 (-315 *3)))) (-4 *3 (-560)) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-411 (-1175 (-316 *3)))) (-4 *3 (-561)) (-5 *1 (-1134 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) - (-5 *1 (-1132 *5)))) + (-12 (-5 *3 (-295 (-411 (-950 *5)))) (-5 *4 (-1181)) + (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-1170 (-644 (-316 *5)) (-644 (-295 (-316 *5))))) + (-5 *1 (-1133 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) - (-5 *1 (-1132 *5))))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-1170 (-644 (-316 *5)) (-644 (-295 (-316 *5))))) + (-5 *1 (-1133 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-643 (-315 *5))) (-5 *1 (-1132 *5)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-644 (-316 *5))) (-5 *1 (-1133 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-315 *5)))) - (-5 *1 (-1132 *5))))) + (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) + (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-316 *5)))) + (-5 *1 (-1133 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1132 *5)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-644 (-295 (-316 *5)))) (-5 *1 (-1133 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) + (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-13 (-309) (-147))) + (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1133 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) - (-5 *1 (-1132 *5)))) + (-12 (-5 *3 (-295 (-411 (-950 *5)))) (-5 *4 (-1181)) + (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-295 (-316 *5)))) + (-5 *1 (-1133 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) + (-12 (-5 *3 (-295 (-411 (-950 *4)))) (-4 *4 (-13 (-309) (-147))) + (-5 *2 (-644 (-295 (-316 *4)))) (-5 *1 (-1133 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) - (-5 *1 (-1132 *5)))) + (-12 (-5 *3 (-644 (-411 (-950 *5)))) (-5 *4 (-644 (-1181))) + (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *5))))) + (-5 *1 (-1133 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4)))) + (-12 (-5 *3 (-644 (-411 (-950 *4)))) (-4 *4 (-13 (-309) (-147))) + (-5 *2 (-644 (-644 (-295 (-316 *4))))) (-5 *1 (-1133 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-294 (-410 (-949 *5))))) (-5 *4 (-643 (-1180))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) - (-5 *1 (-1132 *5)))) + (-12 (-5 *3 (-644 (-295 (-411 (-950 *5))))) (-5 *4 (-644 (-1181))) + (-4 *5 (-13 (-309) (-147))) (-5 *2 (-644 (-644 (-295 (-316 *5))))) + (-5 *1 (-1133 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4))))) + (-12 (-5 *3 (-644 (-295 (-411 (-950 *4))))) (-4 *4 (-13 (-309) (-147))) + (-5 *2 (-644 (-644 (-295 (-316 *4))))) (-5 *1 (-1133 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1132 *4 *3)) (-4 *4 (-1246 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-4 *5 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) (-5 *2 - (-2 (|:| |solns| (-643 *5)) - (|:| |maps| (-643 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1131 *3 *5)) (-4 *3 (-1245 *5))))) + (-2 (|:| |solns| (-644 *5)) + (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1132 *3 *5)) (-4 *3 (-1246 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-374 *4) (-10 -7 (-6 -4426)))) - (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))) (-5 *1 (-669 *4 *5 *2 *3)) - (-4 *3 (-688 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-366)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4428)))) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428)))) (-5 *1 (-670 *4 *5 *2 *3)) + (-4 *3 (-689 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-691 *4)) (-4 *4 (-365)) - (-5 *1 (-670 *4)))) + (|partial| -12 (-5 *2 (-1270 *4)) (-5 *3 (-692 *4)) (-4 *4 (-366)) + (-5 *1 (-671 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-643 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) - (-5 *1 (-816 *2 *3)) (-4 *3 (-660 *2)))) + (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-366)) + (-5 *1 (-817 *2 *3)) (-4 *3 (-661 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) - (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-366) (-10 -8 (-15 ** ($ $ (-411 (-550))))))) + (-5 *1 (-1132 *3 *2)) (-4 *3 (-1246 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1157 *7))) (-4 *6 (-852)) - (-4 *7 (-953 *5 (-534 *6) *6)) (-4 *5 (-1052)) (-5 *2 (-1 (-1157 *7) *7)) - (-5 *1 (-1129 *5 *6 *7))))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1158 *7))) (-4 *6 (-853)) + (-4 *7 (-954 *5 (-535 *6) *6)) (-4 *5 (-1053)) (-5 *2 (-1 (-1158 *7) *7)) + (-5 *1 (-1130 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-374 *5)) (-4 *4 (-374 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) - (-5 *1 (-1127 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) + (-12 (-4 *5 (-309)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2192 (-644 *4)))) + (-5 *1 (-1128 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-12 (-4 *4 (-309)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1127 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) + (-5 *1 (-1128 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) + (-12 (-4 *3 (-309)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1128 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1127 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) + (-12 (-4 *4 (-309)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1128 *4 *5 *6 *3)) + (-4 *3 (-689 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550)))) ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) + (-12 (-4 *3 (-309)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1128 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-774)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1052)) (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) + (-12 (-4 *2 (-1053)) (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) + (-4 *5 (-239 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 *1)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-644 *1)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-691 *3)))) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1053)) (-5 *1 (-692 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 *4)) (-4 *4 (-1052)) (-4 *1 (-1126 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) + (-12 (-5 *2 (-644 *4)) (-4 *4 (-1053)) (-4 *1 (-1127 *3 *4 *5 *6)) + (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) + (-12 (-4 *1 (-1127 *3 *4 *2 *5)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) + (-4 *2 (-239 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) + (-12 (-5 *2 (-923)) (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)))) + ((*1 *2 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-366)))) + ((*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1246 *2)) (-4 *2 (-173)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-923)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) - (-4 *2 (-1052))))) + (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) + (-4 *2 (-1053))))) (((*1 *2 *3) - (-12 (-5 *3 (-691 *2)) (-4 *4 (-1245 *2)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-413 *2 *4)))) + (-12 (-5 *3 (-692 *2)) (-4 *4 (-1246 *2)) + (-4 *2 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-5 *1 (-503 *2 *4 *5)) (-4 *5 (-414 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) - (-4 *2 (-1052))))) + (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) + (-4 *2 (-1053))))) (((*1 *2 *3) - (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-365)) - (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-366)) + (-5 *1 (-525 *2 *4 *5 *3)) (-4 *3 (-689 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4429 "*"))) (-4 *2 (-1053)))) ((*1 *2 *3) - (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) - (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-173)) + (-5 *1 (-691 *2 *4 *5 *3)) (-4 *3 (-689 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052))))) + (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) + (|has| *2 (-6 (-4429 "*"))) (-4 *2 (-1053))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4429 "*"))) (-4 *2 (-1053)))) ((*1 *2 *3) - (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) - (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-173)) + (-5 *1 (-691 *2 *4 *5 *3)) (-4 *3 (-689 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-5 *1 (-1123)))) + (-12 (-4 *1 (-1127 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) + (|has| *2 (-6 (-4429 "*"))) (-4 *2 (-1053))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1220)) (-5 *2 (-774))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1) (-4 *1 (-971))) ((*1 *1 *1) (-5 *1 (-1124)))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1123)))) -(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) - ((*1 *1 *1) (-5 *1 (-1123)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) - ((*1 *1 *1 *1) (-5 *1 (-1123)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) - ((*1 *1 *1 *1) (-5 *1 (-1123)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-840)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1185))) (-5 *3 (-1185)) (-5 *1 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-683)))) - ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-973)))) - ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-1076)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-683)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) - (-5 *2 (-549)) (-5 *1 (-1117 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1124)))) +(((*1 *1 *1) (-12 (-5 *1 (-504 *2)) (-14 *2 (-550)))) + ((*1 *1 *1) (-5 *1 (-1124)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-504 *2)) (-14 *2 (-550)))) + ((*1 *1 *1 *1) (-5 *1 (-1124)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-504 *2)) (-14 *2 (-550)))) + ((*1 *1 *1 *1) (-5 *1 (-1124)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-1119)) (-5 *1 (-1120))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-841)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1186))) (-5 *3 (-1186)) (-5 *1 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1120))))) +(((*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-684)))) + ((*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-974)))) + ((*1 *2 *1) (-12 (-5 *2 (-1221)) (-5 *1 (-1077)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-684)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-456)) (-4 *4 (-823)) (-14 *5 (-1181)) + (-5 *2 (-550)) (-5 *1 (-1118 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) - (-5 *2 (-549)) (-5 *1 (-1117 *4 *5))))) + (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-456)) (-4 *4 (-823)) (-14 *5 (-1181)) + (-5 *2 (-550)) (-5 *1 (-1118 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) - (-5 *1 (-1117 *4 *5))))) + (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-550)) + (-5 *1 (-1118 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) - (-5 *1 (-1117 *4 *5))))) + (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-550)) + (-5 *1 (-1118 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 *4)) - (-5 *1 (-1117 *4 *5))))) + (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-644 *4)) + (-5 *1 (-1118 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) - (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4))))) + (-12 (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-644 (-1239 *5 *4))) + (-5 *1 (-1118 *4 *5)) (-5 *3 (-1239 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) - (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1113))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-549)) (-5 *1 (-1113)))) + (-12 (-4 *4 (-823)) (-14 *5 (-1181)) (-5 *2 (-644 (-1239 *5 *4))) + (-5 *1 (-1118 *4 *5)) (-5 *3 (-1239 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1114)) (-5 *3 (-550))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1114)) (-5 *3 (-550))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1114)) (-5 *3 (-550))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1114))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1270 (-550))) (-5 *3 (-550)) (-5 *1 (-1114)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-643 (-549))) (-5 *4 (-549)) - (-5 *1 (-1113))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *3 (-112)) (-5 *1 (-1113))))) + (-12 (-5 *2 (-1270 (-550))) (-5 *3 (-644 (-550))) (-5 *4 (-550)) + (-5 *1 (-1114))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *3 (-112)) (-5 *1 (-1114))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-691 (-549))) (-5 *3 (-643 (-549))) (-5 *1 (-1113))))) + (-12 (-5 *2 (-692 (-550))) (-5 *3 (-644 (-550))) (-5 *1 (-1114))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113))))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-1114))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-1113))))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-1114))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-643 (-549))) (-5 *3 (-691 (-549))) (-5 *1 (-1113))))) + (-12 (-5 *2 (-644 (-550))) (-5 *3 (-692 (-550))) (-5 *1 (-1114))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113))))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-1114))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) - (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 *4)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) + (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) - (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 *4)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) + (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) - (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 *4)) (-5 *1 (-1112 *5 *6 *7 *3 *4)) + (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + (-12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1112 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) - (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) - (-4 *7 (-795)) (-4 *4 (-852)) - (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) - (-5 *1 (-1111 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *5 (-112)) + (-4 *8 (-1069 *6 *7 *4)) (-4 *9 (-1075 *6 *7 *4 *8)) (-4 *6 (-456)) + (-4 *7 (-796)) (-4 *4 (-853)) + (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1710 *9)))) + (-5 *1 (-1112 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) - (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))) + (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-1276)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6))))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-1276)) (-5 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1112 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-1276)) (-5 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6))))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-1276)) (-5 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1076 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1112 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *9 (-1068 *6 *7 *8)) - (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) - (-5 *1 (-991 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) - (-4 *4 (-1074 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *9 (-1069 *6 *7 *8)) + (-5 *2 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *4) (|:| |ineq| (-644 *9)))) + (-5 *1 (-992 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) + (-4 *4 (-1075 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *9 (-1068 *6 *7 *8)) - (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) - (-5 *1 (-1110 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) - (-4 *4 (-1074 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *9 (-1069 *6 *7 *8)) + (-5 *2 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *4) (|:| |ineq| (-644 *9)))) + (-5 *1 (-1111 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) + (-4 *4 (-1075 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) - (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) + (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1075 *6 *7 *8 *9)) + (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-1069 *6 *7 *8)) (-5 *2 - (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) - (-5 *1 (-991 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9)))) + (-644 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *10) (|:| |ineq| (-644 *9))))) + (-5 *1 (-992 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) - (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) + (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1075 *6 *7 *8 *9)) + (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-1069 *6 *7 *8)) (-5 *2 - (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) - (-5 *1 (-1110 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9))))) + (-644 (-2 (|:| -3689 (-644 *9)) (|:| -1710 *10) (|:| |ineq| (-644 *9))))) + (-5 *1 (-1111 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) - (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1710 *7)))) + (-4 *6 (-1069 *3 *4 *5)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-992 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) - (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1110 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1710 *7)))) + (-4 *6 (-1069 *3 *4 *5)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-1111 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) - (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) + (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) - (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) - (-5 *1 (-1110 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *1 (-991 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *1 (-1110 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1710 *8))) + (-4 *7 (-1069 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) + (-5 *1 (-1111 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *1 (-992 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *1 (-1111 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-991 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-992 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1110 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-456)) + (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1111 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) - (-4 *3 (-1074 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) + (-4 *3 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) - (-4 *3 (-1074 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) + (-4 *3 (-1075 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *1 (-991 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *1 (-992 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *1 (-1110 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *1 (-1111 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1111 *4 *5 *6 *7 *3)) (-4 *3 (-1075 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-1275)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-1276)) (-5 *1 (-992 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *2 (-1275)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6))))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *2 (-1276)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1075 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-991 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-992 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) - (-4 *8 (-1074 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1163)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) (-5 *2 (-1276)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1075 *4 *5 *6 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-437)) (-4 *5 (-1104)) (-5 *1 (-1109 *5 *4)) - (-4 *4 (-424 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1077)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-438)) (-4 *5 (-1105)) (-5 *1 (-1110 *5 *4)) + (-4 *4 (-425 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1078)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1041 (-549))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-573 *3)) (-4 *3 (-1042 (-550))))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *7 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) - (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) + (-12 (-5 *2 (-644 (-2 (|:| -4294 (-1181)) (|:| -2256 *4)))) + (-5 *1 (-892 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)))) ((*1 *2 *1) - (-12 (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-4 *7 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-1107 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1105)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-4 *7 (-1105)) (-5 *2 (-644 *1)) (-4 *1 (-1108 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *2 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2)))) + (-12 (-4 *1 (-1108 *3 *2 *4 *5 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105))))) +(((*1 *2 *3) (-12 (-5 *2 (-550)) (-5 *1 (-573 *3)) (-4 *3 (-1042 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *2 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-4 *1 (-407)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-407)))) + (-12 (-4 *1 (-1108 *3 *4 *2 *5 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-923)) (-4 *1 (-408)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-4 *1 (-408)))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *2 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *2 *6)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *4 *5 *6 *2)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) + (-12 (-4 *1 (-1108 *3 *4 *5 *6 *2)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-1105)) (-4 *2 (-1105))))) (((*1 *1 *1) - (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) - (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104))))) + (-12 (-4 *1 (-1108 *2 *3 *4 *5 *6)) (-4 *2 (-1105)) (-4 *3 (-1105)) + (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105))))) (((*1 *1 *1) - (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) - (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104))))) + (-12 (-4 *1 (-1108 *2 *3 *4 *5 *6)) (-4 *2 (-1105)) (-4 *3 (-1105)) + (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1106 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-673)))) + (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1106 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-674)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922))))) + (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922))))) + (-12 (-5 *2 (-644 (-923))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923))))) (((*1 *2) - (-12 (-5 *2 (-1269 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922))))) + (-12 (-5 *2 (-1270 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-908 *4)))) + (-12 (-5 *3 (-906 *4)) (-4 *4 (-1105)) (-5 *2 (-112)) (-5 *1 (-909 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-773)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-774)) (-5 *1 (-1106 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1123))))) -(((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1162))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) - ((*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) - ((*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1124))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1163))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) + ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-1103 *3)))) + ((*1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-1103 *3)))) + ((*1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + (-12 (-5 *2 (-644 (-508 *3 *4 *5 *6))) (-4 *3 (-366)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4)))) + (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1075 *4 *5 *6 *7)) + (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-643 (-613 *4))) (-4 *4 (-424 *3)) (-4 *3 (-1104)) - (-5 *1 (-576 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-678)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1069)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1099))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1097 *3)) (-4 *3 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1219)) (-5 *2 (-549))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-992)))) + (-12 (-5 *2 (-644 (-614 *4))) (-4 *4 (-425 *3)) (-4 *3 (-1105)) + (-5 *1 (-577 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-679)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1023)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1070)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-1100))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1098 *3)) (-4 *3 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-1098 *3)) (-4 *3 (-1220)) (-5 *2 (-550))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1163)) (-5 *1 (-993)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-4 *4 (-1219)) (-5 *1 (-1061 *3 *4)) - (-4 *3 (-1097 *4)))) + (-12 (-5 *2 (-1181)) (-4 *4 (-1220)) (-5 *1 (-1062 *3 *4)) + (-4 *3 (-1098 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1092 *4)) (-4 *4 (-1219)) (-5 *1 (-1095 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1094))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1093 *4)) (-4 *4 (-1220)) (-5 *1 (-1096 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-1095))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-947 (-226)) (-947 (-226)))) (-5 *1 (-263)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-331 *4)) (-4 *4 (-366)) (-5 *2 (-692 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-1270 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-1270 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) + (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) + (-4 *5 (-1246 *4)) (-5 *2 (-1270 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-413 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) + (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-1269 *3)))) + (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) + (-5 *2 (-1270 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-421 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1270 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-691 *5))) (-5 *3 (-691 *5)) (-4 *5 (-365)) - (-5 *2 (-1269 *5)) (-5 *1 (-1089 *5))))) + (-12 (-5 *4 (-644 (-692 *5))) (-5 *3 (-692 *5)) (-4 *5 (-366)) + (-5 *2 (-1270 *5)) (-5 *1 (-1090 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1269 (-691 *4))))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) + (-5 *2 (-1270 (-692 *4))))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-420 *3 *4)) - (-4 *3 (-421 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-691 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) - (-5 *2 (-1269 (-691 (-410 (-949 *5))))) (-5 *1 (-1089 *5)) - (-5 *4 (-691 (-410 (-949 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) (-5 *2 (-1269 (-691 (-949 *5)))) - (-5 *1 (-1089 *5)) (-5 *4 (-691 (-949 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-5 *2 (-1269 (-691 *4))) - (-5 *1 (-1089 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-175))) (-5 *1 (-1088))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-175)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-1088))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1088))))) -(((*1 *1) (-5 *1 (-1088)))) -(((*1 *1) (-5 *1 (-1088)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2)))) + (-12 (-4 *4 (-173)) (-5 *2 (-1270 (-692 *4))) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1270 (-692 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1181))) (-4 *5 (-366)) + (-5 *2 (-1270 (-692 (-411 (-950 *5))))) (-5 *1 (-1090 *5)) + (-5 *4 (-692 (-411 (-950 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1181))) (-4 *5 (-366)) (-5 *2 (-1270 (-692 (-950 *5)))) + (-5 *1 (-1090 *5)) (-5 *4 (-692 (-950 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-692 *4))) (-4 *4 (-366)) (-5 *2 (-1270 (-692 *4))) + (-5 *1 (-1090 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-176))) (-5 *1 (-1089))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-109))) (-5 *1 (-176)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-109))) (-5 *1 (-1089))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1089))))) +(((*1 *1) (-5 *1 (-1089)))) +(((*1 *1) (-5 *1 (-1089)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1088 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2))))) -(((*1 *2) (-12 (-5 *2 (-643 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-132))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1087 *3)) (-4 *3 (-132))))) -(((*1 *1) (-5 *1 (-1085)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-643 *3)) (-5 *1 (-594 *5 *6 *7 *8 *3)) - (-4 *3 (-1112 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) - (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) - (-5 *1 (-1081 *4 *5)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))))) + (-12 (-5 *3 (-1 (-550) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1088 *2))))) +(((*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1088 *3)) (-4 *3 (-132))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-1088 *3)) (-4 *3 (-132))))) +(((*1 *1) (-5 *1 (-1086)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-644 *3)) (-5 *1 (-595 *5 *6 *7 *8 *3)) + (-4 *3 (-1113 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) + (-5 *1 (-1082 *5 *6)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-309) (-147))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *4)) (|:| -3646 (-644 (-950 *4)))))) + (-5 *1 (-1082 *4 *5)) (-5 *3 (-644 (-950 *4))) (-14 *5 (-644 (-1181))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) - (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-644 (-2 (|:| -1917 (-1175 *5)) (|:| -3646 (-644 (-950 *5)))))) + (-5 *1 (-1082 *5 *6)) (-5 *3 (-644 (-950 *5))) (-14 *6 (-644 (-1181)))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-1078 *3 *4 *5))) (-4 *3 (-1104)) - (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) - (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) - (-5 *1 (-1080 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) - (-5 *2 (-643 (-1078 *3 *4 *5))) (-5 *1 (-1080 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) + (-12 (-5 *2 (-644 (-1079 *3 *4 *5))) (-4 *3 (-1105)) + (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) + (-4 *5 (-13 (-425 *4) (-890 *3) (-617 (-894 *3)))) + (-5 *1 (-1081 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) + (-5 *2 (-644 (-1079 *3 *4 *5))) (-5 *1 (-1081 *3 *4 *5)) + (-4 *5 (-13 (-425 *4) (-890 *3) (-617 (-894 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) - (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) + (-12 (-5 *3 (-644 (-1181))) (-4 *4 (-1105)) + (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) - (-5 *1 (-1078 *3 *4 *2)) - (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) + (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) + (-5 *1 (-1079 *3 *4 *2)) + (-4 *2 (-13 (-425 *4) (-890 *3) (-617 (-894 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1104)) (-4 *5 (-1219)) - (-5 *1 (-894 *4 *5)))) + (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1105)) (-4 *5 (-1220)) + (-5 *1 (-895 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-893 *4)) (-5 *3 (-643 (-1 (-112) *5))) (-4 *4 (-1104)) - (-4 *5 (-1219)) (-5 *1 (-894 *4 *5)))) + (-12 (-5 *2 (-894 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1105)) + (-4 *5 (-1220)) (-5 *1 (-895 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-893 *5)) (-5 *3 (-643 (-1180))) (-5 *4 (-1 (-112) (-643 *6))) - (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *1 (-894 *5 *6)))) + (-12 (-5 *2 (-894 *5)) (-5 *3 (-644 (-1181))) (-5 *4 (-1 (-112) (-644 *6))) + (-4 *5 (-1105)) (-4 *6 (-1220)) (-5 *1 (-895 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) - (-5 *2 (-315 (-549))) (-5 *1 (-940 *5)))) + (-12 (-5 *3 (-1181)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1220)) + (-5 *2 (-316 (-550))) (-5 *1 (-941 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) - (-5 *2 (-315 (-549))) (-5 *1 (-940 *5)))) + (-12 (-5 *3 (-1181)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1220)) + (-5 *2 (-316 (-550))) (-5 *1 (-941 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1104)) - (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1220)) (-4 *4 (-1105)) + (-5 *1 (-942 *4 *2 *5)) (-4 *2 (-425 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1104)) - (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4)))) + (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1220)) (-4 *4 (-1105)) + (-5 *1 (-942 *4 *2 *5)) (-4 *2 (-425 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1 (-112) (-643 *6))) - (-4 *6 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-4 *4 (-1104)) - (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 *2))) - (-5 *2 (-893 *3)) (-5 *1 (-1078 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-889 *3) (-616 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) - (-5 *2 (-643 (-1180))) (-5 *1 (-1078 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-313)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-973)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-997)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1039)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) - (-4 *4 (-1074 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) - (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-1 (-112) (-644 *6))) + (-4 *6 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))) (-4 *4 (-1105)) + (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-1079 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 *2))) + (-5 *2 (-894 *3)) (-5 *1 (-1079 *3 *4 *5)) + (-4 *5 (-13 (-425 *4) (-890 *3) (-617 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1105)) (-4 *4 (-13 (-1053) (-890 *3) (-617 (-894 *3)))) + (-5 *2 (-644 (-1181))) (-5 *1 (-1079 *3 *4 *5)) + (-4 *5 (-13 (-425 *4) (-890 *3) (-617 (-894 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-314)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-974)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-998)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1040)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1077))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 *4)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) + (-4 *4 (-1075 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + (-12 (-5 *5 (-112)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *3 (-1069 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-1076 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) - (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) - (-4 *7 (-795)) (-4 *4 (-852)) - (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) - (-5 *1 (-1075 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1710 *9)))) (-5 *5 (-112)) + (-4 *8 (-1069 *6 *7 *4)) (-4 *9 (-1075 *6 *7 *4 *8)) (-4 *6 (-456)) + (-4 *7 (-796)) (-4 *4 (-853)) + (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1710 *9)))) + (-5 *1 (-1076 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) - (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1710 *4)))) + (-5 *1 (-1076 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6)) (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-3 (-112) (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-3 (-112) (-644 *1))) (-4 *1 (-1075 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *1)))) - (-4 *1 (-1074 *4 *5 *6 *3))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *1)))) + (-4 *1 (-1075 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-3 *3 (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-560)) (-4 *2 (-1052)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-3 *3 (-644 *1))) (-4 *1 (-1075 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-561)) (-4 *2 (-1053)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) - (-4 *1 (-1074 *4 *5 *6 *3))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *1)))) + (-4 *1 (-1075 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1075 *4 *5 *6 *7)) + (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) - (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-1069 *4 *5 *6)) + (-5 *2 (-644 *1)) (-4 *1 (-1075 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-649 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-12 (-4 *1 (-1072 *4 *3)) (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-1041 (-549))) (-4 *3 (-560)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-424 *3)))) + (-12 (-4 *3 (-1042 (-550))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-425 *3)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) + (-12 (-4 *4 (-173)) (-5 *2 (-1175 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1052)) (-4 *1 (-299)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) - ((*1 *2) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) (-4 *2 (-1245 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1174 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) - ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-643 *1)) - (-4 *1 (-1071 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1180)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-560)))) + ((*1 *1 *1) (-12 (-4 *1 (-1053)) (-4 *1 (-300)))) + ((*1 *2) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-1175 *3)))) + ((*1 *2) (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1246 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1072 *3 *2)) (-4 *3 (-13 (-851) (-366))) (-4 *2 (-1246 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 (-550))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-950 (-411 (-550)))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-1016)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175 (-550))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175 (-411 (-550)))) (-5 *2 (-644 *1)) (-4 *1 (-1016)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-1016)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-851) (-366))) (-4 *3 (-1246 *4)) (-5 *2 (-644 *1)) + (-4 *1 (-1072 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1181)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175 *2)) (-5 *4 (-1181)) (-4 *2 (-425 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-561)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-4 *1 (-1015)))) + (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-4 *1 (-1016)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-5 *4 (-865)) - (-4 *1 (-1015)))) + (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-5 *4 (-866)) + (-4 *1 (-1016)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-850) (-365))) - (-4 *1 (-1071 *4 *2)) (-4 *2 (-1245 *4))))) + (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-851) (-366))) + (-4 *1 (-1072 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1027 *3)) - (-4 *3 (-13 (-850) (-365) (-1023))))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-1028 *3)) + (-4 *3 (-13 (-851) (-366) (-1024))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) + (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1069))))) + (-12 (-4 *1 (-1072 *2 *3)) (-4 *2 (-13 (-851) (-366))) (-4 *3 (-1246 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1139))) (-5 *1 (-1070))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) - (-4 *5 (-1068 *3 *4 *2)) (-4 *2 (-852)))) + (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) + (-4 *5 (-1069 *3 *4 *2)) (-4 *2 (-853)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852))))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853))))) (((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-678)))) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-219)))) + ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-679)))) ((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) - (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) + (-4 *1 (-1069 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) - ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) + ((*1 *2 *1) (-12 (-4 *2 (-1053)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1181))))) ((*1 *2 *1) - (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) - (-14 *4 (-643 (-1180))))) - ((*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) + (-14 *4 (-644 (-1181))))) + ((*1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1105)) (-4 *2 (-1053)))) ((*1 *2 *1) - (-12 (-14 *3 (-643 (-1180))) (-4 *5 (-238 (-4389 *3) (-773))) + (-12 (-14 *3 (-644 (-1181))) (-4 *5 (-239 (-4391 *3) (-774))) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) - (-2 (|:| -2563 *4) (|:| -2564 *5)))) - (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-852)) - (-4 *7 (-953 *2 *5 (-866 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1104)))) - ((*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *3 (-728)))) - ((*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *3 (-794)) (-4 *4 (-852)) (-4 *2 (-1052)))) + (-1 (-112) (-2 (|:| -2565 *4) (|:| -2566 *5)) + (-2 (|:| -2565 *4) (|:| -2566 *5)))) + (-4 *2 (-173)) (-5 *1 (-465 *3 *2 *4 *5 *6 *7)) (-4 *4 (-853)) + (-4 *7 (-954 *2 *5 (-867 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-513 *2 *3)) (-4 *3 (-853)) (-4 *2 (-1105)))) + ((*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-626 *2 *3)) (-4 *3 (-1246 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1053)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1053)) (-5 *1 (-738 *2 *3)) (-4 *3 (-853)) (-4 *3 (-729)))) + ((*1 *2 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)))) + ((*1 *2 *1) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *3 (-795)) (-4 *4 (-853)) (-4 *2 (-1053)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852))))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-1053)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1246 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) - (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) + (-4 *1 (-1069 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) - (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) + (-4 *1 (-1069 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-12 (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + (-12 (-4 *1 (-1069 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) - (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) - (-4 *1 (-1068 *4 *5 *3)))) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) + (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -3305 *1))) + (-4 *1 (-1069 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) - (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -3305 *1))) + (-4 *1 (-1069 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -4386 *3) (|:| |gap| (-773)) (|:| -2152 (-783 *3)) - (|:| -3303 (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-1052)))) + (-2 (|:| -4388 *3) (|:| |gap| (-774)) (|:| -2154 (-784 *3)) + (|:| -3305 (-784 *3)))) + (-5 *1 (-784 *3)) (-4 *3 (-1053)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) - (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) - (-4 *1 (-1068 *4 *5 *3)))) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) + (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -2154 *1) (|:| -3305 *1))) + (-4 *1 (-1069 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) - (-4 *1 (-1068 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| -4388 *1) (|:| |gap| (-774)) (|:| -2154 *1) (|:| -3305 *1))) + (-4 *1 (-1069 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1053)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -3904 (-773)))) - (-5 *1 (-783 *3)) (-4 *3 (-1052)))) + (-5 *2 (-2 (|:| |polnum| (-784 *3)) (|:| |polden| *3) (|:| -3906 (-774)))) + (-5 *1 (-784 *3)) (-4 *3 (-1053)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3904 (-773)))) - (-4 *1 (-1068 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) - (-14 *4 (-643 *2)) (-4 *5 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) - (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) - (-14 *7 (-922)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1041 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (|partial| -3960 - (-12 (-5 *2 (-949 *3)) - (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 *3)) - (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) - (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 *3)) - (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) - ((*1 *1 *2) - (|partial| -3960 - (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) - (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) - (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) - (-14 *4 (-643 *2)) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3906 (-774)))) + (-4 *1 (-1069 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-950 (-381))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-411 (-950 (-381)))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-316 (-381))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-950 (-550))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-411 (-950 (-550)))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-316 (-550))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1181)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 *2)) + (-14 *4 (-644 *2)) (-4 *5 (-391)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-391)) (-5 *1 (-342 *3 *4 *5)) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-692 (-411 (-950 (-550))))) (-4 *1 (-388)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-692 (-411 (-950 (-381))))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-950 (-550)))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-950 (-381)))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-316 (-550)))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-692 (-316 (-381)))) (-4 *1 (-388)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-411 (-950 (-550)))) (-4 *1 (-401)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-411 (-950 (-381)))) (-4 *1 (-401)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-550))) (-4 *1 (-401)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-381))) (-4 *1 (-401)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-550))) (-4 *1 (-401)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-381))) (-4 *1 (-401)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1270 (-411 (-950 (-550))))) (-4 *1 (-445)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1270 (-411 (-950 (-381))))) (-4 *1 (-445)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-950 (-550)))) (-4 *1 (-445)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-950 (-381)))) (-4 *1 (-445)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-316 (-550)))) (-4 *1 (-445)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1270 (-316 (-381)))) (-4 *1 (-445)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-353)) (-4 *5 (-331 *4)) (-4 *6 (-1246 *5)) + (-5 *2 (-1175 (-1175 *4))) (-5 *1 (-780 *4 *5 *6 *3 *7)) (-4 *3 (-1246 *6)) + (-14 *7 (-923)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *1 (-980 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1042 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) + (|partial| -3962 + (-12 (-5 *2 (-950 *3)) + (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-3748 (-4 *3 (-38 (-550)))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 *3)) + (-12 (-3748 (-4 *3 (-549))) (-3748 (-4 *3 (-38 (-411 (-550))))) + (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 *3)) + (-12 (-3748 (-4 *3 (-995 (-550)))) (-4 *3 (-38 (-411 (-550)))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))))) + ((*1 *1 *2) + (|partial| -3962 + (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) + (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-950 (-411 (-550)))) (-4 *1 (-1069 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181))) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) + (-12 (-5 *2 (-950 (-381))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-411 (-950 (-381)))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-381))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-381))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-381))) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-950 (-550))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-411 (-950 (-550)))) (-5 *1 (-342 *3 *4 *5)) + (-4 *5 (-1042 (-550))) (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) + (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-550))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-1042 (-550))) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1181)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 *2)) + (-14 *4 (-644 *2)) (-4 *5 (-391)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 *5)) (-4 *5 (-391)) (-5 *1 (-342 *3 *4 *5)) + (-14 *3 (-644 (-1181))) (-14 *4 (-644 (-1181))))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-411 (-950 (-550))))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-411 (-950 (-381))))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-950 (-550)))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-950 (-381)))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-316 (-550)))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-692 (-316 (-381)))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-550)))) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-411 (-950 (-381)))) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-950 (-550))) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-950 (-381))) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-550))) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-381))) (-4 *1 (-401)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-411 (-950 (-550))))) (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-411 (-950 (-381))))) (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-950 (-550)))) (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-950 (-381)))) (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-316 (-550)))) (-4 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 (-316 (-381)))) (-4 *1 (-445)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (|:| |mdnia| - (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-771)))) + (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) + (-5 *1 (-772)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-810)))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *1 (-811)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| - (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) - (-5 *1 (-843)))) + (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) + (-5 *1 (-844)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-643 (-315 (-225)))) + (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| - (-643 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) - (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) - (|:| |dFinish| (-691 (-225)))))) - (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) - (|:| |tol| (-225)))) - (-5 *1 (-901)))) - ((*1 *1 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-3960 - (-12 (-5 *2 (-949 *3)) - (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 *3)) - (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) - (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 *3)) - (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) - ((*1 *1 *2) - (-3960 - (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) - (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) - (-4 *5 (-616 (-1180)))) - (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) - (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852))))) - ((*1 *1 *2) - (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) - (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852))))) + (-644 + (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) + (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) + (|:| |dFinish| (-692 (-226)))))) + (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) + (|:| |tol| (-226)))) + (-5 *1 (-902)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *1 (-980 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-1220)))) + ((*1 *1 *2) + (-3962 + (-12 (-5 *2 (-950 *3)) + (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-3748 (-4 *3 (-38 (-550)))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 *3)) + (-12 (-3748 (-4 *3 (-549))) (-3748 (-4 *3 (-38 (-411 (-550))))) + (-4 *3 (-38 (-550))) (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 *3)) + (-12 (-3748 (-4 *3 (-995 (-550)))) (-4 *3 (-38 (-411 (-550)))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *1 (-1069 *3 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853))))) + ((*1 *1 *2) + (-3962 + (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) + (-12 (-3748 (-4 *3 (-38 (-411 (-550))))) (-4 *3 (-38 (-550))) + (-4 *5 (-617 (-1181)))) + (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853))) + (-12 (-5 *2 (-950 (-550))) (-4 *1 (-1069 *3 *4 *5)) + (-12 (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181)))) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853))))) + ((*1 *1 *2) + (-12 (-5 *2 (-950 (-411 (-550)))) (-4 *1 (-1069 *3 *4 *5)) + (-4 *3 (-38 (-411 (-550)))) (-4 *5 (-617 (-1181))) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) + (-2 (|:| -3566 (-784 *3)) (|:| |coef1| (-784 *3)) (|:| |coef2| (-784 *3)))) + (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| -3566 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1069 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-2 (|:| -3566 (-784 *3)) (|:| |coef1| (-784 *3)))) + (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1))) (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| -3566 *1) (|:| |coef1| *1))) (-4 *1 (-1069 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-2 (|:| -3566 (-784 *3)) (|:| |coef2| (-784 *3)))) + (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-2 (|:| -3564 *1) (|:| |coef2| *1))) (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-2 (|:| -3566 *1) (|:| |coef2| *1))) (-4 *1 (-1069 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5))))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-644 *1)) (-4 *1 (-1069 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) - (-4 *5 (-852)) (-4 *3 (-560))))) + (-12 (-5 *2 (-774)) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) + (-4 *5 (-853)) (-4 *3 (-561))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) - (-4 *5 (-852)) (-4 *3 (-560))))) + (-12 (-5 *2 (-774)) (-4 *1 (-1069 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) + (-4 *5 (-853)) (-4 *3 (-561))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) - ((*1 *1 *1 *1) (-4 *1 (-455))) - ((*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-561))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-456)))) + ((*1 *1 *1 *1) (-4 *1 (-456))) + ((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-490 *2)) (-4 *2 (-1246 (-550))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-699 *2)) (-4 *2 (-1246 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) - (-4 *2 (-953 *5 *3 *4)))) + (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *2)) + (-4 *2 (-954 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *6 *4 *5)) (-5 *1 (-920 *4 *5 *6 *2)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1175 *6)) (-4 *6 (-954 *5 *3 *4)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-1174 *7))) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) - (-5 *2 (-1174 *7)) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-922))) + (-12 (-5 *3 (-644 (-1175 *7))) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) + (-5 *2 (-1175 *7)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-923))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-455)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) + (-12 (-4 *3 (-456)) (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455))))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456))))) (((*1 *1 *1) - (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *2 (-455))))) -(((*1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1) (-5 *1 (-1066)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-380)) (-5 *1 (-1066))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1066)) (-5 *3 (-1162))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1066))))) -(((*1 *1) (-5 *1 (-1066)))) + (-12 (-4 *1 (-1069 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *2 (-456))))) +(((*1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1) (-5 *1 (-1067)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-381)) (-5 *1 (-1067))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-381)) (-5 *1 (-1067))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-381)) (-5 *1 (-1067))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-1067)) (-5 *3 (-1163))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1067))))) +(((*1 *1) (-5 *1 (-1067)))) (((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-1066))))) -(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1065)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1065))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) - ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) + (|partial| -12 (-5 *2 (-1163)) (-5 *3 (-550)) (-5 *1 (-1067))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1066)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-1066))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-853)))) + ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) - (-4 *3 (-238 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1220)) (-5 *2 (-774)) (-5 *1 (-238 *3 *4 *5)) + (-4 *3 (-239 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) (-5 *2 (-773)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)) (-5 *2 (-774)))) ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) - ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) (-5 *2 (-773)))) + (-12 (-4 *4 (-366)) (-5 *2 (-774)) (-5 *1 (-330 *3 *4)) (-4 *3 (-331 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-364 *3)) (-4 *3 (-1105)))) + ((*1 *2) (-12 (-4 *1 (-371)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-1105)) (-5 *2 (-774)))) ((*1 *2) - (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) + (-12 (-4 *4 (-1105)) (-5 *2 (-774)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) + (-12 (-5 *2 (-774)) (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-773)) (-5 *1 (-725 *3 *4 *5)) - (-4 *3 (-726 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) + (-12 (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-774)) (-5 *1 (-726 *3 *4 *5)) + (-4 *3 (-727 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-408 *4) *4)) (-4 *4 (-560)) (-5 *2 (-408 *4)) - (-5 *1 (-422 *4)))) - ((*1 *1 *1) (-5 *1 (-928))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) - ((*1 *1 *1) (-5 *1 (-930))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) + (-12 (-5 *3 (-1 (-409 *4) *4)) (-4 *4 (-561)) (-5 *2 (-409 *4)) + (-5 *1 (-423 *4)))) + ((*1 *1 *1) (-5 *1 (-929))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) + ((*1 *1 *1) (-5 *1 (-931))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) - (-5 *4 (-410 (-549))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) + (-12 (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) + (-5 *4 (-411 (-550))) (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) - (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) + (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) - (-5 *4 (-410 (-549))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) + (-12 (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) + (-5 *4 (-411 (-550))) (-5 *1 (-1026 *3)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) - (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))))) + (-5 *2 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) + (-5 *1 (-1026 *3)) (-4 *3 (-1246 (-411 (-550)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-13 (-851) (-366))) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-850) (-365))) (-5 *2 (-112)) (-5 *1 (-1064 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-851) (-366))) (-5 *2 (-112)) (-5 *1 (-1065 *4 *3)) + (-4 *3 (-1246 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-614 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-614 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-643 (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-644 (-614 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-614 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-168 *2))))) + (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) + (-4 *3 (-1246 (-169 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) + (-12 (-5 *2 (-923)) (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)))) + ((*1 *2 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-366)))) + ((*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1246 *2)) (-4 *2 (-173)))) ((*1 *2 *1) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) - (-4 *3 (-308)) (-4 *5 (-13 (-413 *2 *4) (-1041 *2))))) + (-12 (-4 *4 (-1246 *2)) (-4 *2 (-995 *3)) (-5 *1 (-417 *3 *2 *4 *5)) + (-4 *3 (-309)) (-4 *5 (-13 (-414 *2 *4) (-1042 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-418 *3 *2 *4 *5 *6)) - (-4 *3 (-308)) (-4 *5 (-413 *2 *4)) (-14 *6 (-1269 *5)))) + (-12 (-4 *4 (-1246 *2)) (-4 *2 (-995 *3)) (-5 *1 (-419 *3 *2 *4 *5 *6)) + (-4 *3 (-309)) (-4 *5 (-414 *2 *4)) (-14 *6 (-1270 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *5 (-1052)) - (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) - (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-498)))) (-5 *1 (-498)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) + (-12 (-5 *4 (-923)) (-4 *5 (-1053)) + (-4 *2 (-13 (-408) (-1042 *5) (-366) (-1206) (-286))) + (-5 *1 (-447 *5 *3 *2)) (-4 *3 (-1246 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-614 (-499)))) (-5 *1 (-499)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-614 (-499))) (-5 *1 (-499)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-643 (-613 (-498)))) (-5 *1 (-498)))) + (-12 (-5 *2 (-1175 (-499))) (-5 *3 (-644 (-614 (-499)))) (-5 *1 (-499)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) + (-12 (-5 *2 (-1175 (-499))) (-5 *3 (-614 (-499))) (-5 *1 (-499)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-726 *4 *2)) (-4 *2 (-1245 *4)) - (-5 *1 (-777 *4 *2 *5 *3)) (-4 *3 (-1245 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1063)))) -(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548)))) - ((*1 *1 *1) (-4 *1 (-1063)))) -(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548)))) - ((*1 *1 *1) (-4 *1 (-1063)))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-549))))) -(((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490)))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) - ((*1 *1 *1) (-4 *1 (-1063)))) -(((*1 *1 *1) (-4 *1 (-1063)))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-923)) (-4 *4 (-353)) (-5 *1 (-532 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-456)) (-4 *5 (-727 *4 *2)) (-4 *2 (-1246 *4)) + (-5 *1 (-778 *4 *2 *5 *3)) (-4 *3 (-1246 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173)))) + ((*1 *1 *1) (-4 *1 (-1064)))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-549)))) + ((*1 *1 *1) (-4 *1 (-1064)))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-549)))) + ((*1 *1 *1) (-4 *1 (-1064)))) +(((*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-309)))) + ((*1 *2 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-309)))) + ((*1 *2 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-491)))) + ((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561)) (-4 *2 (-309)))) + ((*1 *2 *1) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550)))) + ((*1 *1 *1) (-4 *1 (-1064)))) +(((*1 *1 *1) (-4 *1 (-1064)))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) + (-12 (-4 *4 (-173)) (-5 *2 (-774)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) - (-4 *3 (-238 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1220)) (-5 *2 (-774)) (-5 *1 (-238 *3 *4 *5)) + (-4 *3 (-239 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) - ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-547 *3)) (-4 *3 (-548)))) - ((*1 *2) (-12 (-4 *1 (-765)) (-5 *2 (-773)))) + (-12 (-4 *4 (-1105)) (-5 *2 (-774)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) + ((*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-548 *3)) (-4 *3 (-549)))) + ((*1 *2) (-12 (-4 *1 (-766)) (-5 *2 (-774)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4)))) + (-12 (-4 *4 (-173)) (-5 *2 (-774)) (-5 *1 (-798 *3 *4)) (-4 *3 (-799 *4)))) ((*1 *2) - (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))) + (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-994 *3 *4)) (-4 *3 (-995 *4)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-1000 *3 *4)) (-4 *3 (-1001 *4)))) - ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1014 *3)) (-4 *3 (-1015)))) - ((*1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-773)))) - ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1062 *3)) (-4 *3 (-1063))))) + (-12 (-4 *4 (-173)) (-5 *2 (-774)) (-5 *1 (-1001 *3 *4)) (-4 *3 (-1002 *4)))) + ((*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1015 *3)) (-4 *3 (-1016)))) + ((*1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-774)))) + ((*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1063 *3)) (-4 *3 (-1064))))) (((*1 *1 *2) - (-12 (-5 *2 (-691 *5)) (-4 *5 (-1052)) (-5 *1 (-1057 *3 *4 *5)) - (-14 *3 (-773)) (-14 *4 (-773))))) + (-12 (-5 *2 (-692 *5)) (-4 *5 (-1053)) (-5 *1 (-1058 *3 *4 *5)) + (-14 *3 (-774)) (-14 *4 (-774))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-865)))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1053)) (-4 *1 (-689 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-866)))) (-5 *1 (-866)))) ((*1 *2 *1) - (-12 (-5 *2 (-1145 *3 *4)) (-5 *1 (-996 *3 *4)) (-14 *3 (-922)) - (-4 *4 (-365)))) + (-12 (-5 *2 (-1146 *3 *4)) (-5 *1 (-997 *3 *4)) (-14 *3 (-923)) + (-4 *4 (-366)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 (-643 *5))) (-4 *5 (-1052)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))) + (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1053)) (-4 *1 (-1057 *3 *4 *5 *6 *7)) + (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-549)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-550))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-549)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-550))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-549)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-550))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-549)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-550)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-550))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-773)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-773))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-774))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-773)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-5 *2 (-773))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-5 *2 (-774))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) - (-4 *5 (-374 *2)) (-4 *2 (-1219)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1220)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-773)) (-4 *2 (-1104)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) + (-12 (-5 *3 (-774)) (-4 *2 (-1105)) (-5 *1 (-214 *4 *2)) (-14 *4 (-923)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1220)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) - (-4 *7 (-238 *4 *2)) (-4 *2 (-1052))))) + (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) + (-4 *7 (-239 *4 *2)) (-4 *2 (-1053))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) - (-4 *2 (-374 *4)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1220)) (-4 *5 (-375 *4)) + (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *2 *7)) (-4 *6 (-1052)) - (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) + (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *6 *2 *7)) (-4 *6 (-1053)) + (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) - (-4 *2 (-374 *4)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1220)) (-4 *5 (-375 *4)) + (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *7 *2)) (-4 *6 (-1052)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) + (-12 (-5 *3 (-550)) (-4 *1 (-1057 *4 *5 *6 *7 *2)) (-4 *6 (-1053)) + (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + (-12 (-4 *3 (-366)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-525 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) - (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)))) + (-12 (-4 *4 (-561)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-995 *4)) + (-4 *2 (-689 *7 *8 *9)) (-5 *1 (-526 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-689 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)) (-4 *2 (-308)))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-309)))) ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) + (-12 (-4 *3 (-309)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) - (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) + (-12 (-4 *1 (-1057 *2 *3 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-239 *3 *4)) + (-4 *6 (-239 *2 *4)) (-4 *4 (-309))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 *2) - (-4 *5 (-172)))) + (-12 (-5 *2 (-774)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) (-14 *4 *2) + (-4 *5 (-173)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) + (-12 (-4 *4 (-173)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-923)))) ((*1 *2) - (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-922)))) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-923)))) ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) - (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *4 (-366)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-774)) + (-5 *1 (-525 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) - (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-773)) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) + (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-5 *2 (-774)) + (-5 *1 (-670 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-773)) - (-5 *1 (-670 *5)))) + (-12 (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)) (-4 *5 (-366)) (-5 *2 (-774)) + (-5 *1 (-671 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-561)) (-5 *2 (-774)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-774)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-774))))) (((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) - (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *4 (-366)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-774)) + (-5 *1 (-525 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-561)) (-5 *2 (-774)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-774)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-774))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4426)) (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *2 (-643 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (|has| *6 (-6 -4428)) (-4 *4 (-366)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-644 *6)) (-5 *1 (-525 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4426)) (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-4 *7 (-994 *4)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)) (-5 *2 (-643 *6)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) - (-4 *10 (-688 *7 *8 *9)))) + (-12 (|has| *9 (-6 -4428)) (-4 *4 (-561)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-995 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) + (-5 *1 (-526 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-689 *4 *5 *6)) + (-4 *10 (-689 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-643 *5)))) + (-12 (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-561)) (-5 *2 (-644 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *2 (-643 *6)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-644 *6)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-689 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-643 *7))))) + (-12 (-4 *1 (-1057 *3 *4 *5 *6 *7)) (-4 *5 (-1053)) (-4 *6 (-239 *4 *5)) + (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-644 *7))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060)))) - ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) - ((*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060))))) + ((*1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1061)))) + ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) + ((*1 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1061))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1238 *4 *5)) (-5 *3 (-643 *5)) (-14 *4 (-1180)) (-4 *5 (-365)) - (-5 *1 (-925 *4 *5)))) + (-12 (-5 *2 (-1239 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1181)) (-4 *5 (-366)) + (-5 *1 (-926 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) (-5 *1 (-925 *4 *5)) - (-14 *4 (-1180)))) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-366)) (-5 *2 (-1175 *5)) (-5 *1 (-926 *4 *5)) + (-14 *4 (-1181)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-773)) (-4 *6 (-365)) (-5 *2 (-410 (-949 *6))) - (-5 *1 (-1053 *5 *6)) (-14 *5 (-1180))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1050))))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-774)) (-4 *6 (-366)) (-5 *2 (-411 (-950 *6))) + (-5 *1 (-1054 *5 *6)) (-14 *5 (-1181))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1051))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1051))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1051))))) (((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)) - (-5 *3 (-549))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1100 *4)) (-4 *4 (-1104)) (-5 *2 (-1 *4)) (-5 *1 (-1020 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) -(((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-408 (-949 *4)))) - (-5 *1 (-1046 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-550))) (-5 *1 (-1051)) + (-5 *3 (-550))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1105)) (-5 *2 (-1 *4)) (-5 *1 (-1021 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1045)) (-5 *3 (-381)))) + ((*1 *2 *3) (-12 (-5 *3 (-1093 (-550))) (-5 *2 (-1 (-550))) (-5 *1 (-1051))))) +(((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-309)) (-5 *2 (-411 (-409 (-950 *4)))) + (-5 *1 (-1047 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1 (-381))) (-5 *1 (-1045))))) (((*1 *1 *2) - (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3) - (-5 *1 (-320 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-380)) (-5 *1 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) + (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-366)) (-14 *4 (-1181)) (-14 *5 *3) + (-5 *1 (-321 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1045)) (-5 *3 (-381))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1045)) (-5 *3 (-381))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-381)) (-5 *1 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1045))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) - (-4 *2 (-13 (-424 *5) (-27) (-1205))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1104)))) + (-12 (-5 *3 (-1175 (-411 (-1175 *2)))) (-5 *4 (-614 *2)) + (-4 *2 (-13 (-425 *5) (-27) (-1206))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1105)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1174 *1)) (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) - (-4 *5 (-795)) (-4 *3 (-852)))) + (-12 (-5 *2 (-1175 *1)) (-4 *1 (-954 *4 *5 *3)) (-4 *4 (-1053)) + (-4 *5 (-796)) (-4 *3 (-853)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1052)) (-4 *1 (-953 *4 *5 *3)) - (-4 *5 (-795)) (-4 *3 (-852)))) + (-12 (-5 *2 (-1175 *4)) (-4 *4 (-1053)) (-4 *1 (-954 *4 *5 *3)) + (-4 *5 (-796)) (-4 *3 (-853)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) + (-12 (-5 *3 (-411 (-1175 *2))) (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-1053)) (-4 *2 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) - (-5 *1 (-954 *5 *4 *6 *7 *2)) (-4 *7 (-953 *6 *5 *4)))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))) + (-5 *1 (-955 *5 *4 *6 *7 *2)) (-4 *7 (-954 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-1174 (-410 (-949 *5))))) (-5 *4 (-1180)) - (-5 *2 (-410 (-949 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-560))))) + (-12 (-5 *3 (-411 (-1175 (-411 (-950 *5))))) (-5 *4 (-1181)) + (-5 *2 (-411 (-950 *5))) (-5 *1 (-1044 *5)) (-4 *5 (-561))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-613 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) (-4 *4 (-560)) - (-5 *2 (-410 (-1174 *1))))) + (-12 (-5 *3 (-614 *1)) (-4 *1 (-425 *4)) (-4 *4 (-1105)) (-4 *4 (-561)) + (-5 *2 (-411 (-1175 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-564 *6 *3 *7)) (-5 *5 (-1174 *3)) - (-4 *7 (-1104)))) + (-12 (-5 *4 (-614 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-1175 (-411 (-1175 *3)))) (-5 *1 (-565 *6 *3 *7)) (-5 *5 (-1175 *3)) + (-4 *7 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1266 *5)) (-14 *5 (-1180)) (-4 *6 (-1052)) - (-5 *2 (-1238 *5 (-949 *6))) (-5 *1 (-951 *5 *6)) (-5 *3 (-949 *6)))) + (-12 (-5 *4 (-1267 *5)) (-14 *5 (-1181)) (-4 *6 (-1053)) + (-5 *2 (-1239 *5 (-950 *6))) (-5 *1 (-952 *5 *6)) (-5 *3 (-950 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-1174 *3)))) + (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-1175 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-1174 *1)) - (-4 *1 (-953 *4 *5 *3)))) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-5 *2 (-1175 *1)) + (-4 *1 (-954 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *5 *4)) - (-5 *2 (-410 (-1174 *3))) (-5 *1 (-954 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *5 *4)) + (-5 *2 (-411 (-1175 *3))) (-5 *1 (-955 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1174 *3)) + (-12 (-5 *2 (-1175 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) - (-4 *7 (-953 *6 *5 *4)) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) - (-5 *1 (-954 *5 *4 *6 *7 *3)))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))) + (-4 *7 (-954 *6 *5 *4)) (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-1053)) + (-5 *1 (-955 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-410 (-1174 (-410 (-949 *5))))) - (-5 *1 (-1043 *5)) (-5 *3 (-410 (-949 *5)))))) + (-12 (-5 *4 (-1181)) (-4 *5 (-561)) (-5 *2 (-411 (-1175 (-411 (-950 *5))))) + (-5 *1 (-1044 *5)) (-5 *3 (-411 (-950 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) - (-4 *2 (-852)))) + (|partial| -12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) + (-4 *2 (-853)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-795)) (-4 *5 (-1052)) (-4 *6 (-953 *5 *4 *2)) - (-4 *2 (-852)) (-5 *1 (-954 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-796)) (-4 *5 (-1053)) (-4 *6 (-954 *5 *4 *2)) + (-4 *2 (-853)) (-5 *1 (-955 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *6)) (-15 -3399 (*6 $)) (-15 -3398 (*6 $))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *6)) (-15 -3401 (*6 $)) (-15 -3400 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-1180)) - (-5 *1 (-1043 *4))))) + (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-5 *2 (-1181)) + (-5 *1 (-1044 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) - (-5 *2 (-643 (-1180))) (-5 *1 (-268)))) + (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) + (-5 *2 (-644 (-1181))) (-5 *1 (-269)))) ((*1 *2 *3) - (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1052)) (-5 *2 (-643 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1175 *7)) (-4 *7 (-954 *6 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1053)) (-5 *2 (-644 *5)) (-5 *1 (-323 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-390)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-1180))))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-342 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-391)))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-5 *2 (-644 (-1181))))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-643 *5)))) + (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-644 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) - (-5 *2 (-643 *5)) (-5 *1 (-954 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) (-4 *7 (-954 *6 *4 *5)) + (-5 *2 (-644 *5)) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) - (-5 *2 (-643 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-1180))) - (-5 *1 (-1043 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) - (-4 *6 (-13 (-560) (-1041 *5))) (-4 *5 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *6)))))) (-5 *1 (-1042 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1205))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-564 *5 *6 *7)) (-5 *3 (-1174 *6)) - (-4 *7 (-1104)))) - ((*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) - ((*1 *2 *1) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-795)) (-4 *5 (-853)) + (-5 *2 (-644 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-5 *2 (-644 (-1181))) + (-5 *1 (-1044 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-950 *6))) (-5 *4 (-644 (-1181))) + (-4 *6 (-13 (-561) (-1042 *5))) (-4 *5 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *6)))))) (-5 *1 (-1043 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1039))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1039))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-614 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1206))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-1175 (-411 (-1175 *6)))) (-5 *1 (-565 *5 *6 *7)) (-5 *3 (-1175 *6)) + (-4 *7 (-1105)))) + ((*1 *2 *1) (-12 (-4 *2 (-1246 *3)) (-5 *1 (-715 *3 *2)) (-4 *3 (-1053)))) + ((*1 *2 *1) (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1246 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-643 *10)) (-5 *7 (-643 (-773))) - (-5 *8 (-643 *11)) (-4 *10 (-852)) (-4 *11 (-308)) (-4 *9 (-795)) - (-4 *5 (-953 *11 *9 *10)) (-5 *2 (-643 (-1174 *5))) - (-5 *1 (-744 *9 *10 *11 *5)) (-5 *3 (-1174 *5)))) + (|partial| -12 (-5 *4 (-1175 *11)) (-5 *6 (-644 *10)) (-5 *7 (-644 (-774))) + (-5 *8 (-644 *11)) (-4 *10 (-853)) (-4 *11 (-309)) (-4 *9 (-796)) + (-4 *5 (-954 *11 *9 *10)) (-5 *2 (-644 (-1175 *5))) + (-5 *1 (-745 *9 *10 *11 *5)) (-5 *3 (-1175 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-953 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *3 (-365)) - (-4 *4 (-795)) (-4 *5 (-852)) (-14 *6 (-643 *2))))) + (-12 (-4 *2 (-954 *3 *4 *5)) (-5 *1 (-1038 *3 *4 *5 *2 *6)) (-4 *3 (-366)) + (-4 *4 (-796)) (-4 *5 (-853)) (-14 *6 (-644 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-922)) (-5 *1 (-1035 *2)) - (-4 *2 (-13 (-1104) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-923)) (-5 *1 (-1036 *2)) + (-4 *2 (-13 (-1105) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-922)) (-5 *1 (-1034 *2)) - (-4 *2 (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)))))))) + (-12 (-5 *3 (-923)) (-5 *1 (-1035 *2)) + (-4 *2 (-13 (-1105) (-10 -8 (-15 -4273 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-1269 *5))) (-5 *4 (-549)) (-5 *2 (-1269 *5)) - (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052))))) + (-12 (-5 *3 (-644 (-1270 *5))) (-5 *4 (-550)) (-5 *2 (-1270 *5)) + (-5 *1 (-1034 *5)) (-4 *5 (-366)) (-4 *5 (-371)) (-4 *5 (-1053))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-365)) (-4 *6 (-370)) - (-4 *6 (-1052)) (-5 *2 (-643 (-643 (-691 *6)))) (-5 *1 (-1033 *6)) - (-5 *3 (-643 (-691 *6))))) + (-12 (-5 *4 (-112)) (-5 *5 (-550)) (-4 *6 (-366)) (-4 *6 (-371)) + (-4 *6 (-1053)) (-5 *2 (-644 (-644 (-692 *6)))) (-5 *1 (-1034 *6)) + (-5 *3 (-644 (-692 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1052)) - (-5 *2 (-643 (-643 (-691 *4)))) (-5 *1 (-1033 *4)) - (-5 *3 (-643 (-691 *4))))) + (-12 (-4 *4 (-366)) (-4 *4 (-371)) (-4 *4 (-1053)) + (-5 *2 (-644 (-644 (-692 *4)))) (-5 *1 (-1034 *4)) + (-5 *3 (-644 (-692 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) - (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) - (-5 *3 (-643 (-691 *5))))) + (-12 (-5 *4 (-112)) (-4 *5 (-366)) (-4 *5 (-371)) (-4 *5 (-1053)) + (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) + (-5 *3 (-644 (-692 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) - (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) - (-5 *3 (-643 (-691 *5)))))) + (-12 (-5 *4 (-923)) (-4 *5 (-366)) (-4 *5 (-371)) (-4 *5 (-1053)) + (-5 *2 (-644 (-644 (-692 *5)))) (-5 *1 (-1034 *5)) + (-5 *3 (-644 (-692 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-4 *5 (-365)) (-4 *5 (-1052)) - (-5 *2 (-112)) (-5 *1 (-1033 *5)))) + (-12 (-5 *3 (-644 (-692 *5))) (-5 *4 (-550)) (-4 *5 (-366)) (-4 *5 (-1053)) + (-5 *2 (-112)) (-5 *1 (-1034 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-4 *4 (-1052)) (-5 *2 (-112)) - (-5 *1 (-1033 *4))))) + (-12 (-5 *3 (-644 (-692 *4))) (-4 *4 (-366)) (-4 *4 (-1053)) (-5 *2 (-112)) + (-5 *1 (-1034 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-643 (-691 *6))) (-5 *4 (-112)) (-5 *5 (-549)) (-5 *2 (-691 *6)) - (-5 *1 (-1033 *6)) (-4 *6 (-365)) (-4 *6 (-1052)))) + (-12 (-5 *3 (-644 (-692 *6))) (-5 *4 (-112)) (-5 *5 (-550)) (-5 *2 (-692 *6)) + (-5 *1 (-1034 *6)) (-4 *6 (-366)) (-4 *6 (-1053)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-5 *1 (-1033 *4)) - (-4 *4 (-365)) (-4 *4 (-1052)))) + (-12 (-5 *3 (-644 (-692 *4))) (-5 *2 (-692 *4)) (-5 *1 (-1034 *4)) + (-4 *4 (-366)) (-4 *4 (-1053)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-5 *2 (-691 *5)) - (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-1052))))) + (-12 (-5 *3 (-644 (-692 *5))) (-5 *4 (-550)) (-5 *2 (-692 *5)) + (-5 *1 (-1034 *5)) (-4 *5 (-366)) (-4 *5 (-1053))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) - (-4 *5 (-1052)) (-5 *2 (-691 *5)) (-5 *1 (-1033 *5))))) + (-12 (-5 *3 (-644 (-692 *5))) (-5 *4 (-1270 *5)) (-4 *5 (-309)) + (-4 *5 (-1053)) (-5 *2 (-692 *5)) (-5 *1 (-1034 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-691 *5))) (-4 *5 (-308)) (-4 *5 (-1052)) - (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1033 *5)) (-5 *4 (-1269 *5))))) + (-12 (-5 *3 (-644 (-692 *5))) (-4 *5 (-309)) (-4 *5 (-1053)) + (-5 *2 (-1270 (-1270 *5))) (-5 *1 (-1034 *5)) (-5 *4 (-1270 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-4 *4 (-1052)) - (-5 *1 (-1033 *4))))) + (-12 (-5 *3 (-644 (-692 *4))) (-5 *2 (-692 *4)) (-4 *4 (-1053)) + (-5 *1 (-1034 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1052)) (-5 *2 (-691 *4)) - (-5 *1 (-1033 *4))))) + (-12 (-5 *3 (-1270 (-1270 *4))) (-4 *4 (-1053)) (-5 *2 (-692 *4)) + (-5 *1 (-1034 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-549))) (-5 *4 (-549)) (-5 *2 (-691 *4)) - (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) + (-12 (-5 *3 (-906 (-550))) (-5 *4 (-550)) (-5 *2 (-692 *4)) + (-5 *1 (-1033 *5)) (-4 *5 (-1053)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1032 *4)) - (-4 *4 (-1052)))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-692 (-550))) (-5 *1 (-1033 *4)) + (-4 *4 (-1053)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-905 (-549)))) (-5 *4 (-549)) (-5 *2 (-643 (-691 *4))) - (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) + (-12 (-5 *3 (-644 (-906 (-550)))) (-5 *4 (-550)) (-5 *2 (-644 (-692 *4))) + (-5 *1 (-1033 *5)) (-4 *5 (-1053)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-643 (-549)))) (-5 *2 (-643 (-691 (-549)))) - (-5 *1 (-1032 *4)) (-4 *4 (-1052))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) + (-12 (-5 *3 (-644 (-644 (-550)))) (-5 *2 (-644 (-692 (-550)))) + (-5 *1 (-1033 *4)) (-4 *4 (-1053))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3))))) + (-12 (-5 *2 (-644 (-692 *3))) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-1033 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-692 *3))) (-4 *3 (-1053)) (-5 *1 (-1033 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) + (-12 (-5 *2 (-692 *4)) (-5 *3 (-923)) (-4 *4 (-1053)) (-5 *1 (-1033 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (-4 *4 (-1052)) - (-5 *1 (-1032 *4))))) + (-12 (-5 *2 (-644 (-692 *4))) (-5 *3 (-923)) (-4 *4 (-1053)) + (-5 *1 (-1033 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-691 (-949 *4))) (-5 *1 (-1032 *4)) - (-4 *4 (-1052))))) + (-12 (-5 *3 (-774)) (-5 *2 (-692 (-950 *4))) (-5 *1 (-1033 *4)) + (-4 *4 (-1053))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) - (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) + (-12 (-5 *2 (-692 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4429 "*"))) + (-4 *4 (-1053)) (-5 *1 (-1033 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) - (-4 *4 (-1052)) (-5 *1 (-1032 *4))))) + (-12 (-5 *2 (-644 (-692 *4))) (-5 *3 (-923)) (|has| *4 (-6 (-4429 "*"))) + (-4 *4 (-1053)) (-5 *1 (-1033 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) - (-5 *1 (-1031))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031))))) -(((*1 *2 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031))))) + (-12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-692 (-316 (-550))))) + (-5 *1 (-1032))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-692 (-316 (-550))))) (-5 *1 (-1032))))) +(((*1 *2 *2) (-12 (-5 *2 (-692 (-316 (-550)))) (-5 *1 (-1032))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-691 (-410 (-949 (-549))))) - (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031))))) + (|partial| -12 (-5 *3 (-692 (-411 (-950 (-550))))) + (-5 *2 (-692 (-316 (-550)))) (-5 *1 (-1032))))) (((*1 *2 *3) - (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-315 (-549)))) - (-5 *1 (-1031))))) + (-12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-316 (-550)))) + (-5 *1 (-1032))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) - (-5 *1 (-1031)) (-5 *3 (-315 (-549)))))) + (-12 (-5 *4 (-692 (-411 (-950 (-550))))) (-5 *2 (-644 (-692 (-316 (-550))))) + (-5 *1 (-1032)) (-5 *3 (-316 (-550)))))) (((*1 *2 *3) - (-12 (-5 *3 (-691 (-410 (-949 (-549))))) + (-12 (-5 *3 (-692 (-411 (-950 (-550))))) (-5 *2 - (-643 - (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) - (|:| |radvect| (-643 (-691 (-315 (-549)))))))) - (-5 *1 (-1031))))) -(((*1 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219))))) + (-644 + (-2 (|:| |radval| (-316 (-550))) (|:| |radmult| (-550)) + (|:| |radvect| (-644 (-692 (-316 (-550)))))))) + (-5 *1 (-1032))))) +(((*1 *1 *2) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1030 *2)) (-4 *2 (-1220))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1219))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1028 *3 *2)) (-4 *2 (-660 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3687 *3) (|:| -2902 (-643 *5)))) - (-5 *1 (-1028 *5 *3)) (-5 *4 (-643 *5)) (-4 *3 (-660 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1030 *3)) (-4 *3 (-1220))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-1029 *3 *2)) (-4 *2 (-661 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-366)) (-5 *2 (-2 (|:| -3689 *3) (|:| -2904 (-644 *5)))) + (-5 *1 (-1029 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-661 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1064 (-1027 *4) (-1174 (-1027 *4)))) (-5 *3 (-865)) - (-5 *1 (-1027 *4)) (-4 *4 (-13 (-850) (-365) (-1023)))))) + (-12 (-5 *2 (-1065 (-1028 *4) (-1175 (-1028 *4)))) (-5 *3 (-866)) + (-5 *1 (-1028 *4)) (-4 *4 (-13 (-851) (-366) (-1024)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1064 (-1027 *3) (-1174 (-1027 *3)))) - (-5 *1 (-1027 *3)) (-4 *3 (-13 (-850) (-365) (-1023)))))) + (|partial| -12 (-5 *2 (-1065 (-1028 *3) (-1175 (-1028 *3)))) + (-5 *1 (-1028 *3)) (-4 *3 (-13 (-851) (-366) (-1024)))))) (((*1 *2 *3) - (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) + (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) - (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) + (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))) + (-5 *4 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-410 (-549))))) + (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))) (-5 *4 (-411 (-550))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) - (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) - (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5))))) + (-12 (-5 *5 (-411 (-550))) (-5 *2 (-644 (-2 (|:| -3544 *5) (|:| -3543 *5)))) + (-5 *1 (-1025 *3)) (-4 *3 (-1246 (-550))) + (-5 *4 (-2 (|:| -3544 *5) (|:| -3543 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))))) + (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *1 (-1026 *3)) (-4 *3 (-1246 (-411 (-550)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))) - (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) + (-12 (-5 *2 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *1 (-1026 *3)) (-4 *3 (-1246 (-411 (-550)))) + (-5 *4 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *4) (|:| -3541 *4)))) - (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) + (-12 (-5 *4 (-411 (-550))) (-5 *2 (-644 (-2 (|:| -3544 *4) (|:| -3543 *4)))) + (-5 *1 (-1026 *3)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) - (-5 *1 (-1025 *3)) (-4 *3 (-1245 *5)) - (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5)))))) + (-12 (-5 *5 (-411 (-550))) (-5 *2 (-644 (-2 (|:| -3544 *5) (|:| -3543 *5)))) + (-5 *1 (-1026 *3)) (-4 *3 (-1246 *5)) + (-5 *4 (-2 (|:| -3544 *5) (|:| -3543 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *2 (-643 (-410 (-549)))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549)))))) + (-12 (-5 *3 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *2 (-644 (-411 (-550)))) (-5 *1 (-1025 *4)) (-4 *4 (-1246 (-550)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) - (-5 *2 (-410 (-549))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549)))))) + (-12 (-5 *3 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550))))) + (-5 *2 (-411 (-550))) (-5 *1 (-1025 *4)) (-4 *4 (-1246 (-550)))))) (((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-55)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-113)))) + (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) (-4 *4 (-425 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-55)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-774)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-113)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-158 *3 *4)) (-4 *4 (-424 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-113)) (-5 *1 (-163)))) + (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) (-4 *4 (-425 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-113)) (-5 *1 (-163)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-277 *3 *4)) - (-4 *4 (-13 (-424 *3) (-1005))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-298 *3)) (-4 *3 (-299)))) - ((*1 *2 *2) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) + (-4 *4 (-13 (-425 *3) (-1006))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-299 *3)) (-4 *3 (-300)))) + ((*1 *2 *2) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-1104)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) + (-12 (-5 *2 (-113)) (-4 *4 (-1105)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-434 *3 *4)) (-4 *4 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-435 *3 *4)) (-4 *4 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-631 *3 *4)) - (-4 *4 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022))))) + (-12 (-5 *2 (-113)) (-4 *3 (-561)) (-5 *1 (-632 *3 *4)) + (-4 *4 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1023))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-549))) (-5 *5 (-549)) (-4 *6 (-1104)) - (-5 *2 (-1 *6)) (-5 *1 (-1020 *6))))) + (-12 (-5 *3 (-1270 *6)) (-5 *4 (-1270 (-550))) (-5 *5 (-550)) (-4 *6 (-1105)) + (-5 *2 (-1 *6)) (-5 *1 (-1021 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| -3826 *4) (|:| -1623 (-549))))) (-4 *4 (-1104)) - (-5 *2 (-1 *4)) (-5 *1 (-1020 *4))))) + (-12 (-5 *3 (-644 (-2 (|:| -3828 *4) (|:| -1625 (-550))))) (-4 *4 (-1105)) + (-5 *2 (-1 *4)) (-5 *1 (-1021 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) - (-5 *2 (-643 (-410 *5))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-410 *5))))) + (|partial| -12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) + (-5 *2 (-644 (-411 *5))) (-5 *1 (-1020 *4 *5)) (-5 *3 (-411 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) - (|:| |c2| (-410 *6)) (|:| -3497 *6))) - (-5 *1 (-1019 *5 *6)) (-5 *3 (-410 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-411 *6)) (|:| |h| *6) (|:| |c1| (-411 *6)) + (|:| |c2| (-411 *6)) (|:| -3499 *6))) + (-5 *1 (-1020 *5 *6)) (-5 *3 (-411 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) - (-4 *6 (-13 (-365) (-147) (-1041 *4))) (-5 *4 (-549)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1246 *6)) + (-4 *6 (-13 (-366) (-147) (-1042 *4))) (-5 *4 (-550)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3687 + (|:| -3689 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-1018 *6 *3))))) + (-5 *1 (-1019 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5))))) + (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) + (-5 *2 (-2 (|:| |ans| (-411 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1019 *4 *5)) (-5 *3 (-411 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -3497 *6))) - (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-411 *6)) (|:| |c| (-411 *6)) (|:| -3499 *6))) + (-5 *1 (-1019 *5 *6)) (-5 *3 (-411 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1180)) + (|partial| -12 (-5 *5 (-1181)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-643 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1205) (-27) (-424 *8))) - (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) - (-5 *2 (-643 *4)) (-5 *1 (-1017 *8 *4))))) + *4 (-644 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2320 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1206) (-27) (-425 *8))) + (-4 *8 (-13 (-456) (-147) (-1042 *3) (-642 *3))) (-5 *3 (-550)) + (-5 *2 (-644 *4)) (-5 *1 (-1018 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1180)) + (-12 (-5 *5 (-1181)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-643 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1205) (-27) (-424 *8))) - (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1016 *8 *4))))) + *4 (-644 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2320 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1206) (-27) (-425 *8))) + (-4 *8 (-13 (-456) (-147) (-1042 *3) (-642 *3))) (-5 *3 (-550)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3543 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1017 *8 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) - ((*1 *1 *1) (-4 *1 (-1005))) ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1015)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1015)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-922)))) - ((*1 *1 *1) (-4 *1 (-1015)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1015)) (-5 *2 (-865))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865))))) -(((*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-549))))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550)))) + ((*1 *1 *1) (-4 *1 (-1006))) ((*1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-4 *1 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-923)))) + ((*1 *1 *1) (-4 *1 (-1016)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1016)) (-5 *2 (-866))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1016))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1016))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-866))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-866))))) +(((*1 *2 *1) (-12 (-4 *3 (-1220)) (-5 *2 (-644 *1)) (-4 *1 (-1014 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-644 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-5 *2 (-550))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-643 *1)) (|has| *1 (-6 -4426)) (-4 *1 (-1013 *3)) - (-4 *3 (-1219))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219))))) + (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4428)) (-4 *1 (-1014 *3)) + (-4 *3 (-1220))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-1014 *2)) (-4 *2 (-1220))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-549))))) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-549)) + (-5 *2 (-411 (-550))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) - (-4 *3 (-560)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) + (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-409 *3)) (-4 *3 (-549)) + (-4 *3 (-561)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-549)) (-5 *2 (-411 (-550))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-549))))) + (|partial| -12 (-4 *1 (-799 *3)) (-4 *3 (-173)) (-4 *3 (-549)) + (-5 *2 (-411 (-550))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) - (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-835 *3)) (-4 *3 (-549)) + (-4 *3 (-1105)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) - (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-845 *3)) (-4 *3 (-549)) + (-4 *3 (-1105)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-549))))) + (|partial| -12 (-4 *1 (-1002 *3)) (-4 *3 (-173)) (-4 *3 (-549)) + (-5 *2 (-411 (-550))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2))))) + (|partial| -12 (-5 *2 (-411 (-550))) (-5 *1 (-1012 *3)) (-4 *3 (-1042 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-409 *3)) (-4 *3 (-549)) (-4 *3 (-561)))) + ((*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + (-12 (-4 *1 (-799 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1002 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1041 (-410 (-549))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1012 *3)) (-4 *3 (-1042 (-411 (-550))))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-409 *3)) (-4 *3 (-549)) (-4 *3 (-561)))) + ((*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-411 (-550))))) ((*1 *2 *1) - (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) + (-12 (-4 *1 (-799 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-835 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-845 *3)) (-4 *3 (-549)) (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) - ((*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009))))) -(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1009))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) - ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009))))) + (-12 (-4 *1 (-1002 *3)) (-4 *3 (-173)) (-4 *3 (-549)) (-5 *2 (-411 (-550))))) + ((*1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-1012 *3)) (-4 *3 (-1042 *2))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010))))) +(((*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-1010))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-1010))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-549))) (-5 *4 (-549)) (-5 *2 (-51)) (-5 *1 (-1008))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) + (-12 (-5 *3 (-411 (-550))) (-5 *4 (-550)) (-5 *2 (-51)) (-5 *1 (-1009))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-1008 *3)) (-14 *3 (-550))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-408 *5)) (-4 *5 (-560)) - (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *5) (|:| |radicand| (-643 *5)))) - (-5 *1 (-321 *5)) (-5 *4 (-773)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-549))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1003 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-476))) - ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-886)))) - ((*1 *1 *1) (-5 *1 (-974))) - ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) + (-12 (-5 *3 (-409 *5)) (-4 *5 (-561)) + (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *5) (|:| |radicand| (-644 *5)))) + (-5 *1 (-322 *5)) (-5 *4 (-774)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1006)) (-5 *2 (-550))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-1004 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) + ((*1 *1 *1 *1) (-4 *1 (-477))) + ((*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-887)))) + ((*1 *1 *1) (-5 *1 (-975))) + ((*1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-173))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1220))))) (((*1 *1 *2) - (-12 (-5 *2 (-1145 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) - (-5 *1 (-996 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1146 *3 *4)) (-14 *3 (-923)) (-4 *4 (-366)) + (-5 *1 (-997 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) - (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) + (-12 (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *6)) + (-5 *1 (-417 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1042 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) + (-12 (-4 *3 (-1053)) (-4 *3 (-1105)) (-5 *2 (-1129 *3 (-614 *1))) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-499)))) (-5 *1 (-499)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-728) *3)))) + (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-729) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-719 *3)) (-5 *1 (-654 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-728) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-173)) (-4 *2 (-720 *3)) (-5 *1 (-655 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-729) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) - (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3))))) + (-12 (-4 *3 (-995 *2)) (-4 *4 (-1246 *3)) (-4 *2 (-309)) + (-5 *1 (-417 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1042 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) + (-12 (-4 *3 (-561)) (-4 *3 (-1105)) (-5 *2 (-1129 *3 (-614 *1))) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129 (-550) (-614 (-499)))) (-5 *1 (-499)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) - (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-729) *4)) + (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) - (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-1052)))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-560)))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) + (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-729) *4)) + (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-720 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561))))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)) (-4 *2 (-1053)))) + ((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561))))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105)) (-4 *2 (-561)))) + ((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) - ((*1 *1) (-4 *1 (-370))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353)))) + ((*1 *1) (-4 *1 (-371))) ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) - ((*1 *1 *1) (-4 *1 (-548))) ((*1 *1) (-4 *1 (-548))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) + (-12 (-5 *3 (-923)) (-5 *2 (-1270 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353)))) + ((*1 *1 *1) (-4 *1 (-549))) ((*1 *1) (-4 *1 (-549))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1) (-12 (-5 *2 (-906 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) - ((*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-560))))) + (-12 (-5 *3 (-550)) (-5 *2 (-906 *4)) (-5 *1 (-909 *4)) (-4 *4 (-1105)))) + ((*1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-549)) (-4 *2 (-561))))) (((*1 *2 *2) (-12 (-5 *2 - (-989 (-410 (-549)) (-866 *3) (-239 *4 (-773)) (-247 *3 (-410 (-549))))) - (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-990 *3 *4))))) + (-990 (-411 (-550)) (-867 *3) (-240 *4 (-774)) (-248 *3 (-411 (-550))))) + (-14 *3 (-644 (-1181))) (-14 *4 (-774)) (-5 *1 (-991 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-643 *3)) (-4 *3 (-953 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-852)) - (-4 *6 (-795)) (-5 *1 (-989 *4 *5 *6 *3))))) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-954 *4 *6 *5)) (-4 *4 (-456)) (-4 *5 (-853)) + (-4 *6 (-796)) (-5 *1 (-990 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-852)) - (-4 *5 (-795)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-456)) (-4 *4 (-853)) + (-4 *5 (-796)) (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-643 *6)) - (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4))))) + (-12 (-4 *3 (-456)) (-4 *4 (-853)) (-4 *5 (-796)) (-5 *2 (-644 *6)) + (-5 *1 (-990 *3 *4 *5 *6)) (-4 *6 (-954 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) - (-4 *4 (-852)) (-4 *5 (-795))))) + (-12 (-4 *2 (-954 *3 *5 *4)) (-5 *1 (-990 *3 *4 *5 *2)) (-4 *3 (-456)) + (-4 *4 (-853)) (-4 *5 (-796))))) (((*1 *1 *1) - (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *4 *3))))) + (-12 (-4 *2 (-456)) (-4 *3 (-853)) (-4 *4 (-796)) (-5 *1 (-990 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-988 *4 *2 *3 *5)) - (-4 *4 (-352)) (-4 *5 (-726 *2 *3))))) + (-12 (-4 *3 (-1246 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-989 *4 *2 *3 *5)) + (-4 *4 (-353)) (-4 *5 (-727 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) - (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) - (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) + (-12 (-4 *4 (-796)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) + (-4 *5 (-561)) (-5 *1 (-735 *4 *3 *5 *2)) + (-4 *2 (-954 (-411 (-950 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) - (-15 -4263 ((-3 $ #1="failed") (-1180)))))) - (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3)))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) + (-15 -4265 ((-3 $ #1="failed") (-1181)))))) + (-5 *1 (-988 *4 *5 *3 *2)) (-4 *2 (-954 (-950 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *6)) + (-12 (-5 *3 (-644 *6)) (-4 *6 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) - (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) - (-4 *2 (-953 (-949 *4) *5 *6))))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1#) (-1181)))))) + (-4 *4 (-1053)) (-4 *5 (-796)) (-5 *1 (-988 *4 *5 *6 *2)) + (-4 *2 (-954 (-950 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) - (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) - (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) + (-12 (-4 *4 (-796)) (-4 *3 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) + (-4 *5 (-561)) (-5 *1 (-735 *4 *3 *5 *2)) + (-4 *2 (-954 (-411 (-950 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) - (-15 -4263 ((-3 $ #1="failed") (-1180)))))) - (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3)))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) + (-15 -4265 ((-3 $ #1="failed") (-1181)))))) + (-5 *1 (-988 *4 *5 *3 *2)) (-4 *2 (-954 (-950 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *6)) + (-12 (-5 *3 (-644 *6)) (-4 *6 - (-13 (-852) - (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) - (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) - (-4 *2 (-953 (-949 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) + (-13 (-853) + (-10 -8 (-15 -4404 ((-1181) $)) (-15 -4265 ((-3 $ #1#) (-1181)))))) + (-4 *4 (-1053)) (-4 *5 (-796)) (-5 *1 (-988 *4 *5 *6 *2)) + (-4 *2 (-954 (-950 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-987 *2)) (-4 *2 (-1206))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-773)) (-4 *1 (-986 *2)) (-4 *2 (-1205))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) - (-5 *2 (-643 (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5))))) (-5 *1 (-981 *5)) - (-5 *3 (-691 *5)) (-5 *4 (-1269 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-5 *1 (-701)))) + (|partial| -12 (-5 *3 (-774)) (-4 *1 (-987 *2)) (-4 *2 (-1206))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-877)))) + ((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-877)))) + ((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 *2)) (-5 *1 (-986 *2)) (-4 *2 (-1053))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-366)) + (-5 *2 (-644 (-2 (|:| C (-692 *5)) (|:| |g| (-1270 *5))))) (-5 *1 (-982 *5)) + (-5 *3 (-692 *5)) (-5 *4 (-1270 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-923)) (-5 *1 (-702)))) ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-691 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-5 *1 (-981 *5))))) + (-12 (-5 *2 (-692 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-366)) + (-5 *1 (-982 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *2)))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-366)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-451 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) - (-5 *2 (-2 (|:| R (-691 *6)) (|:| A (-691 *6)) (|:| |Ainv| (-691 *6)))) - (-5 *1 (-981 *6)) (-5 *3 (-691 *6))))) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-366)) + (-5 *2 (-2 (|:| R (-692 *6)) (|:| A (-692 *6)) (|:| |Ainv| (-692 *6)))) + (-5 *1 (-982 *6)) (-5 *3 (-692 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) - (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-309)) + (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) - (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-309)) + (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) - (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-309)) + (-4 *3 (-561)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) - (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-456)) (-4 *3 (-561)) + (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) - (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-456)) + (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) + (-12 (-4 *4 (-456)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-5 *2 (-644 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *1 (-980 *5 *6 *7 *8))))) + (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *1 (-981 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-643 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) - (-4 *8 (-852)) (-5 *1 (-980 *6 *7 *8 *9))))) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1069 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-796)) + (-4 *8 (-853)) (-5 *1 (-981 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -3748 (-643 *7)))) - (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) + (|partial| -12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-480 *4 *5 *6 *7)) (|:| -3750 (-644 *7)))) + (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *2))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) - (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) - (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) + (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) - (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-316 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) + ((*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) - (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) + (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) - (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) - (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) + (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) - (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-1069 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-981 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) - (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) - (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) + (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) + (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-981 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) - (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) - (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) + (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) + (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-981 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) - (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) - (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1069 *5 *6 *7)) (-4 *5 (-561)) + (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-981 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-1068 *5 *6 *7)) - (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-112)) - (-5 *1 (-980 *5 *6 *7 *8))))) + (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-1069 *5 *6 *7)) + (-4 *5 (-561)) (-4 *6 (-796)) (-4 *7 (-853)) (-5 *2 (-112)) + (-5 *1 (-981 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) - (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *3)) + (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-643 *3)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *3)))) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *1 (-981 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-643 *7) (-643 *7))) (-5 *2 (-643 *7)) - (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) - (-5 *1 (-980 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) + (-4 *7 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) + (-5 *1 (-981 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) - (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) + (-12 (-4 *4 (-561)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-644 *3)) + (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-1069 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-981 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5))))) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-644 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *5 *3 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) - (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112))))) + (-12 (-4 *1 (-980 *4 *5 *3 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) + (-4 *6 (-1069 *4 *5 *3)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *5 (-1068 *3 *4 *2))))) + (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *5 (-1069 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *5 (-1068 *3 *4 *2))))) + (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *5 (-1069 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *5 (-1068 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + (-12 (-4 *1 (-980 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *5 (-1069 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1220)) (-4 *2 (-853)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1220)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3534 *1) (|:| |upper| *1))) - (-4 *1 (-979 *4 *5 *3 *6))))) + (-12 (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) (-4 *6 (-1069 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3536 *1) (|:| |upper| *1))) + (-4 *1 (-980 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) + (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) + (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *3 (-1069 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560))))) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560))))) -(((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-643 (-643 (-946 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-643 (-643 (-946 (-225)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) -(((*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) -(((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) - ((*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) - ((*1 *2 *1) - (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561))))) +(((*1 *2 *1) + (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1069 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-644 (-644 (-947 (-226))))))) + ((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-644 (-644 (-947 (-226)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1093 (-226))))) + ((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1093 (-226)))))) +(((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1093 (-226))))) + ((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1093 (-226)))))) +(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1093 (-226)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) + ((*1 *2 *1) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-1105)))) + ((*1 *2 *1) + (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *6 (-239 (-4391 *3) (-774))) (-14 *7 - (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) - (-2 (|:| -2563 *5) (|:| -2564 *6)))) - (-5 *2 (-715 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-852)) - (-4 *8 (-953 *4 *6 (-866 *3))))) + (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *6)) + (-2 (|:| -2565 *5) (|:| -2566 *6)))) + (-5 *2 (-716 *5 *6 *7)) (-5 *1 (-465 *3 *4 *5 *6 *7 *8)) (-4 *5 (-853)) + (-4 *8 (-954 *4 *6 (-867 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-728)) (-4 *2 (-852)) (-5 *1 (-737 *3 *2)) (-4 *3 (-1052)))) + (-12 (-4 *2 (-729)) (-4 *2 (-853)) (-5 *1 (-738 *3 *2)) (-4 *3 (-1053)))) ((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *4 (-853))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-643 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) - (-4 *2 (-365)) (-14 *5 (-996 *4 *2)))) + (-12 (-5 *3 (-644 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) + (-4 *2 (-366)) (-14 *5 (-997 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-715 *5 *6 *7)) (-4 *5 (-852)) (-4 *6 (-238 (-4389 *4) (-773))) + (-12 (-5 *3 (-716 *5 *6 *7)) (-4 *5 (-853)) (-4 *6 (-239 (-4391 *4) (-774))) (-14 *7 - (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) - (-2 (|:| -2563 *5) (|:| -2564 *6)))) - (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-953 *2 *6 (-866 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852)))) + (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *6)) + (-2 (|:| -2565 *5) (|:| -2566 *6)))) + (-14 *4 (-644 (-1181))) (-4 *2 (-173)) (-5 *1 (-465 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-954 *2 *6 (-867 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-853)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-728)))) + (-12 (-5 *3 (-550)) (-4 *2 (-561)) (-5 *1 (-626 *2 *4)) (-4 *4 (-1246 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-711 *2)) (-4 *2 (-1053)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-738 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-729)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) - (-4 *4 (-1052)) (-4 *5 (-852)))) + (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-774))) (-4 *1 (-743 *4 *5)) + (-4 *4 (-1053)) (-4 *5 (-853)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + (-12 (-5 *3 (-774)) (-4 *1 (-743 *4 *2)) (-4 *4 (-1053)) (-4 *2 (-853)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-855 *2)) (-4 *2 (-1053)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) - (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-774))) (-4 *1 (-954 *4 *5 *6)) + (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *6 (-853)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) - (-4 *2 (-852)))) + (-12 (-5 *3 (-774)) (-4 *1 (-954 *4 *5 *2)) (-4 *4 (-1053)) (-4 *5 (-796)) + (-4 *2 (-853)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 *5)) (-4 *1 (-976 *4 *5 *6)) - (-4 *4 (-1052)) (-4 *5 (-794)) (-4 *6 (-852)))) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-977 *4 *5 *6)) + (-4 *4 (-1053)) (-4 *5 (-795)) (-4 *6 (-853)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-976 *4 *3 *2)) (-4 *4 (-1052)) (-4 *3 (-794)) (-4 *2 (-852))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) + (-12 (-4 *1 (-977 *4 *3 *2)) (-4 *4 (-1053)) (-4 *3 (-795)) (-4 *2 (-853))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1053)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-795)) (-4 *5 (-853)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) - ((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-4 *1 (-872 *2))) +(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-309)))) + ((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550)))) + ((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1) (-4 *1 (-873 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-974))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-795)) (-4 *4 (-853))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-975))))) (((*1 *2 *3) - (-12 (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-974)) (-5 *3 (-643 (-549)))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-974))))) + (-12 (-5 *2 (-644 (-644 (-550)))) (-5 *1 (-975)) (-5 *3 (-644 (-550)))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-975))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4190 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *4 (-561)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4190 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3))))) + (-12 (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-773)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3))))) + (-12 (-5 *4 (-774)) (-4 *3 (-561)) (-5 *1 (-973 *3 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *2 (-560)) (-5 *1 (-972 *2 *4)) (-4 *4 (-1245 *2))))) + (-12 (-5 *3 (-774)) (-4 *2 (-561)) (-5 *1 (-973 *2 *4)) (-4 *4 (-1246 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-308)))) + (-12 (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-309)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-388 *3)))) + (|partial| -12 (-4 *3 (-1105)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-389 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2152 (-773)) (|:| -3303 (-773)))) (-5 *1 (-773)))) + (-12 (-5 *2 (-2 (|:| -2154 (-774)) (|:| -3305 (-774)))) (-5 *1 (-774)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-560)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3279 *4))) (-5 *1 (-972 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-456)) (-4 *4 (-561)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3281 *4))) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-560)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3279 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-456)) (-4 *4 (-561)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3281 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-560)) (-4 *2 (-455)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-561)) (-4 *2 (-456)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 (-773))) (-5 *1 (-972 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-644 (-774))) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-972 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-644 *3)) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4189 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4191 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4189 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4191 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3564 *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3566 *3))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3564 *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3566 *3))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3564 *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3566 *3))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-560)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) - (-4 *3 (-1245 *5))))) + (-12 (-5 *4 (-774)) (-4 *5 (-561)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *5 *3)) + (-4 *3 (-1246 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-560)) + (-12 (-5 *4 (-774)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5))))) + (-5 *1 (-973 *5 *3)) (-4 *3 (-1246 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4))))) + (-12 (-5 *3 (-774)) (-4 *4 (-561)) (-5 *1 (-973 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-560)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) - (-4 *3 (-1245 *5))))) + (-12 (-5 *4 (-774)) (-4 *5 (-561)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-973 *5 *3)) + (-4 *3 (-1246 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-560)) + (-12 (-5 *4 (-774)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5))))) + (-5 *1 (-973 *5 *3)) (-4 *3 (-1246 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4))))) + (-12 (-5 *3 (-774)) (-4 *4 (-561)) (-5 *1 (-973 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4188 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4190 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4190 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-560)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) - (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-561)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4190 *4))) + (-5 *1 (-973 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *1) - (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) - (-3746 (|has| *1 (-6 -4408))))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852)))) - ((*1 *1) (-4 *1 (-846))) ((*1 *1 *1 *1) (-4 *1 (-852))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + (-12 (-4 *1 (-408)) (-3748 (|has| *1 (-6 -4418))) + (-3748 (|has| *1 (-6 -4410))))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1105)) (-4 *2 (-853)))) + ((*1 *1) (-4 *1 (-847))) ((*1 *1 *1 *1) (-4 *1 (-853))) + ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-853))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)) (-4 *2 (-853)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852))))) -(((*1 *1) (-4 *1 (-970)))) -(((*1 *1) (-4 *1 (-970)))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *1) (-4 *1 (-970)))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *1) (-4 *1 (-970)))) -(((*1 *1 *1 *1) (-4 *1 (-970)))) -(((*1 *1 *1 *1) (-4 *1 (-970)))) -(((*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-969 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-693 (-969 *3))) (-5 *1 (-969 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) - (-4 *3 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) - (-4 *3 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) - (-4 *3 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) - (-4 *3 (-1104))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-775))) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-775)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-968))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-967 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *3 *2)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-865)))) - ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-966))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-643 *3)) (-5 *1 (-965 *3)) (-4 *3 (-548))))) -(((*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548))))) -(((*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548))))) -(((*1 *1) (-4 *1 (-352))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-560) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-643 (-1174 *5))) - (|:| |prim| (-1174 *5)))) - (-5 *1 (-435 *4 *5)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-853))))) +(((*1 *1) (-4 *1 (-971)))) +(((*1 *1) (-4 *1 (-971)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *1) (-4 *1 (-971)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *1) (-4 *1 (-971)))) +(((*1 *1 *1 *1) (-4 *1 (-971)))) +(((*1 *1 *1 *1) (-4 *1 (-971)))) +(((*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-970 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-694 (-970 *3))) (-5 *1 (-970 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) + (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) + (-4 *3 (-1105))))) +(((*1 *2 *1) + (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) + (-4 *3 (-1105))))) +(((*1 *2 *1) + (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) + (-4 *3 (-1105))))) +(((*1 *2 *1) + (-12 (-5 *2 (-694 (-876 (-970 *3) (-970 *3)))) (-5 *1 (-970 *3)) + (-4 *3 (-1105))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-970 *2)) (-4 *2 (-1105))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-970 *2)) (-4 *2 (-1105))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-776))) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-776)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-1107)) (-5 *1 (-969))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-968 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-968 *2 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-4 *2 (-1105)) (-5 *1 (-968 *3 *2)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-866)))) + ((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1276)) (-5 *1 (-967))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-644 *3)) (-5 *1 (-966 *3)) (-4 *3 (-549))))) +(((*1 *2 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-549))))) +(((*1 *2 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-549))))) +(((*1 *1) (-4 *1 (-353))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-561) (-147))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1175 *5))) + (|:| |prim| (-1175 *5)))) + (-5 *1 (-436 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-560) (-147))) + (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) (|:| |pol2| (-1174 *3)) - (|:| |prim| (-1174 *3)))) - (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1175 *3)) (|:| |pol2| (-1175 *3)) + (|:| |prim| (-1175 *3)))) + (-5 *1 (-436 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-949 *5)) (-5 *4 (-1180)) (-4 *5 (-13 (-365) (-147))) + (-12 (-5 *3 (-950 *5)) (-5 *4 (-1181)) (-4 *5 (-13 (-366) (-147))) (-5 *2 - (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 *5)))) - (-5 *1 (-964 *5)))) + (-2 (|:| |coef1| (-550)) (|:| |coef2| (-550)) (|:| |prim| (-1175 *5)))) + (-5 *1 (-965 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) - (-4 *5 (-13 (-365) (-147))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-644 (-1181))) + (-4 *5 (-13 (-366) (-147))) (-5 *2 - (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *5))) - (|:| |prim| (-1174 *5)))) - (-5 *1 (-964 *5)))) + (-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 *5))) + (|:| |prim| (-1175 *5)))) + (-5 *1 (-965 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-5 *5 (-1180)) - (-4 *6 (-13 (-365) (-147))) + (-12 (-5 *3 (-644 (-950 *6))) (-5 *4 (-644 (-1181))) (-5 *5 (-1181)) + (-4 *6 (-13 (-366) (-147))) (-5 *2 - (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *6))) - (|:| |prim| (-1174 *6)))) - (-5 *1 (-964 *6))))) + (-2 (|:| -4388 (-644 (-550))) (|:| |poly| (-644 (-1175 *6))) + (|:| |prim| (-1175 *6)))) + (-5 *1 (-965 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *1 (-586 *2)) (-4 *2 (-1041 *3)) (-4 *2 (-365)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365)))) + (-12 (-5 *3 (-1181)) (-5 *1 (-587 *2)) (-4 *2 (-1042 *3)) (-4 *2 (-366)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-366)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-631 *4 *2)) - (-4 *2 (-13 (-424 *4) (-1005) (-1205))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-632 *4 *2)) + (-4 *2 (-13 (-425 *4) (-1006) (-1206))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) - (-4 *4 (-560)) (-5 *1 (-631 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-1180)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-963))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-922)) (-4 *5 (-560)) (-5 *2 (-691 *5)) - (-5 *1 (-960 *5 *3)) (-4 *3 (-660 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-957))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *3 (-953 *7 *5 *6)) - (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| (-643 *3)))) - (-5 *1 (-956 *5 *6 *7 *3 *8)) (-5 *4 (-773)) + (-12 (-5 *3 (-1096 *2)) (-4 *2 (-13 (-425 *4) (-1006) (-1206))) + (-4 *4 (-561)) (-5 *1 (-632 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 *1)) (-4 *1 (-964))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-923)) (-4 *5 (-561)) (-5 *2 (-692 *5)) + (-5 *1 (-961 *5 *3)) (-4 *3 (-661 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-958))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-561)) (-4 *3 (-954 *7 *5 *6)) + (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *3) (|:| |radicand| (-644 *3)))) + (-5 *1 (-957 *5 *6 *7 *3 *8)) (-5 *4 (-774)) (-4 *8 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *3)) (-15 -3399 (*3 $)) (-15 -3398 (*3 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *3)) (-15 -3401 (*3 $)) (-15 -3400 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) - (-4 *8 (-953 *7 *5 *6)) - (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *3))) - (-5 *1 (-956 *5 *6 *7 *8 *3)) (-5 *4 (-773)) + (-12 (-4 *7 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-561)) + (-4 *8 (-954 *7 *5 *6)) + (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *3) (|:| |radicand| *3))) + (-5 *1 (-957 *5 *6 *7 *8 *3)) (-5 *4 (-774)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *8)) (-15 -3401 (*8 $)) (-15 -3400 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-549))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) - (-4 *8 (-953 *7 *5 *6)) - (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *9) (|:| |radicand| *9))) - (-5 *1 (-956 *5 *6 *7 *8 *9)) (-5 *4 (-773)) + (-12 (-5 *3 (-411 (-550))) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-561)) + (-4 *8 (-954 *7 *5 *6)) + (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *9) (|:| |radicand| *9))) + (-5 *1 (-957 *5 *6 *7 *8 *9)) (-5 *4 (-774)) (-4 *9 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *8)) (-15 -3401 (*8 $)) (-15 -3400 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-560)) (-4 *7 (-953 *3 *5 *6)) - (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *8) (|:| |radicand| *8))) - (-5 *1 (-956 *5 *6 *3 *7 *8)) (-5 *4 (-773)) + (-12 (-4 *5 (-796)) (-4 *6 (-853)) (-4 *3 (-561)) (-4 *7 (-954 *3 *5 *6)) + (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *8) (|:| |radicand| *8))) + (-5 *1 (-957 *5 *6 *3 *7 *8)) (-5 *4 (-774)) (-4 *8 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1104)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) + (|partial| -12 (-4 *3 (-1053)) (-4 *3 (-1105)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2566 (-550)))) (-4 *1 (-425 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-893 *3)))) - (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2566 (-894 *3)))) + (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) - (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2564 (-549)))) - (-5 *1 (-954 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) + (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2566 (-550)))) + (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-1052)) (-4 *4 (-1104)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) + (|partial| -12 (-5 *3 (-1181)) (-4 *4 (-1053)) (-4 *4 (-1105)) + (-5 *2 (-2 (|:| |var| (-614 *1)) (|:| -2566 (-550)))) (-4 *1 (-425 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1052)) (-4 *4 (-1104)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1053)) (-4 *4 (-1105)) + (-5 *2 (-2 (|:| |var| (-614 *1)) (|:| -2566 (-550)))) (-4 *1 (-425 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) + (|partial| -12 (-4 *3 (-1116)) (-4 *3 (-1105)) + (-5 *2 (-2 (|:| |var| (-614 *1)) (|:| -2566 (-550)))) (-4 *1 (-425 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-773)))) - (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2566 (-774)))) + (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-773)))))) + (|partial| -12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *2 (-2 (|:| |var| *5) (|:| -2566 (-774)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) - (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-549)))) - (-5 *1 (-954 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) + (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2566 (-550)))) + (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) - (-4 *1 (-424 *3)))) + (|partial| -12 (-4 *3 (-1116)) (-4 *3 (-1105)) (-5 *2 (-644 *1)) + (-4 *1 (-425 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-644 *1)) (-4 *1 (-954 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) - (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) + (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) - (-4 *1 (-424 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1105)) (-5 *2 (-644 *1)) + (-4 *1 (-425 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-644 *1)) (-4 *1 (-954 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) - (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1053)) + (-4 *7 (-954 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-955 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-386 *3 *4)))) + (-12 (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-644 *1)) (-4 *1 (-387 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-737 *3 *4))) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) - (-4 *4 (-728)))) + (-12 (-5 *2 (-644 (-738 *3 *4))) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) + (-4 *4 (-729)))) ((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) - (-4 *1 (-953 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) - ((*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) + (-4 *1 (-954 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-1053)) (-4 *2 (-795)))) + ((*1 *2 *1) (-12 (-4 *1 (-711 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-4 *3 (-1053)) (-5 *2 (-774)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-643 (-773))))) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-644 (-774))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) - (-5 *2 (-773))))) + (-12 (-4 *1 (-954 *4 *5 *3)) (-4 *4 (-1053)) (-4 *5 (-796)) (-4 *3 (-853)) + (-5 *2 (-774))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-773)))) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1053)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-773))))) + (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-774))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) - (-4 *1 (-953 *3 *4 *5))))) + (-12 (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *1)) + (-4 *1 (-954 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)) (-4 *2 (-455)))) + (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)) (-4 *2 (-456)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-1245 (-549))) (-5 *2 (-643 (-549))) - (-5 *1 (-489 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1246 (-550))) (-5 *2 (-644 (-550))) + (-5 *1 (-490 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-456)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) - (-4 *3 (-455))))) + (-12 (-4 *1 (-954 *3 *4 *2)) (-4 *3 (-1053)) (-4 *4 (-796)) (-4 *2 (-853)) + (-4 *3 (-456))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-549)) (-4 *5 (-850)) (-4 *5 (-365)) - (-5 *2 (-773)) (-5 *1 (-948 *5 *6)) (-4 *6 (-1245 *5))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-550)) (-4 *5 (-851)) (-4 *5 (-366)) + (-5 *2 (-774)) (-5 *1 (-949 *5 *6)) (-4 *6 (-1246 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-850)) (-4 *4 (-365)) (-5 *2 (-773)) - (-5 *1 (-948 *4 *5)) (-4 *5 (-1245 *4))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-851)) (-4 *4 (-366)) (-5 *2 (-774)) + (-5 *1 (-949 *4 *5)) (-4 *5 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-850)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *2 (-366)) (-4 *2 (-851)) (-5 *1 (-949 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-366)) (-5 *2 (-644 *3)) (-5 *1 (-949 *4 *3)) + (-4 *3 (-1246 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) - (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) - (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-484 *4 *5)) - (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-947 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) - (-5 *2 (-484 *4 *5)) (-5 *1 (-947 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-549)) (-5 *1 (-945))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-191)) (-5 *3 (-549)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549)))) - ((*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) + (-12 (-4 *4 (-366)) (-5 *2 (-644 *3)) (-5 *1 (-949 *4 *3)) + (-4 *3 (-1246 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950 *5)) (-4 *5 (-1053)) (-5 *2 (-248 *4 *5)) + (-5 *1 (-948 *4 *5)) (-14 *4 (-644 (-1181)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) + (-5 *2 (-950 *5)) (-5 *1 (-948 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) + (-5 *2 (-950 *5)) (-5 *1 (-948 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950 *5)) (-4 *5 (-1053)) (-5 *2 (-485 *4 *5)) + (-5 *1 (-948 *4 *5)) (-14 *4 (-644 (-1181)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) + (-5 *2 (-248 *4 *5)) (-5 *1 (-948 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-1053)) + (-5 *2 (-485 *4 *5)) (-5 *1 (-948 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-946)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175 (-550))) (-5 *2 (-550)) (-5 *1 (-946))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-946)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-192)) (-5 *3 (-550)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-786 *2)) (-4 *2 (-173)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *1 (-946)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-566)) (-5 *3 (-550)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-946)) (-5 *3 (-550))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-893 *6))) - (-5 *5 (-1 (-891 *6 *8) *8 (-893 *6) (-891 *6 *8))) (-4 *6 (-1104)) - (-4 *8 (-13 (-1052) (-616 (-893 *6)) (-1041 *7))) (-5 *2 (-891 *6 *8)) - (-4 *7 (-1052)) (-5 *1 (-944 *6 *7 *8))))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-894 *6))) + (-5 *5 (-1 (-892 *6 *8) *8 (-894 *6) (-892 *6 *8))) (-4 *6 (-1105)) + (-4 *8 (-13 (-1053) (-617 (-894 *6)) (-1042 *7))) (-5 *2 (-892 *6 *8)) + (-4 *7 (-1053)) (-5 *1 (-945 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *3 (-166 *6)) - (-4 (-949 *6) (-889 *5)) (-4 *6 (-13 (-889 *5) (-172))) - (-5 *1 (-178 *5 *6 *3)))) + (-12 (-5 *2 (-892 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *3 (-166 *6)) + (-4 (-950 *6) (-890 *5)) (-4 *6 (-13 (-890 *5) (-173))) + (-5 *1 (-179 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-889 *4)) - (-4 *4 (-1104)))) + (-12 (-5 *2 (-892 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-890 *4)) + (-4 *4 (-1105)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) - (-4 *6 (-13 (-1104) (-1041 *3))) (-4 *3 (-889 *5)) (-5 *1 (-934 *5 *3 *6)))) + (-12 (-5 *2 (-892 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) + (-4 *6 (-13 (-1105) (-1042 *3))) (-4 *3 (-890 *5)) (-5 *1 (-935 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) - (-4 *3 (-13 (-424 *6) (-616 *4) (-889 *5) (-1041 (-613 $)))) - (-5 *4 (-893 *5)) (-4 *6 (-13 (-560) (-889 *5))) (-5 *1 (-935 *5 *6 *3)))) + (-12 (-5 *2 (-892 *5 *3)) (-4 *5 (-1105)) + (-4 *3 (-13 (-425 *6) (-617 *4) (-890 *5) (-1042 (-614 $)))) + (-5 *4 (-894 *5)) (-4 *6 (-13 (-561) (-890 *5))) (-5 *1 (-936 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 (-549) *3)) (-5 *4 (-893 (-549))) (-4 *3 (-548)) - (-5 *1 (-936 *3)))) + (-12 (-5 *2 (-892 (-550) *3)) (-5 *4 (-894 (-550))) (-4 *3 (-549)) + (-5 *1 (-937 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1104)) - (-4 *6 (-13 (-1104) (-1041 (-613 $)) (-616 *4) (-889 *5))) (-5 *4 (-893 *5)) - (-5 *1 (-937 *5 *6)))) + (-12 (-5 *2 (-892 *5 *6)) (-5 *3 (-614 *6)) (-4 *5 (-1105)) + (-4 *6 (-13 (-1105) (-1042 (-614 $)) (-617 *4) (-890 *5))) (-5 *4 (-894 *5)) + (-5 *1 (-938 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-888 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) - (-4 *6 (-889 *5)) (-4 *3 (-668 *6)) (-5 *1 (-938 *5 *6 *3)))) + (-12 (-5 *2 (-889 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) + (-4 *6 (-890 *5)) (-4 *3 (-669 *6)) (-5 *1 (-939 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-893 *6) (-891 *6 *3))) (-4 *8 (-852)) - (-5 *2 (-891 *6 *3)) (-5 *4 (-893 *6)) (-4 *6 (-1104)) - (-4 *3 (-13 (-953 *9 *7 *8) (-616 *4))) (-4 *7 (-795)) - (-4 *9 (-13 (-1052) (-889 *6))) (-5 *1 (-939 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-892 *6 *3) *8 (-894 *6) (-892 *6 *3))) (-4 *8 (-853)) + (-5 *2 (-892 *6 *3)) (-5 *4 (-894 *6)) (-4 *6 (-1105)) + (-4 *3 (-13 (-954 *9 *7 *8) (-617 *4))) (-4 *7 (-796)) + (-4 *9 (-13 (-1053) (-890 *6))) (-5 *1 (-940 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) - (-4 *3 (-13 (-953 *8 *6 *7) (-616 *4))) (-5 *4 (-893 *5)) (-4 *7 (-889 *5)) - (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-13 (-1052) (-889 *5))) - (-5 *1 (-939 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-892 *5 *3)) (-4 *5 (-1105)) + (-4 *3 (-13 (-954 *8 *6 *7) (-617 *4))) (-5 *4 (-894 *5)) (-4 *7 (-890 *5)) + (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-13 (-1053) (-890 *5))) + (-5 *1 (-940 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-994 *6)) - (-4 *6 (-13 (-560) (-889 *5) (-616 *4))) (-5 *4 (-893 *5)) - (-5 *1 (-942 *5 *6 *3)))) + (-12 (-5 *2 (-892 *5 *3)) (-4 *5 (-1105)) (-4 *3 (-995 *6)) + (-4 *6 (-13 (-561) (-890 *5) (-617 *4))) (-5 *4 (-894 *5)) + (-5 *1 (-943 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 (-1180))) (-5 *3 (-1180)) (-5 *4 (-893 *5)) - (-4 *5 (-1104)) (-5 *1 (-943 *5)))) + (-12 (-5 *2 (-892 *5 (-1181))) (-5 *3 (-1181)) (-5 *4 (-894 *5)) + (-4 *5 (-1105)) (-5 *1 (-944 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-643 (-893 *7))) (-5 *5 (-1 *9 (-643 *9))) - (-5 *6 (-1 (-891 *7 *9) *9 (-893 *7) (-891 *7 *9))) (-4 *7 (-1104)) - (-4 *9 (-13 (-1052) (-616 (-893 *7)) (-1041 *8))) (-5 *2 (-891 *7 *9)) - (-5 *3 (-643 *9)) (-4 *8 (-1052)) (-5 *1 (-944 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1104) (-1041 *5))) - (-4 *5 (-889 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-934 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) - ((*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) - ((*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-509)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) + (-12 (-5 *4 (-644 (-894 *7))) (-5 *5 (-1 *9 (-644 *9))) + (-5 *6 (-1 (-892 *7 *9) *9 (-894 *7) (-892 *7 *9))) (-4 *7 (-1105)) + (-4 *9 (-13 (-1053) (-617 (-894 *7)) (-1042 *8))) (-5 *2 (-892 *7 *9)) + (-5 *3 (-644 *9)) (-4 *8 (-1053)) (-5 *1 (-945 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1105) (-1042 *5))) + (-4 *5 (-890 *4)) (-4 *4 (-1105)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-935 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) + ((*1 *2 *2) (-12 (-4 *3 (-1105)) (-5 *1 (-934 *3 *2)) (-4 *2 (-425 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) + ((*1 *2 *2) (-12 (-4 *3 (-1105)) (-5 *1 (-934 *3 *2)) (-4 *2 (-425 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-510)) (-5 *1 (-113)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1181)) (-5 *4 (-510)) (-5 *2 (-316 (-550))) (-5 *1 (-933)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-509)) (-4 *4 (-1104)) (-5 *1 (-933 *4 *2)) (-4 *2 (-424 *4))))) + (-12 (-5 *3 (-510)) (-4 *4 (-1105)) (-5 *1 (-934 *4 *2)) (-4 *2 (-425 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-1092 (-225)))) - (-5 *1 (-931))))) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *2 (-644 (-1093 (-226)))) + (-5 *1 (-932))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) - (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) + (-5 *1 (-929)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) - (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) + (-5 *1 (-929)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) - (-5 *1 (-930)))) + (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) + (-5 *1 (-931)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) - (-5 *1 (-930))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-947 (-226)) (-226))) (-5 *3 (-1093 (-226))) + (-5 *1 (-931))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) - (-5 *1 (-928)))) + (-12 (-5 *2 (-644 (-1 (-226) (-226)))) (-5 *3 (-1093 (-226))) + (-5 *1 (-929)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) - (-5 *1 (-928)))) + (-12 (-5 *2 (-644 (-1 (-226) (-226)))) (-5 *3 (-1093 (-226))) + (-5 *1 (-929)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) - (-4 *3 (-616 (-538))))) + (-12 (-5 *4 (-1181)) (-5 *5 (-1093 (-226))) (-5 *2 (-929)) (-5 *1 (-930 *3)) + (-4 *3 (-617 (-539))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) - (-4 *3 (-616 (-538))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) + (-12 (-5 *4 (-1181)) (-5 *5 (-1093 (-226))) (-5 *2 (-929)) (-5 *1 (-930 *3)) + (-4 *3 (-617 (-539))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-931)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930))))) -(((*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) - ((*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-930))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-931))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-929)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093 (-226))) (-5 *1 (-931))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-226)))) (-5 *1 (-931))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-931))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-931))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-929)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1093 (-226))) (-5 *1 (-929)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) - (-4 *3 (-616 (-538))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) - (-5 *1 (-927 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) - (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) - (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-953 *3 *5 *4))))) + (-12 (-5 *4 (-1181)) (-5 *5 (-1093 (-226))) (-5 *2 (-929)) (-5 *1 (-930 *3)) + (-4 *3 (-617 (-539))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-5 *2 (-929)) (-5 *1 (-930 *3)) (-4 *3 (-617 (-539)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-471)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-929))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-112)) + (-5 *1 (-928 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-112)) + (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-309) (-147))) (-4 *4 (-13 (-853) (-617 (-1181)))) + (-4 *5 (-796)) (-5 *1 (-928 *3 *4 *5 *2)) (-4 *2 (-954 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) - (-5 *4 (-691 *12)) (-5 *5 (-643 (-410 (-949 *9)))) (-5 *6 (-643 (-643 *12))) - (-5 *7 (-773)) (-5 *8 (-549)) (-4 *9 (-13 (-308) (-147))) - (-4 *12 (-953 *9 *11 *10)) (-4 *10 (-13 (-852) (-616 (-1180)))) - (-4 *11 (-795)) - (-5 *2 - (-2 (|:| |eqzro| (-643 *12)) (|:| |neqzro| (-643 *12)) - (|:| |wcond| (-643 (-949 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) + (-5 *4 (-692 *12)) (-5 *5 (-644 (-411 (-950 *9)))) (-5 *6 (-644 (-644 *12))) + (-5 *7 (-774)) (-5 *8 (-550)) (-4 *9 (-13 (-309) (-147))) + (-4 *12 (-954 *9 *11 *10)) (-4 *10 (-13 (-853) (-617 (-1181)))) + (-4 *11 (-796)) + (-5 *2 + (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) + (|:| |wcond| (-644 (-950 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *9)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *9))))))))) - (-5 *1 (-927 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *9)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *9))))))))) + (-5 *1 (-928 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-691 *7)) (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795)) (-5 *1 (-927 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *8)) (-5 *4 (-773)) (-4 *8 (-953 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) - (-4 *7 (-795)) - (-5 *2 - (-643 - (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) - (|:| |cols| (-643 (-549)))))) - (-5 *1 (-927 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-953 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) - (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *5 *6 *7 *8))))) + (-12 (-5 *2 (-692 *7)) (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *6 *5)) + (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796)) (-5 *1 (-928 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-692 *8)) (-5 *4 (-774)) (-4 *8 (-954 *5 *7 *6)) + (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) + (-4 *7 (-796)) + (-5 *2 + (-644 + (-2 (|:| |det| *8) (|:| |rows| (-644 (-550))) + (|:| |cols| (-644 (-550)))))) + (-5 *1 (-928 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-954 *5 *7 *6)) + (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) + (-4 *7 (-796)) (-5 *2 (-112)) (-5 *1 (-928 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795)) (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-927 *4 *5 *6 *7)) - (-5 *3 (-549)) (-4 *7 (-953 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796)) (-5 *2 (-644 (-644 (-550)))) (-5 *1 (-928 *4 *5 *6 *7)) + (-5 *3 (-550)) (-4 *7 (-954 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 (-643 *6))) (-4 *6 (-953 *3 *5 *4)) - (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) - (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-954 *3 *5 *4)) + (-4 *3 (-13 (-309) (-147))) (-4 *4 (-13 (-853) (-617 (-1181)))) + (-4 *5 (-796)) (-5 *1 (-928 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-643 - (-2 (|:| -3513 (-773)) + (-644 + (-2 (|:| -3515 (-774)) (|:| |eqns| - (-643 - (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) - (|:| |cols| (-643 (-549)))))) - (|:| |fgb| (-643 *7))))) - (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) - (-5 *1 (-927 *4 *5 *6 *7))))) + (-644 + (-2 (|:| |det| *7) (|:| |rows| (-644 (-550))) + (|:| |cols| (-644 (-550)))))) + (|:| |fgb| (-644 *7))))) + (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-774)) + (-5 *1 (-928 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-643 - (-2 (|:| -3513 (-773)) + (-644 + (-2 (|:| -3515 (-774)) (|:| |eqns| - (-643 - (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) - (|:| |cols| (-643 (-549)))))) - (|:| |fgb| (-643 *7))))) - (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) - (-5 *1 (-927 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795)) (-5 *2 (-643 *3)) (-5 *1 (-927 *4 *5 *6 *3)) - (-4 *3 (-953 *4 *6 *5))))) + (-644 + (-2 (|:| |det| *7) (|:| |rows| (-644 (-550))) + (|:| |cols| (-644 (-550)))))) + (|:| |fgb| (-644 *7))))) + (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 (-774)) + (-5 *1 (-928 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796)) (-5 *2 (-644 *3)) (-5 *1 (-928 *4 *5 *6 *3)) + (-4 *3 (-954 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1748 (-691 (-410 (-949 *4)))) (|:| |vec| (-643 (-410 (-949 *4)))) - (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795)) - (-5 *2 - (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) - (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5))))) + (-2 (|:| -1750 (-692 (-411 (-950 *4)))) (|:| |vec| (-644 (-411 (-950 *4)))) + (|:| -3515 (-774)) (|:| |rows| (-644 (-550))) (|:| |cols| (-644 (-550))))) + (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796)) + (-5 *2 + (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *4))))))) + (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) - (-5 *3 (-643 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-953 *4 *6 *5)) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) - (-5 *1 (-927 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *4))))))) + (-5 *3 (-644 *7)) (-4 *4 (-13 (-309) (-147))) (-4 *7 (-954 *4 *6 *5)) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) + (-5 *1 (-928 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) - (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) + (-12 (-5 *3 (-692 *8)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) + (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 - (-643 - (-2 (|:| -3513 (-773)) + (-644 + (-2 (|:| -3515 (-774)) (|:| |eqns| - (-643 - (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) - (|:| |cols| (-643 (-549)))))) - (|:| |fgb| (-643 *8))))) - (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-773))))) + (-644 + (-2 (|:| |det| *8) (|:| |rows| (-644 (-550))) + (|:| |cols| (-644 (-550)))))) + (|:| |fgb| (-644 *8))))) + (-5 *1 (-928 *5 *6 *7 *8)) (-5 *4 (-774))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795)) (-4 *7 (-953 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-643 *7)) (|:| |n0| (-643 *7)))) - (-5 *1 (-927 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-953 *4 *6 *5)) - (-5 *1 (-927 *4 *5 *6 *2)) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) - (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)) - (-4 *7 (-953 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) - (-4 *6 (-795)) (-5 *2 (-410 (-949 *4))) (-5 *1 (-927 *4 *5 *6 *3)) - (-4 *3 (-953 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) - (-5 *2 (-691 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) - (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796)) (-4 *7 (-954 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) + (-5 *1 (-928 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-309) (-147))) (-4 *2 (-954 *4 *6 *5)) + (-5 *1 (-928 *4 *5 *6 *2)) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1181))) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) + (-5 *2 (-644 (-411 (-950 *4)))) (-5 *1 (-928 *4 *5 *6 *7)) + (-4 *7 (-954 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-13 (-853) (-617 (-1181)))) + (-4 *6 (-796)) (-5 *2 (-411 (-950 *4))) (-5 *1 (-928 *4 *5 *6 *3)) + (-4 *3 (-954 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-692 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) + (-5 *2 (-692 (-411 (-950 *4)))) (-5 *1 (-928 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) + (-5 *2 (-644 (-411 (-950 *4)))) (-5 *1 (-928 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-691 *11)) (-5 *4 (-643 (-410 (-949 *8)))) (-5 *5 (-773)) - (-5 *6 (-1162)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-953 *8 *10 *9)) - (-4 *9 (-13 (-852) (-616 (-1180)))) (-4 *10 (-795)) + (-12 (-5 *3 (-692 *11)) (-5 *4 (-644 (-411 (-950 *8)))) (-5 *5 (-774)) + (-5 *6 (-1163)) (-4 *8 (-13 (-309) (-147))) (-4 *11 (-954 *8 *10 *9)) + (-4 *9 (-13 (-853) (-617 (-1181)))) (-4 *10 (-796)) (-5 *2 (-2 (|:| |rgl| - (-643 - (-2 (|:| |eqzro| (-643 *11)) (|:| |neqzro| (-643 *11)) - (|:| |wcond| (-643 (-949 *8))) + (-644 + (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) + (|:| |wcond| (-644 (-950 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *8)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *8)))))))))) - (|:| |rgsz| (-549)))) - (-5 *1 (-927 *8 *9 *10 *11)) (-5 *7 (-549))))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *8)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *8)))))))))) + (|:| |rgsz| (-550)))) + (-5 *1 (-928 *8 *9 *10 *11)) (-5 *7 (-550))))) (((*1 *2 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) - (|:| |wcond| (-643 (-949 *4))) + (-644 + (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) + (|:| |wcond| (-644 (-950 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) - (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5))))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *4)))))))))) + (-5 *1 (-928 *4 *5 *6 *7)) (-4 *7 (-954 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-643 - (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) - (|:| |wcond| (-643 (-949 *5))) + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) - (-5 *4 (-1162)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-953 *5 *7 *6)) - (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-549)) - (-5 *1 (-927 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) - (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) - (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) - (|:| |wcond| (-643 (-949 *5))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) + (-5 *4 (-1163)) (-4 *5 (-13 (-309) (-147))) (-4 *8 (-954 *5 *7 *6)) + (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) (-5 *2 (-550)) + (-5 *1 (-928 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-692 *8)) (-4 *8 (-954 *5 *7 *6)) (-4 *5 (-13 (-309) (-147))) + (-4 *6 (-13 (-853) (-617 (-1181)))) (-4 *7 (-796)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) - (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) + (-5 *1 (-928 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *8)) (-5 *4 (-643 (-1180))) (-4 *8 (-953 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) - (-4 *7 (-795)) + (-12 (-5 *3 (-692 *8)) (-5 *4 (-644 (-1181))) (-4 *8 (-954 *5 *7 *6)) + (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) + (-4 *7 (-796)) (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) - (|:| |wcond| (-643 (-949 *5))) + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) - (-5 *1 (-927 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) + (-5 *1 (-928 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-12 (-5 *3 (-692 *7)) (-4 *7 (-954 *4 *6 *5)) (-4 *4 (-13 (-309) (-147))) + (-4 *5 (-13 (-853) (-617 (-1181)))) (-4 *6 (-796)) (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) - (|:| |wcond| (-643 (-949 *4))) + (-644 + (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) + (|:| |wcond| (-644 (-950 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) - (-5 *1 (-927 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *4)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *4)))))))))) + (-5 *1 (-928 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *9)) (-5 *5 (-922)) (-4 *9 (-953 *6 *8 *7)) - (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) - (-4 *8 (-795)) + (-12 (-5 *3 (-692 *9)) (-5 *5 (-923)) (-4 *9 (-954 *6 *8 *7)) + (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) + (-4 *8 (-796)) (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) - (|:| |wcond| (-643 (-949 *6))) + (-644 + (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) + (|:| |wcond| (-644 (-950 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) - (-5 *1 (-927 *6 *7 *8 *9)) (-5 *4 (-643 *9)))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *6)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *6)))))))))) + (-5 *1 (-928 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) - (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) + (-12 (-5 *3 (-692 *9)) (-5 *4 (-644 (-1181))) (-5 *5 (-923)) + (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) + (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) - (|:| |wcond| (-643 (-949 *6))) + (-644 + (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) + (|:| |wcond| (-644 (-950 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) - (-5 *1 (-927 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *6)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *6)))))))))) + (-5 *1 (-928 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *8)) (-5 *4 (-922)) (-4 *8 (-953 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) - (-4 *7 (-795)) + (-12 (-5 *3 (-692 *8)) (-5 *4 (-923)) (-4 *8 (-954 *5 *7 *6)) + (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) + (-4 *7 (-796)) (-5 *2 - (-643 - (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) - (|:| |wcond| (-643 (-949 *5))) + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-950 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) - (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) - (-5 *1 (-927 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1270 (-411 (-950 *5)))) + (|:| -2192 (-644 (-1270 (-411 (-950 *5)))))))))) + (-5 *1 (-928 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 *9)) (-5 *5 (-1162)) - (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) - (-5 *1 (-927 *6 *7 *8 *9)))) + (-12 (-5 *3 (-692 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1163)) + (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) + (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-550)) + (-5 *1 (-928 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-1162)) - (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) - (-5 *1 (-927 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *8)) (-5 *4 (-1162)) (-4 *8 (-953 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) - (-4 *7 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *5 *6 *7 *8)))) + (-12 (-5 *3 (-692 *9)) (-5 *4 (-644 (-1181))) (-5 *5 (-1163)) + (-4 *9 (-954 *6 *8 *7)) (-4 *6 (-13 (-309) (-147))) + (-4 *7 (-13 (-853) (-617 (-1181)))) (-4 *8 (-796)) (-5 *2 (-550)) + (-5 *1 (-928 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-692 *8)) (-5 *4 (-1163)) (-4 *8 (-954 *5 *7 *6)) + (-4 *5 (-13 (-309) (-147))) (-4 *6 (-13 (-853) (-617 (-1181)))) + (-4 *7 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 *10)) (-5 *5 (-922)) (-5 *6 (-1162)) - (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) - (-5 *1 (-927 *7 *8 *9 *10)))) + (-12 (-5 *3 (-692 *10)) (-5 *4 (-644 *10)) (-5 *5 (-923)) (-5 *6 (-1163)) + (-4 *10 (-954 *7 *9 *8)) (-4 *7 (-13 (-309) (-147))) + (-4 *8 (-13 (-853) (-617 (-1181)))) (-4 *9 (-796)) (-5 *2 (-550)) + (-5 *1 (-928 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) (-5 *6 (-1162)) - (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) - (-5 *1 (-927 *7 *8 *9 *10)))) + (-12 (-5 *3 (-692 *10)) (-5 *4 (-644 (-1181))) (-5 *5 (-923)) (-5 *6 (-1163)) + (-4 *10 (-954 *7 *9 *8)) (-4 *7 (-13 (-309) (-147))) + (-4 *8 (-13 (-853) (-617 (-1181)))) (-4 *9 (-796)) (-5 *2 (-550)) + (-5 *1 (-928 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *9)) (-5 *4 (-922)) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) - (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) - (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9))))) + (-12 (-5 *3 (-692 *9)) (-5 *4 (-923)) (-5 *5 (-1163)) (-4 *9 (-954 *6 *8 *7)) + (-4 *6 (-13 (-309) (-147))) (-4 *7 (-13 (-853) (-617 (-1181)))) + (-4 *8 (-796)) (-5 *2 (-550)) (-5 *1 (-928 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) - (-5 *1 (-926 *4 *2))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-366)) (-4 *2 (-1246 *4)) + (-5 *1 (-927 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-924)) (-5 *2 (-2 (|:| -4386 (-643 *1)) (|:| -2572 *1))) - (-5 *3 (-643 *1))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-924))))) + (-12 (-4 *1 (-925)) (-5 *2 (-2 (|:| -4388 (-644 *1)) (|:| -2574 *1))) + (-5 *3 (-644 *1))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-925))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) - (-5 *1 (-921 *4))))) + (-12 (-5 *2 (-644 (-950 *4))) (-5 *3 (-644 (-1181))) (-4 *4 (-456)) + (-5 *1 (-922 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) - (-5 *1 (-921 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-974)) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-922))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) + (-12 (-5 *2 (-644 (-950 *4))) (-5 *3 (-644 (-1181))) (-4 *4 (-456)) + (-5 *1 (-922 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2 *3) (-12 (-5 *3 (-975)) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2) (-12 (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-923))) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-909 (-550))) (-5 *1 (-921)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-909 (-550))) (-5 *1 (-921))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) - (-4 *2 (-953 *5 *3 *4)))) + (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *2)) + (-4 *2 (-954 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1175 *6)) (-4 *6 (-954 *5 *3 *4)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *5 (-309)) (-5 *1 (-920 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) - (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-408 *2)) (-4 *2 (-308)) (-5 *1 (-917 *2)))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *6 *4 *5)) (-5 *1 (-920 *4 *5 *6 *2)) + (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-409 *2)) (-4 *2 (-309)) (-5 *1 (-918 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-51)) (-5 *1 (-918 *5)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147))) + (-5 *2 (-51)) (-5 *1 (-919 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-408 (-949 *6))) (-5 *5 (-1180)) (-5 *3 (-949 *6)) - (-4 *6 (-13 (-308) (-147))) (-5 *2 (-51)) (-5 *1 (-918 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-408 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) -(((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1245 (-410 (-549)))) (-5 *1 (-916 *3 *2)) - (-4 *2 (-1245 (-410 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) - (-4 *3 (-1245 (-410 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) - (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *5)) - (-4 *5 (-1245 (-410 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1245 (-410 (-549)))) - (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))) (-5 *1 (-916 *3 *4)) - (-4 *4 (-1245 (-410 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) - (-4 *3 (-1245 (-410 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-922)) - (-5 *1 (-916 *4 *5)) (-4 *5 (-1245 (-410 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *4 (-13 (-560) (-1041 (-549)))) - (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *8))) - (-5 *1 (-914 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) - (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) - (-4 *6 (-344 (-410 (-549)) *4 *5)) - (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *6))) (-5 *1 (-915 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) - (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) - (-5 *1 (-914 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-915 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455)))) + (-12 (-5 *4 (-409 (-950 *6))) (-5 *5 (-1181)) (-5 *3 (-950 *6)) + (-4 *6 (-13 (-309) (-147))) (-5 *2 (-51)) (-5 *1 (-919 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-918 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-918 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-918 *3)) (-4 *3 (-309))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-918 *3)) (-4 *3 (-309))))) +(((*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-309))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1246 (-411 (-550)))) (-5 *1 (-917 *3 *2)) + (-4 *2 (-1246 (-411 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1246 (-411 *2))) (-5 *2 (-550)) (-5 *1 (-917 *4 *3)) + (-4 *3 (-1246 (-411 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550))))) + (-4 *4 (-1246 (-411 *2))) (-5 *2 (-550)) (-5 *1 (-917 *4 *5)) + (-4 *5 (-1246 (-411 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1246 (-411 (-550)))) + (-5 *2 (-2 (|:| |den| (-550)) (|:| |gcdnum| (-550)))) (-5 *1 (-917 *3 *4)) + (-4 *4 (-1246 (-411 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1246 (-411 *2))) (-5 *2 (-550)) (-5 *1 (-917 *4 *3)) + (-4 *3 (-1246 (-411 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (-4 *4 (-1246 (-411 *3))) (-5 *2 (-923)) + (-5 *1 (-917 *4 *5)) (-4 *5 (-1246 (-411 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-425 *4)) + (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) + (-4 *4 (-13 (-561) (-1042 (-550)))) + (-5 *2 (-2 (|:| -4205 (-774)) (|:| -2548 *8))) + (-5 *1 (-915 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-411 (-550)) *4 *5 *6)) + (-4 *4 (-1246 (-411 (-550)))) (-4 *5 (-1246 (-411 *4))) + (-4 *6 (-345 (-411 (-550)) *4 *5)) + (-5 *2 (-2 (|:| -4205 (-774)) (|:| -2548 *6))) (-5 *1 (-916 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1246 *5)) + (-4 *7 (-1246 (-411 *6))) (-4 *8 (-345 *5 *6 *7)) + (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-112)) + (-5 *1 (-915 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 (-411 (-550)) *4 *5 *6)) (-4 *4 (-1246 (-411 (-550)))) + (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 (-411 (-550)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-916 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-456)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) - (-4 *5 (-913)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-913))))) -(((*1 *2 *3) - (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) - (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104)))) - ((*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) - (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104)))) - ((*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1))))) + (-12 (-5 *2 (-1175 *6)) (-4 *6 (-954 *5 *3 *4)) (-4 *3 (-796)) (-4 *4 (-853)) + (-4 *5 (-914)) (-5 *1 (-461 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-914))))) +(((*1 *2 *3) + (-12 (-5 *2 (-409 (-1175 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1175 *1)) + (-4 *4 (-456)) (-4 *4 (-561)) (-4 *4 (-1105)))) + ((*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-409 (-1175 *1))) (-5 *3 (-1175 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-409 (-1175 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1175 *1)) + (-4 *4 (-456)) (-4 *4 (-561)) (-4 *4 (-1105)))) + ((*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-409 (-1175 *1))) (-5 *3 (-1175 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-409 (-1175 *1))) (-5 *3 (-1175 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-166 *4)) - (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))) + (|partial| -12 (-5 *2 (-644 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-166 *4)) + (-4 *4 (-549)) (-5 *1 (-149 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-1245 *4)) - (-4 *4 (-352)) (-5 *1 (-360 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-1246 *4)) + (-4 *4 (-353)) (-5 *1 (-361 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-1174 (-549)))) (-5 *3 (-1174 (-549))) - (-5 *1 (-575)))) + (|partial| -12 (-5 *2 (-644 (-1175 (-550)))) (-5 *3 (-1175 (-550))) + (-5 *1 (-576)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-1174 *1))) (-5 *3 (-1174 *1)) (-4 *1 (-913))))) + (|partial| -12 (-5 *2 (-644 (-1175 *1))) (-5 *3 (-1175 *1)) (-4 *1 (-914))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-352)) (-5 *2 (-1269 *1)))) + (|partial| -12 (-5 *3 (-692 *1)) (-4 *1 (-353)) (-5 *2 (-1270 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-145)) (-4 *1 (-913)) - (-5 *2 (-1269 *1))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-352))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-913))))) + (|partial| -12 (-5 *3 (-692 *1)) (-4 *1 (-145)) (-4 *1 (-914)) + (-5 *2 (-1270 *1))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-353))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-914))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-852)) (-4 *5 (-913)) (-4 *6 (-795)) - (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-408 (-1174 *8))) (-5 *1 (-910 *5 *6 *7 *8)) - (-5 *4 (-1174 *8)))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-853)) (-4 *5 (-914)) (-4 *6 (-796)) + (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-409 (-1175 *8))) (-5 *1 (-911 *5 *6 *7 *8)) + (-5 *4 (-1175 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) - (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5))))) + (-12 (-4 *4 (-914)) (-4 *5 (-1246 *4)) (-5 *2 (-409 (-1175 *5))) + (-5 *1 (-912 *4 *5)) (-5 *3 (-1175 *5))))) (((*1 *2) - (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-460 *3 *4 *2 *5)) - (-4 *5 (-953 *2 *3 *4)))) + (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-914)) (-5 *1 (-461 *3 *4 *2 *5)) + (-4 *5 (-954 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-910 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-913)) (-5 *1 (-911 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *3 (-796)) (-4 *4 (-853)) (-4 *2 (-914)) (-5 *1 (-911 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-914)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) - (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + (-12 (-4 *4 (-914)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) + (-5 *2 (-409 (-1175 *7))) (-5 *1 (-911 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) - (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5))))) + (-12 (-4 *4 (-914)) (-4 *5 (-1246 *4)) (-5 *2 (-409 (-1175 *5))) + (-5 *1 (-912 *4 *5)) (-5 *3 (-1175 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) - (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + (-12 (-4 *4 (-914)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-954 *4 *5 *6)) + (-5 *2 (-409 (-1175 *7))) (-5 *1 (-911 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) - (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5))))) + (-12 (-4 *4 (-914)) (-4 *5 (-1246 *4)) (-5 *2 (-409 (-1175 *5))) + (-5 *1 (-912 *4 *5)) (-5 *3 (-1175 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) - (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) - (-5 *1 (-910 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-644 (-1175 *7))) (-5 *3 (-1175 *7)) + (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-914)) (-4 *5 (-796)) (-4 *6 (-853)) + (-5 *1 (-911 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) - (-4 *5 (-1245 *4)) (-4 *4 (-913)) (-5 *1 (-911 *4 *5))))) + (|partial| -12 (-5 *2 (-644 (-1175 *5))) (-5 *3 (-1175 *5)) + (-4 *5 (-1246 *4)) (-4 *4 (-914)) (-5 *1 (-912 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) - (-4 *7 (-953 *5 *6 *4)) (-4 *5 (-913)) (-4 *6 (-795)) (-4 *4 (-852)) - (-5 *1 (-910 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *6)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) ((*1 *1) (-4 *1 (-548))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-643 (-643 (-773)))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-1100 *3)))) + (|partial| -12 (-5 *2 (-644 (-1175 *7))) (-5 *3 (-1175 *7)) + (-4 *7 (-954 *5 *6 *4)) (-4 *5 (-914)) (-4 *6 (-796)) (-4 *4 (-853)) + (-5 *1 (-911 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-644 *6)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) ((*1 *1) (-4 *1 (-549))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-906 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 (-774)))) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-906 *3))) (-4 *3 (-1105)) (-5 *1 (-909 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1105)) (-5 *2 (-1101 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-643 *4))) (-5 *1 (-908 *4)) - (-5 *3 (-643 *4)))) + (-12 (-4 *4 (-1105)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-909 *4)) + (-5 *3 (-644 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-1100 *4))) (-5 *1 (-908 *4)) - (-5 *3 (-1100 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) + (-12 (-4 *4 (-1105)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-909 *4)) + (-5 *3 (-1101 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) (((*1 *2 *1) - (-12 (-5 *2 (-1100 (-1100 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) - (-5 *1 (-908 *4))))) + (-12 (-5 *3 (-906 *4)) (-4 *4 (-1105)) (-5 *2 (-644 (-774))) + (-5 *1 (-909 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) - (-5 *1 (-908 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) + (-12 (-5 *3 (-906 *4)) (-4 *4 (-1105)) (-5 *2 (-644 (-774))) + (-5 *1 (-909 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1105)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-907 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-4 *1 (-907 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145 *4 *2)) (-14 *4 (-922)) - (-4 *2 (-13 (-1052) (-10 -7 (-6 (-4427 "*"))))) (-5 *1 (-906 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-643 *3)) (|:| |image| (-643 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-974)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104))))) + (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-909 *4)) (-4 *4 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-909 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-908 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-4 *1 (-908 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1146 *4 *2)) (-14 *4 (-923)) + (-4 *2 (-13 (-1053) (-10 -7 (-6 (-4429 "*"))))) (-5 *1 (-907 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) + (-5 *1 (-906 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-906 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1105)) (-5 *1 (-906 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-975)) (-5 *1 (-906 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-906 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-4 *1 (-1042 (-550))) (-4 *1 (-300)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-4 *1 (-1042 (-550))) (-4 *1 (-300)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-906 *3)) (-4 *3 (-371)) (-4 *3 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-906 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1105))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773)))) - ((*1 *1 *1) (-4 *1 (-233))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-774)) (-4 *1 (-232 *4)) (-4 *4 (-1053)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1053)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-774)))) + ((*1 *1 *1) (-4 *1 (-234))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) - (-4 *4 (-1245 *3)))) + (-12 (-5 *2 (-774)) (-4 *3 (-13 (-366) (-147))) (-5 *1 (-403 *3 *4)) + (-4 *4 (-1246 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) + (-12 (-4 *2 (-13 (-366) (-147))) (-5 *1 (-403 *2 *3)) (-4 *3 (-1246 *2)))) + ((*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) - (-4 *4 (-1104)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104))))) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-774))) (-4 *1 (-904 *4)) + (-4 *4 (-1105)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-904 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-904 *3)) (-4 *3 (-1105)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1105))))) (((*1 *2 *3) - (-12 (-5 *3 (-771)) + (-12 (-5 *3 (-772)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) - (-5 *1 (-568)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) + (-5 *1 (-569)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-1066)) + (-12 (-5 *3 (-772)) (-5 *4 (-1067)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) - (-5 *1 (-568)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) + (-5 *1 (-569)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-789)) (-5 *3 (-1066)) + (-12 (-4 *1 (-790)) (-5 *3 (-1067)) (-5 *4 - (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) - (|:| |extra| (-1038)))))) + (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) + (|:| |extra| (-1039)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-789)) (-5 *3 (-1066)) + (-12 (-4 *1 (-790)) (-5 *3 (-1067)) (-5 *4 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) - (|:| |extra| (-1038)))))) + (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)) + (|:| |extra| (-1039)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-802)) (-5 *3 (-1066)) + (-12 (-4 *1 (-803)) (-5 *3 (-1067)) (-5 *4 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) ((*1 *2 *3) - (-12 (-5 *3 (-810)) + (-12 (-5 *3 (-811)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *1 (-807)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *1 (-808)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-810)) (-5 *4 (-1066)) + (-12 (-5 *3 (-811)) (-5 *4 (-1067)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *1 (-807)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *1 (-808)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-841)) (-5 *3 (-1066)) - (-5 *4 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) - (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) + (-12 (-4 *1 (-842)) (-5 *3 (-1067)) + (-5 *4 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) + (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-841)) (-5 *3 (-1066)) + (-12 (-4 *1 (-842)) (-5 *3 (-1067)) (-5 *4 - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) - (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) + (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) ((*1 *2 *3) - (-12 (-5 *3 (-843)) + (-12 (-5 *3 (-844)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *1 (-842)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *1 (-843)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-843)) (-5 *4 (-1066)) + (-12 (-5 *3 (-844)) (-5 *4 (-1067)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *1 (-842)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *1 (-843)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-898)) (-5 *3 (-1066)) + (-12 (-4 *1 (-899)) (-5 *3 (-1067)) (-5 *4 - (-2 (|:| |pde| (-643 (-315 (-225)))) + (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| - (-643 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) - (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) - (|:| |dFinish| (-691 (-225)))))) - (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) - (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-901)) - (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *1 (-900)))) + (-644 + (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) + (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) + (|:| |dFinish| (-692 (-226)))))) + (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) + (|:| |tol| (-226)))) + (-5 *2 (-2 (|:| -3073 (-381)) (|:| |explanations| (-1163)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-902)) + (-5 *2 + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *1 (-901)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-901)) (-5 *4 (-1066)) + (-12 (-5 *3 (-902)) (-5 *4 (-1067)) (-5 *2 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *1 (-900))))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *1 (-901))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-5 *1 (-899 *2 *4)) (-4 *2 (-1245 *4))))) + (-12 (-5 *3 (-774)) (-4 *4 (-366)) (-5 *1 (-900 *2 *4)) (-4 *2 (-1246 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-899 *2 *3)) (-4 *2 (-1245 *3))))) + (|partial| -12 (-4 *3 (-366)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1246 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-898)) + (-12 (-4 *1 (-899)) (-5 *3 - (-2 (|:| |pde| (-643 (-315 (-225)))) + (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| - (-643 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) - (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) - (|:| |dFinish| (-691 (-225)))))) - (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) - (|:| |tol| (-225)))) - (-5 *2 (-1038))))) -(((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-4 *1 (-724))) ((*1 *1) (-4 *1 (-728))) - ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) - ((*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852))))) -(((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) - (-5 *2 (-643 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |k| (-896 *3)) (|:| |c| *4)))) - (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-674 *3))) (-5 *1 (-896 *3)) (-4 *3 (-852))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) - (-14 *4 (-643 (-1180))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1219)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) - (-14 *4 (-643 (-1180))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-852))))) -(((*1 *2 *3) - (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-643 *5)) (-5 *1 (-894 *4 *5)) - (-4 *5 (-1219))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (-644 + (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) + (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) + (|:| |dFinish| (-692 (-226)))))) + (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) + (|:| |tol| (-226)))) + (-5 *2 (-1039))))) +(((*1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-4 *1 (-725))) ((*1 *1) (-4 *1 (-729))) + ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105)))) + ((*1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-853))))) +(((*1 *2 *1) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) + (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-897 *3)) (|:| |c| *4)))) + (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-675 *3))) (-5 *1 (-897 *3)) (-4 *3 (-853))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) + (-14 *4 (-644 (-1181))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1220)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) + (-14 *4 (-644 (-1181))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-853))))) +(((*1 *2 *3) + (-12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-5 *2 (-644 *5)) (-5 *1 (-895 *4 *5)) + (-4 *5 (-1220))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1219))))) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1220))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) - (-5 *1 (-891 *4 *5)) (-4 *5 (-1104)))) + (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-5 *2 (-112)) + (-5 *1 (-892 *4 *5)) (-4 *5 (-1105)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3)) - (-4 *3 (-1219)))) + (-12 (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-895 *5 *3)) + (-4 *3 (-1220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1219)) - (-5 *2 (-112)) (-5 *1 (-894 *5 *6))))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1105)) (-4 *6 (-1220)) + (-5 *2 (-112)) (-5 *1 (-895 *5 *6))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 (-893 *3))))) - (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *2 (-2 (|:| -2904 (-113)) (|:| |arg| (-644 (-894 *3))))) + (-5 *1 (-894 *3)) (-4 *3 (-1105)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-893 *4))) (-5 *1 (-893 *4)) - (-4 *4 (-1104))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-304)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) - (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-644 (-894 *4))) (-5 *1 (-894 *4)) + (-4 *4 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-226))) (-5 *1 (-305)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) + (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-112)) (-5 *1 (-893 *4)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-1181)) (-5 *3 (-112)) (-5 *1 (-894 *4)) (-4 *4 (-1105))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-51)) (-5 *1 (-893 *4)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-51)) (-5 *1 (-894 *4)) (-4 *4 (-1105))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51)))) - (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) -(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-2 (|:| |var| (-644 (-1181))) (|:| |pred| (-51)))) + (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) +(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-51))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) + (|partial| -12 (-5 *2 (-644 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1105))))) (((*1 *2 *1) - (-12 (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) - (-4 *5 (-668 *4)))) + (-12 (-4 *4 (-1105)) (-5 *2 (-112)) (-5 *1 (-889 *3 *4 *5)) (-4 *3 (-1105)) + (-4 *5 (-669 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) + (-12 (-5 *2 (-112)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) (((*1 *1) - (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) - (-4 *4 (-668 *3)))) - ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) + (-12 (-4 *3 (-1105)) (-5 *1 (-889 *2 *3 *4)) (-4 *2 (-1105)) + (-4 *4 (-669 *3)))) + ((*1 *1) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) - (-5 *1 (-891 *4 *2))))) + (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1105)) (-4 *2 (-1105)) + (-5 *1 (-892 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1105))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1105))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-894 *4)) (-4 *4 (-1105)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1105))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-4 *6 (-889 *5)) (-5 *2 (-888 *5 *6 (-643 *6))) - (-5 *1 (-890 *5 *6 *4)) (-5 *3 (-643 *6)) (-4 *4 (-616 (-893 *5))))) + (-12 (-4 *5 (-1105)) (-4 *6 (-890 *5)) (-5 *2 (-889 *5 *6 (-644 *6))) + (-5 *1 (-891 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-617 (-894 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 *3))) (-5 *1 (-890 *5 *3 *4)) - (-4 *3 (-1041 (-1180))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) + (-12 (-4 *5 (-1105)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-891 *5 *3 *4)) + (-4 *3 (-1042 (-1181))) (-4 *3 (-890 *5)) (-4 *4 (-617 (-894 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 (-949 *3)))) (-5 *1 (-890 *5 *3 *4)) - (-4 *3 (-1052)) (-3746 (-4 *3 (-1041 (-1180)))) (-4 *3 (-889 *5)) - (-4 *4 (-616 (-893 *5))))) + (-12 (-4 *5 (-1105)) (-5 *2 (-644 (-295 (-950 *3)))) (-5 *1 (-891 *5 *3 *4)) + (-4 *3 (-1053)) (-3748 (-4 *3 (-1042 (-1181)))) (-4 *3 (-890 *5)) + (-4 *4 (-617 (-894 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-5 *2 (-891 *5 *3)) (-5 *1 (-890 *5 *3 *4)) - (-3746 (-4 *3 (-1041 (-1180)))) (-3746 (-4 *3 (-1052))) (-4 *3 (-889 *5)) - (-4 *4 (-616 (-893 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) + (-12 (-4 *5 (-1105)) (-5 *2 (-892 *5 *3)) (-5 *1 (-891 *5 *3 *4)) + (-3748 (-4 *3 (-1042 (-1181)))) (-3748 (-4 *3 (-1053))) (-4 *3 (-890 *5)) + (-4 *4 (-617 (-894 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-300)) (-5 *3 (-1181)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-300)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104)))) + (-12 (-5 *3 (-1181)) (-5 *2 (-112)) (-5 *1 (-614 *4)) (-4 *4 (-1105)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-614 *4)) (-4 *4 (-1105)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-839 *3)) (-4 *3 (-1105)) (-5 *2 (-112)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-889 *5)) - (-4 *4 (-616 (-893 *5))))) + (-12 (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-891 *5 *3 *4)) (-4 *3 (-890 *5)) + (-4 *4 (-617 (-894 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *6)) (-4 *6 (-889 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) - (-5 *1 (-890 *5 *6 *4)) (-4 *4 (-616 (-893 *5)))))) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-890 *5)) (-4 *5 (-1105)) (-5 *2 (-112)) + (-5 *1 (-891 *5 *6 *4)) (-4 *4 (-617 (-894 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1104)) - (-4 *5 (-1104)) (-4 *6 (-668 *5)) (-5 *1 (-888 *4 *5 *6))))) + (-12 (-5 *2 (-892 *4 *5)) (-5 *3 (-892 *4 *6)) (-4 *4 (-1105)) + (-4 *5 (-1105)) (-4 *6 (-669 *5)) (-5 *1 (-889 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *4)) (-5 *1 (-888 *3 *4 *5)) - (-4 *3 (-1104)) (-4 *5 (-668 *4))))) + (-12 (-4 *4 (-1105)) (-5 *2 (-892 *3 *4)) (-5 *1 (-889 *3 *4 *5)) + (-4 *3 (-1105)) (-4 *5 (-669 *4))))) (((*1 *2 *1) - (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *5)) (-5 *1 (-888 *3 *4 *5)) - (-4 *3 (-1104)) (-4 *5 (-668 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549))))) + (-12 (-4 *4 (-1105)) (-5 *2 (-892 *3 *5)) (-5 *1 (-889 *3 *4 *5)) + (-4 *3 (-1105)) (-4 *5 (-669 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) + (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-644 (-550))))) ((*1 *2 *3) - (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549)))))) + (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-644 (-550)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *3 (-643 (-549))) (-5 *1 (-886))))) + (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *3 (-644 (-550))) (-5 *1 (-887))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886))))) + (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-644 (-550)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) - ((*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) + (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550)))) + ((*1 *2 *3) (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-880 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-882 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-885 *2)) (-4 *2 (-1219))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-883))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) -(((*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)) (-5 *3 (-1162)))) - ((*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219))))) -(((*1 *2 *1) - (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-174 (-549))) (-5 *1 (-767 *3)) (-4 *3 (-407)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-873 *3)) (-14 *3 (-549)))) - ((*1 *2 *1) - (-12 (-14 *3 (-549)) (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-874 *3 *4)) - (-4 *4 (-872 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) - ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) - ((*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-1157 (-549)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-5 *2 (-1158 (-644 (-550)))) (-5 *1 (-887)) (-5 *3 (-550))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-881 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-883 *2)) (-4 *2 (-1220)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *1 (-886 *2)) (-4 *2 (-1220))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-644 (-1186))) (-5 *1 (-884))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-242)) (-5 *3 (-1163)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-877))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1220)) (-4 *3 (-1220))))) +(((*1 *2 *1) + (-12 (-5 *2 (-175 (-411 (-550)))) (-5 *1 (-117 *3)) (-14 *3 (-550)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-309)) (-5 *1 (-175 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-309)) (-5 *1 (-175 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-175 (-550))) (-5 *1 (-768 *3)) (-4 *3 (-408)))) + ((*1 *2 *1) + (-12 (-5 *2 (-175 (-411 (-550)))) (-5 *1 (-874 *3)) (-14 *3 (-550)))) + ((*1 *2 *1) + (-12 (-14 *3 (-550)) (-5 *2 (-175 (-411 (-550)))) (-5 *1 (-875 *3 *4)) + (-4 *4 (-873 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-407 *3)) (-4 *3 (-408)))) + ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-407 *3)) (-4 *3 (-408)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4418)) (-4 *1 (-408)))) + ((*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) + ((*1 *2 *1) (-12 (-4 *1 (-873 *3)) (-5 *2 (-1158 (-550)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-291 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1246 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-12 (-4 *2 (-23)) (-5 *1 (-714 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) + ((*1 *2) (-12 (-4 *2 (-1246 *3)) (-5 *1 (-715 *3 *2)) (-4 *3 (-1053)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-12 (-4 *2 (-23)) (-5 *1 (-718 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549))))) -(((*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549))))) -(((*1 *1 *1) (-4 *1 (-872 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *3 (-549)) (-4 *1 (-872 *4))))) + ((*1 *2) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-873 *3)) (-5 *2 (-550))))) +(((*1 *1 *1) (-4 *1 (-873 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175 (-550))) (-5 *3 (-550)) (-4 *1 (-873 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-410 *6)) - (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5)))) + (|partial| -12 (-5 *3 (-774)) (-4 *5 (-366)) (-5 *2 (-411 *6)) + (-5 *1 (-870 *5 *4 *6)) (-4 *4 (-1263 *5)) (-4 *6 (-1246 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) - (-5 *1 (-870 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-774)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-366)) + (-14 *6 (-1181)) (-14 *7 *5) (-5 *2 (-411 (-1239 *6 *5))) + (-5 *1 (-871 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) - (-5 *1 (-870 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-774)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-366)) + (-14 *6 (-1181)) (-14 *7 *5) (-5 *2 (-411 (-1239 *6 *5))) + (-5 *1 (-871 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-174 *6)) - (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) - (-5 *2 (-643 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-442))) (-5 *1 (-867))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865))))) -(((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) - ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-773)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) - ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865))))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) - ((*1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) + (|partial| -12 (-5 *3 (-774)) (-4 *5 (-366)) (-5 *2 (-175 *6)) + (-5 *1 (-870 *5 *4 *6)) (-4 *4 (-1263 *5)) (-4 *6 (-1246 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-739 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-443))) (-5 *1 (-868))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-866))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-866))))) +(((*1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-866))))) +(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1220)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-774)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) + (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) + ((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-866))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866))))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-300)))) + ((*1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) - (-5 *4 (-315 (-168 (-380)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) + (-5 *4 (-316 (-169 (-381)))) (-5 *1 (-332)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-380))) - (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-381))) + (-5 *1 (-332)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-549))) - (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-550))) + (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-168 (-380))))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-169 (-381))))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-380)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-381)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-549)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-550)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-168 (-380))))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-169 (-381))))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-380)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-381)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-549)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-550)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-168 (-380)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-380))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-549))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-169 (-381)))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-381))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-550))) (-5 *1 (-332)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-696))) - (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-697))) + (-5 *1 (-332)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-701))) - (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-702))) + (-5 *1 (-332)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-703))) - (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-950 (-550)))) (-5 *4 (-316 (-704))) + (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-696)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-697)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-701)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-702)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-703)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-316 (-704)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-696)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-697)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-701)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-702)))) (-5 *1 (-332)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-703)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-696))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-703))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-696))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-703))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-696))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-703))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-331)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) - ((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) - ((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) - ((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) - ((*1 *1 *1) (-4 *1 (-299))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) - ((*1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) + (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-316 (-704)))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-697))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-702))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-704))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-697))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-702))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-692 (-704))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-697))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-702))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-316 (-704))) (-5 *1 (-332)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-1163)) (-5 *1 (-332)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-866)))) + ((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-866))) ((*1 *1 *1 *1) (-5 *1 (-866))) + ((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) + ((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-300)))) + ((*1 *1 *1) (-4 *1 (-300))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866)))) + ((*1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1163)) (-5 *1 (-193)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-866))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-821 *3)) (|:| |rm| (-821 *3)))) - (-5 *1 (-821 *3)) (-4 *3 (-852)))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-5 *1 (-865)))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-864)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-864))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-128))) (-5 *3 (-128))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-553))) (-5 *3 (-553))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-1228))) (-5 *3 (-1228))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *3 (-129)) (-5 *2 (-773))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-51))) (-5 *2 (-1275)) (-5 *1 (-861))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-822 *3)) (|:| |rm| (-822 *3)))) + (-5 *1 (-822 *3)) (-4 *3 (-853)))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-4 *1 (-309))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *1 *1) (-4 *1 (-309))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-5 *1 (-866)))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-533)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *2 (-694 (-128))) (-5 *3 (-128))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *2 (-694 (-554))) (-5 *3 (-554))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *2 (-694 (-1229))) (-5 *3 (-1229))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-864)) (-5 *3 (-129)) (-5 *2 (-774))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-51))) (-5 *2 (-1276)) (-5 *1 (-862))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-38 (-410 (-549)))) - (-4 *2 (-172))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172))))) + (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-38 (-411 (-550)))) + (-4 *2 (-173))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-774)) (-5 *1 (-859 *2)) (-4 *2 (-173))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + (-12 (-4 *3 (-366)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) - (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) - (-4 *3 (-854 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-366)) (-4 *5 (-1053)) + (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) + (-4 *3 (-855 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) - (-5 *1 (-768 *3 *4)) (-4 *3 (-710 *4)))) + (-12 (-4 *4 (-366)) (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) + (-5 *1 (-769 *3 *4)) (-4 *3 (-711 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + (-12 (-4 *3 (-366)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) - (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) - (-4 *3 (-854 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-366)) (-4 *5 (-1053)) + (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) + (-4 *3 (-855 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) - (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) - (-4 *3 (-854 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1053)) + (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) + (-4 *3 (-855 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-560)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + (-12 (-4 *3 (-561)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| -2154 *1) (|:| -3305 *1))) (-4 *1 (-855 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) - (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) - (-4 *3 (-854 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1053)) + (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-856 *5 *3)) + (-4 *3 (-855 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-650 *5)) (-4 *5 (-1052)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-854 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-691 *3)) (-4 *1 (-421 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-651 *5)) (-4 *5 (-1053)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-855 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-692 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-855 *2 *3)) - (-4 *3 (-854 *2))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1053)) (-5 *1 (-856 *2 *3)) + (-4 *3 (-855 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1052)) (-5 *1 (-855 *5 *2)) - (-4 *2 (-854 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1053)) (-5 *1 (-856 *5 *2)) + (-4 *2 (-855 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) + (|partial| -12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) + (|partial| -12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) - (-4 *1 (-854 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) + (-12 (-4 *3 (-366)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2574 *1))) + (-4 *1 (-855 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) + (|partial| -12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1052)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) - (-4 *1 (-854 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) + (-12 (-4 *3 (-366)) (-4 *3 (-1053)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2574 *1))) + (-4 *1 (-855 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-366)) (-5 *1 (-769 *2 *3)) (-4 *2 (-711 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-855 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) (((*1 *1) - (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) - (-3746 (|has| *1 (-6 -4408))))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-852)))) ((*1 *1) (-4 *1 (-846))) - ((*1 *1 *1 *1) (-4 *1 (-852)))) + (-12 (-4 *1 (-408)) (-3748 (|has| *1 (-6 -4418))) + (-3748 (|has| *1 (-6 -4410))))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1105)) (-4 *2 (-853)))) + ((*1 *2 *1) (-12 (-4 *1 (-833 *2)) (-4 *2 (-853)))) ((*1 *1) (-4 *1 (-847))) + ((*1 *1 *1 *1) (-4 *1 (-853)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) - (-14 *4 (-773))))) + (-12 (-5 *3 (-1270 *5)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-848 *4 *5)) + (-14 *4 (-774))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) - (-14 *4 (-773))))) + (-12 (-5 *3 (-1270 *5)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-848 *4 *5)) + (-14 *4 (-774))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) - (-14 *4 (-773))))) -(((*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104))))) -(((*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104))))) + (-12 (-5 *3 (-1270 *5)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-848 *4 *5)) + (-14 *4 (-774))))) +(((*1 *2) (-12 (-5 *2 (-845 (-550))) (-5 *1 (-538)))) + ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1105))))) +(((*1 *2) (-12 (-5 *2 (-845 (-550))) (-5 *1 (-538)))) + ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1105))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-844 *3)) (-4 *3 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) - (-5 *1 (-842))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-843)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-842)))) - ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-845 *3)) (-4 *3 (-1105))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1039)) (-5 *1 (-843)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-316 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1039)) + (-5 *1 (-843))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-844)) (-5 *4 (-1067)) (-5 *2 (-1039)) (-5 *1 (-843)))) + ((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1039)) (-5 *1 (-843)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) - (-5 *6 (-643 (-315 (-380)))) (-5 *3 (-315 (-380))) (-5 *2 (-1038)) - (-5 *1 (-842)))) + (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-845 (-381)))) + (-5 *6 (-644 (-316 (-381)))) (-5 *3 (-316 (-381))) (-5 *2 (-1039)) + (-5 *1 (-843)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) - (-5 *2 (-1038)) (-5 *1 (-842)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-381))) (-5 *5 (-644 (-845 (-381)))) + (-5 *2 (-1039)) (-5 *1 (-843)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) - (-5 *1 (-842)))) + (-12 (-5 *3 (-316 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1039)) + (-5 *1 (-843)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) - (-5 *1 (-842))))) + (-12 (-5 *3 (-644 (-316 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1039)) + (-5 *1 (-843))))) (((*1 *2 *3) - (-12 (-4 *1 (-841)) + (-12 (-4 *1 (-842)) (-5 *3 - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) - (-5 *2 (-1038)))) - ((*1 *2 *3) - (-12 (-4 *1 (-841)) - (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) - (-5 *2 (-1038))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-214 (-505))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) - ((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-690 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) + (-5 *2 (-1039)))) + ((*1 *2 *3) + (-12 (-4 *1 (-842)) + (-5 *3 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) + (-5 *2 (-1039))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-215 (-506))) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-4 *1 (-839 *3)) (-4 *3 (-1105)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)))) + ((*1 *2 *3) + (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-691 *4 *5 *6 *3)) + (-4 *3 (-689 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) + (-12 (-4 *2 (-173)) (-4 *2 (-1053)) (-5 *1 (-717 *2 *3)) (-4 *3 (-651 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) - ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052))))) + (-12 (-4 *2 (-173)) (-4 *2 (-1053)) (-5 *1 (-717 *2 *3)) (-4 *3 (-651 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-173)) (-4 *2 (-1053)))) + ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-173)) (-4 *2 (-1053))))) (((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052))))) + (-12 (-4 *2 (-173)) (-4 *2 (-1053)) (-5 *1 (-717 *2 *3)) (-4 *3 (-651 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-173)) (-4 *2 (-1053))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-643 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1104)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-644 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1105)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-643 *4))) (-4 *4 (-1104)) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-643 *4))) (-5 *1 (-114 *4)) - (-4 *4 (-1104)))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-644 *4))) (-5 *1 (-114 *4)) + (-4 *4 (-1105)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) - (-5 *1 (-716 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-651 *3)) (-4 *3 (-1053)) + (-5 *1 (-717 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-837 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) - (-5 *1 (-716 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-651 *3)) (-4 *3 (-1053)) + (-5 *1 (-717 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-837 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *2)) (-4 *2 (-650 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-836 *2)) (-4 *2 (-1052))))) + (-12 (-5 *3 (-113)) (-4 *4 (-1053)) (-5 *1 (-717 *4 *2)) (-4 *2 (-651 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-837 *2)) (-4 *2 (-1053))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-113))) (-4 *2 (-1052)) (-5 *1 (-716 *2 *4)) - (-4 *4 (-650 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-363 (-113))) (-5 *1 (-836 *2)) (-4 *2 (-1052))))) -(((*1 *2) (-12 (-5 *2 (-834 (-549))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1275)) (-5 *1 (-833))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-824)) (-5 *4 (-51)) (-5 *2 (-1275)) (-5 *1 (-833))))) -(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-51)) (-5 *1 (-833))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-831))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831)) (-5 *3 (-1162))))) -(((*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-51)) (-5 *1 (-831))))) -(((*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-830 *2 *3)) (-4 *2 (-710 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-710 *3)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1162)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1162)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *2 (-1275)))) + (-12 (-5 *3 (-364 (-113))) (-4 *2 (-1053)) (-5 *1 (-717 *2 *4)) + (-4 *4 (-651 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-364 (-113))) (-5 *1 (-837 *2)) (-4 *2 (-1053))))) +(((*1 *2) (-12 (-5 *2 (-835 (-550))) (-5 *1 (-538)))) + ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1105))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1276)) (-5 *1 (-834))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-825)) (-5 *4 (-51)) (-5 *2 (-1276)) (-5 *1 (-834))))) +(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-51)) (-5 *1 (-834))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-832))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-832)) (-5 *3 (-1163))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-51)) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-51)) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-51)) (-5 *1 (-832))))) +(((*1 *1 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-831 *2 *3)) (-4 *2 (-711 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-711 *3)) (-5 *1 (-831 *2 *3)) (-4 *3 (-1053))))) +(((*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1163)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1163)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-826)) (-5 *2 (-1276)))) ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *4 (-112)) (-5 *2 (-1275)))) + (-12 (-4 *1 (-824)) (-5 *3 (-826)) (-5 *4 (-112)) (-5 *2 (-1276)))) ((*1 *2 *3) - (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-1052))) (-5 *2 (-1162)) - (-5 *1 (-829 *4)))) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-1053))) (-5 *2 (-1163)) + (-5 *1 (-830 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-1052))) - (-5 *2 (-1162)) (-5 *1 (-829 *5)))) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-1053))) + (-5 *2 (-1163)) (-5 *1 (-830 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-825)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-823) (-1052))) - (-5 *2 (-1275)) (-5 *1 (-829 *5)))) + (-12 (-5 *3 (-826)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-1053))) + (-5 *2 (-1276)) (-5 *1 (-830 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-825)) (-5 *4 (-315 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-823) (-1052))) (-5 *2 (-1275)) (-5 *1 (-829 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) -(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-827))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-828)) (-5 *3 (-643 (-1180))) (-5 *1 (-827))))) -(((*1 *1) (-5 *1 (-826)))) -(((*1 *1) (-5 *1 (-826)))) -(((*1 *1) (-5 *1 (-826)))) -(((*1 *1) (-5 *1 (-826)))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1162)) (|:| -3973 (-1162)))) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-826)) (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-824))))) + (-12 (-5 *3 (-826)) (-5 *4 (-316 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-824) (-1053))) (-5 *2 (-1276)) (-5 *1 (-830 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-828))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-829)) (-5 *3 (-644 (-1181))) (-5 *1 (-828))))) +(((*1 *1) (-5 *1 (-827)))) +(((*1 *1) (-5 *1 (-827)))) +(((*1 *1) (-5 *1 (-827)))) +(((*1 *1) (-5 *1 (-827)))) +(((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-826))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1163)) (|:| -3975 (-1163)))) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1181)) (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-826))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-827)) (-5 *1 (-826))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-827)) (-5 *1 (-826))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-825))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-1123)) (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824))))) -(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-824))))) -(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-824))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821 *3)) (-4 *3 (-852))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-1124)) (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-826)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-826)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-825))))) +(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-825))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-853)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-853)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822 *3)) (-4 *3 (-853))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) - (-5 *1 (-816 *4 *3)) (-4 *3 (-660 *4))))) + (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-366)) (-5 *2 (-1270 *4)) + (-5 *1 (-817 *4 *3)) (-4 *3 (-661 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)) (-5 *1 (-816 *4 *5)) - (-4 *5 (-660 *4)))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-366)) (-5 *2 (-692 *4)) (-5 *1 (-817 *4 *5)) + (-4 *5 (-661 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-365)) (-5 *2 (-691 *5)) - (-5 *1 (-816 *5 *6)) (-4 *6 (-660 *5))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-774)) (-4 *5 (-366)) (-5 *2 (-692 *5)) + (-5 *1 (-817 *5 *6)) (-4 *6 (-661 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5)))) + (-12 (-5 *3 (-644 (-950 *5))) (-5 *4 (-644 (-1181))) (-4 *5 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *5)))))) (-5 *1 (-773 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) - (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-561)) + (-5 *2 (-644 (-644 (-295 (-411 (-950 *4)))))) (-5 *1 (-773 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *7)) + (-12 (-5 *3 (-692 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2190 (-643 *6))) *7 *6)) - (-4 *6 (-365)) (-4 *7 (-660 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2192 (-644 *6))) *7 *6)) + (-4 *6 (-366)) (-4 *7 (-661 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1269 *6) "failed")) - (|:| -2190 (-643 (-1269 *6))))) - (-5 *1 (-815 *6 *7)) (-5 *4 (-1269 *6))))) + (-2 (|:| |particular| (-3 (-1270 *6) "failed")) + (|:| -2192 (-644 (-1270 *6))))) + (-5 *1 (-816 *6 *7)) (-5 *4 (-1270 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) + (-12 (-4 *5 (-366)) (-5 *2 - (-2 (|:| A (-691 *5)) + (-2 (|:| A (-692 *5)) (|:| |eqs| - (-643 - (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5)) (|:| -3687 *6) + (-644 + (-2 (|:| C (-692 *5)) (|:| |g| (-1270 *5)) (|:| -3689 *6) (|:| |rh| *5)))))) - (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) - (-4 *6 (-660 *5)))) + (-5 *1 (-816 *5 *6)) (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)) + (-4 *6 (-661 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-660 *5)) - (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) - (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *5))))) + (-12 (-4 *5 (-366)) (-4 *6 (-661 *5)) + (-5 *2 (-2 (|:| -1750 (-692 *6)) (|:| |vec| (-1270 *5)))) + (-5 *1 (-816 *5 *6)) (-5 *3 (-692 *6)) (-5 *4 (-1270 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) + (-12 (-5 *3 (-658 (-411 *6))) (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *6 (-1246 *5)) (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) - (-5 *5 (-1 (-408 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) + (-12 (-5 *3 (-658 (-411 *7))) (-5 *4 (-1 (-644 *6) *7)) + (-5 *5 (-1 (-409 *7) *7)) + (-4 *6 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *7 (-1246 *6)) (-5 *2 (-644 (-411 *7))) (-5 *1 (-815 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-659 *6 (-411 *6))) (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *6 (-1246 *5)) (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-658 *7 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) - (-5 *5 (-1 (-408 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) + (-12 (-5 *3 (-659 *7 (-411 *7))) (-5 *4 (-1 (-644 *6) *7)) + (-5 *5 (-1 (-409 *7) *7)) + (-4 *6 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *7 (-1246 *6)) (-5 *2 (-644 (-411 *7))) (-5 *1 (-815 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) + (-12 (-5 *3 (-658 (-411 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-644 (-411 *5))) (-5 *1 (-815 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) + (-12 (-5 *3 (-658 (-411 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-658 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) + (-12 (-5 *3 (-659 *5 (-411 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-644 (-411 *5))) (-5 *1 (-815 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) + (-12 (-5 *3 (-659 *6 (-411 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-643 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) - (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 *3)))) - (-5 *1 (-811 *5 *6 *3 *7)) (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-643 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *6 (-1245 *5)) - (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 (-658 *6 (-410 *6)))))) - (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6)))))) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-644 (-411 *6))) (-5 *1 (-815 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) + (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3689 *3)))) + (-5 *1 (-812 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-411 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *6 (-1246 *5)) + (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3689 (-659 *6 (-411 *6)))))) + (-5 *1 (-815 *5 *6)) (-5 *3 (-659 *6 (-411 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-643 *7) *7 (-1174 *7))) (-5 *5 (-1 (-408 *7) *7)) - (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1041 (-410 (-549))))) - (-5 *2 (-643 (-2 (|:| |frac| (-410 *7)) (|:| -3687 *3)))) - (-5 *1 (-811 *6 *7 *3 *8)) (-4 *3 (-660 *7)) (-4 *8 (-660 (-410 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-643 (-2 (|:| |frac| (-410 *6)) (|:| -3687 (-658 *6 (-410 *6)))))) - (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-726 *5 *7)) - (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) - (-5 *1 (-813 *5 *6 *7 *4 *3)) (-4 *6 (-660 *5)) (-4 *3 (-660 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-658 *2 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) - (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-410 *6))) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) - (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) - (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-658 *6 (-410 *6))) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) - (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6)))))) + (-12 (-5 *4 (-1 (-644 *7) *7 (-1175 *7))) (-5 *5 (-1 (-409 *7) *7)) + (-4 *7 (-1246 *6)) (-4 *6 (-13 (-366) (-147) (-1042 (-411 (-550))))) + (-5 *2 (-644 (-2 (|:| |frac| (-411 *7)) (|:| -3689 *3)))) + (-5 *1 (-812 *6 *7 *3 *8)) (-4 *3 (-661 *7)) (-4 *8 (-661 (-411 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-644 (-2 (|:| |frac| (-411 *6)) (|:| -3689 (-659 *6 (-411 *6)))))) + (-5 *1 (-815 *5 *6)) (-5 *3 (-659 *6 (-411 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-366)) (-4 *7 (-1246 *5)) (-4 *4 (-727 *5 *7)) + (-5 *2 (-2 (|:| -1750 (-692 *6)) (|:| |vec| (-1270 *5)))) + (-5 *1 (-814 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-658 (-411 *2))) (-4 *2 (-1246 *4)) (-5 *1 (-813 *4 *2)) + (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-659 *2 (-411 *2))) (-4 *2 (-1246 *4)) (-5 *1 (-813 *4 *2)) + (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-658 (-411 *6))) (-5 *4 (-411 *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2192 (-644 *4)))) + (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-658 (-411 *6))) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-2 (|:| -2192 (-644 (-411 *6))) (|:| -1750 (-692 *5)))) + (-5 *1 (-813 *5 *6)) (-5 *4 (-644 (-411 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-659 *6 (-411 *6))) (-5 *4 (-411 *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2192 (-644 *4)))) + (-5 *1 (-813 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-659 *6 (-411 *6))) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-2 (|:| -2192 (-644 (-411 *6))) (|:| -1750 (-692 *5)))) + (-5 *1 (-813 *5 *6)) (-5 *4 (-644 (-411 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-1245 *4)) - (-5 *1 (-811 *4 *3 *2 *5)) (-4 *2 (-660 *3)) (-4 *5 (-660 (-410 *3))))) + (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-1246 *4)) + (-5 *1 (-812 *4 *3 *2 *5)) (-4 *2 (-661 *3)) (-4 *5 (-661 (-411 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) - (-4 *5 (-1245 *4)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *2 (-660 *5)) - (-4 *6 (-660 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-643 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) - (-5 *2 (-643 (-2 (|:| -4384 *5) (|:| -3687 *3)))) (-5 *1 (-811 *5 *6 *3 *7)) - (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) - (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -3687 *5)))) - (-5 *1 (-811 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) - (-4 *5 (-660 (-410 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) - (-4 *5 (-660 (-410 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *5 *3)) - (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-660 *2)) - (-4 *3 (-660 (-410 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) - (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) - (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) - (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *3 *6)) - (-4 *3 (-660 *4)) (-4 *6 (-660 (-410 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) - (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *6 *3)) - (-4 *6 (-660 *5)) (-4 *3 (-660 (-410 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) - (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *6 *3)) - (-4 *6 (-660 *4)) (-4 *3 (-660 (-410 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) - (-5 *1 (-809 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) - (-4 *3 (-660 *2)) (-4 *6 (-660 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-809 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) - (-4 *6 (-660 (-410 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-344 *5 *6 *7)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) - (-5 *1 (-808 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-806 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1205) (-963)))))) + (-12 (-5 *3 (-411 *5)) (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) + (-4 *5 (-1246 *4)) (-5 *1 (-812 *4 *5 *2 *6)) (-4 *2 (-661 *5)) + (-4 *6 (-661 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *6 (-1246 *5)) + (-5 *2 (-644 (-2 (|:| -4386 *5) (|:| -3689 *3)))) (-5 *1 (-812 *5 *6 *3 *7)) + (-4 *3 (-661 *6)) (-4 *7 (-661 (-411 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) + (-5 *2 (-644 (-2 (|:| |deg| (-774)) (|:| -3689 *5)))) + (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-411 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1246 *4)) (-5 *1 (-812 *4 *2 *3 *5)) + (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) + (-4 *5 (-661 (-411 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1246 *4)) (-5 *1 (-810 *4 *2 *3 *5)) + (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) + (-4 *5 (-661 (-411 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1246 *4)) (-5 *1 (-810 *4 *2 *5 *3)) + (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-661 *2)) + (-4 *3 (-661 (-411 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) + (-5 *2 (-644 (-2 (|:| -4206 *5) (|:| -3648 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) + (-4 *3 (-661 *5)) (-4 *6 (-661 (-411 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *4 (-1246 *5)) + (-5 *2 (-644 (-2 (|:| -4206 *4) (|:| -3648 *4)))) (-5 *1 (-810 *5 *4 *3 *6)) + (-4 *3 (-661 *4)) (-4 *6 (-661 (-411 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *5 (-1246 *4)) + (-5 *2 (-644 (-2 (|:| -4206 *5) (|:| -3648 *5)))) (-5 *1 (-810 *4 *5 *6 *3)) + (-4 *6 (-661 *5)) (-4 *3 (-661 (-411 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *4 (-1246 *5)) + (-5 *2 (-644 (-2 (|:| -4206 *4) (|:| -3648 *4)))) (-5 *1 (-810 *5 *4 *6 *3)) + (-4 *6 (-661 *4)) (-4 *3 (-661 (-411 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-411 *2)) (-4 *2 (-1246 *5)) + (-5 *1 (-810 *5 *2 *3 *6)) (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) + (-4 *3 (-661 *2)) (-4 *6 (-661 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-411 *2))) (-4 *2 (-1246 *5)) (-5 *1 (-810 *5 *2 *3 *6)) + (-4 *5 (-13 (-366) (-147) (-1042 (-411 (-550))))) (-4 *3 (-661 *2)) + (-4 *6 (-661 (-411 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-658 *4)) (-4 *4 (-345 *5 *6 *7)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *6 (-1246 *5)) (-4 *7 (-1246 (-411 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2192 (-644 *4)))) + (-5 *1 (-809 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-807 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1206) (-964)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963)))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-5 *1 (-807 *4 *2)) (-4 *2 (-13 (-29 *4) (-1206) (-964)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) - (|:| |expense| (-380)) (|:| |accuracy| (-380)) - (|:| |intermediateResults| (-380)))) - (-5 *1 (-805))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *1 (-806))))) (((*1 *1 *2) (-12 (-5 *2 - (-643 + (-644 (-2 - (|:| -4292 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -2254 - (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) - (|:| |expense| (-380)) (|:| |accuracy| (-380)) - (|:| |intermediateResults| (-380))))))) - (-5 *1 (-805))))) + (|:| -4294 + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (|:| -2256 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381))))))) + (-5 *1 (-806))))) (((*1 *2 *1) (-12 (-5 *2 - (-643 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))) - (-5 *1 (-563)))) + (-644 + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226))))) + (-5 *1 (-564)))) ((*1 *2 *1) - (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) + (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-644 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-643 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225))))) - (-5 *1 (-805))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-805))))) -(((*1 *1) (-5 *1 (-805)))) + (-644 + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226))))) + (-5 *1 (-806))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-806))))) +(((*1 *1) (-5 *1 (-806)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) - (-4 *4 (-13 (-29 *6) (-1205) (-963))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) - (-5 *1 (-803 *6 *4 *3)) (-4 *3 (-660 *4))))) + (-12 (-5 *5 (-1181)) (-4 *6 (-13 (-309) (-1042 (-550)) (-642 (-550)) (-147))) + (-4 *4 (-13 (-29 *6) (-1206) (-964))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2192 (-644 *4)))) + (-5 *1 (-804 *6 *4 *3)) (-4 *3 (-661 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-802)) + (-12 (-4 *1 (-803)) (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1038))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) (-4 *1 (-243))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-1039))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-173)) (-5 *1 (-801 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173))))) +(((*1 *1 *1) (-4 *1 (-244))) ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) + (-12 (-4 *2 (-173)) (-5 *1 (-291 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1246 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) - ((*1 *1 *1) (-4 *1 (-476))) - ((*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) + (-3962 (-12 (-5 *1 (-295 *2)) (-4 *2 (-366)) (-4 *2 (-1220))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-477)) (-4 *2 (-1220))))) + ((*1 *1 *1) (-4 *1 (-477))) + ((*1 *2 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-353)) (-5 *1 (-532 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) - ((*1 *1 *1 *1) (-4 *1 (-795)))) + ((*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-173)) (-4 *2 (-366))))) +(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) + ((*1 *1 *1 *1) (-4 *1 (-796)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (-2 (|:| -3828 *4) (|:| -1706 *4) (|:| |totalpts| (-550)) (|:| |success| (-112)))) - (-5 *1 (-791)) (-5 *5 (-549))))) + (-5 *1 (-792)) (-5 *5 (-550))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) - (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) + (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-549)) - (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) - (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) - (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) + (-12 (-5 *4 (-550)) + (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381)))) + (-5 *7 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) + (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-549)) - (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) - (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) - (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) + (-12 (-5 *4 (-550)) + (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -1578 (-381)))) + (-5 *7 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) (-5 *3 (-1270 (-381))) + (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) - (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) + (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) - (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) + (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) - (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) + (-12 (-5 *4 (-550)) (-5 *6 (-1 (-1276) (-1270 *5) (-1270 *5) (-381))) + (-5 *3 (-1270 (-381))) (-5 *5 (-381)) (-5 *2 (-1276)) (-5 *1 (-791))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-789)) (-5 *2 (-1038)) + (-12 (-4 *1 (-790)) (-5 *2 (-1039)) (-5 *3 - (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-2 (|:| |fn| (-316 (-226))) (|:| -1609 (-644 (-1093 (-845 (-226))))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) ((*1 *2 *3 *2) - (-12 (-4 *1 (-789)) (-5 *2 (-1038)) + (-12 (-4 *1 (-790)) (-5 *2 (-1039)) (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788))))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-923)) (-5 *1 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1163)) (-5 *1 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-923)) (-5 *1 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1163)) (-5 *1 (-789))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-173)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) - (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-411 (-950 (-169 *4)))) (-4 *4 (-561)) + (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-411 (-950 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-561)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) - (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) + (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) - (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-561)) (-4 *4 (-853)) + (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) - (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) - (-5 *1 (-787 *5))))) + (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-561)) + (-4 *5 (-853)) (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-788 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) - (-5 *2 (-380)) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 *2)) + (-5 *2 (-381)) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) - (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) + (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) - (-5 *2 (-380)) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 *2)) + (-5 *2 (-381)) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) - (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) + (|partial| -12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) + (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) - (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) + (-4 *4 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) - (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5))))) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) + (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) (-4 *3 (-616 (-380))))) + (-12 (-5 *2 (-169 (-381))) (-5 *1 (-788 *3)) (-4 *3 (-617 (-381))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) - (-4 *3 (-616 (-380))))) + (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-788 *3)) + (-4 *3 (-617 (-381))))) ((*1 *2 *3) - (-12 (-5 *3 (-168 *4)) (-4 *4 (-172)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-169 *4)) (-4 *4 (-173)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-168 *5)) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-173)) (-4 *5 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-173)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-173)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *5 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-411 (-950 (-169 *4)))) (-4 *4 (-561)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-411 (-950 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-561)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) - (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) - (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-561)) (-4 *4 (-853)) + (-4 *4 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) - (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2)))) + (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) + (-4 *5 (-617 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-788 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-788 *3)) (-4 *3 (-617 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2)))) + (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-788 *3)) (-4 *3 (-617 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) (-5 *2 (-380)) - (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-950 *4)) (-4 *4 (-1053)) (-4 *4 (-617 *2)) (-5 *2 (-381)) + (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 *2)) - (-5 *2 (-380)) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-950 *5)) (-5 *4 (-923)) (-4 *5 (-1053)) (-4 *5 (-617 *2)) + (-5 *2 (-381)) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) (-5 *2 (-380)) - (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-411 (-950 *4))) (-4 *4 (-561)) (-4 *4 (-617 *2)) (-5 *2 (-381)) + (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 *2)) - (-5 *2 (-380)) (-5 *1 (-787 *5)))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-617 *2)) + (-5 *2 (-381)) (-5 *1 (-788 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 *2)) - (-5 *2 (-380)) (-5 *1 (-787 *4)))) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-561)) (-4 *4 (-853)) (-4 *4 (-617 *2)) + (-5 *2 (-381)) (-5 *1 (-788 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) - (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5))))) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-923)) (-4 *5 (-561)) (-4 *5 (-853)) + (-4 *5 (-617 *2)) (-5 *2 (-381)) (-5 *1 (-788 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) - (-4 *2 (-172))))) + (-12 (-5 *3 (-774)) (-5 *1 (-786 *2)) (-4 *2 (-38 (-411 (-550)))) + (-4 *2 (-173))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) - (-4 *2 (-172))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052))))) + (-12 (-5 *3 (-774)) (-5 *1 (-786 *2)) (-4 *2 (-38 (-411 (-550)))) + (-4 *2 (-173))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1053))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-1053))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-643 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-560)) - (-4 *3 (-1052))))) + (-12 (-5 *2 (-644 (-784 *3))) (-5 *1 (-784 *3)) (-4 *3 (-561)) + (-4 *3 (-1053))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052))))) + (-5 *2 (-2 (|:| -4190 *3) (|:| |coef1| (-784 *3)) (|:| |coef2| (-784 *3)))) + (-5 *1 (-784 *3)) (-4 *3 (-561)) (-4 *3 (-1053))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) - (-4 *3 (-560)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-2 (|:| -4190 *3) (|:| |coef1| (-784 *3)))) (-5 *1 (-784 *3)) + (-4 *3 (-561)) (-4 *3 (-1053))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) - (-4 *3 (-560)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-2 (|:| -4190 *3) (|:| |coef2| (-784 *3)))) (-5 *1 (-784 *3)) + (-4 *3 (-561)) (-4 *3 (-1053))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-410 (-549)))) + (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *2 - (-643 - (-2 (|:| |outval| *4) (|:| |outmult| (-549)) - (|:| |outvect| (-643 (-691 *4)))))) - (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850)))))) + (-644 + (-2 (|:| |outval| *4) (|:| |outmult| (-550)) + (|:| |outvect| (-644 (-692 *4)))))) + (-5 *1 (-782 *4)) (-4 *4 (-13 (-366) (-851)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-781 *4)) - (-4 *4 (-13 (-365) (-850)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-691 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *2 (-644 *4)) (-5 *1 (-782 *4)) + (-4 *4 (-13 (-366) (-851)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-692 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-726 *4 *2)))) + (-12 (-4 *4 (-173)) (-4 *2 (-1246 *4)) (-5 *1 (-178 *4 *2 *3)) + (-4 *3 (-727 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-410 (-949 *5)))) (-5 *4 (-1180)) (-5 *2 (-949 *5)) - (-5 *1 (-293 *5)) (-4 *5 (-455)))) + (-12 (-5 *3 (-692 (-411 (-950 *5)))) (-5 *4 (-1181)) (-5 *2 (-950 *5)) + (-5 *1 (-294 *5)) (-4 *5 (-456)))) ((*1 *2 *3) - (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-293 *4)) - (-4 *4 (-455)))) - ((*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + (-12 (-5 *3 (-692 (-411 (-950 *4)))) (-5 *2 (-950 *4)) (-5 *1 (-294 *4)) + (-4 *4 (-456)))) + ((*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1246 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-949 (-168 (-410 (-549))))) - (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850))))) + (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *2 (-950 (-169 (-411 (-550))))) + (-5 *1 (-767 *4)) (-4 *4 (-13 (-366) (-851))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *4 (-1180)) - (-5 *2 (-949 (-168 (-410 (-549))))) (-5 *1 (-766 *5)) - (-4 *5 (-13 (-365) (-850))))) + (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *4 (-1181)) + (-5 *2 (-950 (-169 (-411 (-550))))) (-5 *1 (-767 *5)) + (-4 *5 (-13 (-366) (-851))))) ((*1 *2 *3) - (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-949 (-410 (-549)))) - (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850))))) + (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *2 (-950 (-411 (-550)))) + (-5 *1 (-782 *4)) (-4 *4 (-13 (-366) (-851))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *4 (-1180)) - (-5 *2 (-949 (-410 (-549)))) (-5 *1 (-781 *5)) (-4 *5 (-13 (-365) (-850)))))) + (-12 (-5 *3 (-692 (-411 (-550)))) (-5 *4 (-1181)) + (-5 *2 (-950 (-411 (-550)))) (-5 *1 (-782 *5)) (-4 *5 (-13 (-366) (-851)))))) (((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-643 (-773))) - (-5 *1 (-780 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *6)) (-4 *7 (-953 *6 *4 *5))))) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-644 (-774))) + (-5 *1 (-781 *3 *4 *5 *6 *7)) (-4 *3 (-1246 *6)) (-4 *7 (-954 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1245 *9)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-308)) - (-4 *10 (-953 *9 *7 *8)) + (-12 (-4 *6 (-1246 *9)) (-4 *7 (-796)) (-4 *8 (-853)) (-4 *9 (-309)) + (-4 *10 (-954 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-643 (-1174 *10))) - (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-643 *6)) (|:| |nlead| (-643 *10)))) - (-5 *1 (-780 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-643 *6)) - (-5 *5 (-643 *10))))) + (-2 (|:| |deter| (-644 (-1175 *10))) + (|:| |dterm| (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) + (-5 *1 (-781 *6 *7 *8 *9 *10)) (-5 *3 (-1175 *10)) (-5 *4 (-644 *6)) + (-5 *5 (-644 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-643 *3)) - (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-922))))) + (-12 (-4 *4 (-353)) (-4 *5 (-331 *4)) (-4 *6 (-1246 *5)) (-5 *2 (-644 *3)) + (-5 *1 (-780 *4 *5 *6 *3 *7)) (-4 *3 (-1246 *6)) (-14 *7 (-923))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) - (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1710 *4)))) + (-5 *1 (-779 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1162)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) - (-4 *4 (-1068 *6 *7 *8)) (-5 *2 (-1275)) (-5 *1 (-778 *6 *7 *8 *4 *5)) - (-4 *5 (-1074 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1163)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) + (-4 *4 (-1069 *6 *7 *8)) (-5 *2 (-1276)) (-5 *1 (-779 *6 *7 *8 *4 *5)) + (-4 *5 (-1075 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + (-12 (-4 *3 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) - ((*1 *1 *1) (-5 *1 (-380))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))))) + ((*1 *1 *1) (-5 *1 (-381))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) - (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) - (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) + (-12 (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *3 (-1069 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1710 *4)))) + (-5 *1 (-779 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *2 (-1068 *4 *5 *6)) - (-5 *1 (-778 *4 *5 *6 *2 *3)) (-4 *3 (-1074 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) - ((*1 *1 *1 *1) (-4 *1 (-548))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-773))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-494)) (-5 *4 (-957)) (-5 *2 (-693 (-536))) (-5 *1 (-536)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-957)) (-4 *3 (-1104)) (-5 *2 (-693 *1)) (-4 *1 (-769 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-769 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-168 (-410 (-549))))) - (-5 *2 - (-643 - (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-549)) - (|:| |outvect| (-643 (-691 (-168 *4))))))) - (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-643 (-168 *4))) - (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-763)))) -(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-763)))) -(((*1 *1 *1 *1) (-4 *1 (-763)))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-949 (-549)))) (-5 *1 (-439)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-225))) (-5 *2 (-1106)) (-5 *1 (-761)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-549))) (-5 *2 (-1106)) (-5 *1 (-761))))) -(((*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *2 (-1069 *4 *5 *6)) + (-5 *1 (-779 *4 *5 *6 *2 *3)) (-4 *3 (-1075 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-381)))) + ((*1 *1 *1 *1) (-4 *1 (-549))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) + ((*1 *1 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-774))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-495)) (-5 *4 (-958)) (-5 *2 (-694 (-537))) (-5 *1 (-537)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-958)) (-4 *3 (-1105)) (-5 *2 (-694 *1)) (-4 *1 (-770 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-770 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-692 (-169 (-411 (-550))))) + (-5 *2 + (-644 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-550)) + (|:| |outvect| (-644 (-692 (-169 *4))))))) + (-5 *1 (-767 *4)) (-4 *4 (-13 (-366) (-851)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-692 (-169 (-411 (-550))))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-767 *4)) (-4 *4 (-13 (-366) (-851)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-764)))) +(((*1 *1 *1 *1) (-4 *1 (-477))) ((*1 *1 *1 *1) (-4 *1 (-764)))) +(((*1 *1 *1 *1) (-4 *1 (-764)))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-762))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-950 (-550)))) (-5 *1 (-440)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1181)) (-5 *4 (-692 (-226))) (-5 *2 (-1107)) (-5 *1 (-762)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1181)) (-5 *4 (-692 (-550))) (-5 *2 (-1107)) (-5 *1 (-762))))) +(((*1 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-762))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-762))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-762))))) (((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-168 (-225))) (-5 *6 (-1162)) (-5 *4 (-225)) - (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-550)) (-5 *5 (-169 (-226))) (-5 *6 (-1163)) (-5 *4 (-226)) + (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) - (-5 *1 (-760))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *2 (-1039)) + (-5 *1 (-761))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) - (-5 *1 (-760))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *2 (-1039)) + (-5 *1 (-761))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *4 (-169 (-226))) (-5 *5 (-550)) (-5 *6 (-1163)) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-168 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) + (-12 (-5 *3 (-169 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-761))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-759))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-760))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-759))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-760))))) (((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) - (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-759))))) + (-12 (-5 *3 (-1163)) (-5 *5 (-692 (-226))) (-5 *6 (-692 (-550))) + (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-760))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-760))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) + (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) - (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) + (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1038)) - (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1039)) + (-5 *1 (-759))))) (((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) - (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) + (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-759))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) - (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) + (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-759))))) (((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) - (-5 *1 (-758))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-169 (-226)))) (-5 *2 (-1039)) + (-5 *1 (-759))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-168 (-225)))) - (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-692 (-169 (-226)))) + (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-112)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-758))))) (((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1038)) (-5 *1 (-757)))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) + (-5 *2 (-1039)) (-5 *1 (-758)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) - (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-392)) + (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) (-5 *4 (-225)) - (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-692 (-226))) (-5 *4 (-226)) + (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-758))))) (((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-758))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) - (-5 *2 (-1038)) (-5 *1 (-756))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-169 (-226)))) + (-5 *2 (-1039)) (-5 *1 (-757))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) - (-5 *2 (-1038)) (-5 *1 (-756))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-169 (-226)))) + (-5 *2 (-1039)) (-5 *1 (-757))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) - (-5 *1 (-756))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-169 (-226)))) (-5 *2 (-1039)) + (-5 *1 (-757))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-756))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-757))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-756))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-757))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-757))))) (((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) - (-5 *2 (-1038)) (-5 *1 (-756))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *3 (-550)) + (-5 *2 (-1039)) (-5 *1 (-757))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-643 (-112))) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) - (-5 *7 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-756))))) + (-12 (-5 *4 (-644 (-112))) (-5 *5 (-692 (-226))) (-5 *6 (-692 (-550))) + (-5 *7 (-226)) (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-757))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-691 (-549))) (-5 *5 (-112)) (-5 *7 (-691 (-225))) - (-5 *3 (-549)) (-5 *6 (-225)) (-5 *2 (-1038)) (-5 *1 (-756))))) + (-12 (-5 *4 (-692 (-550))) (-5 *5 (-112)) (-5 *7 (-692 (-226))) + (-5 *3 (-550)) (-5 *6 (-226)) (-5 *2 (-1039)) (-5 *1 (-757))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-643 (-112))) (-5 *7 (-691 (-225))) (-5 *8 (-691 (-549))) - (-5 *3 (-549)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1038)) - (-5 *1 (-756))))) + (-12 (-5 *6 (-644 (-112))) (-5 *7 (-692 (-226))) (-5 *8 (-692 (-550))) + (-5 *3 (-550)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1039)) + (-5 *1 (-757))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-755))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-691 (-549))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-549)) - (-5 *2 (-1038)) (-5 *1 (-755))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) + (-5 *7 (-692 (-550))) (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-550)) + (-5 *2 (-1039)) (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) - (-12 (-5 *5 (-691 (-225))) (-5 *6 (-112)) (-5 *7 (-691 (-549))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-549)) - (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755))))) + (-12 (-5 *5 (-692 (-226))) (-5 *6 (-112)) (-5 *7 (-692 (-550))) + (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-550)) + (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *2 (-1038)) - (-5 *1 (-755))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-112)) (-5 *2 (-1039)) + (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1038)) - (-5 *1 (-755))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1039)) + (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1038)) - (-5 *1 (-755))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1039)) + (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1038)) - (-5 *1 (-755))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1039)) + (-5 *1 (-756))))) (((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-225)) - (-5 *2 (-1038)) (-5 *1 (-755))))) + (-12 (-5 *3 (-550)) (-5 *5 (-112)) (-5 *6 (-692 (-226))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-226)) + (-5 *2 (-1039)) (-5 *1 (-756))))) (((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) - (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-1163)) (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-226)) + (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) - (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-1163)) (-5 *5 (-692 (-226))) (-5 *6 (-226)) + (-5 *7 (-692 (-550))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) - (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *6 (-226)) + (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) - (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-1163)) (-5 *5 (-692 (-226))) (-5 *6 (-226)) + (-5 *7 (-692 (-550))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *3 (-549)) - (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *5 (-692 (-226))) (-5 *6 (-692 (-550))) (-5 *3 (-550)) + (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) - (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) + (-5 *1 (-755))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-755))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) + (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) + (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) - (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *4 (-692 (-226))) (-5 *5 (-692 (-550))) (-5 *6 (-226)) + (-5 *3 (-550)) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) (-5 *2 (-1039)) + (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-754))))) (((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) - (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-677 (-225))) - (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-752))))) + (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) (-5 *6 (-678 (-226))) + (-5 *3 (-226)) (-5 *2 (-1039)) (-5 *1 (-753))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-1162)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1038)) - (-5 *1 (-752))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *5 (-1163)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-83 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1039)) + (-5 *1 (-753))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) - (-5 *1 (-752))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) (-5 *4 (-226)) (-5 *2 (-1039)) + (-5 *1 (-753))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *3 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-77 G JACOBG JACGEP)))) + (-5 *4 (-226)) (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1038)) - (-5 *1 (-751)))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1039)) + (-5 *1 (-752)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-391)) - (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-62 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-392)) + (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-85 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1038)) - (-5 *1 (-751))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1039)) + (-5 *1 (-752))))) (((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *4 (-550)) (-5 *5 (-1163)) (-5 *6 (-692 (-226))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) + (-5 *9 (-3 (|:| |fn| (-392)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *4 (-550)) (-5 *5 (-1163)) (-5 *6 (-692 (-226))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) + (-5 *9 (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-751))))) + (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-82 FCN)))) + (-5 *7 (-3 (|:| |fn| (-392)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-752))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-751))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) (-5 *2 (-1039)) (-5 *1 (-751))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 G)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *3 (-225)) - (-5 *2 (-1038)) (-5 *1 (-750))))) + (-12 (-5 *4 (-550)) (-5 *5 (-692 (-226))) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *3 (-226)) + (-5 *2 (-1039)) (-5 *1 (-751))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) - (-5 *1 (-750))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) + (-5 *1 (-751))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-750))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-750))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-750))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) - (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-1163)) (-5 *5 (-692 (-226))) (-5 *2 (-1039)) + (-5 *1 (-750))))) (((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *2 (-1039)) (-5 *1 (-750))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1038)) - (-5 *1 (-748))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1039)) + (-5 *1 (-749))))) (((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1038)) - (-5 *1 (-748))))) + (-12 (-5 *3 (-550)) (-5 *4 (-692 (-226))) (-5 *5 (-226)) + (-5 *6 (-3 (|:| |fn| (-392)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1039)) + (-5 *1 (-749))))) (((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-549)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) - (-5 *1 (-748))))) + (-12 (-5 *3 (-226)) (-5 *4 (-550)) + (-5 *5 (-3 (|:| |fn| (-392)) (|:| |fp| (-61 -3498)))) (-5 *2 (-1039)) + (-5 *1 (-749))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) - (-5 *1 (-747))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1039)) + (-5 *1 (-748))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) - (-5 *1 (-747))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-746 *3)) (-4 *3 (-172))))) + (-12 (-5 *3 (-692 (-226))) (-5 *4 (-550)) (-5 *5 (-112)) (-5 *2 (-1039)) + (-5 *1 (-748))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-747 *3)) (-4 *3 (-173))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1174 *6)) (-5 *3 (-549)) (-4 *6 (-308)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5))))) + (-12 (-5 *2 (-1175 *6)) (-5 *3 (-550)) (-4 *6 (-309)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-745 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-4 *7 (-852)) - (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-4 *8 (-308)) (-5 *2 (-643 (-773))) - (-5 *1 (-744 *6 *7 *8 *9)) (-5 *5 (-773))))) + (-12 (-5 *3 (-1175 *9)) (-5 *4 (-644 *7)) (-4 *7 (-853)) + (-4 *9 (-954 *8 *6 *7)) (-4 *6 (-796)) (-4 *8 (-309)) (-5 *2 (-644 (-774))) + (-5 *1 (-745 *6 *7 *8 *9)) (-5 *5 (-774))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-549)) (-5 *4 (-408 *2)) (-4 *2 (-953 *7 *5 *6)) - (-5 *1 (-744 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-308))))) + (-12 (-5 *3 (-550)) (-5 *4 (-409 *2)) (-4 *2 (-954 *7 *5 *6)) + (-5 *1 (-745 *5 *6 *7 *2)) (-4 *5 (-796)) (-4 *6 (-853)) (-4 *7 (-309))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) - (-4 *7 (-852)) (-4 *8 (-308)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) + (-12 (-5 *3 (-1175 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) + (-4 *7 (-853)) (-4 *8 (-309)) (-4 *9 (-954 *8 *6 *7)) (-4 *6 (-796)) (-5 *2 - (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-643 *8)) - (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 *8)) (|:| -2564 (-549))))) + (-2 (|:| |upol| (-1175 *8)) (|:| |Lval| (-644 *8)) + (|:| |Lfact| (-644 (-2 (|:| -4166 (-1175 *8)) (|:| -2566 (-550))))) (|:| |ctpol| *8))) - (-5 *1 (-744 *6 *7 *8 *9))))) + (-5 *1 (-745 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) (-4 *7 (-852)) (-4 *8 (-308)) - (-4 *6 (-795)) (-4 *9 (-953 *8 *6 *7)) + (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-853)) (-4 *8 (-309)) + (-4 *6 (-796)) (-4 *9 (-954 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 *9)) (|:| -2564 (-549))))))) - (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9))))) + (|:| |suPart| (-644 (-2 (|:| -4166 (-1175 *9)) (|:| -2566 (-550))))))) + (-5 *1 (-745 *6 *7 *8 *9)) (-5 *3 (-1175 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-549)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-308)) - (-4 *9 (-953 *8 *6 *7)) - (-5 *2 (-2 (|:| -2182 (-1174 *9)) (|:| |polval| (-1174 *8)))) - (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8))))) + (-12 (-5 *5 (-550)) (-4 *6 (-796)) (-4 *7 (-853)) (-4 *8 (-309)) + (-4 *9 (-954 *8 *6 *7)) + (-5 *2 (-2 (|:| -2184 (-1175 *9)) (|:| |polval| (-1175 *8)))) + (-5 *1 (-745 *6 *7 *8 *9)) (-5 *3 (-1175 *9)) (-5 *4 (-1175 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) - (-5 *1 (-744 *5 *4 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) + (-12 (-4 *5 (-796)) (-4 *4 (-853)) (-4 *6 (-309)) (-5 *2 (-409 *3)) + (-5 *1 (-745 *5 *4 *6 *3)) (-4 *3 (-954 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) - (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) - (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5))))) + (-12 (-5 *3 (-644 (-2 (|:| -4166 (-1175 *6)) (|:| -2566 (-550))))) + (-4 *6 (-309)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-550)) + (-5 *1 (-745 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-741 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-740))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-738 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104)))) - ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104))))) + (-12 (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-309)) (-5 *2 (-409 *3)) + (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-954 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-742 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-741))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-739 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-1105)))) + ((*1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-1105))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-773)))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-773)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728))))) + (-12 (-5 *2 (-774)) (-5 *1 (-738 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-729))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-560)) (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) - (-5 *3 (-410 (-949 *6))) (-4 *5 (-795)) - (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)))))))) + (-12 (-4 *6 (-561)) (-4 *2 (-954 *3 *5 *4)) (-5 *1 (-735 *5 *4 *6 *2)) + (-5 *3 (-411 (-950 *6))) (-4 *5 (-796)) + (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 (-949 *6))) (-4 *6 (-560)) - (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) - (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)))))))) + (-12 (-5 *3 (-1175 (-950 *6))) (-4 *6 (-561)) + (-4 *2 (-954 (-411 (-950 *6)) *5 *4)) (-5 *1 (-735 *5 *4 *6 *2)) + (-4 *5 (-796)) (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *2)) (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) - (-5 *1 (-734 *5 *4 *6 *2)) (-4 *5 (-795)) - (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560))))) + (-12 (-5 *3 (-1175 *2)) (-4 *2 (-954 (-411 (-950 *6)) *5 *4)) + (-5 *1 (-735 *5 *4 *6 *2)) (-4 *5 (-796)) + (-4 *4 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) (-4 *6 (-561))))) (((*1 *2 *3) - (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) - (-4 *6 (-560)) (-5 *2 (-2 (|:| -2805 (-949 *6)) (|:| -2236 (-949 *6)))) - (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-953 (-410 (-949 *6)) *4 *5))))) + (-12 (-4 *4 (-796)) (-4 *5 (-13 (-853) (-10 -8 (-15 -4404 ((-1181) $))))) + (-4 *6 (-561)) (-5 *2 (-2 (|:| -2807 (-950 *6)) (|:| -2238 (-950 *6)))) + (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-954 (-411 (-950 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) - (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-550)) + (-14 *6 (-774)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *9)) (-4 *9 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) - (-4 *8 (-1052)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5))))) + (-12 (-5 *3 (-644 *9)) (-4 *9 (-1053)) (-4 *5 (-853)) (-4 *6 (-796)) + (-4 *8 (-1053)) (-4 *2 (-954 *9 *7 *5)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-796)) (-4 *4 (-954 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) - (-5 *1 (-729 *5 *2)) (-4 *5 (-365))))) + (-12 (-5 *3 (-411 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1246 *5)) + (-5 *1 (-730 *5 *2)) (-4 *5 (-366))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -3493 (-408 *3)) (|:| |special| (-408 *3)))) - (-5 *1 (-729 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-366)) + (-5 *2 (-2 (|:| -3495 (-409 *3)) (|:| |special| (-409 *3)))) + (-5 *1 (-730 *5 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112))))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-725)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-729)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) - (-14 *4 (-643 (-1180))))) - ((*1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) - (-14 *4 (-643 (-1180))))) - ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-338 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-726 *2 *3)) (-4 *3 (-1245 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-4 *1 (-726 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) - ((*1 *1 *1) (|partial| -4 *1 (-724)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) - ((*1 *1 *1) (|partial| -4 *1 (-724)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365))))) + (-12 (-5 *2 (-774)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) + (-14 *4 (-644 (-1181))))) + ((*1 *1 *2) + (-12 (-5 *2 (-774)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) + (-14 *4 (-644 (-1181))))) + ((*1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-371)) (-4 *2 (-366)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-4 *2 (-345 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-774)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-173)))) + ((*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-727 *2 *3)) (-4 *3 (-1246 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1270 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-366)) + (-4 *1 (-727 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1246 *5)) (-5 *2 (-692 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-923)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-774))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-923)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-774))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) + ((*1 *1 *1) (|partial| -4 *1 (-725)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) + ((*1 *1 *1) (|partial| -4 *1 (-725)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-721 *2)) (-4 *2 (-366))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-173)) (-5 *1 (-291 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1246 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-714 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-718 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1250 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1180)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) + (-12 (-5 *2 (-1251 *3 *4 *5)) (-5 *1 (-321 *3 *4 *5)) (-4 *3 (-366)) + (-14 *4 (-1181)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-409 *3)) (-4 *3 (-561)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) ((*1 *2 *1) - (-12 (-4 *2 (-1104)) (-5 *1 (-715 *3 *2 *4)) (-4 *3 (-852)) + (-12 (-4 *2 (-1105)) (-5 *1 (-716 *3 *2 *4)) (-4 *3 (-853)) (-14 *4 - (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *2)) - (-2 (|:| -2563 *3) (|:| -2564 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) + (-1 (-112) (-2 (|:| -2565 *3) (|:| -2566 *2)) + (-2 (|:| -2565 *3) (|:| -2566 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-371)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) + (-12 (-5 *3 (-923)) (-5 *2 (-1270 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353)))) ((*1 *2 *1) - (-12 (-4 *2 (-852)) (-5 *1 (-715 *2 *3 *4)) (-4 *3 (-1104)) + (-12 (-4 *2 (-853)) (-5 *1 (-716 *2 *3 *4)) (-4 *3 (-1105)) (-14 *4 - (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) - (-2 (|:| -2563 *2) (|:| -2564 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3))))) + (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *3)) + (-2 (|:| -2565 *2) (|:| -2566 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-715 *3 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) - (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-1053)) (-5 *2 (-1270 *3)) (-5 *1 (-715 *3 *4)) + (-4 *4 (-1246 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-714 *3 *4)) - (-4 *4 (-1245 *3))))) + (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1053)) (-5 *1 (-715 *3 *4)) + (-4 *4 (-1246 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) - (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-1053)) (-5 *2 (-1270 *3)) (-5 *1 (-715 *3 *4)) + (-4 *4 (-1246 *3))))) (((*1 *2) - (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) - (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-1053)) (-5 *2 (-962 (-715 *3 *4))) (-5 *1 (-715 *3 *4)) + (-4 *4 (-1246 *3))))) (((*1 *2) - (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) - (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-1053)) (-5 *2 (-962 (-715 *3 *4))) (-5 *1 (-715 *3 *4)) + (-4 *4 (-1246 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-352)) (-4 *2 (-1052)) (-5 *1 (-714 *2 *3)) (-4 *3 (-1245 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712))))) -(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712))))) -(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712))))) + (-12 (-4 *2 (-353)) (-4 *2 (-1053)) (-5 *1 (-715 *2 *3)) (-4 *3 (-1246 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-1163)) (-5 *1 (-713))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-643 (-1174 *13))) (-5 *3 (-1174 *13)) - (-5 *4 (-643 *12)) (-5 *5 (-643 *10)) (-5 *6 (-643 *13)) - (-5 *7 (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *13))))) - (-5 *8 (-643 (-773))) (-5 *9 (-1269 (-643 (-1174 *10)))) (-4 *12 (-852)) - (-4 *10 (-308)) (-4 *13 (-953 *10 *11 *12)) (-4 *11 (-795)) - (-5 *1 (-709 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-644 (-1175 *13))) (-5 *3 (-1175 *13)) + (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) + (-5 *7 (-644 (-644 (-2 (|:| -3482 (-774)) (|:| |pcoef| *13))))) + (-5 *8 (-644 (-774))) (-5 *9 (-1270 (-644 (-1175 *10)))) (-4 *12 (-853)) + (-4 *10 (-309)) (-4 *13 (-954 *10 *11 *12)) (-4 *11 (-796)) + (-5 *1 (-710 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-643 *11)) (-5 *5 (-643 (-1174 *9))) (-5 *6 (-643 *9)) - (-5 *7 (-643 *12)) (-5 *8 (-643 (-773))) (-4 *11 (-852)) (-4 *9 (-308)) - (-4 *12 (-953 *9 *10 *11)) (-4 *10 (-795)) (-5 *2 (-643 (-1174 *12))) - (-5 *1 (-709 *10 *11 *9 *12)) (-5 *3 (-1174 *12))))) + (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1175 *9))) (-5 *6 (-644 *9)) + (-5 *7 (-644 *12)) (-5 *8 (-644 (-774))) (-4 *11 (-853)) (-4 *9 (-309)) + (-4 *12 (-954 *9 *10 *11)) (-4 *10 (-796)) (-5 *2 (-644 (-1175 *12))) + (-5 *1 (-710 *10 *11 *9 *12)) (-5 *3 (-1175 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-643 (-1174 *11))) (-5 *3 (-1174 *11)) - (-5 *4 (-643 *10)) (-5 *5 (-643 *8)) (-5 *6 (-643 (-773))) - (-5 *7 (-1269 (-643 (-1174 *8)))) (-4 *10 (-852)) (-4 *8 (-308)) - (-4 *11 (-953 *8 *9 *10)) (-4 *9 (-795)) (-5 *1 (-709 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-644 (-1175 *11))) (-5 *3 (-1175 *11)) + (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-774))) + (-5 *7 (-1270 (-644 (-1175 *8)))) (-4 *10 (-853)) (-4 *8 (-309)) + (-4 *11 (-954 *8 *9 *10)) (-4 *9 (-796)) (-5 *1 (-710 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *3 *5 *6 *7)) - (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))) + (-12 (-5 *4 (-1181)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-705 *3 *5 *6 *7)) + (-4 *3 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220)) (-4 *7 (-1220)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *3 *5 *6)) - (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219))))) + (-12 (-5 *4 (-1181)) (-5 *2 (-1 *6 *5)) (-5 *1 (-709 *3 *5 *6)) + (-4 *3 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *4 *5 *6)) - (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219))))) + (-12 (-5 *3 (-1181)) (-5 *2 (-1 *6 *5)) (-5 *1 (-709 *4 *5 *6)) + (-4 *4 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-707 *3 *4)) - (-4 *3 (-1219)) (-4 *4 (-1219))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1180)) (-5 *1 (-538)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-708 *3 *4)) + (-4 *3 (-1220)) (-4 *4 (-1220))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1181))) (-5 *3 (-1181)) (-5 *1 (-539)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) + (-12 (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) + (-12 (-5 *2 (-1181)) (-5 *1 (-707 *3)) (-4 *3 (-617 (-539))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-706 *3)) - (-4 *3 (-616 (-538)))))) + (-12 (-5 *4 (-644 (-1181))) (-5 *2 (-1181)) (-5 *1 (-707 *3)) + (-4 *3 (-617 (-539)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-705 *3)) - (-4 *3 (-616 (-538))))) + (-12 (-5 *4 (-1181)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-706 *3)) + (-4 *3 (-617 (-539))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-705 *3)) - (-4 *3 (-616 (-538)))))) + (-12 (-5 *4 (-1181)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-706 *3)) + (-4 *3 (-617 (-539)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *4 *5 *6 *7)) - (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703))))) + (-12 (-5 *3 (-1181)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-705 *4 *5 *6 *7)) + (-4 *4 (-617 (-539))) (-4 *5 (-1220)) (-4 *6 (-1220)) (-4 *7 (-1220))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-704)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-704))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-690 *3 *4 *5 *6)) - (-4 *6 (-688 *3 *4 *5)))) + (-12 (-4 *3 (-309)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-691 *3 *4 *5 *6)) + (-4 *6 (-689 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-702 *3)) - (-4 *3 (-308))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) - ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) - ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) - ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701))))) -(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) - ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701))))) + (-12 (-5 *2 (-2 (|:| -2154 *3) (|:| -3305 *3))) (-5 *1 (-703 *3)) + (-4 *3 (-309))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-309)) (-5 *1 (-703 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-550)))) + ((*1 *2 *1) (-12 (-5 *2 (-550)) (-5 *1 (-702))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4418)) (-4 *1 (-408)))) + ((*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) + ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702))))) +(((*1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702)))) + ((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-702))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-946 (-225)) (-225) (-225))) (-5 *1 (-699))))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) + (-5 *4 (-1 (-226) (-226) (-226) (-226))) + (-5 *2 (-1 (-947 (-226)) (-226) (-226))) (-5 *1 (-700))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) - (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699))))) + (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) + (-5 *6 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-700))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) - (-5 *1 (-699))))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) + (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) + (-5 *5 (-1093 (-226))) (-5 *6 (-644 (-263))) (-5 *2 (-1137 (-226))) + (-5 *1 (-700))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) - (-5 *1 (-699)))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) + (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) + (-5 *5 (-1093 (-226))) (-5 *6 (-644 (-263))) (-5 *2 (-1137 (-226))) + (-5 *1 (-700)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-225))) - (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-226))) + (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-700)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1 (-946 (-225)) (-225) (-225))) - (-5 *4 (-1092 (-225))) (-5 *5 (-643 (-262))) (-5 *1 (-699))))) + (-12 (-5 *2 (-1137 (-226))) (-5 *3 (-1 (-947 (-226)) (-226) (-226))) + (-5 *4 (-1093 (-226))) (-5 *5 (-644 (-263))) (-5 *1 (-700))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) + (-12 (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1246 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3))))) + (-12 (-5 *3 (-550)) (-5 *1 (-699 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *5)))) (-4 *5 (-1245 *4)) - (-4 *4 (-352)) (-5 *2 (-643 *5)) (-5 *1 (-216 *4 *5)))) + (-12 (-5 *3 (-644 (-2 (|:| |deg| (-774)) (|:| -2977 *5)))) (-4 *5 (-1246 *4)) + (-4 *4 (-353)) (-5 *2 (-644 *5)) (-5 *1 (-217 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-2 (|:| -4164 *5) (|:| -4380 (-549))))) (-5 *4 (-549)) - (-4 *5 (-1245 *4)) (-5 *2 (-643 *5)) (-5 *1 (-698 *5))))) + (-12 (-5 *3 (-644 (-2 (|:| -4166 *5) (|:| -4382 (-550))))) (-5 *4 (-550)) + (-4 *5 (-1246 *4)) (-5 *2 (-644 *5)) (-5 *1 (-699 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-549)) (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -4380 *4)))) - (-5 *1 (-698 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) - ((*1 *1 *1) (-12 (-4 *1 (-697 *2)) (-4 *2 (-1104))))) + (-12 (-5 *4 (-550)) (-5 *2 (-644 (-2 (|:| -4166 *3) (|:| -4382 *4)))) + (-5 *1 (-699 *3)) (-4 *3 (-1246 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-699 *2)) (-4 *2 (-1246 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-284 *2)) (-4 *2 (-1220)) (-4 *2 (-1105)))) + ((*1 *1 *1) (-12 (-4 *1 (-698 *2)) (-4 *2 (-1105))))) (((*1 *2 *1) - (-12 (-4 *1 (-697 *3)) (-4 *3 (-1104)) - (-5 *2 (-643 (-2 (|:| -2254 *3) (|:| -2125 (-773)))))))) + (-12 (-4 *1 (-698 *3)) (-4 *3 (-1105)) + (-5 *2 (-644 (-2 (|:| -2256 *3) (|:| -2127 (-774)))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *7 (-903 *6)) (-5 *2 (-691 *7)) - (-5 *1 (-694 *6 *7 *3 *4)) (-4 *3 (-374 *7)) - (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425))))))) + (-12 (-5 *5 (-774)) (-4 *6 (-1105)) (-4 *7 (-904 *6)) (-5 *2 (-692 *7)) + (-5 *1 (-695 *6 *7 *3 *4)) (-4 *3 (-375 *7)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4427))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) - (-5 *2 (-691 (-315 (-225)))) (-5 *1 (-205)))) + (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *4 (-644 (-1181))) + (-5 *2 (-692 (-316 (-226)))) (-5 *1 (-206)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-4 *6 (-903 *5)) (-5 *2 (-691 *6)) - (-5 *1 (-694 *5 *6 *3 *4)) (-4 *3 (-374 *6)) - (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) + (-12 (-4 *5 (-1105)) (-4 *6 (-904 *5)) (-5 *2 (-692 *6)) + (-5 *1 (-695 *5 *6 *3 *4)) (-4 *3 (-375 *6)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *3 (-903 *6)) (-5 *2 (-691 *3)) - (-5 *1 (-694 *6 *3 *7 *4)) (-4 *7 (-374 *3)) - (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425))))))) + (-12 (-5 *5 (-774)) (-4 *6 (-1105)) (-4 *3 (-904 *6)) (-5 *2 (-692 *3)) + (-5 *1 (-695 *6 *3 *7 *4)) (-4 *7 (-375 *3)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4427))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-691 *3)) - (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) - (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) + (-12 (-4 *5 (-1105)) (-4 *3 (-904 *5)) (-5 *2 (-692 *3)) + (-5 *1 (-695 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427))))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1104)) (-4 *2 (-903 *4)) (-5 *1 (-694 *4 *2 *5 *3)) - (-4 *5 (-374 *2)) (-4 *3 (-13 (-374 *4) (-10 -7 (-6 -4425))))))) + (-12 (-4 *4 (-1105)) (-4 *2 (-904 *4)) (-5 *1 (-695 *4 *2 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4427))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-4 *2 (-903 *5)) (-5 *1 (-694 *5 *2 *3 *4)) - (-4 *3 (-374 *2)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) + (-12 (-4 *5 (-1105)) (-4 *2 (-904 *5)) (-5 *1 (-695 *5 *2 *3 *4)) + (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-1269 *3)) - (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) - (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) -(((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865)))))) -(((*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865)))))) + (-12 (-4 *5 (-1105)) (-4 *3 (-904 *5)) (-5 *2 (-1270 *3)) + (-5 *1 (-695 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4427))))))) +(((*1 *1 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-616 (-866)))))) +(((*1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-616 (-866)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) + (-12 (-5 *2 (-692 *4)) (-5 *3 (-774)) (-4 *4 (-1053)) (-5 *1 (-693 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-1053)) (-5 *1 (-693 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-691 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) - (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6))))) + (-12 (-5 *4 (-550)) (-4 *3 (-173)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) + (-5 *1 (-691 *3 *5 *6 *2)) (-4 *2 (-689 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) - (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6))))) + (-12 (-5 *4 (-550)) (-4 *3 (-173)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) + (-5 *1 (-691 *3 *5 *6 *2)) (-4 *2 (-689 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) - (-5 *1 (-690 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6))))) + (-12 (-5 *3 (-550)) (-4 *4 (-173)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *1 (-691 *4 *5 *6 *2)) (-4 *2 (-689 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2))))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2))))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2))))) + (-12 (-4 *1 (-689 *2 *3 *4)) (-4 *2 (-1053)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3))))) + (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3))))) + (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3))))) + (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3))))) + (-12 (-5 *2 (-550)) (-4 *1 (-689 *3 *4 *5)) (-4 *3 (-1053)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-686 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-687 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-686 *4 *5 *6)) (-4 *4 (-1104))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-687 *4 *5 *6)) (-4 *4 (-1105))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-686 *4 *5 *6)) (-4 *5 (-1104))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1105)) (-4 *6 (-1105)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-687 *4 *5 *6)) (-4 *5 (-1105))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1104)) (-4 *4 (-1104)) (-4 *6 (-1104)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1105)) (-4 *4 (-1105)) (-4 *6 (-1105)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-685 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-686 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5)) - (-5 *1 (-685 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1105)) (-4 *5 (-1105)) (-5 *2 (-1 *5)) + (-5 *1 (-686 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-685 *4 *3)) (-4 *4 (-1104)) - (-4 *3 (-1104))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-686 *4 *3)) (-4 *4 (-1105)) + (-4 *3 (-1105))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-773) *2)) (-5 *4 (-773)) (-4 *2 (-1104)) - (-5 *1 (-680 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-773) *3)) (-4 *3 (-1104)) (-5 *1 (-684 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-684 *2)) (-4 *2 (-1104)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-643 *5) (-643 *5))) (-5 *4 (-549)) (-5 *2 (-643 *5)) - (-5 *1 (-684 *5)) (-4 *5 (-1104))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1220))) (-5 *3 (-1220)) (-5 *1 (-683))))) + (-12 (-5 *3 (-1 *2 (-774) *2)) (-5 *4 (-774)) (-4 *2 (-1105)) + (-5 *1 (-681 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-774) *3)) (-4 *3 (-1105)) (-5 *1 (-685 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1105))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-685 *2)) (-4 *2 (-1105)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-550)) (-5 *2 (-644 *5)) + (-5 *1 (-685 *5)) (-4 *5 (-1105))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1221))) (-5 *3 (-1221)) (-5 *1 (-684))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) - (-4 *2 (-1104)) (-5 *1 (-682 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-681 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-681 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1105)) (-4 *6 (-1105)) + (-4 *2 (-1105)) (-5 *1 (-683 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-682 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-682 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-773)) (-4 *2 (-1104)) (-5 *1 (-680 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-774)) (-4 *2 (-1105)) (-5 *1 (-681 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) + (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-1095 (-949 (-549)))) (-5 *2 (-331)) - (-5 *1 (-333)))) + (-12 (-5 *3 (-1181)) (-5 *4 (-1096 (-950 (-550)))) (-5 *2 (-332)) + (-5 *1 (-334)))) ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-774)) (-5 *1 (-678 *3)) (-4 *3 (-1053)) (-4 *3 (-1105))))) (((*1 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-774)) (-5 *1 (-678 *3)) (-4 *3 (-1053)) (-4 *3 (-1105))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1052)) (-4 *2 (-1104))))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1053)) (-4 *2 (-1105))))) (((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-677 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269 (-773))) (-5 *1 (-677 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) -(((*1 *2 *3) - (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-112)) (-5 *1 (-674 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3))))) + (-12 (-5 *3 (-774)) (-5 *1 (-678 *2)) (-4 *2 (-1105))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-678 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1270 (-774))) (-5 *1 (-678 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1220)) (-5 *2 (-774))))) +(((*1 *2 *3) + (-12 (-5 *3 (-822 *4)) (-4 *4 (-853)) (-5 *2 (-112)) (-5 *1 (-675 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-822 *3)) (-4 *3 (-853)) (-5 *1 (-675 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3))))) + (|partial| -12 (-5 *2 (-822 *3)) (-4 *3 (-853)) (-5 *1 (-675 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) - (-5 *2 (-58 (-643 (-674 *5)))) (-5 *1 (-674 *5))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-923)) (-4 *5 (-853)) + (-5 *2 (-58 (-644 (-675 *5)))) (-5 *1 (-675 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) (-5 *2 (-643 (-674 *5))) - (-5 *1 (-674 *5))))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-923)) (-4 *5 (-853)) (-5 *2 (-644 (-675 *5))) + (-5 *1 (-675 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *7)) (-4 *7 (-852)) - (-4 *8 (-953 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-853)) + (-4 *8 (-954 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-796)) (-5 *2 - (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) - (|:| -2190 (-643 (-1269 (-410 *8)))))) - (-5 *1 (-671 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1270 (-411 *8)) "failed")) + (|:| -2192 (-644 (-1270 (-411 *8)))))) + (-5 *1 (-672 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) - (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-112)) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) + (-12 (-4 *5 (-366)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4428)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4428)))) (-5 *2 (-112)) + (-5 *1 (-670 *5 *6 *4 *3)) (-4 *3 (-689 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-112)) - (-5 *1 (-670 *5))))) + (-12 (-5 *3 (-692 *5)) (-5 *4 (-1270 *5)) (-4 *5 (-366)) (-5 *2 (-112)) + (-5 *1 (-671 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-1174 *4))) (-5 *3 (-1174 *4)) (-4 *4 (-913)) - (-5 *1 (-665 *4))))) -(((*1 *1 *1) (-4 *1 (-664)))) -(((*1 *1 *1 *1) (-4 *1 (-664)))) -(((*1 *1 *1 *1) (-4 *1 (-664)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) + (|partial| -12 (-5 *2 (-644 (-1175 *4))) (-5 *3 (-1175 *4)) (-4 *4 (-914)) + (-5 *1 (-666 *4))))) +(((*1 *1 *1) (-4 *1 (-665)))) +(((*1 *1 *1 *1) (-4 *1 (-665)))) +(((*1 *1 *1 *1) (-4 *1 (-665)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) - (-4 *2 (-660 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-366)) (-5 *1 (-663 *4 *2)) + (-4 *2 (-661 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-660 *3)) (-4 *3 (-1052)) (-4 *3 (-365)))) + (-12 (-5 *2 (-774)) (-4 *1 (-661 *3)) (-4 *3 (-1053)) (-4 *3 (-366)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-773)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-662 *5 *2)) - (-4 *2 (-660 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) + (-12 (-5 *3 (-774)) (-5 *4 (-1 *5 *5)) (-4 *5 (-366)) (-5 *1 (-663 *5 *2)) + (-4 *2 (-661 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)) (-4 *2 (-366)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) - (-4 *2 (-660 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-366)) (-5 *1 (-663 *4 *2)) + (-4 *2 (-661 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) - (-5 *3 (-657 (-410 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-653 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) - (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-366) (-147) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *5 (-1246 *4)) (-5 *2 (-644 (-658 (-411 *5)))) (-5 *1 (-662 *4 *5)) + (-5 *3 (-658 (-411 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1053)) (-4 *2 (-366))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1237 (-550))) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-654 *3)) (-4 *3 (-1220))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-654 *3)) (-4 *3 (-1220)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-654 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 *4)))) + (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) (-4 *3 (-1104)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 *4)))) (-4 *3 (-1105)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-652 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-364 *3)) (-4 *3 (-1105)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-388 *4)) (-4 *4 (-1104)) (-5 *2 (-773)))) + (-12 (-5 *3 (-550)) (-4 *1 (-389 *4)) (-4 *4 (-1105)) (-5 *2 (-774)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-651 *4 *2 *5)) (-4 *4 (-1104)) + (-12 (-5 *3 (-550)) (-4 *2 (-23)) (-5 *1 (-652 *4 *2 *5)) (-4 *4 (-1105)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1104)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) + (-12 (-5 *3 (-550)) (-4 *1 (-325 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1105)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-364 *2)) (-4 *2 (-1105)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-4 *1 (-389 *2)) (-4 *2 (-1105)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-1104)) (-5 *1 (-651 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-550)) (-4 *2 (-1105)) (-5 *1 (-652 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)))) - ((*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1220)))) + ((*1 *2 *2) (-12 (-4 *3 (-1053)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-375 *2)) (-4 *2 (-1220)))) ((*1 *1 *1) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-1105)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) + (-12 (-5 *2 (-112)) (-5 *1 (-652 *3 *4 *5)) (-4 *3 (-1105)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-1 (-550) (-550))) (-5 *1 (-364 *3)) (-4 *3 (-1105)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-773) (-773))) (-4 *1 (-388 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-1 (-774) (-774))) (-4 *1 (-389 *3)) (-4 *3 (-1105)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5)) - (-4 *3 (-1104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-652 *3 *4 *5)) + (-4 *3 (-1105))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-363 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1104)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1105)) (-5 *1 (-364 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-389 *3)) (-4 *3 (-1105)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-651 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1105)) (-5 *1 (-652 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1104))))) -(((*1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1219))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1105))))) +(((*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1220))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1105)) (-4 *2 (-1220))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-691 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-641 *5)) (-4 *5 (-1052)) - (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 *5)))))) + (-12 (-5 *3 (-692 *1)) (-5 *4 (-1270 *1)) (-4 *1 (-642 *5)) (-4 *5 (-1053)) + (-5 *2 (-2 (|:| -1750 (-692 *5)) (|:| |vec| (-1270 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-691 *1)) (-4 *1 (-641 *4)) (-4 *4 (-1052)) (-5 *2 (-691 *4))))) + (-12 (-5 *3 (-692 *1)) (-4 *1 (-642 *4)) (-4 *4 (-1053)) (-5 *2 (-692 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-4 *5 (-365)) - (-4 *5 (-560)) (-5 *2 (-1269 *5)) (-5 *1 (-640 *5 *4)))) + (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 *5)) (-4 *5 (-366)) + (-4 *5 (-561)) (-5 *2 (-1270 *5)) (-5 *1 (-641 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-3746 (-4 *5 (-365))) - (-4 *5 (-560)) (-5 *2 (-1269 (-410 *5))) (-5 *1 (-640 *5 *4))))) + (|partial| -12 (-5 *3 (-1270 *4)) (-4 *4 (-642 *5)) (-3748 (-4 *5 (-366))) + (-4 *5 (-561)) (-5 *2 (-1270 (-411 *5))) (-5 *1 (-641 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) - (-5 *2 (-1269 *4)) (-5 *1 (-640 *4 *5))))) + (|partial| -12 (-5 *3 (-1270 *5)) (-4 *5 (-642 *4)) (-4 *4 (-561)) + (-5 *2 (-1270 *4)) (-5 *1 (-641 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) (-5 *2 (-112)) - (-5 *1 (-640 *4 *5))))) + (-12 (-5 *3 (-1270 *5)) (-4 *5 (-642 *4)) (-4 *4 (-561)) (-5 *2 (-112)) + (-5 *1 (-641 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-844 *3))) (-4 *3 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-295 (-845 *3))) (-4 *3 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (-844 *3) - (-2 (|:| |leftHandLimit| (-3 (-844 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-844 *3) #1#))) + (-3 (-845 *3) + (-2 (|:| |leftHandLimit| (-3 (-845 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-845 *3) #1#))) "failed")) - (-5 *1 (-638 *5 *3)))) + (-5 *1 (-639 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1162)) - (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-844 *3)) - (-5 *1 (-638 *6 *3)))) + (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1163)) + (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-845 *3)) + (-5 *1 (-639 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-844 (-949 *5)))) (-4 *5 (-455)) + (-12 (-5 *4 (-295 (-845 (-950 *5)))) (-4 *5 (-456)) (-5 *2 - (-3 (-844 (-410 (-949 *5))) - (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-844 (-410 (-949 *5))) #2#))) + (-3 (-845 (-411 (-950 *5))) + (-2 (|:| |leftHandLimit| (-3 (-845 (-411 (-950 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-845 (-411 (-950 *5))) #2#))) #3="failed")) - (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5))))) + (-5 *1 (-640 *5)) (-5 *3 (-411 (-950 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) + (-12 (-5 *4 (-295 (-411 (-950 *5)))) (-5 *3 (-411 (-950 *5))) (-4 *5 (-456)) (-5 *2 - (-3 (-844 *3) - (-2 (|:| |leftHandLimit| (-3 (-844 *3) #2#)) - (|:| |rightHandLimit| (-3 (-844 *3) #2#))) + (-3 (-845 *3) + (-2 (|:| |leftHandLimit| (-3 (-845 *3) #2#)) + (|:| |rightHandLimit| (-3 (-845 *3) #2#))) #3#)) - (-5 *1 (-639 *5)))) + (-5 *1 (-640 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 (-410 (-949 *6)))) (-5 *5 (-1162)) - (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) - (-5 *1 (-639 *6))))) + (|partial| -12 (-5 *4 (-295 (-411 (-950 *6)))) (-5 *5 (-1163)) + (-5 *3 (-411 (-950 *6))) (-4 *6 (-456)) (-5 *2 (-845 *3)) + (-5 *1 (-640 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-294 (-834 *3))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-834 *3)) - (-5 *1 (-638 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + (|partial| -12 (-5 *4 (-295 (-835 *3))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-835 *3)) + (-5 *1 (-639 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-834 (-949 *5)))) (-4 *5 (-455)) - (-5 *2 (-834 (-410 (-949 *5)))) (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5))))) + (-12 (-5 *4 (-295 (-835 (-950 *5)))) (-4 *5 (-456)) + (-5 *2 (-835 (-411 (-950 *5)))) (-5 *1 (-640 *5)) (-5 *3 (-411 (-950 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) - (-5 *2 (-834 *3)) (-5 *1 (-639 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-634))))) -(((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-1104)))) - ((*1 *1 *1) (-5 *1 (-634)))) + (-12 (-5 *4 (-295 (-411 (-950 *5)))) (-5 *3 (-411 (-950 *5))) (-4 *5 (-456)) + (-5 *2 (-835 *3)) (-5 *1 (-640 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-635))))) +(((*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-1105)))) + ((*1 *1 *1) (-5 *1 (-635)))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) - (-5 *2 (-484 *4 *5)) (-5 *1 (-633 *4 *5))))) + (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) + (-5 *2 (-485 *4 *5)) (-5 *1 (-634 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-643 (-1180))) - (-4 *5 (-455)) (-5 *1 (-633 *4 *5))))) + (-12 (-5 *3 (-644 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-644 (-1181))) + (-4 *5 (-456)) (-5 *1 (-634 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-866 *4)) (-14 *4 (-643 (-1180))) - (-4 *5 (-455)) (-5 *1 (-633 *4 *5))))) + (-12 (-5 *2 (-644 (-485 *4 *5))) (-5 *3 (-867 *4)) (-14 *4 (-644 (-1181))) + (-4 *5 (-456)) (-5 *1 (-634 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-247 *5 *6))) (-4 *6 (-455)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-643 (-1180))) (-5 *1 (-633 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-248 *5 *6))) (-4 *6 (-456)) + (-5 *2 (-248 *5 *6)) (-14 *5 (-644 (-1181))) (-5 *1 (-634 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-947 (-226)) (-947 (-226)))) (-5 *1 (-263)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *3 (-643 (-262))) - (-5 *1 (-263)))) + (-12 (-5 *2 (-1 (-947 (-226)) (-947 (-226)))) (-5 *3 (-644 (-263))) + (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-643 (-1180))) - (-4 *6 (-455)) (-5 *2 (-1269 *6)) (-5 *1 (-633 *5 *6))))) + (-12 (-5 *4 (-644 (-485 *5 *6))) (-5 *3 (-485 *5 *6)) (-14 *5 (-644 (-1181))) + (-4 *6 (-456)) (-5 *2 (-1270 *6)) (-5 *1 (-634 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 (-484 *3 *4))) (-14 *3 (-643 (-1180))) (-4 *4 (-455)) - (-5 *1 (-633 *3 *4))))) + (-12 (-5 *2 (-644 (-485 *3 *4))) (-14 *3 (-644 (-1181))) (-4 *4 (-456)) + (-5 *1 (-634 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) - (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455)))) + (-12 (-5 *3 (-644 (-485 *5 *6))) (-5 *4 (-867 *5)) (-14 *5 (-644 (-1181))) + (-5 *2 (-485 *5 *6)) (-5 *1 (-634 *5 *6)) (-4 *6 (-456)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) - (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455))))) + (-12 (-5 *3 (-644 (-485 *5 *6))) (-5 *4 (-867 *5)) (-14 *5 (-644 (-1181))) + (-5 *2 (-485 *5 *6)) (-5 *1 (-634 *5 *6)) (-4 *6 (-456))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) - (-5 *2 (-643 (-247 *4 *5))) (-5 *1 (-633 *4 *5))))) + (-12 (-5 *3 (-644 (-485 *4 *5))) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) + (-5 *2 (-644 (-248 *4 *5))) (-5 *1 (-634 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-643 (-1180))) (-4 *5 (-455)) - (-5 *2 (-2 (|:| |glbase| (-643 (-247 *4 *5))) (|:| |glval| (-643 (-549))))) - (-5 *1 (-633 *4 *5)) (-5 *3 (-643 (-247 *4 *5)))))) + (-12 (-14 *4 (-644 (-1181))) (-4 *5 (-456)) + (-5 *2 (-2 (|:| |glbase| (-644 (-248 *4 *5))) (|:| |glval| (-644 (-550))))) + (-5 *1 (-634 *4 *5)) (-5 *3 (-644 (-248 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) - (-5 *2 (-2 (|:| |gblist| (-643 (-247 *4 *5))) (|:| |gvlist| (-643 (-549))))) - (-5 *1 (-633 *4 *5))))) + (-12 (-5 *3 (-644 (-485 *4 *5))) (-14 *4 (-644 (-1181))) (-4 *5 (-456)) + (-5 *2 (-2 (|:| |gblist| (-644 (-248 *4 *5))) (|:| |gvlist| (-644 (-550))))) + (-5 *1 (-634 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *1 *1) (-4 *1 (-632)))) + (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *1 *1) (-4 *1 (-633)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *1 *1) (-4 *1 (-632)))) + (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *1 *1) (-4 *1 (-633)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *1 *1) (-4 *1 (-632)))) + (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *1 *1) (-4 *1 (-633)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *1 *1) (-4 *1 (-632)))) + (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *1 *1) (-4 *1 (-633)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *1 *1) (-4 *1 (-632)))) + (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *1 *1) (-4 *1 (-633)))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) - ((*1 *1 *1) (-4 *1 (-632)))) + (-12 (-4 *3 (-561)) (-5 *1 (-632 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1006) (-1206))))) + ((*1 *1 *1) (-4 *1 (-633)))) (((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-424 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-425 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) - (-4 *5 (-424 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) + (-4 *5 (-425 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) - (-4 *5 (-13 (-424 *4) (-1005))))) + (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) + (-4 *5 (-13 (-425 *4) (-1006))))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-298 *4)) (-4 *4 (-299)))) - ((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-299 *4)) (-4 *4 (-300)))) + ((*1 *2 *3) (-12 (-4 *1 (-300)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-423 *4 *5)) - (-4 *4 (-424 *5)))) + (-12 (-5 *3 (-113)) (-4 *5 (-1105)) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) + (-4 *4 (-425 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) - (-4 *5 (-424 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-435 *4 *5)) + (-4 *5 (-425 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) - (-4 *5 (-13 (-424 *4) (-1005) (-1205)))))) + (-12 (-5 *3 (-113)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-632 *4 *5)) + (-4 *5 (-13 (-425 *4) (-1006) (-1206)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-643 (-1180))) - (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) - (-5 *1 (-630 *5 *6))))) + (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) + (-14 *6 (-644 (-1181))) + (-5 *2 (-644 (-1150 *5 (-535 (-867 *6)) (-867 *6) (-783 *5 (-867 *6))))) + (-5 *1 (-631 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6))))) + (-12 (-5 *3 (-644 (-783 *5 (-867 *6)))) (-5 *4 (-112)) (-4 *5 (-456)) + (-14 *6 (-644 (-1181))) (-5 *2 (-644 (-1050 *5 *6))) (-5 *1 (-631 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) - (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-644 (-950 *3))) (-4 *3 (-456)) (-5 *1 (-363 *3 *4)) + (-14 *4 (-644 (-1181))))) ((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-450 *3 *4 *5 *6)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-451 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-451 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-451 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4)))) + (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) - (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4))))) + (-12 (-5 *2 (-644 (-783 *3 (-867 *4)))) (-4 *3 (-456)) + (-14 *4 (-644 (-1181))) (-5 *1 (-631 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) - (-14 *4 (-643 (-1180))))) + (|partial| -12 (-5 *2 (-644 (-950 *3))) (-4 *3 (-456)) (-5 *1 (-363 *3 *4)) + (-14 *4 (-644 (-1181))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) - (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4))))) + (|partial| -12 (-5 *2 (-644 (-783 *3 (-867 *4)))) (-4 *3 (-456)) + (-14 *4 (-644 (-1181))) (-5 *1 (-631 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-112)) - (-5 *1 (-362 *4 *5)) (-14 *5 (-643 (-1180))))) + (-12 (-5 *3 (-644 (-950 *4))) (-4 *4 (-456)) (-5 *2 (-112)) + (-5 *1 (-363 *4 *5)) (-14 *5 (-644 (-1181))))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-782 *4 (-866 *5)))) (-4 *4 (-455)) - (-14 *5 (-643 (-1180))) (-5 *2 (-112)) (-5 *1 (-630 *4 *5))))) + (-12 (-5 *3 (-644 (-783 *4 (-867 *5)))) (-4 *4 (-456)) + (-14 *5 (-644 (-1181))) (-5 *2 (-112)) (-5 *1 (-631 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-666 *4 *5))) - (-5 *1 (-629 *4 *5 *6)) (-4 *5 (-13 (-172) (-719 (-410 (-549))))) - (-14 *6 (-922))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-853)) (-5 *2 (-644 (-667 *4 *5))) + (-5 *1 (-630 *4 *5 *6)) (-4 *5 (-13 (-173) (-720 (-411 (-550))))) + (-14 *6 (-923))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |k| (-674 *3)) (|:| |c| *4)))) - (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922))))) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-675 *3)) (|:| |c| *4)))) + (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-643 (-294 *4))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) - (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922))))) + (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-853)) + (-4 *4 (-13 (-173) (-720 (-411 (-550))))) (-14 *5 (-923))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1954 (-643 (-2 (|:| |irr| *10) (|:| -2558 (-549))))))) - (-5 *6 (-643 *3)) (-5 *7 (-643 *8)) (-4 *8 (-852)) (-4 *3 (-308)) - (-4 *10 (-953 *3 *9 *8)) (-4 *9 (-795)) + (|:| -1956 (-644 (-2 (|:| |irr| *10) (|:| -2560 (-550))))))) + (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-853)) (-4 *3 (-309)) + (-4 *10 (-954 *3 *9 *8)) (-4 *9 (-796)) (-5 *2 - (-2 (|:| |polfac| (-643 *10)) (|:| |correct| *3) - (|:| |corrfact| (-643 (-1174 *3))))) - (-5 *1 (-627 *8 *9 *3 *10)) (-5 *4 (-643 (-1174 *3)))))) + (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) + (|:| |corrfact| (-644 (-1175 *3))))) + (-5 *1 (-628 *8 *9 *3 *10)) (-5 *4 (-644 (-1175 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-773)) (-5 *5 (-643 *3)) (-4 *3 (-308)) (-4 *6 (-852)) - (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-627 *6 *7 *3 *8)) - (-4 *8 (-953 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) - (-5 *1 (-626 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1074 *3 *4 *5 *6)) - (-4 *2 (-1112 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-5 *4 (-774)) (-5 *5 (-644 *3)) (-4 *3 (-309)) (-4 *6 (-853)) + (-4 *7 (-796)) (-5 *2 (-112)) (-5 *1 (-628 *6 *7 *3 *8)) + (-4 *8 (-954 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *6 (-1069 *3 *4 *5)) + (-5 *1 (-627 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1075 *3 *4 *5 *6)) + (-4 *2 (-1113 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-626 *2 *3)) (-4 *3 (-1246 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-624 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-29 *4)))))) -(((*1 *1) (-5 *1 (-619)))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-625 *4 *2)) (-4 *2 (-13 (-1206) (-964) (-29 *4)))))) +(((*1 *1) (-5 *1 (-620)))) (((*1 *2 *3 *3 *3) (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) - (-4 *5 (-1245 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-617 *4 *5)) - (-5 *3 (-410 *5)))) + (-4 *4 (-13 (-147) (-27) (-1042 (-550)) (-1042 (-411 (-550))))) + (-4 *5 (-1246 *4)) (-5 *2 (-1175 (-411 *5))) (-5 *1 (-618 *4 *5)) + (-5 *3 (-411 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) - (-5 *2 (-1174 (-410 *6))) (-5 *1 (-617 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) - (-5 *1 (-614 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-613 *4)) (-5 *1 (-614 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1205)))) - ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) + (|partial| -12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-147) (-27) (-1042 (-550)) (-1042 (-411 (-550))))) + (-5 *2 (-1175 (-411 *6))) (-5 *1 (-618 *5 *6)) (-5 *3 (-411 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-614 *4)) (-4 *4 (-1105)) (-4 *2 (-1105)) + (-5 *1 (-615 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-614 *4)) (-5 *1 (-615 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1206)))) + ((*1 *2 *1) (-12 (-5 *1 (-333 *2)) (-4 *2 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1105))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-644 *1)) (-4 *1 (-300)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1181)) (-5 *1 (-614 *3)) (-4 *3 (-1105)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-1104)) - (-5 *1 (-613 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-113)) (-5 *3 (-644 *5)) (-5 *4 (-774)) (-4 *5 (-1105)) + (-5 *1 (-614 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1181)) (-5 *1 (-614 *3)) (-4 *3 (-1105))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-112))))) + (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-961 (-184 (-139)))) (-5 *1 (-334)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608))))) + (|partial| -12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-962 (-185 (-139)))) (-5 *1 (-335)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-609))))) (((*1 *2 *1) (-12 (-5 *2 - (-643 + (-644 (-2 - (|:| -4292 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2254 + (|:| -4294 + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -11795,500 +11795,500 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1607 + (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-563)))) + (-5 *1 (-564)))) ((*1 *2 *1) - (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *4))))) + (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-644 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112))))) + (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *3))))) + (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1220)) (-5 *2 (-644 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-606 *4 *3)) (-4 *4 (-1104)) - (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-607 *4 *3)) (-4 *4 (-1105)) + (-4 *3 (-1220)) (-4 *3 (-1105)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852))))) + (-12 (-4 *1 (-607 *2 *3)) (-4 *3 (-1220)) (-4 *2 (-1105)) (-4 *2 (-853))))) (((*1 *2 *1) - (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852))))) + (-12 (-4 *1 (-607 *2 *3)) (-4 *3 (-1220)) (-4 *2 (-1105)) (-4 *2 (-853))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-374 *2)) - (-4 *4 (-374 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1220)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) - (-4 *2 (-1219))))) + (-12 (|has| *1 (-6 -4428)) (-4 *1 (-607 *3 *2)) (-4 *3 (-1105)) + (-4 *2 (-1220))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) - (-4 *4 (-1219)) (-5 *2 (-1275))))) + (-12 (|has| *1 (-6 -4428)) (-4 *1 (-607 *3 *4)) (-4 *3 (-1105)) + (-4 *4 (-1220)) (-5 *2 (-1276))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-643 (-1180))) - (-4 *2 (-13 (-424 (-168 *5)) (-1005) (-1205))) (-4 *5 (-560)) - (-5 *1 (-602 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-1005) (-1205)))))) + (-12 (-5 *3 (-644 (-614 *2))) (-5 *4 (-644 (-1181))) + (-4 *2 (-13 (-425 (-169 *5)) (-1006) (-1206))) (-4 *5 (-561)) + (-5 *1 (-603 *5 *6 *2)) (-4 *6 (-13 (-425 *5) (-1006) (-1206)))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-168 *5)) (-5 *1 (-602 *4 *5 *3)) - (-4 *5 (-13 (-424 *4) (-1005) (-1205))) - (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205)))))) + (-12 (-4 *4 (-561)) (-5 *2 (-169 *5)) (-5 *1 (-603 *4 *5 *3)) + (-4 *5 (-13 (-425 *4) (-1006) (-1206))) + (-4 *3 (-13 (-425 (-169 *4)) (-1006) (-1206)))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) - (-5 *1 (-602 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-1005) (-1205)))))) + (-12 (-4 *4 (-561)) (-4 *2 (-13 (-425 (-169 *4)) (-1006) (-1206))) + (-5 *1 (-603 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-1006) (-1206)))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) - (-5 *1 (-602 *4 *2 *3)) (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205)))))) + (-12 (-4 *4 (-561)) (-4 *2 (-13 (-425 *4) (-1006) (-1206))) + (-5 *1 (-603 *4 *2 *3)) (-4 *3 (-13 (-425 (-169 *4)) (-1006) (-1206)))))) (((*1 *2 *3) - (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-424 *4) (-1005) (-1205))) (-4 *4 (-560)) - (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) (-5 *1 (-602 *4 *5 *2))))) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-425 *4) (-1006) (-1206))) (-4 *4 (-561)) + (-4 *2 (-13 (-425 (-169 *4)) (-1006) (-1206))) (-5 *1 (-603 *4 *5 *2))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1029 (-844 (-549)))) - (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1052)) - (-5 *1 (-598 *4))))) + (-12 (-5 *2 (-1030 (-845 (-550)))) + (-5 *3 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *4)))) (-4 *4 (-1053)) + (-5 *1 (-599 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1029 (-844 (-549)))) (-5 *1 (-598 *3)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-1030 (-845 (-550)))) (-5 *1 (-599 *3)) (-4 *3 (-1053))))) (((*1 *2 *1) - (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-5 *1 (-598 *3)) - (-4 *3 (-1052))))) + (-12 (-5 *2 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *3)))) (-5 *1 (-599 *3)) + (-4 *3 (-1053))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052))))) -(((*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052))))) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1053))))) +(((*1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1053))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-1053))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *6)))) - (-5 *4 (-1029 (-844 (-549)))) (-5 *5 (-1180)) (-5 *7 (-410 (-549))) - (-4 *6 (-1052)) (-5 *2 (-865)) (-5 *1 (-598 *6))))) + (-12 (-5 *3 (-1158 (-2 (|:| |k| (-550)) (|:| |c| *6)))) + (-5 *4 (-1030 (-845 (-550)))) (-5 *5 (-1181)) (-5 *7 (-411 (-550))) + (-4 *6 (-1053)) (-5 *2 (-866)) (-5 *1 (-599 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-598 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1052))))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-599 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) + (-12 (-5 *1 (-599 *2)) (-4 *2 (-38 (-411 (-550)))) (-4 *2 (-1053))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-1112 *5 *6 *7 *8)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-594 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1113 *5 *6 *7 *8)) + (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-1069 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-595 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-549))) (-5 *4 (-905 (-549))) (-5 *2 (-691 (-549))) - (-5 *1 (-593)))) + (-12 (-5 *3 (-644 (-550))) (-5 *4 (-906 (-550))) (-5 *2 (-692 (-550))) + (-5 *1 (-594)))) ((*1 *2 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593)))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-594)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-549))) (-5 *4 (-643 (-905 (-549)))) - (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-773)) (-5 *1 (-593))))) + (-12 (-5 *3 (-644 (-550))) (-5 *4 (-644 (-906 (-550)))) + (-5 *2 (-644 (-692 (-550)))) (-5 *1 (-594))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-550))) (-5 *2 (-774)) (-5 *1 (-594))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1205) (-29 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-432 *4 *2)) (-4 *2 (-13 (-1206) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *5)) - (-5 *1 (-592 *5))))) + (-12 (-5 *3 (-411 (-950 *5))) (-5 *4 (-1181)) (-4 *5 (-147)) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-316 *5)) + (-5 *1 (-593 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-586 *2)) (-4 *2 (-13 (-29 *4) (-1205))) (-5 *1 (-588 *4 *2)) - (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))))) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1206))) (-5 *1 (-589 *4 *2)) + (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))))) ((*1 *2 *3) - (-12 (-5 *3 (-586 (-410 (-949 *4)))) - (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *4)) - (-5 *1 (-592 *4))))) + (-12 (-5 *3 (-587 (-411 (-950 *4)))) + (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-316 *4)) + (-5 *1 (-593 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-591 *4)) (-4 *4 (-352))))) -(((*1 *2 *2) (-12 (-5 *1 (-590 *2)) (-4 *2 (-548))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-590 *2)) (-4 *2 (-548))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-592 *4)) (-4 *4 (-353))))) +(((*1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-549))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-591 *2)) (-4 *2 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-549))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-774)) (-5 *1 (-591 *2)) (-4 *2 (-549))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548)))) + (|partial| -12 (-5 *3 (-774)) (-5 *1 (-591 *2)) (-4 *2 (-549)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3097 *3) (|:| -2564 (-773)))) (-5 *1 (-590 *3)) - (-4 *3 (-548))))) + (-12 (-5 *2 (-2 (|:| -3099 *3) (|:| -2566 (-774)))) (-5 *1 (-591 *3)) + (-4 *3 (-549))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548))))) + (-12 (-5 *4 (-774)) (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-549))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-643 - (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *2)) - (|:| |logand| (-1174 *2))))) - (-5 *4 (-643 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) - (-5 *1 (-586 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365))))) + (-644 + (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 *2)) + (|:| |logand| (-1175 *2))))) + (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-366)) + (-5 *1 (-587 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-366))))) (((*1 *2 *1) (-12 (-5 *2 - (-643 - (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *3)) - (|:| |logand| (-1174 *3))))) - (-5 *1 (-586 *3)) (-4 *3 (-365))))) -(((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-586 *3)) (-4 *3 (-365))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-365))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-585))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-582))))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-128))) (-5 *1 (-582))))) -(((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-693 (-582))) (-5 *1 (-582))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) - ((*1 *1) (-5 *1 (-581)))) -(((*1 *1) (-5 *1 (-581)))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-580)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580))))) + (-644 + (-2 (|:| |scalar| (-411 (-550))) (|:| |coeff| (-1175 *3)) + (|:| |logand| (-1175 *3))))) + (-5 *1 (-587 *3)) (-4 *3 (-366))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-587 *3)) (-4 *3 (-366))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-366))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-586))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-583))))) +(((*1 *2 *1) (-12 (-5 *2 (-214 4 (-128))) (-5 *1 (-583))))) +(((*1 *2 *3) (-12 (-5 *3 (-495)) (-5 *2 (-694 (-583))) (-5 *1 (-583))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-644 (-539)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-644 (-539)))) (-5 *1 (-113)))) + ((*1 *1) (-5 *1 (-582)))) +(((*1 *1) (-5 *1 (-582)))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-581)))) + ((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-581))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1180)) - (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-1142) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1181)) + (-4 *4 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-1206) (-964) (-1143) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-366)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-578 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) (-5 *2 - (-2 (|:| |ir| (-586 (-410 *6))) (|:| |specpart| (-410 *6)) + (-2 (|:| |ir| (-587 (-411 *6))) (|:| |specpart| (-411 *6)) (|:| |polypart| *6))) - (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) + (-5 *1 (-578 *5 *6)) (-5 *3 (-411 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 *4 *5)) + (|partial| -12 (-5 *2 (-626 *4 *5)) (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112))) (-549) *4)) - (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5))))) + (-1 (-2 (|:| |ans| *4) (|:| -3543 *4) (|:| |sol?| (-112))) (-550) *4)) + (-4 *4 (-366)) (-4 *5 (-1246 *4)) (-5 *1 (-578 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2320 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-366)) (-5 *1 (-578 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-643 (-410 *7))) (-4 *7 (-1245 *6)) - (-5 *3 (-410 *7)) (-4 *6 (-365)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-411 *7))) (-4 *7 (-1246 *6)) + (-5 *3 (-411 *7)) (-4 *6 (-366)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-577 *6 *7))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -2318 (-410 *6)) (|:| |coeff| (-410 *6)))) - (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) + (-5 *2 (-2 (|:| -2320 (-411 *6)) (|:| |coeff| (-411 *6)))) + (-5 *1 (-578 *5 *6)) (-5 *3 (-411 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3541 *7) (|:| |sol?| (-112))) (-549) *7)) - (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) + (-1 (-2 (|:| |ans| *7) (|:| -3543 *7) (|:| |sol?| (-112))) (-550) *7)) + (-5 *6 (-644 (-411 *8))) (-4 *7 (-366)) (-4 *8 (-1246 *7)) (-5 *3 (-411 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-577 *7 *8))))) + (-5 *1 (-578 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2318 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2320 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-644 (-411 *8))) (-4 *7 (-366)) (-4 *8 (-1246 *7)) (-5 *3 (-411 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-577 *7 *8))))) + (-5 *1 (-578 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-1 (-2 (|:| |ans| *6) (|:| -3543 *6) (|:| |sol?| (-112))) (-550) *6)) + (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) - (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) + (-3 (-2 (|:| |answer| (-411 *7)) (|:| |a0| *6)) + (-2 (|:| -2320 (-411 *7)) (|:| |coeff| (-411 *7))) "failed")) + (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2320 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-366)) (-4 *7 (-1246 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) - (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) + (-3 (-2 (|:| |answer| (-411 *7)) (|:| |a0| *6)) + (-2 (|:| -2320 (-411 *7)) (|:| |coeff| (-411 *7))) "failed")) + (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-643 *6) "failed") (-549) *6 *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) - (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-644 *6) "failed") (-550) *6 *6)) + (-4 *6 (-366)) (-4 *7 (-1246 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-411 *7))) (|:| |a0| *6))) + (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) - (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) + (-1 (-2 (|:| |ans| *6) (|:| -3543 *6) (|:| |sol?| (-112))) (-550) *6)) + (-4 *6 (-366)) (-4 *7 (-1246 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-411 *7))) (|:| |a0| *6))) + (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) - (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2320 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-366)) (-4 *7 (-1246 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-411 *7))) (|:| |a0| *6))) + (-5 *1 (-578 *6 *7)) (-5 *3 (-411 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-586 *3) *3 (-1180))) + (-12 (-5 *5 (-1 (-587 *3) *3 (-1181))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1180))) - (-4 *3 (-285)) (-4 *3 (-632)) (-4 *3 (-1041 *4)) (-4 *3 (-424 *7)) - (-5 *4 (-1180)) (-4 *7 (-616 (-893 (-549)))) (-4 *7 (-455)) - (-4 *7 (-889 (-549))) (-4 *7 (-1104)) (-5 *2 (-586 *3)) - (-5 *1 (-576 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1181))) + (-4 *3 (-286)) (-4 *3 (-633)) (-4 *3 (-1042 *4)) (-4 *3 (-425 *7)) + (-5 *4 (-1181)) (-4 *7 (-617 (-894 (-550)))) (-4 *7 (-456)) + (-4 *7 (-890 (-550))) (-4 *7 (-1105)) (-5 *2 (-587 *3)) + (-5 *1 (-577 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-455)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) - (-4 *2 (-285)) (-4 *2 (-424 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-456)) (-4 *4 (-1105)) (-5 *1 (-577 *4 *2)) + (-4 *2 (-286)) (-4 *2 (-425 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) - (-4 *2 (-424 *4))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-4 *4 (-1105)) (-5 *1 (-577 *4 *2)) + (-4 *2 (-425 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-1180)) (-4 *6 (-424 *5)) (-4 *5 (-1104)) - (-5 *2 (-643 (-613 *6))) (-5 *1 (-576 *5 *6))))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-1181)) (-4 *6 (-425 *5)) (-4 *5 (-1105)) + (-5 *2 (-644 (-614 *6))) (-5 *1 (-577 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-643 (-613 *6))) (-5 *4 (-1180)) (-5 *2 (-613 *6)) - (-4 *6 (-424 *5)) (-4 *5 (-1104)) (-5 *1 (-576 *5 *6))))) + (-12 (-5 *3 (-644 (-614 *6))) (-5 *4 (-1181)) (-5 *2 (-614 *6)) + (-4 *6 (-425 *5)) (-4 *5 (-1105)) (-5 *1 (-577 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-613 *5))) (-4 *4 (-1104)) (-5 *2 (-613 *5)) - (-5 *1 (-576 *4 *5)) (-4 *5 (-424 *4))))) + (-12 (-5 *3 (-644 (-614 *5))) (-4 *4 (-1105)) (-5 *2 (-614 *5)) + (-5 *1 (-577 *4 *5)) (-4 *5 (-425 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-643 (-613 *5))) (-5 *3 (-1180)) (-4 *5 (-424 *4)) - (-4 *4 (-1104)) (-5 *1 (-576 *4 *5))))) + (-12 (-5 *2 (-644 (-614 *5))) (-5 *3 (-1181)) (-4 *5 (-425 *4)) + (-4 *4 (-1105)) (-5 *1 (-577 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) - (-5 *2 (-2 (|:| -2318 (-410 (-949 *5))) (|:| |coeff| (-410 (-949 *5))))) - (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5)))))) + (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)) (-147))) + (-5 *2 (-2 (|:| -2320 (-411 (-950 *5))) (|:| |coeff| (-411 (-950 *5))))) + (-5 *1 (-574 *5)) (-5 *3 (-411 (-950 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 (-410 (-949 *6)))) - (-5 *3 (-410 (-949 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-147))) + (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-644 (-411 (-950 *6)))) + (-5 *3 (-411 (-950 *6))) (-4 *6 (-13 (-561) (-1042 (-550)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *6))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-574 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) - (-4 *4 (-13 (-560) (-1041 (-549)) (-147))) (-5 *1 (-573 *4))))) + (|partial| -12 (-5 *2 (-411 (-950 *4))) (-5 *3 (-1181)) + (-4 *4 (-13 (-561) (-1042 (-550)) (-147))) (-5 *1 (-574 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5))))) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-587 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1206) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) - (-5 *2 (-586 (-410 (-949 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5)))))) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)) (-147))) + (-5 *2 (-587 (-411 (-950 *5)))) (-5 *1 (-574 *5)) (-5 *3 (-411 (-950 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2))))) + (|partial| -12 (-5 *2 (-550)) (-5 *1 (-573 *3)) (-4 *3 (-1042 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-643 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) + (|partial| -12 (-5 *4 (-644 (-411 *6))) (-5 *3 (-411 *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-366) (-147) (-1042 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-571 *5 *6))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| -2318 (-410 *5)) (|:| |coeff| (-410 *5)))) - (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) + (|partial| -12 (-4 *4 (-13 (-366) (-147) (-1042 (-550)))) (-4 *5 (-1246 *4)) + (-5 *2 (-2 (|:| -2320 (-411 *5)) (|:| |coeff| (-411 *5)))) + (-5 *1 (-572 *4 *5)) (-5 *3 (-411 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) - (-4 *3 (-13 (-365) (-147) (-1041 (-549)))) (-5 *1 (-571 *3 *4))))) + (|partial| -12 (-5 *2 (-411 *4)) (-4 *4 (-1246 *3)) + (-4 *3 (-13 (-366) (-147) (-1042 (-550)))) (-5 *1 (-572 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) - (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-617 (-894 (-550)))) + (-4 *5 (-890 (-550))) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) + (-4 *3 (-633)) (-4 *3 (-13 (-27) (-1206) (-425 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1180)) (-5 *4 (-844 *2)) (-4 *2 (-1142)) - (-4 *2 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-616 (-893 (-549)))) - (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) - (-5 *1 (-570 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) - (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) - (-5 *2 (-2 (|:| -2489 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) + (|partial| -12 (-5 *3 (-1181)) (-5 *4 (-845 *2)) (-4 *2 (-1143)) + (-4 *2 (-13 (-27) (-1206) (-425 *5))) (-4 *5 (-617 (-894 (-550)))) + (-4 *5 (-890 (-550))) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) + (-5 *1 (-571 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1181)) (-4 *5 (-617 (-894 (-550)))) + (-4 *5 (-890 (-550))) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) + (-4 *3 (-633)) (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-1042 (-550)) (-456) (-642 (-550)))) + (-5 *2 (-2 (|:| -2491 *3) (|:| |nconst| *3))) (-5 *1 (-571 *5 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-1180)) (-4 *4 (-13 (-424 *7) (-27) (-1205))) - (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) - (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104))))) + (-12 (-5 *5 (-614 *4)) (-5 *6 (-1181)) (-4 *4 (-13 (-425 *7) (-27) (-1206))) + (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2192 (-644 *4)))) + (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1105))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1180))) - (-4 *2 (-13 (-424 *5) (-27) (-1205))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1104))))) + (|partial| -12 (-5 *3 (-614 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1181))) + (-4 *2 (-13 (-425 *5) (-27) (-1206))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1105))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-644 *3)) + (-4 *3 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1104))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1105))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) - (-4 *6 (-1104))))) + (|partial| -12 (-5 *4 (-614 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1206))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3 *6)) + (-4 *6 (-1105))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) - (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1104))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2317 *3))) - (-5 *1 (-566 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |answer| (-410 *6)) (|:| -2317 (-410 *6)) - (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) - (-5 *1 (-567 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-773)) (-5 *1 (-565))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) -(((*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-565)) (-5 *3 (-549))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) + (-12 (-5 *4 (-614 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1206))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-587 *3)) + (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1105))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) + (-4 *7 (-1246 (-411 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2319 *3))) + (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-345 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-366)) + (-5 *2 + (-2 (|:| |answer| (-411 *6)) (|:| -2319 (-411 *6)) + (|:| |specpart| (-411 *6)) (|:| |polypart| *6))) + (-5 *1 (-568 *5 *6)) (-5 *3 (-411 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-550)) (-5 *3 (-774)) (-5 *1 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) +(((*1 *2 *3) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-566)) (-5 *3 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-566)) (-5 *3 (-550))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-180 *2)) (-4 *2 (-309)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-643 (-643 *4))) (-5 *2 (-643 *4)) (-4 *4 (-308)) - (-5 *1 (-179 *4)))) + (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-309)) + (-5 *1 (-180 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 *8)) + (-12 (-5 *3 (-644 *8)) (-5 *4 - (-643 - (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-691 *7))))) - (-5 *5 (-773)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-352)) - (-5 *2 - (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-691 *7)))) - (-5 *1 (-501 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) + (-644 + (-2 (|:| -2192 (-692 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-692 *7))))) + (-5 *5 (-774)) (-4 *8 (-1246 *7)) (-4 *7 (-1246 *6)) (-4 *6 (-353)) + (-5 *2 + (-2 (|:| -2192 (-692 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-692 *7)))) + (-5 *1 (-502 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-566))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) - (-4 *4 (-13 (-424 *7) (-27) (-1205))) - (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) - (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) + (-12 (-5 *5 (-614 *4)) (-5 *6 (-1175 *4)) + (-4 *4 (-13 (-425 *7) (-27) (-1206))) + (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2192 (-644 *4)))) + (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1105)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) - (-4 *4 (-13 (-424 *7) (-27) (-1205))) - (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) - (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104))))) + (-12 (-5 *5 (-614 *4)) (-5 *6 (-411 (-1175 *4))) + (-4 *4 (-13 (-425 *7) (-27) (-1206))) + (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2192 (-644 *4)))) + (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1105))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1180))) (-5 *5 (-1174 *2)) - (-4 *2 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104)))) + (|partial| -12 (-5 *3 (-614 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1181))) (-5 *5 (-1175 *2)) + (-4 *2 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1105)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1180))) - (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104))))) + (|partial| -12 (-5 *3 (-614 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1181))) + (-5 *5 (-411 (-1175 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1105))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-1174 *3)) - (-4 *3 (-13 (-424 *7) (-27) (-1205))) - (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1175 *3)) + (-4 *3 (-13 (-425 *7) (-27) (-1206))) + (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104)))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1105)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-410 (-1174 *3))) - (-4 *3 (-13 (-424 *7) (-27) (-1205))) - (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-644 *3)) (-5 *6 (-411 (-1175 *3))) + (-4 *3 (-13 (-425 *7) (-27) (-1206))) + (-4 *7 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1105))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) - (-4 *7 (-1104)))) + (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-1175 *3)) + (-4 *3 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) + (-4 *7 (-1105)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) - (-4 *3 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) - (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) - (-4 *7 (-1104))))) + (|partial| -12 (-5 *4 (-614 *3)) (-5 *5 (-411 (-1175 *3))) + (-4 *3 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) + (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) + (-4 *7 (-1105))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) - (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) + (-12 (-5 *4 (-614 *3)) (-5 *5 (-1175 *3)) + (-4 *3 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-587 *3)) + (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1105)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) - (-4 *3 (-13 (-424 *6) (-27) (-1205))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) - (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104))))) + (-12 (-5 *4 (-614 *3)) (-5 *5 (-411 (-1175 *3))) + (-4 *3 (-13 (-425 *6) (-27) (-1206))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-147) (-642 (-550)))) (-5 *2 (-587 *3)) + (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1105))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12300,21 +12300,21 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1607 + (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-563))))) + (-5 *1 (-564))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12326,25 +12326,25 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1607 + (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-563))))) + (-5 *1 (-564))))) (((*1 *1 *2) (-12 (-5 *2 - (-643 + (-644 (-2 - (|:| -4292 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2254 + (|:| -4294 + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (|:| -2256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12357,1672 +12357,1672 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1607 + (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-563))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-563))))) -(((*1 *1) (-5 *1 (-563)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-562 *2)) (-4 *2 (-548))))) -(((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548))))) + (-5 *1 (-564))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-564))))) +(((*1 *1) (-5 *1 (-564)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-563 *3)) (-4 *3 (-549))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1180)) (-5 *6 (-643 (-613 *3))) (-5 *5 (-613 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 *7))) - (-4 *7 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-586 *3)) (-5 *1 (-561 *5 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) + (|partial| -12 (-5 *4 (-1181)) (-5 *6 (-644 (-614 *3))) (-5 *5 (-614 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 *7))) + (-4 *7 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-562 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-587 *3)) (-5 *1 (-562 *5 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1180)) - (-4 *4 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) + (|partial| -12 (-5 *3 (-1181)) + (-4 *4 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 *6))) - (-4 *6 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) + (|partial| -12 (-5 *4 (-1181)) (-5 *5 (-644 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 *6))) + (-4 *6 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-561 *6 *3))))) + (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1180)) - (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *5 *3)) - (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1947 *1) (|:| -4412 *1) (|:| |associate| *1))) - (-4 *1 (-560))))) -(((*1 *1 *1) (-4 *1 (-560)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112))))) + (|partial| -12 (-5 *4 (-1181)) + (-4 *5 (-13 (-456) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-2 (|:| -2320 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) + (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1949 *1) (|:| -4414 *1) (|:| |associate| *1))) + (-4 *1 (-561))))) +(((*1 *1 *1) (-4 *1 (-561)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-410 (-549))) (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))))) - ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205)))))) -(((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205)))))) + (-12 (-5 *2 (-411 (-550))) (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))))) + ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206)))))) +(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-408) (-1206)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-557))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557))))) + (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-408) (-1206))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-558))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-558))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-558))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-560) (-1041 (-549)))) - (-4 *7 (-1245 (-410 *6))) (-5 *1 (-556 *4 *5 *6 *7 *2)) - (-4 *2 (-344 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) - (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) - (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) - (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) - (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1246 *5)) + (-4 *5 (-13 (-27) (-425 *4))) (-4 *4 (-13 (-561) (-1042 (-550)))) + (-4 *7 (-1246 (-411 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) + (-4 *2 (-345 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1246 *6)) (-4 *6 (-13 (-27) (-425 *5))) + (-4 *5 (-13 (-561) (-1042 (-550)))) (-4 *8 (-1246 (-411 *7))) + (-5 *2 (-587 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-345 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1246 *6)) (-4 *6 (-13 (-27) (-425 *5))) + (-4 *5 (-13 (-561) (-1042 (-550)))) (-4 *8 (-1246 (-411 *7))) + (-5 *2 (-587 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-345 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) - (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-560)) (-5 *2 (-586 *3)) - (-5 *1 (-555 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) + (-12 (-5 *4 (-614 *3)) (-5 *5 (-1 (-1175 *3) (-1175 *3))) + (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-561)) (-5 *2 (-587 *3)) + (-5 *1 (-556 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-549)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-549)))) +(((*1 *1 *1 *1) (-4 *1 (-549)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-549) #1="failed") *5)) (-4 *5 (-1052)) - (-5 *2 (-549)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-550) #1="failed") *5)) (-4 *5 (-1053)) + (-5 *2 (-550)) (-5 *1 (-547 *5 *3)) (-4 *3 (-1246 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-549) #1#) *4)) (-4 *4 (-1052)) (-5 *2 (-549)) - (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-550) #1#) *4)) (-4 *4 (-1053)) (-5 *2 (-550)) + (-5 *1 (-547 *4 *3)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-549) #1#) *4)) (-4 *4 (-1052)) (-5 *2 (-549)) - (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-550) #1#) *4)) (-4 *4 (-1053)) (-5 *2 (-550)) + (-5 *1 (-547 *4 *3)) (-4 *3 (-1246 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-459 *3 *2)) (-4 *2 (-1246 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-309)) (-5 *1 (-464 *3 *2)) (-4 *2 (-1246 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-773))) - (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3))))) + (-12 (-4 *3 (-309)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-774))) + (-5 *1 (-543 *3 *2 *4 *5)) (-4 *2 (-1246 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773)))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-543 *4 *2 *5 *6)) + (-4 *4 (-309)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-774)))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773)))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-543 *4 *2 *5 *6)) + (-4 *4 (-309)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-774)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1180))) (-4 *6 (-365)) - (-5 *2 (-643 (-294 (-949 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) - (-4 *7 (-13 (-365) (-850)))))) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1181))) (-4 *6 (-366)) + (-5 *2 (-644 (-295 (-950 *6)))) (-5 *1 (-542 *5 *6 *7)) (-4 *5 (-456)) + (-4 *7 (-13 (-366) (-851)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-4 *6 (-455)) - (-5 *2 (-643 (-643 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) - (-4 *5 (-13 (-365) (-850)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-538)))) - ((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-539 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-538)) (-5 *1 (-539 *4)) (-4 *4 (-1219))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-538))) (-5 *1 (-538))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-538))))) -(((*1 *1 *1) (-5 *1 (-538)))) -(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-538))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-538))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-538))) (-5 *2 (-1180)) (-5 *1 (-538))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-538))) (-5 *1 (-538))))) + (-12 (-5 *3 (-644 (-950 *6))) (-5 *4 (-644 (-1181))) (-4 *6 (-456)) + (-5 *2 (-644 (-644 *7))) (-5 *1 (-542 *6 *7 *5)) (-4 *7 (-366)) + (-4 *5 (-13 (-366) (-851)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175 *5)) (-4 *5 (-456)) (-5 *2 (-644 *6)) + (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-366)) (-4 *4 (-13 (-366) (-851))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-950 *5)) (-4 *5 (-456)) (-5 *2 (-644 *6)) + (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-366)) (-4 *4 (-13 (-366) (-851)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-539)))) + ((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-540 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1181)) (-5 *2 (-539)) (-5 *1 (-540 *4)) (-4 *4 (-1220))))) +(((*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-539))) (-5 *1 (-539))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-539))))) +(((*1 *1 *1) (-5 *1 (-539)))) +(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-539))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-539))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-539))) (-5 *2 (-1181)) (-5 *1 (-539))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1181)) (-5 *3 (-644 (-539))) (-5 *1 (-539))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-691 *6)) (-5 *5 (-1 (-408 (-1174 *6)) (-1174 *6))) - (-4 *6 (-365)) + (-12 (-5 *3 (-692 *6)) (-5 *5 (-1 (-409 (-1175 *6)) (-1175 *6))) + (-4 *6 (-366)) (-5 *2 - (-643 - (-2 (|:| |outval| *7) (|:| |outmult| (-549)) - (|:| |outvect| (-643 (-691 *7)))))) - (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-850)))))) + (-644 + (-2 (|:| |outval| *7) (|:| |outmult| (-550)) + (|:| |outvect| (-644 (-692 *7)))))) + (-5 *1 (-536 *6 *7 *4)) (-4 *7 (-366)) (-4 *4 (-13 (-366) (-851)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-643 *6)) - (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850)))))) + (-12 (-5 *3 (-1175 *5)) (-4 *5 (-366)) (-5 *2 (-644 *6)) + (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-366)) (-4 *4 (-13 (-366) (-851)))))) (((*1 *2 *3) - (-12 (-5 *3 (-691 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) - (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-850)))))) + (-12 (-5 *3 (-692 *4)) (-4 *4 (-366)) (-5 *2 (-1175 *4)) + (-5 *1 (-536 *4 *5 *6)) (-4 *5 (-366)) (-4 *6 (-13 (-366) (-851)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-534 *3)) (-4 *3 (-13 (-729) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-532)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-532))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-534 *3)) (-4 *3 (-13 (-729) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-533)))) + ((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-533))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-533))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-533))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) + (-12 (-5 *3 (-923)) (-4 *4 (-371)) (-4 *4 (-366)) (-5 *2 (-1175 *1)) + (-4 *1 (-331 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-5 *2 (-1175 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1245 *3)))) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-173)) (-4 *3 (-366)) (-4 *2 (-1246 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-1175 *4)) (-5 *1 (-532 *4))))) +(((*1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-371)) (-4 *2 (-366)))) ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1270 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353))))) (((*1 *2 *2) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-421 *3)) (-4 *3 (-308)) (-4 *3 (-560)) + (-12 (-5 *2 (-1270 *4)) (-4 *4 (-422 *3)) (-4 *3 (-309)) (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *4)))) - ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) + (-12 (-5 *3 (-923)) (-4 *4 (-366)) (-5 *2 (-1270 *1)) (-4 *1 (-331 *4)))) + ((*1 *2) (-12 (-4 *3 (-366)) (-5 *2 (-1270 *1)) (-4 *1 (-331 *3)))) ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) - (-4 *1 (-413 *3 *4)))) + (-12 (-4 *3 (-173)) (-4 *4 (-1246 *3)) (-5 *2 (-1270 *1)) + (-4 *1 (-414 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) - (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) + (-12 (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *6)) + (-5 *1 (-417 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1042 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) - (-5 *1 (-418 *3 *4 *5 *6 *7)) (-4 *6 (-413 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-421 *3)))) + (-12 (-4 *3 (-309)) (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-5 *2 (-1270 *6)) + (-5 *1 (-419 *3 *4 *5 *6 *7)) (-4 *6 (-414 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1270 *1)) (-4 *1 (-422 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) - (-4 *4 (-352))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1270 (-1270 *4))) (-5 *1 (-532 *4)) + (-4 *4 (-353))))) (((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) + (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4)))) + (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-531 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) + (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-532 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-923)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-922)) (-5 *1 (-531 *4))))) + (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-923)) (-5 *1 (-532 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4))))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-550)) (-4 *4 (-353)) (-5 *1 (-532 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1123)) (-4 *4 (-352)) (-5 *1 (-531 *4))))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-1124)) (-4 *4 (-353)) (-5 *1 (-532 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-531 *4))))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-532 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1269 *5)) (-5 *3 (-773)) (-5 *4 (-1123)) (-4 *5 (-352)) - (-5 *1 (-531 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-773)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) - (-4 *4 (-352)) (-5 *2 (-1275)) (-5 *1 (-531 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-128)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-553)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1228)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-550)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1225)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-551)))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1226)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-129)) (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527))))) -(((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) (-14 *4 (-549))))) -(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-1270 *5)) (-5 *3 (-774)) (-5 *4 (-1124)) (-4 *5 (-353)) + (-5 *1 (-532 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-774)) (-5 *2 (-1175 *4)) (-5 *1 (-532 *4)) (-4 *4 (-353))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 *4)) (-4 *4 (-353)) (-5 *2 (-1175 *4)) (-5 *1 (-532 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) + (-4 *4 (-353)) (-5 *2 (-1276)) (-5 *1 (-532 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-128)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-554)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-1229)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-551)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-1226)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-552)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531)) (-5 *2 (-694 (-1227)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-531)) (-5 *3 (-129)) (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-529))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1221))) (-5 *1 (-528))))) +(((*1 *2 *2) + (-12 (-4 *3 (-366)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-525 *3 *4 *5 *2)) (-4 *2 (-689 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-521))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-521))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-329 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-520 *3 *4)) (-14 *4 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-329 *3)) (-4 *3 (-1220)))) + ((*1 *2 *1) + (-12 (-5 *2 (-774)) (-5 *1 (-520 *3 *4)) (-4 *3 (-1220)) (-14 *4 (-550))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-329 *3)) (-4 *3 (-1220)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) + (-12 (-5 *2 (-550)) (-5 *1 (-520 *3 *4)) (-4 *3 (-1220)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-329 *3)) (-4 *3 (-1220)))) ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549))))) -(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-852))))) -(((*1 *1) (-5 *1 (-509)))) + (-12 (-5 *2 (-112)) (-5 *1 (-520 *3 *4)) (-4 *3 (-1220)) (-14 *4 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-853))))) +(((*1 *1) (-5 *1 (-510)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) - (-4 *5 (-172)))) + (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-774)) + (-4 *5 (-173)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) - (-4 *5 (-172)))) + (-12 (-5 *2 (-550)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-774)) + (-4 *5 (-173)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) - (-5 *3 (-643 (-866 *4))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) - (-5 *1 (-508 *4 *5))))) + (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) + (-5 *3 (-644 (-867 *4))) (-14 *4 (-644 (-1181))) (-14 *5 (-774)) + (-5 *1 (-509 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-643 (-1180))) (-14 *5 (-773)) + (-12 (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 - (-643 - (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549)))))) - (-5 *1 (-508 *4 *5)) + (-644 + (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550)))))) + (-5 *1 (-509 *4 *5)) (-5 *3 - (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549)))))))) + (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-507 (-410 (-549)) (-239 *4 (-773)) (-866 *3) (-247 *3 (-410 (-549))))) - (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-508 *3 *4))))) + (-508 (-411 (-550)) (-240 *4 (-774)) (-867 *3) (-248 *3 (-411 (-550))))) + (-14 *3 (-644 (-1181))) (-14 *4 (-774)) (-5 *1 (-509 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) - (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5))))) + (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) + (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-112)) + (-5 *1 (-509 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) - (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5))))) + (-508 (-411 (-550)) (-240 *5 (-774)) (-867 *4) (-248 *4 (-411 (-550))))) + (-14 *4 (-644 (-1181))) (-14 *5 (-774)) (-5 *2 (-112)) + (-5 *1 (-509 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) + (-12 (-4 *4 (-366)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-304 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1092 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-304)))) + (-12 (-5 *4 (-1093 (-845 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) + (-5 *1 (-305)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5))))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) + (-12 (-4 *4 (-366)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) - (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6))))) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) + (-5 *2 (-112)) (-5 *1 (-508 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) - (-4 *2 (-953 *3 *4 *5)))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *2)) + (-4 *2 (-954 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4))))) + (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) (-5 *2 - (-2 (|:| |mval| (-691 *4)) (|:| |invmval| (-691 *4)) - (|:| |genIdeal| (-507 *4 *5 *6 *7)))) - (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6))))) + (-2 (|:| |mval| (-692 *4)) (|:| |invmval| (-692 *4)) + (|:| |genIdeal| (-508 *4 *5 *6 *7)))) + (-5 *1 (-508 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-691 *3)) (|:| |invmval| (-691 *3)) - (|:| |genIdeal| (-507 *3 *4 *5 *6)))) - (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) - (-4 *6 (-953 *3 *4 *5))))) + (-2 (|:| |mval| (-692 *3)) (|:| |invmval| (-692 *3)) + (|:| |genIdeal| (-508 *3 *4 *5 *6)))) + (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6)) + (-4 *6 (-954 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) - (-4 *5 (-953 *2 *3 *4))))) + (-12 (-4 *2 (-366)) (-4 *3 (-796)) (-4 *4 (-853)) (-5 *1 (-508 *2 *3 *4 *5)) + (-4 *5 (-954 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) - (-5 *2 (-416 *4 (-410 *4) *5 *6)))) + (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) + (-5 *2 (-417 *4 (-411 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))) - (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) - (-5 *1 (-416 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1270 *6)) (-4 *6 (-13 (-414 *4 *5) (-1042 *4))) + (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-4 *3 (-309)) + (-5 *1 (-417 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-366)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-366)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5))))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-508 *3 *4 *5 *6)) (-4 *6 (-954 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) - (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-953 *4 *5 *6)))) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-853)) (-4 *4 (-366)) (-4 *5 (-796)) + (-5 *1 (-508 *4 *5 *6 *2)) (-4 *2 (-954 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) - (-4 *2 (-953 *3 *4 *5))))) + (-12 (-4 *3 (-366)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-508 *3 *4 *5 *2)) + (-4 *2 (-954 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *6 (-616 (-1180))) - (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) - (-5 *2 (-1169 (-643 (-949 *4)) (-643 (-294 (-949 *4))))) - (-5 *1 (-507 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *5 *6)) (-4 *6 (-617 (-1181))) + (-4 *4 (-366)) (-4 *5 (-796)) (-4 *6 (-853)) + (-5 *2 (-1170 (-644 (-950 *4)) (-644 (-295 (-950 *4))))) + (-5 *1 (-508 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-214 *4)) + (-12 (-5 *3 (-923)) (-5 *2 (-1276)) (-5 *1 (-215 *4)) (-4 *4 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) - (-15 -2143 (*2 $))))))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 (*2 $)) + (-15 -2145 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) + (-12 (-5 *2 (-1276)) (-5 *1 (-215 *3)) (-4 *3 - (-13 (-852) - (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) - (-15 -2143 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505))))) + (-13 (-853) + (-10 -8 (-15 -4233 ((-1163) $ (-1181))) (-15 -4051 (*2 $)) + (-15 -2145 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-506))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *6 (-1245 *5)) - (-5 *2 (-1174 (-1174 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *6 (-1246 *5)) + (-5 *2 (-1175 (-1175 *7))) (-5 *1 (-505 *5 *6 *4 *7)) (-4 *4 (-1246 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-691 (-1174 *8))) - (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *6)) - (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1245 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-692 (-1175 *8))) + (-4 *5 (-1053)) (-4 *8 (-1053)) (-4 *6 (-1246 *5)) (-5 *2 (-692 *6)) + (-5 *1 (-505 *5 *6 *7 *8)) (-4 *7 (-1246 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) - (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *2 (-1245 *5)) - (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1175 *7)) + (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *2 (-1246 *5)) + (-5 *1 (-505 *5 *2 *6 *7)) (-4 *6 (-1246 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1052)) (-4 *7 (-1052)) - (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1053)) (-4 *7 (-1053)) + (-4 *2 (-1246 *5)) (-5 *1 (-505 *5 *2 *6 *7)) (-4 *6 (-1246 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *4 (-1245 *5)) - (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1245 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1053)) (-4 *7 (-1053)) (-4 *4 (-1246 *5)) + (-5 *2 (-1175 *7)) (-5 *1 (-505 *5 *4 *6 *7)) (-4 *6 (-1246 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) - (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) - (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) + (-2 (|:| -2192 (-692 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-692 *3)))) + (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *4 (-1246 *3)) + (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-773)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) + (-12 (-5 *2 (-774)) (-4 *3 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) + (-4 *4 (-1246 *3)) (-5 *1 (-503 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-691 *2)) (-5 *4 (-549)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) - (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5))))) + (-12 (-5 *3 (-692 *2)) (-5 *4 (-550)) + (-4 *2 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *5 (-1246 *2)) + (-5 *1 (-503 *2 *5 *6)) (-4 *6 (-414 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-691 *2)) (-5 *4 (-773)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) - (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5))))) + (-12 (-5 *3 (-692 *2)) (-5 *4 (-774)) + (-4 *2 (-13 (-309) (-10 -8 (-15 -4403 ((-409 $) $))))) (-4 *5 (-1246 *2)) + (-5 *1 (-503 *2 *5 *6)) (-4 *6 (-414 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-352)) (-4 *6 (-1245 *5)) + (-12 (-5 *4 (-774)) (-4 *5 (-353)) (-4 *6 (-1246 *5)) (-5 *2 - (-643 - (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-691 *6))))) - (-5 *1 (-501 *5 *6 *7)) + (-644 + (-2 (|:| -2192 (-692 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-692 *6))))) + (-5 *1 (-502 *5 *6 *7)) (-5 *3 - (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-691 *6)))) - (-4 *7 (-1245 *6))))) + (-2 (|:| -2192 (-692 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-692 *6)))) + (-4 *7 (-1246 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-643 + (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-549))))) - (-5 *1 (-408 *3)) (-4 *3 (-560)))) + (|:| |xpnt| (-550))))) + (-5 *1 (-409 *3)) (-4 *3 (-561)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-773)) (-4 *3 (-352)) (-4 *5 (-1245 *3)) - (-5 *2 (-643 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1245 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-494))))) + (-12 (-5 *4 (-774)) (-4 *3 (-353)) (-4 *5 (-1246 *3)) + (-5 *2 (-644 (-1175 *3))) (-5 *1 (-502 *3 *5 *6)) (-4 *6 (-1246 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-495))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-492 *3)) - (-4 *3 (-1219))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4428)) (-4 *1 (-493 *3)) + (-4 *3 (-1220))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) - (-4 *4 (-1219)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4427)) (-4 *1 (-493 *4)) + (-4 *4 (-1220)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) - (-4 *4 (-1219)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4427)) (-4 *1 (-493 *4)) + (-4 *4 (-1220)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) - (-5 *2 (-773)))) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) (-4 *3 (-1105)) + (-5 *2 (-774)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) - (-4 *4 (-1219)) (-5 *2 (-773))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) - (-4 *5 (-374 *3)) (-5 *2 (-643 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) - (-5 *2 (-643 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-549)) (-5 *1 (-489 *4)) - (-4 *4 (-1245 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549)))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-487 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-878))) (-5 *1 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-509))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-878))) (-5 *1 (-486))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4427)) (-4 *1 (-493 *4)) + (-4 *4 (-1220)) (-5 *2 (-774))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-493 *3)) (-4 *3 (-1220)) + (-5 *2 (-644 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-491))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-550)) (-5 *1 (-490 *4)) + (-4 *4 (-1246 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1246 (-550))) (-5 *1 (-490 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1246 (-550))) (-5 *1 (-490 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-490 *2)) (-4 *2 (-1246 (-550)))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-488 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-879))) (-5 *1 (-487))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-510))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-879))) (-5 *1 (-487))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-549))) (-5 *1 (-247 *3 *4)) (-14 *3 (-643 (-1180))) - (-4 *4 (-1052)))) + (-12 (-5 *2 (-644 (-550))) (-5 *1 (-248 *3 *4)) (-14 *3 (-644 (-1181))) + (-4 *4 (-1053)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-549))) (-14 *3 (-643 (-1180))) (-5 *1 (-457 *3 *4 *5)) - (-4 *4 (-1052)) (-4 *5 (-238 (-4389 *3) (-773))))) + (-12 (-5 *2 (-644 (-550))) (-14 *3 (-644 (-1181))) (-5 *1 (-458 *3 *4 *5)) + (-4 *4 (-1053)) (-4 *5 (-239 (-4391 *3) (-774))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-549))) (-5 *1 (-484 *3 *4)) (-14 *3 (-643 (-1180))) - (-4 *4 (-1052))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-483))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-483))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) - (-5 *2 (-2 (|:| |dpolys| (-643 (-247 *5 *6))) (|:| |coords| (-643 (-549))))) - (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455))))) + (-12 (-5 *2 (-644 (-550))) (-5 *1 (-485 *3 *4)) (-14 *3 (-644 (-1181))) + (-4 *4 (-1053))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-484))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-484))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-867 *5))) (-14 *5 (-644 (-1181))) (-4 *6 (-456)) + (-5 *2 (-2 (|:| |dpolys| (-644 (-248 *5 *6))) (|:| |coords| (-644 (-550))))) + (-5 *1 (-475 *5 *6 *7)) (-5 *3 (-644 (-248 *5 *6))) (-4 *7 (-456))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-643 (-866 *4))) - (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) - (-4 *6 (-455))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) - (-5 *2 (-643 (-643 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) - (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455))))) -(((*1 *1) (-5 *1 (-471)))) + (|partial| -12 (-5 *2 (-644 (-485 *4 *5))) (-5 *3 (-644 (-867 *4))) + (-14 *4 (-644 (-1181))) (-4 *5 (-456)) (-5 *1 (-475 *4 *5 *6)) + (-4 *6 (-456))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-867 *5))) (-14 *5 (-644 (-1181))) (-4 *6 (-456)) + (-5 *2 (-644 (-644 (-248 *5 *6)))) (-5 *1 (-475 *5 *6 *7)) + (-5 *3 (-644 (-248 *5 *6))) (-4 *7 (-456))))) +(((*1 *1) (-5 *1 (-472)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) - (-5 *4 (-643 (-922))) (-5 *5 (-643 (-262))) (-5 *1 (-471)))) + (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *3 (-644 (-877))) + (-5 *4 (-644 (-923))) (-5 *5 (-644 (-263))) (-5 *1 (-472)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) - (-5 *4 (-643 (-922))) (-5 *1 (-471)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) - ((*1 *1 *1) (-5 *1 (-471)))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) + (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *3 (-644 (-877))) + (-5 *4 (-644 (-923))) (-5 *1 (-472)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-472)))) + ((*1 *1 *1) (-5 *1 (-472)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *1 (-472))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-263)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471))))) + (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-472))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *2 (-1275)) - (-5 *1 (-471)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471)))) + (-12 (-5 *3 (-947 (-226))) (-5 *4 (-877)) (-5 *5 (-923)) (-5 *2 (-1276)) + (-5 *1 (-472)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-947 (-226))) (-5 *2 (-1276)) (-5 *1 (-472)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-876)) (-5 *5 (-922)) - (-5 *2 (-1275)) (-5 *1 (-471))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471))))) + (-12 (-5 *3 (-644 (-947 (-226)))) (-5 *4 (-877)) (-5 *5 (-923)) + (-5 *2 (-1276)) (-5 *1 (-472))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-947 (-226))) (-5 *2 (-1276)) (-5 *1 (-472))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) - (-5 *1 (-471))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-225))) - (-5 *1 (-471))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 (-549)))) (-5 *1 (-469))))) + (-12 (-5 *2 (-644 (-644 (-947 (-226))))) (-5 *3 (-644 (-877))) + (-5 *1 (-472))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-947 (-226))))) (-5 *2 (-644 (-226))) + (-5 *1 (-472))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-263))) (-5 *1 (-264)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-471))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 (-1270 (-1270 (-550)))) (-5 *1 (-470))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 (-1269 (-549)))) (-5 *3 (-922)) (-5 *1 (-469))))) + (-12 (-5 *2 (-1270 (-1270 (-550)))) (-5 *3 (-923)) (-5 *1 (-470))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-852)) (-4 *5 (-795)) (-4 *6 (-560)) - (-4 *7 (-953 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-853)) (-4 *5 (-796)) (-4 *6 (-561)) + (-4 *7 (-954 *6 *5 *3)) (-5 *1 (-466 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-1041 (-410 (-549))) (-365) - (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-1042 (-411 (-550))) (-366) + (-10 -8 (-15 -4380 ($ *7)) (-15 -3401 (*7 $)) (-15 -3400 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) + (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *2)) - (-2 (|:| -2563 *5) (|:| -2564 *2)))) - (-4 *2 (-238 (-4389 *3) (-773))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-852)) (-4 *7 (-953 *4 *2 (-866 *3)))))) + (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *2)) + (-2 (|:| -2565 *5) (|:| -2566 *2)))) + (-4 *2 (-239 (-4391 *3) (-774))) (-5 *1 (-465 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-853)) (-4 *7 (-954 *4 *2 (-867 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) + (-12 (-14 *3 (-644 (-1181))) (-4 *4 (-173)) (-4 *5 (-239 (-4391 *3) (-774))) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) - (-2 (|:| -2563 *2) (|:| -2564 *5)))) - (-4 *2 (-852)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-953 *4 *5 (-866 *3)))))) + (-1 (-112) (-2 (|:| -2565 *2) (|:| -2566 *5)) + (-2 (|:| -2565 *2) (|:| -2566 *5)))) + (-4 *2 (-853)) (-5 *1 (-465 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-954 *4 *5 (-867 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-643 (-1180))) (-4 *2 (-172)) (-4 *4 (-238 (-4389 *5) (-773))) + (-12 (-14 *5 (-644 (-1181))) (-4 *2 (-173)) (-4 *4 (-239 (-4391 *5) (-774))) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *4)) - (-2 (|:| -2563 *3) (|:| -2564 *4)))) - (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-852)) - (-4 *7 (-953 *2 *4 (-866 *5)))))) + (-1 (-112) (-2 (|:| -2565 *3) (|:| -2566 *4)) + (-2 (|:| -2565 *3) (|:| -2566 *4)))) + (-5 *1 (-465 *5 *2 *3 *4 *6 *7)) (-4 *3 (-853)) + (-4 *7 (-954 *2 *4 (-867 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-4 *3 (-238 (-4389 *4) (-773))) + (-12 (-14 *4 (-644 (-1181))) (-4 *2 (-173)) (-4 *3 (-239 (-4391 *4) (-774))) (-14 *6 - (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *3)) - (-2 (|:| -2563 *5) (|:| -2564 *3)))) - (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-852)) - (-4 *7 (-953 *2 *3 (-866 *4)))))) + (-1 (-112) (-2 (|:| -2565 *5) (|:| -2566 *3)) + (-2 (|:| -2565 *5) (|:| -2566 *3)))) + (-5 *1 (-465 *4 *2 *5 *3 *6 *7)) (-4 *5 (-853)) + (-4 *7 (-954 *2 *3 (-867 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-643 *3)) (-5 *5 (-922)) (-4 *3 (-1245 *4)) (-4 *4 (-308)) - (-5 *1 (-463 *4 *3))))) + (-12 (-5 *2 (-644 *3)) (-5 *5 (-923)) (-4 *3 (-1246 *4)) (-4 *4 (-309)) + (-5 *1 (-464 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) - (-5 *2 (-2 (|:| |plist| (-643 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) - (-5 *4 (-643 *3))))) + (-12 (-5 *6 (-923)) (-4 *5 (-309)) (-4 *3 (-1246 *5)) + (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) (-5 *1 (-464 *5 *3)) + (-5 *4 (-644 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) (-5 *2 (-112)) - (-5 *1 (-458 *3 *5))))) + (-12 (-5 *4 (-644 *5)) (-4 *5 (-1246 *3)) (-4 *3 (-309)) (-5 *2 (-112)) + (-5 *1 (-459 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1269 (-643 *3))) (-4 *4 (-308)) (-5 *2 (-643 *3)) - (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4))))) + (|partial| -12 (-5 *5 (-1270 (-644 *3))) (-4 *4 (-309)) (-5 *2 (-644 *3)) + (-5 *1 (-459 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-773)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) - (-5 *2 (-1269 (-643 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-643 *6))))) + (|partial| -12 (-5 *3 (-774)) (-4 *4 (-309)) (-4 *6 (-1246 *4)) + (-5 *2 (-1270 (-644 *6))) (-5 *1 (-459 *4 *6)) (-5 *5 (-644 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) (-5 *2 (-773)) - (-5 *1 (-458 *5 *3))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-309)) (-5 *2 (-774)) + (-5 *1 (-459 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) + (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2192 (-644 *1)))) (-4 *1 (-370 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-456 *3 *4 *5 *6)) - (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) - (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3)))))) + (-2 (|:| |particular| (-457 *3 *4 *5 *6)) + (|:| -2192 (-644 (-457 *3 *4 *5 *6))))) + (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) + (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) + (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2192 (-644 *1)))) (-4 *1 (-370 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-456 *3 *4 *5 *6)) - (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) - (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) - (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3)))))) + (-2 (|:| |particular| (-457 *3 *4 *5 *6)) + (|:| -2192 (-644 (-457 *3 *4 *5 *6))))) + (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-923)) + (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 (-1180))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) - (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4))))) + (-12 (-5 *2 (-1270 (-1181))) (-5 *3 (-1270 (-457 *4 *5 *6 *7))) + (-5 *1 (-457 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-923)) + (-14 *6 (-644 (-1181))) (-14 *7 (-1270 (-692 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 *2)) - (-14 *7 (-1269 (-691 *4))))) + (-12 (-5 *2 (-1181)) (-5 *3 (-1270 (-457 *4 *5 *6 *7))) + (-5 *1 (-457 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-923)) (-14 *6 (-644 *2)) + (-14 *7 (-1270 (-692 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3))))) + (-12 (-5 *2 (-1270 (-457 *3 *4 *5 *6))) (-5 *1 (-457 *3 *4 *5 *6)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-1180))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) + (-12 (-5 *2 (-1270 (-1181))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) + (-14 *4 (-923)) (-14 *5 (-644 (-1181))) (-14 *6 (-1270 (-692 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1180)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-922)) (-14 *5 (-643 *2)) (-14 *6 (-1269 (-691 *3))))) + (-12 (-5 *2 (-1181)) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-173)) + (-14 *4 (-923)) (-14 *5 (-644 *2)) (-14 *6 (-1270 (-692 *3))))) ((*1 *1) - (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) - (-14 *4 (-643 (-1180))) (-14 *5 (-1269 (-691 *2)))))) + (-12 (-5 *1 (-457 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-923)) + (-14 *4 (-644 (-1181))) (-14 *5 (-1270 (-692 *2)))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) - (-4 *3 (-421 *4)))) + (-12 (-4 *4 (-173)) (-5 *2 (-1175 (-950 *4))) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) ((*1 *2) - (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1174 (-949 *3))))) + (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-366)) + (-5 *2 (-1175 (-950 *3))))) ((*1 *2) - (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) + (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) + (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) - (-4 *3 (-421 *4)))) + (-12 (-4 *4 (-173)) (-5 *2 (-1175 (-950 *4))) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) ((*1 *2) - (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1174 (-949 *3))))) + (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-366)) + (-5 *2 (-1175 (-950 *3))))) ((*1 *2) - (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) + (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-1175 (-411 (-950 *3)))) (-5 *1 (-457 *3 *4 *5 *6)) + (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2) - (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3)))))) + (-12 (-5 *2 (-411 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-643 (-949 *4))))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) + (-5 *2 (-644 (-950 *4))))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-643 (-949 *4))) (-5 *1 (-420 *3 *4)) - (-4 *3 (-421 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-643 (-949 *3))))) + (-12 (-4 *4 (-173)) (-5 *2 (-644 (-950 *4))) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-644 (-950 *3))))) ((*1 *2) - (-12 (-5 *2 (-643 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) - (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) - (-14 *6 (-1269 (-691 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-643 (-949 *4))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-560)) (-4 *4 (-172)) (-14 *5 (-922)) - (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) - ((*1 *1 *1 *1) (-4 *1 (-455)))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-773)) - (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) + (-12 (-5 *2 (-644 (-950 *3))) (-5 *1 (-457 *3 *4 *5 *6)) (-4 *3 (-561)) + (-4 *3 (-173)) (-14 *4 (-923)) (-14 *5 (-644 (-1181))) + (-14 *6 (-1270 (-692 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1270 (-457 *4 *5 *6 *7))) (-5 *2 (-644 (-950 *4))) + (-5 *1 (-457 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) (-14 *5 (-923)) + (-14 *6 (-644 (-1181))) (-14 *7 (-1270 (-692 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-456)))) + ((*1 *1 *1 *1) (-4 *1 (-456)))) +(((*1 *2 *3) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-774)) + (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-773)) (|:| -2182 *4))) (-5 *5 (-773)) - (-4 *4 (-953 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-774)) (|:| -2184 *4))) (-5 *5 (-774)) + (-4 *4 (-954 *6 *7 *8)) (-4 *6 (-456)) (-4 *7 (-796)) (-4 *8 (-853)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-453 *6 *7 *8 *4))))) + (-5 *1 (-454 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) - (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7))))) + (-4 *5 (-796)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *6 (-853)) + (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) - (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6))))) + (-12 (-5 *3 (-550)) (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) + (-5 *2 (-1276)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-954 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *2 (-1276)) (-5 *1 (-454 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-549)) + (-12 (-5 *2 (-550)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-774)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) - (-5 *1 (-453 *5 *6 *7 *4))))) + (-4 *6 (-796)) (-4 *4 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *7 (-853)) + (-5 *1 (-454 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-549)) + (-12 (-5 *2 (-550)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-774)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) - (-5 *1 (-453 *5 *6 *7 *4))))) + (-4 *6 (-796)) (-4 *4 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *7 (-853)) + (-5 *1 (-454 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) - (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-1276)) + (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-549)) - (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) + (-12 (-4 *4 (-456)) (-4 *5 (-796)) (-4 *6 (-853)) (-5 *2 (-550)) + (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-954 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6))))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-454 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-643 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) + (-644 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-774)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) - (-5 *1 (-453 *3 *4 *5 *6))))) + (-4 *4 (-796)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *5 (-853)) + (-5 *1 (-454 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-795)) (-4 *2 (-953 *4 *5 *6)) (-5 *1 (-453 *4 *5 *6 *2)) - (-4 *4 (-455)) (-4 *6 (-852))))) + (-4 *5 (-796)) (-4 *2 (-954 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) + (-4 *4 (-456)) (-4 *6 (-853))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 *3)))) (-5 *4 (-773)) - (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) - (-5 *1 (-453 *5 *6 *7 *3))))) + (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-774)) (|:| -2184 *3)))) (-5 *4 (-774)) + (-4 *3 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) (-4 *7 (-853)) + (-5 *1 (-454 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *2)) - (-4 *2 (-953 *3 *4 *5))))) + (-12 (-4 *3 (-456)) (-4 *4 (-796)) (-4 *5 (-853)) (-5 *1 (-454 *3 *4 *5 *2)) + (-4 *2 (-954 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) - (-4 *7 (-852)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-453 *5 *6 *7 *3))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-954 *5 *6 *7)) (-4 *5 (-456)) (-4 *6 (-796)) + (-4 *7 (-853)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-454 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-643 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-773)) (|:| |poli| *6) + (-644 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-774)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-795)) (-4 *6 (-953 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-852)) - (-5 *1 (-453 *4 *3 *5 *6))))) + (-4 *3 (-796)) (-4 *6 (-954 *4 *3 *5)) (-4 *4 (-456)) (-4 *5 (-853)) + (-5 *1 (-454 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-643 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) + (-644 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-774)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) - (-5 *1 (-453 *3 *4 *5 *6))))) + (-4 *4 (-796)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-456)) (-4 *5 (-853)) + (-5 *1 (-454 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-643 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *3) + (-644 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-795)) (-4 *3 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) - (-5 *1 (-453 *4 *5 *6 *3))))) + (-4 *5 (-796)) (-4 *3 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *6 (-853)) + (-5 *1 (-454 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5))))) + (-12 (-4 *4 (-456)) (-4 *3 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-954 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) - (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5))))) + (-12 (-4 *4 (-456)) (-4 *3 (-796)) (-4 *5 (-853)) (-5 *2 (-112)) + (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-954 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-774)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) - (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7))))) + (-4 *5 (-796)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *6 (-853)) + (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-549)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-550)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-456)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-456)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *1 (-454 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) - (-5 *3 (-643 *7)))) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-453 *4 *5 *6 *7)) + (-5 *3 (-644 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) - (-5 *3 (-643 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-453 *5 *6 *7 *8)) + (-5 *3 (-644 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) - (-5 *3 (-643 *7)))) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-453 *4 *5 *6 *7)) + (-5 *3 (-644 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) - (-5 *3 (-643 *8))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-453 *5 *6 *7 *8)) + (-5 *3 (-644 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) - (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) - (-5 *3 (-643 *7)))) + (-12 (-4 *4 (-13 (-309) (-147))) (-4 *5 (-796)) (-4 *6 (-853)) + (-4 *7 (-954 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-453 *4 *5 *6 *7)) + (-5 *3 (-644 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) - (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) - (-5 *3 (-643 *8))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-309) (-147))) (-4 *6 (-796)) (-4 *7 (-853)) + (-4 *8 (-954 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-453 *5 *6 *7 *8)) + (-5 *3 (-644 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-795)) - (-4 *5 (-852)) (-5 *1 (-451 *3 *4 *5 *6)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-954 *3 *4 *5)) (-4 *3 (-309)) (-4 *4 (-796)) + (-4 *5 (-853)) (-5 *1 (-452 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7)))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-309)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-452 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) - (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7))))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1163)) (-4 *7 (-954 *4 *5 *6)) (-4 *4 (-309)) + (-4 *5 (-796)) (-4 *6 (-853)) (-5 *1 (-452 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) - (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-449)) (-5 *3 (-549))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-954 *4 *5 *6)) (-4 *4 (-309)) (-4 *5 (-796)) + (-4 *6 (-853)) (-5 *1 (-452 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-450)) (-5 *3 (-550))))) (((*1 *2 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) + (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053)))) ((*1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053))))) (((*1 *2 *3) - (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-550)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053))))) (((*1 *2 *3) - (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-448 *3)) (-4 *3 (-1052))))) -(((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052))))) -(((*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) - ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052))))) + (-12 (-5 *2 (-550)) (-5 *1 (-449 *3)) (-4 *3 (-408)) (-4 *3 (-1053))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-449 *3)) (-4 *3 (-1053))))) +(((*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-1053))))) +(((*1 *2 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-1053)))) + ((*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-449 *3)) (-4 *3 (-1053))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-773)) (-5 *4 (-549)) (-5 *1 (-448 *2)) (-4 *2 (-1052))))) + (-12 (-5 *3 (-774)) (-5 *4 (-550)) (-5 *1 (-449 *2)) (-4 *2 (-1053))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-408 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-1052)) - (-5 *2 (-643 *6)) (-5 *1 (-447 *5 *6))))) + (-12 (-5 *3 (-923)) (-5 *4 (-409 *6)) (-4 *6 (-1246 *5)) (-4 *5 (-1053)) + (-5 *2 (-644 *6)) (-5 *1 (-448 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) + (|partial| -12 (-5 *3 (-923)) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-773)) (-5 *1 (-445 *2)) - (-4 *2 (-1245 (-549))))) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-774)) (-5 *1 (-446 *2)) + (-4 *2 (-1246 (-550))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *1 (-445 *2)) - (-4 *2 (-1245 (-549))))) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-644 (-774))) (-5 *1 (-446 *2)) + (-4 *2 (-1246 (-550))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) - (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-644 (-774))) (-5 *5 (-774)) + (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) - (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) + (|partial| -12 (-5 *3 (-923)) (-5 *4 (-644 (-774))) (-5 *5 (-774)) + (-5 *6 (-112)) (-5 *1 (-446 *2)) (-4 *2 (-1246 (-550))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-408 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-447 *5 *2)) - (-4 *5 (-1052))))) + (-12 (-5 *3 (-923)) (-5 *4 (-409 *2)) (-4 *2 (-1246 *5)) (-5 *1 (-448 *5 *2)) + (-4 *5 (-1053))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) - (-4 *4 (-1245 (-549))) (-5 *2 (-738 (-773))) (-5 *1 (-445 *4)))) + (-12 (-5 *3 (-644 (-2 (|:| -4166 *4) (|:| -4382 (-550))))) + (-4 *4 (-1246 (-550))) (-5 *2 (-739 (-774))) (-5 *1 (-446 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-408 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1052)) - (-5 *2 (-738 (-773))) (-5 *1 (-447 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))) + (-12 (-5 *3 (-409 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-1053)) + (-5 *2 (-739 (-774))) (-5 *1 (-448 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1053)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1246 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1053)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1246 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) + (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) + (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *5 *3 *6)) - (-4 *3 (-1245 *5)) (-4 *6 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))))) + (-12 (-5 *4 (-774)) (-4 *5 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *5 *3 *6)) + (-4 *3 (-1246 *5)) (-4 *6 (-13 (-408) (-1042 *5) (-366) (-1206) (-286))))) ((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) + (-12 (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *4 *3 *5)) + (-4 *3 (-1246 *4)) (-4 *5 (-13 (-408) (-1042 *4) (-366) (-1206) (-286)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) + (-12 (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *4 *3 *5)) + (-4 *3 (-1246 *4)) (-4 *5 (-13 (-408) (-1042 *4) (-366) (-1206) (-286)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) + (-12 (-4 *4 (-1053)) (-4 *2 (-13 (-408) (-1042 *4) (-366) (-1206) (-286))) + (-5 *1 (-447 *4 *3 *2)) (-4 *3 (-1246 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-922)) (-4 *5 (-1052)) - (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) - (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5))))) + (-12 (-5 *4 (-923)) (-4 *5 (-1053)) + (-4 *2 (-13 (-408) (-1042 *5) (-366) (-1206) (-286))) + (-5 *1 (-447 *5 *3 *2)) (-4 *3 (-1246 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) + (-12 (-4 *4 (-1053)) (-5 *2 (-550)) (-5 *1 (-447 *4 *3 *5)) + (-4 *3 (-1246 *4)) (-4 *5 (-13 (-408) (-1042 *4) (-366) (-1206) (-286)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1100 (-773))) (-5 *6 (-773)) - (-5 *2 - (-2 (|:| |contp| (-549)) - (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2978 (-549)) (|:| -1954 (-643 *3)))) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-549)))))) -(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) - ((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) - (-4 *4 (-1245 (-549))) (-5 *2 (-773)) (-5 *1 (-445 *4))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) + (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-774))) (-5 *6 (-774)) + (-5 *2 + (-2 (|:| |contp| (-550)) + (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) + (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2980 (-550)) (|:| -1956 (-644 *3)))) (-5 *1 (-446 *3)) + (-4 *3 (-1246 (-550)))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-409 *3)) (-4 *3 (-561)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -4166 *4) (|:| -4382 (-550))))) + (-4 *4 (-1246 (-550))) (-5 *2 (-774)) (-5 *1 (-446 *4))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550))))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-446 *3)) (-4 *3 (-1246 (-550)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-643 + (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-549))))) - (-4 *2 (-560)) (-5 *1 (-408 *2)))) + (|:| |xpnt| (-550))))) + (-4 *2 (-561)) (-5 *1 (-409 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-549)) - (|:| -1954 (-643 (-2 (|:| |irr| *4) (|:| -2558 (-549))))))) - (-4 *4 (-1245 (-549))) (-5 *2 (-408 *4)) (-5 *1 (-445 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-440))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 "void"))) (-5 *1 (-439))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1041 (-48))) (-4 *4 (-13 (-560) (-1041 (-549)))) - (-4 *5 (-424 *4)) (-5 *2 (-408 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) - (-4 *3 (-1245 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) - (-5 *2 - (-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) - (|:| -3041 (-112)))) - (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) - (-5 *2 (-408 (-1174 (-410 (-549))))) (-5 *1 (-438 *4 *5 *3)) - (-4 *3 (-1245 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 *3)) - (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) + (-2 (|:| |contp| (-550)) + (|:| -1956 (-644 (-2 (|:| |irr| *4) (|:| -2560 (-550))))))) + (-4 *4 (-1246 (-550))) (-5 *2 (-409 *4)) (-5 *1 (-446 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-441)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-441))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-441))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-441))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-441))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-438)) (|:| -4344 "void"))) (-5 *1 (-440))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *1) (-5 *1 (-440)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1042 (-48))) (-4 *4 (-13 (-561) (-1042 (-550)))) + (-4 *5 (-425 *4)) (-5 *2 (-409 (-1175 (-48)))) (-5 *1 (-439 *4 *5 *3)) + (-4 *3 (-1246 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) + (-5 *2 + (-3 (|:| |overq| (-1175 (-411 (-550)))) (|:| |overan| (-1175 (-48))) + (|:| -3043 (-112)))) + (-5 *1 (-439 *4 *5 *3)) (-4 *3 (-1246 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) + (-5 *2 (-409 (-1175 (-411 (-550))))) (-5 *1 (-439 *4 *5 *3)) + (-4 *3 (-1246 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-4 *5 (-425 *4)) (-5 *2 (-409 *3)) + (-5 *1 (-439 *4 *5 *3)) (-4 *3 (-1246 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-438))))) (((*1 *2) - (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *2 (-1275)) (-5 *1 (-436 *3 *4)) - (-4 *4 (-424 *3))))) + (-12 (-4 *3 (-13 (-561) (-1042 (-550)))) (-5 *2 (-1276)) (-5 *1 (-437 *3 *4)) + (-4 *4 (-425 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 (-549))) - (-5 *1 (-436 *4 *3)) (-4 *3 (-424 *4)))) + (-12 (-4 *4 (-13 (-561) (-1042 (-550)))) (-5 *2 (-411 (-550))) + (-5 *1 (-437 *4 *3)) (-4 *3 (-425 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-560) (-1041 (-549)))) - (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-436 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3))))) + (-12 (-5 *4 (-614 *3)) (-4 *3 (-425 *5)) (-4 *5 (-13 (-561) (-1042 (-550)))) + (-5 *2 (-1175 (-411 (-550)))) (-5 *1 (-437 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-435 *3 *2)) (-4 *2 (-425 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) - (-4 *2 (-13 (-852) (-21)))))) + (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-173) (-38 (-411 (-550))))) + (-4 *2 (-13 (-853) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) - (-4 *2 (-13 (-852) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-1104)) (-5 *2 (-773))))) -(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-370))))) -(((*1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-370)) (-4 *2 (-1104))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1205) (-424 *3))) - (-14 *4 (-1180)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-4 *2 (-13 (-27) (-1205) (-424 *3) (-10 -8 (-15 -4378 ($ *4))))) - (-4 *4 (-850)) + (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-173) (-38 (-411 (-550))))) + (-4 *2 (-13 (-853) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-587 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1206) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1105)) (-5 *2 (-774))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1105)) (-4 *2 (-371))))) +(((*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-371)) (-4 *2 (-1105))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-427 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1206) (-425 *3))) + (-14 *4 (-1181)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-4 *2 (-13 (-27) (-1206) (-425 *3) (-10 -8 (-15 -4380 ($ *4))))) + (-4 *4 (-851)) (-4 *5 - (-13 (-1248 *2 *4) (-365) (-1205) - (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) - (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-986 *5)) (-14 *7 (-1180))))) + (-13 (-1249 *2 *4) (-366) (-1206) + (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $))))) + (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *6 (-987 *5)) (-14 *7 (-1181))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) - (-4 *7 (-850)) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-4 *3 (-13 (-27) (-1206) (-425 *6) (-10 -8 (-15 -4380 ($ *7))))) + (-4 *7 (-851)) (-4 *8 - (-13 (-1248 *3 *7) (-365) (-1205) - (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) + (-13 (-1249 *3 *7) (-366) (-1206) + (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) - (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) - (-14 *10 (-1180))))) + (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163)))))) + (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1163)) (-4 *9 (-987 *8)) + (-14 *10 (-1181))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) - (-4 *7 (-850)) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-4 *3 (-13 (-27) (-1206) (-425 *6) (-10 -8 (-15 -4380 ($ *7))))) + (-4 *7 (-851)) (-4 *8 - (-13 (-1248 *3 *7) (-365) (-1205) - (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) + (-13 (-1249 *3 *7) (-366) (-1206) + (-10 -8 (-15 -4244 ($ $)) (-15 -4246 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) - (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) - (-14 *10 (-1180))))) + (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163)))))) + (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1163)) (-4 *9 (-987 *8)) + (-14 *10 (-1181))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) - (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) - (-14 *6 (-1180)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-315 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1163)) (|:| |prob| (-1163)))))) + (-5 *1 (-427 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1206) (-425 *5))) + (-14 *6 (-1181)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104))))) + (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1105)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1053)))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1105))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1180)) (-5 *3 (-643 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)))) + (-12 (-5 *2 (-1181)) (-5 *3 (-644 *1)) (-4 *1 (-425 *4)) (-4 *4 (-1105)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) - (-5 *2 (-2 (|:| -4386 (-549)) (|:| |var| (-613 *1)))) (-4 *1 (-424 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-408 *3)) (-4 *3 (-560)) (-5 *1 (-422 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) + (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1181)) (-4 *1 (-425 *3)) (-4 *3 (-1105))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1105)) + (-5 *2 (-2 (|:| -4388 (-550)) (|:| |var| (-614 *1)))) (-4 *1 (-425 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-366)) (-4 *1 (-331 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) + (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1246 *4)) (-4 *4 (-1225)) + (-4 *1 (-345 *4 *3 *5)) (-4 *5 (-1246 (-411 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-1270 *1)) (-4 *4 (-173)) (-4 *1 (-370 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) - (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) - ((*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) - ((*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + (-12 (-5 *2 (-1270 *4)) (-5 *3 (-1270 *1)) (-4 *4 (-173)) + (-4 *1 (-373 *4 *5)) (-4 *5 (-1246 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) + (-4 *4 (-1246 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1270 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *2)) (-4 *2 (-173)))) + ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) + ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173))))) +(((*1 *2 *3) (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *2)) (-4 *2 (-173)))) + ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) + ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) - (-4 *3 (-421 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) + (-12 (-4 *4 (-173)) (-5 *2 (-692 *4)) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) - (-4 *3 (-421 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) + (-12 (-4 *4 (-173)) (-5 *2 (-692 *4)) (-5 *1 (-421 *3 *4)) + (-4 *3 (-422 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-370 *4)) (-4 *4 (-173)) (-5 *2 (-692 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-692 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1041 *4)) (-4 *3 (-308)) - (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-413 *4 *5)) - (-14 *7 (-1269 *6)) (-5 *1 (-418 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-417 *3 *4 *5 *6)) (-4 *6 (-1042 *4)) (-4 *3 (-309)) + (-4 *4 (-995 *3)) (-4 *5 (-1246 *4)) (-4 *6 (-414 *4 *5)) + (-14 *7 (-1270 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 *6)) (-4 *6 (-413 *4 *5)) (-4 *4 (-994 *3)) - (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-418 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1270 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-995 *3)) + (-4 *5 (-1246 *4)) (-4 *3 (-309)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) - (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3)))))) + (-12 (-4 *2 (-309)) (-4 *3 (-995 *2)) (-4 *4 (-1246 *3)) + (-5 *1 (-417 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1042 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-773)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) - (-4 *2 (-13 (-413 *6 *7) (-1041 *6))) (-5 *1 (-416 *5 *6 *7 *2)) - (-4 *7 (-1245 *6))))) + (-12 (-5 *3 (-774)) (-5 *4 (-1270 *2)) (-4 *5 (-309)) (-4 *6 (-995 *5)) + (-4 *2 (-13 (-414 *6 *7) (-1042 *6))) (-5 *1 (-417 *5 *6 *7 *2)) + (-4 *7 (-1246 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) + (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)) - (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-413 *4 *5)))) + (-12 (-4 *4 (-173)) (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)) + (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-691 *3))))) + (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) + (-5 *2 (-692 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) + (-12 (-5 *3 (-1270 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-173)) + (-4 *5 (-1246 *4)) (-5 *2 (-692 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-691 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) + (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1246 *3)) + (-5 *2 (-692 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-549))))) (-5 *1 (-363 *3)) - (-4 *3 (-1104)))) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 (-550))))) (-5 *1 (-364 *3)) + (-4 *3 (-1105)))) ((*1 *2 *1) - (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) - (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-773))))))) + (-12 (-4 *1 (-389 *3)) (-4 *3 (-1105)) + (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -4377 (-774))))))) ((*1 *2 *1) - (-12 (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -2564 (-549))))) (-5 *1 (-408 *3)) - (-4 *3 (-560))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560))))) + (-12 (-5 *2 (-644 (-2 (|:| -4166 *3) (|:| -2566 (-550))))) (-5 *1 (-409 *3)) + (-4 *3 (-561))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-409 *3)) (-4 *3 (-561))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-408 *4)) (-4 *4 (-560))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) + (-12 (-5 *3 (-550)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-409 *4)) (-4 *4 (-561))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-409 *2)) (-4 *2 (-561))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-549)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-408 *2)) (-4 *2 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-262)))) - ((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560))))) -(((*1 *1 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922))))) -(((*1 *2 *3) - (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922))))) -(((*1 *2 *3) - (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922))))) -(((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-773)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-773))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-773)))) - ((*1 *1 *1) (-4 *1 (-405)))) + (-12 (-5 *3 (-550)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-409 *2)) (-4 *2 (-561))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-263)))) + ((*1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) + ((*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-561))))) +(((*1 *1 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-561))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4418)) (-4 *1 (-408)))) + ((*1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-923))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (|has| *1 (-6 -4418)) (-4 *1 (-408)) (-5 *2 (-923))))) +(((*1 *2 *3) + (-12 (-5 *3 (-550)) (|has| *1 (-6 -4418)) (-4 *1 (-408)) (-5 *2 (-923))))) +(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-774)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-406)) (-5 *2 (-774))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-774)))) + ((*1 *1 *1) (-4 *1 (-406)))) (((*1 *1 *2) - (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) - (-5 *1 (-402 *3 *4))))) + (-12 (-5 *2 (-411 *4)) (-4 *4 (-1246 *3)) (-4 *3 (-13 (-366) (-147))) + (-5 *1 (-403 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147)))))) + (-12 (-4 *2 (-1246 *3)) (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-366) (-147)))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-365) (-147))) - (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) - (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-398))))) + (-12 (-4 *3 (-13 (-366) (-147))) + (-5 *2 (-644 (-2 (|:| -2566 (-774)) (|:| -4206 *4) (|:| |num| *4)))) + (-5 *1 (-403 *3 *4)) (-4 *4 (-1246 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-399))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) - (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) + (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1181))))) + (-5 *6 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1107)) (-5 *1 (-399)))) ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) - (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) + (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1181))))) + (-5 *6 (-644 (-1181))) (-5 *3 (-1181)) (-5 *2 (-1107)) (-5 *1 (-399)))) ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-643 (-1180))) (-5 *5 (-1183)) (-5 *3 (-1180)) (-5 *2 (-1106)) - (-5 *1 (-398))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-394))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-394)))) - ((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-394))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-394))))) -(((*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394))))) -(((*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394))))) -(((*1 *2 *1) - (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) - (-4 *5 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) - (-4 *5 (-172))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104))))) + (-12 (-5 *4 (-644 (-1181))) (-5 *5 (-1184)) (-5 *3 (-1181)) (-5 *2 (-1107)) + (-5 *1 (-399))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-397))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-395))))) +(((*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1276)) (-5 *1 (-395)))) + ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-395))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-395))))) +(((*1 *2) (-12 (-5 *2 (-1151 (-1163))) (-5 *1 (-395))))) +(((*1 *2) (-12 (-5 *2 (-1151 (-1163))) (-5 *1 (-395))))) +(((*1 *2 *1) + (-12 (-5 *2 (-866)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 (-774)) (-14 *4 (-774)) + (-4 *5 (-173))))) +(((*1 *2 *1) + (-12 (-5 *2 (-866)) (-5 *1 (-394 *3 *4 *5)) (-14 *3 (-774)) (-14 *4 (-774)) + (-4 *5 (-173))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-393))))) +(((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-1163))))) +(((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-1163))))) +(((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-1105))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-388 *3))))) + (-12 (-4 *3 (-1105)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-389 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-1105)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 (-410 (-949 (-549))))) (-5 *4 (-643 (-1180))) - (-5 *2 (-643 (-643 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-850) (-365))))) + (-12 (-5 *3 (-644 (-411 (-950 (-550))))) (-5 *4 (-644 (-1181))) + (-5 *2 (-644 (-644 *5))) (-5 *1 (-383 *5)) (-4 *5 (-13 (-851) (-366))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-850) (-365)))))) + (-12 (-5 *3 (-411 (-950 (-550)))) (-5 *2 (-644 *4)) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-851) (-366)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 (-168 (-549))))) (-5 *2 (-643 (-168 *4))) - (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) + (-12 (-5 *3 (-411 (-950 (-169 (-550))))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-382 *4)) (-4 *4 (-13 (-366) (-851))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) (-5 *4 (-643 (-1180))) - (-5 *2 (-643 (-643 (-168 *5)))) (-5 *1 (-381 *5)) - (-4 *5 (-13 (-365) (-850)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) - (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) - (-4 *4 (-13 (-365) (-850))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-294 (-410 (-949 (-168 (-549))))))) - (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) - (-4 *4 (-13 (-365) (-850))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-949 (-168 (-549))))) - (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) - (-4 *4 (-13 (-365) (-850))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-410 (-949 (-168 (-549)))))) - (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) - (-4 *4 (-13 (-365) (-850)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-380))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380))))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-380))) - ((*1 *1) (-5 *1 (-380)))) -(((*1 *1 *1) (-5 *1 (-225))) + (-12 (-5 *3 (-644 (-411 (-950 (-169 (-550)))))) (-5 *4 (-644 (-1181))) + (-5 *2 (-644 (-644 (-169 *5)))) (-5 *1 (-382 *5)) + (-4 *5 (-13 (-366) (-851)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-411 (-950 (-169 (-550)))))) + (-5 *2 (-644 (-644 (-295 (-950 (-169 *4)))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-366) (-851))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-411 (-950 (-169 (-550))))))) + (-5 *2 (-644 (-644 (-295 (-950 (-169 *4)))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-366) (-851))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-411 (-950 (-169 (-550))))) + (-5 *2 (-644 (-295 (-950 (-169 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-366) (-851))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-411 (-950 (-169 (-550)))))) + (-5 *2 (-644 (-295 (-950 (-169 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-366) (-851)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-550)) (-5 *1 (-381))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-226)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-226)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-381)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-774)) (-5 *2 (-411 (-550))) (-5 *1 (-381))))) +(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *1) (-5 *1 (-381)))) +(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) - (-4 *4 (-390)))) - ((*1 *1 *1) (-5 *1 (-380))) ((*1 *1) (-5 *1 (-380)))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-380)))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) - ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) - ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) - ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380))))) + (-12 (-5 *1 (-342 *2 *3 *4)) (-14 *2 (-644 (-1181))) (-14 *3 (-644 (-1181))) + (-4 *4 (-391)))) + ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *1) (-5 *1 (-226))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-381))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-381))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-381))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1276)) (-5 *1 (-381))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-378 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-378 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1220)) (-5 *1 (-378 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4428))))))) (((*1 *1 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172))))) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-853)) (-4 *1 (-377 *3 *4)) (-4 *4 (-173))))) (((*1 *2 *1) - (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-852)) (-5 *2 (-112)))) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1220)) (-4 *3 (-853)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1220)) (-5 *2 (-112))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) (-4 *3 (-1219))))) + (-12 (-5 *2 (-550)) (|has| *1 (-6 -4428)) (-4 *1 (-375 *3)) (-4 *3 (-1220))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + (-12 (|has| *1 (-6 -4428)) (-4 *1 (-375 *2)) (-4 *2 (-1220)) (-4 *2 (-853)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) - (-4 *3 (-1219))))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3))))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4428)) (-4 *1 (-375 *3)) + (-4 *3 (-1220))))) +(((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1270 *1)) (-4 *1 (-370 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-370 *2)) (-4 *2 (-173))))) +(((*1 *2 *1) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-1175 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-1175 *3))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-369 *3 *4)) (-4 *3 (-370 *4)))) + ((*1 *2) (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-643 (-1269 *4))) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) + (-12 (-4 *4 (-173)) (-5 *2 (-644 (-1270 *4))) (-5 *1 (-369 *3 *4)) + (-4 *3 (-370 *4)))) ((*1 *2) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) - (-5 *2 (-643 (-1269 *3)))))) + (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-4 *3 (-561)) + (-5 *2 (-644 (-1270 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3))))) + (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1175 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172))))) -(((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172))))) + (-12 (-4 *1 (-370 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1175 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-561)) (-4 *2 (-173))))) +(((*1 *1) (|partial| -12 (-4 *1 (-370 *2)) (-4 *2 (-561)) (-4 *2 (-173))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1162)) (-4 *1 (-367 *2 *4)) (-4 *2 (-1104)) (-4 *4 (-1104)))) - ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) + (-12 (-5 *3 (-1163)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1105)) (-4 *4 (-1105)))) + ((*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1162)) (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(((*1 *1 *1) (-4 *1 (-173))) - ((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-1163)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105))))) +(((*1 *1 *1) (-4 *1 (-174))) + ((*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-1105))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-1162))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) (-5 *2 (-1163))))) +(((*1 *2 *1) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1105)) (-4 *2 (-1105))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) + (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-4 *2 - (-13 (-405) - (-10 -7 (-15 -4378 (*2 *4)) (-15 -2188 ((-922) *2)) - (-15 -2190 ((-1269 *2) (-922))) (-15 -4360 (*2 *2))))) - (-5 *1 (-359 *2 *4))))) + (-13 (-406) + (-10 -7 (-15 -4380 (*2 *4)) (-15 -2190 ((-923) *2)) + (-15 -2192 ((-1270 *2) (-923))) (-15 -4362 (*2 *2))))) + (-5 *1 (-360 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-961 (-1174 *4))) (-5 *1 (-358 *4)) - (-5 *3 (-1174 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) + (-12 (-4 *4 (-353)) (-5 *2 (-962 (-1175 *4))) (-5 *1 (-359 *4)) + (-5 *3 (-1175 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-353)) (-5 *1 (-359 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352))))) -(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352))))) -(((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-112)))) + (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-353))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-353))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-353))))) +(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-353))))) +(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4))))) + (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) (((*1 *2) - (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 (-909 *3)) (|:| -2563 (-1123)))))) - (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) + (-12 (-5 *2 (-1270 (-644 (-2 (|:| -3828 (-910 *3)) (|:| -2565 (-1124)))))) + (-5 *1 (-355 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) ((*1 *2) - (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) - (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) *2)))) + (-12 (-5 *2 (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124)))))) + (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1175 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) - (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) + (-12 (-5 *2 (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124)))))) + (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923))))) (((*1 *2) - (-12 (-5 *2 (-691 (-909 *3))) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922)))) + (-12 (-5 *2 (-692 (-910 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923)))) ((*1 *2) - (-12 (-5 *2 (-691 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) + (-12 (-5 *2 (-692 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 - (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123))))))))) + (-3 (-1175 *3) (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124))))))))) ((*1 *2) - (-12 (-5 *2 (-691 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) + (-12 (-5 *2 (-692 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) - (-4 *4 (-352)) (-5 *2 (-773)) (-5 *1 (-349 *4)))) + (-12 (-5 *3 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) + (-4 *4 (-353)) (-5 *2 (-774)) (-5 *1 (-350 *4)))) ((*1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) + (-12 (-5 *2 (-774)) (-5 *1 (-355 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) ((*1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) + (-12 (-5 *2 (-774)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 - (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123))))))))) + (-3 (-1175 *3) (-1270 (-644 (-2 (|:| -3828 *3) (|:| -2565 (-1124))))))))) ((*1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) + (-12 (-5 *2 (-774)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-923))))) (((*1 *2) - (-12 (-4 *1 (-352)) - (-5 *2 (-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-352)) (-5 *3 (-549)) (-5 *2 (-1192 (-922) (-773)))))) -(((*1 *1) (-4 *1 (-352)))) + (-12 (-4 *1 (-353)) + (-5 *2 (-644 (-2 (|:| -4166 (-550)) (|:| -2566 (-550)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-353)) (-5 *3 (-550)) (-5 *2 (-1193 (-923) (-774)))))) +(((*1 *1) (-4 *1 (-353)))) (((*1 *2) - (-12 (-4 *1 (-352)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-353)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) + (-12 (-5 *3 (-923)) (-5 *2 - (-3 (-1174 *4) (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123))))))) - (-5 *1 (-349 *4)) (-4 *4 (-352))))) + (-3 (-1175 *4) (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124))))))) + (-5 *1 (-350 *4)) (-4 *4 (-353))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-922)) - (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) - (-5 *1 (-349 *4)) (-4 *4 (-352))))) + (|partial| -12 (-5 *3 (-923)) + (-5 *2 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) + (-5 *1 (-350 *4)) (-4 *4 (-353))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) - (-4 *4 (-352)) (-5 *2 (-691 *4)) (-5 *1 (-349 *4))))) + (-12 (-5 *3 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) + (-4 *4 (-353)) (-5 *2 (-692 *4)) (-5 *1 (-350 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) - (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) - (-5 *1 (-349 *4))))) + (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) + (-5 *2 (-1270 (-644 (-2 (|:| -3828 *4) (|:| -2565 (-1124)))))) + (-5 *1 (-350 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-961 (-1123))) - (-5 *1 (-349 *4))))) + (-12 (-5 *3 (-1175 *4)) (-4 *4 (-353)) (-5 *2 (-962 (-1124))) + (-5 *1 (-350 *4))))) (((*1 *2) - (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-346 *3 *4)) (-14 *3 (-922)) - (-14 *4 (-922)))) + (-12 (-5 *2 (-962 (-1124))) (-5 *1 (-347 *3 *4)) (-14 *3 (-923)) + (-14 *4 (-923)))) ((*1 *2) - (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-347 *3 *4)) (-4 *3 (-352)) - (-14 *4 (-1174 *3)))) + (-12 (-5 *2 (-962 (-1124))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) + (-14 *4 (-1175 *3)))) ((*1 *2) - (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-348 *3 *4)) (-4 *3 (-352)) - (-14 *4 (-922))))) + (-12 (-5 *2 (-962 (-1124))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) + (-14 *4 (-923))))) (((*1 *2) - (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) + (-5 *2 (-774)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-774))))) (((*1 *2) - (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) + (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-345 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1224)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) + (-12 (-4 *3 (-1225)) (-4 *5 (-1246 *3)) (-4 *6 (-1246 (-411 *5))) + (-5 *2 (-112)) (-5 *1 (-344 *4 *3 *5 *6)) (-4 *4 (-345 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) + (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) + (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) + (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5))))) + (-12 (-4 *3 (-1225)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) + (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-345 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-1246 *4)) + (-4 *5 (-1246 (-411 *3))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) + (-12 (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) + (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) + (-12 (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) + (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) + (-12 (-5 *2 (-1270 *1)) (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) + (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4)))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4)))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4)))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4)))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-5 *2 (-692 (-411 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) + (-5 *2 (-2 (|:| |num| (-1270 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) + (-5 *2 (-2 (|:| |num| (-1270 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3)))))) + (-12 (-5 *2 (-1270 *3)) (-4 *3 (-1246 *4)) (-4 *4 (-1225)) + (-4 *1 (-345 *4 *3 *5)) (-4 *5 (-1246 (-411 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) - (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-2 (|:| |num| (-691 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-345 *4 *5 *6)) (-4 *4 (-1225)) + (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) + (-5 *2 (-2 (|:| |num| (-692 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) - (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1225)) (-4 *5 (-1246 (-411 *2))) (-4 *2 (-1246 *4)) + (-5 *1 (-344 *3 *4 *2 *5)) (-4 *3 (-345 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) - (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3))))) + (|partial| -12 (-4 *1 (-345 *3 *2 *4)) (-4 *3 (-1225)) + (-4 *4 (-1246 (-411 *2))) (-4 *2 (-1246 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) - (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1225)) (-4 *5 (-1246 (-411 *2))) (-4 *2 (-1246 *4)) + (-5 *1 (-344 *3 *4 *2 *5)) (-4 *3 (-345 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) - (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3))))) + (|partial| -12 (-4 *1 (-345 *3 *2 *4)) (-4 *3 (-1225)) + (-4 *4 (-1246 (-411 *2))) (-4 *2 (-1246 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1224)) - (-4 *6 (-1245 (-410 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-1225)) + (-4 *6 (-1246 (-411 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-344 *4 *5 *6))))) + (-4 *1 (-345 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) - (-4 *7 (-1245 (-410 *6))) (-5 *2 (-643 (-949 *5))) - (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) + (-12 (-5 *3 (-1181)) (-4 *5 (-1225)) (-4 *6 (-1246 *5)) + (-4 *7 (-1246 (-411 *6))) (-5 *2 (-644 (-950 *5))) + (-5 *1 (-344 *4 *5 *6 *7)) (-4 *4 (-345 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) - (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) - (-5 *2 (-643 (-949 *4)))))) + (-12 (-5 *3 (-1181)) (-4 *1 (-345 *4 *5 *6)) (-4 *4 (-1225)) + (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) (-4 *4 (-366)) + (-5 *2 (-644 (-950 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-643 (-643 *4))) (-5 *1 (-343 *3 *4 *5 *6)) - (-4 *3 (-344 *4 *5 *6)))) + (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-4 *6 (-1246 (-411 *5))) + (-5 *2 (-644 (-644 *4))) (-5 *1 (-344 *3 *4 *5 *6)) + (-4 *3 (-345 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-643 (-643 *3)))))) + (-12 (-4 *1 (-345 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-4 *3 (-371)) (-5 *2 (-644 (-644 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) - (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + (-12 (-5 *2 (-112)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) + (-14 *4 (-644 (-1181))) (-4 *5 (-391)))) ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) - (-14 *4 (-643 (-1180))) (-4 *5 (-390))))) + (-12 (-5 *2 (-112)) (-5 *1 (-342 *3 *4 *5)) (-14 *3 (-644 (-1181))) + (-14 *4 (-644 (-1181))) (-4 *5 (-391))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) - (-4 *1 (-338 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) + (-12 (-4 *4 (-366)) (-4 *3 (-1246 *4)) (-4 *5 (-1246 (-411 *3))) + (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-345 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-549)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) - (-4 *5 (-1245 (-410 *4))) (-4 *1 (-338 *2 *4 *5 *6)) - (-4 *6 (-344 *2 *4 *5)))) + (-12 (-5 *3 (-550)) (-4 *2 (-366)) (-4 *4 (-1246 *2)) + (-4 *5 (-1246 (-411 *4))) (-4 *1 (-339 *2 *4 *5 *6)) + (-4 *6 (-345 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) - (-4 *1 (-338 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) + (-12 (-4 *2 (-366)) (-4 *3 (-1246 *2)) (-4 *4 (-1246 (-411 *3))) + (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-345 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-4 *1 (-338 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) + (-12 (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) + (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-345 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) - (-4 *1 (-338 *3 *4 *5 *6))))) + (-12 (-5 *2 (-417 *4 (-411 *4) *5 *6)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-4 *3 (-366)) + (-4 *1 (-339 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-366)) (-4 *4 (-1246 *3)) + (-4 *5 (-1246 (-411 *4))) (-4 *6 (-345 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) + (-12 (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) + (-5 *2 (-1270 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-345 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-875 (-1185) (-773)))) (-5 *1 (-334))))) -(((*1 *2 *1) (-12 (-5 *2 (-961 (-773))) (-5 *1 (-334))))) -(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) + (-12 (-4 *3 (-366)) (-4 *4 (-1246 *3)) (-4 *5 (-1246 (-411 *4))) + (-5 *2 (-1270 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-345 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-335))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-876 (-1186) (-774)))) (-5 *1 (-335))))) +(((*1 *2 *1) (-12 (-5 *2 (-962 (-774))) (-5 *1 (-335))))) +(((*1 *2 *1) (-12 (-5 *2 (-510)) (-5 *1 (-335))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) + (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) + (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-852))))) + (-12 (-5 *3 (-1181)) (-5 *4 (-950 (-550))) (-5 *2 (-332)) (-5 *1 (-334))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-333 *3)) (-4 *3 (-853))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *3 (-949 (-549))) (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *1 (-331))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-696))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-703))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-701))) (-5 *1 (-331)))) - ((*1 *1) (-5 *1 (-331)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-5 *1 (-331))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-331))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-331))))) + (-12 (-5 *2 (-1096 (-950 (-550)))) (-5 *3 (-950 (-550))) (-5 *1 (-332)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1096 (-950 (-550)))) (-5 *1 (-332))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332))))) +(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-332))))) +(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-332))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1163))) (-5 *1 (-332)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-332))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-332))))) +(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-381)))) (-5 *1 (-332)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-550))) (-5 *1 (-332)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-381))) (-5 *1 (-332)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-332)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-704))) (-5 *1 (-332)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-702))) (-5 *1 (-332)))) + ((*1 *1) (-5 *1 (-332)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-332))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-332))) (-5 *1 (-332))))) +(((*1 *1) (-5 *1 (-332)))) +(((*1 *1) (-5 *1 (-332)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-866))) (-5 *1 (-332))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1181))) (-5 *2 (-1181)) (-5 *1 (-332))))) (((*1 *2 *1) (-12 (-5 *2 @@ -14033,155 +14033,155 @@ (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-331))))) + (-5 *1 (-332))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) + (-2 (|:| |var| (-1181)) (|:| |arrayIndex| (-644 (-950 (-550)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) + (-2 (|:| |var| (-1181)) (|:| |rand| (-866)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1179)) (|:| |thenClause| (-331)) - (|:| |elseClause| (-331)))) + (-2 (|:| |switch| (-1180)) (|:| |thenClause| (-332)) + (|:| |elseClause| (-332)))) (|:| |returnBranch| - (-2 (|:| -3827 (-112)) - (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) - (|:| |blockBranch| (-643 (-331))) (|:| |commentBranch| (-643 (-1162))) - (|:| |callBranch| (-1162)) + (-2 (|:| -3829 (-112)) + (|:| -3828 (-2 (|:| |ints2Floats?| (-112)) (|:| -3676 (-866)))))) + (|:| |blockBranch| (-644 (-332))) (|:| |commentBranch| (-644 (-1163))) + (|:| |callBranch| (-1163)) (|:| |forBranch| - (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) - (|:| -3653 (-331)))) - (|:| |labelBranch| (-1123)) - (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 (-331)))) + (-2 (|:| -1609 (-1096 (-950 (-550)))) (|:| |span| (-950 (-550))) + (|:| -3655 (-332)))) + (|:| |labelBranch| (-1124)) + (|:| |loopBranch| (-2 (|:| |switch| (-1180)) (|:| -3655 (-332)))) (|:| |commonBranch| - (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) - (|:| |printBranch| (-643 (-865))))) - (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331))))) -(((*1 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) + (-2 (|:| -3975 (-1181)) (|:| |contents| (-644 (-1181))))) + (|:| |printBranch| (-644 (-866))))) + (-5 *1 (-332))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-332))))) +(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-332))))) +(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-332))))) +(((*1 *1) (-12 (-4 *1 (-331 *2)) (-4 *2 (-371)) (-4 *2 (-366))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-371)) (-4 *1 (-331 *3)) (-4 *3 (-366))))) (((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) + (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-1175 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1174 *3)))) + (|partial| -12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) + (-5 *2 (-1175 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) + (-12 (-4 *1 (-331 *3)) (-4 *3 (-366)) (-4 *3 (-371)) (-5 *2 (-1175 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795))))) (((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794))))) + (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-1053)) (-4 *3 (-795))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-773)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) - (-4 *3 (-172))))) + (-12 (-5 *2 (-774)) (-4 *1 (-328 *3 *4)) (-4 *3 (-1053)) (-4 *4 (-795)) + (-4 *3 (-173))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-549)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1104)) (-4 *2 (-131))))) + (-12 (-5 *3 (-550)) (-4 *1 (-325 *4 *2)) (-4 *4 (-1105)) (-4 *2 (-131))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-131))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)) (-4 *3 (-794))))) + (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1105)) (-4 *3 (-131)) (-4 *3 (-795))))) (((*1 *2 *3) - (-12 (-5 *3 (-549)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1052)) - (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-953 *2 *4 *5))))) + (-12 (-5 *3 (-550)) (-4 *4 (-796)) (-4 *5 (-853)) (-4 *2 (-1053)) + (-5 *1 (-323 *4 *5 *2 *6)) (-4 *6 (-954 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1174 *7)) (-5 *3 (-549)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) - (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *1 (-322 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1175 *7)) (-5 *3 (-550)) (-4 *7 (-954 *6 *4 *5)) (-4 *4 (-796)) + (-4 *5 (-853)) (-4 *6 (-1053)) (-5 *1 (-323 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) - (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5))))) + (-12 (-5 *3 (-1175 *6)) (-4 *6 (-1053)) (-4 *4 (-796)) (-4 *5 (-853)) + (-5 *2 (-1175 *7)) (-5 *1 (-323 *4 *5 *6 *7)) (-4 *7 (-954 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) - (-4 *6 (-1052)) (-5 *2 (-1174 *6)) (-5 *1 (-322 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1175 *7)) (-4 *7 (-954 *6 *4 *5)) (-4 *4 (-796)) (-4 *5 (-853)) + (-4 *6 (-1053)) (-5 *2 (-1175 *6)) (-5 *1 (-323 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 *8)) (-4 *7 (-852)) - (-4 *8 (-1052)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-5 *2 (-1174 *8)) - (-5 *1 (-322 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1175 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) (-4 *7 (-853)) + (-4 *8 (-1053)) (-4 *9 (-954 *8 *6 *7)) (-4 *6 (-796)) (-5 *2 (-1175 *8)) + (-5 *1 (-323 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-549))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1180)) (-14 *5 *3)))) + (-12 (-5 *2 (-411 (-550))) (-5 *1 (-321 *3 *4 *5)) (-4 *3 (-366)) + (-14 *4 (-1181)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) - (-5 *6 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) + (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) + (-5 *6 (-550)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) - (-5 *6 (-549)) (-5 *7 (-1162)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) + (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) + (-5 *6 (-550)) (-5 *7 (-1163)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) - (-5 *6 (-225)) (-5 *7 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) + (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) + (-5 *6 (-226)) (-5 *7 (-550)) (-5 *2 (-1216 (-931))) (-5 *1 (-320)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) - (-5 *6 (-225)) (-5 *7 (-549)) (-5 *8 (-1162)) (-5 *2 (-1215 (-930))) - (-5 *1 (-319))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) + (-12 (-5 *3 (-316 (-550))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1093 (-226))) + (-5 *6 (-226)) (-5 *7 (-550)) (-5 *8 (-1163)) (-5 *2 (-1216 (-931))) + (-5 *1 (-320))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-320)) (-5 *3 (-226))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-294 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) - (-4 *5 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *6)))) + (-12 (-5 *3 (-295 *6)) (-5 *4 (-113)) (-4 *6 (-425 *5)) + (-4 *5 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-643 *7)) (-4 *7 (-424 *6)) - (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-113)) (-5 *5 (-644 *7)) (-4 *7 (-425 *6)) + (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) - (-5 *1 (-318 *6 *7)))) + (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-113))) (-5 *5 (-295 *7)) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) + (-5 *1 (-319 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-643 (-294 *8))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *8)) - (-5 *6 (-643 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-560) (-616 (-538)))) - (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) + (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-113))) (-5 *5 (-295 *8)) + (-5 *6 (-644 *8)) (-4 *8 (-425 *7)) (-4 *7 (-13 (-561) (-617 (-539)))) + (-5 *2 (-51)) (-5 *1 (-319 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) - (-5 *1 (-318 *6 *7)))) + (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-113))) (-5 *5 (-295 *7)) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) + (-5 *1 (-319 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-113))) (-5 *6 (-643 (-294 *8))) - (-4 *8 (-424 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-560) (-616 (-538)))) - (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-113))) (-5 *6 (-644 (-295 *8))) + (-4 *8 (-425 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-561) (-617 (-539)))) + (-5 *2 (-51)) (-5 *1 (-319 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) - (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *5)))) + (-12 (-5 *3 (-295 *5)) (-5 *4 (-113)) (-4 *5 (-425 *6)) + (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) - (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) + (-12 (-5 *4 (-113)) (-5 *5 (-295 *3)) (-4 *3 (-425 *6)) + (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) - (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) + (-12 (-5 *4 (-113)) (-5 *5 (-295 *3)) (-4 *3 (-425 *6)) + (-4 *6 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-5 *6 (-643 *3)) (-4 *3 (-424 *7)) - (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *3))))) + (-12 (-5 *4 (-113)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) (-4 *3 (-425 *7)) + (-4 *7 (-13 (-561) (-617 (-539)))) (-5 *2 (-51)) (-5 *1 (-319 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104))))) + (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-561)) (-4 *3 (-1105))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-549)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-773))))) + (-12 (-5 *2 (-550)) (-5 *1 (-316 *3)) (-4 *3 (-561)) (-4 *3 (-1105))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-774))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-308)))) + (-4 *1 (-309)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) - (-4 *1 (-308))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-308))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-850)) (-5 *1 (-305 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-225))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) - (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-410 (-549))) (-5 *2 (-225)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-315 (-380))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304))))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2574 *1))) + (-4 *1 (-309))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-309))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-851)) (-5 *1 (-306 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-226))) (-5 *4 (-774)) (-5 *2 (-692 (-226))) + (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-411 (-550))) (-5 *2 (-226)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-316 (-381))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 (-226))) (-5 *2 (-226)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 (-226))) (-5 *2 (-316 (-381))) (-5 *1 (-305))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) - (|:| |expense| (-380)) (|:| |accuracy| (-380)) - (|:| |intermediateResults| (-380)))) - (-5 *2 (-1038)) (-5 *1 (-304))))) + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *2 (-1039)) (-5 *1 (-305))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14195,1041 +14195,1042 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1157 (-225))) + (-3 (|:| |str| (-1158 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1607 + (|:| -1609 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1038)) (-5 *1 (-304))))) + (-5 *2 (-1039)) (-5 *1 (-305))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))))) - (-5 *2 (-1038)) (-5 *1 (-304)))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))))) + (-5 *2 (-1039)) (-5 *1 (-305)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) - (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) - (-5 *2 (-1038)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302)))) - ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-302)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-1269 (-315 (-380)))) - (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1269 (-701))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-701)) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) - (-5 *2 (-643 (-225))) (-5 *1 (-304))))) -(((*1 *2 *2) (-12 (-5 *2 (-1092 (-844 (-225)))) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-410 (-549)))) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-315 (-225)))) - (-5 *2 - (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) - (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549)))) - (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) - (-5 *2 (-380)) (-5 *1 (-268)))) - ((*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-225)) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-410 (-549))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-549))) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1092 (-844 (-380)))) (-5 *2 (-1092 (-844 (-225)))) - (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-844 (-380))) (-5 *2 (-844 (-225))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-380))) (-5 *2 (-315 (-225))) (-5 *1 (-304))))) -(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-304))))) + (-2 (|:| -3073 (-381)) (|:| -3975 (-1163)) + (|:| |explanations| (-644 (-1163))) (|:| |extra| (-1039)))) + (-5 *2 (-1039)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1163)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) + ((*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) + ((*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) + ((*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) + ((*1 *2 *3) (-12 (-5 *3 (-1093 (-845 (-226)))) (-5 *2 (-226)) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-193)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-303)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-193)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-303)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-644 (-1163))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1163)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1163)) (-5 *1 (-193)))) + ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1163)) (-5 *1 (-303)))) + ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1163)) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *2 (-1270 (-316 (-381)))) + (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-316 (-381))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-1270 (-702))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-702)) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -3544 (-411 (-550))) (|:| -3543 (-411 (-550)))))) + (-5 *2 (-644 (-226))) (-5 *1 (-305))))) +(((*1 *2 *2) (-12 (-5 *2 (-1093 (-845 (-226)))) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 (-226))) (-5 *2 (-316 (-411 (-550)))) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 (-316 (-226)))) + (-5 *2 + (-2 (|:| |additions| (-550)) (|:| |multiplications| (-550)) + (|:| |exponentiations| (-550)) (|:| |functionCalls| (-550)))) + (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))) + (-5 *2 (-381)) (-5 *1 (-269)))) + ((*1 *2 *3) (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *2 (-381)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-226)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-411 (-550))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-411 (-550))) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1093 (-845 (-381)))) (-5 *2 (-1093 (-845 (-226)))) + (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-845 (-381))) (-5 *2 (-845 (-226))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-381))) (-5 *2 (-316 (-226))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-226)) (-5 *1 (-305))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *4 (-1180)) - (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-302))))) + (-12 (-5 *3 (-950 (-411 (-550)))) (-5 *4 (-1181)) + (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-644 (-226))) (-5 *1 (-303))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1157 (-225))) (-5 *1 (-192)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *2 (-1158 (-226))) (-5 *1 (-193)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) - (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) + (-12 (-5 *3 (-316 (-226))) (-5 *4 (-644 (-1181))) + (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-303)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) - (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302))))) + (-12 (-5 *3 (-1270 (-316 (-226)))) (-5 *4 (-644 (-1181))) + (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-303))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1181)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) - (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302))))) + (-12 (-5 *3 (-316 (-226))) (-5 *4 (-644 (-1181))) + (-5 *5 (-1093 (-845 (-226)))) (-5 *2 (-1158 (-226))) (-5 *1 (-303))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) - (-5 *2 (-643 (-225))) (-5 *1 (-192)))) + (-12 (-5 *3 (-316 (-226))) (-5 *4 (-1181)) (-5 *5 (-1093 (-845 (-226)))) + (-5 *2 (-644 (-226))) (-5 *1 (-193)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) - (-5 *2 (-643 (-225))) (-5 *1 (-302))))) + (-12 (-5 *3 (-316 (-226))) (-5 *4 (-1181)) (-5 *5 (-1093 (-845 (-226)))) + (-5 *2 (-644 (-226))) (-5 *1 (-303))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-302))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-299)) (-4 *2 (-1219)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *2 (-112)) (-5 *1 (-303))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-300)) (-4 *2 (-1220)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-643 (-613 *1))) (-5 *3 (-643 *1)) (-4 *1 (-299)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *1))) (-4 *1 (-299)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-299))))) -(((*1 *1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1) (-4 *1 (-299)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-643 (-113)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-613 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1041 (-549))) - (-4 *4 (-560)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-613 *1)) (-4 *1 (-1052)) (-4 *1 (-299)) (-5 *2 (-1174 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-312)) (-5 *1 (-297)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 (-1162))) (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1052)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1245 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-5 *2 (-643 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-560)) - (-4 *3 (-1219))))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) - (-5 *2 - (-643 - (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) - (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) - (-5 *2 - (-643 - (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) - (|:| |geneigvec| (-643 (-691 (-410 (-949 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4))))))) + (-12 (-5 *2 (-644 (-614 *1))) (-5 *3 (-644 *1)) (-4 *1 (-300)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-300)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-300))))) +(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1) (-4 *1 (-300)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-614 *1)) (-4 *1 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-614 *1))) (-4 *1 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-614 *1))) (-4 *1 (-300))))) +(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-644 (-113)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-300)) (-5 *3 (-1181)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-614 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1042 (-550))) + (-4 *4 (-561)) (-5 *2 (-1175 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-614 *1)) (-4 *1 (-1053)) (-4 *1 (-300)) (-5 *2 (-1175 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-298)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-313)) (-5 *1 (-298)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-298)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1163))) (-5 *3 (-1163)) (-5 *2 (-313)) (-5 *1 (-298))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1053)) (-4 *4 (-1246 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1246 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1220))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-729)) (-4 *2 (-1220))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-729)) (-4 *2 (-1220))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-561)) + (-4 *3 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-456)) + (-5 *2 + (-644 + (-2 (|:| |eigval| (-3 (-411 (-950 *4)) (-1170 (-1181) (-950 *4)))) + (|:| |eigmult| (-774)) (|:| |eigvec| (-644 (-692 (-411 (-950 *4)))))))) + (-5 *1 (-294 *4)) (-5 *3 (-692 (-411 (-950 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-456)) + (-5 *2 + (-644 + (-2 (|:| |eigval| (-3 (-411 (-950 *4)) (-1170 (-1181) (-950 *4)))) + (|:| |geneigvec| (-644 (-692 (-411 (-950 *4)))))))) + (-5 *1 (-294 *4)) (-5 *3 (-692 (-411 (-950 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-410 (-949 *6)) (-1169 (-1180) (-949 *6)))) (-5 *5 (-773)) - (-4 *6 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *6))))) (-5 *1 (-293 *6)) - (-5 *4 (-691 (-410 (-949 *6)))))) + (-12 (-5 *3 (-3 (-411 (-950 *6)) (-1170 (-1181) (-950 *6)))) (-5 *5 (-774)) + (-4 *6 (-456)) (-5 *2 (-644 (-692 (-411 (-950 *6))))) (-5 *1 (-294 *6)) + (-5 *4 (-692 (-411 (-950 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) - (|:| |eigmult| (-773)) (|:| |eigvec| (-643 *4)))) - (-4 *5 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) - (-5 *4 (-691 (-410 (-949 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) (-4 *5 (-455)) - (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) - (-5 *4 (-691 (-410 (-949 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-4 *4 (-455)) - (-5 *2 (-643 (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4))))) - (-5 *1 (-293 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1088))) (-5 *1 (-292))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-1106))) (-5 *1 (-292))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-643 (-968))) (-5 *1 (-292))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-292))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *1) (-5 *1 (-292)))) + (-2 (|:| |eigval| (-3 (-411 (-950 *5)) (-1170 (-1181) (-950 *5)))) + (|:| |eigmult| (-774)) (|:| |eigvec| (-644 *4)))) + (-4 *5 (-456)) (-5 *2 (-644 (-692 (-411 (-950 *5))))) (-5 *1 (-294 *5)) + (-5 *4 (-692 (-411 (-950 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-411 (-950 *5)) (-1170 (-1181) (-950 *5)))) (-4 *5 (-456)) + (-5 *2 (-644 (-692 (-411 (-950 *5))))) (-5 *1 (-294 *5)) + (-5 *4 (-692 (-411 (-950 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-692 (-411 (-950 *4)))) (-4 *4 (-456)) + (-5 *2 (-644 (-3 (-411 (-950 *4)) (-1170 (-1181) (-950 *4))))) + (-5 *1 (-294 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1089))) (-5 *1 (-293))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-1107))) (-5 *1 (-293))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-510)) (-5 *3 (-1107)) (-5 *1 (-293))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-510)) (-5 *2 (-644 (-969))) (-5 *1 (-293))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-969))) (-5 *1 (-293))))) +(((*1 *1) (-5 *1 (-293)))) +(((*1 *1) (-5 *1 (-293)))) +(((*1 *1) (-5 *1 (-293)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) - (-4 *5 (-374 *2)))) + (-12 (-5 *3 (-550)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1220)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) - (-4 *2 (-1219))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-365)) (-5 *2 (-643 (-1157 *4))) (-5 *1 (-286 *4 *5)) - (-5 *3 (-1157 *4)) (-4 *5 (-1262 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))) + (-12 (|has| *1 (-6 -4428)) (-4 *1 (-290 *3 *2)) (-4 *3 (-1105)) + (-4 *2 (-1220))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-366)) (-5 *2 (-644 (-1158 *4))) (-5 *1 (-287 *4 *5)) + (-5 *3 (-1158 *4)) (-4 *5 (-1263 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-287 *3 *2)) (-4 *2 (-1263 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-287 *3 *2)) (-4 *2 (-1263 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-366)) (-5 *1 (-287 *3 *2)) (-4 *2 (-1263 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1237 (-550))) (-4 *1 (-284 *3)) (-4 *3 (-1220)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550)) (-4 *1 (-284 *3)) (-4 *3 (-1220))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) - (-4 *3 (-1104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-281))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4427)) (-4 *1 (-236 *3)) + (-4 *3 (-1105)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-284 *3)) (-4 *3 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-282))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1107)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-510)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-410 (-549))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) + (-12 (-5 *3 (-411 (-550))) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))) - (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2))))) + (-12 (-5 *3 (-614 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4))) + (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-1180)) - (-4 *2 (-13 (-27) (-1205) (-424 *5))) - (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *5 *2))))) + (|partial| -12 (-5 *3 (-644 (-614 *2))) (-5 *4 (-1181)) + (-4 *2 (-13 (-27) (-1206) (-425 *5))) + (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + (-12 (-4 *3 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-27) (-1206) (-425 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) + (-12 (-5 *3 (-1181)) (-4 *4 (-13 (-561) (-1042 (-550)) (-642 (-550)))) + (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1206) (-425 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) + (-12 (-5 *4 (-1181)) (-4 *5 (-13 (-561) (-1042 (-550)) (-642 (-550)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-643 (-613 *3))) (|:| |vals| (-643 *3)))) - (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-644 (-614 *3))) (|:| |vals| (-644 *3)))) + (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1206) (-425 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) - (-4 *3 (-13 (-424 *4) (-1005)))))) + (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) + (-4 *3 (-13 (-425 *4) (-1006)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-643 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-424 *4) (-1005))) (-4 *4 (-560)) (-5 *1 (-277 *4 *2))))) + (|partial| -12 (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-425 *4) (-1006))) (-4 *4 (-561)) (-5 *1 (-278 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) + (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-425 *3) (-1006)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560))))) + (-12 (-4 *2 (-13 (-425 *3) (-1006))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561))))) (((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276))))) -(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-276))))) + (-12 (-4 *2 (-13 (-425 *3) (-1006))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-550))) (-5 *1 (-277))))) +(((*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-277))))) (((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) (|:| |lsa| - (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) - (-5 *2 (-643 (-1162))) (-5 *1 (-268))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-268))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) - (-5 *1 (-268))))) -(((*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-268))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-268))))) + (-2 (|:| |lfn| (-644 (-316 (-226)))) (|:| -3871 (-644 (-226))))))) + (-5 *2 (-644 (-1163))) (-5 *1 (-269))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1039)) (-5 *3 (-1181)) (-5 *1 (-269))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-226))) (-5 *2 (-112)) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-316 (-226)))) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-316 (-226)))) (-5 *1 (-269))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-316 (-226)))) (-5 *4 (-774)) (-5 *2 (-692 (-226))) + (-5 *1 (-269))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-316 (-226)))) (-5 *2 (-112)) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-226))) (-5 *1 (-269))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-226))) (-5 *1 (-269))))) (((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) - (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) - (|:| |ub| (-643 (-844 (-225)))))) - (-5 *1 (-268))))) + (-2 (|:| |fn| (-316 (-226))) (|:| -3871 (-644 (-226))) + (|:| |lb| (-644 (-845 (-226)))) (|:| |cf| (-644 (-316 (-226)))) + (|:| |ub| (-644 (-845 (-226)))))) + (-5 *1 (-269))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 *4)) - (-5 *1 (-268))))) + (-12 (-5 *3 (-644 (-845 (-226)))) (-5 *4 (-226)) (-5 *2 (-644 *4)) + (-5 *1 (-269))))) (((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) - (-4 *6 (-795)) (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *3 *4 *5 *6)))) + (-12 (-4 *3 (-234)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-268 *4)) + (-4 *6 (-796)) (-5 *2 (-1 *1 (-774))) (-4 *1 (-255 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) - (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-267 *2)) (-4 *2 (-852))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) + (-12 (-4 *4 (-1053)) (-4 *3 (-853)) (-4 *5 (-268 *3)) (-4 *6 (-796)) + (-5 *2 (-1 *1 (-774))) (-4 *1 (-255 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-774)) (-4 *1 (-268 *2)) (-4 *2 (-853))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-113)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) - (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) + (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) + (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-774)))) ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) - (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773))))) + (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) + (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-853)) (-5 *2 (-774))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-51)) - (-5 *1 (-262)))) + (|partial| -12 (-5 *3 (-644 (-263))) (-5 *4 (-1181)) (-5 *2 (-51)) + (-5 *1 (-263)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *1 (-264 *2)) - (-4 *2 (-1219))))) -(((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) + (|partial| -12 (-5 *3 (-644 (-263))) (-5 *4 (-1181)) (-5 *1 (-265 *2)) + (-4 *2 (-1220))))) +(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) (((*1 *1) (-5 *1 (-144))) - ((*1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-262)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-263))))) -(((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) -(((*1 *2 *3) - (-12 (-5 *3 (-928)) - (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) - (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + ((*1 *1 *2) (-12 (-5 *2 (-1137 (-226))) (-5 *1 (-263)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-264))))) +(((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-263)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-263))) (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-5 *3 (-929)) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) + (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) + (-12 (-5 *3 (-929)) (-5 *4 (-411 (-550))) (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) - (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) + (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) - (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) - (-5 *1 (-153)) (-5 *3 (-643 (-946 (-225)))))) + (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) + (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) + (-5 *1 (-153)) (-5 *3 (-644 (-947 (-226)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) - (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) - (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))) -(((*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262))))) -(((*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-262))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-410 (-549))))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-112)) (-5 *1 (-262))))) + (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) + (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) + (-5 *1 (-153)) (-5 *3 (-644 (-644 (-947 (-226))))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-411 (-550))))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-263))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-263))) (-5 *4 (-1181)) (-5 *2 (-112)) (-5 *1 (-263))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) - (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) + (-12 (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1273)) + (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1272)) (-5 *1 (-256 *3)) - (-4 *3 (-13 (-616 (-538)) (-1104))))) + (-12 (-5 *4 (-1096 (-381))) (-5 *2 (-1273)) (-5 *1 (-257 *3)) + (-4 *3 (-13 (-617 (-539)) (-1105))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-880 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) - (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *6)))) + (-12 (-5 *3 (-881 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) + (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1273)) (-5 *1 (-257 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880 *5)) (-5 *4 (-1095 (-380))) - (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *5)))) + (-12 (-5 *3 (-881 *5)) (-5 *4 (-1096 (-381))) + (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1273)) (-5 *1 (-257 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) - (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) + (-12 (-5 *3 (-883 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) + (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) - (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-1096 (-381))) + (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) - (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) + (-12 (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1274)) + (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1273)) (-5 *1 (-256 *3)) - (-4 *3 (-13 (-616 (-538)) (-1104))))) + (-12 (-5 *4 (-1096 (-381))) (-5 *2 (-1274)) (-5 *1 (-257 *3)) + (-4 *3 (-13 (-617 (-539)) (-1105))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) - (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) + (-12 (-5 *3 (-886 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) + (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) - (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-1096 (-381))) + (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1274)) (-5 *1 (-257 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) - (-5 *2 (-1272)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-263))) + (-5 *2 (-1273)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) - (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1273)) + (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-257)))) + (-12 (-5 *3 (-881 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1273)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) - (-5 *1 (-257)))) + (-12 (-5 *3 (-881 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1273)) + (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) - (-5 *1 (-257)))) + (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) + (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) - (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) + (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) - (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) (-5 *2 (-1274)) + (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1273)) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1274)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-1180)) (-5 *5 (-643 (-262))) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-852) (-1041 (-549)))) (-5 *2 (-1272)) - (-5 *1 (-258 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1272)) (-5 *1 (-261)))) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-1181)) (-5 *5 (-644 (-263))) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-561) (-853) (-1042 (-550)))) (-5 *2 (-1273)) + (-5 *1 (-259 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-1273)) (-5 *1 (-262)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) - (-5 *1 (-261)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *2 (-1272)) (-5 *1 (-261)))) + (-12 (-5 *3 (-644 (-226))) (-5 *4 (-644 (-263))) (-5 *2 (-1273)) + (-5 *1 (-262)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-947 (-226)))) (-5 *2 (-1273)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) - (-5 *1 (-261)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1273)) (-5 *1 (-261)))) + (-12 (-5 *3 (-644 (-947 (-226)))) (-5 *4 (-644 (-263))) (-5 *2 (-1273)) + (-5 *1 (-262)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-226))) (-5 *2 (-1274)) (-5 *1 (-262)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1273)) - (-5 *1 (-261))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-259))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259))))) -(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259))))) + (-12 (-5 *3 (-644 (-226))) (-5 *4 (-644 (-263))) (-5 *2 (-1274)) + (-5 *1 (-262))))) +(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-260))))) +(((*1 *2 *2) (-12 (-5 *2 (-550)) (-5 *1 (-260))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) - (-5 *2 (-1273)) (-5 *1 (-259))))) + (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1093 (-226))) + (-5 *2 (-1274)) (-5 *1 (-260))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) - (-5 *5 (-112)) (-5 *2 (-1273)) (-5 *1 (-259))))) + (-12 (-5 *3 (-1 (-169 (-226)) (-169 (-226)))) (-5 *4 (-1093 (-226))) + (-5 *5 (-112)) (-5 *2 (-1274)) (-5 *1 (-260))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-946 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-257))))) + (-12 (-5 *2 (-1 (-947 (-226)) (-226) (-226))) + (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-258))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) - (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) - (-5 *1 (-256 *6)))) + (-12 (-5 *3 (-883 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) + (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) + (-5 *1 (-257 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) - (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) - (-5 *1 (-256 *5)))) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-1096 (-381))) + (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) + (-5 *1 (-257 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) - (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) + (-12 (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) + (-5 *1 (-257 *3)) (-4 *3 (-13 (-617 (-539)) (-1105))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *3)) - (-4 *3 (-13 (-616 (-538)) (-1104))))) + (-12 (-5 *4 (-1096 (-381))) (-5 *2 (-1137 (-226))) (-5 *1 (-257 *3)) + (-4 *3 (-13 (-617 (-539)) (-1105))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) - (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) - (-5 *1 (-256 *6)))) + (-12 (-5 *3 (-886 *6)) (-5 *4 (-1096 (-381))) (-5 *5 (-644 (-263))) + (-4 *6 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) + (-5 *1 (-257 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) - (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) - (-5 *1 (-256 *5)))) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-1096 (-381))) + (-4 *5 (-13 (-617 (-539)) (-1105))) (-5 *2 (-1137 (-226))) + (-5 *1 (-257 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-947 (-226)) (-226) (-226))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *5 (-644 (-263))) (-5 *2 (-1137 (-226))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) - (-5 *2 (-1136 (-225))) (-5 *1 (-257))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) - ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) - (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 *4))))) + (-12 (-5 *3 (-886 (-1 (-226) (-226) (-226)))) (-5 *4 (-1093 (-381))) + (-5 *2 (-1137 (-226))) (-5 *1 (-258))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-223 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-4 *1 (-256 *3)))) + ((*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) + (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) + (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-644 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) - (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-643 (-773))))) + (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1053)) (-4 *3 (-853)) + (-4 *5 (-268 *3)) (-4 *6 (-796)) (-5 *2 (-644 (-774))))) ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) - (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 (-773)))))) + (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) + (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-644 (-774)))))) (((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) - (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-112))))) + (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1053)) (-4 *4 (-853)) + (-4 *5 (-268 *4)) (-4 *6 (-796)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-795)) - (-4 *2 (-267 *4))))) + (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1053)) (-4 *4 (-853)) (-4 *5 (-796)) + (-4 *2 (-268 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) - (-4 *4 (-267 *3)) (-4 *5 (-795))))) + (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1053)) (-4 *3 (-853)) + (-4 *4 (-268 *3)) (-4 *5 (-796))))) (((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) - (-4 *4 (-267 *3)) (-4 *5 (-795))))) -(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) + (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1053)) (-4 *3 (-853)) + (-4 *4 (-268 *3)) (-4 *5 (-796))))) +(((*1 *2 *1) (-12 (-5 *2 (-335)) (-5 *1 (-250))))) (((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) - ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) -(((*1 *2 *1) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248))))) -(((*1 *1 *2) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248))))) -(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-248))))) + ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) + ((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-250))) (-5 *1 (-249))))) +(((*1 *2 *1) (-12 (-5 *2 (-1276)) (-5 *1 (-249))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-773)) - (-4 *3 (-13 (-728) (-370) (-10 -7 (-15 ** (*3 *3 (-549)))))) - (-5 *1 (-246 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-245 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-241)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-549)) (-5 *1 (-241))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-241)))) - ((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1275)) (-5 *1 (-241))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241))))) -(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-241))))) -(((*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-294 (-949 (-549)))) - (-5 *2 - (-2 (|:| |varOrder| (-643 (-1180))) - (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) - (|:| |hom| (-643 (-1269 (-773)))))) - (-5 *1 (-236))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1104))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))) + (|partial| -12 (-5 *2 (-774)) + (-4 *3 (-13 (-729) (-371) (-10 -7 (-15 ** (*3 *3 (-550)))))) + (-5 *1 (-247 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-246 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-245 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-245 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-550)) (-5 *1 (-242)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-550)) (-5 *1 (-242))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1276)) (-5 *1 (-242)))) + ((*1 *2 *3) (-12 (-5 *3 (-644 (-1163))) (-5 *2 (-1276)) (-5 *1 (-242))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *3 (-550)) (-5 *1 (-242))))) +(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-242))))) +(((*1 *1 *2) (-12 (-5 *2 (-1270 *4)) (-4 *4 (-1220)) (-4 *1 (-239 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-295 (-950 (-550)))) + (-5 *2 + (-2 (|:| |varOrder| (-644 (-1181))) + (|:| |inhom| (-3 (-644 (-1270 (-774))) "failed")) + (|:| |hom| (-644 (-1270 (-774)))))) + (-5 *1 (-237))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-4 *1 (-236 *3)))) + ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1105))))) +(((*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206)))))) +(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206)))))) +(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206)))))) +(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-366) (-1206)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))) +(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-226))) (-5 *1 (-227))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1180)) - (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-4 *7 (-13 (-1205) (-29 *6))) (-5 *1 (-224 *6 *7)))) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-950 *6)) (-5 *4 (-1181)) + (-5 *5 (-845 *7)) (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-4 *7 (-13 (-1206) (-29 *6))) (-5 *1 (-225 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) - (-4 *6 (-13 (-1205) (-29 *5))) - (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *5 *6))))) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1175 *6)) (-5 *4 (-845 *6)) + (-4 *6 (-13 (-1206) (-29 *5))) + (-4 *5 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-225 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1205) (-29 *6))) - (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *6 *4))))) + (|partial| -12 (-5 *2 (-845 *4)) (-5 *3 (-614 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1206) (-29 *6))) + (-4 *6 (-13 (-456) (-1042 (-550)) (-642 (-550)))) (-5 *1 (-225 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) - (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1205) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) + (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-456) (-1042 (-550)) (-642 (-550)))) + (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1206) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1053)) (-14 *3 (-644 (-1181))))) ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) - (-14 *3 (-643 (-1180)))))) + (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1053) (-853))) + (-14 *3 (-644 (-1181)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) - (-14 *4 (-643 (-1180))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1053)) + (-14 *4 (-644 (-1181))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) - (-14 *4 (-643 (-1180)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1053) (-853))) + (-14 *4 (-644 (-1181)))))) (((*1 *1 *2) - (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1052) (-852))) (-5 *1 (-223 *3 *4)) - (-14 *4 (-643 (-1180)))))) + (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1053) (-853))) (-5 *1 (-224 *3 *4)) + (-14 *4 (-644 (-1181)))))) (((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) - (-14 *3 (-643 (-1180)))))) + (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1053) (-853))) + (-14 *3 (-644 (-1181)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1180)) (-5 *6 (-112)) - (-4 *7 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) - (-4 *3 (-13 (-1205) (-963) (-29 *7))) + (-12 (-5 *4 (-1181)) (-5 *6 (-112)) + (-4 *7 (-13 (-309) (-147) (-1042 (-550)) (-642 (-550)))) + (-4 *3 (-13 (-1206) (-964) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-845 *3)) (|:| |f2| (-644 (-845 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217))))) + (-5 *1 (-220 *7 *3)) (-5 *5 (-845 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-411 (-550))) (-5 *1 (-218))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4))))) + (-12 (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4))))) + (-12 (-5 *3 (-774)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1246 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-352)) (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-4 *4 (-353)) (-5 *2 (-644 (-2 (|:| |deg| (-774)) (|:| -2977 *3)))) + (-5 *1 (-217 *4 *3)) (-4 *3 (-1246 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-352)) + (-12 (-5 *4 (-112)) (-4 *5 (-353)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) - (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5))))) + (|:| -1956 (-644 (-2 (|:| |irr| *3) (|:| -2560 (-550))))))) + (-5 *1 (-217 *5 *3)) (-4 *3 (-1246 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) - (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-366)) (-4 *6 (-1246 (-411 *2))) + (-4 *2 (-1246 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-345 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-773)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) (-4 *2 (-1104))))) + (-12 (-5 *3 (-774)) (-5 *1 (-214 *4 *2)) (-14 *4 (-923)) (-4 *2 (-1105))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-643 (-315 (-225)))) + (-2 (|:| |pde| (-644 (-316 (-226)))) (|:| |constraints| - (-643 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) - (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) - (|:| |dFinish| (-691 (-225)))))) - (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) + (-644 + (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-774)) + (|:| |boundaryType| (-550)) (|:| |dStart| (-692 (-226))) + (|:| |dFinish| (-692 (-226)))))) + (|:| |f| (-644 (-644 (-316 (-226))))) (|:| |st| (-1163)) + (|:| |tol| (-226)))) + (-5 *2 (-112)) (-5 *1 (-211))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-643 (-315 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-210))))) + (-12 (-5 *4 (-644 (-316 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) + (-5 *1 (-211))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-226))) (-5 *1 (-211))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-380)) (-5 *1 (-205))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-381)) (-5 *1 (-206))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-380)) (-5 *1 (-205))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-381)) (-5 *1 (-206))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-380)) (-5 *1 (-205))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-381)) (-5 *1 (-206))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-380)) (-5 *1 (-205))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-381)) (-5 *1 (-206))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) - (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) - (-5 *1 (-205))))) -(((*1 *2 *3) - (-12 (-5 *3 (-691 (-315 (-225)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) - (-5 *1 (-205))))) -(((*1 *2 *3) (-12 (-5 *3 (-691 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-205))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-643 (-380))) (-5 *2 (-380)) (-5 *1 (-205))))) + (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) + (|:| |fn| (-1270 (-316 (-226)))) (|:| |yinit| (-644 (-226))) + (|:| |intvals| (-644 (-226))) (|:| |g| (-316 (-226))) + (|:| |abserr| (-226)) (|:| |relerr| (-226)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-206))))) +(((*1 *2 *3) + (-12 (-5 *3 (-692 (-316 (-226)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-206))))) +(((*1 *2 *3) (-12 (-5 *3 (-692 (-316 (-226)))) (-5 *2 (-381)) (-5 *1 (-206))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-206)))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-206))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-549)) (-5 *1 (-204))))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *2 (-550)) (-5 *1 (-205))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-643 (-225))) (-5 *1 (-204))))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *2 (-644 (-226))) (-5 *1 (-205))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -2902 (-113)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-192))))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *2 (-2 (|:| -2904 (-113)) (|:| |w| (-226)))) (-5 *1 (-205))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1039)) (-5 *3 (-1181)) (-5 *1 (-193))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-380)) (-5 *1 (-192))))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) + (-5 *2 (-381)) (-5 *1 (-193))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) + (-5 *1 (-193))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) - (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |var| (-1181)) (|:| |fn| (-316 (-226))) + (|:| -1609 (-1093 (-845 (-226)))) (|:| |abserr| (-226)) + (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2 *3) (-12 (-5 *2 (-408 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-643 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549))))) + (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 (-1175 (-550)))) (-5 *1 (-192)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-1175 (-550)))) (-5 *1 (-192)) (-5 *3 (-550))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) + (-12 (-5 *3 (-644 (-550))) (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190))))) -(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) -(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) - (-5 *2 (-1269 (-691 (-949 *4)))) (-5 *1 (-189 *4))))) -(((*1 *1) (-5 *1 (-187)))) -(((*1 *1) (-5 *1 (-187)))) -(((*1 *1) (-5 *1 (-187)))) -(((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187))))) -(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-112)))))) -(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-867)))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-184 *3)) (-4 *3 (-186))))) -(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-183))) (-5 *1 (-183))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1219)) (-5 *2 (-773)) (-5 *1 (-182 *4 *3)) (-4 *3 (-676 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-850))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1954 (-408 *3)))) (-5 *1 (-181 *4 *3)) - (-4 *3 (-1245 (-168 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-168 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-168 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-850))) - (-4 *3 (-1245 *2))))) + (-12 (-5 *3 (-1183 (-411 (-550)))) (-5 *2 (-411 (-550))) (-5 *1 (-191))))) +(((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-1183 (-411 (-550)))) (-5 *1 (-191)) (-5 *3 (-550))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 (-692 *4))) (-4 *4 (-173)) + (-5 *2 (-1270 (-692 (-950 *4)))) (-5 *1 (-190 *4))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-644 (-112)))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-644 (-868)))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1186))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *3) (-12 (-5 *3 (-510)) (-5 *2 (-694 (-184))) (-5 *1 (-184))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1220)) (-5 *1 (-183 *3 *2)) (-4 *2 (-677 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1220)) (-5 *2 (-774)) (-5 *1 (-183 *4 *3)) (-4 *3 (-677 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1220)) (-5 *1 (-183 *3 *2)) (-4 *2 (-677 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-366) (-851))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1956 (-409 *3)))) (-5 *1 (-182 *4 *3)) + (-4 *3 (-1246 (-169 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) + (-4 *3 (-1246 (-169 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-366) (-851))) + (-4 *3 (-1246 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-168 *2))))) + (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) + (-4 *3 (-1246 (-169 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-168 *2)))))) + (-12 (-4 *2 (-13 (-366) (-851))) (-5 *1 (-182 *2 *3)) + (-4 *3 (-1246 (-169 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1245 (-168 *3)))))) + (-12 (-4 *3 (-13 (-366) (-851))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-1246 (-169 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) + (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) - (-4 *3 (-1245 (-168 *4)))))) + (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-409 *3)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-1246 (-169 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1245 (-168 *3)))))) + (-12 (-4 *3 (-13 (-366) (-851))) (-5 *1 (-182 *3 *2)) + (-4 *2 (-1246 (-169 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-850))) - (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-168 *5))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-366) (-851))) + (-5 *2 (-644 (-2 (|:| -1956 (-644 *3)) (|:| -1706 *5)))) + (-5 *1 (-182 *5 *3)) (-4 *3 (-1246 (-169 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-850))) - (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) + (-12 (-4 *4 (-13 (-366) (-851))) + (-5 *2 (-644 (-2 (|:| -1956 (-644 *3)) (|:| -1706 *4)))) + (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-643 (-168 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1245 (-168 (-549)))) (-4 *4 (-13 (-365) (-850))))) + (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1246 (-169 (-550)))) (-4 *4 (-13 (-366) (-851))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) + (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) + (-12 (-4 *4 (-13 (-366) (-851))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-182 *4 *3)) (-4 *3 (-1246 (-169 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-309)) (-5 *1 (-180 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-309)) (-5 *1 (-180 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1205) (-1005)))))) + (-12 (-5 *2 (-1 (-947 *3) (-947 *3))) (-5 *1 (-177 *3)) + (-4 *3 (-13 (-366) (-1206) (-1006)))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-109))) (-5 *1 (-175))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-13 (-366) (-1206) (-1006))) + (-5 *1 (-177 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-176))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-309)) (-5 *1 (-175 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 (-411 *3))) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 (-411 *3))) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-175 *3)) (-4 *3 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-293)) (-5 *1 (-168))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1063)) (-4 *3 (-1205)) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1064)) (-4 *3 (-1206)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-161))) - ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-161))))) -(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-550)) (-5 *1 (-161))))) +(((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-425 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1181)))) ((*1 *1 *1) (-4 *1 (-160)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-425 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) + (-12 (-5 *3 (-1096 *2)) (-4 *2 (-425 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1181))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549))))) (((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-549)) (-5 *1 (-159 *2))))) (((*1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) + ((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-549))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-560))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-560))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-560))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-560))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-560))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-560))))) -(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-425 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-561))))) +(((*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-425 *3))))) (((*1 *1) (-5 *1 (-157)))) -(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157))))) +(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) + (-12 (-5 *4 (-226)) (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 *4)))) (|:| |xValues| (-1092 *4)) - (|:| |yValues| (-1092 *4)))) - (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 *4))))))) + (-2 (|:| |brans| (-644 (-644 (-947 *4)))) (|:| |xValues| (-1093 *4)) + (|:| |yValues| (-1093 *4)))) + (-5 *1 (-153)) (-5 *3 (-644 (-644 (-947 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-928)) + (-12 (-5 *3 (-929)) (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) - (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) + (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) + (-12 (-5 *3 (-929)) (-5 *4 (-411 (-550))) (-5 *2 - (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) - (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-2 (|:| |brans| (-644 (-644 (-947 (-226))))) + (|:| |xValues| (-1093 (-226))) (|:| |yValues| (-1093 (-226))))) (-5 *1 (-153))))) (((*1 *1 *2) - (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) - (-14 *5 (-996 *3 *4))))) + (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-366)) + (-14 *5 (-997 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1219))))) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1220))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) - (-4 *2 (-1104))))) + (-12 (|has| *1 (-6 -4427)) (-4 *1 (-151 *2)) (-4 *2 (-1220)) + (-4 *2 (-1105))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) + (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) - (|:| |c2| (-410 *5)) (|:| |deg| (-773)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-411 *5)) + (|:| |c2| (-411 *5)) (|:| |deg| (-774)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1246 (-411 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1224)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1245 (-410 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *6)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) - (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-773)) (-4 *7 (-1245 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-773)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| -4386 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) - (-4 *3 (-1245 (-410 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-144))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-144))))) + (-12 (-4 *4 (-1246 *2)) (-4 *2 (-1225)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1246 (-411 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-411 *6)) (-4 *5 (-1225)) (-4 *6 (-1246 *5)) + (-5 *2 (-2 (|:| -2566 (-774)) (|:| -4388 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-774)) (-4 *7 (-1246 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) + (-5 *2 (-2 (|:| |radicand| (-411 *5)) (|:| |deg| (-774)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1246 (-411 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1225)) (-4 *5 (-1246 *4)) + (-5 *2 (-2 (|:| -4388 (-411 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) + (-4 *3 (-1246 (-411 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-144))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-144))))) (((*1 *1) (-5 *1 (-144)))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) @@ -15237,1091 +15238,1091 @@ (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-141))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-141))))) (((*1 *1) (-5 *1 (-141)))) (((*1 *1) (-5 *1 (-141)))) (((*1 *1) (-5 *1 (-141)))) (((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-840))) (-5 *1 (-140))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-841))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-185 (-139)))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-185 (-139)))) (-5 *1 (-140))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-643 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) - (-14 *4 (-773)) (-4 *5 (-172))))) + (-12 (-5 *2 (-644 (-550))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-774)) (-4 *5 (-173))))) (((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172))))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173))))) (((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172))))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-550)) (-14 *3 (-774)) (-4 *4 (-173))))) (((*1 *2 *1) - (-12 (-5 *2 (-643 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) - (-14 *4 (-773)) (-4 *5 (-172))))) + (-12 (-5 *2 (-644 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-774)) (-4 *5 (-173))))) (((*1 *1 *2) - (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) - (-14 *4 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-134))))) + (-12 (-5 *2 (-644 *5)) (-4 *5 (-173)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-550)) + (-14 *4 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-134))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-773)) (-5 *2 (-1275))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-774)) (-5 *2 (-1276))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) (((*1 *1) (-5 *1 (-130)))) (((*1 *1) (-5 *1 (-130)))) (((*1 *1) (-5 *1 (-130)))) -(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) -(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) -(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-128))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-126 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-129))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-129))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-129))))) +(((*1 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-128))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1105)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1105))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-126 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1105))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-121 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) - ((*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-1041 (-410 *2)))) (-5 *2 (-549)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-853)) (-5 *1 (-121 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-853))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550))))) + ((*1 *2 *2) (-12 (-5 *2 (-774)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1246 (-550)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-119 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4428)) (-4 *1 (-119 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-366) (-1042 (-411 *2)))) (-5 *2 (-550)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1246 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1105))))) +(((*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1105))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-643 (-1 *4 (-643 *4)))) (-4 *4 (-1104)) + (-12 (-5 *2 (-113)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1105)) (-5 *1 (-114 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-1 *4 (-643 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-643 (-968))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113))))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-644 (-1 *4 (-644 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-969))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1163) (-776))) (-5 *1 (-113))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-113))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-113)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-775)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-510)) (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-510)) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-113))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-776)) (-5 *1 (-113)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-776)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1163) (-776))) (-5 *1 (-113))))) (((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-109))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-105))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-510)) (-5 *3 (-644 (-969))) (-5 *1 (-109))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1220))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1181))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) + (-12 (-5 *3 (-1181)) (-5 *2 - (-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) - (|:| |singularities| (-1157 (-225))))) + (-2 (|:| |zeros| (-1158 (-226))) (|:| |ones| (-1158 (-226))) + (|:| |singularities| (-1158 (-226))))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4427 "*"))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) - (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) - (-4 *4 (-688 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4429 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1053)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1246 *2)) + (-4 *4 (-689 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4427 "*"))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) - (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) - (-4 *4 (-688 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4429 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1053)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1246 *2)) + (-4 *4 (-689 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4))))) + (-12 (-4 *4 (-1053)) (-4 *2 (-689 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1246 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-103 *3)) (-4 *3 (-1104))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3))))) + (-12 (-4 *4 (-1053)) (-4 *2 (-689 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1246 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-103 *3)) (-4 *3 (-1105))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-103 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1104))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1105)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1105))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-643 *2) *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2)))) + (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1105)) (-5 *1 (-103 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1105)) (-5 *1 (-103 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-100 *4 *3)) - (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) - (-5 *2 (-408 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-97))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-97))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-91 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *5 (-560)) - (-5 *2 - (-2 (|:| |minor| (-643 (-922))) (|:| -3687 *3) - (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-691 *4)) (-4 *5 (-660 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-560)) - (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 (-643 (-922)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-58 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-456) (-147))) (-5 *2 (-409 *3)) (-5 *1 (-100 *4 *3)) + (-4 *3 (-1246 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1246 *5)) (-4 *5 (-13 (-456) (-147))) + (-5 *2 (-409 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-550))) (-4 *3 (-1053)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1053)) (-5 *1 (-99 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1276)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1163)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1163)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1105)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-366)) (-4 *5 (-561)) + (-5 *2 + (-2 (|:| |minor| (-644 (-923))) (|:| -3689 *3) + (|:| |minors| (-644 (-644 (-923)))) (|:| |ops| (-644 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-661 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-561)) (-5 *2 (-1270 (-692 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-692 *4)) (-4 *5 (-661 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-561)) + (-5 *2 (-2 (|:| -1750 (-692 *5)) (|:| |vec| (-1270 (-644 (-923)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-661 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-58 *3)) (-4 *3 (-1220)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1220)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-374 *4)) - (-4 *5 (-374 *4))))) + (-12 (-5 *2 (-550)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-375 *4)) + (-4 *5 (-375 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) - (-4 *3 (-374 *4))))) + (-12 (-5 *2 (-550)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1220)) (-4 *5 (-375 *4)) + (-4 *3 (-375 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) - (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4))))))) + (-12 (-5 *3 (-644 (-1181))) (-4 *4 (-1105)) + (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-643 (-1078 *4 *5 *2))) (-4 *4 (-1104)) - (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) - (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-644 (-1079 *4 *5 *2))) (-4 *4 (-1105)) + (-4 *5 (-13 (-1053) (-890 *4) (-617 (-894 *4)))) + (-4 *2 (-13 (-425 *5) (-890 *4) (-617 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-643 (-1078 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1104)) - (-4 *6 (-13 (-1052) (-889 *5) (-616 (-893 *5)))) - (-4 *2 (-13 (-424 *6) (-889 *5) (-616 (-893 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-51))))) + (-12 (-5 *3 (-644 (-1079 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1105)) + (-4 *6 (-13 (-1053) (-890 *5) (-617 (-894 *5)))) + (-4 *2 (-13 (-425 *6) (-890 *5) (-617 (-894 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *3 (-776)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 (-692 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 (-692 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 (-692 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2) - (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) + (-12 (-4 *3 (-561)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) + (-12 (-4 *4 (-561)) (-5 *2 (-774)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)))) - (-4 *5 (-560)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) + (-12 (-5 *3 (-113)) (-5 *4 (-774)) (-4 *5 (-13 (-456) (-1042 (-550)))) + (-4 *5 (-561)) (-5 *1 (-41 *5 *2)) (-4 *2 (-425 *5)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *5 (-613 $)) $)) - (-15 -3398 ((-1128 *5 (-613 $)) $)) - (-15 -4378 ($ (-1128 *5 (-613 $)))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *5 (-614 $)) $)) + (-15 -3400 ((-1129 *5 (-614 $)) $)) + (-15 -4380 ($ (-1129 *5 (-614 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-424 *3)) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-425 *3)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) - (-15 -3398 ((-1128 *3 (-613 $)) $)) - (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) + (-15 -3400 ((-1129 *3 (-614 $)) $)) + (-15 -4380 ($ (-1129 *3 (-614 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-424 *3)) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-425 *3)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) - (-15 -3398 ((-1128 *3 (-613 $)) $)) - (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) + (-15 -3400 ((-1129 *3 (-614 $)) $)) + (-15 -4380 ($ (-1129 *3 (-614 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-424 *3)) + (-12 (-4 *3 (-13 (-456) (-1042 (-550)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-425 *3)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) - (-15 -3398 ((-1128 *3 (-613 $)) $)) - (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) + (-15 -3400 ((-1129 *3 (-614 $)) $)) + (-15 -4380 ($ (-1129 *3 (-614 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-560)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-561)) (-5 *2 (-1175 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) - (-15 -3398 ((-1128 *4 (-613 $)) $)) - (-15 -4378 ($ (-1128 *4 (-613 $)))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *4 (-614 $)) $)) + (-15 -3400 ((-1129 *4 (-614 $)) $)) + (-15 -4380 ($ (-1129 *4 (-614 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) - (-15 -3398 ((-1128 *3 (-613 $)) $)) - (-15 -4378 ($ (-1128 *3 (-613 $))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) + (-15 -3400 ((-1129 *3 (-614 $)) $)) + (-15 -4380 ($ (-1129 *3 (-614 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) - (-15 -3398 ((-1128 *3 (-613 $)) $)) - (-15 -4378 ($ (-1128 *3 (-613 $))))))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) + (-15 -3400 ((-1129 *3 (-614 $)) $)) + (-15 -4380 ($ (-1129 *3 (-614 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-643 *2)) + (-12 (-5 *3 (-644 *2)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) - (-15 -3398 ((-1128 *4 (-613 $)) $)) - (-15 -4378 ($ (-1128 *4 (-613 $))))))) - (-4 *4 (-560)) (-5 *1 (-41 *4 *2)))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *4 (-614 $)) $)) + (-15 -3400 ((-1129 *4 (-614 $)) $)) + (-15 -4380 ($ (-1129 *4 (-614 $))))))) + (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-643 (-613 *2))) + (-12 (-5 *3 (-644 (-614 *2))) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) - (-15 -3398 ((-1128 *4 (-613 $)) $)) - (-15 -4378 ($ (-1128 *4 (-613 $))))))) - (-4 *4 (-560)) (-5 *1 (-41 *4 *2))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *4 (-614 $)) $)) + (-15 -3400 ((-1129 *4 (-614 $)) $)) + (-15 -4380 ($ (-1129 *4 (-614 $))))))) + (-4 *4 (-561)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-365) (-299) - (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) - (-15 -3398 ((-1128 *3 (-613 $)) $)) - (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1275)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))) + (-13 (-366) (-300) + (-10 -8 (-15 -3401 ((-1129 *3 (-614 $)) $)) + (-15 -3400 ((-1129 *3 (-614 $)) $)) + (-15 -4380 ($ (-1129 *3 (-614 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-774)) (-4 *4 (-366)) (-4 *5 (-1246 *4)) (-5 *2 (-1276)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1246 (-411 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1246 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) - (-5 *2 (-2 (|:| -4292 *3) (|:| -2254 *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1105)) (-4 *4 (-1105)) + (-5 *2 (-2 (|:| -4294 *3) (|:| -2256 *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-774)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-549)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1041 *4)) - (-4 *3 (-560))))) + (-12 (-5 *4 (-550)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1042 *4)) + (-4 *3 (-561))))) (((*1 *2 *3) - (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-560)) (-5 *2 (-865)) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-425 *4)) (-4 *4 (-561)) (-5 *2 (-866)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1174 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) + (-12 (-5 *3 (-1175 *2)) (-4 *2 (-425 *4)) (-4 *4 (-561)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-949 (-549))) (-5 *3 (-1180)) (-5 *4 (-1092 (-410 (-549)))) + (-12 (-5 *2 (-950 (-550))) (-5 *3 (-1181)) (-5 *4 (-1093 (-411 (-550)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1181)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560))))) -((-1303 . 723675) (-1304 . 723279) (-1305 . 723158) (-1306 . 723056) - (-1307 . 722943) (-1308 . 722826) (-1309 . 722757) (-1310 . 722703) - (-1311 . 722568) (-1312 . 722492) (-1313 . 722336) (-1314 . 722108) - (-1315 . 721144) (-1316 . 720897) (-1317 . 720612) (-1318 . 720327) - (-1319 . 720042) (-1320 . 719721) (-1321 . 719629) (-1322 . 719537) - (-1323 . 719445) (-1324 . 719353) (-1325 . 719261) (-1326 . 719169) - (-1327 . 719074) (-1328 . 718979) (-1329 . 718887) (-1330 . 718795) - (-1331 . 718703) (-1332 . 718611) (-1333 . 718519) (-1334 . 718417) - (-1335 . 718315) (-1336 . 718213) (-1337 . 718121) (-1338 . 718070) - (-1339 . 718018) (-1340 . 717948) (-1341 . 717524) (-1342 . 717329) - (-1343 . 717302) (-1344 . 717179) (-1345 . 717056) (-1346 . 716912) - (-1347 . 716742) (-1348 . 716618) (-1349 . 716379) (-1350 . 716306) - (-1351 . 716165) (-1352 . 716114) (-1353 . 716065) (-1354 . 715995) - (-1355 . 715860) (-1356 . 715725) (-1357 . 715497) (-1358 . 715249) - (-1359 . 715069) (-1360 . 714898) (-1361 . 714821) (-1362 . 714747) - (-1363 . 714592) (-1364 . 714437) (-1365 . 714251) (-1366 . 714068) - (-1367 . 713891) (-1368 . 713834) (-1369 . 713778) (-1370 . 713722) - (-1371 . 713648) (-1372 . 713571) (-1373 . 713540) (-1374 . 713471) - (-1375 . 713326) (-1376 . 713217) (-1377 . 713147) (-1378 . 713073) - (-1379 . 712999) (-1380 . 712947) (-1381 . 712895) (-1382 . 712843) - (-1383 . 712720) (-1384 . 712398) (-1385 . 712327) (-1386 . 712246) - (-1387 . 712125) (-1388 . 712044) (-1389 . 711963) (-1390 . 711806) - (-1391 . 711655) (-1392 . 711577) (-1393 . 711519) (-1394 . 711446) - (-1395 . 711381) (-1396 . 711316) (-1397 . 711254) (-1398 . 711181) - (-1399 . 711065) (-1400 . 711013) (-1401 . 710958) (-1402 . 710906) - (-1403 . 710854) (-1404 . 710826) (-1405 . 710798) (-1406 . 710770) - (-1407 . 710726) (-1408 . 710655) (-1409 . 710603) (-1410 . 710554) - (-1411 . 710502) (-1412 . 710450) (-1413 . 710334) (-1414 . 710218) - (-1415 . 710126) (-1416 . 710034) (-1417 . 709911) (-1418 . 709845) - (-1419 . 709779) (-1420 . 709720) (-1421 . 709692) (-1422 . 709664) - (-1423 . 709636) (-1424 . 709608) (-1425 . 709498) (-1426 . 709446) - (-1427 . 709394) (-1428 . 709342) (-1429 . 709290) (-1430 . 709238) - (-1431 . 709186) (-1432 . 709158) (-1433 . 709055) (-1434 . 709003) - (-1435 . 708837) (-1436 . 708653) (-1437 . 708442) (-1438 . 708327) - (-1439 . 708094) (-1440 . 707995) (-1441 . 707901) (-1442 . 707786) - (-1443 . 707388) (-1444 . 707170) (-1445 . 707121) (-1446 . 707093) - (-1447 . 707017) (-1448 . 706918) (-1449 . 706819) (-1450 . 706720) - (-1451 . 706621) (-1452 . 706522) (-1453 . 706423) (-1454 . 706265) - (-1455 . 706189) (-1456 . 706022) (-1457 . 705964) (-1458 . 705906) - (-1459 . 705597) (-1460 . 705343) (-1461 . 705259) (-1462 . 705126) - (-1463 . 705068) (-1464 . 705016) (-1465 . 704961) (-1466 . 704909) - (-1467 . 704835) (-1468 . 704761) (-1469 . 704680) (-1470 . 704599) - (-1471 . 704544) (-1472 . 704470) (-1473 . 704396) (-1474 . 704322) - (-1475 . 704245) (-1476 . 704190) (-1477 . 704131) (-1478 . 704031) - (-1479 . 703931) (-1480 . 703831) (-1481 . 703731) (-1482 . 703631) - (-1483 . 703531) (-1484 . 703431) (-1485 . 703316) (-1486 . 703201) - (-1487 . 703086) (-1488 . 702971) (-1489 . 702856) (-1490 . 702741) - (-1491 . 702623) (-1492 . 702547) (-1493 . 702471) (-1494 . 702084) - (-1495 . 701738) (-1496 . 701636) (-1497 . 701374) (-1498 . 701272) - (-1499 . 701067) (-1500 . 700954) (-1501 . 700852) (-1502 . 700695) - (-1503 . 700606) (-1504 . 700512) (-1505 . 700432) (-1506 . 700358) - (-1507 . 700280) (-1508 . 700221) (-1509 . 700162) (-1510 . 700060) - (-7 . 700032) (-8 . 700004) (-9 . 699976) (-1514 . 699857) (-1515 . 699775) - (-1516 . 699693) (-1517 . 699611) (-1518 . 699529) (-1519 . 699447) - (-1520 . 699353) (-1521 . 699283) (-1522 . 699213) (-1523 . 699122) - (-1524 . 699028) (-1525 . 698946) (-1526 . 698864) (-1527 . 698373) - (-1528 . 697820) (-1529 . 697610) (-1530 . 697535) (-1531 . 697281) - (-1532 . 697054) (-1533 . 696844) (-1534 . 696714) (-1535 . 696633) - (-1536 . 696484) (-1537 . 696129) (-1538 . 695837) (-1539 . 695545) - (-1540 . 695253) (-1541 . 694961) (-1542 . 694902) (-1543 . 694795) - (-1544 . 694367) (-1545 . 694269) (-1546 . 694109) (-1547 . 693910) - (-1548 . 693774) (-1549 . 693674) (-1550 . 693574) (-1551 . 693480) - (-1552 . 693421) (-1553 . 693086) (-1554 . 692985) (-1555 . 692866) - (-1556 . 692650) (-1557 . 692469) (-1558 . 692309) (-1559 . 692104) - (-1560 . 691682) (-1561 . 691573) (-1562 . 691458) (-1563 . 691389) - (-1564 . 691320) (-1565 . 691251) (-1566 . 691185) (-1567 . 691060) - (-1568 . 690843) (-1569 . 690765) (-1570 . 690715) (-1571 . 690644) - (-1572 . 690501) (-1573 . 690360) (-1574 . 690279) (-1575 . 690198) - (-1576 . 690142) (-1577 . 690086) (-1578 . 690013) (-1579 . 689873) - (-1580 . 689820) (-1581 . 689761) (-1582 . 689702) (-1583 . 689547) - (-1584 . 689495) (-1585 . 689377) (-1586 . 689259) (-1587 . 689141) - (-1588 . 689008) (-1589 . 688727) (-1590 . 688591) (-1591 . 688535) - (-1592 . 688479) (-1593 . 688420) (-1594 . 688361) (-1595 . 688305) - (-1596 . 688249) (-1597 . 688052) (-1598 . 685710) (-1599 . 685583) - (-1600 . 685437) (-1601 . 685309) (-1602 . 685257) (-1603 . 685205) - (-1604 . 685153) (-1605 . 681114) (-1606 . 681019) (-1607 . 680880) - (-1608 . 680671) (-1609 . 680569) (-1610 . 680467) (-1611 . 679551) - (-1612 . 679474) (-1613 . 679345) (-1614 . 679218) (-1615 . 679141) - (-1616 . 679064) (-1617 . 678937) (-1618 . 678810) (-1619 . 678644) - (-1620 . 678517) (-1621 . 678390) (-1622 . 678173) (-1623 . 677735) - (-1624 . 677369) (-1625 . 677262) (-1626 . 677043) (-1627 . 676974) - (-1628 . 676915) (-1629 . 676834) (-1630 . 676723) (-1631 . 676657) - (-1632 . 676591) (-1633 . 676517) (-1634 . 676445) (-1635 . 676068) - (-1636 . 676016) (-1637 . 675957) (-1638 . 675868) (-1639 . 675779) - (-1640 . 675687) (-1641 . 675595) (-1642 . 675503) (-1643 . 675411) - (-1644 . 675319) (-1645 . 675227) (-1646 . 675135) (-1647 . 675043) - (-1648 . 674951) (-1649 . 674859) (-1650 . 674767) (-1651 . 674675) - (-1652 . 674583) (-1653 . 674491) (-1654 . 674399) (-1655 . 674307) - (-1656 . 674215) (-1657 . 674123) (-1658 . 674031) (-1659 . 673939) - (-1660 . 673847) (-1661 . 673755) (-1662 . 673663) (-1663 . 673571) - (-1664 . 673479) (-1665 . 673387) (-1666 . 673223) (-1667 . 673113) - (-1668 . 672869) (-1669 . 672580) (-1670 . 672384) (-1671 . 672227) - (-1672 . 672066) (-1673 . 672014) (-1674 . 671952) (-1675 . 671900) - (-1676 . 671837) (-1677 . 671784) (-1678 . 671595) (-1679 . 671441) - (-1680 . 671361) (-1681 . 671281) (-1682 . 671201) (-1683 . 671071) - (-1684 . 670839) (-1685 . 670811) (-1686 . 670783) (-1687 . 670755) - (-1688 . 670675) (-1689 . 670598) (-1690 . 670521) (-1691 . 670440) - (-1692 . 670380) (-1693 . 670222) (-1694 . 670029) (-1695 . 669544) - (-1696 . 669302) (-1697 . 669040) (-1698 . 668939) (-1699 . 668858) - (-1700 . 668777) (-1701 . 668707) (-1702 . 668637) (-1703 . 668478) - (-1704 . 668174) (-1705 . 667944) (-1706 . 667820) (-1707 . 667761) - (-1708 . 667699) (-1709 . 667637) (-1710 . 667572) (-1711 . 667510) - (-1712 . 667231) (-1713 . 667021) (-1714 . 666747) (-1715 . 666207) - (-1716 . 665693) (-1717 . 665548) (-1718 . 665481) (-1719 . 665400) - (-1720 . 665319) (-1721 . 665217) (-1722 . 665143) (-1723 . 665062) - (-1724 . 664988) (-1725 . 664779) (-1726 . 664566) (-1727 . 664476) - (-1728 . 664409) (-1729 . 664273) (-1730 . 664206) (-1731 . 664124) - (-1732 . 664043) (-1733 . 663941) (-1734 . 663741) (-1735 . 663673) - (-1736 . 663431) (-1737 . 663180) (-1738 . 662938) (-1739 . 662696) - (-1740 . 662628) (-1741 . 662292) (-1742 . 661291) (-1743 . 661071) - (-1744 . 660990) (-1745 . 660916) (-1746 . 660842) (-1747 . 660768) - (-1748 . 660664) (-1749 . 660591) (-1750 . 660523) (-1751 . 660313) - (-1752 . 660261) (-1753 . 660206) (-1754 . 660115) (-1755 . 660027) - (-1756 . 658270) (-1757 . 658191) (-1758 . 657446) (-1759 . 657329) - (-1760 . 657122) (-1761 . 656960) (-1762 . 656798) (-1763 . 656637) - (-1764 . 656498) (-1765 . 656404) (-1766 . 656306) (-1767 . 656212) - (-1768 . 656097) (-1769 . 656012) (-1770 . 655914) (-1771 . 655718) - (-1772 . 655627) (-1773 . 655533) (-1774 . 655466) (-1775 . 655413) - (-1776 . 655360) (-1777 . 655307) (-1778 . 654169) (-1779 . 653659) - (-1780 . 653580) (-1781 . 653521) (-1782 . 653493) (-1783 . 653465) - (-1784 . 653406) (-1785 . 653293) (-1786 . 652916) (-1787 . 652863) - (-1788 . 652752) (-1789 . 652699) (-1790 . 652646) (-1791 . 652590) - (-1792 . 652534) (-1793 . 652369) (-1794 . 652299) (-1795 . 652204) - (-1796 . 652109) (-1797 . 652014) (-1798 . 651962) (-1799 . 651903) - (-1800 . 651829) (-1801 . 651777) (-1802 . 651620) (-1803 . 651463) - (-1804 . 651310) (-1805 . 650552) (-1806 . 650299) (-1807 . 649988) - (-1808 . 649636) (-1809 . 649419) (-1810 . 649156) (-1811 . 648780) - (-1812 . 648596) (-1813 . 648462) (-1814 . 648296) (-1815 . 648130) - (-1816 . 647996) (-1817 . 647862) (-1818 . 647728) (-1819 . 647594) - (-1820 . 647463) (-1821 . 647332) (-1822 . 647201) (-1823 . 646818) - (-1824 . 646691) (-1825 . 646563) (-1826 . 646311) (-1827 . 646187) - (-1828 . 645935) (-1829 . 645811) (-1830 . 645559) (-1831 . 645435) - (-1832 . 645150) (-1833 . 644877) (-1834 . 644604) (-1835 . 644306) - (-1836 . 644204) (-1837 . 644059) (-1838 . 643918) (-1839 . 643767) - (-1840 . 643606) (-1841 . 643518) (-1842 . 643490) (-1843 . 643408) - (-1844 . 643311) (-1845 . 642843) (-1846 . 642492) (-1847 . 642059) - (-1848 . 641918) (-1849 . 641848) (-1850 . 641778) (-1851 . 641708) - (-1852 . 641617) (-1853 . 641526) (-1854 . 641435) (-1855 . 641344) - (-1856 . 641253) (-1857 . 641167) (-1858 . 641081) (-1859 . 640995) - (-1860 . 640909) (-1861 . 640823) (-1862 . 640749) (-1863 . 640644) - (-1864 . 640418) (-1865 . 640340) (-1866 . 640265) (-1867 . 640172) - (-1868 . 640068) (-1869 . 639972) (-1870 . 639803) (-1871 . 639726) - (-1872 . 639649) (-1873 . 639558) (-1874 . 639467) (-1875 . 639267) - (-1876 . 639112) (-1877 . 638957) (-1878 . 638802) (-1879 . 638647) - (-1880 . 638492) (-1881 . 638337) (-1882 . 638270) (-1883 . 638115) - (-1884 . 637960) (-1885 . 637805) (-1886 . 637650) (-1887 . 637495) - (-1888 . 637340) (-1889 . 637185) (-1890 . 637030) (-1891 . 636956) - (-1892 . 636882) (-1893 . 636827) (-1894 . 636772) (-1895 . 636717) - (-1896 . 636662) (-1897 . 636591) (-1898 . 636386) (-1899 . 636285) - (-1900 . 636094) (-1901 . 636001) (-1902 . 635864) (-1903 . 635727) - (-1904 . 635590) (-1905 . 635522) (-1906 . 635406) (-1907 . 635290) - (-1908 . 635174) (-1909 . 635121) (-1910 . 634924) (-1911 . 634839) - (-1912 . 634531) (-1913 . 634476) (-1914 . 633824) (-1915 . 633509) - (-1916 . 633225) (-1917 . 633106) (-1918 . 632987) (-1919 . 632928) - (-1920 . 632869) (-1921 . 632817) (-1922 . 632765) (-1923 . 632713) - (-1924 . 632660) (-1925 . 632607) (-1926 . 632548) (-1927 . 632435) - (-1928 . 632322) (-1929 . 632264) (-1930 . 632206) (-1931 . 632156) - (-1932 . 632021) (-1933 . 631971) (-1934 . 631908) (-1935 . 631848) - (-1936 . 631251) (-1937 . 631191) (-1938 . 631024) (-1939 . 630932) - (-1940 . 630819) (-1941 . 630735) (-1942 . 630620) (-1943 . 630529) - (-1944 . 630438) (-1945 . 630249) (-1946 . 630194) (-1947 . 630007) - (-1948 . 629884) (-1949 . 629811) (-1950 . 629738) (-1951 . 629618) - (-1952 . 629545) (-1953 . 629472) (-1954 . 629132) (-1955 . 629059) - (-1956 . 628839) (-1957 . 628506) (-1958 . 628322) (-1959 . 628178) - (-1960 . 627817) (-1961 . 627649) (-1962 . 627481) (-1963 . 627225) - (-1964 . 626969) (-1965 . 626774) (-1966 . 626579) (-1967 . 625985) - (-1968 . 625909) (-1969 . 625770) (-1970 . 625363) (-1971 . 625235) - (-1972 . 625075) (-1973 . 624756) (-1974 . 624274) (-1975 . 623792) - (-1976 . 623288) (-1977 . 623220) (-1978 . 623149) (-1979 . 623078) - (-1980 . 622905) (-1981 . 622786) (-1982 . 622667) (-1983 . 622591) - (-1984 . 622515) (-1985 . 622240) (-1986 . 622125) (-1987 . 622073) - (-1988 . 622021) (-1989 . 621969) (-1990 . 621917) (-1991 . 621865) - (-1992 . 621723) (-1993 . 621549) (-1994 . 621316) (-1995 . 621128) - (-1996 . 621100) (-1997 . 621072) (-1998 . 621044) (-1999 . 621016) - (-2000 . 620988) (-2001 . 620960) (-2002 . 620932) (-2003 . 620880) - (-2004 . 620790) (-2005 . 620740) (-2006 . 620671) (-2007 . 620602) - (-2008 . 620497) (-2009 . 620126) (-2010 . 619975) (-2011 . 619824) - (-2012 . 619619) (-2013 . 619497) (-2014 . 619422) (-2015 . 619344) - (-2016 . 619269) (-2017 . 619191) (-2018 . 619113) (-2019 . 619038) - (-2020 . 618960) (-2021 . 618726) (-2022 . 618571) (-2023 . 618272) - (-2024 . 618117) (-2025 . 617791) (-2026 . 617651) (-2027 . 617511) - (-2028 . 617430) (-2029 . 617349) (-2030 . 617084) (-2031 . 616351) - (-2032 . 616214) (-2033 . 616123) (-2034 . 615986) (-2035 . 615918) - (-2036 . 615849) (-2037 . 615761) (-2038 . 615673) (-2039 . 615502) - (-2040 . 615428) (-2041 . 615284) (-2042 . 614824) (-2043 . 614444) - (-2044 . 613680) (-2045 . 613536) (-2046 . 613392) (-2047 . 613230) - (-2048 . 612992) (-2049 . 612851) (-2050 . 612704) (-2051 . 612465) - (-2052 . 612229) (-2053 . 611990) (-2054 . 611798) (-2055 . 611675) - (-2056 . 611471) (-2057 . 611248) (-2058 . 611009) (-2059 . 610868) - (-2060 . 610730) (-2061 . 610591) (-2062 . 610338) (-2063 . 610082) - (-2064 . 609925) (-2065 . 609771) (-2066 . 609530) (-2067 . 609245) - (-2068 . 609107) (-2069 . 609020) (-2070 . 608354) (-2071 . 608178) - (-2072 . 607996) (-2073 . 607820) (-2074 . 607638) (-2075 . 607459) - (-2076 . 607280) (-2077 . 607093) (-2078 . 606711) (-2079 . 606532) - (-2080 . 606353) (-2081 . 606166) (-2082 . 605784) (-2083 . 604791) - (-2084 . 604407) (-2085 . 604023) (-2086 . 603905) (-2087 . 603748) - (-2088 . 603606) (-2089 . 603488) (-2090 . 603306) (-2091 . 603182) - (-2092 . 602892) (-2093 . 602602) (-2094 . 602318) (-2095 . 602034) - (-2096 . 601755) (-2097 . 601667) (-2098 . 601582) (-2099 . 601483) - (-2100 . 601384) (-2101 . 601160) (-2102 . 601060) (-2103 . 600957) - (-2104 . 600879) (-2105 . 600554) (-2106 . 600262) (-2107 . 600189) - (-2108 . 599804) (-2109 . 599776) (-2110 . 599577) (-2111 . 599403) - (-2112 . 599162) (-2113 . 599107) (-2114 . 599031) (-2115 . 598660) - (-2116 . 598545) (-2117 . 598468) (-2118 . 598395) (-2119 . 598314) - (-2120 . 598233) (-2121 . 598152) (-2122 . 598051) (-2123 . 597992) - (-2124 . 597773) (-2125 . 597534) (-2126 . 597410) (-2127 . 597286) - (-2128 . 597059) (-2129 . 597006) (-2130 . 596951) (-2131 . 596619) - (-2132 . 596295) (-2133 . 596107) (-2134 . 595916) (-2135 . 595752) - (-2136 . 595417) (-2137 . 595250) (-2138 . 595009) (-2139 . 594681) - (-2140 . 594489) (-2141 . 594272) (-2142 . 594099) (-2143 . 593677) - (-2144 . 593450) (-2145 . 593179) (-2146 . 593041) (-2147 . 592900) - (-2148 . 592422) (-2149 . 592299) (-2150 . 592063) (-2151 . 591809) - (-2152 . 591559) (-2153 . 591264) (-2154 . 591123) (-2155 . 590779) - (-2156 . 590638) (-2157 . 590445) (-2158 . 590252) (-2159 . 590077) - (-2160 . 589803) (-2161 . 589368) (-2162 . 589340) (-2163 . 589266) - (-2164 . 589105) (-2165 . 588942) (-2166 . 588781) (-2167 . 588614) - (-2168 . 588561) (-2169 . 588508) (-2170 . 588379) (-2171 . 588319) - (-2172 . 588266) (-2173 . 588196) (-2174 . 588136) (-2175 . 588077) - (-2176 . 588017) (-2177 . 587958) (-2178 . 587898) (-2179 . 587839) - (-2180 . 587780) (-2181 . 587638) (-2182 . 587543) (-2183 . 587452) - (-2184 . 587336) (-2185 . 587242) (-2186 . 587144) (-2187 . 587050) - (-2188 . 586909) (-2189 . 586644) (-2190 . 585787) (-2191 . 585631) - (-2192 . 585262) (-2193 . 585206) (-2194 . 585154) (-2195 . 585051) - (-2196 . 584966) (-2197 . 584878) (-2198 . 584732) (-2199 . 584583) - (-2200 . 584293) (-2201 . 584215) (-2202 . 584140) (-2203 . 584087) - (-2204 . 584034) (-2205 . 584003) (-2206 . 583940) (-2207 . 583821) - (-2208 . 583732) (-2209 . 583612) (-2210 . 583317) (-2211 . 583123) - (-2212 . 582935) (-2213 . 582790) (-2214 . 582645) (-2215 . 582359) - (-2216 . 581914) (-2217 . 581880) (-2218 . 581843) (-2219 . 581806) - (-2220 . 581769) (-2221 . 581732) (-2222 . 581701) (-2223 . 581670) - (-2224 . 581639) (-2225 . 581605) (-2226 . 581571) (-2227 . 581516) - (-2228 . 581340) (-2229 . 581105) (-2230 . 580870) (-2231 . 580640) - (-2232 . 580588) (-2233 . 580533) (-2234 . 580463) (-2235 . 580374) - (-2236 . 580305) (-2237 . 580233) (-2238 . 580003) (-2239 . 579951) - (-2240 . 579896) (-2241 . 579865) (-2242 . 579759) (-2243 . 579533) - (-2244 . 579222) (-2245 . 579047) (-2246 . 578864) (-2247 . 578592) - (-2248 . 578519) (-2249 . 578454) (-2250 . 578426) (-2251 . 578376) - (-2252 . 576953) (-2253 . 575805) (-2254 . 574667) (-2255 . 574189) - (-2256 . 573625) (-2257 . 572897) (-2258 . 572334) (-2259 . 571704) - (-2260 . 571125) (-2261 . 571051) (-2262 . 570999) (-2263 . 570947) - (-2264 . 570873) (-2265 . 570818) (-2266 . 570766) (-2267 . 570714) - (-2268 . 570662) (-2269 . 570592) (-2270 . 570144) (-2271 . 569937) - (-2272 . 569687) (-2273 . 569352) (-2274 . 569097) (-2275 . 568794) - (-2276 . 568590) (-2277 . 568300) (-2278 . 567750) (-2279 . 567612) - (-2280 . 567409) (-2281 . 567128) (-2282 . 567042) (-2283 . 566707) - (-2284 . 566565) (-2285 . 566273) (-2286 . 566052) (-2287 . 565926) - (-2288 . 565801) (-2289 . 565654) (-2290 . 565510) (-2291 . 565394) - (-2292 . 565263) (-2293 . 564890) (-2294 . 564630) (-2295 . 564355) - (-2296 . 564115) (-2297 . 563785) (-2298 . 563440) (-2299 . 563032) - (-2300 . 562609) (-2301 . 562412) (-2302 . 562137) (-2303 . 561969) - (-2304 . 561768) (-2305 . 561546) (-2306 . 561391) (-2307 . 561205) - (-2308 . 561102) (-2309 . 561074) (-2310 . 560895) (-2311 . 560821) - (-2312 . 560760) (-2313 . 560707) (-2314 . 560638) (-2315 . 560568) - (-2316 . 560449) (-2317 . 560271) (-2318 . 560216) (-2319 . 559970) - (-2320 . 559880) (-2321 . 559690) (-2322 . 559617) (-2323 . 559547) - (-2324 . 559482) (-2325 . 559427) (-2326 . 559336) (-2327 . 559043) - (-2328 . 558715) (-2329 . 558641) (-2330 . 558319) (-2331 . 558112) - (-2332 . 558026) (-2333 . 557940) (-2334 . 557854) (-2335 . 557768) - (-2336 . 557682) (-2337 . 557596) (-2338 . 557510) (-2339 . 557424) - (-2340 . 557338) (-2341 . 557252) (-2342 . 557166) (-2343 . 557080) - (-2344 . 556994) (-2345 . 556908) (-2346 . 556822) (-2347 . 556736) - (-2348 . 556650) (-2349 . 556564) (-2350 . 556478) (-2351 . 556392) - (-2352 . 556306) (-2353 . 556220) (-2354 . 556134) (-2355 . 556048) - (-2356 . 555962) (-2357 . 555876) (-2358 . 555773) (-2359 . 555684) - (-2360 . 555474) (-2361 . 555415) (-2362 . 555359) (-2363 . 555270) - (-2364 . 555158) (-2365 . 555070) (-2366 . 554922) (-2367 . 554751) - (-2368 . 554598) (-2369 . 554445) (-2370 . 554271) (-2371 . 554061) - (-2372 . 553937) (-2373 . 553729) (-2374 . 553637) (-2375 . 553545) - (-2376 . 553409) (-2377 . 553314) (-2378 . 553219) (-2379 . 551703) - (-2380 . 551579) (-2381 . 551489) (-2382 . 551394) (-2383 . 551312) - (-2384 . 551003) (-2385 . 550807) (-2386 . 550712) (-2387 . 550604) - (-2388 . 550186) (-2389 . 550158) (-2390 . 549993) (-2391 . 549916) - (-2392 . 549727) (-2393 . 549547) (-2394 . 549123) (-2395 . 548971) - (-2396 . 548791) (-2397 . 548618) (-2398 . 548356) (-2399 . 548104) - (-2400 . 547293) (-2401 . 547124) (-2402 . 546905) (-2403 . 546063) - (-2404 . 545931) (-2405 . 545799) (-2406 . 545667) (-2407 . 545535) - (-2408 . 545403) (-2409 . 545271) (-2410 . 545076) (-2411 . 544882) - (-2412 . 544739) (-2413 . 544424) (-2414 . 544309) (-2415 . 543969) - (-2416 . 543809) (-2417 . 543670) (-2418 . 543531) (-2419 . 543402) - (-2420 . 543317) (-2421 . 543265) (-2422 . 542784) (-2423 . 541520) - (-2424 . 541405) (-2425 . 541276) (-2426 . 540969) (-2427 . 540718) - (-2428 . 540643) (-2429 . 540568) (-2430 . 540493) (-2431 . 540434) - (-2432 . 540363) (-2433 . 540310) (-2434 . 540248) (-2435 . 540177) - (-2436 . 539814) (-2437 . 539527) (-2438 . 539416) (-2439 . 539323) - (-2440 . 539230) (-2441 . 539143) (-2442 . 538923) (-2443 . 538703) - (-2444 . 538285) (-2445 . 538013) (-2446 . 537870) (-2447 . 537777) - (-2448 . 537634) (-2449 . 537482) (-2450 . 537328) (-2451 . 537257) - (-2452 . 537048) (-2453 . 536870) (-2454 . 536660) (-2455 . 536482) - (-2456 . 536448) (-2457 . 536414) (-2458 . 536383) (-2459 . 536265) - (-2460 . 535950) (-2461 . 535672) (-2462 . 535551) (-2463 . 535424) - (-2464 . 535339) (-2465 . 535266) (-2466 . 535176) (-2467 . 535105) - (-2468 . 535049) (-2469 . 534993) (-2470 . 534937) (-2471 . 534866) - (-2472 . 534795) (-2473 . 534724) (-2474 . 534645) (-2475 . 534567) - (-2476 . 534482) (-2477 . 534222) (-2478 . 534133) (-2479 . 533835) - (-2480 . 533737) (-2481 . 533659) (-2482 . 533581) (-2483 . 533438) - (-2484 . 533359) (-2485 . 533287) (-2486 . 533084) (-2487 . 533028) - (-2488 . 532840) (-2489 . 532741) (-2490 . 532623) (-2491 . 532502) - (-2492 . 532359) (-2493 . 532216) (-2494 . 532076) (-2495 . 531936) - (-2496 . 531793) (-2497 . 531666) (-2498 . 531536) (-2499 . 531412) - (-2500 . 531288) (-2501 . 531182) (-2502 . 531076) (-2503 . 530973) - (-2504 . 530823) (-2505 . 530670) (-2506 . 530517) (-2507 . 530373) - (-2508 . 530219) (-2509 . 530142) (-2510 . 530062) (-2511 . 529907) - (-2512 . 529827) (-2513 . 529747) (-2514 . 529667) (-2515 . 529564) - (-2516 . 529505) (-2517 . 529443) (-2518 . 529268) (-2519 . 529115) - (-2520 . 528962) (-2521 . 528788) (-2522 . 528596) (-2523 . 528297) - (-2524 . 528102) (-2525 . 527987) (-2526 . 527861) (-2527 . 527784) - (-2528 . 527652) (-2529 . 527346) (-2530 . 527163) (-2531 . 526618) - (-2532 . 526398) (-2533 . 526224) (-2534 . 526054) (-2535 . 525955) - (-2536 . 525856) (-2537 . 525638) (-2538 . 525536) (-2539 . 525463) - (-2540 . 525387) (-2541 . 525308) (-2542 . 525011) (-2543 . 524912) - (-2544 . 524750) (-2545 . 524516) (-2546 . 524074) (-2547 . 523944) - (-2548 . 523804) (-2549 . 523495) (-2550 . 523193) (-2551 . 522877) - (-2552 . 522471) (-2553 . 522403) (-2554 . 522335) (-2555 . 522267) - (-2556 . 522172) (-2557 . 522064) (-2558 . 521956) (-2559 . 521854) - (-2560 . 521752) (-2561 . 521650) (-2562 . 521572) (-2563 . 521248) - (-2564 . 520780) (-2565 . 520153) (-2566 . 520089) (-2567 . 519970) - (-2568 . 519851) (-2569 . 519743) (-2570 . 519635) (-2571 . 519479) - (-2572 . 518877) (-2573 . 518590) (-2574 . 518422) (-2575 . 518300) - (-2576 . 517902) (-2577 . 517666) (-2578 . 517465) (-2579 . 517257) - (-2580 . 517064) (-2581 . 516794) (-2582 . 516615) (-2583 . 516546) - (-2584 . 516470) (-2585 . 516329) (-2586 . 516126) (-2587 . 515982) - (-2588 . 515732) (-2589 . 515424) (-2590 . 515068) (-2591 . 514909) - (-2592 . 514703) (-2593 . 514543) (-2594 . 514470) (-2595 . 514351) - (-2596 . 514232) (-2597 . 514072) (-2598 . 513892) (-2599 . 513709) - (-2600 . 513611) (-2601 . 513513) (-2602 . 513412) (-2603 . 513308) - (-2604 . 513182) (-2605 . 513056) (-2606 . 512927) (-2607 . 512795) - (-2608 . 512697) (-2609 . 512599) (-2610 . 512498) (-2611 . 512397) - (-2612 . 512231) (-2613 . 512065) (-2614 . 511871) (-2615 . 511705) - (-2616 . 511537) (-2617 . 511366) (-2618 . 511201) (-2619 . 511036) - (-2620 . 510936) (-2621 . 510744) (-2622 . 510643) (-2623 . 510448) - (-2624 . 510198) (-2625 . 509953) (-2626 . 509631) (-2627 . 509243) - (-2628 . 509042) (-2629 . 508778) (-2630 . 508235) (-2631 . 507941) - (-2632 . 507804) (-2633 . 507558) (-2634 . 507354) (-2635 . 507247) - (-2636 . 507146) (-2637 . 507036) (-2638 . 506926) (-2639 . 506798) - (-2640 . 506691) (-2641 . 506587) (-2642 . 506431) (-2643 . 506297) - (-2644 . 506163) (-2645 . 506053) (-2646 . 505934) (-2647 . 505757) - (-2648 . 505623) (-2649 . 505486) (-2650 . 505355) (-2651 . 505245) - (-2652 . 505123) (-2653 . 504998) (-2654 . 504897) (-2655 . 504713) - (-2656 . 504539) (-2657 . 504340) (-2658 . 504166) (-2659 . 504050) - (-2660 . 503925) (-2661 . 503797) (-2662 . 503678) (-2663 . 503453) - (-2664 . 503282) (-2665 . 503111) (-2666 . 502934) (-2667 . 502782) - (-2668 . 502505) (-2669 . 502113) (-2670 . 501982) (-2671 . 501777) - (-2672 . 501594) (-2673 . 501410) (-2674 . 501281) (-2675 . 501177) - (-2676 . 501036) (-2677 . 500904) (-2678 . 500790) (-2679 . 500642) - (-2680 . 500503) (-2681 . 500402) (-2682 . 500298) (-2683 . 500191) - (-2684 . 500081) (-2685 . 499980) (-2686 . 499873) (-2687 . 499766) - (-2688 . 499653) (-2689 . 499546) (-2690 . 499433) (-2691 . 499302) - (-2692 . 499153) (-2693 . 498615) (-2694 . 498472) (-2695 . 498322) - (-2696 . 498199) (-2697 . 498095) (-2698 . 497991) (-2699 . 497884) - (-2700 . 497746) (-2701 . 497639) (-2702 . 497508) (-2703 . 497352) - (-2704 . 497079) (-2705 . 496932) (-2706 . 496729) (-2707 . 496628) - (-2708 . 496474) (-2709 . 496354) (-2710 . 496225) (-2711 . 496130) - (-2712 . 496042) (-2713 . 495954) (-2714 . 495866) (-2715 . 495778) - (-2716 . 495690) (-2717 . 495596) (-2718 . 495508) (-2719 . 495420) - (-2720 . 495332) (-2721 . 495244) (-2722 . 495156) (-2723 . 495068) - (-2724 . 494980) (-2725 . 494892) (-2726 . 494804) (-2727 . 494716) - (-2728 . 494578) (-2729 . 494440) (-2730 . 494320) (-2731 . 494200) - (-2732 . 494059) (-2733 . 493971) (-2734 . 493883) (-2735 . 493795) - (-2736 . 493707) (-2737 . 493569) (-2738 . 493431) (-2739 . 493343) - (-2740 . 493255) (-2741 . 493167) (-2742 . 493079) (-2743 . 492991) - (-2744 . 492903) (-2745 . 492812) (-2746 . 492718) (-2747 . 492624) - (-2748 . 492527) (-2749 . 492477) (-2750 . 492427) (-2751 . 492374) - (-2752 . 492120) (-2753 . 492071) (-2754 . 492021) (-2755 . 491987) - (-2756 . 491922) (-2757 . 491885) (-2758 . 491748) (-2759 . 491510) - (-2760 . 491439) (-2761 . 491253) (-2762 . 491004) (-2763 . 490846) - (-2764 . 490319) (-2765 . 490120) (-2766 . 489905) (-2767 . 489743) - (-2768 . 489344) (-2769 . 489177) (-2770 . 488102) (-2771 . 487979) - (-2772 . 487762) (-2773 . 487631) (-2774 . 487500) (-2775 . 487342) - (-2776 . 487238) (-2777 . 487179) (-2778 . 487120) (-2779 . 487014) - (-2780 . 486908) (-2781 . 485990) (-2782 . 483861) (-2783 . 483045) - (-2784 . 481240) (-2785 . 481172) (-2786 . 481104) (-2787 . 481036) - (-2788 . 480968) (-2789 . 480900) (-2790 . 480822) (-2791 . 480420) - (-2792 . 480064) (-2793 . 479882) (-2794 . 479353) (-2795 . 479177) - (-2796 . 478955) (-2797 . 478733) (-2798 . 478511) (-2799 . 478292) - (-2800 . 478073) (-2801 . 477854) (-2802 . 477635) (-2803 . 477416) - (-2804 . 477197) (-2805 . 477096) (-2806 . 476363) (-2807 . 476308) - (-2808 . 476253) (-2809 . 476198) (-2810 . 476143) (-2811 . 475993) - (-2812 . 475700) (-2813 . 475451) (-2814 . 475423) (-2815 . 475373) - (-2816 . 474781) (-2817 . 474247) (-2818 . 473798) (-2819 . 473636) - (-2820 . 473455) (-2821 . 473166) (-2822 . 472778) (-2823 . 471902) - (-2824 . 471560) (-2825 . 471391) (-2826 . 471168) (-2827 . 470917) - (-2828 . 470567) (-2829 . 469549) (-2830 . 469234) (-2831 . 469022) - (-2832 . 468455) (-2833 . 467939) (-2834 . 466161) (-2835 . 465689) - (-2836 . 465090) (-2837 . 464840) (-2838 . 464706) (-2839 . 464491) - (-2840 . 464438) (-2841 . 464385) (-2842 . 464333) (-2843 . 464281) - (-2844 . 464189) (-2845 . 464118) (-2846 . 464044) (-2847 . 463973) - (-2848 . 463920) (-2849 . 463849) (-2850 . 463796) (-2851 . 463743) - (-2852 . 463690) (-2853 . 463637) (-2854 . 463584) (-2855 . 463531) - (-2856 . 463478) (-2857 . 463425) (-2858 . 463372) (-2859 . 463319) - (-2860 . 463266) (-2861 . 463213) (-2862 . 463160) (-2863 . 463107) - (-2864 . 463036) (-2865 . 462965) (-2866 . 462893) (-2867 . 462821) - (-2868 . 462746) (-2869 . 462693) (-2870 . 462640) (-2871 . 462587) - (-2872 . 462534) (-2873 . 462481) (-2874 . 462428) (-2875 . 462375) - (-2876 . 462322) (-2877 . 462269) (-2878 . 462216) (-2879 . 462163) - (-2880 . 462110) (-2881 . 462057) (-2882 . 462004) (-2883 . 461952) - (-2884 . 461900) (-2885 . 461847) (-2886 . 461794) (-2887 . 461703) - (-2888 . 461650) (-2889 . 461622) (-2890 . 461594) (-2891 . 461566) - (-2892 . 461538) (-2893 . 461460) (-2894 . 461400) (-2895 . 461348) - (-2896 . 461296) (-2897 . 461244) (-2898 . 461192) (-2899 . 461140) - (-2900 . 460364) (-2901 . 460287) (-2902 . 460210) (-2903 . 460144) - (-2904 . 460077) (-2905 . 460010) (-2906 . 459953) (-2907 . 459877) - (-2908 . 459809) (-2909 . 459738) (-2910 . 459667) (-2911 . 459601) - (-2912 . 459514) (-2913 . 459442) (-2914 . 459335) (-2915 . 459149) - (-2916 . 458980) (-2917 . 458800) (-2918 . 458209) (-2919 . 458046) - (-2920 . 457468) (-2921 . 457398) (-2922 . 457323) (-2923 . 456957) - (-2924 . 456278) (-2925 . 456100) (-2926 . 456028) (-2927 . 455888) - (-2928 . 455698) (-2929 . 455591) (-2930 . 455484) (-2931 . 455368) - (-2932 . 455252) (-2933 . 455136) (-2934 . 454858) (-2935 . 454707) - (-2936 . 454563) (-2937 . 454489) (-2938 . 454403) (-2939 . 454329) - (-2940 . 454255) (-2941 . 454181) (-2942 . 454037) (-2943 . 453886) - (-2944 . 453711) (-2945 . 453560) (-2946 . 453409) (-2947 . 453282) - (-2948 . 452893) (-2949 . 452607) (-2950 . 452321) (-2951 . 451910) - (-2952 . 451624) (-2953 . 451551) (-2954 . 451404) (-2955 . 451298) - (-2956 . 451224) (-2957 . 451154) (-2958 . 451075) (-2959 . 450998) - (-2960 . 450921) (-2961 . 450769) (-2962 . 450666) (-2963 . 450569) - (-2964 . 450472) (-2965 . 450312) (-2966 . 450225) (-2967 . 450138) - (-2968 . 450051) (-2969 . 449992) (-2970 . 449933) (-2971 . 449800) - (-2972 . 449741) (-2973 . 449571) (-2974 . 449483) (-2975 . 449386) - (-2976 . 449352) (-2977 . 449321) (-2978 . 449237) (-2979 . 449181) - (-2980 . 449119) (-2981 . 449085) (-2982 . 449051) (-2983 . 449017) - (-2984 . 448983) (-2985 . 448949) (-2986 . 446196) (-2987 . 446162) - (-2988 . 446128) (-2989 . 446094) (-2990 . 445982) (-2991 . 445948) - (-2992 . 445896) (-2993 . 445862) (-2994 . 445765) (-2995 . 445703) - (-2996 . 445612) (-2997 . 445521) (-2998 . 445466) (-2999 . 445414) - (-3000 . 445362) (-3001 . 445310) (-3002 . 445258) (-3003 . 444833) - (-3004 . 444667) (-3005 . 444614) (-3006 . 444545) (-3007 . 444492) - (-3008 . 444262) (-3009 . 444106) (-3010 . 443585) (-3011 . 443444) - (-3012 . 443410) (-3013 . 443355) (-3014 . 442644) (-3015 . 442329) - (-3016 . 441824) (-3017 . 441746) (-3018 . 441694) (-3019 . 441642) - (-3020 . 441458) (-3021 . 441406) (-3022 . 441354) (-3023 . 441278) - (-3024 . 441216) (-3025 . 440998) (-3026 . 440743) (-3027 . 440676) - (-3028 . 440582) (-3029 . 440488) (-3030 . 440305) (-3031 . 440223) - (-3032 . 440101) (-3033 . 439979) (-3034 . 439833) (-3035 . 439173) - (-3036 . 438466) (-3037 . 438362) (-3038 . 438261) (-3039 . 438160) - (-3040 . 438049) (-3041 . 437881) (-3042 . 437675) (-3043 . 437582) - (-3044 . 437505) (-3045 . 437449) (-3046 . 437378) (-3047 . 437258) - (-3048 . 437157) (-3049 . 437059) (-3050 . 436979) (-3051 . 436899) - (-3052 . 436822) (-3053 . 436751) (-3054 . 436680) (-3055 . 436609) - (-3056 . 436538) (-3057 . 436467) (-3058 . 436396) (-3059 . 436303) - (-3060 . 436108) (-3061 . 435864) (-3062 . 435492) (-3063 . 435323) - (-3064 . 435207) (-3065 . 434703) (-3066 . 434321) (-3067 . 434075) - (-3068 . 433646) (-3069 . 433554) (-3070 . 433457) (-3071 . 430167) - (-3072 . 429347) (-3073 . 429234) (-3074 . 429160) (-3075 . 429068) - (-3076 . 428874) (-3077 . 428680) (-3078 . 428609) (-3079 . 428538) - (-3080 . 428457) (-3081 . 428376) (-3082 . 428251) (-3083 . 428117) - (-3084 . 428036) (-3085 . 427962) (-3086 . 427797) (-3087 . 427638) - (-3088 . 427407) (-3089 . 427259) (-3090 . 427155) (-3091 . 427051) - (-3092 . 426966) (-3093 . 426598) (-3094 . 426517) (-3095 . 426430) - (-3096 . 426349) (-3097 . 426103) (-3098 . 425883) (-3099 . 425696) - (-3100 . 425374) (-3101 . 425081) (-3102 . 424788) (-3103 . 424478) - (-3104 . 424161) (-3105 . 424032) (-3106 . 423844) (-3107 . 423371) - (-3108 . 423289) (-3109 . 423073) (-3110 . 422857) (-3111 . 422598) - (-3112 . 422174) (-3113 . 421660) (-3114 . 421530) (-3115 . 421256) - (-3116 . 421077) (-3117 . 420962) (-3118 . 420858) (-3119 . 420803) - (-3120 . 420726) (-3121 . 420656) (-3122 . 420583) (-3123 . 420528) - (-3124 . 420455) (-3125 . 420400) (-3126 . 420045) (-3127 . 419637) - (-3128 . 419484) (-3129 . 419331) (-3130 . 419250) (-3131 . 419097) - (-3132 . 418944) (-3133 . 418809) (-3134 . 418674) (-3135 . 418539) - (-3136 . 418404) (-3137 . 418269) (-3138 . 418134) (-3139 . 418078) - (-3140 . 417925) (-3141 . 417814) (-3142 . 417703) (-3143 . 417635) - (-3144 . 417525) (-3145 . 417422) (-3146 . 413271) (-3147 . 412823) - (-3148 . 412396) (-3149 . 411779) (-3150 . 411178) (-3151 . 410960) - (-3152 . 410782) (-3153 . 410522) (-3154 . 410111) (-3155 . 409817) - (-3156 . 409374) (-3157 . 409196) (-3158 . 408803) (-3159 . 408410) - (-3160 . 408225) (-3161 . 408018) (-3162 . 407797) (-3163 . 407491) - (-3164 . 407292) (-3165 . 406663) (-3166 . 406506) (-3167 . 406115) - (-3168 . 406063) (-3169 . 406014) (-3170 . 405962) (-3171 . 405913) - (-3172 . 405861) (-3173 . 405715) (-3174 . 405663) (-3175 . 405517) - (-3176 . 405465) (-3177 . 405319) (-3178 . 405267) (-3179 . 404892) - (-3180 . 404840) (-3181 . 404791) (-3182 . 404739) (-3183 . 404690) - (-3184 . 404638) (-3185 . 404589) (-3186 . 404537) (-3187 . 404488) - (-3188 . 404436) (-3189 . 404387) (-3190 . 404321) (-3191 . 404203) - (-3192 . 403041) (-3193 . 402624) (-3194 . 402516) (-3195 . 402273) - (-3196 . 402123) (-3197 . 401973) (-3198 . 401806) (-3199 . 399591) - (-3200 . 399327) (-3201 . 399173) (-3202 . 399027) (-3203 . 398881) - (-3204 . 398662) (-3205 . 398530) (-3206 . 398455) (-3207 . 398380) - (-3208 . 398245) (-3209 . 398115) (-3210 . 397985) (-3211 . 397858) - (-3212 . 397731) (-3213 . 397604) (-3214 . 397477) (-3215 . 397374) - (-3216 . 397274) (-3217 . 397180) (-3218 . 397050) (-3219 . 396899) - (-3220 . 396520) (-3221 . 396405) (-3222 . 396162) (-3223 . 395699) - (-3224 . 395386) (-3225 . 394817) (-3226 . 394246) (-3227 . 393231) - (-3228 . 392687) (-3229 . 392374) (-3230 . 392036) (-3231 . 391705) - (-3232 . 391385) (-3233 . 391332) (-3234 . 391205) (-3235 . 390700) - (-3236 . 389557) (-3237 . 389502) (-3238 . 389447) (-3239 . 389371) - (-3240 . 389252) (-3241 . 389177) (-3242 . 389102) (-3243 . 389024) - (-3244 . 388799) (-3245 . 388740) (-3246 . 388681) (-3247 . 388578) - (-3248 . 388475) (-3249 . 388372) (-3250 . 388269) (-3251 . 388188) - (-3252 . 388114) (-3253 . 388080) (-3254 . 388046) (-3255 . 387949) - (-3256 . 387852) (-3257 . 387824) (-3258 . 387796) (-3259 . 387578) - (-3260 . 387300) (-3261 . 387150) (-3262 . 387020) (-3263 . 386890) - (-3264 . 386790) (-3265 . 386613) (-3266 . 386453) (-3267 . 386353) - (-3268 . 386176) (-3269 . 386016) (-3270 . 385857) (-3271 . 385718) - (-3272 . 385568) (-3273 . 385438) (-3274 . 385308) (-3275 . 385161) - (-3276 . 385034) (-3277 . 384931) (-3278 . 384824) (-3279 . 384727) - (-3280 . 384562) (-3281 . 384414) (-3282 . 383999) (-3283 . 383899) - (-3284 . 383796) (-3285 . 383708) (-3286 . 383628) (-3287 . 383478) - (-3288 . 383348) (-3289 . 383296) (-3290 . 383206) (-3291 . 383094) - (-3292 . 382781) (-3293 . 382600) (-3294 . 380989) (-3295 . 380356) - (-3296 . 380296) (-3297 . 380178) (-3298 . 380060) (-3299 . 379916) - (-3300 . 379761) (-3301 . 379600) (-3302 . 379439) (-3303 . 379231) - (-3304 . 379042) (-3305 . 378887) (-3306 . 378729) (-3307 . 378571) - (-3308 . 378416) (-3309 . 378276) (-3310 . 377850) (-3311 . 377722) - (-3312 . 377594) (-3313 . 377466) (-3314 . 377323) (-3315 . 377180) - (-3316 . 377038) (-3317 . 376893) (-3318 . 376140) (-3319 . 375980) - (-3320 . 375792) (-3321 . 375635) (-3322 . 375395) (-3323 . 375148) - (-3324 . 374901) (-3325 . 374690) (-3326 . 374551) (-3327 . 374340) - (-3328 . 374050) (-3329 . 373839) (-3330 . 373700) (-3331 . 373489) - (-3332 . 373183) (-3333 . 373038) (-3334 . 372896) (-3335 . 372672) - (-3336 . 372530) (-3337 . 372305) (-3338 . 372106) (-3339 . 371949) - (-3340 . 371619) (-3341 . 371459) (-3342 . 371299) (-3343 . 371139) - (-3344 . 370967) (-3345 . 370795) (-3346 . 370620) (-3347 . 370268) - (-3348 . 370074) (-3349 . 369912) (-3350 . 369838) (-3351 . 369764) - (-3352 . 369690) (-3353 . 369616) (-3354 . 369542) (-3355 . 369468) - (-3356 . 369344) (-3357 . 369170) (-3358 . 369046) (-3359 . 368960) - (-3360 . 368894) (-3361 . 368828) (-3362 . 368762) (-3363 . 368696) - (-3364 . 368630) (-3365 . 368564) (-3366 . 368498) (-3367 . 368432) - (-3368 . 368366) (-3369 . 368300) (-3370 . 368234) (-3371 . 368168) - (-3372 . 368102) (-3373 . 368036) (-3374 . 367970) (-3375 . 367904) - (-3376 . 367838) (-3377 . 367772) (-3378 . 367706) (-3379 . 367640) - (-3380 . 367574) (-3381 . 367508) (-3382 . 367442) (-3383 . 367376) - (-3384 . 367310) (-3385 . 367244) (-3386 . 366595) (-3387 . 365946) - (-3388 . 365818) (-3389 . 365695) (-3390 . 365572) (-3391 . 365431) - (-3392 . 365276) (-3393 . 365132) (-3394 . 364957) (-3395 . 364347) - (-3396 . 364223) (-3397 . 364098) (-3398 . 363419) (-3399 . 362720) - (-3400 . 362619) (-3401 . 362563) (-3402 . 362507) (-3403 . 362451) - (-3404 . 362395) (-3405 . 362336) (-3406 . 362271) (-3407 . 362162) - (-3408 . 362053) (-3409 . 361944) (-3410 . 361664) (-3411 . 361589) - (-3412 . 361362) (-3413 . 361280) (-3414 . 361201) (-3415 . 361122) - (-3416 . 361043) (-3417 . 360963) (-3418 . 360884) (-3419 . 360790) - (-3420 . 360689) (-3421 . 360620) (-3422 . 360570) (-3423 . 359876) - (-3424 . 359225) (-3425 . 358431) (-3426 . 358349) (-3427 . 358244) - (-3428 . 358151) (-3429 . 358058) (-3430 . 357983) (-3431 . 357908) - (-3432 . 357833) (-3433 . 357777) (-3434 . 357721) (-3435 . 357654) - (-3436 . 357587) (-3437 . 357524) (-3438 . 357132) (-3439 . 356637) - (-3440 . 356177) (-3441 . 355922) (-3442 . 355731) (-3443 . 355387) - (-3444 . 355089) (-3445 . 354919) (-3446 . 354787) (-3447 . 354646) - (-3448 . 353563) (-3449 . 353407) (-3450 . 353237) (-3451 . 351843) - (-3452 . 351705) (-3453 . 351559) (-3454 . 351328) (-3455 . 351058) - (-3456 . 350998) (-3457 . 350941) (-3458 . 350884) (-3459 . 350671) - (-3460 . 350531) (-3461 . 350423) (-3462 . 350305) (-3463 . 350238) - (-3464 . 350164) (-3465 . 350049) (-3466 . 349792) (-3467 . 349690) - (-3468 . 349492) (-3469 . 349176) (-3470 . 348702) (-3471 . 348595) - (-3472 . 348487) (-3473 . 348336) (-3474 . 348194) (-3475 . 347775) - (-3476 . 347525) (-3477 . 346848) (-3478 . 346693) (-3479 . 346578) - (-3480 . 346467) (-3481 . 345644) (-3482 . 345591) (-3483 . 345538) - (-3484 . 345342) (-3485 . 344063) (-3486 . 343612) (-3487 . 342216) - (-3488 . 341360) (-3489 . 341310) (-3490 . 341260) (-3491 . 341210) - (-3492 . 341142) (-3493 . 341066) (-3494 . 340875) (-3495 . 340802) - (-3496 . 340726) (-3497 . 340653) (-3498 . 340535) (-3499 . 340483) - (-3500 . 340403) (-3501 . 340323) (-3502 . 340243) (-3503 . 340191) - (-3504 . 339944) (-3505 . 339641) (-3506 . 339556) (-3507 . 339471) - (-3508 . 339409) (-3509 . 339019) (-3510 . 338746) (-3511 . 337871) - (-3512 . 337295) (-3513 . 336057) (-3514 . 335247) (-3515 . 334995) - (-3516 . 334743) (-3517 . 334316) (-3518 . 334070) (-3519 . 333824) - (-3520 . 333578) (-3521 . 333332) (-3522 . 333086) (-3523 . 332840) - (-3524 . 332593) (-3525 . 332346) (-3526 . 332099) (-3527 . 331852) - (-3528 . 331422) (-3529 . 331304) (-3530 . 330455) (-3531 . 330423) - (-3532 . 330075) (-3533 . 329848) (-3534 . 329748) (-3535 . 329648) - (-3536 . 327877) (-3537 . 327763) (-3538 . 326708) (-3539 . 326615) - (-3540 . 325691) (-3541 . 325356) (-3542 . 325021) (-3543 . 324916) - (-3544 . 324829) (-3545 . 324800) (-3546 . 324743) (-3547 . 324663) - (-3548 . 324591) (-3549 . 324516) (-3550 . 324441) (-3551 . 324409) - (-3552 . 324377) (-3553 . 324345) (-3554 . 324313) (-3555 . 324281) - (-3556 . 324249) (-3557 . 324217) (-3558 . 324185) (-3559 . 324156) - (-3560 . 324043) (-3561 . 323930) (-3562 . 323817) (-3563 . 323704) - (-3564 . 322615) (-3565 . 322493) (-3566 . 322356) (-3567 . 322222) - (-3568 . 322088) (-3569 . 321791) (-3570 . 321494) (-3571 . 321146) - (-3572 . 320916) (-3573 . 320686) (-3574 . 320573) (-3575 . 320460) - (-3576 . 315179) (-3577 . 310806) (-3578 . 310494) (-3579 . 310339) - (-3580 . 309811) (-3581 . 309478) (-3582 . 309281) (-3583 . 309084) - (-3584 . 308887) (-3585 . 308690) (-3586 . 308574) (-3587 . 308448) - (-3588 . 308332) (-3589 . 308216) (-3590 . 308121) (-3591 . 308026) - (-3592 . 307913) (-3593 . 307707) (-3594 . 306550) (-3595 . 306455) - (-3596 . 306339) (-3597 . 306244) (-3598 . 305995) (-3599 . 305882) - (-3600 . 305664) (-3601 . 305545) (-3602 . 305244) (-3603 . 304513) - (-3604 . 303930) (-3605 . 303449) (-3606 . 303201) (-3607 . 302953) - (-3608 . 302466) (-3609 . 301852) (-3610 . 301404) (-3611 . 301247) - (-3612 . 301101) (-3613 . 300775) (-3614 . 300617) (-3615 . 300474) - (-3616 . 300331) (-3617 . 300188) (-3618 . 299907) (-3619 . 299685) - (-3620 . 299158) (-3621 . 298943) (-3622 . 298728) (-3623 . 298340) - (-3624 . 298160) (-3625 . 297948) (-3626 . 297638) (-3627 . 297444) - (-3628 . 297269) (-3629 . 296123) (-3630 . 295751) (-3631 . 295548) - (-3632 . 295342) (-3633 . 294499) (-3634 . 294470) (-3635 . 294401) - (-3636 . 294330) (-3637 . 294163) (-3638 . 294134) (-3639 . 294105) - (-3640 . 294049) (-3641 . 293896) (-3642 . 293836) (-3643 . 293140) - (-3644 . 291962) (-3645 . 291901) (-3646 . 291576) (-3647 . 291504) - (-3648 . 291447) (-3649 . 291390) (-3650 . 291333) (-3651 . 291276) - (-3652 . 291201) (-3653 . 290609) (-3654 . 290249) (-3655 . 290174) - (-3656 . 290114) (-3657 . 289996) (-3658 . 289045) (-3659 . 288918) - (-3660 . 288705) (-3661 . 288630) (-3662 . 288574) (-3663 . 288520) - (-3664 . 288466) (-3665 . 288357) (-3666 . 288044) (-3667 . 287936) - (-3668 . 287833) (-3669 . 287672) (-3670 . 287571) (-3671 . 287473) - (-3672 . 287335) (-3673 . 287197) (-3674 . 287059) (-3675 . 286797) - (-3676 . 286587) (-3677 . 286449) (-3678 . 286160) (-3679 . 286007) - (-3680 . 285728) (-3681 . 285506) (-3682 . 285353) (-3683 . 285200) - (-3684 . 285047) (-3685 . 284894) (-3686 . 284741) (-3687 . 284531) - (-3688 . 284411) (-3689 . 284020) (-3690 . 283685) (-3691 . 283340) - (-3692 . 282989) (-3693 . 282644) (-3694 . 282299) (-3695 . 281912) - (-3696 . 281525) (-3697 . 281138) (-3698 . 280767) (-3699 . 280037) - (-3700 . 279686) (-3701 . 279232) (-3702 . 278803) (-3703 . 278186) - (-3704 . 277585) (-3705 . 277193) (-3706 . 276857) (-3707 . 276465) - (-3708 . 276129) (-3709 . 275907) (-3710 . 275380) (-3711 . 275165) - (-3712 . 274950) (-3713 . 274734) (-3714 . 274554) (-3715 . 274338) - (-3716 . 274158) (-3717 . 273770) (-3718 . 273590) (-3719 . 273378) - (-3720 . 273288) (-3721 . 273198) (-3722 . 273107) (-3723 . 273020) - (-3724 . 272930) (-3725 . 272849) (-3726 . 272660) (-3727 . 272604) - (-3728 . 272523) (-3729 . 272442) (-3730 . 272361) (-3731 . 272226) - (-3732 . 272091) (-3733 . 271967) (-3734 . 271846) (-3735 . 271728) - (-3736 . 271592) (-3737 . 271459) (-3738 . 271340) (-3739 . 271081) - (-3740 . 270796) (-3741 . 270724) (-3742 . 270632) (-3743 . 270540) - (-3744 . 270454) (-3745 . 270356) (-3746 . 270239) (-3747 . 270098) - (-3748 . 270041) (-3749 . 269984) (-3750 . 269924) (-3751 . 269527) - (-3752 . 269003) (-3753 . 268725) (-3754 . 268304) (-3755 . 268191) - (-3756 . 267749) (-3757 . 267517) (-3758 . 267314) (-3759 . 267132) - (-3760 . 267002) (-3761 . 266796) (-3762 . 266589) (-3763 . 266398) - (-3764 . 265833) (-3765 . 265577) (-3766 . 265286) (-3767 . 264992) - (-3768 . 264695) (-3769 . 264395) (-3770 . 264265) (-3771 . 264132) - (-3772 . 263996) (-3773 . 263857) (-3774 . 262640) (-3775 . 262332) - (-3776 . 261968) (-3777 . 261871) (-3778 . 261630) (-3779 . 261334) - (-3780 . 261038) (-3781 . 260777) (-3782 . 260602) (-3783 . 260523) - (-3784 . 260435) (-3785 . 260334) (-3786 . 260239) (-3787 . 260157) - (-3788 . 260085) (-3789 . 259284) (-3790 . 259212) (-3791 . 258880) - (-3792 . 258808) (-3793 . 258476) (-3794 . 258404) (-3795 . 257955) - (-3796 . 257883) (-3797 . 257778) (-3798 . 257703) (-3799 . 257628) - (-3800 . 257556) (-3801 . 257213) (-3802 . 257083) (-3803 . 257006) - (-3804 . 256457) (-3805 . 256314) (-3806 . 256171) (-3807 . 255687) - (-3808 . 255356) (-3809 . 255143) (-3810 . 254888) (-3811 . 254538) - (-3812 . 254313) (-3813 . 254088) (-3814 . 253863) (-3815 . 253638) - (-3816 . 253425) (-3817 . 253212) (-3818 . 253060) (-3819 . 252876) - (-3820 . 252771) (-3821 . 252648) (-3822 . 252540) (-3823 . 252432) - (-3824 . 252105) (-3825 . 251839) (-3826 . 251527) (-3827 . 251222) - (-3828 . 250912) (-3829 . 250177) (-3830 . 249582) (-3831 . 249405) - (-3832 . 249260) (-3833 . 249105) (-3834 . 248982) (-3835 . 248877) - (-3836 . 248762) (-3837 . 248663) (-3838 . 248179) (-3839 . 248069) - (-3840 . 247959) (-3841 . 247849) (-3842 . 246762) (-3843 . 246247) - (-3844 . 246180) (-3845 . 246106) (-3846 . 245233) (-3847 . 245159) - (-3848 . 245103) (-3849 . 245047) (-3850 . 245015) (-3851 . 244929) - (-3852 . 244897) (-3853 . 244811) (-3854 . 244387) (-3855 . 243963) - (-3856 . 243406) (-3857 . 242294) (-3858 . 240570) (-3859 . 239008) - (-3860 . 238212) (-3861 . 237708) (-3862 . 237216) (-3863 . 236808) - (-3864 . 236148) (-3865 . 236073) (-3866 . 236001) (-3867 . 235929) - (-3868 . 235887) (-3869 . 235765) (-3870 . 235711) (-3871 . 235650) - (-3872 . 235596) (-3873 . 235493) (-3874 . 235053) (-3875 . 234613) - (-3876 . 234173) (-3877 . 233651) (-3878 . 233486) (-3879 . 233321) - (-3880 . 233010) (-3881 . 232923) (-3882 . 232833) (-3883 . 232475) - (-3884 . 232358) (-3885 . 232277) (-3886 . 232118) (-3887 . 232004) - (-3888 . 231929) (-3889 . 231077) (-3890 . 229891) (-3891 . 229791) - (-3892 . 229691) (-3893 . 229360) (-3894 . 229281) (-3895 . 229205) - (-3896 . 229098) (-3897 . 228940) (-3898 . 228832) (-3899 . 228696) - (-3900 . 228560) (-3901 . 228437) (-3902 . 228341) (-3903 . 228192) - (-3904 . 228096) (-3905 . 227941) (-3906 . 227786) (-3907 . 227121) - (-3908 . 226456) (-3909 . 225728) (-3910 . 225175) (-3911 . 224622) - (-3912 . 224069) (-3913 . 223403) (-3914 . 222737) (-3915 . 222071) - (-3916 . 221517) (-3917 . 220963) (-3918 . 220409) (-3919 . 219856) - (-3920 . 219303) (-3921 . 218750) (-3922 . 218197) (-3923 . 217644) - (-3924 . 217091) (-3925 . 216987) (-3926 . 216398) (-3927 . 216292) - (-3928 . 216216) (-3929 . 216073) (-3930 . 215980) (-3931 . 215887) - (-3932 . 215794) (-3933 . 215695) (-3934 . 215589) (-3935 . 215465) - (-3936 . 215341) (-3937 . 214974) (-3938 . 214851) (-3939 . 214749) - (-3940 . 214385) (-3941 . 213851) (-3942 . 213775) (-3943 . 213699) - (-3944 . 213606) (-3945 . 213423) (-3946 . 213327) (-3947 . 213251) - (-3948 . 213158) (-3949 . 213065) (-3950 . 212902) (-3951 . 212351) - (-3952 . 211800) (-3953 . 209003) (-3954 . 208830) (-3955 . 207414) - (-3956 . 206852) (-3957 . 206653) (-12 . 206481) (-3959 . 206309) - (-3960 . 206137) (-3961 . 205965) (-3962 . 205793) (-3963 . 205621) - (-3964 . 205449) (-3965 . 205334) (-3966 . 205064) (-3967 . 205001) - (-3968 . 204938) (-3969 . 204875) (-3970 . 204597) (-3971 . 204330) - (-3972 . 204277) (-3973 . 203634) (-3974 . 203583) (-3975 . 203390) - (-3976 . 203317) (-3977 . 203237) (-3978 . 203124) (-3979 . 202934) - (-3980 . 202570) (-3981 . 202298) (-3982 . 202247) (-3983 . 202196) - (-3984 . 202126) (-3985 . 202007) (-3986 . 201978) (-3987 . 201876) - (-3988 . 201754) (-3989 . 201700) (-3990 . 201523) (-3991 . 201462) - (-3992 . 201281) (-3993 . 201220) (-3994 . 201148) (-3995 . 200673) - (-3996 . 200298) (-3997 . 196695) (-3998 . 196642) (-3999 . 196514) - (-4000 . 196364) (-4001 . 196311) (-4002 . 196170) (-4003 . 194109) - (-4004 . 184870) (-4005 . 184719) (-4006 . 184649) (-4007 . 184598) - (-4008 . 184548) (-4009 . 184497) (-4010 . 184446) (-4011 . 184248) - (-4012 . 184105) (-4013 . 183991) (-4014 . 183870) (-4015 . 183752) - (-4016 . 183640) (-4017 . 183522) (-4018 . 183417) (-4019 . 183336) - (-4020 . 183232) (-4021 . 182295) (-4022 . 182075) (-4023 . 181838) - (-4024 . 181756) (-4025 . 181409) (-4026 . 181335) (-4027 . 181240) - (-4028 . 181166) (-4029 . 180964) (-4030 . 180873) (-4031 . 180757) - (-4032 . 180644) (-4033 . 180553) (-4034 . 180462) (-4035 . 180372) - (-4036 . 180282) (-4037 . 180192) (-4038 . 180104) (-4039 . 177742) - (-4040 . 177674) (-4041 . 177620) (-4042 . 177495) (-4043 . 177431) - (-4044 . 177306) (-4045 . 177187) (-4046 . 176419) (-4047 . 176358) - (-4048 . 176239) (-4049 . 175487) (-4050 . 175434) (-4051 . 175306) - (-4052 . 175242) (-4053 . 175188) (-4054 . 175079) (-4055 . 173777) - (-4056 . 173695) (-4057 . 173605) (-4058 . 173547) (-4059 . 173297) - (-4060 . 173212) (-4061 . 173137) (-4062 . 173052) (-4063 . 172995) - (-4064 . 172779) (-4065 . 172637) (-4066 . 171917) (-4067 . 171362) - (-4068 . 170807) (-4069 . 170252) (-4070 . 169532) (-4071 . 168865) - (-4072 . 168301) (-4073 . 167737) (-4074 . 167473) (-4075 . 167031) - (-4076 . 166696) (-4077 . 166352) (-4078 . 166045) (-4079 . 165912) - (-4080 . 165779) (-4081 . 165463) (-4082 . 165370) (-4083 . 165277) - (-4084 . 165184) (-4085 . 165091) (-4086 . 164998) (-4087 . 164905) - (-4088 . 164812) (-4089 . 164719) (-4090 . 164626) (-4091 . 164533) - (-4092 . 164440) (-4093 . 164347) (-4094 . 164254) (-4095 . 164161) - (-4096 . 164068) (-4097 . 163975) (-4098 . 163882) (-4099 . 163789) - (-4100 . 163696) (-4101 . 163603) (-4102 . 163510) (-4103 . 163417) - (-4104 . 163324) (-4105 . 163231) (-4106 . 163138) (-4107 . 162953) - (-4108 . 162638) (-4109 . 161067) (-4110 . 160912) (-4111 . 160774) - (-4112 . 160631) (-4113 . 160428) (-4114 . 158473) (-4115 . 158345) - (-4116 . 158220) (-4117 . 158092) (-4118 . 157868) (-4119 . 157644) - (-4120 . 157516) (-4121 . 157313) (-4122 . 157134) (-4123 . 156607) - (-4124 . 156080) (-4125 . 155799) (-4126 . 155381) (-4127 . 154854) - (-4128 . 154669) (-4129 . 154526) (-4130 . 154026) (-4131 . 153384) - (-4132 . 153328) (-4133 . 153234) (-4134 . 153113) (-4135 . 153042) - (-4136 . 152968) (-4137 . 152737) (-4138 . 152112) (-4139 . 151680) - (-4140 . 151598) (-4141 . 151456) (-4142 . 150978) (-4143 . 150856) - (-4144 . 150734) (-4145 . 150594) (-4146 . 150407) (-4147 . 150291) - (-4148 . 150030) (-4149 . 149961) (-4150 . 149762) (-4151 . 149603) - (-4152 . 149448) (-4153 . 149341) (-4154 . 149290) (-4155 . 148906) - (-4156 . 148378) (-4157 . 148156) (-4158 . 147934) (-4159 . 147693) - (-4160 . 147602) (-4161 . 145850) (-4162 . 145261) (-4163 . 145182) - (-4164 . 139713) (-4165 . 138922) (-4166 . 138543) (-4167 . 138471) - (-4168 . 138205) (-4169 . 138030) (-4170 . 137540) (-4171 . 137118) - (-4172 . 136678) (-4173 . 135814) (-4174 . 135690) (-4175 . 135563) - (-4176 . 135454) (-4177 . 135302) (-4178 . 135188) (-4179 . 135049) - (-4180 . 134967) (-4181 . 134885) (-4182 . 134777) (-4183 . 134357) - (-4184 . 133933) (-4185 . 133858) (-4186 . 133592) (-4187 . 133325) - (-4188 . 132942) (-4189 . 132241) (-4190 . 132181) (-4191 . 132106) - (-4192 . 132031) (-4193 . 131908) (-4194 . 131656) (-4195 . 131569) - (-4196 . 131493) (-4197 . 131417) (-4198 . 131321) (-4199 . 127345) - (-4200 . 126163) (-4201 . 125499) (-4202 . 125312) (-4203 . 123096) - (-4204 . 122770) (-4205 . 122389) (-4206 . 121945) (-4207 . 121710) - (-4208 . 121462) (-4209 . 121371) (-4210 . 119924) (-4211 . 119845) - (-4212 . 119739) (-4213 . 118255) (-4214 . 117849) (-4215 . 117446) - (-4216 . 117344) (-4217 . 117262) (-4218 . 117104) (-4219 . 115805) - (-4220 . 115723) (-4221 . 115644) (-4222 . 115289) (-4223 . 115232) - (-4224 . 115160) (-4225 . 115103) (-4226 . 115046) (-4227 . 114916) - (-4228 . 114712) (-4229 . 114343) (-4230 . 113921) (-4231 . 108799) - (-4232 . 108196) (-4233 . 107568) (-4234 . 107353) (-4235 . 107138) - (-4236 . 106970) (-4237 . 106755) (-4238 . 106587) (-4239 . 106419) - (-4240 . 106251) (-4241 . 106083) (-4242 . 103940) (-4243 . 103668) - (-4244 . 96793) (** . 93827) (-4246 . 93407) (-4247 . 93159) (-4248 . 93102) - (-4249 . 92604) (-4250 . 89779) (-4251 . 89629) (-4252 . 89465) - (-4253 . 89301) (-4254 . 89205) (-4255 . 89087) (-4256 . 88963) - (-4257 . 88820) (-4258 . 88649) (-4259 . 88522) (-4260 . 88377) - (-4261 . 88224) (-4262 . 88064) (-4263 . 87549) (-4264 . 87458) - (-4265 . 86789) (-4266 . 86595) (-4267 . 86499) (-4268 . 86189) - (-4269 . 85013) (-4270 . 84806) (-4271 . 83629) (-4272 . 83554) - (-4273 . 82373) (-4274 . 78780) (-4275 . 78416) (-4276 . 78139) - (-4277 . 78047) (-4278 . 77954) (-4279 . 77677) (-4280 . 77584) - (-4281 . 77491) (-4282 . 77398) (-4283 . 77014) (-4284 . 76943) - (-4285 . 76851) (-4286 . 76693) (-4287 . 76339) (-4288 . 76181) - (-4289 . 76073) (-4290 . 76044) (-4291 . 75977) (-4292 . 75823) - (-4293 . 75664) (-4294 . 75270) (-4295 . 75195) (-4296 . 75089) - (-4297 . 75017) (-4298 . 74939) (-4299 . 74866) (-4300 . 74793) - (-4301 . 74720) (-4302 . 74648) (-4303 . 74576) (-4304 . 74503) - (-4305 . 74262) (-4306 . 73922) (-4307 . 73774) (-4308 . 73701) - (-4309 . 73628) (-4310 . 73555) (-4311 . 73301) (-4312 . 73157) - (-4313 . 71821) (-4314 . 71627) (-4315 . 71356) (-4316 . 71208) - (-4317 . 71060) (-4318 . 70820) (-4319 . 70625) (-4320 . 70355) - (-4321 . 70159) (-4322 . 70130) (-4323 . 70029) (-4324 . 69928) - (-4325 . 69827) (-4326 . 69726) (-4327 . 69625) (-4328 . 69524) - (-4329 . 69423) (-4330 . 69322) (-4331 . 69221) (-4332 . 69120) - (-4333 . 69005) (-4334 . 68890) (-4335 . 68839) (-4336 . 68722) - (-4337 . 68664) (-4338 . 68563) (-4339 . 68462) (-4340 . 68361) - (-4341 . 68245) (-4342 . 68216) (-4343 . 67484) (-4344 . 67359) - (-4345 . 67234) (-4346 . 67094) (-4347 . 66976) (-4348 . 66851) - (-4349 . 66696) (-4350 . 65713) (-4351 . 64854) (-4352 . 64800) - (-4353 . 64746) (-4354 . 64538) (-4355 . 64164) (-4356 . 63750) - (-4357 . 63389) (-4358 . 63028) (-4359 . 62875) (-4360 . 62573) - (-4361 . 62417) (-4362 . 62091) (-4363 . 62020) (-4364 . 61949) - (-4365 . 61737) (-4366 . 60930) (-4367 . 60724) (-4368 . 60350) - (-4369 . 59830) (-4370 . 59562) (-4371 . 59078) (-4372 . 58594) - (-4373 . 58468) (-4374 . 57254) (-4375 . 56063) (-4376 . 55490) - (-4377 . 55272) (-4378 . 36855) (-4379 . 36669) (-4380 . 34569) - (-4381 . 32393) (-4382 . 32245) (-4383 . 32063) (-4384 . 31654) - (-4385 . 31353) (-4386 . 31002) (-4387 . 30834) (-4388 . 30666) - (-4389 . 30302) (-4390 . 16365) (-4391 . 15245) (* . 11028) (-4393 . 10772) - (-4394 . 10586) (-4395 . 9624) (-4396 . 9355) (-4397 . 8720) (-4398 . 7438) - (-4399 . 6179) (-4400 . 5299) (-4401 . 4033) (-4402 . 382) (-4403 . 280) - (-4404 . 160) (-4405 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1181)) (-4 *4 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1181)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1181)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561))))) +((-1304 . 723747) (-1305 . 723351) (-1306 . 723230) (-1307 . 723128) + (-1308 . 723015) (-1309 . 722898) (-1310 . 722829) (-1311 . 722775) + (-1312 . 722640) (-1313 . 722564) (-1314 . 722408) (-1315 . 722180) + (-1316 . 721216) (-1317 . 720969) (-1318 . 720684) (-1319 . 720399) + (-1320 . 720114) (-1321 . 719793) (-1322 . 719701) (-1323 . 719609) + (-1324 . 719517) (-1325 . 719425) (-1326 . 719333) (-1327 . 719241) + (-1328 . 719146) (-1329 . 719051) (-1330 . 718959) (-1331 . 718867) + (-1332 . 718775) (-1333 . 718683) (-1334 . 718591) (-1335 . 718489) + (-1336 . 718387) (-1337 . 718285) (-1338 . 718193) (-1339 . 718142) + (-1340 . 718090) (-1341 . 718020) (-1342 . 717596) (-1343 . 717401) + (-1344 . 717374) (-1345 . 717251) (-1346 . 717128) (-1347 . 716984) + (-1348 . 716814) (-1349 . 716690) (-1350 . 716451) (-1351 . 716378) + (-1352 . 716237) (-1353 . 716186) (-1354 . 716137) (-1355 . 716067) + (-1356 . 715932) (-1357 . 715797) (-1358 . 715569) (-1359 . 715321) + (-1360 . 715141) (-1361 . 714970) (-1362 . 714893) (-1363 . 714819) + (-1364 . 714664) (-1365 . 714509) (-1366 . 714323) (-1367 . 714140) + (-1368 . 713963) (-1369 . 713906) (-1370 . 713850) (-1371 . 713794) + (-1372 . 713720) (-1373 . 713643) (-1374 . 713612) (-1375 . 713543) + (-1376 . 713398) (-1377 . 713289) (-1378 . 713219) (-1379 . 713145) + (-1380 . 713071) (-1381 . 713019) (-1382 . 712967) (-1383 . 712915) + (-1384 . 712792) (-1385 . 712470) (-1386 . 712399) (-1387 . 712318) + (-1388 . 712197) (-1389 . 712116) (-1390 . 712035) (-1391 . 711878) + (-1392 . 711727) (-1393 . 711649) (-1394 . 711591) (-1395 . 711518) + (-1396 . 711453) (-1397 . 711388) (-1398 . 711326) (-1399 . 711253) + (-1400 . 711137) (-1401 . 711085) (-1402 . 711030) (-1403 . 710978) + (-1404 . 710926) (-1405 . 710898) (-1406 . 710870) (-1407 . 710842) + (-1408 . 710798) (-1409 . 710727) (-1410 . 710675) (-1411 . 710626) + (-1412 . 710574) (-1413 . 710522) (-1414 . 710406) (-1415 . 710290) + (-1416 . 710198) (-1417 . 710106) (-1418 . 709983) (-1419 . 709917) + (-1420 . 709851) (-1421 . 709792) (-1422 . 709764) (-1423 . 709736) + (-1424 . 709708) (-1425 . 709680) (-1426 . 709570) (-1427 . 709518) + (-1428 . 709466) (-1429 . 709414) (-1430 . 709362) (-1431 . 709310) + (-1432 . 709258) (-1433 . 709230) (-1434 . 709127) (-1435 . 709075) + (-1436 . 708909) (-1437 . 708725) (-1438 . 708514) (-1439 . 708399) + (-1440 . 708166) (-1441 . 708067) (-1442 . 707973) (-1443 . 707858) + (-1444 . 707460) (-1445 . 707242) (-1446 . 707193) (-1447 . 707165) + (-1448 . 707089) (-1449 . 706990) (-1450 . 706891) (-1451 . 706792) + (-1452 . 706693) (-1453 . 706594) (-1454 . 706495) (-1455 . 706337) + (-1456 . 706261) (-1457 . 706094) (-1458 . 706036) (-1459 . 705978) + (-1460 . 705669) (-1461 . 705415) (-1462 . 705331) (-1463 . 705198) + (-1464 . 705140) (-1465 . 705088) (-1466 . 705017) (-1467 . 704962) + (-1468 . 704910) (-1469 . 704836) (-1470 . 704762) (-1471 . 704681) + (-1472 . 704600) (-1473 . 704545) (-1474 . 704471) (-1475 . 704397) + (-1476 . 704323) (-1477 . 704246) (-1478 . 704191) (-1479 . 704132) + (-1480 . 704032) (-1481 . 703932) (-1482 . 703832) (-1483 . 703732) + (-1484 . 703632) (-1485 . 703532) (-1486 . 703432) (-1487 . 703317) + (-1488 . 703202) (-1489 . 703087) (-1490 . 702972) (-1491 . 702857) + (-1492 . 702742) (-1493 . 702624) (-1494 . 702548) (-1495 . 702472) + (-1496 . 702085) (-1497 . 701739) (-1498 . 701637) (-1499 . 701375) + (-1500 . 701273) (-1501 . 701068) (-1502 . 700955) (-1503 . 700853) + (-1504 . 700696) (-1505 . 700607) (-1506 . 700513) (-1507 . 700433) + (-1508 . 700359) (-1509 . 700281) (-1510 . 700222) (-1511 . 700163) + (-1512 . 700061) (-7 . 700033) (-8 . 700005) (-9 . 699977) (-1516 . 699858) + (-1517 . 699776) (-1518 . 699694) (-1519 . 699612) (-1520 . 699530) + (-1521 . 699448) (-1522 . 699354) (-1523 . 699284) (-1524 . 699214) + (-1525 . 699123) (-1526 . 699029) (-1527 . 698947) (-1528 . 698865) + (-1529 . 698374) (-1530 . 697821) (-1531 . 697611) (-1532 . 697536) + (-1533 . 697282) (-1534 . 697055) (-1535 . 696845) (-1536 . 696715) + (-1537 . 696634) (-1538 . 696485) (-1539 . 696130) (-1540 . 695838) + (-1541 . 695546) (-1542 . 695254) (-1543 . 694962) (-1544 . 694903) + (-1545 . 694796) (-1546 . 694368) (-1547 . 694270) (-1548 . 694110) + (-1549 . 693911) (-1550 . 693775) (-1551 . 693675) (-1552 . 693575) + (-1553 . 693481) (-1554 . 693422) (-1555 . 693087) (-1556 . 692986) + (-1557 . 692867) (-1558 . 692651) (-1559 . 692470) (-1560 . 692310) + (-1561 . 692105) (-1562 . 691683) (-1563 . 691574) (-1564 . 691459) + (-1565 . 691390) (-1566 . 691321) (-1567 . 691252) (-1568 . 691186) + (-1569 . 691061) (-1570 . 690844) (-1571 . 690766) (-1572 . 690716) + (-1573 . 690645) (-1574 . 690502) (-1575 . 690361) (-1576 . 690280) + (-1577 . 690199) (-1578 . 690143) (-1579 . 690087) (-1580 . 690014) + (-1581 . 689874) (-1582 . 689821) (-1583 . 689762) (-1584 . 689703) + (-1585 . 689548) (-1586 . 689496) (-1587 . 689378) (-1588 . 689260) + (-1589 . 689142) (-1590 . 689009) (-1591 . 688728) (-1592 . 688592) + (-1593 . 688536) (-1594 . 688480) (-1595 . 688421) (-1596 . 688362) + (-1597 . 688306) (-1598 . 688250) (-1599 . 688053) (-1600 . 685711) + (-1601 . 685584) (-1602 . 685438) (-1603 . 685310) (-1604 . 685258) + (-1605 . 685206) (-1606 . 685154) (-1607 . 681115) (-1608 . 681020) + (-1609 . 680881) (-1610 . 680672) (-1611 . 680570) (-1612 . 680468) + (-1613 . 679552) (-1614 . 679475) (-1615 . 679346) (-1616 . 679219) + (-1617 . 679142) (-1618 . 679065) (-1619 . 678938) (-1620 . 678811) + (-1621 . 678645) (-1622 . 678518) (-1623 . 678391) (-1624 . 678174) + (-1625 . 677736) (-1626 . 677370) (-1627 . 677263) (-1628 . 677044) + (-1629 . 676975) (-1630 . 676916) (-1631 . 676835) (-1632 . 676724) + (-1633 . 676658) (-1634 . 676592) (-1635 . 676518) (-1636 . 676446) + (-1637 . 676069) (-1638 . 676017) (-1639 . 675958) (-1640 . 675869) + (-1641 . 675780) (-1642 . 675688) (-1643 . 675596) (-1644 . 675504) + (-1645 . 675412) (-1646 . 675320) (-1647 . 675228) (-1648 . 675136) + (-1649 . 675044) (-1650 . 674952) (-1651 . 674860) (-1652 . 674768) + (-1653 . 674676) (-1654 . 674584) (-1655 . 674492) (-1656 . 674400) + (-1657 . 674308) (-1658 . 674216) (-1659 . 674124) (-1660 . 674032) + (-1661 . 673940) (-1662 . 673848) (-1663 . 673756) (-1664 . 673664) + (-1665 . 673572) (-1666 . 673480) (-1667 . 673388) (-1668 . 673224) + (-1669 . 673114) (-1670 . 672870) (-1671 . 672581) (-1672 . 672385) + (-1673 . 672228) (-1674 . 672067) (-1675 . 672015) (-1676 . 671953) + (-1677 . 671901) (-1678 . 671838) (-1679 . 671785) (-1680 . 671596) + (-1681 . 671442) (-1682 . 671362) (-1683 . 671282) (-1684 . 671202) + (-1685 . 671072) (-1686 . 670840) (-1687 . 670812) (-1688 . 670784) + (-1689 . 670756) (-1690 . 670676) (-1691 . 670599) (-1692 . 670522) + (-1693 . 670441) (-1694 . 670381) (-1695 . 670223) (-1696 . 670030) + (-1697 . 669545) (-1698 . 669303) (-1699 . 669041) (-1700 . 668940) + (-1701 . 668859) (-1702 . 668778) (-1703 . 668708) (-1704 . 668638) + (-1705 . 668479) (-1706 . 668175) (-1707 . 667945) (-1708 . 667821) + (-1709 . 667762) (-1710 . 667700) (-1711 . 667638) (-1712 . 667573) + (-1713 . 667511) (-1714 . 667232) (-1715 . 667022) (-1716 . 666748) + (-1717 . 666208) (-1718 . 665694) (-1719 . 665549) (-1720 . 665482) + (-1721 . 665401) (-1722 . 665320) (-1723 . 665218) (-1724 . 665144) + (-1725 . 665063) (-1726 . 664989) (-1727 . 664780) (-1728 . 664567) + (-1729 . 664477) (-1730 . 664410) (-1731 . 664274) (-1732 . 664207) + (-1733 . 664125) (-1734 . 664044) (-1735 . 663942) (-1736 . 663742) + (-1737 . 663674) (-1738 . 663432) (-1739 . 663181) (-1740 . 662939) + (-1741 . 662697) (-1742 . 662629) (-1743 . 662293) (-1744 . 661292) + (-1745 . 661072) (-1746 . 660991) (-1747 . 660917) (-1748 . 660843) + (-1749 . 660769) (-1750 . 660665) (-1751 . 660592) (-1752 . 660524) + (-1753 . 660314) (-1754 . 660262) (-1755 . 660207) (-1756 . 660116) + (-1757 . 660028) (-1758 . 658271) (-1759 . 658192) (-1760 . 657447) + (-1761 . 657330) (-1762 . 657123) (-1763 . 656961) (-1764 . 656799) + (-1765 . 656638) (-1766 . 656499) (-1767 . 656405) (-1768 . 656307) + (-1769 . 656213) (-1770 . 656098) (-1771 . 656013) (-1772 . 655915) + (-1773 . 655719) (-1774 . 655628) (-1775 . 655534) (-1776 . 655467) + (-1777 . 655414) (-1778 . 655361) (-1779 . 655308) (-1780 . 654170) + (-1781 . 653660) (-1782 . 653581) (-1783 . 653522) (-1784 . 653494) + (-1785 . 653466) (-1786 . 653407) (-1787 . 653294) (-1788 . 652917) + (-1789 . 652864) (-1790 . 652753) (-1791 . 652700) (-1792 . 652647) + (-1793 . 652591) (-1794 . 652535) (-1795 . 652370) (-1796 . 652300) + (-1797 . 652205) (-1798 . 652110) (-1799 . 652015) (-1800 . 651963) + (-1801 . 651904) (-1802 . 651830) (-1803 . 651778) (-1804 . 651621) + (-1805 . 651464) (-1806 . 651311) (-1807 . 650553) (-1808 . 650300) + (-1809 . 649989) (-1810 . 649637) (-1811 . 649420) (-1812 . 649157) + (-1813 . 648781) (-1814 . 648597) (-1815 . 648463) (-1816 . 648297) + (-1817 . 648131) (-1818 . 647997) (-1819 . 647863) (-1820 . 647729) + (-1821 . 647595) (-1822 . 647464) (-1823 . 647333) (-1824 . 647202) + (-1825 . 646819) (-1826 . 646692) (-1827 . 646564) (-1828 . 646312) + (-1829 . 646188) (-1830 . 645936) (-1831 . 645812) (-1832 . 645560) + (-1833 . 645436) (-1834 . 645151) (-1835 . 644878) (-1836 . 644605) + (-1837 . 644307) (-1838 . 644205) (-1839 . 644060) (-1840 . 643919) + (-1841 . 643768) (-1842 . 643607) (-1843 . 643519) (-1844 . 643491) + (-1845 . 643409) (-1846 . 643312) (-1847 . 642844) (-1848 . 642493) + (-1849 . 642060) (-1850 . 641919) (-1851 . 641849) (-1852 . 641779) + (-1853 . 641709) (-1854 . 641618) (-1855 . 641527) (-1856 . 641436) + (-1857 . 641345) (-1858 . 641254) (-1859 . 641168) (-1860 . 641082) + (-1861 . 640996) (-1862 . 640910) (-1863 . 640824) (-1864 . 640750) + (-1865 . 640645) (-1866 . 640419) (-1867 . 640341) (-1868 . 640266) + (-1869 . 640173) (-1870 . 640069) (-1871 . 639973) (-1872 . 639804) + (-1873 . 639727) (-1874 . 639650) (-1875 . 639559) (-1876 . 639468) + (-1877 . 639268) (-1878 . 639113) (-1879 . 638958) (-1880 . 638803) + (-1881 . 638648) (-1882 . 638493) (-1883 . 638338) (-1884 . 638271) + (-1885 . 638116) (-1886 . 637961) (-1887 . 637806) (-1888 . 637651) + (-1889 . 637496) (-1890 . 637341) (-1891 . 637186) (-1892 . 637031) + (-1893 . 636957) (-1894 . 636883) (-1895 . 636828) (-1896 . 636773) + (-1897 . 636718) (-1898 . 636663) (-1899 . 636592) (-1900 . 636387) + (-1901 . 636286) (-1902 . 636095) (-1903 . 636002) (-1904 . 635865) + (-1905 . 635728) (-1906 . 635591) (-1907 . 635523) (-1908 . 635407) + (-1909 . 635291) (-1910 . 635175) (-1911 . 635122) (-1912 . 634925) + (-1913 . 634840) (-1914 . 634532) (-1915 . 634477) (-1916 . 633825) + (-1917 . 633510) (-1918 . 633226) (-1919 . 633107) (-1920 . 632988) + (-1921 . 632929) (-1922 . 632870) (-1923 . 632818) (-1924 . 632766) + (-1925 . 632714) (-1926 . 632661) (-1927 . 632608) (-1928 . 632549) + (-1929 . 632436) (-1930 . 632323) (-1931 . 632265) (-1932 . 632207) + (-1933 . 632157) (-1934 . 632022) (-1935 . 631972) (-1936 . 631909) + (-1937 . 631849) (-1938 . 631252) (-1939 . 631192) (-1940 . 631025) + (-1941 . 630933) (-1942 . 630820) (-1943 . 630736) (-1944 . 630621) + (-1945 . 630530) (-1946 . 630439) (-1947 . 630250) (-1948 . 630195) + (-1949 . 630008) (-1950 . 629885) (-1951 . 629812) (-1952 . 629739) + (-1953 . 629619) (-1954 . 629546) (-1955 . 629473) (-1956 . 629133) + (-1957 . 629060) (-1958 . 628840) (-1959 . 628507) (-1960 . 628323) + (-1961 . 628179) (-1962 . 627818) (-1963 . 627650) (-1964 . 627482) + (-1965 . 627226) (-1966 . 626970) (-1967 . 626775) (-1968 . 626580) + (-1969 . 625986) (-1970 . 625910) (-1971 . 625771) (-1972 . 625364) + (-1973 . 625236) (-1974 . 625076) (-1975 . 624757) (-1976 . 624275) + (-1977 . 623793) (-1978 . 623289) (-1979 . 623221) (-1980 . 623150) + (-1981 . 623079) (-1982 . 622906) (-1983 . 622787) (-1984 . 622668) + (-1985 . 622592) (-1986 . 622516) (-1987 . 622241) (-1988 . 622126) + (-1989 . 622074) (-1990 . 622022) (-1991 . 621970) (-1992 . 621918) + (-1993 . 621866) (-1994 . 621724) (-1995 . 621550) (-1996 . 621317) + (-1997 . 621129) (-1998 . 621101) (-1999 . 621073) (-2000 . 621045) + (-2001 . 621017) (-2002 . 620989) (-2003 . 620961) (-2004 . 620933) + (-2005 . 620881) (-2006 . 620791) (-2007 . 620741) (-2008 . 620672) + (-2009 . 620603) (-2010 . 620498) (-2011 . 620127) (-2012 . 619976) + (-2013 . 619825) (-2014 . 619620) (-2015 . 619498) (-2016 . 619423) + (-2017 . 619345) (-2018 . 619270) (-2019 . 619192) (-2020 . 619114) + (-2021 . 619039) (-2022 . 618961) (-2023 . 618727) (-2024 . 618572) + (-2025 . 618273) (-2026 . 618118) (-2027 . 617792) (-2028 . 617652) + (-2029 . 617512) (-2030 . 617431) (-2031 . 617350) (-2032 . 617085) + (-2033 . 616352) (-2034 . 616215) (-2035 . 616124) (-2036 . 615987) + (-2037 . 615919) (-2038 . 615850) (-2039 . 615762) (-2040 . 615674) + (-2041 . 615503) (-2042 . 615429) (-2043 . 615285) (-2044 . 614825) + (-2045 . 614445) (-2046 . 613681) (-2047 . 613537) (-2048 . 613393) + (-2049 . 613231) (-2050 . 612993) (-2051 . 612852) (-2052 . 612705) + (-2053 . 612466) (-2054 . 612230) (-2055 . 611991) (-2056 . 611799) + (-2057 . 611676) (-2058 . 611472) (-2059 . 611249) (-2060 . 611010) + (-2061 . 610869) (-2062 . 610731) (-2063 . 610592) (-2064 . 610339) + (-2065 . 610083) (-2066 . 609926) (-2067 . 609772) (-2068 . 609531) + (-2069 . 609246) (-2070 . 609108) (-2071 . 609021) (-2072 . 608355) + (-2073 . 608179) (-2074 . 607997) (-2075 . 607821) (-2076 . 607639) + (-2077 . 607460) (-2078 . 607281) (-2079 . 607094) (-2080 . 606712) + (-2081 . 606533) (-2082 . 606354) (-2083 . 606167) (-2084 . 605785) + (-2085 . 604792) (-2086 . 604408) (-2087 . 604024) (-2088 . 603906) + (-2089 . 603749) (-2090 . 603607) (-2091 . 603489) (-2092 . 603307) + (-2093 . 603183) (-2094 . 602893) (-2095 . 602603) (-2096 . 602319) + (-2097 . 602035) (-2098 . 601756) (-2099 . 601668) (-2100 . 601583) + (-2101 . 601484) (-2102 . 601385) (-2103 . 601161) (-2104 . 601061) + (-2105 . 600958) (-2106 . 600880) (-2107 . 600555) (-2108 . 600263) + (-2109 . 600190) (-2110 . 599805) (-2111 . 599777) (-2112 . 599578) + (-2113 . 599404) (-2114 . 599163) (-2115 . 599108) (-2116 . 599032) + (-2117 . 598661) (-2118 . 598546) (-2119 . 598469) (-2120 . 598396) + (-2121 . 598315) (-2122 . 598234) (-2123 . 598153) (-2124 . 598052) + (-2125 . 597993) (-2126 . 597774) (-2127 . 597535) (-2128 . 597411) + (-2129 . 597287) (-2130 . 597060) (-2131 . 597007) (-2132 . 596952) + (-2133 . 596620) (-2134 . 596296) (-2135 . 596108) (-2136 . 595917) + (-2137 . 595753) (-2138 . 595418) (-2139 . 595251) (-2140 . 595010) + (-2141 . 594682) (-2142 . 594490) (-2143 . 594273) (-2144 . 594100) + (-2145 . 593678) (-2146 . 593451) (-2147 . 593180) (-2148 . 593042) + (-2149 . 592901) (-2150 . 592423) (-2151 . 592300) (-2152 . 592064) + (-2153 . 591810) (-2154 . 591560) (-2155 . 591265) (-2156 . 591124) + (-2157 . 590780) (-2158 . 590639) (-2159 . 590446) (-2160 . 590253) + (-2161 . 590078) (-2162 . 589804) (-2163 . 589369) (-2164 . 589341) + (-2165 . 589267) (-2166 . 589106) (-2167 . 588943) (-2168 . 588782) + (-2169 . 588615) (-2170 . 588562) (-2171 . 588509) (-2172 . 588380) + (-2173 . 588320) (-2174 . 588267) (-2175 . 588197) (-2176 . 588137) + (-2177 . 588078) (-2178 . 588018) (-2179 . 587959) (-2180 . 587899) + (-2181 . 587840) (-2182 . 587781) (-2183 . 587639) (-2184 . 587544) + (-2185 . 587453) (-2186 . 587337) (-2187 . 587243) (-2188 . 587145) + (-2189 . 587051) (-2190 . 586910) (-2191 . 586645) (-2192 . 585788) + (-2193 . 585632) (-2194 . 585263) (-2195 . 585207) (-2196 . 585155) + (-2197 . 585052) (-2198 . 584967) (-2199 . 584879) (-2200 . 584733) + (-2201 . 584584) (-2202 . 584294) (-2203 . 584216) (-2204 . 584141) + (-2205 . 584088) (-2206 . 584035) (-2207 . 584004) (-2208 . 583941) + (-2209 . 583822) (-2210 . 583733) (-2211 . 583613) (-2212 . 583318) + (-2213 . 583124) (-2214 . 582936) (-2215 . 582791) (-2216 . 582646) + (-2217 . 582360) (-2218 . 581915) (-2219 . 581881) (-2220 . 581844) + (-2221 . 581807) (-2222 . 581770) (-2223 . 581733) (-2224 . 581702) + (-2225 . 581671) (-2226 . 581640) (-2227 . 581606) (-2228 . 581572) + (-2229 . 581517) (-2230 . 581341) (-2231 . 581106) (-2232 . 580871) + (-2233 . 580641) (-2234 . 580589) (-2235 . 580534) (-2236 . 580464) + (-2237 . 580375) (-2238 . 580306) (-2239 . 580234) (-2240 . 580004) + (-2241 . 579952) (-2242 . 579897) (-2243 . 579866) (-2244 . 579760) + (-2245 . 579534) (-2246 . 579223) (-2247 . 579048) (-2248 . 578865) + (-2249 . 578593) (-2250 . 578520) (-2251 . 578455) (-2252 . 578427) + (-2253 . 578377) (-2254 . 576954) (-2255 . 575806) (-2256 . 574668) + (-2257 . 574190) (-2258 . 573626) (-2259 . 572898) (-2260 . 572335) + (-2261 . 571705) (-2262 . 571126) (-2263 . 571052) (-2264 . 571000) + (-2265 . 570948) (-2266 . 570874) (-2267 . 570819) (-2268 . 570767) + (-2269 . 570715) (-2270 . 570663) (-2271 . 570593) (-2272 . 570145) + (-2273 . 569938) (-2274 . 569688) (-2275 . 569353) (-2276 . 569098) + (-2277 . 568795) (-2278 . 568591) (-2279 . 568301) (-2280 . 567751) + (-2281 . 567613) (-2282 . 567410) (-2283 . 567129) (-2284 . 567043) + (-2285 . 566708) (-2286 . 566566) (-2287 . 566274) (-2288 . 566053) + (-2289 . 565927) (-2290 . 565802) (-2291 . 565655) (-2292 . 565511) + (-2293 . 565395) (-2294 . 565264) (-2295 . 564891) (-2296 . 564631) + (-2297 . 564356) (-2298 . 564116) (-2299 . 563786) (-2300 . 563441) + (-2301 . 563033) (-2302 . 562610) (-2303 . 562413) (-2304 . 562138) + (-2305 . 561970) (-2306 . 561769) (-2307 . 561547) (-2308 . 561392) + (-2309 . 561206) (-2310 . 561103) (-2311 . 561075) (-2312 . 560896) + (-2313 . 560822) (-2314 . 560761) (-2315 . 560708) (-2316 . 560639) + (-2317 . 560569) (-2318 . 560450) (-2319 . 560272) (-2320 . 560217) + (-2321 . 559971) (-2322 . 559881) (-2323 . 559691) (-2324 . 559618) + (-2325 . 559548) (-2326 . 559483) (-2327 . 559428) (-2328 . 559337) + (-2329 . 559044) (-2330 . 558716) (-2331 . 558642) (-2332 . 558320) + (-2333 . 558113) (-2334 . 558027) (-2335 . 557941) (-2336 . 557855) + (-2337 . 557769) (-2338 . 557683) (-2339 . 557597) (-2340 . 557511) + (-2341 . 557425) (-2342 . 557339) (-2343 . 557253) (-2344 . 557167) + (-2345 . 557081) (-2346 . 556995) (-2347 . 556909) (-2348 . 556823) + (-2349 . 556737) (-2350 . 556651) (-2351 . 556565) (-2352 . 556479) + (-2353 . 556393) (-2354 . 556307) (-2355 . 556221) (-2356 . 556135) + (-2357 . 556049) (-2358 . 555963) (-2359 . 555877) (-2360 . 555774) + (-2361 . 555685) (-2362 . 555475) (-2363 . 555416) (-2364 . 555360) + (-2365 . 555271) (-2366 . 555159) (-2367 . 555071) (-2368 . 554923) + (-2369 . 554752) (-2370 . 554599) (-2371 . 554446) (-2372 . 554272) + (-2373 . 554062) (-2374 . 553938) (-2375 . 553730) (-2376 . 553638) + (-2377 . 553546) (-2378 . 553410) (-2379 . 553315) (-2380 . 553220) + (-2381 . 551704) (-2382 . 551580) (-2383 . 551490) (-2384 . 551395) + (-2385 . 551313) (-2386 . 551004) (-2387 . 550808) (-2388 . 550713) + (-2389 . 550605) (-2390 . 550187) (-2391 . 550159) (-2392 . 549994) + (-2393 . 549917) (-2394 . 549728) (-2395 . 549548) (-2396 . 549124) + (-2397 . 548972) (-2398 . 548792) (-2399 . 548619) (-2400 . 548357) + (-2401 . 548105) (-2402 . 547294) (-2403 . 547125) (-2404 . 546906) + (-2405 . 546064) (-2406 . 545932) (-2407 . 545800) (-2408 . 545668) + (-2409 . 545536) (-2410 . 545404) (-2411 . 545272) (-2412 . 545077) + (-2413 . 544883) (-2414 . 544740) (-2415 . 544425) (-2416 . 544310) + (-2417 . 543970) (-2418 . 543810) (-2419 . 543671) (-2420 . 543532) + (-2421 . 543403) (-2422 . 543318) (-2423 . 543266) (-2424 . 542785) + (-2425 . 541521) (-2426 . 541406) (-2427 . 541277) (-2428 . 540970) + (-2429 . 540719) (-2430 . 540644) (-2431 . 540569) (-2432 . 540494) + (-2433 . 540435) (-2434 . 540364) (-2435 . 540311) (-2436 . 540249) + (-2437 . 540178) (-2438 . 539815) (-2439 . 539528) (-2440 . 539417) + (-2441 . 539324) (-2442 . 539231) (-2443 . 539144) (-2444 . 538924) + (-2445 . 538704) (-2446 . 538286) (-2447 . 538014) (-2448 . 537871) + (-2449 . 537778) (-2450 . 537635) (-2451 . 537483) (-2452 . 537329) + (-2453 . 537258) (-2454 . 537049) (-2455 . 536871) (-2456 . 536661) + (-2457 . 536483) (-2458 . 536449) (-2459 . 536415) (-2460 . 536384) + (-2461 . 536266) (-2462 . 535951) (-2463 . 535673) (-2464 . 535552) + (-2465 . 535425) (-2466 . 535340) (-2467 . 535267) (-2468 . 535177) + (-2469 . 535106) (-2470 . 535050) (-2471 . 534994) (-2472 . 534938) + (-2473 . 534867) (-2474 . 534796) (-2475 . 534725) (-2476 . 534646) + (-2477 . 534568) (-2478 . 534483) (-2479 . 534223) (-2480 . 534134) + (-2481 . 533836) (-2482 . 533738) (-2483 . 533660) (-2484 . 533582) + (-2485 . 533439) (-2486 . 533360) (-2487 . 533288) (-2488 . 533085) + (-2489 . 533029) (-2490 . 532841) (-2491 . 532742) (-2492 . 532624) + (-2493 . 532503) (-2494 . 532360) (-2495 . 532217) (-2496 . 532077) + (-2497 . 531937) (-2498 . 531794) (-2499 . 531667) (-2500 . 531537) + (-2501 . 531413) (-2502 . 531289) (-2503 . 531183) (-2504 . 531077) + (-2505 . 530974) (-2506 . 530824) (-2507 . 530671) (-2508 . 530518) + (-2509 . 530374) (-2510 . 530220) (-2511 . 530143) (-2512 . 530063) + (-2513 . 529908) (-2514 . 529828) (-2515 . 529748) (-2516 . 529668) + (-2517 . 529565) (-2518 . 529506) (-2519 . 529444) (-2520 . 529269) + (-2521 . 529116) (-2522 . 528963) (-2523 . 528789) (-2524 . 528597) + (-2525 . 528298) (-2526 . 528103) (-2527 . 527988) (-2528 . 527862) + (-2529 . 527785) (-2530 . 527653) (-2531 . 527347) (-2532 . 527164) + (-2533 . 526619) (-2534 . 526399) (-2535 . 526225) (-2536 . 526055) + (-2537 . 525956) (-2538 . 525857) (-2539 . 525639) (-2540 . 525537) + (-2541 . 525464) (-2542 . 525388) (-2543 . 525309) (-2544 . 525012) + (-2545 . 524913) (-2546 . 524751) (-2547 . 524517) (-2548 . 524075) + (-2549 . 523945) (-2550 . 523805) (-2551 . 523496) (-2552 . 523194) + (-2553 . 522878) (-2554 . 522472) (-2555 . 522404) (-2556 . 522336) + (-2557 . 522268) (-2558 . 522173) (-2559 . 522065) (-2560 . 521957) + (-2561 . 521855) (-2562 . 521753) (-2563 . 521651) (-2564 . 521573) + (-2565 . 521249) (-2566 . 520781) (-2567 . 520154) (-2568 . 520090) + (-2569 . 519971) (-2570 . 519852) (-2571 . 519744) (-2572 . 519636) + (-2573 . 519480) (-2574 . 518878) (-2575 . 518591) (-2576 . 518423) + (-2577 . 518301) (-2578 . 517903) (-2579 . 517667) (-2580 . 517466) + (-2581 . 517258) (-2582 . 517065) (-2583 . 516795) (-2584 . 516616) + (-2585 . 516547) (-2586 . 516471) (-2587 . 516330) (-2588 . 516127) + (-2589 . 515983) (-2590 . 515733) (-2591 . 515425) (-2592 . 515069) + (-2593 . 514910) (-2594 . 514704) (-2595 . 514544) (-2596 . 514471) + (-2597 . 514352) (-2598 . 514233) (-2599 . 514073) (-2600 . 513893) + (-2601 . 513710) (-2602 . 513612) (-2603 . 513514) (-2604 . 513413) + (-2605 . 513309) (-2606 . 513183) (-2607 . 513057) (-2608 . 512928) + (-2609 . 512796) (-2610 . 512698) (-2611 . 512600) (-2612 . 512499) + (-2613 . 512398) (-2614 . 512232) (-2615 . 512066) (-2616 . 511872) + (-2617 . 511706) (-2618 . 511538) (-2619 . 511367) (-2620 . 511202) + (-2621 . 511037) (-2622 . 510937) (-2623 . 510745) (-2624 . 510644) + (-2625 . 510449) (-2626 . 510199) (-2627 . 509954) (-2628 . 509632) + (-2629 . 509244) (-2630 . 509043) (-2631 . 508779) (-2632 . 508236) + (-2633 . 507942) (-2634 . 507805) (-2635 . 507559) (-2636 . 507355) + (-2637 . 507248) (-2638 . 507147) (-2639 . 507037) (-2640 . 506927) + (-2641 . 506799) (-2642 . 506692) (-2643 . 506588) (-2644 . 506432) + (-2645 . 506298) (-2646 . 506164) (-2647 . 506054) (-2648 . 505935) + (-2649 . 505758) (-2650 . 505624) (-2651 . 505487) (-2652 . 505356) + (-2653 . 505246) (-2654 . 505124) (-2655 . 504999) (-2656 . 504898) + (-2657 . 504714) (-2658 . 504540) (-2659 . 504341) (-2660 . 504167) + (-2661 . 504051) (-2662 . 503926) (-2663 . 503798) (-2664 . 503679) + (-2665 . 503454) (-2666 . 503283) (-2667 . 503112) (-2668 . 502935) + (-2669 . 502783) (-2670 . 502506) (-2671 . 502114) (-2672 . 501983) + (-2673 . 501778) (-2674 . 501595) (-2675 . 501411) (-2676 . 501282) + (-2677 . 501178) (-2678 . 501037) (-2679 . 500905) (-2680 . 500791) + (-2681 . 500643) (-2682 . 500504) (-2683 . 500403) (-2684 . 500299) + (-2685 . 500192) (-2686 . 500082) (-2687 . 499981) (-2688 . 499874) + (-2689 . 499767) (-2690 . 499654) (-2691 . 499547) (-2692 . 499434) + (-2693 . 499303) (-2694 . 499154) (-2695 . 498616) (-2696 . 498473) + (-2697 . 498323) (-2698 . 498200) (-2699 . 498096) (-2700 . 497992) + (-2701 . 497885) (-2702 . 497747) (-2703 . 497640) (-2704 . 497509) + (-2705 . 497353) (-2706 . 497080) (-2707 . 496933) (-2708 . 496730) + (-2709 . 496629) (-2710 . 496475) (-2711 . 496355) (-2712 . 496226) + (-2713 . 496131) (-2714 . 496043) (-2715 . 495955) (-2716 . 495867) + (-2717 . 495779) (-2718 . 495691) (-2719 . 495597) (-2720 . 495509) + (-2721 . 495421) (-2722 . 495333) (-2723 . 495245) (-2724 . 495157) + (-2725 . 495069) (-2726 . 494981) (-2727 . 494893) (-2728 . 494805) + (-2729 . 494717) (-2730 . 494579) (-2731 . 494441) (-2732 . 494321) + (-2733 . 494201) (-2734 . 494060) (-2735 . 493972) (-2736 . 493884) + (-2737 . 493796) (-2738 . 493708) (-2739 . 493570) (-2740 . 493432) + (-2741 . 493344) (-2742 . 493256) (-2743 . 493168) (-2744 . 493080) + (-2745 . 492992) (-2746 . 492904) (-2747 . 492813) (-2748 . 492719) + (-2749 . 492625) (-2750 . 492528) (-2751 . 492478) (-2752 . 492428) + (-2753 . 492375) (-2754 . 492121) (-2755 . 492072) (-2756 . 492022) + (-2757 . 491988) (-2758 . 491923) (-2759 . 491886) (-2760 . 491749) + (-2761 . 491511) (-2762 . 491440) (-2763 . 491254) (-2764 . 491005) + (-2765 . 490847) (-2766 . 490320) (-2767 . 490121) (-2768 . 489906) + (-2769 . 489744) (-2770 . 489345) (-2771 . 489178) (-2772 . 488103) + (-2773 . 487980) (-2774 . 487763) (-2775 . 487632) (-2776 . 487501) + (-2777 . 487343) (-2778 . 487239) (-2779 . 487180) (-2780 . 487121) + (-2781 . 487015) (-2782 . 486909) (-2783 . 485991) (-2784 . 483862) + (-2785 . 483046) (-2786 . 481241) (-2787 . 481173) (-2788 . 481105) + (-2789 . 481037) (-2790 . 480969) (-2791 . 480901) (-2792 . 480823) + (-2793 . 480421) (-2794 . 480065) (-2795 . 479883) (-2796 . 479354) + (-2797 . 479178) (-2798 . 478956) (-2799 . 478734) (-2800 . 478512) + (-2801 . 478293) (-2802 . 478074) (-2803 . 477855) (-2804 . 477636) + (-2805 . 477417) (-2806 . 477198) (-2807 . 477097) (-2808 . 476364) + (-2809 . 476309) (-2810 . 476254) (-2811 . 476199) (-2812 . 476144) + (-2813 . 475993) (-2814 . 475700) (-2815 . 475451) (-2816 . 475423) + (-2817 . 475373) (-2818 . 474781) (-2819 . 474247) (-2820 . 473798) + (-2821 . 473636) (-2822 . 473455) (-2823 . 473166) (-2824 . 472778) + (-2825 . 471902) (-2826 . 471560) (-2827 . 471391) (-2828 . 471168) + (-2829 . 470917) (-2830 . 470567) (-2831 . 469549) (-2832 . 469234) + (-2833 . 469022) (-2834 . 468455) (-2835 . 467939) (-2836 . 466161) + (-2837 . 465689) (-2838 . 465090) (-2839 . 464840) (-2840 . 464706) + (-2841 . 464491) (-2842 . 464438) (-2843 . 464385) (-2844 . 464333) + (-2845 . 464281) (-2846 . 464189) (-2847 . 464118) (-2848 . 464044) + (-2849 . 463973) (-2850 . 463920) (-2851 . 463849) (-2852 . 463796) + (-2853 . 463743) (-2854 . 463690) (-2855 . 463637) (-2856 . 463584) + (-2857 . 463531) (-2858 . 463478) (-2859 . 463425) (-2860 . 463372) + (-2861 . 463319) (-2862 . 463266) (-2863 . 463213) (-2864 . 463160) + (-2865 . 463107) (-2866 . 463036) (-2867 . 462965) (-2868 . 462893) + (-2869 . 462821) (-2870 . 462746) (-2871 . 462693) (-2872 . 462640) + (-2873 . 462587) (-2874 . 462534) (-2875 . 462481) (-2876 . 462428) + (-2877 . 462375) (-2878 . 462322) (-2879 . 462269) (-2880 . 462216) + (-2881 . 462163) (-2882 . 462110) (-2883 . 462057) (-2884 . 462004) + (-2885 . 461952) (-2886 . 461900) (-2887 . 461847) (-2888 . 461794) + (-2889 . 461703) (-2890 . 461650) (-2891 . 461622) (-2892 . 461594) + (-2893 . 461566) (-2894 . 461538) (-2895 . 461460) (-2896 . 461400) + (-2897 . 461348) (-2898 . 461296) (-2899 . 461244) (-2900 . 461192) + (-2901 . 461140) (-2902 . 460364) (-2903 . 460287) (-2904 . 460210) + (-2905 . 460144) (-2906 . 460077) (-2907 . 460010) (-2908 . 459953) + (-2909 . 459877) (-2910 . 459809) (-2911 . 459738) (-2912 . 459667) + (-2913 . 459601) (-2914 . 459514) (-2915 . 459442) (-2916 . 459335) + (-2917 . 459149) (-2918 . 458980) (-2919 . 458800) (-2920 . 458209) + (-2921 . 458046) (-2922 . 457468) (-2923 . 457398) (-2924 . 457323) + (-2925 . 456957) (-2926 . 456278) (-2927 . 456100) (-2928 . 456028) + (-2929 . 455888) (-2930 . 455698) (-2931 . 455591) (-2932 . 455484) + (-2933 . 455368) (-2934 . 455252) (-2935 . 455136) (-2936 . 454858) + (-2937 . 454707) (-2938 . 454563) (-2939 . 454489) (-2940 . 454403) + (-2941 . 454329) (-2942 . 454255) (-2943 . 454181) (-2944 . 454037) + (-2945 . 453886) (-2946 . 453711) (-2947 . 453560) (-2948 . 453409) + (-2949 . 453282) (-2950 . 452893) (-2951 . 452607) (-2952 . 452321) + (-2953 . 451910) (-2954 . 451624) (-2955 . 451551) (-2956 . 451404) + (-2957 . 451298) (-2958 . 451224) (-2959 . 451154) (-2960 . 451075) + (-2961 . 450998) (-2962 . 450921) (-2963 . 450769) (-2964 . 450666) + (-2965 . 450569) (-2966 . 450472) (-2967 . 450312) (-2968 . 450225) + (-2969 . 450138) (-2970 . 450051) (-2971 . 449992) (-2972 . 449933) + (-2973 . 449800) (-2974 . 449741) (-2975 . 449571) (-2976 . 449483) + (-2977 . 449386) (-2978 . 449352) (-2979 . 449321) (-2980 . 449237) + (-2981 . 449181) (-2982 . 449119) (-2983 . 449085) (-2984 . 449051) + (-2985 . 449017) (-2986 . 448983) (-2987 . 448949) (-2988 . 446196) + (-2989 . 446162) (-2990 . 446128) (-2991 . 446094) (-2992 . 445982) + (-2993 . 445948) (-2994 . 445896) (-2995 . 445862) (-2996 . 445765) + (-2997 . 445703) (-2998 . 445612) (-2999 . 445521) (-3000 . 445466) + (-3001 . 445414) (-3002 . 445362) (-3003 . 445310) (-3004 . 445258) + (-3005 . 444833) (-3006 . 444667) (-3007 . 444614) (-3008 . 444545) + (-3009 . 444492) (-3010 . 444262) (-3011 . 444106) (-3012 . 443585) + (-3013 . 443444) (-3014 . 443410) (-3015 . 443355) (-3016 . 442644) + (-3017 . 442329) (-3018 . 441824) (-3019 . 441746) (-3020 . 441694) + (-3021 . 441642) (-3022 . 441458) (-3023 . 441406) (-3024 . 441354) + (-3025 . 441278) (-3026 . 441216) (-3027 . 440998) (-3028 . 440743) + (-3029 . 440676) (-3030 . 440582) (-3031 . 440488) (-3032 . 440305) + (-3033 . 440223) (-3034 . 440101) (-3035 . 439979) (-3036 . 439833) + (-3037 . 439173) (-3038 . 438466) (-3039 . 438362) (-3040 . 438261) + (-3041 . 438160) (-3042 . 438049) (-3043 . 437881) (-3044 . 437675) + (-3045 . 437582) (-3046 . 437505) (-3047 . 437449) (-3048 . 437378) + (-3049 . 437258) (-3050 . 437157) (-3051 . 437059) (-3052 . 436979) + (-3053 . 436899) (-3054 . 436822) (-3055 . 436751) (-3056 . 436680) + (-3057 . 436609) (-3058 . 436538) (-3059 . 436467) (-3060 . 436396) + (-3061 . 436303) (-3062 . 436108) (-3063 . 435864) (-3064 . 435492) + (-3065 . 435323) (-3066 . 435207) (-3067 . 434703) (-3068 . 434321) + (-3069 . 434075) (-3070 . 433646) (-3071 . 433554) (-3072 . 433457) + (-3073 . 430167) (-3074 . 429347) (-3075 . 429234) (-3076 . 429160) + (-3077 . 429068) (-3078 . 428874) (-3079 . 428680) (-3080 . 428609) + (-3081 . 428538) (-3082 . 428457) (-3083 . 428376) (-3084 . 428251) + (-3085 . 428117) (-3086 . 428036) (-3087 . 427962) (-3088 . 427797) + (-3089 . 427638) (-3090 . 427407) (-3091 . 427259) (-3092 . 427155) + (-3093 . 427051) (-3094 . 426966) (-3095 . 426598) (-3096 . 426517) + (-3097 . 426430) (-3098 . 426349) (-3099 . 426103) (-3100 . 425883) + (-3101 . 425696) (-3102 . 425374) (-3103 . 425081) (-3104 . 424788) + (-3105 . 424478) (-3106 . 424161) (-3107 . 424032) (-3108 . 423844) + (-3109 . 423371) (-3110 . 423289) (-3111 . 423073) (-3112 . 422857) + (-3113 . 422598) (-3114 . 422174) (-3115 . 421660) (-3116 . 421530) + (-3117 . 421256) (-3118 . 421077) (-3119 . 420962) (-3120 . 420858) + (-3121 . 420803) (-3122 . 420726) (-3123 . 420656) (-3124 . 420583) + (-3125 . 420528) (-3126 . 420455) (-3127 . 420400) (-3128 . 420045) + (-3129 . 419637) (-3130 . 419484) (-3131 . 419331) (-3132 . 419250) + (-3133 . 419097) (-3134 . 418944) (-3135 . 418809) (-3136 . 418674) + (-3137 . 418539) (-3138 . 418404) (-3139 . 418269) (-3140 . 418134) + (-3141 . 418078) (-3142 . 417925) (-3143 . 417814) (-3144 . 417703) + (-3145 . 417635) (-3146 . 417525) (-3147 . 417422) (-3148 . 413271) + (-3149 . 412823) (-3150 . 412396) (-3151 . 411779) (-3152 . 411178) + (-3153 . 410960) (-3154 . 410782) (-3155 . 410522) (-3156 . 410111) + (-3157 . 409817) (-3158 . 409374) (-3159 . 409196) (-3160 . 408803) + (-3161 . 408410) (-3162 . 408225) (-3163 . 408018) (-3164 . 407797) + (-3165 . 407491) (-3166 . 407292) (-3167 . 406663) (-3168 . 406506) + (-3169 . 406115) (-3170 . 406063) (-3171 . 406014) (-3172 . 405962) + (-3173 . 405913) (-3174 . 405861) (-3175 . 405715) (-3176 . 405663) + (-3177 . 405517) (-3178 . 405465) (-3179 . 405319) (-3180 . 405267) + (-3181 . 404892) (-3182 . 404840) (-3183 . 404791) (-3184 . 404739) + (-3185 . 404690) (-3186 . 404638) (-3187 . 404589) (-3188 . 404537) + (-3189 . 404488) (-3190 . 404436) (-3191 . 404387) (-3192 . 404321) + (-3193 . 404203) (-3194 . 403041) (-3195 . 402624) (-3196 . 402516) + (-3197 . 402273) (-3198 . 402123) (-3199 . 401973) (-3200 . 401806) + (-3201 . 399591) (-3202 . 399327) (-3203 . 399173) (-3204 . 399027) + (-3205 . 398881) (-3206 . 398662) (-3207 . 398530) (-3208 . 398455) + (-3209 . 398380) (-3210 . 398245) (-3211 . 398115) (-3212 . 397985) + (-3213 . 397858) (-3214 . 397731) (-3215 . 397604) (-3216 . 397477) + (-3217 . 397374) (-3218 . 397274) (-3219 . 397180) (-3220 . 397050) + (-3221 . 396899) (-3222 . 396520) (-3223 . 396405) (-3224 . 396162) + (-3225 . 395699) (-3226 . 395386) (-3227 . 394817) (-3228 . 394246) + (-3229 . 393231) (-3230 . 392687) (-3231 . 392374) (-3232 . 392036) + (-3233 . 391705) (-3234 . 391385) (-3235 . 391332) (-3236 . 391205) + (-3237 . 390700) (-3238 . 389557) (-3239 . 389502) (-3240 . 389447) + (-3241 . 389371) (-3242 . 389252) (-3243 . 389177) (-3244 . 389102) + (-3245 . 389024) (-3246 . 388799) (-3247 . 388740) (-3248 . 388681) + (-3249 . 388578) (-3250 . 388475) (-3251 . 388372) (-3252 . 388269) + (-3253 . 388188) (-3254 . 388114) (-3255 . 388080) (-3256 . 388046) + (-3257 . 387949) (-3258 . 387852) (-3259 . 387824) (-3260 . 387796) + (-3261 . 387578) (-3262 . 387300) (-3263 . 387150) (-3264 . 387020) + (-3265 . 386890) (-3266 . 386790) (-3267 . 386613) (-3268 . 386453) + (-3269 . 386353) (-3270 . 386176) (-3271 . 386016) (-3272 . 385857) + (-3273 . 385718) (-3274 . 385568) (-3275 . 385438) (-3276 . 385308) + (-3277 . 385161) (-3278 . 385034) (-3279 . 384931) (-3280 . 384824) + (-3281 . 384727) (-3282 . 384562) (-3283 . 384414) (-3284 . 383999) + (-3285 . 383899) (-3286 . 383796) (-3287 . 383708) (-3288 . 383628) + (-3289 . 383478) (-3290 . 383348) (-3291 . 383296) (-3292 . 383206) + (-3293 . 383094) (-3294 . 382781) (-3295 . 382600) (-3296 . 380989) + (-3297 . 380356) (-3298 . 380296) (-3299 . 380178) (-3300 . 380060) + (-3301 . 379916) (-3302 . 379761) (-3303 . 379600) (-3304 . 379439) + (-3305 . 379231) (-3306 . 379042) (-3307 . 378887) (-3308 . 378729) + (-3309 . 378571) (-3310 . 378416) (-3311 . 378276) (-3312 . 377850) + (-3313 . 377722) (-3314 . 377594) (-3315 . 377466) (-3316 . 377323) + (-3317 . 377180) (-3318 . 377038) (-3319 . 376893) (-3320 . 376140) + (-3321 . 375980) (-3322 . 375792) (-3323 . 375635) (-3324 . 375395) + (-3325 . 375148) (-3326 . 374901) (-3327 . 374690) (-3328 . 374551) + (-3329 . 374340) (-3330 . 374050) (-3331 . 373839) (-3332 . 373700) + (-3333 . 373489) (-3334 . 373183) (-3335 . 373038) (-3336 . 372896) + (-3337 . 372672) (-3338 . 372530) (-3339 . 372305) (-3340 . 372106) + (-3341 . 371949) (-3342 . 371619) (-3343 . 371459) (-3344 . 371299) + (-3345 . 371139) (-3346 . 370967) (-3347 . 370795) (-3348 . 370620) + (-3349 . 370268) (-3350 . 370074) (-3351 . 369912) (-3352 . 369838) + (-3353 . 369764) (-3354 . 369690) (-3355 . 369616) (-3356 . 369542) + (-3357 . 369468) (-3358 . 369344) (-3359 . 369170) (-3360 . 369046) + (-3361 . 368960) (-3362 . 368894) (-3363 . 368828) (-3364 . 368762) + (-3365 . 368696) (-3366 . 368630) (-3367 . 368564) (-3368 . 368498) + (-3369 . 368432) (-3370 . 368366) (-3371 . 368300) (-3372 . 368234) + (-3373 . 368168) (-3374 . 368102) (-3375 . 368036) (-3376 . 367970) + (-3377 . 367904) (-3378 . 367838) (-3379 . 367772) (-3380 . 367706) + (-3381 . 367640) (-3382 . 367574) (-3383 . 367508) (-3384 . 367442) + (-3385 . 367376) (-3386 . 367310) (-3387 . 367244) (-3388 . 366595) + (-3389 . 365946) (-3390 . 365818) (-3391 . 365695) (-3392 . 365572) + (-3393 . 365431) (-3394 . 365276) (-3395 . 365132) (-3396 . 364957) + (-3397 . 364347) (-3398 . 364223) (-3399 . 364098) (-3400 . 363419) + (-3401 . 362720) (-3402 . 362619) (-3403 . 362563) (-3404 . 362507) + (-3405 . 362451) (-3406 . 362395) (-3407 . 362336) (-3408 . 362271) + (-3409 . 362162) (-3410 . 362053) (-3411 . 361944) (-3412 . 361664) + (-3413 . 361589) (-3414 . 361362) (-3415 . 361280) (-3416 . 361201) + (-3417 . 361122) (-3418 . 361043) (-3419 . 360963) (-3420 . 360884) + (-3421 . 360790) (-3422 . 360689) (-3423 . 360620) (-3424 . 360570) + (-3425 . 359876) (-3426 . 359225) (-3427 . 358431) (-3428 . 358349) + (-3429 . 358244) (-3430 . 358151) (-3431 . 358058) (-3432 . 357983) + (-3433 . 357908) (-3434 . 357833) (-3435 . 357777) (-3436 . 357721) + (-3437 . 357654) (-3438 . 357587) (-3439 . 357524) (-3440 . 357132) + (-3441 . 356637) (-3442 . 356177) (-3443 . 355922) (-3444 . 355731) + (-3445 . 355387) (-3446 . 355089) (-3447 . 354919) (-3448 . 354787) + (-3449 . 354646) (-3450 . 353563) (-3451 . 353407) (-3452 . 353237) + (-3453 . 351843) (-3454 . 351705) (-3455 . 351559) (-3456 . 351328) + (-3457 . 351058) (-3458 . 350998) (-3459 . 350941) (-3460 . 350884) + (-3461 . 350671) (-3462 . 350531) (-3463 . 350423) (-3464 . 350305) + (-3465 . 350238) (-3466 . 350164) (-3467 . 350049) (-3468 . 349792) + (-3469 . 349690) (-3470 . 349492) (-3471 . 349176) (-3472 . 348702) + (-3473 . 348595) (-3474 . 348487) (-3475 . 348336) (-3476 . 348194) + (-3477 . 347775) (-3478 . 347525) (-3479 . 346848) (-3480 . 346693) + (-3481 . 346578) (-3482 . 346467) (-3483 . 345644) (-3484 . 345591) + (-3485 . 345538) (-3486 . 345342) (-3487 . 344063) (-3488 . 343612) + (-3489 . 342216) (-3490 . 341360) (-3491 . 341310) (-3492 . 341260) + (-3493 . 341210) (-3494 . 341142) (-3495 . 341066) (-3496 . 340875) + (-3497 . 340802) (-3498 . 340726) (-3499 . 340653) (-3500 . 340535) + (-3501 . 340483) (-3502 . 340403) (-3503 . 340323) (-3504 . 340243) + (-3505 . 340191) (-3506 . 339944) (-3507 . 339641) (-3508 . 339556) + (-3509 . 339471) (-3510 . 339409) (-3511 . 339019) (-3512 . 338746) + (-3513 . 337871) (-3514 . 337295) (-3515 . 336057) (-3516 . 335247) + (-3517 . 334995) (-3518 . 334743) (-3519 . 334316) (-3520 . 334070) + (-3521 . 333824) (-3522 . 333578) (-3523 . 333332) (-3524 . 333086) + (-3525 . 332840) (-3526 . 332593) (-3527 . 332346) (-3528 . 332099) + (-3529 . 331852) (-3530 . 331422) (-3531 . 331304) (-3532 . 330455) + (-3533 . 330423) (-3534 . 330075) (-3535 . 329848) (-3536 . 329748) + (-3537 . 329648) (-3538 . 327877) (-3539 . 327763) (-3540 . 326708) + (-3541 . 326615) (-3542 . 325691) (-3543 . 325356) (-3544 . 325021) + (-3545 . 324916) (-3546 . 324829) (-3547 . 324800) (-3548 . 324743) + (-3549 . 324663) (-3550 . 324591) (-3551 . 324516) (-3552 . 324441) + (-3553 . 324409) (-3554 . 324377) (-3555 . 324345) (-3556 . 324313) + (-3557 . 324281) (-3558 . 324249) (-3559 . 324217) (-3560 . 324185) + (-3561 . 324156) (-3562 . 324043) (-3563 . 323930) (-3564 . 323817) + (-3565 . 323704) (-3566 . 322615) (-3567 . 322493) (-3568 . 322356) + (-3569 . 322222) (-3570 . 322088) (-3571 . 321791) (-3572 . 321494) + (-3573 . 321146) (-3574 . 320916) (-3575 . 320686) (-3576 . 320573) + (-3577 . 320460) (-3578 . 315179) (-3579 . 310806) (-3580 . 310494) + (-3581 . 310339) (-3582 . 309811) (-3583 . 309478) (-3584 . 309281) + (-3585 . 309084) (-3586 . 308887) (-3587 . 308690) (-3588 . 308574) + (-3589 . 308448) (-3590 . 308332) (-3591 . 308216) (-3592 . 308121) + (-3593 . 308026) (-3594 . 307913) (-3595 . 307707) (-3596 . 306550) + (-3597 . 306455) (-3598 . 306339) (-3599 . 306244) (-3600 . 305995) + (-3601 . 305882) (-3602 . 305664) (-3603 . 305545) (-3604 . 305244) + (-3605 . 304513) (-3606 . 303930) (-3607 . 303449) (-3608 . 303201) + (-3609 . 302953) (-3610 . 302466) (-3611 . 301852) (-3612 . 301404) + (-3613 . 301247) (-3614 . 301101) (-3615 . 300775) (-3616 . 300617) + (-3617 . 300474) (-3618 . 300331) (-3619 . 300188) (-3620 . 299907) + (-3621 . 299685) (-3622 . 299158) (-3623 . 298943) (-3624 . 298728) + (-3625 . 298340) (-3626 . 298160) (-3627 . 297948) (-3628 . 297638) + (-3629 . 297444) (-3630 . 297269) (-3631 . 296123) (-3632 . 295751) + (-3633 . 295548) (-3634 . 295342) (-3635 . 294499) (-3636 . 294470) + (-3637 . 294401) (-3638 . 294330) (-3639 . 294163) (-3640 . 294134) + (-3641 . 294105) (-3642 . 294049) (-3643 . 293896) (-3644 . 293836) + (-3645 . 293140) (-3646 . 291962) (-3647 . 291901) (-3648 . 291576) + (-3649 . 291504) (-3650 . 291447) (-3651 . 291390) (-3652 . 291333) + (-3653 . 291276) (-3654 . 291201) (-3655 . 290609) (-3656 . 290249) + (-3657 . 290174) (-3658 . 290114) (-3659 . 289996) (-3660 . 289045) + (-3661 . 288918) (-3662 . 288705) (-3663 . 288630) (-3664 . 288574) + (-3665 . 288520) (-3666 . 288466) (-3667 . 288357) (-3668 . 288044) + (-3669 . 287936) (-3670 . 287833) (-3671 . 287672) (-3672 . 287571) + (-3673 . 287473) (-3674 . 287335) (-3675 . 287197) (-3676 . 287059) + (-3677 . 286797) (-3678 . 286587) (-3679 . 286449) (-3680 . 286160) + (-3681 . 286007) (-3682 . 285728) (-3683 . 285506) (-3684 . 285353) + (-3685 . 285200) (-3686 . 285047) (-3687 . 284894) (-3688 . 284741) + (-3689 . 284531) (-3690 . 284411) (-3691 . 284020) (-3692 . 283685) + (-3693 . 283340) (-3694 . 282989) (-3695 . 282644) (-3696 . 282299) + (-3697 . 281912) (-3698 . 281525) (-3699 . 281138) (-3700 . 280767) + (-3701 . 280037) (-3702 . 279686) (-3703 . 279232) (-3704 . 278803) + (-3705 . 278186) (-3706 . 277585) (-3707 . 277193) (-3708 . 276857) + (-3709 . 276465) (-3710 . 276129) (-3711 . 275907) (-3712 . 275380) + (-3713 . 275165) (-3714 . 274950) (-3715 . 274734) (-3716 . 274554) + (-3717 . 274338) (-3718 . 274158) (-3719 . 273770) (-3720 . 273590) + (-3721 . 273378) (-3722 . 273288) (-3723 . 273198) (-3724 . 273107) + (-3725 . 273020) (-3726 . 272930) (-3727 . 272849) (-3728 . 272660) + (-3729 . 272604) (-3730 . 272523) (-3731 . 272442) (-3732 . 272361) + (-3733 . 272226) (-3734 . 272091) (-3735 . 271967) (-3736 . 271846) + (-3737 . 271728) (-3738 . 271592) (-3739 . 271459) (-3740 . 271340) + (-3741 . 271081) (-3742 . 270796) (-3743 . 270724) (-3744 . 270632) + (-3745 . 270540) (-3746 . 270454) (-3747 . 270356) (-3748 . 270239) + (-3749 . 270098) (-3750 . 270041) (-3751 . 269984) (-3752 . 269924) + (-3753 . 269527) (-3754 . 269003) (-3755 . 268725) (-3756 . 268304) + (-3757 . 268191) (-3758 . 267749) (-3759 . 267517) (-3760 . 267314) + (-3761 . 267132) (-3762 . 267002) (-3763 . 266796) (-3764 . 266589) + (-3765 . 266398) (-3766 . 265833) (-3767 . 265577) (-3768 . 265286) + (-3769 . 264992) (-3770 . 264695) (-3771 . 264395) (-3772 . 264265) + (-3773 . 264132) (-3774 . 263996) (-3775 . 263857) (-3776 . 262640) + (-3777 . 262332) (-3778 . 261968) (-3779 . 261871) (-3780 . 261630) + (-3781 . 261334) (-3782 . 261038) (-3783 . 260777) (-3784 . 260602) + (-3785 . 260523) (-3786 . 260435) (-3787 . 260334) (-3788 . 260239) + (-3789 . 260157) (-3790 . 260085) (-3791 . 259284) (-3792 . 259212) + (-3793 . 258880) (-3794 . 258808) (-3795 . 258476) (-3796 . 258404) + (-3797 . 257955) (-3798 . 257883) (-3799 . 257778) (-3800 . 257703) + (-3801 . 257628) (-3802 . 257556) (-3803 . 257213) (-3804 . 257083) + (-3805 . 257006) (-3806 . 256457) (-3807 . 256314) (-3808 . 256171) + (-3809 . 255687) (-3810 . 255356) (-3811 . 255143) (-3812 . 254888) + (-3813 . 254538) (-3814 . 254313) (-3815 . 254088) (-3816 . 253863) + (-3817 . 253638) (-3818 . 253425) (-3819 . 253212) (-3820 . 253060) + (-3821 . 252876) (-3822 . 252771) (-3823 . 252648) (-3824 . 252540) + (-3825 . 252432) (-3826 . 252105) (-3827 . 251839) (-3828 . 251527) + (-3829 . 251222) (-3830 . 250912) (-3831 . 250177) (-3832 . 249582) + (-3833 . 249405) (-3834 . 249260) (-3835 . 249105) (-3836 . 248982) + (-3837 . 248877) (-3838 . 248762) (-3839 . 248663) (-3840 . 248179) + (-3841 . 248069) (-3842 . 247959) (-3843 . 247849) (-3844 . 246762) + (-3845 . 246247) (-3846 . 246180) (-3847 . 246106) (-3848 . 245233) + (-3849 . 245159) (-3850 . 245103) (-3851 . 245047) (-3852 . 245015) + (-3853 . 244929) (-3854 . 244897) (-3855 . 244811) (-3856 . 244387) + (-3857 . 243963) (-3858 . 243406) (-3859 . 242294) (-3860 . 240570) + (-3861 . 239008) (-3862 . 238212) (-3863 . 237708) (-3864 . 237216) + (-3865 . 236808) (-3866 . 236148) (-3867 . 236073) (-3868 . 236001) + (-3869 . 235929) (-3870 . 235887) (-3871 . 235765) (-3872 . 235711) + (-3873 . 235650) (-3874 . 235596) (-3875 . 235493) (-3876 . 235053) + (-3877 . 234613) (-3878 . 234173) (-3879 . 233651) (-3880 . 233486) + (-3881 . 233321) (-3882 . 233010) (-3883 . 232923) (-3884 . 232833) + (-3885 . 232475) (-3886 . 232358) (-3887 . 232277) (-3888 . 232118) + (-3889 . 232004) (-3890 . 231929) (-3891 . 231077) (-3892 . 229891) + (-3893 . 229791) (-3894 . 229691) (-3895 . 229360) (-3896 . 229281) + (-3897 . 229205) (-3898 . 229098) (-3899 . 228940) (-3900 . 228832) + (-3901 . 228696) (-3902 . 228560) (-3903 . 228437) (-3904 . 228341) + (-3905 . 228192) (-3906 . 228096) (-3907 . 227941) (-3908 . 227786) + (-3909 . 227121) (-3910 . 226456) (-3911 . 225728) (-3912 . 225175) + (-3913 . 224622) (-3914 . 224069) (-3915 . 223403) (-3916 . 222737) + (-3917 . 222071) (-3918 . 221517) (-3919 . 220963) (-3920 . 220409) + (-3921 . 219856) (-3922 . 219303) (-3923 . 218750) (-3924 . 218197) + (-3925 . 217644) (-3926 . 217091) (-3927 . 216987) (-3928 . 216398) + (-3929 . 216292) (-3930 . 216216) (-3931 . 216073) (-3932 . 215980) + (-3933 . 215887) (-3934 . 215794) (-3935 . 215695) (-3936 . 215589) + (-3937 . 215465) (-3938 . 215341) (-3939 . 214974) (-3940 . 214851) + (-3941 . 214749) (-3942 . 214385) (-3943 . 213851) (-3944 . 213775) + (-3945 . 213699) (-3946 . 213606) (-3947 . 213423) (-3948 . 213327) + (-3949 . 213251) (-3950 . 213158) (-3951 . 213065) (-3952 . 212902) + (-3953 . 212351) (-3954 . 211800) (-3955 . 209003) (-3956 . 208830) + (-3957 . 207414) (-3958 . 206852) (-3959 . 206653) (-12 . 206481) + (-3961 . 206309) (-3962 . 206137) (-3963 . 205965) (-3964 . 205793) + (-3965 . 205621) (-3966 . 205449) (-3967 . 205334) (-3968 . 205064) + (-3969 . 205001) (-3970 . 204938) (-3971 . 204875) (-3972 . 204597) + (-3973 . 204330) (-3974 . 204277) (-3975 . 203634) (-3976 . 203583) + (-3977 . 203390) (-3978 . 203317) (-3979 . 203237) (-3980 . 203124) + (-3981 . 202934) (-3982 . 202570) (-3983 . 202298) (-3984 . 202247) + (-3985 . 202196) (-3986 . 202126) (-3987 . 202007) (-3988 . 201978) + (-3989 . 201876) (-3990 . 201754) (-3991 . 201700) (-3992 . 201523) + (-3993 . 201462) (-3994 . 201281) (-3995 . 201220) (-3996 . 201148) + (-3997 . 200673) (-3998 . 200298) (-3999 . 196695) (-4000 . 196642) + (-4001 . 196514) (-4002 . 196364) (-4003 . 196311) (-4004 . 196170) + (-4005 . 194109) (-4006 . 184870) (-4007 . 184719) (-4008 . 184649) + (-4009 . 184598) (-4010 . 184548) (-4011 . 184497) (-4012 . 184446) + (-4013 . 184248) (-4014 . 184105) (-4015 . 183991) (-4016 . 183870) + (-4017 . 183752) (-4018 . 183640) (-4019 . 183522) (-4020 . 183417) + (-4021 . 183336) (-4022 . 183232) (-4023 . 182295) (-4024 . 182075) + (-4025 . 181838) (-4026 . 181756) (-4027 . 181409) (-4028 . 181335) + (-4029 . 181240) (-4030 . 181166) (-4031 . 180964) (-4032 . 180873) + (-4033 . 180757) (-4034 . 180644) (-4035 . 180553) (-4036 . 180462) + (-4037 . 180372) (-4038 . 180282) (-4039 . 180192) (-4040 . 180104) + (-4041 . 177742) (-4042 . 177674) (-4043 . 177620) (-4044 . 177495) + (-4045 . 177431) (-4046 . 177306) (-4047 . 177187) (-4048 . 176419) + (-4049 . 176358) (-4050 . 176239) (-4051 . 175487) (-4052 . 175434) + (-4053 . 175306) (-4054 . 175242) (-4055 . 175188) (-4056 . 175079) + (-4057 . 173777) (-4058 . 173695) (-4059 . 173605) (-4060 . 173547) + (-4061 . 173297) (-4062 . 173212) (-4063 . 173137) (-4064 . 173052) + (-4065 . 172995) (-4066 . 172779) (-4067 . 172637) (-4068 . 171917) + (-4069 . 171362) (-4070 . 170807) (-4071 . 170252) (-4072 . 169532) + (-4073 . 168865) (-4074 . 168301) (-4075 . 167737) (-4076 . 167473) + (-4077 . 167031) (-4078 . 166696) (-4079 . 166352) (-4080 . 166045) + (-4081 . 165912) (-4082 . 165779) (-4083 . 165463) (-4084 . 165370) + (-4085 . 165277) (-4086 . 165184) (-4087 . 165091) (-4088 . 164998) + (-4089 . 164905) (-4090 . 164812) (-4091 . 164719) (-4092 . 164626) + (-4093 . 164533) (-4094 . 164440) (-4095 . 164347) (-4096 . 164254) + (-4097 . 164161) (-4098 . 164068) (-4099 . 163975) (-4100 . 163882) + (-4101 . 163789) (-4102 . 163696) (-4103 . 163603) (-4104 . 163510) + (-4105 . 163417) (-4106 . 163324) (-4107 . 163231) (-4108 . 163138) + (-4109 . 162953) (-4110 . 162638) (-4111 . 161067) (-4112 . 160912) + (-4113 . 160774) (-4114 . 160631) (-4115 . 160428) (-4116 . 158473) + (-4117 . 158345) (-4118 . 158220) (-4119 . 158092) (-4120 . 157868) + (-4121 . 157644) (-4122 . 157516) (-4123 . 157313) (-4124 . 157134) + (-4125 . 156607) (-4126 . 156080) (-4127 . 155799) (-4128 . 155381) + (-4129 . 154854) (-4130 . 154669) (-4131 . 154526) (-4132 . 154026) + (-4133 . 153384) (-4134 . 153328) (-4135 . 153234) (-4136 . 153113) + (-4137 . 153042) (-4138 . 152968) (-4139 . 152737) (-4140 . 152112) + (-4141 . 151680) (-4142 . 151598) (-4143 . 151456) (-4144 . 150978) + (-4145 . 150856) (-4146 . 150734) (-4147 . 150594) (-4148 . 150407) + (-4149 . 150291) (-4150 . 150030) (-4151 . 149961) (-4152 . 149762) + (-4153 . 149603) (-4154 . 149448) (-4155 . 149341) (-4156 . 149290) + (-4157 . 148906) (-4158 . 148378) (-4159 . 148156) (-4160 . 147934) + (-4161 . 147693) (-4162 . 147602) (-4163 . 145850) (-4164 . 145261) + (-4165 . 145182) (-4166 . 139713) (-4167 . 138922) (-4168 . 138543) + (-4169 . 138471) (-4170 . 138205) (-4171 . 138030) (-4172 . 137540) + (-4173 . 137118) (-4174 . 136678) (-4175 . 135814) (-4176 . 135690) + (-4177 . 135563) (-4178 . 135454) (-4179 . 135302) (-4180 . 135188) + (-4181 . 135049) (-4182 . 134967) (-4183 . 134885) (-4184 . 134777) + (-4185 . 134357) (-4186 . 133933) (-4187 . 133858) (-4188 . 133592) + (-4189 . 133325) (-4190 . 132942) (-4191 . 132241) (-4192 . 132181) + (-4193 . 132106) (-4194 . 132031) (-4195 . 131908) (-4196 . 131656) + (-4197 . 131569) (-4198 . 131493) (-4199 . 131417) (-4200 . 131321) + (-4201 . 127345) (-4202 . 126163) (-4203 . 125499) (-4204 . 125312) + (-4205 . 123096) (-4206 . 122770) (-4207 . 122389) (-4208 . 121945) + (-4209 . 121710) (-4210 . 121462) (-4211 . 121371) (-4212 . 119924) + (-4213 . 119845) (-4214 . 119739) (-4215 . 118255) (-4216 . 117849) + (-4217 . 117446) (-4218 . 117344) (-4219 . 117262) (-4220 . 117104) + (-4221 . 115805) (-4222 . 115723) (-4223 . 115644) (-4224 . 115289) + (-4225 . 115232) (-4226 . 115160) (-4227 . 115103) (-4228 . 115046) + (-4229 . 114916) (-4230 . 114712) (-4231 . 114343) (-4232 . 113921) + (-4233 . 108799) (-4234 . 108196) (-4235 . 107568) (-4236 . 107353) + (-4237 . 107138) (-4238 . 106970) (-4239 . 106755) (-4240 . 106587) + (-4241 . 106419) (-4242 . 106251) (-4243 . 106083) (-4244 . 103940) + (-4245 . 103668) (-4246 . 96793) (** . 93827) (-4248 . 93407) (-4249 . 93159) + (-4250 . 93102) (-4251 . 92604) (-4252 . 89779) (-4253 . 89629) + (-4254 . 89465) (-4255 . 89301) (-4256 . 89205) (-4257 . 89087) + (-4258 . 88963) (-4259 . 88820) (-4260 . 88649) (-4261 . 88522) + (-4262 . 88377) (-4263 . 88224) (-4264 . 88064) (-4265 . 87549) + (-4266 . 87458) (-4267 . 86789) (-4268 . 86595) (-4269 . 86499) + (-4270 . 86189) (-4271 . 85013) (-4272 . 84806) (-4273 . 83629) + (-4274 . 83554) (-4275 . 82373) (-4276 . 78780) (-4277 . 78416) + (-4278 . 78139) (-4279 . 78047) (-4280 . 77954) (-4281 . 77677) + (-4282 . 77584) (-4283 . 77491) (-4284 . 77398) (-4285 . 77014) + (-4286 . 76943) (-4287 . 76851) (-4288 . 76693) (-4289 . 76339) + (-4290 . 76181) (-4291 . 76073) (-4292 . 76044) (-4293 . 75977) + (-4294 . 75823) (-4295 . 75664) (-4296 . 75270) (-4297 . 75195) + (-4298 . 75089) (-4299 . 75017) (-4300 . 74939) (-4301 . 74866) + (-4302 . 74793) (-4303 . 74720) (-4304 . 74648) (-4305 . 74576) + (-4306 . 74503) (-4307 . 74262) (-4308 . 73922) (-4309 . 73774) + (-4310 . 73701) (-4311 . 73628) (-4312 . 73555) (-4313 . 73301) + (-4314 . 73157) (-4315 . 71821) (-4316 . 71627) (-4317 . 71356) + (-4318 . 71208) (-4319 . 71060) (-4320 . 70820) (-4321 . 70625) + (-4322 . 70355) (-4323 . 70159) (-4324 . 70130) (-4325 . 70029) + (-4326 . 69928) (-4327 . 69827) (-4328 . 69726) (-4329 . 69625) + (-4330 . 69524) (-4331 . 69423) (-4332 . 69322) (-4333 . 69221) + (-4334 . 69120) (-4335 . 69005) (-4336 . 68890) (-4337 . 68839) + (-4338 . 68722) (-4339 . 68664) (-4340 . 68563) (-4341 . 68462) + (-4342 . 68361) (-4343 . 68245) (-4344 . 68216) (-4345 . 67484) + (-4346 . 67359) (-4347 . 67234) (-4348 . 67094) (-4349 . 66976) + (-4350 . 66851) (-4351 . 66696) (-4352 . 65713) (-4353 . 64854) + (-4354 . 64800) (-4355 . 64746) (-4356 . 64538) (-4357 . 64164) + (-4358 . 63750) (-4359 . 63389) (-4360 . 63028) (-4361 . 62875) + (-4362 . 62573) (-4363 . 62417) (-4364 . 62091) (-4365 . 62020) + (-4366 . 61949) (-4367 . 61737) (-4368 . 60930) (-4369 . 60724) + (-4370 . 60350) (-4371 . 59830) (-4372 . 59562) (-4373 . 59078) + (-4374 . 58594) (-4375 . 58468) (-4376 . 57254) (-4377 . 56063) + (-4378 . 55490) (-4379 . 55272) (-4380 . 36855) (-4381 . 36669) + (-4382 . 34569) (-4383 . 32393) (-4384 . 32245) (-4385 . 32063) + (-4386 . 31654) (-4387 . 31353) (-4388 . 31002) (-4389 . 30834) + (-4390 . 30666) (-4391 . 30302) (-4392 . 16365) (-4393 . 15245) (* . 11028) + (-4395 . 10772) (-4396 . 10586) (-4397 . 9624) (-4398 . 9355) (-4399 . 8720) + (-4400 . 7438) (-4401 . 6179) (-4402 . 5299) (-4403 . 4033) (-4404 . 382) + (-4405 . 280) (-4406 . 160) (-4407 . 30))
\ No newline at end of file |